/* * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ import java.lang.ref.Cleaner; import java.lang.ref.Reference; import java.lang.ref.PhantomReference; import java.lang.ref.ReferenceQueue; import java.lang.ref.SoftReference; import java.lang.ref.WeakReference; import java.util.Vector; import java.util.concurrent.Semaphore; import java.util.function.Consumer; import java.util.function.Supplier; import org.testng.Assert; import org.testng.TestNG; import org.testng.annotations.Test; /* * @test * @library /lib/testlibrary * @run testng/othervm -Xmx16m CleanerTest */ @Test public class CleanerTest { // A common CleaningService used by the test for notifications static final Cleaner COMMON = Cleaner.create(); /** * Test that sequences of the various actions on a Reference * and on the Cleanable instance have the desired result. * The test cases are generated for each of phantom, weak and soft * references. * The sequence of actions includes all permutations to an initial * list of actions including clearing the ref and resulting garbage * collection actions on the reference, explicitly performing * the cleanup and explicitly clearing the cleaning function. */ @Test @SuppressWarnings("unchecked") void test1() { Cleaner cleaner = Cleaner.create(); // Individually generateCases(cleaner, c -> c.clearRef()); generateCases(cleaner, c -> c.doClean()); generateCases(cleaner, c -> c.doClear()); // Pairs generateCases(cleaner, c -> c.doClear(), c -> c.doClean()); // Triplets generateCases(cleaner, c -> c.doClear(), c -> c.doClean(), c -> c.clearRef()); CleanableCase s = setupPhantom(COMMON, cleaner); cleaner = null; Assert.assertTrue(checkCleaned(s.getSemaphore()), "Cleaner cleanup should have occurred"); } /** * Generate tests using the runnables for each of phantom, weak, * and soft references. * @param cleaner the cleaner * @param runnables the sequence of actions on the test case */ @SuppressWarnings("unchecked") void generateCases(Cleaner cleaner, Consumer... runnables) { generateCases(() -> setupPhantom(cleaner, null), runnables.length, runnables); generateCases(() -> setupWeak(cleaner, null), runnables.length, runnables); generateCases(() -> setupSoft(cleaner, null), runnables.length, runnables); } /** * Generate all permutations of the sequence of runnables * and test each one. * The permutations are generated using Heap, B.R. (1963) Permutations by Interchanges. * @param generator the supplier of a CleanableCase * @param n the first index to interchange * @param runnables the sequence of actions */ @SuppressWarnings("unchecked") void generateCases(Supplier generator, int n, Consumer ... runnables) { System.out.printf("Heap n: %d%n", n); if (n == 1) { CleanableCase test = generator.get(); // Apply the sequence of actions on the Ref for (Consumer c : runnables) { c.accept(test); } verify(test); } else { for (int i = 0; i < n - 1; i += 1) { generateCases(generator, n - 1, runnables); Consumer t = runnables[n - 1]; int ndx = ((n & 1) == 0) ? i : 0; runnables[n - 1] = runnables[ndx]; runnables[ndx] = t; } generateCases(generator, n - 1, runnables); } } /** * Verify the test case. * Any actions directly on the Reference or Cleanable have been executed. * The CleanableCase under test is given a chance to do the cleanup * by forcing a GC. * The result is compared with the expecte result computed * from the sequence of operations on the Cleanable. * The Cleanable itself should have been cleanedup. * * @param test A CleanableCase containing the references */ void verify(CleanableCase test) { int r = test.expectedResult(); System.out.printf("Case: %s, expect: %s, events: %s%n", test.getRef().getClass().getName(), test.eventName(r), test.eventsString()); CleanableCase cc = setupPhantom(COMMON, test.getCleanable()); test.clearCleanable(); // release this hard reference boolean result = checkCleaned(test.getSemaphore()); if (result) { Assert.assertEquals(r, CleanableCase.EV_CLEAN, "expected cleaning to be done"); } else { Assert.assertNotEquals(r, CleanableCase.EV_CLEAN, "unexpected cleaning"); } Assert.assertTrue(checkCleaned(cc.getSemaphore()), "The reference to the Cleaner should have been freed"); } /** * Test that releasing the reference to the Cleaner service allows it to be * be freed. */ @Test void test2() { ReferenceQueue queue = new ReferenceQueue<>(); Cleaner service = Cleaner.create(); PhantomReference ref = new PhantomReference<>(service, queue); System.gc(); // Clear the Reference to the cleaning service and force a gc. service = null; System.gc(); try { Reference r = queue.remove(); Assert.assertEquals(r, ref, "Wrong Reference dequeued"); } catch (InterruptedException ie) { System.out.printf("queue.remove Interrupted%n"); } } /** * Check a set of semaphores having been released by cleanup handlers. * Force a number of GC cycles to give the GC a chance to process * all the References and for the cleanup functions to be run. * * @param semaphore a varargs list of Semaphores * @return true if all of the semaphores have at least 1 permit, * false otherwise. */ static boolean checkCleaned(Semaphore... semaphore) { long[] cycles = new long[semaphore.length]; long total = 0; for (int cycle = 0; cycle < 20; cycle++) { for (int i = 0; i < semaphore.length; i++) { long count = semaphore[i].availablePermits(); if (count > 0 && cycles[i] == 