1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc/parallel/gcTaskManager.hpp"
  31 #include "gc/parallel/parallelScavengeHeap.inline.hpp"
  32 #include "gc/parallel/pcTasks.hpp"
  33 #include "gc/parallel/psAdaptiveSizePolicy.hpp"
  34 #include "gc/parallel/psCompactionManager.inline.hpp"
  35 #include "gc/parallel/psMarkSweep.hpp"
  36 #include "gc/parallel/psMarkSweepDecorator.hpp"
  37 #include "gc/parallel/psOldGen.hpp"
  38 #include "gc/parallel/psParallelCompact.inline.hpp"
  39 #include "gc/parallel/psPromotionManager.inline.hpp"
  40 #include "gc/parallel/psScavenge.hpp"
  41 #include "gc/parallel/psYoungGen.hpp"
  42 #include "gc/shared/gcCause.hpp"
  43 #include "gc/shared/gcHeapSummary.hpp"
  44 #include "gc/shared/gcId.hpp"
  45 #include "gc/shared/gcLocker.inline.hpp"
  46 #include "gc/shared/gcTimer.hpp"
  47 #include "gc/shared/gcTrace.hpp"
  48 #include "gc/shared/gcTraceTime.hpp"
  49 #include "gc/shared/isGCActiveMark.hpp"
  50 #include "gc/shared/referencePolicy.hpp"
  51 #include "gc/shared/referenceProcessor.hpp"
  52 #include "gc/shared/spaceDecorator.hpp"
  53 #include "oops/instanceKlass.inline.hpp"
  54 #include "oops/instanceMirrorKlass.inline.hpp"
  55 #include "oops/methodData.hpp"
  56 #include "oops/objArrayKlass.inline.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "runtime/atomic.inline.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/safepoint.hpp"
  61 #include "runtime/vmThread.hpp"
  62 #include "services/management.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/memoryService.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/stack.inline.hpp"
  67 
  68 #include <math.h>
  69 
  70 // All sizes are in HeapWords.
  71 const size_t ParallelCompactData::Log2RegionSize  = 16; // 64K words
  72 const size_t ParallelCompactData::RegionSize      = (size_t)1 << Log2RegionSize;
  73 const size_t ParallelCompactData::RegionSizeBytes =
  74   RegionSize << LogHeapWordSize;
  75 const size_t ParallelCompactData::RegionSizeOffsetMask = RegionSize - 1;
  76 const size_t ParallelCompactData::RegionAddrOffsetMask = RegionSizeBytes - 1;
  77 const size_t ParallelCompactData::RegionAddrMask       = ~RegionAddrOffsetMask;
  78 
  79 const size_t ParallelCompactData::Log2BlockSize   = 7; // 128 words
  80 const size_t ParallelCompactData::BlockSize       = (size_t)1 << Log2BlockSize;
  81 const size_t ParallelCompactData::BlockSizeBytes  =
  82   BlockSize << LogHeapWordSize;
  83 const size_t ParallelCompactData::BlockSizeOffsetMask = BlockSize - 1;
  84 const size_t ParallelCompactData::BlockAddrOffsetMask = BlockSizeBytes - 1;
  85 const size_t ParallelCompactData::BlockAddrMask       = ~BlockAddrOffsetMask;
  86 
  87 const size_t ParallelCompactData::BlocksPerRegion = RegionSize / BlockSize;
  88 const size_t ParallelCompactData::Log2BlocksPerRegion =
  89   Log2RegionSize - Log2BlockSize;
  90 
  91 const ParallelCompactData::RegionData::region_sz_t
  92 ParallelCompactData::RegionData::dc_shift = 27;
  93 
  94 const ParallelCompactData::RegionData::region_sz_t
  95 ParallelCompactData::RegionData::dc_mask = ~0U << dc_shift;
  96 
  97 const ParallelCompactData::RegionData::region_sz_t
  98 ParallelCompactData::RegionData::dc_one = 0x1U << dc_shift;
  99 
 100 const ParallelCompactData::RegionData::region_sz_t
 101 ParallelCompactData::RegionData::los_mask = ~dc_mask;
 102 
 103 const ParallelCompactData::RegionData::region_sz_t
 104 ParallelCompactData::RegionData::dc_claimed = 0x8U << dc_shift;
 105 
 106 const ParallelCompactData::RegionData::region_sz_t
 107 ParallelCompactData::RegionData::dc_completed = 0xcU << dc_shift;
 108 
 109 SpaceInfo PSParallelCompact::_space_info[PSParallelCompact::last_space_id];
 110 bool      PSParallelCompact::_print_phases = false;
 111 
 112 ReferenceProcessor* PSParallelCompact::_ref_processor = NULL;
 113 
 114 double PSParallelCompact::_dwl_mean;
 115 double PSParallelCompact::_dwl_std_dev;
 116 double PSParallelCompact::_dwl_first_term;
 117 double PSParallelCompact::_dwl_adjustment;
 118 #ifdef  ASSERT
 119 bool   PSParallelCompact::_dwl_initialized = false;
 120 #endif  // #ifdef ASSERT
 121 
 122 void SplitInfo::record(size_t src_region_idx, size_t partial_obj_size,
 123                        HeapWord* destination)
 124 {
 125   assert(src_region_idx != 0, "invalid src_region_idx");
 126   assert(partial_obj_size != 0, "invalid partial_obj_size argument");
 127   assert(destination != NULL, "invalid destination argument");
 128 
 129   _src_region_idx = src_region_idx;
 130   _partial_obj_size = partial_obj_size;
 131   _destination = destination;
 132 
 133   // These fields may not be updated below, so make sure they're clear.
 134   assert(_dest_region_addr == NULL, "should have been cleared");
 135   assert(_first_src_addr == NULL, "should have been cleared");
 136 
 137   // Determine the number of destination regions for the partial object.
 138   HeapWord* const last_word = destination + partial_obj_size - 1;
 139   const ParallelCompactData& sd = PSParallelCompact::summary_data();
 140   HeapWord* const beg_region_addr = sd.region_align_down(destination);
 141   HeapWord* const end_region_addr = sd.region_align_down(last_word);
 142 
 143   if (beg_region_addr == end_region_addr) {
 144     // One destination region.
 145     _destination_count = 1;
 146     if (end_region_addr == destination) {
 147       // The destination falls on a region boundary, thus the first word of the
 148       // partial object will be the first word copied to the destination region.
 149       _dest_region_addr = end_region_addr;
 150       _first_src_addr = sd.region_to_addr(src_region_idx);
 151     }
 152   } else {
 153     // Two destination regions.  When copied, the partial object will cross a
 154     // destination region boundary, so a word somewhere within the partial
 155     // object will be the first word copied to the second destination region.
 156     _destination_count = 2;
 157     _dest_region_addr = end_region_addr;
 158     const size_t ofs = pointer_delta(end_region_addr, destination);
 159     assert(ofs < _partial_obj_size, "sanity");
 160     _first_src_addr = sd.region_to_addr(src_region_idx) + ofs;
 161   }
 162 }
 163 
 164 void SplitInfo::clear()
 165 {
 166   _src_region_idx = 0;
 167   _partial_obj_size = 0;
 168   _destination = NULL;
 169   _destination_count = 0;
 170   _dest_region_addr = NULL;
 171   _first_src_addr = NULL;
 172   assert(!is_valid(), "sanity");
 173 }
 174 
 175 #ifdef  ASSERT
 176 void SplitInfo::verify_clear()
 177 {
 178   assert(_src_region_idx == 0, "not clear");
 179   assert(_partial_obj_size == 0, "not clear");
 180   assert(_destination == NULL, "not clear");
 181   assert(_destination_count == 0, "not clear");
 182   assert(_dest_region_addr == NULL, "not clear");
 183   assert(_first_src_addr == NULL, "not clear");
 184 }
 185 #endif  // #ifdef ASSERT
 186 
 187 
 188 void PSParallelCompact::print_on_error(outputStream* st) {
 189   _mark_bitmap.print_on_error(st);
 190 }
 191 
 192 #ifndef PRODUCT
 193 const char* PSParallelCompact::space_names[] = {
 194   "old ", "eden", "from", "to  "
 195 };
 196 
 197 void PSParallelCompact::print_region_ranges()
 198 {
 199   tty->print_cr("space  bottom     top        end        new_top");
 200   tty->print_cr("------ ---------- ---------- ---------- ----------");
 201 
 202   for (unsigned int id = 0; id < last_space_id; ++id) {
 203     const MutableSpace* space = _space_info[id].space();
 204     tty->print_cr("%u %s "
 205                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " "
 206                   SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10) " ",
 207                   id, space_names[id],
 208                   summary_data().addr_to_region_idx(space->bottom()),
 209                   summary_data().addr_to_region_idx(space->top()),
 210                   summary_data().addr_to_region_idx(space->end()),
 211                   summary_data().addr_to_region_idx(_space_info[id].new_top()));
 212   }
 213 }
 214 
 215 void
 216 print_generic_summary_region(size_t i, const ParallelCompactData::RegionData* c)
 217 {
 218 #define REGION_IDX_FORMAT        SIZE_FORMAT_W(7)
 219 #define REGION_DATA_FORMAT       SIZE_FORMAT_W(5)
 220 
 221   ParallelCompactData& sd = PSParallelCompact::summary_data();
 222   size_t dci = c->destination() ? sd.addr_to_region_idx(c->destination()) : 0;
 223   tty->print_cr(REGION_IDX_FORMAT " " PTR_FORMAT " "
 224                 REGION_IDX_FORMAT " " PTR_FORMAT " "
 225                 REGION_DATA_FORMAT " " REGION_DATA_FORMAT " "
 226                 REGION_DATA_FORMAT " " REGION_IDX_FORMAT " %d",
 227                 i, p2i(c->data_location()), dci, p2i(c->destination()),
 228                 c->partial_obj_size(), c->live_obj_size(),
 229                 c->data_size(), c->source_region(), c->destination_count());
 230 
 231 #undef  REGION_IDX_FORMAT
 232 #undef  REGION_DATA_FORMAT
 233 }
 234 
 235 void
 236 print_generic_summary_data(ParallelCompactData& summary_data,
 237                            HeapWord* const beg_addr,
 238                            HeapWord* const end_addr)
 239 {
 240   size_t total_words = 0;
 241   size_t i = summary_data.addr_to_region_idx(beg_addr);
 242   const size_t last = summary_data.addr_to_region_idx(end_addr);
 243   HeapWord* pdest = 0;
 244 
 245   while (i <= last) {
 246     ParallelCompactData::RegionData* c = summary_data.region(i);
 247     if (c->data_size() != 0 || c->destination() != pdest) {
 248       print_generic_summary_region(i, c);
 249       total_words += c->data_size();
 250       pdest = c->destination();
 251     }
 252     ++i;
 253   }
 254 
 255   tty->print_cr("summary_data_bytes=" SIZE_FORMAT, total_words * HeapWordSize);
 256 }
 257 
 258 void
 259 print_generic_summary_data(ParallelCompactData& summary_data,
 260                            SpaceInfo* space_info)
 261 {
 262   for (unsigned int id = 0; id < PSParallelCompact::last_space_id; ++id) {
 263     const MutableSpace* space = space_info[id].space();
 264     print_generic_summary_data(summary_data, space->bottom(),
 265                                MAX2(space->top(), space_info[id].new_top()));
 266   }
 267 }
 268 
 269 void
 270 print_initial_summary_region(size_t i,
 271                              const ParallelCompactData::RegionData* c,
 272                              bool newline = true)
 273 {
 274   tty->print(SIZE_FORMAT_W(5) " " PTR_FORMAT " "
 275              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " "
 276              SIZE_FORMAT_W(5) " " SIZE_FORMAT_W(5) " %d",
 277              i, p2i(c->destination()),
 278              c->partial_obj_size(), c->live_obj_size(),
 279              c->data_size(), c->source_region(), c->destination_count());
 280   if (newline) tty->cr();
 281 }
 282 
 283 void
 284 print_initial_summary_data(ParallelCompactData& summary_data,
 285                            const MutableSpace* space) {
 286   if (space->top() == space->bottom()) {
 287     return;
 288   }
 289 
 290   const size_t region_size = ParallelCompactData::RegionSize;
 291   typedef ParallelCompactData::RegionData RegionData;
 292   HeapWord* const top_aligned_up = summary_data.region_align_up(space->top());
 293   const size_t end_region = summary_data.addr_to_region_idx(top_aligned_up);
 294   const RegionData* c = summary_data.region(end_region - 1);
 295   HeapWord* end_addr = c->destination() + c->data_size();
 296   const size_t live_in_space = pointer_delta(end_addr, space->bottom());
 297 
 298   // Print (and count) the full regions at the beginning of the space.
 299   size_t full_region_count = 0;
 300   size_t i = summary_data.addr_to_region_idx(space->bottom());
 301   while (i < end_region && summary_data.region(i)->data_size() == region_size) {
 302     print_initial_summary_region(i, summary_data.region(i));
 303     ++full_region_count;
 304     ++i;
 305   }
 306 
 307   size_t live_to_right = live_in_space - full_region_count * region_size;
 308 
 309   double max_reclaimed_ratio = 0.0;
 310   size_t max_reclaimed_ratio_region = 0;
 311   size_t max_dead_to_right = 0;
 312   size_t max_live_to_right = 0;
 313 
 314   // Print the 'reclaimed ratio' for regions while there is something live in
 315   // the region or to the right of it.  The remaining regions are empty (and
 316   // uninteresting), and computing the ratio will result in division by 0.
 317   while (i < end_region && live_to_right > 0) {
 318     c = summary_data.region(i);
 319     HeapWord* const region_addr = summary_data.region_to_addr(i);
 320     const size_t used_to_right = pointer_delta(space->top(), region_addr);
 321     const size_t dead_to_right = used_to_right - live_to_right;
 322     const double reclaimed_ratio = double(dead_to_right) / live_to_right;
 323 
 324     if (reclaimed_ratio > max_reclaimed_ratio) {
 325             max_reclaimed_ratio = reclaimed_ratio;
 326             max_reclaimed_ratio_region = i;
 327             max_dead_to_right = dead_to_right;
 328             max_live_to_right = live_to_right;
 329     }
 330 
 331     print_initial_summary_region(i, c, false);
 332     tty->print_cr(" %12.10f " SIZE_FORMAT_W(10) " " SIZE_FORMAT_W(10),
 333                   reclaimed_ratio, dead_to_right, live_to_right);
 334 
 335     live_to_right -= c->data_size();
 336     ++i;
 337   }
 338 
 339   // Any remaining regions are empty.  Print one more if there is one.
 340   if (i < end_region) {
 341     print_initial_summary_region(i, summary_data.region(i));
 342   }
 343 
 344   tty->print_cr("max:  " SIZE_FORMAT_W(4) " d2r=" SIZE_FORMAT_W(10) " "
 345                 "l2r=" SIZE_FORMAT_W(10) " max_ratio=%14.12f",
 346                 max_reclaimed_ratio_region, max_dead_to_right,
 347                 max_live_to_right, max_reclaimed_ratio);
 348 }
 349 
 350 void
 351 print_initial_summary_data(ParallelCompactData& summary_data,
 352                            SpaceInfo* space_info) {
 353   unsigned int id = PSParallelCompact::old_space_id;
 354   const MutableSpace* space;
 355   do {
 356     space = space_info[id].space();
 357     print_initial_summary_data(summary_data, space);
 358   } while (++id < PSParallelCompact::eden_space_id);
 359 
 360   do {
 361     space = space_info[id].space();
 362     print_generic_summary_data(summary_data, space->bottom(), space->top());
 363   } while (++id < PSParallelCompact::last_space_id);
 364 }
 365 #endif  // #ifndef PRODUCT
 366 
 367 #ifdef  ASSERT
 368 size_t add_obj_count;
 369 size_t add_obj_size;
 370 size_t mark_bitmap_count;
 371 size_t mark_bitmap_size;
 372 #endif  // #ifdef ASSERT
 373 
 374 ParallelCompactData::ParallelCompactData()
 375 {
 376   _region_start = 0;
 377 
 378   _region_vspace = 0;
 379   _reserved_byte_size = 0;
 380   _region_data = 0;
 381   _region_count = 0;
 382 
 383   _block_vspace = 0;
 384   _block_data = 0;
 385   _block_count = 0;
 386 }
 387 
 388 bool ParallelCompactData::initialize(MemRegion covered_region)
 389 {
 390   _region_start = covered_region.start();
 391   const size_t region_size = covered_region.word_size();
 392   DEBUG_ONLY(_region_end = _region_start + region_size;)
 393 
 394   assert(region_align_down(_region_start) == _region_start,
 395          "region start not aligned");
 396   assert((region_size & RegionSizeOffsetMask) == 0,
 397          "region size not a multiple of RegionSize");
 398 
 399   bool result = initialize_region_data(region_size) && initialize_block_data();
 400   return result;
 401 }
 402 
 403 PSVirtualSpace*
 404 ParallelCompactData::create_vspace(size_t count, size_t element_size)
 405 {
 406   const size_t raw_bytes = count * element_size;
 407   const size_t page_sz = os::page_size_for_region_aligned(raw_bytes, 10);
 408   const size_t granularity = os::vm_allocation_granularity();
 409   _reserved_byte_size = align_size_up(raw_bytes, MAX2(page_sz, granularity));
 410 
 411   const size_t rs_align = page_sz == (size_t) os::vm_page_size() ? 0 :
 412     MAX2(page_sz, granularity);
 413   ReservedSpace rs(_reserved_byte_size, rs_align, rs_align > 0);
 414   os::trace_page_sizes("par compact", raw_bytes, raw_bytes, page_sz, rs.base(),
 415                        rs.size());
 416 
 417   MemTracker::record_virtual_memory_type((address)rs.base(), mtGC);
 418 
 419   PSVirtualSpace* vspace = new PSVirtualSpace(rs, page_sz);
 420   if (vspace != 0) {
 421     if (vspace->expand_by(_reserved_byte_size)) {
 422       return vspace;
 423     }
 424     delete vspace;
 425     // Release memory reserved in the space.
