1 /*
   2  * Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.*;
  29 import java.lang.reflect.Array;
  30 import java.util.function.BiConsumer;
  31 import java.util.function.BiFunction;
  32 import java.util.function.Consumer;
  33 
  34 /**
  35  * This class implements the <tt>Map</tt> interface with a hash table, using
  36  * reference-equality in place of object-equality when comparing keys (and
  37  * values).  In other words, in an <tt>IdentityHashMap</tt>, two keys
  38  * <tt>k1</tt> and <tt>k2</tt> are considered equal if and only if
  39  * <tt>(k1==k2)</tt>.  (In normal <tt>Map</tt> implementations (like
  40  * <tt>HashMap</tt>) two keys <tt>k1</tt> and <tt>k2</tt> are considered equal
  41  * if and only if <tt>(k1==null ? k2==null : k1.equals(k2))</tt>.)
  42  *
  43  * <p><b>This class is <i>not</i> a general-purpose <tt>Map</tt>
  44  * implementation!  While this class implements the <tt>Map</tt> interface, it
  45  * intentionally violates <tt>Map's</tt> general contract, which mandates the
  46  * use of the <tt>equals</tt> method when comparing objects.  This class is
  47  * designed for use only in the rare cases wherein reference-equality
  48  * semantics are required.</b>
  49  *
  50  * <p>A typical use of this class is <i>topology-preserving object graph
  51  * transformations</i>, such as serialization or deep-copying.  To perform such
  52  * a transformation, a program must maintain a "node table" that keeps track
  53  * of all the object references that have already been processed.  The node
  54  * table must not equate distinct objects even if they happen to be equal.
  55  * Another typical use of this class is to maintain <i>proxy objects</i>.  For
  56  * example, a debugging facility might wish to maintain a proxy object for
  57  * each object in the program being debugged.
  58  *
  59  * <p>This class provides all of the optional map operations, and permits
  60  * <tt>null</tt> values and the <tt>null</tt> key.  This class makes no
  61  * guarantees as to the order of the map; in particular, it does not guarantee
  62  * that the order will remain constant over time.
  63  *
  64  * <p>This class provides constant-time performance for the basic
  65  * operations (<tt>get</tt> and <tt>put</tt>), assuming the system
  66  * identity hash function ({@link System#identityHashCode(Object)})
  67  * disperses elements properly among the buckets.
  68  *
  69  * <p>This class has one tuning parameter (which affects performance but not
  70  * semantics): <i>expected maximum size</i>.  This parameter is the maximum
  71  * number of key-value mappings that the map is expected to hold.  Internally,
  72  * this parameter is used to determine the number of buckets initially
  73  * comprising the hash table.  The precise relationship between the expected
  74  * maximum size and the number of buckets is unspecified.
  75  *
  76  * <p>If the size of the map (the number of key-value mappings) sufficiently
  77  * exceeds the expected maximum size, the number of buckets is increased.
  78  * Increasing the number of buckets ("rehashing") may be fairly expensive, so
  79  * it pays to create identity hash maps with a sufficiently large expected
  80  * maximum size.  On the other hand, iteration over collection views requires
  81  * time proportional to the number of buckets in the hash table, so it
  82  * pays not to set the expected maximum size too high if you are especially
  83  * concerned with iteration performance or memory usage.
  84  *
  85  * <p><strong>Note that this implementation is not synchronized.</strong>
  86  * If multiple threads access an identity hash map concurrently, and at
  87  * least one of the threads modifies the map structurally, it <i>must</i>
  88  * be synchronized externally.  (A structural modification is any operation
  89  * that adds or deletes one or more mappings; merely changing the value
  90  * associated with a key that an instance already contains is not a
  91  * structural modification.)  This is typically accomplished by
  92  * synchronizing on some object that naturally encapsulates the map.
  93  *
  94  * If no such object exists, the map should be "wrapped" using the
  95  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  96  * method.  This is best done at creation time, to prevent accidental
  97  * unsynchronized access to the map:<pre>
  98  *   Map m = Collections.synchronizedMap(new IdentityHashMap(...));</pre>
  99  *
 100  * <p>The iterators returned by the <tt>iterator</tt> method of the
 101  * collections returned by all of this class's "collection view
 102  * methods" are <i>fail-fast</i>: if the map is structurally modified
 103  * at any time after the iterator is created, in any way except
 104  * through the iterator's own <tt>remove</tt> method, the iterator
 105  * will throw a {@link ConcurrentModificationException}.  Thus, in the
 106  * face of concurrent modification, the iterator fails quickly and
 107  * cleanly, rather than risking arbitrary, non-deterministic behavior
 108  * at an undetermined time in the future.
 109  *
 110  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 111  * as it is, generally speaking, impossible to make any hard guarantees in the
 112  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 113  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 114  * Therefore, it would be wrong to write a program that depended on this
 115  * exception for its correctness: <i>fail-fast iterators should be used only
 116  * to detect bugs.</i>
 117  *
 118  * <p>Implementation note: This is a simple <i>linear-probe</i> hash table,
 119  * as described for example in texts by Sedgewick and Knuth.  The array
 120  * alternates holding keys and values.  (This has better locality for large
 121  * tables than does using separate arrays.)  For many JRE implementations
 122  * and operation mixes, this class will yield better performance than
 123  * {@link HashMap} (which uses <i>chaining</i> rather than linear-probing).
 124  *
 125  * <p>This class is a member of the
 126  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 127  * Java Collections Framework</a>.
 128  *
 129  * @see     System#identityHashCode(Object)
 130  * @see     Object#hashCode()
 131  * @see     Collection
 132  * @see     Map
 133  * @see     HashMap
 134  * @see     TreeMap
 135  * @author  Doug Lea and Josh Bloch
 136  * @since   1.4
 137  */
 138 
 139 public class IdentityHashMap<K,V>
 140     extends AbstractMap<K,V>
 141     implements Map<K,V>, java.io.Serializable, Cloneable
 142 {
 143     /**
 144      * The initial capacity used by the no-args constructor.
 145      * MUST be a power of two.  The value 32 corresponds to the
 146      * (specified) expected maximum size of 21, given a load factor
 147      * of 2/3.
 148      */
 149     private static final int DEFAULT_CAPACITY = 32;
 150 
 151     /**
 152      * The minimum capacity, used if a lower value is implicitly specified
 153      * by either of the constructors with arguments.  The value 4 corresponds
 154      * to an expected maximum size of 2, given a load factor of 2/3.
 155      * MUST be a power of two.
 156      */
 157     private static final int MINIMUM_CAPACITY = 4;
 158 
 159     /**
 160      * The maximum capacity, used if a higher value is implicitly specified
 161      * by either of the constructors with arguments.
 162      * MUST be a power of two <= 1<<29.
 163      *
 164      * In fact, the map can hold no more than MAXIMUM_CAPACITY-1 items
 165      * because it has to have at least one slot with the key == null
 166      * in order to avoid infinite loops in get(), put(), remove()
 167      */
 168     private static final int MAXIMUM_CAPACITY = 1 << 29;
 169 
 170     /**
 171      * The table, resized as necessary. Length MUST always be a power of two.
 172      */
 173     transient Object[] table; // non-private to simplify nested class access
 174 
 175     /**
 176      * The number of key-value mappings contained in this identity hash map.
