1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/gcTrace.hpp"
  29 #include "gc/shared/referencePolicy.hpp"
  30 #include "gc/shared/referenceProcessorStats.hpp"
  31 #include "memory/referenceType.hpp"
  32 #include "oops/instanceRefKlass.hpp"
  33 
  34 class GCTimer;
  35 
  36 // ReferenceProcessor class encapsulates the per-"collector" processing
  37 // of java.lang.Reference objects for GC. The interface is useful for supporting
  38 // a generational abstraction, in particular when there are multiple
  39 // generations that are being independently collected -- possibly
  40 // concurrently and/or incrementally.  Note, however, that the
  41 // ReferenceProcessor class abstracts away from a generational setting
  42 // by using only a heap interval (called "span" below), thus allowing
  43 // its use in a straightforward manner in a general, non-generational
  44 // setting.
  45 //
  46 // The basic idea is that each ReferenceProcessor object concerns
  47 // itself with ("weak") reference processing in a specific "span"
  48 // of the heap of interest to a specific collector. Currently,
  49 // the span is a convex interval of the heap, but, efficiency
  50 // apart, there seems to be no reason it couldn't be extended
  51 // (with appropriate modifications) to any "non-convex interval".
  52 
  53 // forward references
  54 class ReferencePolicy;
  55 class AbstractRefProcTaskExecutor;
  56 
  57 // List of discovered references.
  58 class DiscoveredList {
  59 public:
  60   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  61   oop head() const     {
  62      return UseCompressedOops ?  oopDesc::decode_heap_oop(_compressed_head) :
  63                                 _oop_head;
  64   }
  65   HeapWord* adr_head() {
  66     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  67                                (HeapWord*)&_oop_head;
  68   }
  69   void set_head(oop o) {
  70     if (UseCompressedOops) {
  71       // Must compress the head ptr.
  72       _compressed_head = oopDesc::encode_heap_oop(o);
  73     } else {
  74       _oop_head = o;
  75     }
  76   }
  77   bool   is_empty() const       { return head() == NULL; }
  78   size_t length()               { return _len; }
  79   void   set_length(size_t len) { _len = len;  }
  80   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  81   void   dec_length(size_t dec) { _len -= dec; }
  82 private:
  83   // Set value depending on UseCompressedOops. This could be a template class
  84   // but then we have to fix all the instantiations and declarations that use this class.
  85   oop       _oop_head;
  86   narrowOop _compressed_head;
  87   size_t _len;
  88 };
  89 
  90 // Iterator for the list of discovered references.
  91 class DiscoveredListIterator {
  92 private:
  93   DiscoveredList&    _refs_list;
  94   HeapWord*          _prev_next;
  95   oop                _prev;
  96   oop                _ref;
  97   HeapWord*          _discovered_addr;
  98   oop                _next;
  99   HeapWord*          _referent_addr;
 100   oop                _referent;
 101   OopClosure*        _keep_alive;
 102   BoolObjectClosure* _is_alive;
 103 
 104   DEBUG_ONLY(
 105   oop                _first_seen; // cyclic linked list check
 106   )
 107 
 108   NOT_PRODUCT(
 109   size_t             _processed;
 110   size_t             _removed;
 111   )
 112 
 113 public:
 114   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 115                                 OopClosure*        keep_alive,
 116                                 BoolObjectClosure* is_alive):
 117     _refs_list(refs_list),
 118     _prev_next(refs_list.adr_head()),
 119     _prev(NULL),
 120     _ref(refs_list.head()),
 121 #ifdef ASSERT
 122     _first_seen(refs_list.head()),
 123 #endif
 124 #ifndef PRODUCT
 125     _processed(0),
 126     _removed(0),
 127 #endif
 128     _next(NULL),
 129     _keep_alive(keep_alive),
 130     _is_alive(is_alive)
 131 { }
 132 
 133   // End Of List.
 134   inline bool has_next() const { return _ref != NULL; }
 135 
 136   // Get oop to the Reference object.
 137   inline oop obj() const { return _ref; }
 138 
 139   // Get oop to the referent object.
 140   inline oop referent() const { return _referent; }
 141 
 142   // Returns true if referent is alive.
 143   inline bool is_referent_alive() const {
 144     return _is_alive->do_object_b(_referent);
 145   }
 146 
 147   // Loads data for the current reference.
 148   // The "allow_null_referent" argument tells us to allow for the possibility
 149   // of a NULL referent in the discovered Reference object. This typically
 150   // happens in the case of concurrent collectors that may have done the
 151   // discovery concurrently, or interleaved, with mutator execution.