 426     rs.release();
 427   }
 428 
 429   return 0;
 430 }
 431 
 432 bool ParallelCompactData::initialize_region_data(size_t region_size)
 433 {
 434   const size_t count = (region_size + RegionSizeOffsetMask) >> Log2RegionSize;
 435   _region_vspace = create_vspace(count, sizeof(RegionData));
 436   if (_region_vspace != 0) {
 437     _region_data = (RegionData*)_region_vspace->reserved_low_addr();
 438     _region_count = count;
 439     return true;
 440   }
 441   return false;
 442 }
 443 
 444 bool ParallelCompactData::initialize_block_data()
 445 {
 446   assert(_region_count != 0, "region data must be initialized first");
 447   const size_t count = _region_count << Log2BlocksPerRegion;
 448   _block_vspace = create_vspace(count, sizeof(BlockData));
 449   if (_block_vspace != 0) {
 450     _block_data = (BlockData*)_block_vspace->reserved_low_addr();
 451     _block_count = count;
 452     return true;
 453   }
 454   return false;
 455 }
 456 
 457 void ParallelCompactData::clear()
 458 {
 459   memset(_region_data, 0, _region_vspace->committed_size());
 460   memset(_block_data, 0, _block_vspace->committed_size());
 461 }
 462 
 463 void ParallelCompactData::clear_range(size_t beg_region, size_t end_region) {
 464   assert(beg_region <= _region_count, "beg_region out of range");
 465   assert(end_region <= _region_count, "end_region out of range");
 466   assert(RegionSize % BlockSize == 0, "RegionSize not a multiple of BlockSize");
 467 
 468   const size_t region_cnt = end_region - beg_region;
 469   memset(_region_data + beg_region, 0, region_cnt * sizeof(RegionData));
 470 
 471   const size_t beg_block = beg_region * BlocksPerRegion;
 472   const size_t block_cnt = region_cnt * BlocksPerRegion;
 473   memset(_block_data + beg_block, 0, block_cnt * sizeof(BlockData));
 474 }
 475 
 476 HeapWord* ParallelCompactData::partial_obj_end(size_t region_idx) const
 477 {
 478   const RegionData* cur_cp = region(region_idx);
 479   const RegionData* const end_cp = region(region_count() - 1);
 480 
 481   HeapWord* result = region_to_addr(region_idx);
 482   if (cur_cp < end_cp) {
 483     do {
 484       result += cur_cp->partial_obj_size();
 485     } while (cur_cp->partial_obj_size() == RegionSize && ++cur_cp < end_cp);
 486   }
 487   return result;
 488 }
 489 
 490 void ParallelCompactData::add_obj(HeapWord* addr, size_t len)
 491 {
 492   const size_t obj_ofs = pointer_delta(addr, _region_start);
 493   const size_t beg_region = obj_ofs >> Log2RegionSize;
 494   const size_t end_region = (obj_ofs + len - 1) >> Log2RegionSize;
 495 
 496   DEBUG_ONLY(Atomic::inc_ptr(&add_obj_count);)
 497   DEBUG_ONLY(Atomic::add_ptr(len, &add_obj_size);)
 498 
 499   if (beg_region == end_region) {
 500     // All in one region.
 501     _region_data[beg_region].add_live_obj(len);
 502     return;
 503   }
 504 
 505   // First region.
 506   const size_t beg_ofs = region_offset(addr);
 507   _region_data[beg_region].add_live_obj(RegionSize - beg_ofs);
 508 
 509   Klass* klass = ((oop)addr)->klass();
 510   // Middle regions--completely spanned by this object.
 511   for (size_t region = beg_region + 1; region < end_region; ++region) {
 512     _region_data[region].set_partial_obj_size(RegionSize);
 513     _region_data[region].set_partial_obj_addr(addr);
 514   }
 515 
 516   // Last region.
 517   const size_t end_ofs = region_offset(addr + len - 1);
 518   _region_data[end_region].set_partial_obj_size(end_ofs + 1);
 519   _region_data[end_region].set_partial_obj_addr(addr);
 520 }
 521 
 522 void
 523 ParallelCompactData::summarize_dense_prefix(HeapWord* beg, HeapWord* end)
 524 {
 525   assert(region_offset(beg) == 0, "not RegionSize aligned");
 526   assert(region_offset(end) == 0, "not RegionSize aligned");
 527 
 528   size_t cur_region = addr_to_region_idx(beg);
 529   const size_t end_region = addr_to_region_idx(end);
 530   HeapWord* addr = beg;
 531   while (cur_region < end_region) {
 532     _region_data[cur_region].set_destination(addr);
 533     _region_data[cur_region].set_destination_count(0);
 534     _region_data[cur_region].set_source_region(cur_region);
 535     _region_data[cur_region].set_data_location(addr);
 536 
 537     // Update live_obj_size so the region appears completely full.
 538     size_t live_size = RegionSize - _region_data[cur_region].partial_obj_size();
 539     _region_data[cur_region].set_live_obj_size(live_size);
 540 
 541     ++cur_region;
 542     addr += RegionSize;
 543   }
 544 }
 545 
 546 // Find the point at which a space can be split and, if necessary, record the
 547 // split point.
 548 //
 549 // If the current src region (which overflowed the destination space) doesn't
 550 // have a partial object, the split point is at the beginning of the current src
 551 // region (an "easy" split, no extra bookkeeping required).
 552 //
 553 // If the current src region has a partial object, the split point is in the
 554 // region where that partial object starts (call it the split_region).  If
 555 // split_region has a partial object, then the split point is just after that
 556 // partial object (a "hard" split where we have to record the split data and
 557 // zero the partial_obj_size field).  With a "hard" split, we know that the
 558 // partial_obj ends within split_region because the partial object that caused
 559 // the overflow starts in split_region.  If split_region doesn't have a partial
 560 // obj, then the split is at the beginning of split_region (another "easy"
 561 // split).
 562 HeapWord*
 563 ParallelCompactData::summarize_split_space(size_t src_region,
 564                                            SplitInfo& split_info,
 565                                            HeapWord* destination,
 566                                            HeapWord* target_end,
 567                                            HeapWord** target_next)
 568 {
 569   assert(destination <= target_end, "sanity");
 570   assert(destination + _region_data[src_region].data_size() > target_end,
 571     "region should not fit into target space");
 572   assert(is_region_aligned(target_end), "sanity");
 573 
 574   size_t split_region = src_region;
 575   HeapWord* split_destination = destination;
 576   size_t partial_obj_size = _region_data[src_region].partial_obj_size();
 577 
 578   if (destination + partial_obj_size > target_end) {
 579     // The split point is just after the partial object (if any) in the
 580     // src_region that contains the start of the object that overflowed the
 581     // destination space.
 582     //
 583     // Find the start of the "overflow" object and set split_region to the
 584     // region containing it.
 585     HeapWord* const overflow_obj = _region_data[src_region].partial_obj_addr();
 586     split_region = addr_to_region_idx(overflow_obj);
 587 
 588     // Clear the source_region field of all destination regions whose first word
 589     // came from data after the split point (a non-null source_region field
 590     // implies a region must be filled).
 591     //
 592     // An alternative to the simple loop below:  clear during post_compact(),
 593     // which uses memcpy instead of individual stores, and is easy to
 594     // parallelize.  (The downside is that it clears the entire RegionData
 595     // object as opposed to just one field.)
 596     //
 597     // post_compact() would have to clear the summary data up to the highest
 598     // address that was written during the summary phase, which would be
 599     //
 600     //         max(top, max(new_top, clear_top))
 601     //
 602     // where clear_top is a new field in SpaceInfo.  Would have to set clear_top
 603     // to target_end.
 604     const RegionData* const sr = region(split_region);
 605     const size_t beg_idx =
 606       addr_to_region_idx(region_align_up(sr->destination() +
 607                                          sr->partial_obj_size()));
 608     const size_t end_idx = addr_to_region_idx(target_end);
 609 
 610     if (TraceParallelOldGCSummaryPhase) {
 611         gclog_or_tty->print_cr("split:  clearing source_region field in ["
 612                                SIZE_FORMAT ", " SIZE_FORMAT ")",
 613                                beg_idx, end_idx);
 614     }
 615     for (size_t idx = beg_idx; idx < end_idx; ++idx) {
 616       _region_data[idx].set_source_region(0);
 617     }
 618 
 619     // Set split_destination and partial_obj_size to reflect the split region.
 620     split_destination = sr->destination();
 621     partial_obj_size = sr->partial_obj_size();
 622   }
 623 
 624   // The split is recorded only if a partial object extends onto the region.
 625   if (partial_obj_size != 0) {
 626     _region_data[split_region].set_partial_obj_size(0);
 627     split_info.record(split_region, partial_obj_size, split_destination);
 628   }
 629 
 630   // Setup the continuation addresses.
 631   *target_next = split_destination + partial_obj_size;
 632   HeapWord* const source_next = region_to_addr(split_region) + partial_obj_size;
 633 
 634   if (TraceParallelOldGCSummaryPhase) {
 635     const char * split_type = partial_obj_size == 0 ? "easy" : "hard";
 636     gclog_or_tty->print_cr("%s split:  src=" PTR_FORMAT " src_c=" SIZE_FORMAT
 637                            " pos=" SIZE_FORMAT,
 638                            split_type, p2i(source_next), split_region,
 639                            partial_obj_size);
 640     gclog_or_tty->print_cr("%s split:  dst=" PTR_FORMAT " dst_c=" SIZE_FORMAT
 641                            " tn=" PTR_FORMAT,
 642                            split_type, p2i(split_destination),
 643                            addr_to_region_idx(split_destination),
 644                            p2i(*target_next));
 645 
 646     if (partial_obj_size != 0) {
 647       HeapWord* const po_beg = split_info.destination();
 648       HeapWord* const po_end = po_beg + split_info.partial_obj_size();
 649       gclog_or_tty->print_cr("%s split:  "
 650                              "po_beg=" PTR_FORMAT " " SIZE_FORMAT " "
 651                              "po_end=" PTR_FORMAT " " SIZE_FORMAT,
 652                              split_type,
 653                              p2i(po_beg), addr_to_region_idx(po_beg),
 654                              p2i(po_end), addr_to_region_idx(po_end));
 655     }
 656   }
 657 
 658   return source_next;
 659 }
 660 
 661 bool ParallelCompactData::summarize(SplitInfo& split_info,
 662                                     HeapWord* source_beg, HeapWord* source_end,
 663                                     HeapWord** source_next,
 664                                     HeapWord* target_beg, HeapWord* target_end,
 665                                     HeapWord** target_next)
 666 {
 667   if (TraceParallelOldGCSummaryPhase) {
 668     HeapWord* const source_next_val = source_next == NULL ? NULL : *source_next;
 669     tty->print_cr("sb=" PTR_FORMAT " se=" PTR_FORMAT " sn=" PTR_FORMAT
 670                   "tb=" PTR_FORMAT " te=" PTR_FORMAT " tn=" PTR_FORMAT,
 671                   p2i(source_beg), p2i(source_end), p2i(source_next_val),
 672                   p2i(target_beg), p2i(target_end), p2i(*target_next));
 673   }
 674 
 675   size_t cur_region = addr_to_region_idx(source_beg);
 676   const size_t end_region = addr_to_region_idx(region_align_up(source_end));
 677 
 678   HeapWord *dest_addr = target_beg;
 679   while (cur_region < end_region) {
 680     // The destination must be set even if the region has no data.
 681     _region_data[cur_region].set_destination(dest_addr);
 682 
 683     size_t words = _region_data[cur_region].data_size();
 684     if (words > 0) {
 685       // If cur_region does not fit entirely into the target space, find a point
 686       // at which the source space can be 'split' so that part is copied to the
 687       // target space and the rest is copied elsewhere.
 688       if (dest_addr + words > target_end) {
 689         assert(source_next != NULL, "source_next is NULL when splitting");
 690         *source_next = summarize_split_space(cur_region, split_info, dest_addr,
 691                                              target_end, target_next);
 692         return false;
 693       }
 694 
 695       // Compute the destination_count for cur_region, and if necessary, update
 696       // source_region for a destination region.  The source_region field is
 697       // updated if cur_region is the first (left-most) region to be copied to a
 698       // destination region.
 699       //
 700       // The destination_count calculation is a bit subtle.  A region that has
 701       // data that compacts into itself does not count itself as a destination.
 702       // This maintains the invariant that a zero count means the region is
 703       // available and can be claimed and then filled.
 704       uint destination_count = 0;
 705       if (split_info.is_split(cur_region)) {
 706         // The current region has been split:  the partial object will be copied
 707         // to one destination space and the remaining data will be copied to
 708         // another destination space.  Adjust the initial destination_count and,
 709         // if necessary, set the source_region field if the partial object will
 710         // cross a destination region boundary.
 711         destination_count = split_info.destination_count();
 712         if (destination_count == 2) {
 713           size_t dest_idx = addr_to_region_idx(split_info.dest_region_addr());
 714           _region_data[dest_idx].set_source_region(cur_region);
 715         }
 716       }
 717 
 718       HeapWord* const last_addr = dest_addr + words - 1;
 719       const size_t dest_region_1 = addr_to_region_idx(dest_addr);
 720       const size_t dest_region_2 = addr_to_region_idx(last_addr);
 721 
 722       // Initially assume that the destination regions will be the same and
 723       // adjust the value below if necessary.  Under this assumption, if
 724       // cur_region == dest_region_2, then cur_region will be compacted
 725       // completely into itself.
 726       destination_count += cur_region == dest_region_2 ? 0 : 1;
 727       if (dest_region_1 != dest_region_2) {
 728         // Destination regions differ; adjust destination_count.
 729         destination_count += 1;
 730         // Data from cur_region will be copied to the start of dest_region_2.
 731         _region_data[dest_region_2].set_source_region(cur_region);
 732       } else if (region_offset(dest_addr) == 0) {
 733         // Data from cur_region will be copied to the start of the destination
 734         // region.
 735         _region_data[dest_region_1].set_source_region(cur_region);
 736       }
 737 
 738       _region_data[cur_region].set_destination_count(destination_count);
 739       _region_data[cur_region].set_data_location(region_to_addr(cur_region));
 740       dest_addr += words;
 741     }
 742 
 743     ++cur_region;
 744   }
 745 
 746   *target_next = dest_addr;
 747   return true;
 748 }
 749 
 750 HeapWord* ParallelCompactData::calc_new_pointer(HeapWord* addr) {
 751   assert(addr != NULL, "Should detect NULL oop earlier");
 752   assert(ParallelScavengeHeap::heap()->is_in(addr), "not in heap");
 753   assert(PSParallelCompact::mark_bitmap()->is_marked(addr), "not marked");
 754 
 755   // Region covering the object.
 756   RegionData* const region_ptr = addr_to_region_ptr(addr);
 757   HeapWord* result = region_ptr->destination();
 758 
 759   // If the entire Region is live, the new location is region->destination + the
 760   // offset of the object within in the Region.
 761 
 762   // Run some performance tests to determine if this special case pays off.  It
 763   // is worth it for pointers into the dense prefix.  If the optimization to
 764   // avoid pointer updates in regions that only point to the dense prefix is
 765   // ever implemented, this should be revisited.
 766   if (region_ptr->data_size() == RegionSize) {
 767     result += region_offset(addr);
 768     return result;
 769   }
 770 
 771   // Otherwise, the new location is region->destination + block offset + the
 772   // number of live words in the Block that are (a) to the left of addr and (b)
 773   // due to objects that start in the Block.
 774 
 775   // Fill in the block table if necessary.  This is unsynchronized, so multiple
 776   // threads may fill the block table for a region (harmless, since it is
 777   // idempotent).
 778   if (!region_ptr->blocks_filled()) {
 779     PSParallelCompact::fill_blocks(addr_to_region_idx(addr));
 780     region_ptr->set_blocks_filled();
 781   }
 782 
 783   HeapWord* const search_start = block_align_down(addr);
 784   const size_t block_offset = addr_to_block_ptr(addr)->offset();
 785 
 786   const ParMarkBitMap* bitmap = PSParallelCompact::mark_bitmap();
 787   const size_t live = bitmap->live_words_in_range(search_start, oop(addr));
 788   result += block_offset + live;
 789   DEBUG_ONLY(PSParallelCompact::check_new_location(addr, result));
 790   return result;
 791 }
 792 
 793 #ifdef ASSERT
 794 void ParallelCompactData::verify_clear(const PSVirtualSpace* vspace)
 795 {
 796   const size_t* const beg = (const size_t*)vspace->committed_low_addr();
 797   const size_t* const end = (const size_t*)vspace->committed_high_addr();
 798   for (const size_t* p = beg; p < end; ++p) {
 799     assert(*p == 0, "not zero");
 800   }
 801 }
 802 
 803 void ParallelCompactData::verify_clear()
 804 {
 805   verify_clear(_region_vspace);
 806   verify_clear(_block_vspace);
 807 }
 808 #endif  // #ifdef ASSERT
 809 
 810 STWGCTimer          PSParallelCompact::_gc_timer;
 811 ParallelOldTracer   PSParallelCompact::_gc_tracer;
 812 elapsedTimer        PSParallelCompact::_accumulated_time;
 813 unsigned int        PSParallelCompact::_total_invocations = 0;
 814 unsigned int        PSParallelCompact::_maximum_compaction_gc_num = 0;
 815 jlong               PSParallelCompact::_time_of_last_gc = 0;
 816 CollectorCounters*  PSParallelCompact::_counters = NULL;
 817 ParMarkBitMap       PSParallelCompact::_mark_bitmap;
 818 ParallelCompactData PSParallelCompact::_summary_data;
 819 
 820 PSParallelCompact::IsAliveClosure PSParallelCompact::_is_alive_closure;
 821 
 822 bool PSParallelCompact::IsAliveClosure::do_object_b(oop p) { return mark_bitmap()->is_marked(p); }
 823 
 824 PSParallelCompact::AdjustPointerClosure PSParallelCompact::_adjust_pointer_closure;
 825 PSParallelCompact::AdjustKlassClosure PSParallelCompact::_adjust_klass_closure;
 826 
 827 void PSParallelCompact::AdjustKlassClosure::do_klass(Klass* klass) {
 828   klass->oops_do(&PSParallelCompact::_adjust_pointer_closure);
 829 }
 830 
 831 void PSParallelCompact::post_initialize() {
 832   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 833   MemRegion mr = heap->reserved_region();
 834   _ref_processor =
 835     new ReferenceProcessor(mr,            // span
 836                            ParallelRefProcEnabled && (ParallelGCThreads > 1), // mt processing
 837                            ParallelGCThreads, // mt processing degree
 838                            true,              // mt discovery
 839                            ParallelGCThreads, // mt discovery degree
 840                            true,              // atomic_discovery
 841                            &_is_alive_closure); // non-header is alive closure
 842   _counters = new CollectorCounters("PSParallelCompact", 1);
 843 
 844   // Initialize static fields in ParCompactionManager.
