/* * Copyright (c) 1994, 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package java.lang; import java.util.Arrays; /** * Linear-probe hash table. * *

Modeled on {@link java.util.IdentityHashMap}, but using overridable * {@link #equals(Object, Object) equals} / {@link #hashCode(Object) hashCode} * to compare/locate elements. The API of this class is similar * in function and form to {@link java.util.Map}, but doesn't use separate keys * and values. In this API an element is a key and a value at the same time. * An element is always non-null, so the return values are unambiguous. * *

Because this is a linear-probe hash table and there are no * {@link java.util.Map.Entry} objects involved, the underlying * data structure is very simple and memory efficient. * It is just a sparse array of elements with length that * is always a power of two and larger than 3 * {@link #size()} / 2. * * @param Type of elements contained in the HashArray. */ class HashArray { /** * The minimum capacity, used if a lower value is implicitly specified. * The value 2 corresponds to an expected maximum size of 1, * given a load factor of 2/3. MUST be a power of two. */ private static final int MINIMUM_CAPACITY = 2; /** * The maximum capacity. * * In fact, the HashArray can hold no more than MAXIMUM_CAPACITY-1 elements * because it has to have at least one slot == null * in order to avoid infinite loops in get() and put(). */ private static final int MAXIMUM_CAPACITY = 1 << 30; /** * The table, re-sized as necessary. * Length MUST always be a power of two. */ private T[] table; /** * The number of elements contained in this HashArray. */ private int size; /** * Constructor with {@code expectedSize} pre-allocates the * {@link #table}. * * @param expectedMaxSize expected number of elements new HashArray * will hold. */ @SuppressWarnings("unchecked") public HashArray(int expectedMaxSize) { if (expectedMaxSize < 0) throw new IllegalArgumentException("expectedMaxSize is negative: " + expectedMaxSize); table = (T[]) new Object[capacity(expectedMaxSize)]; } /** * Returns the appropriate capacity for the given expected maximum size. * Returns the smallest power of two between MINIMUM_CAPACITY and * MAXIMUM_CAPACITY, inclusive, that is greater than (3 * * expectedMaxSize)/2, if such a number exists. Otherwise returns * MAXIMUM_CAPACITY. */ private static int capacity(int expectedMaxSize) { // assert expectedMaxSize >= 0; return (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY : (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY : Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1)); } /** * Returns a hash code value for an element of this HashArray or a * lookup object. * *

By default it returns: *

     *     obj.{@link Object#hashCode() hashCode()}
     * 
* But can be overridden in subclasses. * * @param obj an element of this HashArray or a lookup object * @return a hash code value for an element or lookup object. * @see #equals(Object, Object) */ protected int hashCode(Object obj) { return obj.hashCode(); } /** * Indicates whether an element of this HashArray is "equal to" * a lookup object or another element. * *