 152   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 153 
 154   // Move to the next discovered reference.
 155   inline void next() {
 156     _prev_next = _discovered_addr;
 157     _prev = _ref;
 158     move_to_next();
 159   }
 160 
 161   // Remove the current reference from the list
 162   void remove();
 163 
 164   // Make the referent alive.
 165   inline void make_referent_alive() {
 166     if (UseCompressedOops) {
 167       _keep_alive->do_oop((narrowOop*)_referent_addr);
 168     } else {
 169       _keep_alive->do_oop((oop*)_referent_addr);
 170     }
 171   }
 172 
 173   // NULL out referent pointer.
 174   void clear_referent();
 175 
 176   // Statistics
 177   NOT_PRODUCT(
 178   inline size_t processed() const { return _processed; }
 179   inline size_t removed() const   { return _removed; }
 180   )
 181 
 182   inline void move_to_next() {
 183     if (_ref == _next) {
 184       // End of the list.
 185       _ref = NULL;
 186     } else {
 187       _ref = _next;
 188     }
 189     assert(_ref != _first_seen, "cyclic ref_list found");
 190     NOT_PRODUCT(_processed++);
 191   }
 192 };
 193 
 194 class ReferenceProcessor : public CHeapObj<mtGC> {
 195 
 196  private:
 197   size_t total_count(DiscoveredList lists[]);
 198 
 199  protected:
 200   // The SoftReference master timestamp clock
 201   static jlong _soft_ref_timestamp_clock;
 202 
 203   MemRegion   _span;                    // (right-open) interval of heap
 204                                         // subject to wkref discovery
 205 
 206   bool        _discovering_refs;        // true when discovery enabled
 207   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 208                                         // other collectors in configuration
 209   bool        _discovery_is_mt;         // true if reference discovery is MT.
 210 
 211   bool        _enqueuing_is_done;       // true if all weak references enqueued
 212   bool        _processing_is_mt;        // true during phases when
 213                                         // reference processing is MT.
 214   uint        _next_id;                 // round-robin mod _num_q counter in
 215                                         // support of work distribution
 216 
 217   // For collectors that do not keep GC liveness information
 218   // in the object header, this field holds a closure that
 219   // helps the reference processor determine the reachability
 220   // of an oop. It is currently initialized to NULL for all
 221   // collectors except for CMS and G1.
 222   BoolObjectClosure* _is_alive_non_header;
 223 
 224   // Soft ref clearing policies
 225   // . the default policy
 226   static ReferencePolicy*   _default_soft_ref_policy;
 227   // . the "clear all" policy
 228   static ReferencePolicy*   _always_clear_soft_ref_policy;
 229   // . the current policy below is either one of the above
 230   ReferencePolicy*          _current_soft_ref_policy;
 231 
 232   // The discovered ref lists themselves
 233 
 234   // The active MT'ness degree of the queues below
 235   uint             _num_q;
 236   // The maximum MT'ness degree of the queues below
 237   uint             _max_num_q;
 238 
 239   // Master array of discovered oops
 240   DiscoveredList* _discovered_refs;
 241 
 242   // Arrays of lists of oops, one per thread (pointers into master array above)
 243   DiscoveredList* _discoveredSoftRefs;
 244   DiscoveredList* _discoveredWeakRefs;
 245   DiscoveredList* _discoveredEphemerons;
 246   DiscoveredList* _discoveredFinalRefs;
 247   DiscoveredList* _discoveredPhantomRefs;
 248   
 249  public:
 250   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 251 
 252   uint num_q()                             { return _num_q; }
 253   uint max_num_q()                         { return _max_num_q; }
 254   void set_active_mt_degree(uint v)        { _num_q = v; }
 255 
 256   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 257 
 258   ReferencePolicy* setup_policy(bool always_clear) {
 259     _current_soft_ref_policy = always_clear ?
 260       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 261     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 262     return _current_soft_ref_policy;
 263   }
 264 
 265   // Process references with a certain reachability level.