 845   ParCompactionManager::initialize(mark_bitmap());
 846 }
 847 
 848 bool PSParallelCompact::initialize() {
 849   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 850   MemRegion mr = heap->reserved_region();
 851 
 852   // Was the old gen get allocated successfully?
 853   if (!heap->old_gen()->is_allocated()) {
 854     return false;
 855   }
 856 
 857   initialize_space_info();
 858   initialize_dead_wood_limiter();
 859 
 860   if (!_mark_bitmap.initialize(mr)) {
 861     vm_shutdown_during_initialization(
 862       err_msg("Unable to allocate " SIZE_FORMAT "KB bitmaps for parallel "
 863       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 864       _mark_bitmap.reserved_byte_size()/K, mr.byte_size()/K));
 865     return false;
 866   }
 867 
 868   if (!_summary_data.initialize(mr)) {
 869     vm_shutdown_during_initialization(
 870       err_msg("Unable to allocate " SIZE_FORMAT "KB card tables for parallel "
 871       "garbage collection for the requested " SIZE_FORMAT "KB heap.",
 872       _summary_data.reserved_byte_size()/K, mr.byte_size()/K));
 873     return false;
 874   }
 875 
 876   return true;
 877 }
 878 
 879 void PSParallelCompact::initialize_space_info()
 880 {
 881   memset(&_space_info, 0, sizeof(_space_info));
 882 
 883   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 884   PSYoungGen* young_gen = heap->young_gen();
 885 
 886   _space_info[old_space_id].set_space(heap->old_gen()->object_space());
 887   _space_info[eden_space_id].set_space(young_gen->eden_space());
 888   _space_info[from_space_id].set_space(young_gen->from_space());
 889   _space_info[to_space_id].set_space(young_gen->to_space());
 890 
 891   _space_info[old_space_id].set_start_array(heap->old_gen()->start_array());
 892 }
 893 
 894 void PSParallelCompact::initialize_dead_wood_limiter()
 895 {
 896   const size_t max = 100;
 897   _dwl_mean = double(MIN2(ParallelOldDeadWoodLimiterMean, max)) / 100.0;
 898   _dwl_std_dev = double(MIN2(ParallelOldDeadWoodLimiterStdDev, max)) / 100.0;
 899   _dwl_first_term = 1.0 / (sqrt(2.0 * M_PI) * _dwl_std_dev);
 900   DEBUG_ONLY(_dwl_initialized = true;)
 901   _dwl_adjustment = normal_distribution(1.0);
 902 }
 903 
 904 // Simple class for storing info about the heap at the start of GC, to be used
 905 // after GC for comparison/printing.
 906 class PreGCValues {
 907 public:
 908   PreGCValues() { }
 909   PreGCValues(ParallelScavengeHeap* heap) { fill(heap); }
 910 
 911   void fill(ParallelScavengeHeap* heap) {
 912     _heap_used      = heap->used();
 913     _young_gen_used = heap->young_gen()->used_in_bytes();
 914     _old_gen_used   = heap->old_gen()->used_in_bytes();
 915     _metadata_used  = MetaspaceAux::used_bytes();
 916   };
 917 
 918   size_t heap_used() const      { return _heap_used; }
 919   size_t young_gen_used() const { return _young_gen_used; }
 920   size_t old_gen_used() const   { return _old_gen_used; }
 921   size_t metadata_used() const  { return _metadata_used; }
 922 
 923 private:
 924   size_t _heap_used;
 925   size_t _young_gen_used;
 926   size_t _old_gen_used;
 927   size_t _metadata_used;
 928 };
 929 
 930 void
 931 PSParallelCompact::clear_data_covering_space(SpaceId id)
 932 {
 933   // At this point, top is the value before GC, new_top() is the value that will
 934   // be set at the end of GC.  The marking bitmap is cleared to top; nothing
 935   // should be marked above top.  The summary data is cleared to the larger of
 936   // top & new_top.
 937   MutableSpace* const space = _space_info[id].space();
 938   HeapWord* const bot = space->bottom();
 939   HeapWord* const top = space->top();
 940   HeapWord* const max_top = MAX2(top, _space_info[id].new_top());
 941 
 942   const idx_t beg_bit = _mark_bitmap.addr_to_bit(bot);
 943   const idx_t end_bit = BitMap::word_align_up(_mark_bitmap.addr_to_bit(top));
 944   _mark_bitmap.clear_range(beg_bit, end_bit);
 945 
 946   const size_t beg_region = _summary_data.addr_to_region_idx(bot);
 947   const size_t end_region =
 948     _summary_data.addr_to_region_idx(_summary_data.region_align_up(max_top));
 949   _summary_data.clear_range(beg_region, end_region);
 950 
 951   // Clear the data used to 'split' regions.
 952   SplitInfo& split_info = _space_info[id].split_info();
 953   if (split_info.is_valid()) {
 954     split_info.clear();
 955   }
 956   DEBUG_ONLY(split_info.verify_clear();)
 957 }
 958 
 959 void PSParallelCompact::pre_compact(PreGCValues* pre_gc_values)
 960 {
 961   // Update the from & to space pointers in space_info, since they are swapped
 962   // at each young gen gc.  Do the update unconditionally (even though a
 963   // promotion failure does not swap spaces) because an unknown number of young
 964   // collections will have swapped the spaces an unknown number of times.
 965   GCTraceTime tm("pre compact", print_phases(), true, &_gc_timer);
 966   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
 967   _space_info[from_space_id].set_space(heap->young_gen()->from_space());
 968   _space_info[to_space_id].set_space(heap->young_gen()->to_space());
 969 
 970   pre_gc_values->fill(heap);
 971 
 972   DEBUG_ONLY(add_obj_count = add_obj_size = 0;)
 973   DEBUG_ONLY(mark_bitmap_count = mark_bitmap_size = 0;)
 974 
 975   // Increment the invocation count
 976   heap->increment_total_collections(true);
 977 
 978   // We need to track unique mark sweep invocations as well.
 979   _total_invocations++;
 980 
 981   heap->print_heap_before_gc();
 982   heap->trace_heap_before_gc(&_gc_tracer);
 983 
 984   // Fill in TLABs
 985   heap->accumulate_statistics_all_tlabs();
 986   heap->ensure_parsability(true);  // retire TLABs
 987 
 988   if (VerifyBeforeGC && heap->total_collections() >= VerifyGCStartAt) {
 989     HandleMark hm;  // Discard invalid handles created during verification
 990     Universe::verify(" VerifyBeforeGC:");
 991   }
 992 
 993   // Verify object start arrays
 994   if (VerifyObjectStartArray &&
 995       VerifyBeforeGC) {
 996     heap->old_gen()->verify_object_start_array();
 997   }
 998 
 999   DEBUG_ONLY(mark_bitmap()->verify_clear();)
1000   DEBUG_ONLY(summary_data().verify_clear();)
1001 
1002   // Have worker threads release resources the next time they run a task.
1003   gc_task_manager()->release_all_resources();
1004 }
1005 
1006 void PSParallelCompact::post_compact()
1007 {
1008   GCTraceTime tm("post compact", print_phases(), true, &_gc_timer);
1009 
1010   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1011     // Clear the marking bitmap, summary data and split info.
1012     clear_data_covering_space(SpaceId(id));
1013     // Update top().  Must be done after clearing the bitmap and summary data.
1014     _space_info[id].publish_new_top();
1015   }
1016 
1017   MutableSpace* const eden_space = _space_info[eden_space_id].space();
1018   MutableSpace* const from_space = _space_info[from_space_id].space();
1019   MutableSpace* const to_space   = _space_info[to_space_id].space();
1020 
1021   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1022   bool eden_empty = eden_space->is_empty();
1023   if (!eden_empty) {
1024     eden_empty = absorb_live_data_from_eden(heap->size_policy(),
1025                                             heap->young_gen(), heap->old_gen());
1026   }
1027 
1028   // Update heap occupancy information which is used as input to the soft ref
1029   // clearing policy at the next gc.
1030   Universe::update_heap_info_at_gc();
1031 
1032   bool young_gen_empty = eden_empty && from_space->is_empty() &&
1033     to_space->is_empty();
1034 
1035   ModRefBarrierSet* modBS = barrier_set_cast<ModRefBarrierSet>(heap->barrier_set());
1036   MemRegion old_mr = heap->old_gen()->reserved();
1037   if (young_gen_empty) {
1038     modBS->clear(MemRegion(old_mr.start(), old_mr.end()));
1039   } else {
1040     modBS->invalidate(MemRegion(old_mr.start(), old_mr.end()));
1041   }
1042 
1043   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1044   ClassLoaderDataGraph::purge();
1045   MetaspaceAux::verify_metrics();
1046 
1047   CodeCache::gc_epilogue();
1048   JvmtiExport::gc_epilogue();
1049 
1050 #if defined(COMPILER2) || INCLUDE_JVMCI
1051   DerivedPointerTable::update_pointers();
1052 #endif
1053 
1054   ref_processor()->enqueue_discovered_references(NULL);
1055 
1056   if (ZapUnusedHeapArea) {
1057     heap->gen_mangle_unused_area();
1058   }
1059 
1060   // Update time of last GC
1061   reset_millis_since_last_gc();
1062 }
1063 
1064 HeapWord*
1065 PSParallelCompact::compute_dense_prefix_via_density(const SpaceId id,
1066                                                     bool maximum_compaction)
1067 {
1068   const size_t region_size = ParallelCompactData::RegionSize;
1069   const ParallelCompactData& sd = summary_data();
1070 
1071   const MutableSpace* const space = _space_info[id].space();
1072   HeapWord* const top_aligned_up = sd.region_align_up(space->top());
1073   const RegionData* const beg_cp = sd.addr_to_region_ptr(space->bottom());
1074   const RegionData* const end_cp = sd.addr_to_region_ptr(top_aligned_up);
1075 
1076   // Skip full regions at the beginning of the space--they are necessarily part
1077   // of the dense prefix.
1078   size_t full_count = 0;
1079   const RegionData* cp;
1080   for (cp = beg_cp; cp < end_cp && cp->data_size() == region_size; ++cp) {
1081     ++full_count;
1082   }
1083 
1084   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1085   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1086   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval;
1087   if (maximum_compaction || cp == end_cp || interval_ended) {
1088     _maximum_compaction_gc_num = total_invocations();
1089     return sd.region_to_addr(cp);
1090   }
1091 
1092   HeapWord* const new_top = _space_info[id].new_top();
1093   const size_t space_live = pointer_delta(new_top, space->bottom());
1094   const size_t space_used = space->used_in_words();
1095   const size_t space_capacity = space->capacity_in_words();
1096 
1097   const double cur_density = double(space_live) / space_capacity;
1098   const double deadwood_density =
1099     (1.0 - cur_density) * (1.0 - cur_density) * cur_density * cur_density;
1100   const size_t deadwood_goal = size_t(space_capacity * deadwood_density);
1101 
1102   if (TraceParallelOldGCDensePrefix) {
1103     tty->print_cr("cur_dens=%5.3f dw_dens=%5.3f dw_goal=" SIZE_FORMAT,
1104                   cur_density, deadwood_density, deadwood_goal);
1105     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1106                   "space_cap=" SIZE_FORMAT,
1107                   space_live, space_used,
1108                   space_capacity);
1109   }
1110 
1111   // XXX - Use binary search?
1112   HeapWord* dense_prefix = sd.region_to_addr(cp);
1113   const RegionData* full_cp = cp;
1114   const RegionData* const top_cp = sd.addr_to_region_ptr(space->top() - 1);
1115   while (cp < end_cp) {
1116     HeapWord* region_destination = cp->destination();
1117     const size_t cur_deadwood = pointer_delta(dense_prefix, region_destination);
1118     if (TraceParallelOldGCDensePrefix && Verbose) {
1119       tty->print_cr("c#=" SIZE_FORMAT_W(4) " dst=" PTR_FORMAT " "
1120                     "dp=" PTR_FORMAT " " "cdw=" SIZE_FORMAT_W(8),
1121                     sd.region(cp), p2i(region_destination),
1122                     p2i(dense_prefix), cur_deadwood);
1123     }
1124 
1125     if (cur_deadwood >= deadwood_goal) {
1126       // Found the region that has the correct amount of deadwood to the left.
1127       // This typically occurs after crossing a fairly sparse set of regions, so
1128       // iterate backwards over those sparse regions, looking for the region
1129       // that has the lowest density of live objects 'to the right.'
1130       size_t space_to_left = sd.region(cp) * region_size;
1131       size_t live_to_left = space_to_left - cur_deadwood;
1132       size_t space_to_right = space_capacity - space_to_left;
1133       size_t live_to_right = space_live - live_to_left;
1134       double density_to_right = double(live_to_right) / space_to_right;
1135       while (cp > full_cp) {
1136         --cp;
1137         const size_t prev_region_live_to_right = live_to_right -
1138           cp->data_size();
1139         const size_t prev_region_space_to_right = space_to_right + region_size;
1140         double prev_region_density_to_right =
1141           double(prev_region_live_to_right) / prev_region_space_to_right;
1142         if (density_to_right <= prev_region_density_to_right) {
1143           return dense_prefix;
1144         }
1145         if (TraceParallelOldGCDensePrefix && Verbose) {
1146           tty->print_cr("backing up from c=" SIZE_FORMAT_W(4) " d2r=%10.8f "
1147                         "pc_d2r=%10.8f", sd.region(cp), density_to_right,
1148                         prev_region_density_to_right);
1149         }
1150         dense_prefix -= region_size;
1151         live_to_right = prev_region_live_to_right;
1152         space_to_right = prev_region_space_to_right;
1153         density_to_right = prev_region_density_to_right;
1154       }
1155       return dense_prefix;
1156     }
1157 
1158     dense_prefix += region_size;
1159     ++cp;
1160   }
1161 
1162   return dense_prefix;
1163 }
1164 
1165 #ifndef PRODUCT
1166 void PSParallelCompact::print_dense_prefix_stats(const char* const algorithm,
1167                                                  const SpaceId id,
1168                                                  const bool maximum_compaction,
1169                                                  HeapWord* const addr)
1170 {
1171   const size_t region_idx = summary_data().addr_to_region_idx(addr);
1172   RegionData* const cp = summary_data().region(region_idx);
1173   const MutableSpace* const space = _space_info[id].space();
1174   HeapWord* const new_top = _space_info[id].new_top();
1175 
1176   const size_t space_live = pointer_delta(new_top, space->bottom());
1177   const size_t dead_to_left = pointer_delta(addr, cp->destination());
1178   const size_t space_cap = space->capacity_in_words();
1179   const double dead_to_left_pct = double(dead_to_left) / space_cap;
1180   const size_t live_to_right = new_top - cp->destination();
1181   const size_t dead_to_right = space->top() - addr - live_to_right;
1182 
1183   tty->print_cr("%s=" PTR_FORMAT " dpc=" SIZE_FORMAT_W(5) " "
1184                 "spl=" SIZE_FORMAT " "
1185                 "d2l=" SIZE_FORMAT " d2l%%=%6.4f "
1186                 "d2r=" SIZE_FORMAT " l2r=" SIZE_FORMAT
1187                 " ratio=%10.8f",
1188                 algorithm, p2i(addr), region_idx,
1189                 space_live,
1190                 dead_to_left, dead_to_left_pct,
1191                 dead_to_right, live_to_right,
1192                 double(dead_to_right) / live_to_right);
1193 }
1194 #endif  // #ifndef PRODUCT
1195 
1196 // Return a fraction indicating how much of the generation can be treated as
1197 // "dead wood" (i.e., not reclaimed).  The function uses a normal distribution
1198 // based on the density of live objects in the generation to determine a limit,
1199 // which is then adjusted so the return value is min_percent when the density is
1200 // 1.
1201 //
1202 // The following table shows some return values for a different values of the
1203 // standard deviation (ParallelOldDeadWoodLimiterStdDev); the mean is 0.5 and
1204 // min_percent is 1.
1205 //
1206 //                          fraction allowed as dead wood
1207 //         -----------------------------------------------------------------
1208 // density std_dev=70 std_dev=75 std_dev=80 std_dev=85 std_dev=90 std_dev=95
1209 // ------- ---------- ---------- ---------- ---------- ---------- ----------
1210 // 0.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1211 // 0.05000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1212 // 0.10000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1213 // 0.15000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1214 // 0.20000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1215 // 0.25000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1216 // 0.30000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1217 // 0.35000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1218 // 0.40000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1219 // 0.45000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1220 // 0.50000 0.13832410 0.11599237 0.09847664 0.08456518 0.07338887 0.06431510
1221 // 0.55000 0.13687208 0.11481163 0.09750361 0.08375387 0.07270534 0.06373386
1222 // 0.60000 0.13253818 0.11128511 0.09459590 0.08132834 0.07066107 0.06199500
1223 // 0.65000 0.12538832 0.10545958 0.08978741 0.07731366 0.06727491 0.05911289
1224 // 0.70000 0.11553050 0.09741183 0.08313394 0.07175114 0.06257797 0.05511132
1225 // 0.75000 0.10311208 0.08724696 0.07471205 0.06469760 0.05661313 0.05002313
1226 // 0.80000 0.08831616 0.07509618 0.06461766 0.05622444 0.04943437 0.04388975
1227 // 0.85000 0.07135702 0.06111390 0.05296419 0.04641639 0.04110601 0.03676066
1228 // 0.90000 0.05247504 0.04547452 0.03988045 0.03537016 0.03170171 0.02869272
1229 // 0.95000 0.03193096 0.02836880 0.02550828 0.02319280 0.02130337 0.01974941
1230 // 1.00000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000 0.01000000
1231 
1232 double PSParallelCompact::dead_wood_limiter(double density, size_t min_percent)
1233 {
1234   assert(_dwl_initialized, "uninitialized");
1235 
1236   // The raw limit is the value of the normal distribution at x = density.