 177      *
 178      * @serial
 179      */
 180     int size;
 181 
 182     /**
 183      * The number of modifications, to support fast-fail iterators
 184      */
 185     transient int modCount;
 186 
 187     /**
 188      * Value representing null keys inside tables.
 189      */
 190     static final Object NULL_KEY = new Object();
 191 
 192     /**
 193      * Use NULL_KEY for key if it is null.
 194      */
 195     private static Object maskNull(Object key) {
 196         return (key == null ? NULL_KEY : key);
 197     }
 198 
 199     /**
 200      * Returns internal representation of null key back to caller as null.
 201      */
 202     static final Object unmaskNull(Object key) {
 203         return (key == NULL_KEY ? null : key);
 204     }
 205 
 206     /**
 207      * Constructs a new, empty identity hash map with a default expected
 208      * maximum size (21).
 209      */
 210     public IdentityHashMap() {
 211         init(DEFAULT_CAPACITY);
 212     }
 213 
 214     /**
 215      * Constructs a new, empty map with the specified expected maximum size.
 216      * Putting more than the expected number of key-value mappings into
 217      * the map may cause the internal data structure to grow, which may be
 218      * somewhat time-consuming.
 219      *
 220      * @param expectedMaxSize the expected maximum size of the map
 221      * @throws IllegalArgumentException if <tt>expectedMaxSize</tt> is negative
 222      */
 223     public IdentityHashMap(int expectedMaxSize) {
 224         if (expectedMaxSize < 0)
 225             throw new IllegalArgumentException("expectedMaxSize is negative: "
 226                                                + expectedMaxSize);
 227         init(capacity(expectedMaxSize));
 228     }
 229 
 230     /**
 231      * Returns the appropriate capacity for the given expected maximum size.
 232      * Returns the smallest power of two between MINIMUM_CAPACITY and
 233      * MAXIMUM_CAPACITY, inclusive, that is greater than (3 *
 234      * expectedMaxSize)/2, if such a number exists.  Otherwise returns
 235      * MAXIMUM_CAPACITY.  If (3 * expectedMaxSize) is negative, it is assumed
 236      * that overflow has occurred, and MAXIMUM_CAPACITY is returned.
 237      */
 238     private static int capacity(int expectedMaxSize) {
 239         // assert expectedMaxSize >= 0;
 240         return
 241             (expectedMaxSize > MAXIMUM_CAPACITY / 3) ? MAXIMUM_CAPACITY :
 242             (expectedMaxSize <= 2 * MINIMUM_CAPACITY / 3) ? MINIMUM_CAPACITY :
 243             Integer.highestOneBit(expectedMaxSize + (expectedMaxSize << 1));
 244     }
 245 
 246     /**
 247      * Initializes object to be an empty map with the specified initial
 248      * capacity, which is assumed to be a power of two between
 249      * MINIMUM_CAPACITY and MAXIMUM_CAPACITY inclusive.
 250      */
 251     private void init(int initCapacity) {
 252         // assert (initCapacity & -initCapacity) == initCapacity; // power of 2
 253         // assert initCapacity >= MINIMUM_CAPACITY;
 254         // assert initCapacity <= MAXIMUM_CAPACITY;
 255 
 256         table = new Object[2 * initCapacity];
 257     }
 258 
 259     /**
 260      * Constructs a new identity hash map containing the keys-value mappings
 261      * in the specified map.
 262      *
 263      * @param m the map whose mappings are to be placed into this map
 264      * @throws NullPointerException if the specified map is null
 265      */
 266     public IdentityHashMap(Map<? extends K, ? extends V> m) {
 267         // Allow for a bit of growth
 268         this((int) ((1 + m.size()) * 1.1));
 269         putAll(m);
 270     }
 271 
 272     /**
 273      * Returns the number of key-value mappings in this identity hash map.
 274      *
 275      * @return the number of key-value mappings in this map
 276      */
 277     public int size() {
 278         return size;
 279     }
 280 
 281     /**
 282      * Returns <tt>true</tt> if this identity hash map contains no key-value
 283      * mappings.
 284      *
 285      * @return <tt>true</tt> if this identity hash map contains no key-value
 286      *         mappings
 287      */
 288     public boolean isEmpty() {
 289         return size == 0;
 290     }
 291 
 292     /**
 293      * Returns index for Object x.
 294      */
 295     private static int hash(Object x, int length) {
 296         int h = System.identityHashCode(x);
 297         // Multiply by -127, and left-shift to use least bit as part of hash
 298         return ((h << 1) - (h << 8)) & (length - 1);
 299     }
 300 
 301     /**
 302      * Circularly traverses table of size len.
 303      */
 304     private static int nextKeyIndex(int i, int len) {
 305         return (i + 2 < len ? i + 2 : 0);
 306     }
 307 
 308     /**
 309      * Returns the value to which the specified key is mapped,
 310      * or {@code null} if this map contains no mapping for the key.
 311      *
 312      * <p>More formally, if this map contains a mapping from a key
 313      * {@code k} to a value {@code v} such that {@code (key == k)},
 314      * then this method returns {@code v}; otherwise it returns
 315      * {@code null}.  (There can be at most one such mapping.)
 316      *
 317      * <p>A return value of {@code null} does not <i>necessarily</i>
 318      * indicate that the map contains no mapping for the key; it's also
 319      * possible that the map explicitly maps the key to {@code null}.
 320      * The {@link #containsKey containsKey} operation may be used to
 321      * distinguish these two cases.
 322      *
 323      * @see #put(Object, Object)
 324      */
 325     @SuppressWarnings("unchecked")
 326     public V get(Object key) {
 327         Object k = maskNull(key);
 328         Object[] tab = table;
 329         int len = tab.length;
 330         int i = hash(k, len);
 331         while (true) {
 332             Object item = tab[i];
 333             if (item == k)
 334                 return (V) tab[i + 1];
 335             if (item == null)
 336                 return null;
 337             i = nextKeyIndex(i, len);
 338         }
 339     }
 340 
 341     /**
 342      * Tests whether the specified object reference is a key in this identity
 343      * hash map.
 344      *
 345      * @param   key   possible key
 346      * @return  <code>true</code> if the specified object reference is a key
 347      *          in this map
 348      * @see     #containsValue(Object)
 349      */
 350     public boolean containsKey(Object key) {
 351         Object k = maskNull(key);
 352         Object[] tab = table;
 353         int len = tab.length;
 354         int i = hash(k, len);
 355         while (true) {
 356             Object item = tab[i];
 357             if (item == k)
 358                 return true;
 359             if (item == null)
 360                 return false;
 361             i = nextKeyIndex(i, len);
 362         }
 363     }
 364 
 365     /**
 366      * Tests whether the specified object reference is a value in this identity
 367      * hash map.
 368      *
 369      * @param value value whose presence in this map is to be tested
 370      * @return <tt>true</tt> if this map maps one or more keys to the
 371      *         specified object reference
 372      * @see     #containsKey(Object)
 373      */
 374     public boolean containsValue(Object value) {
 375         Object[] tab = table;
 376         for (int i = 1; i < tab.length; i += 2)
 377             if (tab[i] == value && tab[i - 1] != null)
 378                 return true;
 379 
 380         return false;
 381     }
 382 
 383     /**
 384      * Tests if the specified key-value mapping is in the map.