 266   void process_discovered_reflist(DiscoveredList               refs_lists[],
 267                                   ReferencePolicy*             policy,
 268                                   bool                         clear_referent,
 269                                   BoolObjectClosure*           is_alive,
 270                                   OopClosure*                  keep_alive,
 271                                   VoidClosure*                 complete_gc,
 272                                   AbstractRefProcTaskExecutor* task_executor);
 273 
 274   // Balance ephemerons queues if needed
 275   void balance_discovered_ephemerons(AbstractRefProcTaskExecutor* task_executor);
 276   
 277   // Process ephemerons, phase2
 278   void process_discovered_ephemerons_ph2(BoolObjectClosure*           is_alive,
 279                                          OopClosure*                  keep_alive,
 280                                          VoidClosure*                 complete_gc,
 281                                          AbstractRefProcTaskExecutor* task_executor);
 282 
 283   // Process ephemerons, phase3
 284   void process_discovered_ephemerons_ph3(BoolObjectClosure*           is_alive,
 285                                          OopClosure*                  keep_alive,
 286                                          VoidClosure*                 complete_gc,
 287                                          AbstractRefProcTaskExecutor* task_executor);
 288   
 289   void process_phaseJNI(BoolObjectClosure* is_alive,
 290                         OopClosure*        keep_alive,
 291                         VoidClosure*       complete_gc);
 292 
 293   // Work methods used by the method process_discovered_reflist
 294   // Phase1: keep alive all those referents that are otherwise
 295   // dead but which must be kept alive by policy (and their closure).
 296   void process_phase1(DiscoveredList&     refs_list,
 297                       ReferencePolicy*    policy,
 298                       BoolObjectClosure*  is_alive,
 299                       OopClosure*         keep_alive,
 300                       VoidClosure*        complete_gc);
 301   // Phase2: remove all those references whose referents are
 302   // reachable. Return true if any ephemerons were removed.
 303   inline bool process_phase2(DiscoveredList&    refs_list,
 304                              bool               has_ephemerons,
 305                              BoolObjectClosure* is_alive,
 306                              OopClosure*        keep_alive,
 307                              VoidClosure*       complete_gc) {
 308     if (has_ephemerons) {
 309       assert(complete_gc != NULL, "Error");
 310       if (discovery_is_atomic()) {
 311         return pp2_ephemerons_work(refs_list, is_alive, keep_alive, complete_gc);
 312       } else {
 313         return pp2_ephemerons_work_concurrent_discovery(refs_list, is_alive,
 314                                                         keep_alive, complete_gc);
 315       }      
 316     } else {
 317       if (discovery_is_atomic()) {
 318         // complete_gc is ignored in this case for this phase
 319         pp2_work(refs_list, is_alive, keep_alive);
 320       } else {
 321         assert(complete_gc != NULL, "Error");
 322         pp2_work_concurrent_discovery(refs_list, is_alive,
 323                                       keep_alive, complete_gc);
 324       }
 325       return false;
 326     }
 327   }
 328   // Work methods in support of process_phase2
 329   void pp2_work(DiscoveredList&    refs_list,
 330                 BoolObjectClosure* is_alive,
 331                 OopClosure*        keep_alive);
 332   void pp2_work_concurrent_discovery(
 333                 DiscoveredList&    refs_list,
 334                 BoolObjectClosure* is_alive,
 335                 OopClosure*        keep_alive,
 336                 VoidClosure*       complete_gc);
 337   bool pp2_ephemerons_work(
 338                 DiscoveredList&    refs_list,
 339                 BoolObjectClosure* is_alive,
 340                 OopClosure*        keep_alive,
 341                 VoidClosure*       complete_gc);
 342   bool pp2_ephemerons_work_concurrent_discovery(
 343                 DiscoveredList&    refs_list,
 344                 BoolObjectClosure* is_alive,
 345                 OopClosure*        keep_alive,
 346                 VoidClosure*       complete_gc);
 347   // Phase3: process the referents by either clearing them
 348   // or keeping them alive (and their closure)
 349   void process_phase3(DiscoveredList&    refs_list,
 350                       bool               clear_referent,
 351                       bool               has_ephemerons,
 352                       BoolObjectClosure* is_alive,
 353                       OopClosure*        keep_alive,
 354                       VoidClosure*       complete_gc);
 355 
 356   // Enqueue references with a certain reachability level
 357   void enqueue_discovered_reflist(DiscoveredList& refs_list, HeapWord* pending_list_addr);
 358 
 359   // "Preclean" all the discovered reference lists
 360   // by removing references with strongly reachable referents.
 361   // The first argument is a predicate on an oop that indicates
 362   // its (strong) reachability and the second is a closure that
 363   // may be used to incrementalize or abort the precleaning process.
 364   // The caller is responsible for taking care of potential
 365   // interference with concurrent operations on these lists
 366   // (or predicates involved) by other threads. Currently
 367   // only used by the CMS collector.
 368   void preclean_discovered_references(BoolObjectClosure* is_alive,
 369                                       OopClosure*        keep_alive,
 370                                       VoidClosure*       complete_gc,
 371                                       YieldClosure*      yield,
 372                                       GCTimer*           gc_timer);
 373 
 374   // Returns the name of the discovered reference list
 375   // occupying the i / _num_q slot.