1237   const double raw_limit = normal_distribution(density);
1238 
1239   // Adjust the raw limit so it becomes the minimum when the density is 1.
1240   //
1241   // First subtract the adjustment value (which is simply the precomputed value
1242   // normal_distribution(1.0)); this yields a value of 0 when the density is 1.
1243   // Then add the minimum value, so the minimum is returned when the density is
1244   // 1.  Finally, prevent negative values, which occur when the mean is not 0.5.
1245   const double min = double(min_percent) / 100.0;
1246   const double limit = raw_limit - _dwl_adjustment + min;
1247   return MAX2(limit, 0.0);
1248 }
1249 
1250 ParallelCompactData::RegionData*
1251 PSParallelCompact::first_dead_space_region(const RegionData* beg,
1252                                            const RegionData* end)
1253 {
1254   const size_t region_size = ParallelCompactData::RegionSize;
1255   ParallelCompactData& sd = summary_data();
1256   size_t left = sd.region(beg);
1257   size_t right = end > beg ? sd.region(end) - 1 : left;
1258 
1259   // Binary search.
1260   while (left < right) {
1261     // Equivalent to (left + right) / 2, but does not overflow.
1262     const size_t middle = left + (right - left) / 2;
1263     RegionData* const middle_ptr = sd.region(middle);
1264     HeapWord* const dest = middle_ptr->destination();
1265     HeapWord* const addr = sd.region_to_addr(middle);
1266     assert(dest != NULL, "sanity");
1267     assert(dest <= addr, "must move left");
1268 
1269     if (middle > left && dest < addr) {
1270       right = middle - 1;
1271     } else if (middle < right && middle_ptr->data_size() == region_size) {
1272       left = middle + 1;
1273     } else {
1274       return middle_ptr;
1275     }
1276   }
1277   return sd.region(left);
1278 }
1279 
1280 ParallelCompactData::RegionData*
1281 PSParallelCompact::dead_wood_limit_region(const RegionData* beg,
1282                                           const RegionData* end,
1283                                           size_t dead_words)
1284 {
1285   ParallelCompactData& sd = summary_data();
1286   size_t left = sd.region(beg);
1287   size_t right = end > beg ? sd.region(end) - 1 : left;
1288 
1289   // Binary search.
1290   while (left < right) {
1291     // Equivalent to (left + right) / 2, but does not overflow.
1292     const size_t middle = left + (right - left) / 2;
1293     RegionData* const middle_ptr = sd.region(middle);
1294     HeapWord* const dest = middle_ptr->destination();
1295     HeapWord* const addr = sd.region_to_addr(middle);
1296     assert(dest != NULL, "sanity");
1297     assert(dest <= addr, "must move left");
1298 
1299     const size_t dead_to_left = pointer_delta(addr, dest);
1300     if (middle > left && dead_to_left > dead_words) {
1301       right = middle - 1;
1302     } else if (middle < right && dead_to_left < dead_words) {
1303       left = middle + 1;
1304     } else {
1305       return middle_ptr;
1306     }
1307   }
1308   return sd.region(left);
1309 }
1310 
1311 // The result is valid during the summary phase, after the initial summarization
1312 // of each space into itself, and before final summarization.
1313 inline double
1314 PSParallelCompact::reclaimed_ratio(const RegionData* const cp,
1315                                    HeapWord* const bottom,
1316                                    HeapWord* const top,
1317                                    HeapWord* const new_top)
1318 {
1319   ParallelCompactData& sd = summary_data();
1320 
1321   assert(cp != NULL, "sanity");
1322   assert(bottom != NULL, "sanity");
1323   assert(top != NULL, "sanity");
1324   assert(new_top != NULL, "sanity");
1325   assert(top >= new_top, "summary data problem?");
1326   assert(new_top > bottom, "space is empty; should not be here");
1327   assert(new_top >= cp->destination(), "sanity");
1328   assert(top >= sd.region_to_addr(cp), "sanity");
1329 
1330   HeapWord* const destination = cp->destination();
1331   const size_t dense_prefix_live  = pointer_delta(destination, bottom);
1332   const size_t compacted_region_live = pointer_delta(new_top, destination);
1333   const size_t compacted_region_used = pointer_delta(top,
1334                                                      sd.region_to_addr(cp));
1335   const size_t reclaimable = compacted_region_used - compacted_region_live;
1336 
1337   const double divisor = dense_prefix_live + 1.25 * compacted_region_live;
1338   return double(reclaimable) / divisor;
1339 }
1340 
1341 // Return the address of the end of the dense prefix, a.k.a. the start of the
1342 // compacted region.  The address is always on a region boundary.
1343 //
1344 // Completely full regions at the left are skipped, since no compaction can
1345 // occur in those regions.  Then the maximum amount of dead wood to allow is
1346 // computed, based on the density (amount live / capacity) of the generation;
1347 // the region with approximately that amount of dead space to the left is
1348 // identified as the limit region.  Regions between the last completely full
1349 // region and the limit region are scanned and the one that has the best
1350 // (maximum) reclaimed_ratio() is selected.
1351 HeapWord*
1352 PSParallelCompact::compute_dense_prefix(const SpaceId id,
1353                                         bool maximum_compaction)
1354 {
1355   const size_t region_size = ParallelCompactData::RegionSize;
1356   const ParallelCompactData& sd = summary_data();
1357 
1358   const MutableSpace* const space = _space_info[id].space();
1359   HeapWord* const top = space->top();
1360   HeapWord* const top_aligned_up = sd.region_align_up(top);
1361   HeapWord* const new_top = _space_info[id].new_top();
1362   HeapWord* const new_top_aligned_up = sd.region_align_up(new_top);
1363   HeapWord* const bottom = space->bottom();
1364   const RegionData* const beg_cp = sd.addr_to_region_ptr(bottom);
1365   const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
1366   const RegionData* const new_top_cp =
1367     sd.addr_to_region_ptr(new_top_aligned_up);
1368 
1369   // Skip full regions at the beginning of the space--they are necessarily part
1370   // of the dense prefix.
1371   const RegionData* const full_cp = first_dead_space_region(beg_cp, new_top_cp);
1372   assert(full_cp->destination() == sd.region_to_addr(full_cp) ||
1373          space->is_empty(), "no dead space allowed to the left");
1374   assert(full_cp->data_size() < region_size || full_cp == new_top_cp - 1,
1375          "region must have dead space");
1376 
1377   // The gc number is saved whenever a maximum compaction is done, and used to
1378   // determine when the maximum compaction interval has expired.  This avoids
1379   // successive max compactions for different reasons.
1380   assert(total_invocations() >= _maximum_compaction_gc_num, "sanity");
1381   const size_t gcs_since_max = total_invocations() - _maximum_compaction_gc_num;
1382   const bool interval_ended = gcs_since_max > HeapMaximumCompactionInterval ||
1383     total_invocations() == HeapFirstMaximumCompactionCount;
1384   if (maximum_compaction || full_cp == top_cp || interval_ended) {
1385     _maximum_compaction_gc_num = total_invocations();
1386     return sd.region_to_addr(full_cp);
1387   }
1388 
1389   const size_t space_live = pointer_delta(new_top, bottom);
1390   const size_t space_used = space->used_in_words();
1391   const size_t space_capacity = space->capacity_in_words();
1392 
1393   const double density = double(space_live) / double(space_capacity);
1394   const size_t min_percent_free = MarkSweepDeadRatio;
1395   const double limiter = dead_wood_limiter(density, min_percent_free);
1396   const size_t dead_wood_max = space_used - space_live;
1397   const size_t dead_wood_limit = MIN2(size_t(space_capacity * limiter),
1398                                       dead_wood_max);
1399 
1400   if (TraceParallelOldGCDensePrefix) {
1401     tty->print_cr("space_live=" SIZE_FORMAT " " "space_used=" SIZE_FORMAT " "
1402                   "space_cap=" SIZE_FORMAT,
1403                   space_live, space_used,
1404                   space_capacity);
1405     tty->print_cr("dead_wood_limiter(%6.4f, " SIZE_FORMAT ")=%6.4f "
1406                   "dead_wood_max=" SIZE_FORMAT " dead_wood_limit=" SIZE_FORMAT,
1407                   density, min_percent_free, limiter,
1408                   dead_wood_max, dead_wood_limit);
1409   }
1410 
1411   // Locate the region with the desired amount of dead space to the left.
1412   const RegionData* const limit_cp =
1413     dead_wood_limit_region(full_cp, top_cp, dead_wood_limit);
1414 
1415   // Scan from the first region with dead space to the limit region and find the
1416   // one with the best (largest) reclaimed ratio.
1417   double best_ratio = 0.0;
1418   const RegionData* best_cp = full_cp;
1419   for (const RegionData* cp = full_cp; cp < limit_cp; ++cp) {
1420     double tmp_ratio = reclaimed_ratio(cp, bottom, top, new_top);
1421     if (tmp_ratio > best_ratio) {
1422       best_cp = cp;
1423       best_ratio = tmp_ratio;
1424     }
1425   }
1426 
1427   return sd.region_to_addr(best_cp);
1428 }
1429 
1430 void PSParallelCompact::summarize_spaces_quick()
1431 {
1432   for (unsigned int i = 0; i < last_space_id; ++i) {
1433     const MutableSpace* space = _space_info[i].space();
1434     HeapWord** nta = _space_info[i].new_top_addr();
1435     bool result = _summary_data.summarize(_space_info[i].split_info(),
1436                                           space->bottom(), space->top(), NULL,
1437                                           space->bottom(), space->end(), nta);
1438     assert(result, "space must fit into itself");
1439     _space_info[i].set_dense_prefix(space->bottom());
1440   }
1441 }
1442 
1443 void PSParallelCompact::fill_dense_prefix_end(SpaceId id)
1444 {
1445   HeapWord* const dense_prefix_end = dense_prefix(id);
1446   const RegionData* region = _summary_data.addr_to_region_ptr(dense_prefix_end);
1447   const idx_t dense_prefix_bit = _mark_bitmap.addr_to_bit(dense_prefix_end);
1448   if (dead_space_crosses_boundary(region, dense_prefix_bit)) {
1449     // Only enough dead space is filled so that any remaining dead space to the
1450     // left is larger than the minimum filler object.  (The remainder is filled
1451     // during the copy/update phase.)
1452     //
1453     // The size of the dead space to the right of the boundary is not a
1454     // concern, since compaction will be able to use whatever space is
1455     // available.
1456     //
1457     // Here '||' is the boundary, 'x' represents a don't care bit and a box
1458     // surrounds the space to be filled with an object.
1459     //
1460     // In the 32-bit VM, each bit represents two 32-bit words:
1461     //                              +---+
1462     // a) beg_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1463     //    end_bits:  ...  x   x   x | 0 | ||   0   x  x  ...
1464     //                              +---+
1465     //
1466     // In the 64-bit VM, each bit represents one 64-bit word:
1467     //                              +------------+
1468     // b) beg_bits:  ...  x   x   x | 0   ||   0 | x  x  ...
1469     //    end_bits:  ...  x   x   1 | 0   ||   0 | x  x  ...
1470     //                              +------------+
1471     //                          +-------+
1472     // c) beg_bits:  ...  x   x | 0   0 | ||   0   x  x  ...
1473     //    end_bits:  ...  x   1 | 0   0 | ||   0   x  x  ...
1474     //                          +-------+
1475     //                      +-----------+
1476     // d) beg_bits:  ...  x | 0   0   0 | ||   0   x  x  ...
1477     //    end_bits:  ...  1 | 0   0   0 | ||   0   x  x  ...
1478     //                      +-----------+
1479     //                          +-------+
1480     // e) beg_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1481     //    end_bits:  ...  0   0 | 0   0 | ||   0   x  x  ...
1482     //                          +-------+
1483 
1484     // Initially assume case a, c or e will apply.
1485     size_t obj_len = CollectedHeap::min_fill_size();
1486     HeapWord* obj_beg = dense_prefix_end - obj_len;
1487 
1488 #ifdef  _LP64
1489     if (MinObjAlignment > 1) { // object alignment > heap word size
1490       // Cases a, c or e.
1491     } else if (_mark_bitmap.is_obj_end(dense_prefix_bit - 2)) {
1492       // Case b above.
1493       obj_beg = dense_prefix_end - 1;
1494     } else if (!_mark_bitmap.is_obj_end(dense_prefix_bit - 3) &&
1495                _mark_bitmap.is_obj_end(dense_prefix_bit - 4)) {
1496       // Case d above.
1497       obj_beg = dense_prefix_end - 3;
1498       obj_len = 3;
1499     }
1500 #endif  // #ifdef _LP64
1501 
1502     CollectedHeap::fill_with_object(obj_beg, obj_len);
1503     _mark_bitmap.mark_obj(obj_beg, obj_len);
1504     _summary_data.add_obj(obj_beg, obj_len);
1505     assert(start_array(id) != NULL, "sanity");
1506     start_array(id)->allocate_block(obj_beg);
1507   }
1508 }
1509 
1510 void
1511 PSParallelCompact::clear_source_region(HeapWord* beg_addr, HeapWord* end_addr)
1512 {
1513   RegionData* const beg_ptr = _summary_data.addr_to_region_ptr(beg_addr);
1514   HeapWord* const end_aligned_up = _summary_data.region_align_up(end_addr);
1515   RegionData* const end_ptr = _summary_data.addr_to_region_ptr(end_aligned_up);
1516   for (RegionData* cur = beg_ptr; cur < end_ptr; ++cur) {
1517     cur->set_source_region(0);
1518   }
1519 }
1520 
1521 void
1522 PSParallelCompact::summarize_space(SpaceId id, bool maximum_compaction)
1523 {
1524   assert(id < last_space_id, "id out of range");
1525   assert(_space_info[id].dense_prefix() == _space_info[id].space()->bottom(),
1526          "should have been reset in summarize_spaces_quick()");
1527 
1528   const MutableSpace* space = _space_info[id].space();
1529   if (_space_info[id].new_top() != space->bottom()) {
1530     HeapWord* dense_prefix_end = compute_dense_prefix(id, maximum_compaction);
1531     _space_info[id].set_dense_prefix(dense_prefix_end);
1532 
1533 #ifndef PRODUCT
1534     if (TraceParallelOldGCDensePrefix) {
1535       print_dense_prefix_stats("ratio", id, maximum_compaction,
1536                                dense_prefix_end);
1537       HeapWord* addr = compute_dense_prefix_via_density(id, maximum_compaction);
1538       print_dense_prefix_stats("density", id, maximum_compaction, addr);
1539     }
1540 #endif  // #ifndef PRODUCT
1541 
1542     // Recompute the summary data, taking into account the dense prefix.  If
1543     // every last byte will be reclaimed, then the existing summary data which
1544     // compacts everything can be left in place.
1545     if (!maximum_compaction && dense_prefix_end != space->bottom()) {
1546       // If dead space crosses the dense prefix boundary, it is (at least
1547       // partially) filled with a dummy object, marked live and added to the
1548       // summary data.  This simplifies the copy/update phase and must be done
1549       // before the final locations of objects are determined, to prevent
1550       // leaving a fragment of dead space that is too small to fill.
1551       fill_dense_prefix_end(id);
1552 
1553       // Compute the destination of each Region, and thus each object.
1554       _summary_data.summarize_dense_prefix(space->bottom(), dense_prefix_end);
1555       _summary_data.summarize(_space_info[id].split_info(),
1556                               dense_prefix_end, space->top(), NULL,
1557                               dense_prefix_end, space->end(),
1558                               _space_info[id].new_top_addr());
1559     }
1560   }
1561 
1562   if (TraceParallelOldGCSummaryPhase) {
1563     const size_t region_size = ParallelCompactData::RegionSize;
1564     HeapWord* const dense_prefix_end = _space_info[id].dense_prefix();
1565     const size_t dp_region = _summary_data.addr_to_region_idx(dense_prefix_end);
1566     const size_t dp_words = pointer_delta(dense_prefix_end, space->bottom());
1567     HeapWord* const new_top = _space_info[id].new_top();
1568     const HeapWord* nt_aligned_up = _summary_data.region_align_up(new_top);
1569     const size_t cr_words = pointer_delta(nt_aligned_up, dense_prefix_end);
1570     tty->print_cr("id=%d cap=" SIZE_FORMAT " dp=" PTR_FORMAT " "
1571                   "dp_region=" SIZE_FORMAT " " "dp_count=" SIZE_FORMAT " "
1572                   "cr_count=" SIZE_FORMAT " " "nt=" PTR_FORMAT,
1573                   id, space->capacity_in_words(), p2i(dense_prefix_end),
1574                   dp_region, dp_words / region_size,
1575                   cr_words / region_size, p2i(new_top));
1576   }
1577 }
1578 
1579 #ifndef PRODUCT
1580 void PSParallelCompact::summary_phase_msg(SpaceId dst_space_id,
1581                                           HeapWord* dst_beg, HeapWord* dst_end,
1582                                           SpaceId src_space_id,
1583                                           HeapWord* src_beg, HeapWord* src_end)
1584 {
1585   if (TraceParallelOldGCSummaryPhase) {
1586     tty->print_cr("summarizing %d [%s] into %d [%s]:  "
1587                   "src=" PTR_FORMAT "-" PTR_FORMAT " "
1588                   SIZE_FORMAT "-" SIZE_FORMAT " "
1589                   "dst=" PTR_FORMAT "-" PTR_FORMAT " "
1590                   SIZE_FORMAT "-" SIZE_FORMAT,
1591                   src_space_id, space_names[src_space_id],
1592                   dst_space_id, space_names[dst_space_id],
1593                   p2i(src_beg), p2i(src_end),
1594                   _summary_data.addr_to_region_idx(src_beg),
1595                   _summary_data.addr_to_region_idx(src_end),
1596                   p2i(dst_beg), p2i(dst_end),
1597                   _summary_data.addr_to_region_idx(dst_beg),
1598                   _summary_data.addr_to_region_idx(dst_end));
1599   }
1600 }
1601 #endif  // #ifndef PRODUCT
1602 
1603 void PSParallelCompact::summary_phase(ParCompactionManager* cm,
1604                                       bool maximum_compaction)
1605 {
1606   GCTraceTime tm("summary phase", print_phases(), true, &_gc_timer);
1607   // trace("2");
1608 
1609 #ifdef  ASSERT
1610   if (TraceParallelOldGCMarkingPhase) {
1611     tty->print_cr("add_obj_count=" SIZE_FORMAT " "
1612                   "add_obj_bytes=" SIZE_FORMAT,
1613                   add_obj_count, add_obj_size * HeapWordSize);
1614     tty->print_cr("mark_bitmap_count=" SIZE_FORMAT " "
1615                   "mark_bitmap_bytes=" SIZE_FORMAT,
1616                   mark_bitmap_count, mark_bitmap_size * HeapWordSize);
1617   }
1618 #endif  // #ifdef ASSERT
1619 
1620   // Quick summarization of each space into itself, to see how much is live.