 385      *
 386      * @param   key   possible key
 387      * @param   value possible value
 388      * @return  <code>true</code> if and only if the specified key-value
 389      *          mapping is in the map
 390      */
 391     private boolean containsMapping(Object key, Object value) {
 392         Object k = maskNull(key);
 393         Object[] tab = table;
 394         int len = tab.length;
 395         int i = hash(k, len);
 396         while (true) {
 397             Object item = tab[i];
 398             if (item == k)
 399                 return tab[i + 1] == value;
 400             if (item == null)
 401                 return false;
 402             i = nextKeyIndex(i, len);
 403         }
 404     }
 405 
 406     /**
 407      * Associates the specified value with the specified key in this identity
 408      * hash map.  If the map previously contained a mapping for the key, the
 409      * old value is replaced.
 410      *
 411      * @param key the key with which the specified value is to be associated
 412      * @param value the value to be associated with the specified key
 413      * @return the previous value associated with <tt>key</tt>, or
 414      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 415      *         (A <tt>null</tt> return can also indicate that the map
 416      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 417      * @see     Object#equals(Object)
 418      * @see     #get(Object)
 419      * @see     #containsKey(Object)
 420      */
 421     public V put(K key, V value) {
 422         Object k = maskNull(key);
 423         Object[] tab = table;
 424         int len = tab.length;
 425         int i = hash(k, len);
 426 
 427         Object item;
 428         while ( (item = tab[i]) != null) {
 429             if (item == k) {
 430                 @SuppressWarnings("unchecked")
 431                     V oldValue = (V) tab[i + 1];
 432                 tab[i + 1] = value;
 433                 return oldValue;
 434             }
 435             i = nextKeyIndex(i, len);
 436         }
 437 
 438         if (size == MAXIMUM_CAPACITY - 1)
 439             throw new IllegalStateException("Capacity exhausted.");
 440 
 441         if (size >= len / 3 && resize(len)) { // len == 2 * current capacity.
 442             tab = table;
 443             len = tab.length;
 444             i = hash(key, len);
 445             while (tab[i] != null)
 446                 i = nextKeyIndex(i, len);
 447         }
 448         modCount++;
 449         tab[i] = k;
 450         tab[i + 1] = value;
 451         size++;
 452         return null;
 453     }
 454 
 455     /**
 456      * Resize the table to hold given capacity.
 457      *
 458      * @param newCapacity the new capacity, must be a power of two.
 459      */
 460     private boolean resize(int newCapacity) {
 461         // assert (newCapacity & -newCapacity) == newCapacity; // power of 2
 462         int newLength = newCapacity * 2;
 463 
 464         Object[] oldTable = table;
 465         int oldLength = oldTable.length;
 466         if (oldLength == 2 * MAXIMUM_CAPACITY) { // can't expand any further
 467             return false;
 468         }
 469         if (oldLength >= newLength)
 470             return false;
 471 
 472         Object[] newTable = new Object[newLength];
 473 
 474         for (int j = 0; j < oldLength; j += 2) {
 475             Object key = oldTable[j];
 476             if (key != null) {
 477                 Object value = oldTable[j+1];
 478                 oldTable[j] = null;
 479                 oldTable[j+1] = null;
 480                 int i = hash(key, newLength);
 481                 while (newTable[i] != null)
 482                     i = nextKeyIndex(i, newLength);
 483                 newTable[i] = key;
 484                 newTable[i + 1] = value;
 485             }
 486         }
 487         table = newTable;
 488         return true;
 489     }
 490 
 491     /**
 492      * Copies all of the mappings from the specified map to this map.
 493      * These mappings will replace any mappings that this map had for
 494      * any of the keys currently in the specified map.
 495      *
 496      * @param m mappings to be stored in this map
 497      * @throws NullPointerException if the specified map is null
 498      */
 499     public void putAll(Map<? extends K, ? extends V> m) {
 500         int n = m.size();
 501         if (n == 0)
 502             return;
 503         if (n > table.length / 3) // conservatively pre-expand
 504             resize(capacity(n));
 505 
 506         for (Entry<? extends K, ? extends V> e : m.entrySet())
 507             put(e.getKey(), e.getValue());
 508     }
 509 
 510     /**
 511      * Removes the mapping for this key from this map if present.
 512      *
 513      * @param key key whose mapping is to be removed from the map
 514      * @return the previous value associated with <tt>key</tt>, or
 515      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 516      *         (A <tt>null</tt> return can also indicate that the map
 517      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 518      */
 519     public V remove(Object key) {
 520         Object k = maskNull(key);
 521         Object[] tab = table;
 522         int len = tab.length;
 523         int i = hash(k, len);
 524 
 525         while (true) {
 526             Object item = tab[i];
 527             if (item == k) {
 528                 modCount++;
 529                 size--;
 530                 @SuppressWarnings("unchecked")
 531                     V oldValue = (V) tab[i + 1];
 532                 tab[i + 1] = null;
 533                 tab[i] = null;
 534                 closeDeletion(i);
 535                 return oldValue;
 536             }
 537             if (item == null)
 538                 return null;
 539             i = nextKeyIndex(i, len);
 540         }
 541     }
 542 
 543     /**
 544      * Removes the specified key-value mapping from the map if it is present.
 545      *
 546      * @param   key   possible key
 547      * @param   value possible value
 548      * @return  <code>true</code> if and only if the specified key-value
 549      *          mapping was in the map
 550      */
 551     private boolean removeMapping(Object key, Object value) {
 552         Object k = maskNull(key);
 553         Object[] tab = table;
 554         int len = tab.length;
 555         int i = hash(k, len);
 556 
 557         while (true) {
 558             Object item = tab[i];
 559             if (item == k) {
 560                 if (tab[i + 1] != value)
 561                     return false;
 562                 modCount++;
 563                 size--;
 564                 tab[i] = null;
 565                 tab[i + 1] = null;
 566                 closeDeletion(i);
 567                 return true;
 568             }
 569             if (item == null)
 570                 return false;
 571             i = nextKeyIndex(i, len);
 572         }
 573     }
 574 
 575     /**
 576      * Rehash all possibly-colliding entries following a
 577      * deletion. This preserves the linear-probe
 578      * collision properties required by get, put, etc.
 579      *
 580      * @param d the index of a newly empty deleted slot
 581      */
 582     private void closeDeletion(int d) {
 583         // Adapted from Knuth Section 6.4 Algorithm R
 584         Object[] tab = table;
 585         int len = tab.length;
 586 
 587         // Look for items to swap into newly vacated slot
 588         // starting at index immediately following deletion,
 589         // and continuing until a null slot is seen, indicating
 590         // the end of a run of possibly-colliding keys.
 591         Object item;
 592         for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
 593              i = nextKeyIndex(i, len) ) {
 594             // The following test triggers if the item at slot i (which
 595             // hashes to be at slot r) should take the spot vacated by d.
 596             // If so, we swap it in, and then continue with d now at the
 597             // newly vacated i.  This process will terminate when we hit
 598             // the null slot at the end of this run.
 599             // The test is messy because we are using a circular table.