0) { System.out.printf(" Cleanable[%d] cleaned in cycle: %d%n", i, cycle); cycles[i] = cycle; total += 1; } } if (total == semaphore.length) { System.out.printf(" All cleanups done in cycle: %d, total: %d%n", cycle, total); for (int i = 0; i < semaphore.length; i++) { long count = semaphore[i].availablePermits(); Assert.assertEquals(count, 1, "Cleanable invoked more than once, semaphore " + i); } return true; // all references freed } // Force GC memoryPressure(); System.gc(); } // Not all objects have been cleaned for (int i = 0; i < semaphore.length; i++) { if (cycles[i] != 0) { System.out.printf(" Cleanable[%d] cleaned in cycle: %d%n", i, cycles[i]); } else { System.out.printf(" Cleanable[%d] not cleaned%n", i); } } return false; // Failing result } /** * Create a CleanableCase for a PhantomReference. * @param cleaner the cleaner to use * @param obj an object or null to create a new Object * @return a new CleanableCase preset with the object, cleanup, and semaphore */ static CleanableCase setupPhantom(Cleaner cleaner, Object obj) { if (obj == null) { obj = new Object(); } Semaphore s1 = new Semaphore(0); Cleaner.Cleanable c1 = cleaner.phantomCleanable(obj, () -> s1.release()); return new CleanableCase(new PhantomReference<>(obj, null), c1, s1); } /** * Create a CleanableCase for a WeakReference. * @param cleaner the cleaner to use * @param obj an object or null to create a new Object * @return a new CleanableCase preset with the object, cleanup, and semaphore */ static CleanableCase setupWeak(Cleaner cleaner, Object obj) { if (obj == null) { obj = new Object(); } Semaphore s1 = new Semaphore(0); Cleaner.Cleanable c1 = cleaner.weakCleanable(obj, () -> s1.release()); return new CleanableCase(new WeakReference<>(obj, null), c1, s1); } /** * Create a CleanableCase for a SoftReference. * @param cleaner the cleaner to use * @param obj an object or null to create a new Object * @return a new CleanableCase preset with the object, cleanup, and semaphore */ static CleanableCase setupSoft(Cleaner cleaner, Object obj) { if (obj == null) { obj = new Object(); } Semaphore s1 = new Semaphore(0); Cleaner.Cleanable c1 = cleaner.softCleanable(obj, () -> s1.release()); return new CleanableCase(new SoftReference<>(obj, null), c1, s1); } /** * MemoryPressure allocates memory to force a gc and to clear SoftReferences. */ static void memoryPressure() { Vector root = new Vector<>(); try { long free = 0; while ((free = Runtime.getRuntime().freeMemory()) > 1_000_000) { long[] extra = new long[1_000_000]; root.addElement(extra); } } catch (OutOfMemoryError mem) { // ignore root = null; } } /** * CleanableCase encapsulates the objects used for a test. * The reference to the object is not held directly, * but in a Reference object that can be cleared. * The semaphore is used to count whether the cleanup occurred. * It can be awaited on to determine that the cleanup has occurred. * It can be checked for non-zero to determine if it was * invoked or if itwas invoked twice (a bug). */ static class CleanableCase { private Reference ref; private Cleaner.Cleanable cleanup; private Semaphore semaphore; private int[] events; // Sequence of calls to clean, clear, etc. private int eventNdx; public static int EV_UNKNOWN = 0; public static int EV_CLEAR = 1; public static int EV_CLEAN = 2; public static int EV_UNREF = 3; public static int EV_CLEAR_CLEANUP = 4; CleanableCase(Reference ref, Cleaner.Cleanable cleanup, Semaphore semaphore) { this.ref = ref; this.cleanup = cleanup; this.semaphore = semaphore; this.events = new int[4]; this.eventNdx = 0; } public Object getRef() { return ref; } public void clearRef() { addEvent(EV_UNREF); ref.clear(); } public Cleaner.Cleanable getCleanable() { return cleanup; } public void doClean() { addEvent(EV_CLEAN); cleanup.clean(); } public void doClear() { addEvent(EV_CLEAR); cleanup.clear(); } public void clearCleanable() { addEvent(EV_CLEAR_CLEANUP); cleanup = null; } public Semaphore getSemaphore() { return semaphore; } public boolean isCleaned() { return semaphore.availablePermits() != 0; } private synchronized void addEvent(int e) { events[eventNdx++] = e; } /** * Computed the expected result from the sequence of events. * If EV_CLEAR appears before anything else, it is cleared. * If EV_CLEAN appears before EV_UNREF, then it is cleaned. * Anything else is Unknown. * @return EV_CLEAR if the cleanup should occur; * EV_CLEAN if the cleanup should occur; * EV_UNKNOWN if it is unknown. */ public synchronized int expectedResult() { // Test if EV_CLEAR appears before anything else int clearNdx = indexOfEvent(EV_CLEAR); int cleanNdx = indexOfEvent(EV_CLEAN); int unrefNdx = indexOfEvent(EV_UNREF); if (clearNdx < cleanNdx) { return EV_CLEAR; } if (cleanNdx < clearNdx || cleanNdx < unrefNdx) { return EV_CLEAN; } if (unrefNdx < eventNdx) { return EV_CLEAN; } return EV_UNKNOWN; } private synchronized int indexOfEvent(int e) { for (int i = 0; i < eventNdx; i++) { if (events[i] == e) { return i; } } return eventNdx; } private static final String[] names = {"UNKNOWN", "EV_CLEAR", "EV_CLEAN", "EV_UNREF", "EV_CLEAR_CLEANUP"}; public String eventName(int event) { return names[event]; } public synchronized String eventsString() { StringBuilder sb = new StringBuilder(); for (int i = 0; i < eventNdx; i++) { sb.append(eventName(events[i])); sb.append(' '); } return sb.toString(); } } }