1621   summarize_spaces_quick();
1622 
1623   if (TraceParallelOldGCSummaryPhase) {
1624     tty->print_cr("summary_phase:  after summarizing each space to self");
1625     Universe::print();
1626     NOT_PRODUCT(print_region_ranges());
1627     if (Verbose) {
1628       NOT_PRODUCT(print_initial_summary_data(_summary_data, _space_info));
1629     }
1630   }
1631 
1632   // The amount of live data that will end up in old space (assuming it fits).
1633   size_t old_space_total_live = 0;
1634   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
1635     old_space_total_live += pointer_delta(_space_info[id].new_top(),
1636                                           _space_info[id].space()->bottom());
1637   }
1638 
1639   MutableSpace* const old_space = _space_info[old_space_id].space();
1640   const size_t old_capacity = old_space->capacity_in_words();
1641   if (old_space_total_live > old_capacity) {
1642     // XXX - should also try to expand
1643     maximum_compaction = true;
1644   }
1645 
1646   // Old generations.
1647   summarize_space(old_space_id, maximum_compaction);
1648 
1649   // Summarize the remaining spaces in the young gen.  The initial target space
1650   // is the old gen.  If a space does not fit entirely into the target, then the
1651   // remainder is compacted into the space itself and that space becomes the new
1652   // target.
1653   SpaceId dst_space_id = old_space_id;
1654   HeapWord* dst_space_end = old_space->end();
1655   HeapWord** new_top_addr = _space_info[dst_space_id].new_top_addr();
1656   for (unsigned int id = eden_space_id; id < last_space_id; ++id) {
1657     const MutableSpace* space = _space_info[id].space();
1658     const size_t live = pointer_delta(_space_info[id].new_top(),
1659                                       space->bottom());
1660     const size_t available = pointer_delta(dst_space_end, *new_top_addr);
1661 
1662     NOT_PRODUCT(summary_phase_msg(dst_space_id, *new_top_addr, dst_space_end,
1663                                   SpaceId(id), space->bottom(), space->top());)
1664     if (live > 0 && live <= available) {
1665       // All the live data will fit.
1666       bool done = _summary_data.summarize(_space_info[id].split_info(),
1667                                           space->bottom(), space->top(),
1668                                           NULL,
1669                                           *new_top_addr, dst_space_end,
1670                                           new_top_addr);
1671       assert(done, "space must fit into old gen");
1672 
1673       // Reset the new_top value for the space.
1674       _space_info[id].set_new_top(space->bottom());
1675     } else if (live > 0) {
1676       // Attempt to fit part of the source space into the target space.
1677       HeapWord* next_src_addr = NULL;
1678       bool done = _summary_data.summarize(_space_info[id].split_info(),
1679                                           space->bottom(), space->top(),
1680                                           &next_src_addr,
1681                                           *new_top_addr, dst_space_end,
1682                                           new_top_addr);
1683       assert(!done, "space should not fit into old gen");
1684       assert(next_src_addr != NULL, "sanity");
1685 
1686       // The source space becomes the new target, so the remainder is compacted
1687       // within the space itself.
1688       dst_space_id = SpaceId(id);
1689       dst_space_end = space->end();
1690       new_top_addr = _space_info[id].new_top_addr();
1691       NOT_PRODUCT(summary_phase_msg(dst_space_id,
1692                                     space->bottom(), dst_space_end,
1693                                     SpaceId(id), next_src_addr, space->top());)
1694       done = _summary_data.summarize(_space_info[id].split_info(),
1695                                      next_src_addr, space->top(),
1696                                      NULL,
1697                                      space->bottom(), dst_space_end,
1698                                      new_top_addr);
1699       assert(done, "space must fit when compacted into itself");
1700       assert(*new_top_addr <= space->top(), "usage should not grow");
1701     }
1702   }
1703 
1704   if (TraceParallelOldGCSummaryPhase) {
1705     tty->print_cr("summary_phase:  after final summarization");
1706     Universe::print();
1707     NOT_PRODUCT(print_region_ranges());
1708     if (Verbose) {
1709       NOT_PRODUCT(print_generic_summary_data(_summary_data, _space_info));
1710     }
1711   }
1712 }
1713 
1714 // This method should contain all heap-specific policy for invoking a full
1715 // collection.  invoke_no_policy() will only attempt to compact the heap; it
1716 // will do nothing further.  If we need to bail out for policy reasons, scavenge
1717 // before full gc, or any other specialized behavior, it needs to be added here.
1718 //
1719 // Note that this method should only be called from the vm_thread while at a
1720 // safepoint.
1721 //
1722 // Note that the all_soft_refs_clear flag in the collector policy
1723 // may be true because this method can be called without intervening
1724 // activity.  For example when the heap space is tight and full measure
1725 // are being taken to free space.
1726 void PSParallelCompact::invoke(bool maximum_heap_compaction) {
1727   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1728   assert(Thread::current() == (Thread*)VMThread::vm_thread(),
1729          "should be in vm thread");
1730 
1731   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1732   GCCause::Cause gc_cause = heap->gc_cause();
1733   assert(!heap->is_gc_active(), "not reentrant");
1734 
1735   PSAdaptiveSizePolicy* policy = heap->size_policy();
1736   IsGCActiveMark mark;
1737 
1738   if (ScavengeBeforeFullGC) {
1739     PSScavenge::invoke_no_policy();
1740   }
1741 
1742   const bool clear_all_soft_refs =
1743     heap->collector_policy()->should_clear_all_soft_refs();
1744 
1745   PSParallelCompact::invoke_no_policy(clear_all_soft_refs ||
1746                                       maximum_heap_compaction);
1747 }
1748 
1749 // This method contains no policy. You should probably
1750 // be calling invoke() instead.
1751 bool PSParallelCompact::invoke_no_policy(bool maximum_heap_compaction) {
1752   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint");
1753   assert(ref_processor() != NULL, "Sanity");
1754 
1755   if (GC_locker::check_active_before_gc()) {
1756     return false;
1757   }
1758 
1759   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
1760 
1761   GCIdMark gc_id_mark;
1762   _gc_timer.register_gc_start();
1763   _gc_tracer.report_gc_start(heap->gc_cause(), _gc_timer.gc_start());
1764 
1765   TimeStamp marking_start;
1766   TimeStamp compaction_start;
1767   TimeStamp collection_exit;
1768 
1769   GCCause::Cause gc_cause = heap->gc_cause();
1770   PSYoungGen* young_gen = heap->young_gen();
1771   PSOldGen* old_gen = heap->old_gen();
1772   PSAdaptiveSizePolicy* size_policy = heap->size_policy();
1773 
1774   // The scope of casr should end after code that can change
1775   // CollectorPolicy::_should_clear_all_soft_refs.
1776   ClearedAllSoftRefs casr(maximum_heap_compaction,
1777                           heap->collector_policy());
1778 
1779   if (ZapUnusedHeapArea) {
1780     // Save information needed to minimize mangling
1781     heap->record_gen_tops_before_GC();
1782   }
1783 
1784   heap->pre_full_gc_dump(&_gc_timer);
1785 
1786   _print_phases = PrintGCDetails && PrintParallelOldGCPhaseTimes;
1787 
1788   // Make sure data structures are sane, make the heap parsable, and do other
1789   // miscellaneous bookkeeping.
1790   PreGCValues pre_gc_values;
1791   pre_compact(&pre_gc_values);
1792 
1793   // Get the compaction manager reserved for the VM thread.
1794   ParCompactionManager* const vmthread_cm =
1795     ParCompactionManager::manager_array(gc_task_manager()->workers());
1796 
1797   // Place after pre_compact() where the number of invocations is incremented.
1798   AdaptiveSizePolicyOutput(size_policy, heap->total_collections());
1799 
1800   {
1801     ResourceMark rm;
1802     HandleMark hm;
1803 
1804     // Set the number of GC threads to be used in this collection
1805     gc_task_manager()->set_active_gang();
1806     gc_task_manager()->task_idle_workers();
1807 
1808     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
1809     GCTraceTime t1(GCCauseString("Full GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
1810     TraceCollectorStats tcs(counters());
1811     TraceMemoryManagerStats tms(true /* Full GC */,gc_cause);
1812 
1813     if (TraceOldGenTime) accumulated_time()->start();
1814 
1815     // Let the size policy know we're starting
1816     size_policy->major_collection_begin();
1817 
1818     CodeCache::gc_prologue();
1819 
1820 #if defined(COMPILER2) || INCLUDE_JVMCI
1821     DerivedPointerTable::clear();
1822 #endif
1823 
1824     ref_processor()->enable_discovery();
1825     ref_processor()->setup_policy(maximum_heap_compaction);
1826 
1827     bool marked_for_unloading = false;
1828 
1829     marking_start.update();
1830     marking_phase(vmthread_cm, maximum_heap_compaction, &_gc_tracer);
1831 
1832     bool max_on_system_gc = UseMaximumCompactionOnSystemGC
1833       && GCCause::is_user_requested_gc(gc_cause);
1834     summary_phase(vmthread_cm, maximum_heap_compaction || max_on_system_gc);
1835 
1836 #if defined(COMPILER2) || INCLUDE_JVMCI
1837     assert(DerivedPointerTable::is_active(), "Sanity");
1838     DerivedPointerTable::set_active(false);
1839 #endif
1840 
1841     // adjust_roots() updates Universe::_intArrayKlassObj which is
1842     // needed by the compaction for filling holes in the dense prefix.
1843     adjust_roots();
1844 
1845     compaction_start.update();
1846     compact();
1847 
1848     // Reset the mark bitmap, summary data, and do other bookkeeping.  Must be
1849     // done before resizing.
1850     post_compact();
1851 
1852     // Let the size policy know we're done
1853     size_policy->major_collection_end(old_gen->used_in_bytes(), gc_cause);
1854 
1855     if (UseAdaptiveSizePolicy) {
1856       if (PrintAdaptiveSizePolicy) {
1857         gclog_or_tty->print("AdaptiveSizeStart: ");
1858         gclog_or_tty->stamp();
1859         gclog_or_tty->print_cr(" collection: %d ",
1860                        heap->total_collections());
1861         if (Verbose) {
1862           gclog_or_tty->print("old_gen_capacity: " SIZE_FORMAT
1863             " young_gen_capacity: " SIZE_FORMAT,
1864             old_gen->capacity_in_bytes(), young_gen->capacity_in_bytes());
1865         }
1866       }
1867 
1868       // Don't check if the size_policy is ready here.  Let
1869       // the size_policy check that internally.
1870       if (UseAdaptiveGenerationSizePolicyAtMajorCollection &&
1871           AdaptiveSizePolicy::should_update_promo_stats(gc_cause)) {
1872         // Swap the survivor spaces if from_space is empty. The
1873         // resize_young_gen() called below is normally used after
1874         // a successful young GC and swapping of survivor spaces;
1875         // otherwise, it will fail to resize the young gen with
1876         // the current implementation.
1877         if (young_gen->from_space()->is_empty()) {
1878           young_gen->from_space()->clear(SpaceDecorator::Mangle);
1879           young_gen->swap_spaces();
1880         }
1881 
1882         // Calculate optimal free space amounts
1883         assert(young_gen->max_size() >
1884           young_gen->from_space()->capacity_in_bytes() +
1885           young_gen->to_space()->capacity_in_bytes(),
1886           "Sizes of space in young gen are out-of-bounds");
1887 
1888         size_t young_live = young_gen->used_in_bytes();
1889         size_t eden_live = young_gen->eden_space()->used_in_bytes();
1890         size_t old_live = old_gen->used_in_bytes();
1891         size_t cur_eden = young_gen->eden_space()->capacity_in_bytes();
1892         size_t max_old_gen_size = old_gen->max_gen_size();
1893         size_t max_eden_size = young_gen->max_size() -
1894           young_gen->from_space()->capacity_in_bytes() -
1895           young_gen->to_space()->capacity_in_bytes();
1896 
1897         // Used for diagnostics
1898         size_policy->clear_generation_free_space_flags();
1899 
1900         size_policy->compute_generations_free_space(young_live,
1901                                                     eden_live,
1902                                                     old_live,
1903                                                     cur_eden,
1904                                                     max_old_gen_size,
1905                                                     max_eden_size,
1906                                                     true /* full gc*/);
1907 
1908         size_policy->check_gc_overhead_limit(young_live,
1909                                              eden_live,
1910                                              max_old_gen_size,
1911                                              max_eden_size,
1912                                              true /* full gc*/,
1913                                              gc_cause,
1914                                              heap->collector_policy());
1915 
1916         size_policy->decay_supplemental_growth(true /* full gc*/);
1917 
1918         heap->resize_old_gen(
1919           size_policy->calculated_old_free_size_in_bytes());
1920 
1921         heap->resize_young_gen(size_policy->calculated_eden_size_in_bytes(),
1922                                size_policy->calculated_survivor_size_in_bytes());
1923       }
1924       if (PrintAdaptiveSizePolicy) {
1925         gclog_or_tty->print_cr("AdaptiveSizeStop: collection: %d ",
1926                        heap->total_collections());
1927       }
1928     }
1929 
1930     if (UsePerfData) {
1931       PSGCAdaptivePolicyCounters* const counters = heap->gc_policy_counters();
1932       counters->update_counters();
1933       counters->update_old_capacity(old_gen->capacity_in_bytes());
1934       counters->update_young_capacity(young_gen->capacity_in_bytes());
1935     }
1936 
1937     heap->resize_all_tlabs();
1938 
1939     // Resize the metaspace capacity after a collection
1940     MetaspaceGC::compute_new_size();
1941 
1942     if (TraceOldGenTime) accumulated_time()->stop();
1943 
1944     if (PrintGC) {
1945       if (PrintGCDetails) {
1946         // No GC timestamp here.  This is after GC so it would be confusing.
1947         young_gen->print_used_change(pre_gc_values.young_gen_used());
1948         old_gen->print_used_change(pre_gc_values.old_gen_used());
1949         heap->print_heap_change(pre_gc_values.heap_used());
1950         MetaspaceAux::print_metaspace_change(pre_gc_values.metadata_used());
1951       } else {
1952         heap->print_heap_change(pre_gc_values.heap_used());
1953       }
1954     }
1955 
1956     // Track memory usage and detect low memory
1957     MemoryService::track_memory_usage();
1958     heap->update_counters();
1959     gc_task_manager()->release_idle_workers();
1960   }
1961 
1962 #ifdef ASSERT
1963   for (size_t i = 0; i < ParallelGCThreads + 1; ++i) {
1964     ParCompactionManager* const cm =
1965       ParCompactionManager::manager_array(int(i));
1966     assert(cm->marking_stack()->is_empty(),       "should be empty");
1967     assert(ParCompactionManager::region_list(int(i))->is_empty(), "should be empty");
1968   }
1969 #endif // ASSERT
1970 
1971   if (VerifyAfterGC && heap->total_collections() >= VerifyGCStartAt) {
1972     HandleMark hm;  // Discard invalid handles created during verification
1973     Universe::verify(" VerifyAfterGC:");
1974   }
1975 
1976   // Re-verify object start arrays
1977   if (VerifyObjectStartArray &&
1978       VerifyAfterGC) {
1979     old_gen->verify_object_start_array();
1980   }
1981 
1982   if (ZapUnusedHeapArea) {
1983     old_gen->object_space()->check_mangled_unused_area_complete();
1984   }
1985 
1986   NOT_PRODUCT(ref_processor()->verify_no_references_recorded());
1987 
1988   collection_exit.update();
1989 
1990   heap->print_heap_after_gc();
1991   heap->trace_heap_after_gc(&_gc_tracer);
1992 
1993   if (PrintGCTaskTimeStamps) {
1994     gclog_or_tty->print_cr("VM-Thread " JLONG_FORMAT " " JLONG_FORMAT " "
1995                            JLONG_FORMAT,
1996                            marking_start.ticks(), compaction_start.ticks(),
1997                            collection_exit.ticks());
1998     gc_task_manager()->print_task_time_stamps();
1999   }
2000 
2001   heap->post_full_gc_dump(&_gc_timer);
2002 
2003 #ifdef TRACESPINNING
2004   ParallelTaskTerminator::print_termination_counts();
2005 #endif
2006 
2007   _gc_timer.register_gc_end();
2008 
2009   _gc_tracer.report_dense_prefix(dense_prefix(old_space_id));
2010   _gc_tracer.report_gc_end(_gc_timer.gc_end(), _gc_timer.time_partitions());
2011 
2012   return true;
2013 }
2014 
2015 bool PSParallelCompact::absorb_live_data_from_eden(PSAdaptiveSizePolicy* size_policy,
2016                                              PSYoungGen* young_gen,
2017                                              PSOldGen* old_gen) {
2018   MutableSpace* const eden_space = young_gen->eden_space();
2019   assert(!eden_space->is_empty(), "eden must be non-empty");
2020   assert(young_gen->virtual_space()->alignment() ==
2021          old_gen->virtual_space()->alignment(), "alignments do not match");
2022 
2023   if (!(UseAdaptiveSizePolicy && UseAdaptiveGCBoundary)) {
2024     return false;
2025   }
2026 
2027   // Both generations must be completely committed.