 600             int r = hash(item, len);
 601             if ((i < r && (r <= d || d <= i)) || (r <= d && d <= i)) {
 602                 tab[d] = item;
 603                 tab[d + 1] = tab[i + 1];
 604                 tab[i] = null;
 605                 tab[i + 1] = null;
 606                 d = i;
 607             }
 608         }
 609     }
 610 
 611     /**
 612      * Removes all of the mappings from this map.
 613      * The map will be empty after this call returns.
 614      */
 615     public void clear() {
 616         modCount++;
 617         Object[] tab = table;
 618         for (int i = 0; i < tab.length; i++)
 619             tab[i] = null;
 620         size = 0;
 621     }
 622 
 623     /**
 624      * Compares the specified object with this map for equality.  Returns
 625      * <tt>true</tt> if the given object is also a map and the two maps
 626      * represent identical object-reference mappings.  More formally, this
 627      * map is equal to another map <tt>m</tt> if and only if
 628      * <tt>this.entrySet().equals(m.entrySet())</tt>.
 629      *
 630      * <p><b>Owing to the reference-equality-based semantics of this map it is
 631      * possible that the symmetry and transitivity requirements of the
 632      * <tt>Object.equals</tt> contract may be violated if this map is compared
 633      * to a normal map.  However, the <tt>Object.equals</tt> contract is
 634      * guaranteed to hold among <tt>IdentityHashMap</tt> instances.</b>
 635      *
 636      * @param  o object to be compared for equality with this map
 637      * @return <tt>true</tt> if the specified object is equal to this map
 638      * @see Object#equals(Object)
 639      */
 640     public boolean equals(Object o) {
 641         if (o == this) {
 642             return true;
 643         } else if (o instanceof IdentityHashMap) {
 644             IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) o;
 645             if (m.size() != size)
 646                 return false;
 647 
 648             Object[] tab = m.table;
 649             for (int i = 0; i < tab.length; i+=2) {
 650                 Object k = tab[i];
 651                 if (k != null && !containsMapping(k, tab[i + 1]))
 652                     return false;
 653             }
 654             return true;
 655         } else if (o instanceof Map) {
 656             Map<?,?> m = (Map<?,?>)o;
 657             return entrySet().equals(m.entrySet());
 658         } else {
 659             return false;  // o is not a Map
 660         }
 661     }
 662 
 663     /**
 664      * Returns the hash code value for this map.  The hash code of a map is
 665      * defined to be the sum of the hash codes of each entry in the map's
 666      * <tt>entrySet()</tt> view.  This ensures that <tt>m1.equals(m2)</tt>
 667      * implies that <tt>m1.hashCode()==m2.hashCode()</tt> for any two
 668      * <tt>IdentityHashMap</tt> instances <tt>m1</tt> and <tt>m2</tt>, as
 669      * required by the general contract of {@link Object#hashCode}.
 670      *
 671      * <p><b>Owing to the reference-equality-based semantics of the
 672      * <tt>Map.Entry</tt> instances in the set returned by this map's
 673      * <tt>entrySet</tt> method, it is possible that the contractual
 674      * requirement of <tt>Object.hashCode</tt> mentioned in the previous
 675      * paragraph will be violated if one of the two objects being compared is
 676      * an <tt>IdentityHashMap</tt> instance and the other is a normal map.</b>
 677      *
 678      * @return the hash code value for this map
 679      * @see Object#equals(Object)
 680      * @see #equals(Object)
 681      */
 682     public int hashCode() {
 683         int result = 0;
 684         Object[] tab = table;
 685         for (int i = 0; i < tab.length; i +=2) {
 686             Object key = tab[i];
 687             if (key != null) {
 688                 Object k = unmaskNull(key);
 689                 result += System.identityHashCode(k) ^
 690                           System.identityHashCode(tab[i + 1]);
 691             }
 692         }
 693         return result;
 694     }
 695 
 696     /**
 697      * Returns a shallow copy of this identity hash map: the keys and values
 698      * themselves are not cloned.
 699      *
 700      * @return a shallow copy of this map
 701      */
 702     public Object clone() {
 703         try {
 704             IdentityHashMap<?,?> m = (IdentityHashMap<?,?>) super.clone();
 705             m.entrySet = null;
 706             m.table = table.clone();
 707             return m;
 708         } catch (CloneNotSupportedException e) {
 709             throw new InternalError(e);
 710         }
 711     }
 712 
 713     private abstract class IdentityHashMapIterator<T> implements Iterator<T> {
 714         int index = (size != 0 ? 0 : table.length); // current slot.
 715         int expectedModCount = modCount; // to support fast-fail
 716         int lastReturnedIndex = -1;      // to allow remove()
 717         boolean indexValid; // To avoid unnecessary next computation
 718         Object[] traversalTable = table; // reference to main table or copy
 719 
 720         public boolean hasNext() {
 721             Object[] tab = traversalTable;
 722             for (int i = index; i < tab.length; i+=2) {
 723                 Object key = tab[i];
 724                 if (key != null) {
 725                     index = i;
 726                     return indexValid = true;
 727                 }
 728             }
 729             index = tab.length;
 730             return false;
 731         }
 732 
 733         protected int nextIndex() {
 734             if (modCount != expectedModCount)
 735                 throw new ConcurrentModificationException();
 736             if (!indexValid && !hasNext())
 737                 throw new NoSuchElementException();
 738 
 739             indexValid = false;
 740             lastReturnedIndex = index;
 741             index += 2;
 742             return lastReturnedIndex;
 743         }
 744 
 745         public void remove() {
 746             if (lastReturnedIndex == -1)
 747                 throw new IllegalStateException();
 748             if (modCount != expectedModCount)
 749                 throw new ConcurrentModificationException();
 750 
 751             expectedModCount = ++modCount;
 752             int deletedSlot = lastReturnedIndex;
 753             lastReturnedIndex = -1;
 754             // back up index to revisit new contents after deletion
 755             index = deletedSlot;
 756             indexValid = false;
 757 
 758             // Removal code proceeds as in closeDeletion except that
 759             // it must catch the rare case where an element already
 760             // seen is swapped into a vacant slot that will be later
 761             // traversed by this iterator. We cannot allow future
 762             // next() calls to return it again.  The likelihood of
 763             // this occurring under 2/3 load factor is very slim, but
 764             // when it does happen, we must make a copy of the rest of
 765             // the table to use for the rest of the traversal. Since
 766             // this can only happen when we are near the end of the table,
 767             // even in these rare cases, this is not very expensive in
 768             // time or space.
 769 
 770             Object[] tab = traversalTable;
 771             int len = tab.length;
 772 
 773             int d = deletedSlot;
 774             Object key = tab[d];
 775             tab[d] = null;        // vacate the slot
 776             tab[d + 1] = null;
 777 
 778             // If traversing a copy, remove in real table.
 779             // We can skip gap-closure on copy.