By default it returns: *

     *     element.{@link Object#equals(Object) equals(obj)}
     * 
* But can be overridden in subclasses. * * @param element an element of this HashArray * @param obj a lookup object or another element * @return {@code true} if an element is the same * as a lookup object or another element; * {@code false} otherwise. * @see #hashCode(Object) */ protected boolean equals(T element, Object obj) { return element.equals(obj); } /** * Returns index for Object x. */ private int hash(Object x, int length) { int h = hashCode(x); return (h ^ (h >>> 16)) & (length - 1); } /** * Circularly traverses table of size length (which is a power of 2). */ private static int nextKeyIndex(int i, int length) { return (i + 1) & (length - 1); } /** * @return Number of elements contained in this HashArray. */ public int size() { return size; } /** * @param lookupObj a non-null lookup object * @return The element which is equal to specified {@code lookupObj} * if it exists in this HashArray or null if it doesn't. * (There can be at most one such element.) * @throws NullPointerException if {@code lookupObj} is null */ @SuppressWarnings("unchecked") public T get(Object lookupObj) { if (lookupObj == null) throw new NullPointerException(); final T[] tab = table; int i = hash(lookupObj, tab.length); while (true) { T element = tab[i]; if (element == null) { return null; } if (equals(element, lookupObj)) { return element; } i = nextKeyIndex(i, tab.length); } } /** * Adds {@code newElement} if an element equal to it is not present in * this HashArray and returns null, or returns the existing element and * replaces it with {@code newElement} if such element is present. * * @param newElement new element to put into this HashArray * @return previous element if there was one or null if there was none */ public T put(T newElement) { return put(newElement, true); } /** * Adds {@code newElement} if an element equal to it is not present in * this HashArray and returns null, or returns the existing element and * doesn't modify HashArray if such element is present. * * @param newElement new element to put into this HashArray * @return previous element if there was one or null if there was none */ public T putIfAbsent(T newElement) { return put(newElement, false); } private T put(T newElement, boolean replace) { if (newElement == null) throw new NullPointerException(); for (; ; ) { final T[] tab = table; int i = hash(newElement, tab.length); for ( T element; (element = tab[i]) != null; i = nextKeyIndex(i, tab.length) ) { if (equals(element, newElement)) { if (replace) { tab[i] = newElement; } return element; } } final int s = size + 1; // Use optimized form of 3 * s / 2. // Next capacity is 2 * current capacity. if (s + (s >> 1) > tab.length && resize(tab.length << 1)) continue; tab[i] = newElement; size = s; return null; } } /** * Resizes the table if necessary to hold given capacity. */ private boolean resize(int newLength) { T[] oldTable = table; int oldLength = oldTable.length; if (oldLength == MAXIMUM_CAPACITY) { // can't expand any further if (size == MAXIMUM_CAPACITY - 1) throw new IllegalStateException("Capacity exhausted."); return false; } if (oldLength >= newLength) return false; @SuppressWarnings("unchecked") T[] newTable = (T[]) new Object[newLength]; for (int j = 0; j < oldLength; j++) { T element = oldTable[j]; if (element != null) { oldTable[j] = null; int i = hash(element, newLength); while (newTable[i] != null) i = nextKeyIndex(i, newLength); newTable[i] = element; } } table = newTable; return true; } /** * Removes the element equal to {@code lookupObj} and * returns it if present or returns null if not present. * * @param lookupObj a non-null lookup object * @return the removed element if there was one or null if * there was none * @throws NullPointerException if {@code lookupObj} is null */ public T remove(Object lookupObj) { if (lookupObj == null) throw new NullPointerException(); T[] tab = table; int i = hash(lookupObj, tab.length); while (true) { T element = tab[i]; if (element == null) { return null; } if (equals(element, lookupObj)) { size--; tab[i] = null; closeDeletion(tab, i); return element; } i = nextKeyIndex(i, tab.length); } } /** * Rehash all possibly-colliding elements following a * deletion. This preserves the linear-probe * collision properties required by get, putIfAbsent, remove. * * @param d the index of a newly empty deleted slot */ private void closeDeletion(Object[] tab, int d) { // Adapted from Knuth Section 6.4 Algorithm R // Look for elements to swap into newly vacated slot // starting at index immediately following deletion, // and continuing until a null slot is seen, indicating // the end of a run of possibly-colliding elements. Object element; for ( int i = nextKeyIndex(d, tab.length); (element = tab[i]) != null; i = nextKeyIndex(i, tab.length) ) { // The following test triggers if the element at slot i (which // hashes to be at slot r) should take the spot vacated by d. // If so, we swap it in, and then continue with d now at the // newly vacated i. This process will terminate when we hit // the null slot at the end of this run. // The test is messy because we are using a circular table. int r = hash(element, tab.length); if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) { tab[d] = element; tab[i] = null; d = i; } } } /** * Removes all of the elements from this HashArray. */ public void clear() { Arrays.fill(table, null); size = 0; } }