2028   if (young_gen->virtual_space()->uncommitted_size() != 0) {
2029     return false;
2030   }
2031   if (old_gen->virtual_space()->uncommitted_size() != 0) {
2032     return false;
2033   }
2034 
2035   // Figure out how much to take from eden.  Include the average amount promoted
2036   // in the total; otherwise the next young gen GC will simply bail out to a
2037   // full GC.
2038   const size_t alignment = old_gen->virtual_space()->alignment();
2039   const size_t eden_used = eden_space->used_in_bytes();
2040   const size_t promoted = (size_t)size_policy->avg_promoted()->padded_average();
2041   const size_t absorb_size = align_size_up(eden_used + promoted, alignment);
2042   const size_t eden_capacity = eden_space->capacity_in_bytes();
2043 
2044   if (absorb_size >= eden_capacity) {
2045     return false; // Must leave some space in eden.
2046   }
2047 
2048   const size_t new_young_size = young_gen->capacity_in_bytes() - absorb_size;
2049   if (new_young_size < young_gen->min_gen_size()) {
2050     return false; // Respect young gen minimum size.
2051   }
2052 
2053   if (TraceAdaptiveGCBoundary && Verbose) {
2054     gclog_or_tty->print(" absorbing " SIZE_FORMAT "K:  "
2055                         "eden " SIZE_FORMAT "K->" SIZE_FORMAT "K "
2056                         "from " SIZE_FORMAT "K, to " SIZE_FORMAT "K "
2057                         "young_gen " SIZE_FORMAT "K->" SIZE_FORMAT "K ",
2058                         absorb_size / K,
2059                         eden_capacity / K, (eden_capacity - absorb_size) / K,
2060                         young_gen->from_space()->used_in_bytes() / K,
2061                         young_gen->to_space()->used_in_bytes() / K,
2062                         young_gen->capacity_in_bytes() / K, new_young_size / K);
2063   }
2064 
2065   // Fill the unused part of the old gen.
2066   MutableSpace* const old_space = old_gen->object_space();
2067   HeapWord* const unused_start = old_space->top();
2068   size_t const unused_words = pointer_delta(old_space->end(), unused_start);
2069 
2070   if (unused_words > 0) {
2071     if (unused_words < CollectedHeap::min_fill_size()) {
2072       return false;  // If the old gen cannot be filled, must give up.
2073     }
2074     CollectedHeap::fill_with_objects(unused_start, unused_words);
2075   }
2076 
2077   // Take the live data from eden and set both top and end in the old gen to
2078   // eden top.  (Need to set end because reset_after_change() mangles the region
2079   // from end to virtual_space->high() in debug builds).
2080   HeapWord* const new_top = eden_space->top();
2081   old_gen->virtual_space()->expand_into(young_gen->virtual_space(),
2082                                         absorb_size);
2083   young_gen->reset_after_change();
2084   old_space->set_top(new_top);
2085   old_space->set_end(new_top);
2086   old_gen->reset_after_change();
2087 
2088   // Update the object start array for the filler object and the data from eden.
2089   ObjectStartArray* const start_array = old_gen->start_array();
2090   for (HeapWord* p = unused_start; p < new_top; p += oop(p)->size()) {
2091     start_array->allocate_block(p);
2092   }
2093 
2094   // Could update the promoted average here, but it is not typically updated at
2095   // full GCs and the value to use is unclear.  Something like
2096   //
2097   // cur_promoted_avg + absorb_size / number_of_scavenges_since_last_full_gc.
2098 
2099   size_policy->set_bytes_absorbed_from_eden(absorb_size);
2100   return true;
2101 }
2102 
2103 GCTaskManager* const PSParallelCompact::gc_task_manager() {
2104   assert(ParallelScavengeHeap::gc_task_manager() != NULL,
2105     "shouldn't return NULL");
2106   return ParallelScavengeHeap::gc_task_manager();
2107 }
2108 
2109 void PSParallelCompact::marking_phase(ParCompactionManager* cm,
2110                                       bool maximum_heap_compaction,
2111                                       ParallelOldTracer *gc_tracer) {
2112   // Recursively traverse all live objects and mark them
2113   GCTraceTime tm("marking phase", print_phases(), true, &_gc_timer);
2114 
2115   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2116   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2117   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2118   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2119   ParallelTaskTerminator terminator(active_gc_threads, qset);
2120 
2121   ParCompactionManager::MarkAndPushClosure mark_and_push_closure(cm);
2122   ParCompactionManager::FollowStackClosure follow_stack_closure(cm);
2123 
2124   // Need new claim bits before marking starts.
2125   ClassLoaderDataGraph::clear_claimed_marks();
2126 
2127   {
2128     GCTraceTime tm_m("par mark", print_phases(), true, &_gc_timer);
2129 
2130     ParallelScavengeHeap::ParStrongRootsScope psrs;
2131 
2132     GCTaskQueue* q = GCTaskQueue::create();
2133 
2134     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::universe));
2135     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jni_handles));
2136     // We scan the thread roots in parallel
2137     Threads::create_thread_roots_marking_tasks(q);
2138     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::object_synchronizer));
2139     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::flat_profiler));
2140     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::management));
2141     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::system_dictionary));
2142     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::class_loader_data));
2143     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::jvmti));
2144     q->enqueue(new MarkFromRootsTask(MarkFromRootsTask::code_cache));
2145 
2146     if (active_gc_threads > 1) {
2147       for (uint j = 0; j < active_gc_threads; j++) {
2148         q->enqueue(new StealMarkingTask(&terminator));
2149       }
2150     }
2151 
2152     gc_task_manager()->execute_and_wait(q);
2153   }
2154 
2155   // Process reference objects found during marking
2156   {
2157     GCTraceTime tm_r("reference processing", print_phases(), true, &_gc_timer);
2158 
2159     ReferenceProcessorStats stats;
2160     if (ref_processor()->processing_is_mt()) {
2161       RefProcTaskExecutor task_executor;
2162       stats = ref_processor()->process_discovered_references(
2163         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure,
2164         &task_executor, &_gc_timer);
2165     } else {
2166       stats = ref_processor()->process_discovered_references(
2167         is_alive_closure(), &mark_and_push_closure, &follow_stack_closure, NULL,
2168         &_gc_timer);
2169     }
2170 
2171     gc_tracer->report_gc_reference_stats(stats);
2172   }
2173 
2174   GCTraceTime tm_c("class unloading", print_phases(), true, &_gc_timer);
2175 
2176   // This is the point where the entire marking should have completed.
2177   assert(cm->marking_stacks_empty(), "Marking should have completed");
2178 
2179   // Follow system dictionary roots and unload classes.
2180   bool purged_class = SystemDictionary::do_unloading(is_alive_closure());
2181 
2182   // Unload nmethods.
2183   CodeCache::do_unloading(is_alive_closure(), purged_class);
2184 
2185   // Prune dead klasses from subklass/sibling/implementor lists.
2186   Klass::clean_weak_klass_links(is_alive_closure());
2187 
2188   // Delete entries for dead interned strings.
2189   StringTable::unlink(is_alive_closure());
2190 
2191   // Clean up unreferenced symbols in symbol table.
2192   SymbolTable::unlink();
2193   _gc_tracer.report_object_count_after_gc(is_alive_closure());
2194 }
2195 
2196 // This should be moved to the shared markSweep code!
2197 class PSAlwaysTrueClosure: public BoolObjectClosure {
2198 public:
2199   bool do_object_b(oop p) { return true; }
2200 };
2201 static PSAlwaysTrueClosure always_true;
2202 
2203 void PSParallelCompact::adjust_roots() {
2204   // Adjust the pointers to reflect the new locations
2205   GCTraceTime tm("adjust roots", print_phases(), true, &_gc_timer);
2206 
2207   // Need new claim bits when tracing through and adjusting pointers.
2208   ClassLoaderDataGraph::clear_claimed_marks();
2209 
2210   // General strong roots.
2211   Universe::oops_do(adjust_pointer_closure());
2212   JNIHandles::oops_do(adjust_pointer_closure());   // Global (strong) JNI handles
2213   CLDToOopClosure adjust_from_cld(adjust_pointer_closure());
2214   Threads::oops_do(adjust_pointer_closure(), &adjust_from_cld, NULL);
2215   ObjectSynchronizer::oops_do(adjust_pointer_closure());
2216   FlatProfiler::oops_do(adjust_pointer_closure());
2217   Management::oops_do(adjust_pointer_closure());
2218   JvmtiExport::oops_do(adjust_pointer_closure());
2219   SystemDictionary::oops_do(adjust_pointer_closure());
2220   ClassLoaderDataGraph::oops_do(adjust_pointer_closure(), adjust_klass_closure(), true);
2221 
2222   // Now adjust pointers in remaining weak roots.  (All of which should
2223   // have been cleared if they pointed to non-surviving objects.)
2224   // Global (weak) JNI handles
2225   JNIHandles::weak_oops_do(&always_true, adjust_pointer_closure());
2226 
2227   CodeBlobToOopClosure adjust_from_blobs(adjust_pointer_closure(), CodeBlobToOopClosure::FixRelocations);
2228   CodeCache::blobs_do(&adjust_from_blobs);
2229   StringTable::oops_do(adjust_pointer_closure());
2230   ref_processor()->weak_oops_do(adjust_pointer_closure());
2231   // Roots were visited so references into the young gen in roots
2232   // may have been scanned.  Process them also.
2233   // Should the reference processor have a span that excludes
2234   // young gen objects?
2235   PSScavenge::reference_processor()->weak_oops_do(adjust_pointer_closure());
2236 }
2237 
2238 void PSParallelCompact::enqueue_region_draining_tasks(GCTaskQueue* q,
2239                                                       uint parallel_gc_threads)
2240 {
2241   GCTraceTime tm("drain task setup", print_phases(), true, &_gc_timer);
2242 
2243   // Find the threads that are active
2244   unsigned int which = 0;
2245 
2246   const uint task_count = MAX2(parallel_gc_threads, 1U);
2247   for (uint j = 0; j < task_count; j++) {
2248     q->enqueue(new DrainStacksCompactionTask(j));
2249     ParCompactionManager::verify_region_list_empty(j);
2250     // Set the region stacks variables to "no" region stack values
2251     // so that they will be recognized and needing a region stack
2252     // in the stealing tasks if they do not get one by executing
2253     // a draining stack.
2254     ParCompactionManager* cm = ParCompactionManager::manager_array(j);
2255     cm->set_region_stack(NULL);
2256     cm->set_region_stack_index((uint)max_uintx);
2257   }
2258   ParCompactionManager::reset_recycled_stack_index();
2259 
2260   // Find all regions that are available (can be filled immediately) and
2261   // distribute them to the thread stacks.  The iteration is done in reverse
2262   // order (high to low) so the regions will be removed in ascending order.
2263 
2264   const ParallelCompactData& sd = PSParallelCompact::summary_data();
2265 
2266   size_t fillable_regions = 0;   // A count for diagnostic purposes.
2267   // A region index which corresponds to the tasks created above.
2268   // "which" must be 0 <= which < task_count
2269 
2270   which = 0;
2271   // id + 1 is used to test termination so unsigned  can
2272   // be used with an old_space_id == 0.
2273   for (unsigned int id = to_space_id; id + 1 > old_space_id; --id) {
2274     SpaceInfo* const space_info = _space_info + id;
2275     MutableSpace* const space = space_info->space();
2276     HeapWord* const new_top = space_info->new_top();
2277 
2278     const size_t beg_region = sd.addr_to_region_idx(space_info->dense_prefix());
2279     const size_t end_region =
2280       sd.addr_to_region_idx(sd.region_align_up(new_top));
2281 
2282     for (size_t cur = end_region - 1; cur + 1 > beg_region; --cur) {
2283       if (sd.region(cur)->claim_unsafe()) {
2284         ParCompactionManager::region_list_push(which, cur);
2285 
2286         if (TraceParallelOldGCCompactionPhase && Verbose) {
2287           const size_t count_mod_8 = fillable_regions & 7;
2288           if (count_mod_8 == 0) gclog_or_tty->print("fillable: ");
2289           gclog_or_tty->print(" " SIZE_FORMAT_W(7), cur);
2290           if (count_mod_8 == 7) gclog_or_tty->cr();
2291         }
2292 
2293         NOT_PRODUCT(++fillable_regions;)
2294 
2295         // Assign regions to tasks in round-robin fashion.
2296         if (++which == task_count) {
2297           assert(which <= parallel_gc_threads,
2298             "Inconsistent number of workers");
2299           which = 0;
2300         }
2301       }
2302     }
2303   }
2304 
2305   if (TraceParallelOldGCCompactionPhase) {
2306     if (Verbose && (fillable_regions & 7) != 0) gclog_or_tty->cr();
2307     gclog_or_tty->print_cr(SIZE_FORMAT " initially fillable regions", fillable_regions);
2308   }
2309 }
2310 
2311 #define PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING 4
2312 
2313 void PSParallelCompact::enqueue_dense_prefix_tasks(GCTaskQueue* q,
2314                                                     uint parallel_gc_threads) {
2315   GCTraceTime tm("dense prefix task setup", print_phases(), true, &_gc_timer);
2316 
2317   ParallelCompactData& sd = PSParallelCompact::summary_data();
2318 
2319   // Iterate over all the spaces adding tasks for updating
2320   // regions in the dense prefix.  Assume that 1 gc thread
2321   // will work on opening the gaps and the remaining gc threads
2322   // will work on the dense prefix.
2323   unsigned int space_id;
2324   for (space_id = old_space_id; space_id < last_space_id; ++ space_id) {
2325     HeapWord* const dense_prefix_end = _space_info[space_id].dense_prefix();
2326     const MutableSpace* const space = _space_info[space_id].space();
2327 
2328     if (dense_prefix_end == space->bottom()) {
2329       // There is no dense prefix for this space.
2330       continue;
2331     }
2332 
2333     // The dense prefix is before this region.
2334     size_t region_index_end_dense_prefix =
2335         sd.addr_to_region_idx(dense_prefix_end);
2336     RegionData* const dense_prefix_cp =
2337       sd.region(region_index_end_dense_prefix);
2338     assert(dense_prefix_end == space->end() ||
2339            dense_prefix_cp->available() ||
2340            dense_prefix_cp->claimed(),
2341            "The region after the dense prefix should always be ready to fill");
2342 
2343     size_t region_index_start = sd.addr_to_region_idx(space->bottom());
2344 
2345     // Is there dense prefix work?
2346     size_t total_dense_prefix_regions =
2347       region_index_end_dense_prefix - region_index_start;
2348     // How many regions of the dense prefix should be given to
2349     // each thread?
2350     if (total_dense_prefix_regions > 0) {
2351       uint tasks_for_dense_prefix = 1;
2352       if (total_dense_prefix_regions <=
2353           (parallel_gc_threads * PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING)) {
2354         // Don't over partition.  This assumes that
2355         // PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING is a small integer value
2356         // so there are not many regions to process.
2357         tasks_for_dense_prefix = parallel_gc_threads;
2358       } else {
2359         // Over partition
2360         tasks_for_dense_prefix = parallel_gc_threads *
2361           PAR_OLD_DENSE_PREFIX_OVER_PARTITIONING;
2362       }
2363       size_t regions_per_thread = total_dense_prefix_regions /
2364         tasks_for_dense_prefix;
2365       // Give each thread at least 1 region.
2366       if (regions_per_thread == 0) {
2367         regions_per_thread = 1;
2368       }
2369 
2370       for (uint k = 0; k < tasks_for_dense_prefix; k++) {
2371         if (region_index_start >= region_index_end_dense_prefix) {
2372           break;
2373         }
2374         // region_index_end is not processed
2375         size_t region_index_end = MIN2(region_index_start + regions_per_thread,
2376                                        region_index_end_dense_prefix);
2377         q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2378                                              region_index_start,
2379                                              region_index_end));
2380         region_index_start = region_index_end;
2381       }
2382     }
2383     // This gets any part of the dense prefix that did not
2384     // fit evenly.
2385     if (region_index_start < region_index_end_dense_prefix) {
2386       q->enqueue(new UpdateDensePrefixTask(SpaceId(space_id),
2387                                            region_index_start,
2388                                            region_index_end_dense_prefix));
2389     }
2390   }
2391 }
2392 
2393 void PSParallelCompact::enqueue_region_stealing_tasks(
2394                                      GCTaskQueue* q,
2395                                      ParallelTaskTerminator* terminator_ptr,
2396                                      uint parallel_gc_threads) {
2397   GCTraceTime tm("steal task setup", print_phases(), true, &_gc_timer);
2398 
2399   // Once a thread has drained it's stack, it should try to steal regions from
2400   // other threads.
2401   if (parallel_gc_threads > 1) {
2402     for (uint j = 0; j < parallel_gc_threads; j++) {
2403       q->enqueue(new StealRegionCompactionTask(terminator_ptr));
2404     }
2405   }
2406 }
2407 
2408 #ifdef ASSERT
2409 // Write a histogram of the number of times the block table was filled for a
2410 // region.