 780             if (tab != IdentityHashMap.this.table) {
 781                 IdentityHashMap.this.remove(key);
 782                 expectedModCount = modCount;
 783                 return;
 784             }
 785 
 786             size--;
 787 
 788             Object item;
 789             for (int i = nextKeyIndex(d, len); (item = tab[i]) != null;
 790                  i = nextKeyIndex(i, len)) {
 791                 int r = hash(item, len);
 792                 // See closeDeletion for explanation of this conditional
 793                 if ((i < r && (r <= d || d <= i)) ||
 794                     (r <= d && d <= i)) {
 795 
 796                     // If we are about to swap an already-seen element
 797                     // into a slot that may later be returned by next(),
 798                     // then clone the rest of table for use in future
 799                     // next() calls. It is OK that our copy will have
 800                     // a gap in the "wrong" place, since it will never
 801                     // be used for searching anyway.
 802 
 803                     if (i < deletedSlot && d >= deletedSlot &&
 804                         traversalTable == IdentityHashMap.this.table) {
 805                         int remaining = len - deletedSlot;
 806                         Object[] newTable = new Object[remaining];
 807                         System.arraycopy(tab, deletedSlot,
 808                                          newTable, 0, remaining);
 809                         traversalTable = newTable;
 810                         index = 0;
 811                     }
 812 
 813                     tab[d] = item;
 814                     tab[d + 1] = tab[i + 1];
 815                     tab[i] = null;
 816                     tab[i + 1] = null;
 817                     d = i;
 818                 }
 819             }
 820         }
 821     }
 822 
 823     private class KeyIterator extends IdentityHashMapIterator<K> {
 824         @SuppressWarnings("unchecked")
 825         public K next() {
 826             return (K) unmaskNull(traversalTable[nextIndex()]);
 827         }
 828     }
 829 
 830     private class ValueIterator extends IdentityHashMapIterator<V> {
 831         @SuppressWarnings("unchecked")
 832         public V next() {
 833             return (V) traversalTable[nextIndex() + 1];
 834         }
 835     }
 836 
 837     private class EntryIterator
 838         extends IdentityHashMapIterator<Map.Entry<K,V>>
 839     {
 840         private Entry lastReturnedEntry;
 841 
 842         public Map.Entry<K,V> next() {
 843             lastReturnedEntry = new Entry(nextIndex());
 844             return lastReturnedEntry;
 845         }
 846 
 847         public void remove() {
 848             lastReturnedIndex =
 849                 ((null == lastReturnedEntry) ? -1 : lastReturnedEntry.index);
 850             super.remove();
 851             lastReturnedEntry.index = lastReturnedIndex;
 852             lastReturnedEntry = null;
 853         }
 854 
 855         private class Entry implements Map.Entry<K,V> {
 856             private int index;
 857 
 858             private Entry(int index) {
 859                 this.index = index;
 860             }
 861 
 862             @SuppressWarnings("unchecked")
 863             public K getKey() {
 864                 checkIndexForEntryUse();
 865                 return (K) unmaskNull(traversalTable[index]);
 866             }
 867 
 868             @SuppressWarnings("unchecked")
 869             public V getValue() {
 870                 checkIndexForEntryUse();
 871                 return (V) traversalTable[index+1];
 872             }
 873 
 874             @SuppressWarnings("unchecked")
 875             public V setValue(V value) {
 876                 checkIndexForEntryUse();
 877                 V oldValue = (V) traversalTable[index+1];
 878                 traversalTable[index+1] = value;
 879                 // if shadowing, force into main table
 880                 if (traversalTable != IdentityHashMap.this.table)
 881                     put((K) traversalTable[index], value);
 882                 return oldValue;
 883             }
 884 
 885             public boolean equals(Object o) {
 886                 if (index < 0)
 887                     return super.equals(o);
 888 
 889                 if (!(o instanceof Map.Entry))
 890                     return false;
 891                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 892                 return (e.getKey() == unmaskNull(traversalTable[index]) &&
 893                        e.getValue() == traversalTable[index+1]);
 894             }
 895 
 896             public int hashCode() {
 897                 if (lastReturnedIndex < 0)
 898                     return super.hashCode();
 899 
 900                 return (System.identityHashCode(unmaskNull(traversalTable[index])) ^
 901                        System.identityHashCode(traversalTable[index+1]));
 902             }
 903 
 904             public String toString() {
 905                 if (index < 0)
 906                     return super.toString();
 907 
 908                 return (unmaskNull(traversalTable[index]) + "="
 909                         + traversalTable[index+1]);
 910             }
 911 
 912             private void checkIndexForEntryUse() {
 913                 if (index < 0)
 914                     throw new IllegalStateException("Entry was removed");
 915             }
 916         }
 917     }
 918 
 919     // Views
 920 
 921     /**
 922      * This field is initialized to contain an instance of the entry set
 923      * view the first time this view is requested.  The view is stateless,
 924      * so there's no reason to create more than one.
 925      */
 926     private transient Set<Map.Entry<K,V>> entrySet;
 927 
 928     /**
 929      * Returns an identity-based set view of the keys contained in this map.
 930      * The set is backed by the map, so changes to the map are reflected in
 931      * the set, and vice-versa.  If the map is modified while an iteration
 932      * over the set is in progress, the results of the iteration are
 933      * undefined.  The set supports element removal, which removes the
 934      * corresponding mapping from the map, via the <tt>Iterator.remove</tt>,
 935      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt>, and
 936      * <tt>clear</tt> methods.  It does not support the <tt>add</tt> or
 937      * <tt>addAll</tt> methods.
 938      *
 939      * <p><b>While the object returned by this method implements the
 940      * <tt>Set</tt> interface, it does <i>not</i> obey <tt>Set's</tt> general
 941      * contract.  Like its backing map, the set returned by this method
 942      * defines element equality as reference-equality rather than
 943      * object-equality.  This affects the behavior of its <tt>contains</tt>,
 944      * <tt>remove</tt>, <tt>containsAll</tt>, <tt>equals</tt>, and
 945      * <tt>hashCode</tt> methods.</b>
 946      *
 947      * <p><b>The <tt>equals</tt> method of the returned set returns <tt>true</tt>
 948      * only if the specified object is a set containing exactly the same
 949      * object references as the returned set.  The symmetry and transitivity
 950      * requirements of the <tt>Object.equals</tt> contract may be violated if
 951      * the set returned by this method is compared to a normal set.  However,
 952      * the <tt>Object.equals</tt> contract is guaranteed to hold among sets
 953      * returned by this method.</b>
 954      *
 955      * <p>The <tt>hashCode</tt> method of the returned set returns the sum of
 956      * the <i>identity hashcodes</i> of the elements in the set, rather than
 957      * the sum of their hashcodes.  This is mandated by the change in the
 958      * semantics of the <tt>equals</tt> method, in order to enforce the
 959      * general contract of the <tt>Object.hashCode</tt> method among sets
 960      * returned by this method.
 961      *
 962      * @return an identity-based set view of the keys contained in this map
 963      * @see Object#equals(Object)
 964      * @see System#identityHashCode(Object)
 965      */
 966     public Set<K> keySet() {
 967         Set<K> ks = keySet;
 968         if (ks != null)
 969             return ks;
 970         else
 971             return keySet = new KeySet();
 972     }
 973 
 974     private class KeySet extends AbstractSet<K> {
 975         public Iterator<K> iterator() {
 976             return new KeyIterator();
 977         }
 978         public int size() {
 979             return size;
 980         }
 981         public boolean contains(Object o) {
 982             return containsKey(o);
 983         }
 984         public boolean remove(Object o) {
 985             int oldSize = size;
 986             IdentityHashMap.this.remove(o);
 987             return size != oldSize;
 988         }
 989         /*
 990          * Must revert from AbstractSet's impl to AbstractCollection's, as
 991          * the former contains an optimization that results in incorrect
 992          * behavior when c is a smaller "normal" (non-identity-based) Set.
