1 /*
   2  * Copyright (c) 1994, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.util.Arrays;
  29 
  30 /**
  31  * Linear-probe hash table.
  32  * <p/>
  33  * Modeled by the {@link java.util.IdentityHashMap}, but using overriddable
  34  * {@link #equals(Object, Object) equals} / {@link #hashCode(Object) hashCode}
  35  * to compare/locate elements. The API of this class is similar
  36  * in function and form to {@link java.util.Map}, but doesn't use separate keys
  37  * and values. In this API an <b>element</b> is a key and a value at the same time.
  38  * An element is always non-null, so the return values are unambiguous.
  39  * <p/>
  40  * Because this is a linear-probe hash table and there are no
  41  * {@link java.util.Map.Entry} objects involved, the underlying
  42  * data structure is very simple and memory efficient.
  43  * It is just a sparse array of elements with length that
  44  * is always a power of two and larger than 3 * {@link #size()} / 2.
  45  *
  46  * @param <T> Type of elements contained in the HashArray.
  47  */
  48 class HashArray<T> {
  49     /**
  50      * The minimum capacity, used if a lower value is implicitly specified.
  51      * The value 2 corresponds to an expected maximum size of 1,
  52      * given a load factor of 2/3. MUST be a power of two.
  53      */
  54     private static final int MINIMUM_CAPACITY = 2;
  55 
  56     /**
  57      * The maximum capacity.
  58      * <p/>
  59      * In fact, the HashArray can hold no more than MAXIMUM_CAPACITY-1 elements
  60      * because it has to have at least one slot == null
  61      * in order to avoid infinite loops in get() and put().
  62      */
  63     private static final int MAXIMUM_CAPACITY = 1 << 30;
  64 
  65     /**
  66      * The table, re-sized as necessary.
  67      * Length MUST always be a power of two.
  68      */
  69     private T[] table;
  70 
  71     /**
  72      * The number of elements contained in this HashArray.
  73      */
  74     private int size;
  75 
  76     /**
  77      * Constructor with {@code expectedSize} pre-allocates the
  78      * {@link #table}.
  79      *
  80      * @param expectedMaxSize expected number of elements new HashArray
  81      *                        will hold.
  82      */
  83     @SuppressWarnings("unchecked")
  84     public HashArray(int expectedMaxSize) {
  85         if (expectedMaxSize < 0)
  86             throw new IllegalArgumentException("expectedMaxSize is negative: "
  87                                                + expectedMaxSize);
  88         table = (T[]) new Object[capacity(expectedMaxSize)];
  89     }
  90 
  91     /**
  92      * Returns the appropriate capacity for the given expected maximum size.
  93      * Returns the smallest power of two between MINIMUM_CAPACITY and
  94      * MAXIMUM_CAPACITY, inclusive, that is greater than (3 *
  95      * expectedMaxSize)/2, if such a number exists.  Otherwise returns
  96      * MAXIMUM_CAPACITY.
  97      */
  98     private static int capacity(int expectedMaxSize) {
  99         // assert expectedMaxSize >= 0;
 100         return
 101             (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
 102             (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
 103             Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
 104     }
 105 
 106     /**
 107      * Returns a hash code value for an element of this HashArray or a
 108      * lookup object.
 109      * <p/>
 110      * By default it returns:
 111      * <pre>
 112      *     obj.{@link Object#hashCode() hashCode()}
 113      * </pre>
 114      * But can be overridden in subclasses.
 115      *
 116      * @param obj an element of this HashArray or a lookup object
 117      * @return a hash code value for an element or lookup object.
 118      * @see #equals(Object, Object)
 119      */
 120     protected int hashCode(Object obj) {
 121         return obj.hashCode();
 122     }
 123 
 124     /**
 125      * Indicates whether an element of this HashArray is "equal to"
 126      * a lookup object or another element.
 127      * <p/>
 128      * By default it returns:
 129      * <pre>
 130      *     element.{@link Object#equals(Object) equals(obj)}
 131      * </pre>
 132      * But can be overridden in subclasses.
 133      *
 134      * @param element an element of this HashArray
 135      * @param obj     a lookup object or another element
 136      * @return {@code true} if an element is the same
 137      *         as a lookup object or another element;
 138      *         {@code false} otherwise.
 139      * @see #hashCode(Object)
 140      */
 141     protected boolean equals(T element, Object obj) {
 142         return element.equals(obj);
 143     }
 144 
 145     /**
 146      * Returns index for Object x.
 147      */
 148     private int hash(Object x, int length) {
 149         int h = hashCode(x);
 150         return (h ^ (h >>> 16)) & (length - 1);
 151     }
 152 
 153     /**
 154      * Circularly traverses table of size length (which is a power of 2).
 155      */
 156     private static int nextKeyIndex(int i, int length) {
 157         return (i + 1) & (length - 1);
 158     }
 159 
 160     /**
 161      * @return Number of elements contained in this HashArray.
 162      */
 163     public int size() {
 164         return size;
 165     }
 166 
 167     /**
 168      * @param lookupObj a non-null lookup object
 169      * @return The element which is equal to specified {@code lookupObj}
 170      *         if it exists in this HashArray or null if it doesn't.
 171      *         (There can be at most one such element.)