2411 void PSParallelCompact::write_block_fill_histogram(outputStream* const out)
2412 {
2413   if (!TraceParallelOldGCCompactionPhase) return;
2414 
2415   typedef ParallelCompactData::RegionData rd_t;
2416   ParallelCompactData& sd = summary_data();
2417 
2418   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2419     MutableSpace* const spc = _space_info[id].space();
2420     if (spc->bottom() != spc->top()) {
2421       const rd_t* const beg = sd.addr_to_region_ptr(spc->bottom());
2422       HeapWord* const top_aligned_up = sd.region_align_up(spc->top());
2423       const rd_t* const end = sd.addr_to_region_ptr(top_aligned_up);
2424 
2425       size_t histo[5] = { 0, 0, 0, 0, 0 };
2426       const size_t histo_len = sizeof(histo) / sizeof(size_t);
2427       const size_t region_cnt = pointer_delta(end, beg, sizeof(rd_t));
2428 
2429       for (const rd_t* cur = beg; cur < end; ++cur) {
2430         ++histo[MIN2(cur->blocks_filled_count(), histo_len - 1)];
2431       }
2432       out->print("%u %-4s" SIZE_FORMAT_W(5), id, space_names[id], region_cnt);
2433       for (size_t i = 0; i < histo_len; ++i) {
2434         out->print(" " SIZE_FORMAT_W(5) " %5.1f%%",
2435                    histo[i], 100.0 * histo[i] / region_cnt);
2436       }
2437       out->cr();
2438     }
2439   }
2440 }
2441 #endif // #ifdef ASSERT
2442 
2443 void PSParallelCompact::compact() {
2444   // trace("5");
2445   GCTraceTime tm("compaction phase", print_phases(), true, &_gc_timer);
2446 
2447   ParallelScavengeHeap* heap = ParallelScavengeHeap::heap();
2448   PSOldGen* old_gen = heap->old_gen();
2449   old_gen->start_array()->reset();
2450   uint parallel_gc_threads = heap->gc_task_manager()->workers();
2451   uint active_gc_threads = heap->gc_task_manager()->active_workers();
2452   TaskQueueSetSuper* qset = ParCompactionManager::region_array();
2453   ParallelTaskTerminator terminator(active_gc_threads, qset);
2454 
2455   GCTaskQueue* q = GCTaskQueue::create();
2456   enqueue_region_draining_tasks(q, active_gc_threads);
2457   enqueue_dense_prefix_tasks(q, active_gc_threads);
2458   enqueue_region_stealing_tasks(q, &terminator, active_gc_threads);
2459 
2460   {
2461     GCTraceTime tm_pc("par compact", print_phases(), true, &_gc_timer);
2462 
2463     gc_task_manager()->execute_and_wait(q);
2464 
2465 #ifdef  ASSERT
2466     // Verify that all regions have been processed before the deferred updates.
2467     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2468       verify_complete(SpaceId(id));
2469     }
2470 #endif
2471   }
2472 
2473   {
2474     // Update the deferred objects, if any.  Any compaction manager can be used.
2475     GCTraceTime tm_du("deferred updates", print_phases(), true, &_gc_timer);
2476     ParCompactionManager* cm = ParCompactionManager::manager_array(0);
2477     for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2478       update_deferred_objects(cm, SpaceId(id));
2479     }
2480   }
2481 
2482   DEBUG_ONLY(write_block_fill_histogram(gclog_or_tty));
2483 }
2484 
2485 #ifdef  ASSERT
2486 void PSParallelCompact::verify_complete(SpaceId space_id) {
2487   // All Regions between space bottom() to new_top() should be marked as filled
2488   // and all Regions between new_top() and top() should be available (i.e.,
2489   // should have been emptied).
2490   ParallelCompactData& sd = summary_data();
2491   SpaceInfo si = _space_info[space_id];
2492   HeapWord* new_top_addr = sd.region_align_up(si.new_top());
2493   HeapWord* old_top_addr = sd.region_align_up(si.space()->top());
2494   const size_t beg_region = sd.addr_to_region_idx(si.space()->bottom());
2495   const size_t new_top_region = sd.addr_to_region_idx(new_top_addr);
2496   const size_t old_top_region = sd.addr_to_region_idx(old_top_addr);
2497 
2498   bool issued_a_warning = false;
2499 
2500   size_t cur_region;
2501   for (cur_region = beg_region; cur_region < new_top_region; ++cur_region) {
2502     const RegionData* const c = sd.region(cur_region);
2503     if (!c->completed()) {
2504       warning("region " SIZE_FORMAT " not filled:  "
2505               "destination_count=%u",
2506               cur_region, c->destination_count());
2507       issued_a_warning = true;
2508     }
2509   }
2510 
2511   for (cur_region = new_top_region; cur_region < old_top_region; ++cur_region) {
2512     const RegionData* const c = sd.region(cur_region);
2513     if (!c->available()) {
2514       warning("region " SIZE_FORMAT " not empty:   "
2515               "destination_count=%u",
2516               cur_region, c->destination_count());
2517       issued_a_warning = true;
2518     }
2519   }
2520 
2521   if (issued_a_warning) {
2522     print_region_ranges();
2523   }
2524 }
2525 #endif  // #ifdef ASSERT
2526 
2527 inline void UpdateOnlyClosure::do_addr(HeapWord* addr) {
2528   _start_array->allocate_block(addr);
2529   compaction_manager()->update_contents(oop(addr));
2530 }
2531 
2532 // Update interior oops in the ranges of regions [beg_region, end_region).
2533 void
2534 PSParallelCompact::update_and_deadwood_in_dense_prefix(ParCompactionManager* cm,
2535                                                        SpaceId space_id,
2536                                                        size_t beg_region,
2537                                                        size_t end_region) {
2538   ParallelCompactData& sd = summary_data();
2539   ParMarkBitMap* const mbm = mark_bitmap();
2540 
2541   HeapWord* beg_addr = sd.region_to_addr(beg_region);
2542   HeapWord* const end_addr = sd.region_to_addr(end_region);
2543   assert(beg_region <= end_region, "bad region range");
2544   assert(end_addr <= dense_prefix(space_id), "not in the dense prefix");
2545 
2546 #ifdef  ASSERT
2547   // Claim the regions to avoid triggering an assert when they are marked as
2548   // filled.
2549   for (size_t claim_region = beg_region; claim_region < end_region; ++claim_region) {
2550     assert(sd.region(claim_region)->claim_unsafe(), "claim() failed");
2551   }
2552 #endif  // #ifdef ASSERT
2553 
2554   if (beg_addr != space(space_id)->bottom()) {
2555     // Find the first live object or block of dead space that *starts* in this
2556     // range of regions.  If a partial object crosses onto the region, skip it;
2557     // it will be marked for 'deferred update' when the object head is
2558     // processed.  If dead space crosses onto the region, it is also skipped; it
2559     // will be filled when the prior region is processed.  If neither of those
2560     // apply, the first word in the region is the start of a live object or dead
2561     // space.
2562     assert(beg_addr > space(space_id)->bottom(), "sanity");
2563     const RegionData* const cp = sd.region(beg_region);
2564     if (cp->partial_obj_size() != 0) {
2565       beg_addr = sd.partial_obj_end(beg_region);
2566     } else if (dead_space_crosses_boundary(cp, mbm->addr_to_bit(beg_addr))) {
2567       beg_addr = mbm->find_obj_beg(beg_addr, end_addr);
2568     }
2569   }
2570 
2571   if (beg_addr < end_addr) {
2572     // A live object or block of dead space starts in this range of Regions.
2573      HeapWord* const dense_prefix_end = dense_prefix(space_id);
2574 
2575     // Create closures and iterate.
2576     UpdateOnlyClosure update_closure(mbm, cm, space_id);
2577     FillClosure fill_closure(cm, space_id);
2578     ParMarkBitMap::IterationStatus status;
2579     status = mbm->iterate(&update_closure, &fill_closure, beg_addr, end_addr,
2580                           dense_prefix_end);
2581     if (status == ParMarkBitMap::incomplete) {
2582       update_closure.do_addr(update_closure.source());
2583     }
2584   }
2585 
2586   // Mark the regions as filled.
2587   RegionData* const beg_cp = sd.region(beg_region);
2588   RegionData* const end_cp = sd.region(end_region);
2589   for (RegionData* cp = beg_cp; cp < end_cp; ++cp) {
2590     cp->set_completed();
2591   }
2592 }
2593 
2594 // Return the SpaceId for the space containing addr.  If addr is not in the
2595 // heap, last_space_id is returned.  In debug mode it expects the address to be
2596 // in the heap and asserts such.
2597 PSParallelCompact::SpaceId PSParallelCompact::space_id(HeapWord* addr) {
2598   assert(ParallelScavengeHeap::heap()->is_in_reserved(addr), "addr not in the heap");
2599 
2600   for (unsigned int id = old_space_id; id < last_space_id; ++id) {
2601     if (_space_info[id].space()->contains(addr)) {
2602       return SpaceId(id);
2603     }
2604   }
2605 
2606   assert(false, "no space contains the addr");
2607   return last_space_id;
2608 }
2609 
2610 void PSParallelCompact::update_deferred_objects(ParCompactionManager* cm,
2611                                                 SpaceId id) {
2612   assert(id < last_space_id, "bad space id");
2613 
2614   ParallelCompactData& sd = summary_data();
2615   const SpaceInfo* const space_info = _space_info + id;
2616   ObjectStartArray* const start_array = space_info->start_array();
2617 
2618   const MutableSpace* const space = space_info->space();
2619   assert(space_info->dense_prefix() >= space->bottom(), "dense_prefix not set");
2620   HeapWord* const beg_addr = space_info->dense_prefix();
2621   HeapWord* const end_addr = sd.region_align_up(space_info->new_top());
2622 
2623   const RegionData* const beg_region = sd.addr_to_region_ptr(beg_addr);
2624   const RegionData* const end_region = sd.addr_to_region_ptr(end_addr);
2625   const RegionData* cur_region;
2626   for (cur_region = beg_region; cur_region < end_region; ++cur_region) {
2627     HeapWord* const addr = cur_region->deferred_obj_addr();
2628     if (addr != NULL) {
2629       if (start_array != NULL) {
2630         start_array->allocate_block(addr);
2631       }
2632       cm->update_contents(oop(addr));
2633       assert(oop(addr)->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(oop(addr)));
2634     }
2635   }
2636 }
2637 
2638 // Skip over count live words starting from beg, and return the address of the
2639 // next live word.  Unless marked, the word corresponding to beg is assumed to
2640 // be dead.  Callers must either ensure beg does not correspond to the middle of
2641 // an object, or account for those live words in some other way.  Callers must
2642 // also ensure that there are enough live words in the range [beg, end) to skip.
2643 HeapWord*
2644 PSParallelCompact::skip_live_words(HeapWord* beg, HeapWord* end, size_t count)
2645 {
2646   assert(count > 0, "sanity");
2647 
2648   ParMarkBitMap* m = mark_bitmap();
2649   idx_t bits_to_skip = m->words_to_bits(count);
2650   idx_t cur_beg = m->addr_to_bit(beg);
2651   const idx_t search_end = BitMap::word_align_up(m->addr_to_bit(end));
2652 
2653   do {
2654     cur_beg = m->find_obj_beg(cur_beg, search_end);
2655     idx_t cur_end = m->find_obj_end(cur_beg, search_end);
2656     const size_t obj_bits = cur_end - cur_beg + 1;
2657     if (obj_bits > bits_to_skip) {
2658       return m->bit_to_addr(cur_beg + bits_to_skip);
2659     }
2660     bits_to_skip -= obj_bits;
2661     cur_beg = cur_end + 1;
2662   } while (bits_to_skip > 0);
2663 
2664   // Skipping the desired number of words landed just past the end of an object.
2665   // Find the start of the next object.
2666   cur_beg = m->find_obj_beg(cur_beg, search_end);
2667   assert(cur_beg < m->addr_to_bit(end), "not enough live words to skip");
2668   return m->bit_to_addr(cur_beg);
2669 }
2670 
2671 HeapWord* PSParallelCompact::first_src_addr(HeapWord* const dest_addr,
2672                                             SpaceId src_space_id,
2673                                             size_t src_region_idx)
2674 {
2675   assert(summary_data().is_region_aligned(dest_addr), "not aligned");
2676 
2677   const SplitInfo& split_info = _space_info[src_space_id].split_info();
2678   if (split_info.dest_region_addr() == dest_addr) {
2679     // The partial object ending at the split point contains the first word to
2680     // be copied to dest_addr.
2681     return split_info.first_src_addr();
2682   }
2683 
2684   const ParallelCompactData& sd = summary_data();
2685   ParMarkBitMap* const bitmap = mark_bitmap();
2686   const size_t RegionSize = ParallelCompactData::RegionSize;
2687 
2688   assert(sd.is_region_aligned(dest_addr), "not aligned");
2689   const RegionData* const src_region_ptr = sd.region(src_region_idx);
2690   const size_t partial_obj_size = src_region_ptr->partial_obj_size();
2691   HeapWord* const src_region_destination = src_region_ptr->destination();
2692 
2693   assert(dest_addr >= src_region_destination, "wrong src region");
2694   assert(src_region_ptr->data_size() > 0, "src region cannot be empty");
2695 
2696   HeapWord* const src_region_beg = sd.region_to_addr(src_region_idx);
2697   HeapWord* const src_region_end = src_region_beg + RegionSize;
2698 
2699   HeapWord* addr = src_region_beg;
2700   if (dest_addr == src_region_destination) {
2701     // Return the first live word in the source region.
2702     if (partial_obj_size == 0) {
2703       addr = bitmap->find_obj_beg(addr, src_region_end);
2704       assert(addr < src_region_end, "no objects start in src region");
2705     }
2706     return addr;
2707   }
2708 
2709   // Must skip some live data.
2710   size_t words_to_skip = dest_addr - src_region_destination;
2711   assert(src_region_ptr->data_size() > words_to_skip, "wrong src region");
2712 
2713   if (partial_obj_size >= words_to_skip) {
2714     // All the live words to skip are part of the partial object.
2715     addr += words_to_skip;
2716     if (partial_obj_size == words_to_skip) {
2717       // Find the first live word past the partial object.
2718       addr = bitmap->find_obj_beg(addr, src_region_end);
2719       assert(addr < src_region_end, "wrong src region");
2720     }
2721     return addr;
2722   }
2723 
2724   // Skip over the partial object (if any).
2725   if (partial_obj_size != 0) {
2726     words_to_skip -= partial_obj_size;
2727     addr += partial_obj_size;
2728   }
2729 
2730   // Skip over live words due to objects that start in the region.
2731   addr = skip_live_words(addr, src_region_end, words_to_skip);
2732   assert(addr < src_region_end, "wrong src region");
2733   return addr;
2734 }
2735 
2736 void PSParallelCompact::decrement_destination_counts(ParCompactionManager* cm,
2737                                                      SpaceId src_space_id,
2738                                                      size_t beg_region,
2739                                                      HeapWord* end_addr)
2740 {
2741   ParallelCompactData& sd = summary_data();
2742 
2743 #ifdef ASSERT
2744   MutableSpace* const src_space = _space_info[src_space_id].space();
2745   HeapWord* const beg_addr = sd.region_to_addr(beg_region);
2746   assert(src_space->contains(beg_addr) || beg_addr == src_space->end(),
2747          "src_space_id does not match beg_addr");
2748   assert(src_space->contains(end_addr) || end_addr == src_space->end(),
2749          "src_space_id does not match end_addr");
2750 #endif // #ifdef ASSERT
2751 
2752   RegionData* const beg = sd.region(beg_region);
2753   RegionData* const end = sd.addr_to_region_ptr(sd.region_align_up(end_addr));
2754 
2755   // Regions up to new_top() are enqueued if they become available.
2756   HeapWord* const new_top = _space_info[src_space_id].new_top();
2757   RegionData* const enqueue_end =
2758     sd.addr_to_region_ptr(sd.region_align_up(new_top));
2759 
2760   for (RegionData* cur = beg; cur < end; ++cur) {
2761     assert(cur->data_size() > 0, "region must have live data");
2762     cur->decrement_destination_count();
2763     if (cur < enqueue_end && cur->available() && cur->claim()) {
2764       cm->push_region(sd.region(cur));
2765     }
2766   }
2767 }
2768 
2769 size_t PSParallelCompact::next_src_region(MoveAndUpdateClosure& closure,
2770                                           SpaceId& src_space_id,
2771                                           HeapWord*& src_space_top,
2772                                           HeapWord* end_addr)
2773 {
2774   typedef ParallelCompactData::RegionData RegionData;
2775 
2776   ParallelCompactData& sd = PSParallelCompact::summary_data();
2777   const size_t region_size = ParallelCompactData::RegionSize;
2778 
2779   size_t src_region_idx = 0;
2780 
2781   // Skip empty regions (if any) up to the top of the space.
2782   HeapWord* const src_aligned_up = sd.region_align_up(end_addr);
2783   RegionData* src_region_ptr = sd.addr_to_region_ptr(src_aligned_up);
2784   HeapWord* const top_aligned_up = sd.region_align_up(src_space_top);
2785   const RegionData* const top_region_ptr =
2786     sd.addr_to_region_ptr(top_aligned_up);
2787   while (src_region_ptr < top_region_ptr && src_region_ptr->data_size() == 0) {
2788     ++src_region_ptr;
2789   }
2790 
2791   if (src_region_ptr < top_region_ptr) {
2792     // The next source region is in the current space.  Update src_region_idx
2793     // and the source address to match src_region_ptr.
2794     src_region_idx = sd.region(src_region_ptr);
2795     HeapWord* const src_region_addr = sd.region_to_addr(src_region_idx);
2796     if (src_region_addr > closure.source()) {
2797       closure.set_source(src_region_addr);
2798     }
2799     return src_region_idx;
2800   }
2801 
2802   // Switch to a new source space and find the first non-empty region.
2803   unsigned int space_id = src_space_id + 1;
2804   assert(space_id < last_space_id, "not enough spaces");
2805 
2806   HeapWord* const destination = closure.destination();
2807 
2808   do {
2809     MutableSpace* space = _space_info[space_id].space();
2810     HeapWord* const bottom = space->bottom();
2811     const RegionData* const bottom_cp = sd.addr_to_region_ptr(bottom);
2812 
2813     // Iterate over the spaces that do not compact into themselves.
2814     if (bottom_cp->destination() != bottom) {
2815       HeapWord* const top_aligned_up = sd.region_align_up(space->top());
2816       const RegionData* const top_cp = sd.addr_to_region_ptr(top_aligned_up);
2817 
2818       for (const RegionData* src_cp = bottom_cp; src_cp < top_cp; ++src_cp) {
2819         if (src_cp->live_obj_size() > 0) {
2820           // Found it.