 993          */
 994         public boolean removeAll(Collection<?> c) {
 995             Objects.requireNonNull(c);
 996             boolean modified = false;
 997             for (Iterator<K> i = iterator(); i.hasNext(); ) {
 998                 if (c.contains(i.next())) {
 999                     i.remove();
1000                     modified = true;
1001                 }
1002             }
1003             return modified;
1004         }
1005         public void clear() {
1006             IdentityHashMap.this.clear();
1007         }
1008         public int hashCode() {
1009             int result = 0;
1010             for (K key : this)
1011                 result += System.identityHashCode(key);
1012             return result;
1013         }
1014         public Object[] toArray() {
1015             return toArray(new Object[0]);
1016         }
1017         @SuppressWarnings("unchecked")
1018         public <T> T[] toArray(T[] a) {
1019             int expectedModCount = modCount;
1020             int size = size();
1021             if (a.length < size)
1022                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1023             Object[] tab = table;
1024             int ti = 0;
1025             for (int si = 0; si < tab.length; si += 2) {
1026                 Object key;
1027                 if ((key = tab[si]) != null) { // key present ?
1028                     // more elements than expected -> concurrent modification from other thread
1029                     if (ti >= size) {
1030                         throw new ConcurrentModificationException();
1031                     }
1032                     a[ti++] = (T) unmaskNull(key); // unmask key
1033                 }
1034             }
1035             // fewer elements than expected or concurrent modification from other thread detected
1036             if (ti < size || expectedModCount != modCount) {
1037                 throw new ConcurrentModificationException();
1038             }
1039             // final null marker as per spec
1040             if (ti < a.length) {
1041                 a[ti] = null;
1042             }
1043             return a;
1044         }
1045 
1046         public Spliterator<K> spliterator() {
1047             return new KeySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1048         }
1049     }
1050 
1051     /**
1052      * Returns a {@link Collection} view of the values contained in this map.
1053      * The collection is backed by the map, so changes to the map are
1054      * reflected in the collection, and vice-versa.  If the map is
1055      * modified while an iteration over the collection is in progress,
1056      * the results of the iteration are undefined.  The collection
1057      * supports element removal, which removes the corresponding
1058      * mapping from the map, via the <tt>Iterator.remove</tt>,
1059      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
1060      * <tt>retainAll</tt> and <tt>clear</tt> methods.  It does not
1061      * support the <tt>add</tt> or <tt>addAll</tt> methods.
1062      *
1063      * <p><b>While the object returned by this method implements the
1064      * <tt>Collection</tt> interface, it does <i>not</i> obey
1065      * <tt>Collection's</tt> general contract.  Like its backing map,
1066      * the collection returned by this method defines element equality as
1067      * reference-equality rather than object-equality.  This affects the
1068      * behavior of its <tt>contains</tt>, <tt>remove</tt> and
1069      * <tt>containsAll</tt> methods.</b>
1070      */
1071     public Collection<V> values() {
1072         Collection<V> vs = values;
1073         if (vs != null)
1074             return vs;
1075         else
1076             return values = new Values();
1077     }
1078 
1079     private class Values extends AbstractCollection<V> {
1080         public Iterator<V> iterator() {
1081             return new ValueIterator();
1082         }
1083         public int size() {
1084             return size;
1085         }
1086         public boolean contains(Object o) {
1087             return containsValue(o);
1088         }
1089         public boolean remove(Object o) {
1090             for (Iterator<V> i = iterator(); i.hasNext(); ) {
1091                 if (i.next() == o) {
1092                     i.remove();
1093                     return true;
1094                 }
1095             }
1096             return false;
1097         }
1098         public void clear() {
1099             IdentityHashMap.this.clear();
1100         }
1101         public Object[] toArray() {
1102             return toArray(new Object[0]);
1103         }
1104         @SuppressWarnings("unchecked")
1105         public <T> T[] toArray(T[] a) {
1106             int expectedModCount = modCount;
1107             int size = size();
1108             if (a.length < size)
1109                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1110             Object[] tab = table;
1111             int ti = 0;
1112             for (int si = 0; si < tab.length; si += 2) {
1113                 if (tab[si] != null) { // key present ?
1114                     // more elements than expected -> concurrent modification from other thread
1115                     if (ti >= size) {
1116                         throw new ConcurrentModificationException();
1117                     }
1118                     a[ti++] = (T) tab[si+1]; // copy value
1119                 }
1120             }
1121             // fewer elements than expected or concurrent modification from other thread detected
1122             if (ti < size || expectedModCount != modCount) {
1123                 throw new ConcurrentModificationException();
1124             }
1125             // final null marker as per spec
1126             if (ti < a.length) {
1127                 a[ti] = null;
1128             }
1129             return a;
1130         }
1131 
1132         public Spliterator<V> spliterator() {
1133             return new ValueSpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1134         }
1135     }
1136 
1137     /**
1138      * Returns a {@link Set} view of the mappings contained in this map.
1139      * Each element in the returned set is a reference-equality-based
1140      * <tt>Map.Entry</tt>.  The set is backed by the map, so changes
1141      * to the map are reflected in the set, and vice-versa.  If the
1142      * map is modified while an iteration over the set is in progress,
1143      * the results of the iteration are undefined.  The set supports
1144      * element removal, which removes the corresponding mapping from
1145      * the map, via the <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
1146      * <tt>removeAll</tt>, <tt>retainAll</tt> and <tt>clear</tt>
1147      * methods.  It does not support the <tt>add</tt> or
1148      * <tt>addAll</tt> methods.
1149      *
1150      * <p>Like the backing map, the <tt>Map.Entry</tt> objects in the set
1151      * returned by this method define key and value equality as
1152      * reference-equality rather than object-equality.  This affects the
1153      * behavior of the <tt>equals</tt> and <tt>hashCode</tt> methods of these
1154      * <tt>Map.Entry</tt> objects.  A reference-equality based <tt>Map.Entry
1155      * e</tt> is equal to an object <tt>o</tt> if and only if <tt>o</tt> is a
1156      * <tt>Map.Entry</tt> and <tt>e.getKey()==o.getKey() &amp;&amp;
1157      * e.getValue()==o.getValue()</tt>.  To accommodate these equals
1158      * semantics, the <tt>hashCode</tt> method returns
1159      * <tt>System.identityHashCode(e.getKey()) ^
1160      * System.identityHashCode(e.getValue())</tt>.
1161      *
1162      * <p><b>Owing to the reference-equality-based semantics of the
1163      * <tt>Map.Entry</tt> instances in the set returned by this method,
1164      * it is possible that the symmetry and transitivity requirements of
1165      * the {@link Object#equals(Object)} contract may be violated if any of
1166      * the entries in the set is compared to a normal map entry, or if
1167      * the set returned by this method is compared to a set of normal map
1168      * entries (such as would be returned by a call to this method on a normal
1169      * map).  However, the <tt>Object.equals</tt> contract is guaranteed to
1170      * hold among identity-based map entries, and among sets of such entries.