 172      * @throws NullPointerException if {@code lookupObj} is null
 173      */
 174     @SuppressWarnings("unchecked")
 175     public T get(Object lookupObj) {
 176         if (lookupObj == null) throw new NullPointerException();
 177         final T[] tab = table;
 178         int i = hash(lookupObj, tab.length);
 179         while (true) {
 180             T element = tab[i];
 181             if (element == null) {
 182                 return null;
 183             }
 184             if (equals(element, lookupObj)) {
 185                 return element;
 186             }
 187             i = nextKeyIndex(i, tab.length);
 188         }
 189     }
 190 
 191     /**
 192      * Adds {@code newElement} if an element equal to it is not present in
 193      * this HashArray and returns null, or returns the existing element and
 194      * replaces it with {@code newElement} if such element is present.
 195      *
 196      * @param newElement new element to put into this HashArray
 197      * @return previous element if there was one or null if there was none
 198      */
 199     public T put(T newElement) {
 200         return put(newElement, true);
 201     }
 202 
 203     /**
 204      * Adds {@code newElement} if an element equal to it is not present in
 205      * this HashArray and returns null, or returns the existing element and
 206      * doesn't modify HashArray if such element is present.
 207      *
 208      * @param newElement new element to put into this HashArray
 209      * @return previous element if there was one or null if there was none
 210      */
 211     public T putIfAbsent(T newElement) {
 212         return put(newElement, false);
 213     }
 214 
 215     private T put(T newElement, boolean replace) {
 216         if (newElement == null) throw new NullPointerException();
 217         for (; ; ) {
 218             final T[] tab = table;
 219             int i = hash(newElement, tab.length);
 220 
 221             for (
 222                 T element; (element = tab[i]) != null;
 223                 i = nextKeyIndex(i, tab.length)
 224                 ) {
 225                 if (equals(element, newElement)) {
 226                     if (replace) {
 227                         tab[i] = newElement;
 228                     }
 229                     return element;
 230                 }
 231             }
 232 
 233             final int s = size + 1;
 234             // Use optimized form of 3 * s / 2.
 235             // Next capacity is 2 * current capacity.
 236             if (s + (s >> 1) > tab.length && resize(tab.length << 1))
 237                 continue;
 238 
 239             tab[i] = newElement;
 240             size = s;
 241             return null;
 242         }
 243     }
 244 
 245     /**
 246      * Resizes the table if necessary to hold given capacity.
 247      */
 248     private boolean resize(int newLength) {
 249         T[] oldTable = table;
 250         int oldLength = oldTable.length;
 251         if (oldLength == MAXIMUM_CAPACITY) { // can't expand any further
 252             if (size == MAXIMUM_CAPACITY - 1)
 253                 throw new IllegalStateException("Capacity exhausted.");
 254             return false;
 255         }
 256         if (oldLength >= newLength)
 257             return false;
 258 
 259         @SuppressWarnings("unchecked")
 260         T[] newTable = (T[]) new Object[newLength];
 261 
 262         for (int j = 0; j < oldLength; j++) {
 263             T element = oldTable[j];
 264             if (element != null) {
 265                 oldTable[j] = null;
 266                 int i = hash(element, newLength);
 267                 while (newTable[i] != null)
 268                     i = nextKeyIndex(i, newLength);
 269                 newTable[i] = element;
 270             }
 271         }
 272         table = newTable;
 273         return true;
 274     }
 275 
 276     /**
 277      * Removes the element equal to {@code lookupObj} and
 278      * returns it if present or returns null if not present.
 279      *
 280      * @param lookupObj a non-null lookup object
 281      * @return the removed element if there was one or null if
 282      *         there was none
 283      * @throws NullPointerException if {@code lookupObj} is null
 284      */
 285     public T remove(Object lookupObj) {
 286         if (lookupObj == null) throw new NullPointerException();
 287         T[] tab = table;
 288         int i = hash(lookupObj, tab.length);
 289 
 290         while (true) {
 291             T element = tab[i];
 292             if (element == null) {
 293                 return null;
 294             }
 295             if (equals(element, lookupObj)) {
 296                 size--;
 297                 tab[i] = null;
 298                 closeDeletion(tab, i);
 299                 return element;
 300             }
 301             i = nextKeyIndex(i, tab.length);
 302         }
 303     }
 304 
 305     /**
 306      * Rehash all possibly-colliding elements following a
 307      * deletion. This preserves the linear-probe
 308      * collision properties required by get, putIfAbsent, remove.
 309      *
 310      * @param d the index of a newly empty deleted slot
 311      */
 312     private void closeDeletion(Object[] tab, int d) {
 313         // Adapted from Knuth Section 6.4 Algorithm R
 314 
 315         // Look for elements to swap into newly vacated slot
 316         // starting at index immediately following deletion,
 317         // and continuing until a null slot is seen, indicating
 318         // the end of a run of possibly-colliding elements.
 319         Object element;
 320         for (
 321             int i = nextKeyIndex(d, tab.length); (element = tab[i]) != null;
 322             i = nextKeyIndex(i, tab.length)
 323             ) {
 324             // The following test triggers if the element at slot i (which
 325             // hashes to be at slot r) should take the spot vacated by d.
 326             // If so, we swap it in, and then continue with d now at the
 327             // newly vacated i.  This process will terminate when we hit
 328             // the null slot at the end of this run.
 329             // The test is messy because we are using a circular table.
 330             int r = hash(element, tab.length);
 331             if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
 332                 tab[d] = element;
 333                 tab[i] = null;
 334                 d = i;
 335             }
 336         }
 337     }
 338 
 339     /**
 340      * Removes all of the elements from this HashArray.
 341      */
 342     public void clear() {
 343         Arrays.fill(table, null);
 344         size = 0;
 345     }
 346 }