2821           assert(src_cp->destination() == destination,
2822                  "first live obj in the space must match the destination");
2823           assert(src_cp->partial_obj_size() == 0,
2824                  "a space cannot begin with a partial obj");
2825 
2826           src_space_id = SpaceId(space_id);
2827           src_space_top = space->top();
2828           const size_t src_region_idx = sd.region(src_cp);
2829           closure.set_source(sd.region_to_addr(src_region_idx));
2830           return src_region_idx;
2831         } else {
2832           assert(src_cp->data_size() == 0, "sanity");
2833         }
2834       }
2835     }
2836   } while (++space_id < last_space_id);
2837 
2838   assert(false, "no source region was found");
2839   return 0;
2840 }
2841 
2842 void PSParallelCompact::fill_region(ParCompactionManager* cm, size_t region_idx)
2843 {
2844   typedef ParMarkBitMap::IterationStatus IterationStatus;
2845   const size_t RegionSize = ParallelCompactData::RegionSize;
2846   ParMarkBitMap* const bitmap = mark_bitmap();
2847   ParallelCompactData& sd = summary_data();
2848   RegionData* const region_ptr = sd.region(region_idx);
2849 
2850   // Get the items needed to construct the closure.
2851   HeapWord* dest_addr = sd.region_to_addr(region_idx);
2852   SpaceId dest_space_id = space_id(dest_addr);
2853   ObjectStartArray* start_array = _space_info[dest_space_id].start_array();
2854   HeapWord* new_top = _space_info[dest_space_id].new_top();
2855   assert(dest_addr < new_top, "sanity");
2856   const size_t words = MIN2(pointer_delta(new_top, dest_addr), RegionSize);
2857 
2858   // Get the source region and related info.
2859   size_t src_region_idx = region_ptr->source_region();
2860   SpaceId src_space_id = space_id(sd.region_to_addr(src_region_idx));
2861   HeapWord* src_space_top = _space_info[src_space_id].space()->top();
2862 
2863   MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
2864   closure.set_source(first_src_addr(dest_addr, src_space_id, src_region_idx));
2865 
2866   // Adjust src_region_idx to prepare for decrementing destination counts (the
2867   // destination count is not decremented when a region is copied to itself).
2868   if (src_region_idx == region_idx) {
2869     src_region_idx += 1;
2870   }
2871 
2872   if (bitmap->is_unmarked(closure.source())) {
2873     // The first source word is in the middle of an object; copy the remainder
2874     // of the object or as much as will fit.  The fact that pointer updates were
2875     // deferred will be noted when the object header is processed.
2876     HeapWord* const old_src_addr = closure.source();
2877     closure.copy_partial_obj();
2878     if (closure.is_full()) {
2879       decrement_destination_counts(cm, src_space_id, src_region_idx,
2880                                    closure.source());
2881       region_ptr->set_deferred_obj_addr(NULL);
2882       region_ptr->set_completed();
2883       return;
2884     }
2885 
2886     HeapWord* const end_addr = sd.region_align_down(closure.source());
2887     if (sd.region_align_down(old_src_addr) != end_addr) {
2888       // The partial object was copied from more than one source region.
2889       decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2890 
2891       // Move to the next source region, possibly switching spaces as well.  All
2892       // args except end_addr may be modified.
2893       src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2894                                        end_addr);
2895     }
2896   }
2897 
2898   do {
2899     HeapWord* const cur_addr = closure.source();
2900     HeapWord* const end_addr = MIN2(sd.region_align_up(cur_addr + 1),
2901                                     src_space_top);
2902     IterationStatus status = bitmap->iterate(&closure, cur_addr, end_addr);
2903 
2904     if (status == ParMarkBitMap::incomplete) {
2905       // The last obj that starts in the source region does not end in the
2906       // region.
2907       assert(closure.source() < end_addr, "sanity");
2908       HeapWord* const obj_beg = closure.source();
2909       HeapWord* const range_end = MIN2(obj_beg + closure.words_remaining(),
2910                                        src_space_top);
2911       HeapWord* const obj_end = bitmap->find_obj_end(obj_beg, range_end);
2912       if (obj_end < range_end) {
2913         // The end was found; the entire object will fit.
2914         status = closure.do_addr(obj_beg, bitmap->obj_size(obj_beg, obj_end));
2915         assert(status != ParMarkBitMap::would_overflow, "sanity");
2916       } else {
2917         // The end was not found; the object will not fit.
2918         assert(range_end < src_space_top, "obj cannot cross space boundary");
2919         status = ParMarkBitMap::would_overflow;
2920       }
2921     }
2922 
2923     if (status == ParMarkBitMap::would_overflow) {
2924       // The last object did not fit.  Note that interior oop updates were
2925       // deferred, then copy enough of the object to fill the region.
2926       region_ptr->set_deferred_obj_addr(closure.destination());
2927       status = closure.copy_until_full(); // copies from closure.source()
2928 
2929       decrement_destination_counts(cm, src_space_id, src_region_idx,
2930                                    closure.source());
2931       region_ptr->set_completed();
2932       return;
2933     }
2934 
2935     if (status == ParMarkBitMap::full) {
2936       decrement_destination_counts(cm, src_space_id, src_region_idx,
2937                                    closure.source());
2938       region_ptr->set_deferred_obj_addr(NULL);
2939       region_ptr->set_completed();
2940       return;
2941     }
2942 
2943     decrement_destination_counts(cm, src_space_id, src_region_idx, end_addr);
2944 
2945     // Move to the next source region, possibly switching spaces as well.  All
2946     // args except end_addr may be modified.
2947     src_region_idx = next_src_region(closure, src_space_id, src_space_top,
2948                                      end_addr);
2949   } while (true);
2950 }
2951 
2952 void PSParallelCompact::fill_blocks(size_t region_idx)
2953 {
2954   // Fill in the block table elements for the specified region.  Each block
2955   // table element holds the number of live words in the region that are to the
2956   // left of the first object that starts in the block.  Thus only blocks in
2957   // which an object starts need to be filled.
2958   //
2959   // The algorithm scans the section of the bitmap that corresponds to the
2960   // region, keeping a running total of the live words.  When an object start is
2961   // found, if it's the first to start in the block that contains it, the
2962   // current total is written to the block table element.
2963   const size_t Log2BlockSize = ParallelCompactData::Log2BlockSize;
2964   const size_t Log2RegionSize = ParallelCompactData::Log2RegionSize;
2965   const size_t RegionSize = ParallelCompactData::RegionSize;
2966 
2967   ParallelCompactData& sd = summary_data();
2968   const size_t partial_obj_size = sd.region(region_idx)->partial_obj_size();
2969   if (partial_obj_size >= RegionSize) {
2970     return; // No objects start in this region.
2971   }
2972 
2973   // Ensure the first loop iteration decides that the block has changed.
2974   size_t cur_block = sd.block_count();
2975 
2976   const ParMarkBitMap* const bitmap = mark_bitmap();
2977 
2978   const size_t Log2BitsPerBlock = Log2BlockSize - LogMinObjAlignment;
2979   assert((size_t)1 << Log2BitsPerBlock ==
2980          bitmap->words_to_bits(ParallelCompactData::BlockSize), "sanity");
2981 
2982   size_t beg_bit = bitmap->words_to_bits(region_idx << Log2RegionSize);
2983   const size_t range_end = beg_bit + bitmap->words_to_bits(RegionSize);
2984   size_t live_bits = bitmap->words_to_bits(partial_obj_size);
2985   beg_bit = bitmap->find_obj_beg(beg_bit + live_bits, range_end);
2986   while (beg_bit < range_end) {
2987     const size_t new_block = beg_bit >> Log2BitsPerBlock;
2988     if (new_block != cur_block) {
2989       cur_block = new_block;
2990       sd.block(cur_block)->set_offset(bitmap->bits_to_words(live_bits));
2991     }
2992 
2993     const size_t end_bit = bitmap->find_obj_end(beg_bit, range_end);
2994     if (end_bit < range_end - 1) {
2995       live_bits += end_bit - beg_bit + 1;
2996       beg_bit = bitmap->find_obj_beg(end_bit + 1, range_end);
2997     } else {
2998       return;
2999     }
3000   }
3001 }
3002 
3003 void
3004 PSParallelCompact::move_and_update(ParCompactionManager* cm, SpaceId space_id) {
3005   const MutableSpace* sp = space(space_id);
3006   if (sp->is_empty()) {
3007     return;
3008   }
3009 
3010   ParallelCompactData& sd = PSParallelCompact::summary_data();
3011   ParMarkBitMap* const bitmap = mark_bitmap();
3012   HeapWord* const dp_addr = dense_prefix(space_id);
3013   HeapWord* beg_addr = sp->bottom();
3014   HeapWord* end_addr = sp->top();
3015 
3016   assert(beg_addr <= dp_addr && dp_addr <= end_addr, "bad dense prefix");
3017 
3018   const size_t beg_region = sd.addr_to_region_idx(beg_addr);
3019   const size_t dp_region = sd.addr_to_region_idx(dp_addr);
3020   if (beg_region < dp_region) {
3021     update_and_deadwood_in_dense_prefix(cm, space_id, beg_region, dp_region);
3022   }
3023 
3024   // The destination of the first live object that starts in the region is one
3025   // past the end of the partial object entering the region (if any).
3026   HeapWord* const dest_addr = sd.partial_obj_end(dp_region);
3027   HeapWord* const new_top = _space_info[space_id].new_top();
3028   assert(new_top >= dest_addr, "bad new_top value");
3029   const size_t words = pointer_delta(new_top, dest_addr);
3030 
3031   if (words > 0) {
3032     ObjectStartArray* start_array = _space_info[space_id].start_array();
3033     MoveAndUpdateClosure closure(bitmap, cm, start_array, dest_addr, words);
3034 
3035     ParMarkBitMap::IterationStatus status;
3036     status = bitmap->iterate(&closure, dest_addr, end_addr);
3037     assert(status == ParMarkBitMap::full, "iteration not complete");
3038     assert(bitmap->find_obj_beg(closure.source(), end_addr) == end_addr,
3039            "live objects skipped because closure is full");
3040   }
3041 }
3042 
3043 jlong PSParallelCompact::millis_since_last_gc() {
3044   // We need a monotonically non-decreasing time in ms but
3045   // os::javaTimeMillis() does not guarantee monotonicity.
3046   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3047   jlong ret_val = now - _time_of_last_gc;
3048   // XXX See note in genCollectedHeap::millis_since_last_gc().
3049   if (ret_val < 0) {
3050     NOT_PRODUCT(warning("time warp: " JLONG_FORMAT, ret_val);)
3051     return 0;
3052   }
3053   return ret_val;
3054 }
3055 
3056 void PSParallelCompact::reset_millis_since_last_gc() {
3057   // We need a monotonically non-decreasing time in ms but
3058   // os::javaTimeMillis() does not guarantee monotonicity.
3059   _time_of_last_gc = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
3060 }
3061 
3062 ParMarkBitMap::IterationStatus MoveAndUpdateClosure::copy_until_full()
3063 {
3064   if (source() != destination()) {
3065     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3066     Copy::aligned_conjoint_words(source(), destination(), words_remaining());
3067   }
3068   update_state(words_remaining());
3069   assert(is_full(), "sanity");
3070   return ParMarkBitMap::full;
3071 }
3072 
3073 void MoveAndUpdateClosure::copy_partial_obj()
3074 {
3075   size_t words = words_remaining();
3076 
3077   HeapWord* const range_end = MIN2(source() + words, bitmap()->region_end());
3078   HeapWord* const end_addr = bitmap()->find_obj_end(source(), range_end);
3079   if (end_addr < range_end) {
3080     words = bitmap()->obj_size(source(), end_addr);
3081   }
3082 
3083   // This test is necessary; if omitted, the pointer updates to a partial object
3084   // that crosses the dense prefix boundary could be overwritten.
3085   if (source() != destination()) {
3086     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3087     Copy::aligned_conjoint_words(source(), destination(), words);
3088   }
3089   update_state(words);
3090 }
3091 
3092 void InstanceKlass::oop_pc_update_pointers(oop obj) {
3093   oop_oop_iterate_oop_maps<true>(obj, PSParallelCompact::adjust_pointer_closure());
3094 }
3095 
3096 void InstanceMirrorKlass::oop_pc_update_pointers(oop obj) {
3097   InstanceKlass::oop_pc_update_pointers(obj);
3098 
3099   oop_oop_iterate_statics<true>(obj, PSParallelCompact::adjust_pointer_closure());
3100 }
3101 
3102 void InstanceClassLoaderKlass::oop_pc_update_pointers(oop obj) {
3103   InstanceKlass::oop_pc_update_pointers(obj);
3104 }
3105 
3106 #ifdef ASSERT
3107 template <class T> static void trace_reference_gc(const char *s, oop obj,
3108                                                   bool is_ephemeron,
3109                                                   T* referent_addr,
3110                                                   T* next_addr,
3111                                                   T* discovered_addr,
3112                                                   T* value_addr) {
3113   if(TraceReferenceGC && PrintGCDetails) {
3114     gclog_or_tty->print_cr("%s obj " PTR_FORMAT, s, p2i(obj));
3115     gclog_or_tty->print_cr("     referent_addr/* " PTR_FORMAT " / "
3116                            PTR_FORMAT, p2i(referent_addr),
3117                            referent_addr ? p2i(oopDesc::load_decode_heap_oop(referent_addr)) : NULL);
3118     gclog_or_tty->print_cr("     next_addr/* " PTR_FORMAT " / "
3119                            PTR_FORMAT, p2i(next_addr),
3120                            next_addr ? p2i(oopDesc::load_decode_heap_oop(next_addr)) : NULL);
3121     gclog_or_tty->print_cr("     discovered_addr/* " PTR_FORMAT " / "
3122                            PTR_FORMAT, p2i(discovered_addr),
3123                            discovered_addr ? p2i(oopDesc::load_decode_heap_oop(discovered_addr)) : NULL);
3124     if (is_ephemeron) {
3125       gclog_or_tty->print_cr("     value_addr/* " PTR_FORMAT " / "
3126                              PTR_FORMAT, p2i(value_addr),
3127                              value_addr ? p2i(oopDesc::load_decode_heap_oop(value_addr)) : NULL);
3128     }
3129   }
3130 }
3131 #endif
3132 
3133 template <class T>
3134 static void oop_pc_update_pointers_specialized(oop obj, InstanceRefKlass* klass) {
3135   T* referent_addr = (T*)java_lang_ref_Reference::referent_addr(obj);
3136   PSParallelCompact::adjust_pointer(referent_addr);
3137   T* next_addr = (T*)java_lang_ref_Reference::next_addr(obj);
3138   PSParallelCompact::adjust_pointer(next_addr);
3139   T* discovered_addr = (T*)java_lang_ref_Reference::discovered_addr(obj);
3140   PSParallelCompact::adjust_pointer(discovered_addr);
3141   if (klass->reference_type() == REF_EPHEMERON) {
3142     T* value_addr = (T*)java_lang_ref_Ephemeron::value_addr(obj);
3143     PSParallelCompact::adjust_pointer(value_addr);
3144     debug_only(trace_reference_gc("InstanceRefKlass<Ephemeron>::oop_update_ptrs", obj, true,
3145                                   referent_addr, next_addr, discovered_addr, value_addr);)
3146   } else {
3147     debug_only(trace_reference_gc("InstanceRefKlass::oop_update_ptrs", obj, false,
3148                                   referent_addr, next_addr, discovered_addr, (T*)NULL);)
3149   }
3150 }
3151 
3152 void InstanceRefKlass::oop_pc_update_pointers(oop obj) {
3153   InstanceKlass::oop_pc_update_pointers(obj);
3154 
3155   if (UseCompressedOops) {
3156     oop_pc_update_pointers_specialized<narrowOop>(obj, this);
3157   } else {
3158     oop_pc_update_pointers_specialized<oop>(obj, this);
3159   }
3160 }
3161 
3162 void ObjArrayKlass::oop_pc_update_pointers(oop obj) {
3163   assert(obj->is_objArray(), "obj must be obj array");
3164   oop_oop_iterate_elements<true>(objArrayOop(obj), PSParallelCompact::adjust_pointer_closure());
3165 }
3166 
3167 void TypeArrayKlass::oop_pc_update_pointers(oop obj) {
3168   assert(obj->is_typeArray(),"must be a type array");
3169 }
3170 
3171 ParMarkBitMapClosure::IterationStatus
3172 MoveAndUpdateClosure::do_addr(HeapWord* addr, size_t words) {
3173   assert(destination() != NULL, "sanity");
3174   assert(bitmap()->obj_size(addr) == words, "bad size");
3175 
3176   _source = addr;
3177   assert(PSParallelCompact::summary_data().calc_new_pointer(source()) ==
3178          destination(), "wrong destination");
3179 
3180   if (words > words_remaining()) {
3181     return ParMarkBitMap::would_overflow;
3182   }
3183 
3184   // The start_array must be updated even if the object is not moving.
3185   if (_start_array != NULL) {
3186     _start_array->allocate_block(destination());
3187   }
3188 
3189   if (destination() != source()) {
3190     DEBUG_ONLY(PSParallelCompact::check_new_location(source(), destination());)
3191     Copy::aligned_conjoint_words(source(), destination(), words);
3192   }
3193 
3194   oop moved_oop = (oop) destination();
3195   compaction_manager()->update_contents(moved_oop);
3196   assert(moved_oop->is_oop_or_null(), "Expected an oop or NULL at " PTR_FORMAT, p2i(moved_oop));
3197 
3198   update_state(words);
3199   assert(destination() == (HeapWord*)moved_oop + moved_oop->size(), "sanity");
3200   return is_full() ? ParMarkBitMap::full : ParMarkBitMap::incomplete;
3201 }
3202 
3203 UpdateOnlyClosure::UpdateOnlyClosure(ParMarkBitMap* mbm,
3204                                      ParCompactionManager* cm,
3205                                      PSParallelCompact::SpaceId space_id) :
3206   ParMarkBitMapClosure(mbm, cm),
3207   _space_id(space_id),
3208   _start_array(PSParallelCompact::start_array(space_id))
3209 {
3210 }
3211 
3212 // Updates the references in the object to their new values.
3213 ParMarkBitMapClosure::IterationStatus
3214 UpdateOnlyClosure::do_addr(HeapWord* addr, size_t words) {
3215   do_addr(addr);
3216   return ParMarkBitMap::incomplete;
3217 }