1171      * </b>
1172      *
1173      * @return a set view of the identity-mappings contained in this map
1174      */
1175     public Set<Map.Entry<K,V>> entrySet() {
1176         Set<Map.Entry<K,V>> es = entrySet;
1177         if (es != null)
1178             return es;
1179         else
1180             return entrySet = new EntrySet();
1181     }
1182 
1183     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1184         public Iterator<Map.Entry<K,V>> iterator() {
1185             return new EntryIterator();
1186         }
1187         public boolean contains(Object o) {
1188             if (!(o instanceof Map.Entry))
1189                 return false;
1190             Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
1191             return containsMapping(entry.getKey(), entry.getValue());
1192         }
1193         public boolean remove(Object o) {
1194             if (!(o instanceof Map.Entry))
1195                 return false;
1196             Map.Entry<?,?> entry = (Map.Entry<?,?>)o;
1197             return removeMapping(entry.getKey(), entry.getValue());
1198         }
1199         public int size() {
1200             return size;
1201         }
1202         public void clear() {
1203             IdentityHashMap.this.clear();
1204         }
1205         /*
1206          * Must revert from AbstractSet's impl to AbstractCollection's, as
1207          * the former contains an optimization that results in incorrect
1208          * behavior when c is a smaller "normal" (non-identity-based) Set.
1209          */
1210         public boolean removeAll(Collection<?> c) {
1211             Objects.requireNonNull(c);
1212             boolean modified = false;
1213             for (Iterator<Map.Entry<K,V>> i = iterator(); i.hasNext(); ) {
1214                 if (c.contains(i.next())) {
1215                     i.remove();
1216                     modified = true;
1217                 }
1218             }
1219             return modified;
1220         }
1221 
1222         public Object[] toArray() {
1223             return toArray(new Object[0]);
1224         }
1225 
1226         @SuppressWarnings("unchecked")
1227         public <T> T[] toArray(T[] a) {
1228             int expectedModCount = modCount;
1229             int size = size();
1230             if (a.length < size)
1231                 a = (T[]) Array.newInstance(a.getClass().getComponentType(), size);
1232             Object[] tab = table;
1233             int ti = 0;
1234             for (int si = 0; si < tab.length; si += 2) {
1235                 Object key;
1236                 if ((key = tab[si]) != null) { // key present ?
1237                     // more elements than expected -> concurrent modification from other thread
1238                     if (ti >= size) {
1239                         throw new ConcurrentModificationException();
1240                     }
1241                     a[ti++] = (T) new AbstractMap.SimpleEntry<>(unmaskNull(key), tab[si + 1]);
1242                 }
1243             }
1244             // fewer elements than expected or concurrent modification from other thread detected
1245             if (ti < size || expectedModCount != modCount) {
1246                 throw new ConcurrentModificationException();
1247             }
1248             // final null marker as per spec
1249             if (ti < a.length) {
1250                 a[ti] = null;
1251             }
1252             return a;
1253         }
1254 
1255         public Spliterator<Map.Entry<K,V>> spliterator() {
1256             return new EntrySpliterator<>(IdentityHashMap.this, 0, -1, 0, 0);
1257         }
1258     }
1259 
1260 
1261     private static final long serialVersionUID = 8188218128353913216L;
1262 
1263     /**
1264      * Save the state of the <tt>IdentityHashMap</tt> instance to a stream
1265      * (i.e., serialize it).
1266      *
1267      * @serialData The <i>size</i> of the HashMap (the number of key-value
1268      *          mappings) (<tt>int</tt>), followed by the key (Object) and
1269      *          value (Object) for each key-value mapping represented by the
1270      *          IdentityHashMap.  The key-value mappings are emitted in no
1271      *          particular order.
1272      */
1273     private void writeObject(java.io.ObjectOutputStream s)
1274         throws java.io.IOException  {
1275         // Write out and any hidden stuff
1276         s.defaultWriteObject();
1277 
1278         // Write out size (number of Mappings)
1279         s.writeInt(size);
1280 
1281         // Write out keys and values (alternating)
1282         Object[] tab = table;
1283         for (int i = 0; i < tab.length; i += 2) {
1284             Object key = tab[i];
1285             if (key != null) {
1286                 s.writeObject(unmaskNull(key));
1287                 s.writeObject(tab[i + 1]);
1288             }
1289         }
1290     }
1291 
1292     /**
1293      * Reconstitute the <tt>IdentityHashMap</tt> instance from a stream (i.e.,
1294      * deserialize it).
1295      */
1296     private void readObject(java.io.ObjectInputStream s)
1297         throws java.io.IOException, ClassNotFoundException  {
1298         // Read in any hidden stuff
1299         s.defaultReadObject();
1300 
1301         // Read in size (number of Mappings)
1302         int size = s.readInt();
1303 
1304         init(capacity(size));
1305 
1306         // Read the keys and values, and put the mappings in the table
1307         for (int i=0; i<size; i++) {
1308             @SuppressWarnings("unchecked")
1309                 K key = (K) s.readObject();
1310             @SuppressWarnings("unchecked")
1311                 V value = (V) s.readObject();
1312             putForCreate(key, value);
1313         }
1314     }
1315 
1316     /**
1317      * The put method for readObject.  It does not resize the table,
1318      * update modCount, etc.
1319      */
1320     private void putForCreate(K key, V value)
1321         throws IOException
1322     {
1323         Object k = maskNull(key);
1324         Object[] tab = table;
1325         int len = tab.length;
1326         int i = hash(k, len);
1327 
1328         Object item;
1329         while ( (item = tab[i]) != null) {
1330             if (item == k)
1331                 throw new java.io.StreamCorruptedException();
1332             i = nextKeyIndex(i, len);
1333         }
1334         tab[i] = k;
1335         tab[i + 1] = value;
1336     }
1337 
1338     @SuppressWarnings("unchecked")
1339     @Override
1340     public void forEach(BiConsumer<? super K, ? super V> action) {
1341         Objects.requireNonNull(action);
1342         int expectedModCount = modCount;
1343 
1344         Object[] t = table;
1345         for (int index = 0; index < t.length; index += 2) {
1346             Object k = t[index];
1347             if (k != null) {
1348                 action.accept((K) unmaskNull(k), (V) t[index + 1]);
1349             }
1350 
1351             if (modCount != expectedModCount) {
1352                 throw new ConcurrentModificationException();
1353             }
1354         }
1355     }
1356 
1357     @SuppressWarnings("unchecked")
1358     @Override
1359     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1360         Objects.requireNonNull(function);
1361         int expectedModCount = modCount;
1362 
1363         Object[] t = table;
1364         for (int index = 0; index < t.length; index += 2) {
1365             Object k = t[index];
1366             if (k != null) {
1367                 t[index + 1] = function.apply((K) unmaskNull(k), (V) t[index + 1]);
1368             }
1369 
1370             if (modCount != expectedModCount) {
1371                 throw new ConcurrentModificationException();
1372             }
1373         }
1374     }
1375 
1376     /**
1377      * Similar form as array-based Spliterators, but skips blank elements,
1378      * and guestimates size as decreasing by half per split.
1379      */
1380     static class IdentityHashMapSpliterator<K,V> {
1381         final IdentityHashMap<K,V> map;
1382         int index;             // current index, modified on advance/split
1383         int fence;             // -1 until first use; then one past last index
1384         int est;               // size estimate
1385         int expectedModCount;  // initialized when fence set
1386 
1387         IdentityHashMapSpliterator(IdentityHashMap<K,V> map, int origin,
1388                                    int fence, int est, int expectedModCount) {
1389             this.map = map;
1390             this.index = origin;
1391             this.fence = fence;
1392             this.est = est;
1393             this.expectedModCount = expectedModCount;
1394         }
1395 
1396         final int getFence() { // initialize fence and size on first use
1397             int hi;
1398             if ((hi = fence) < 0) {
1399                 est = map.size;
1400                 expectedModCount = map.modCount;
1401                 hi = fence = map.table.length;
1402             }
1403             return hi;
1404         }
1405 
1406         public final long estimateSize() {
1407             getFence(); // force init
1408             return (long) est;
1409         }
1410     }
1411 
1412     static final class KeySpliterator<K,V>
1413         extends IdentityHashMapSpliterator<K,V>
1414         implements Spliterator<K> {
1415         KeySpliterator(IdentityHashMap<K,V> map, int origin, int fence, int est,
1416                        int expectedModCount) {
1417             super(map, origin, fence, est, expectedModCount);
1418         }
1419 
1420         public KeySpliterator<K,V> trySplit() {
1421             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1422             return (lo >= mid) ? null :
1423                 new KeySpliterator<>(map, lo, index = mid, est >>>= 1,
1424                                      expectedModCount);
1425         }
1426 
1427         @SuppressWarnings("unchecked")
1428         public void forEachRemaining(Consumer<? super K> action) {
1429             if (action == null)
1430                 throw new NullPointerException();
1431             int i, hi, mc; Object key;
1432             IdentityHashMap<K,V> m; Object[] a;
1433             if ((m = map) != null && (a = m.table) != null &&
1434                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1435                 for (; i < hi; i += 2) {
1436                     if ((key = a[i]) != null)
1437                         action.accept((K)unmaskNull(key));
1438                 }
1439                 if (m.modCount == expectedModCount)
1440                     return;
1441             }
1442             throw new ConcurrentModificationException();
1443         }
1444 
1445         @SuppressWarnings("unchecked")
1446         public boolean tryAdvance(Consumer<? super K> action) {
1447             if (action == null)
1448                 throw new NullPointerException();
1449             Object[] a = map.table;
1450             int hi = getFence();
1451             while (index < hi) {
1452                 Object key = a[index];
1453                 index += 2;
1454                 if (key != null) {
1455                     action.accept((K)unmaskNull(key));
1456                     if (map.modCount != expectedModCount)
1457                         throw new ConcurrentModificationException();
1458                     return true;
1459                 }
1460             }
1461             return false;
1462         }
1463 
1464         public int characteristics() {
1465             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1466         }
1467     }
1468 
1469     static final class ValueSpliterator<K,V>
1470         extends IdentityHashMapSpliterator<K,V>
1471         implements Spliterator<V> {
1472         ValueSpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1473                          int expectedModCount) {
1474             super(m, origin, fence, est, expectedModCount);
1475         }
1476 
1477         public ValueSpliterator<K,V> trySplit() {
1478             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1479             return (lo >= mid) ? null :
1480                 new ValueSpliterator<>(map, lo, index = mid, est >>>= 1,
1481                                        expectedModCount);
1482         }
1483 
1484         public void forEachRemaining(Consumer<? super V> action) {
1485             if (action == null)
1486                 throw new NullPointerException();
1487             int i, hi, mc;
1488             IdentityHashMap<K,V> m; Object[] a;
1489             if ((m = map) != null && (a = m.table) != null &&
1490                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1491                 for (; i < hi; i += 2) {
1492                     if (a[i] != null) {
1493                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1494                         action.accept(v);
1495                     }
1496                 }
1497                 if (m.modCount == expectedModCount)
1498                     return;
1499             }
1500             throw new ConcurrentModificationException();
1501         }
1502 
1503         public boolean tryAdvance(Consumer<? super V> action) {
1504             if (action == null)
1505                 throw new NullPointerException();
1506             Object[] a = map.table;
1507             int hi = getFence();
1508             while (index < hi) {
1509                 Object key = a[index];
1510                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1511                 index += 2;
1512                 if (key != null) {
1513                     action.accept(v);
1514                     if (map.modCount != expectedModCount)
1515                         throw new ConcurrentModificationException();
1516                     return true;
1517                 }
1518             }
1519             return false;
1520         }
1521 
1522         public int characteristics() {
1523             return (fence < 0 || est == map.size ? SIZED : 0);
1524         }
1525 
1526     }
1527 
1528     static final class EntrySpliterator<K,V>
1529         extends IdentityHashMapSpliterator<K,V>
1530         implements Spliterator<Map.Entry<K,V>> {
1531         EntrySpliterator(IdentityHashMap<K,V> m, int origin, int fence, int est,
1532                          int expectedModCount) {
1533             super(m, origin, fence, est, expectedModCount);
1534         }
1535 
1536         public EntrySpliterator<K,V> trySplit() {
1537             int hi = getFence(), lo = index, mid = ((lo + hi) >>> 1) & ~1;
1538             return (lo >= mid) ? null :
1539                 new EntrySpliterator<>(map, lo, index = mid, est >>>= 1,
1540                                        expectedModCount);
1541         }
1542 
1543         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
1544             if (action == null)
1545                 throw new NullPointerException();
1546             int i, hi, mc;
1547             IdentityHashMap<K,V> m; Object[] a;
1548             if ((m = map) != null && (a = m.table) != null &&
1549                 (i = index) >= 0 && (index = hi = getFence()) <= a.length) {
1550                 for (; i < hi; i += 2) {
1551                     Object key = a[i];
1552                     if (key != null) {
1553                         @SuppressWarnings("unchecked") K k =
1554                             (K)unmaskNull(key);
1555                         @SuppressWarnings("unchecked") V v = (V)a[i+1];
1556                         action.accept
1557                             (new AbstractMap.SimpleImmutableEntry<>(k, v));
1558 
1559                     }
1560                 }
1561                 if (m.modCount == expectedModCount)
1562                     return;
1563             }
1564             throw new ConcurrentModificationException();
1565         }
1566 
1567         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1568             if (action == null)
1569                 throw new NullPointerException();
1570             Object[] a = map.table;
1571             int hi = getFence();
1572             while (index < hi) {
1573                 Object key = a[index];
1574                 @SuppressWarnings("unchecked") V v = (V)a[index+1];
1575                 index += 2;
1576                 if (key != null) {
1577                     @SuppressWarnings("unchecked") K k =
1578                         (K)unmaskNull(key);
1579                     action.accept
1580                         (new AbstractMap.SimpleImmutableEntry<>(k, v));
1581                     if (map.modCount != expectedModCount)
1582                         throw new ConcurrentModificationException();
1583                     return true;
1584                 }
1585             }
1586             return false;
1587         }
1588 
1589         public int characteristics() {
1590             return (fence < 0 || est == map.size ? SIZED : 0) | Spliterator.DISTINCT;
1591         }
1592     }
1593 
1594 }