 376   const char* list_name(uint i);
 377 
 378   void enqueue_discovered_reflists(HeapWord* pending_list_addr, AbstractRefProcTaskExecutor* task_executor);
 379 
 380  protected:
 381   // "Preclean" the given discovered reference list
 382   // by removing references with strongly reachable referents.
 383   // Currently used in support of CMS only.
 384   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 385                                    BoolObjectClosure* is_alive,
 386                                    OopClosure*        keep_alive,
 387                                    VoidClosure*       complete_gc,
 388                                    YieldClosure*      yield);
 389   // The same as above, but specialized for ephemerons and returns true
 390   // if any ephemerons were removed from the list.
 391   bool preclean_discovered_ephemerons_reflist(
 392                                    DiscoveredList&    refs_list,
 393                                    BoolObjectClosure* is_alive,
 394                                    OopClosure*        keep_alive,
 395                                    VoidClosure*       complete_gc,
 396                                    YieldClosure*      yield);
 397   
 398   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 399   uint next_id() {
 400     uint id = _next_id;
 401     if (++_next_id == _num_q) {
 402       _next_id = 0;
 403     }
 404     return id;
 405   }
 406   DiscoveredList* get_discovered_list(ReferenceType rt);
 407   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 408                                         HeapWord* discovered_addr);
 409 
 410   void clear_discovered_references(DiscoveredList& refs_list);
 411 
 412   // Calculate the number of jni handles.
 413   size_t count_jni_refs();
 414 
 415   void log_reflist_counts(DiscoveredList ref_lists[], size_t total_count) PRODUCT_RETURN;
 416 
 417   // Balances reference queues.
 418   void balance_queues(DiscoveredList ref_lists[]);
 419 
 420   // Update (advance) the soft ref master clock field.
 421   void update_soft_ref_master_clock();
 422 
 423  public:
 424   // Default parameters give you a vanilla reference processor.
 425   ReferenceProcessor(MemRegion span,
 426                      bool mt_processing = false, uint mt_processing_degree = 1,
 427                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 428                      bool atomic_discovery = true,
 429                      BoolObjectClosure* is_alive_non_header = NULL);
 430 
 431   // RefDiscoveryPolicy values
 432   enum DiscoveryPolicy {
 433     ReferenceBasedDiscovery = 0,
 434     ReferentBasedDiscovery  = 1,
 435     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 436     DiscoveryPolicyMax      = ReferentBasedDiscovery
 437   };
 438 
 439   static void init_statics();
 440 
 441  public:
 442   // get and set "is_alive_non_header" field
 443   BoolObjectClosure* is_alive_non_header() {
 444     return _is_alive_non_header;
 445   }
 446   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 447     _is_alive_non_header = is_alive_non_header;
 448   }
 449 
 450   // get and set span
 451   MemRegion span()                   { return _span; }
 452   void      set_span(MemRegion span) { _span = span; }
 453 
 454   // start and stop weak ref discovery
 455   void enable_discovery(bool check_no_refs = true);
 456   void disable_discovery()  { _discovering_refs = false; }
 457   bool discovery_enabled()  { return _discovering_refs;  }
 458 
 459   // whether discovery is atomic wrt other collectors
 460   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 461   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 462 
 463   // whether discovery is done by multiple threads same-old-timeously
 464   bool discovery_is_mt() const { return _discovery_is_mt; }
 465   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 466 
 467   // Whether we are in a phase when _processing_ is MT.
 468   bool processing_is_mt() const { return _processing_is_mt; }
 469   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 470 
 471   // whether all enqueueing of weak references is complete
 472   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 473   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 474 
 475   // iterate over oops
 476   void weak_oops_do(OopClosure* f);       // weak roots
 477 
 478   // Balance each of the discovered lists.
 479   void balance_all_queues();
 480   void verify_list(DiscoveredList& ref_list);
 481 
 482   // Discover a Reference object, using appropriate discovery criteria
 483   bool discover_reference(oop obj, ReferenceType rt);
 484 
 485   // Process references found during GC (called by the garbage collector)
 486   ReferenceProcessorStats
 487   process_discovered_references(BoolObjectClosure*           is_alive,
 488                                 OopClosure*                  keep_alive,
 489                                 VoidClosure*                 complete_gc,
 490                                 AbstractRefProcTaskExecutor* task_executor,
 491                                 GCTimer *gc_timer);
 492 
 493   // Enqueue references at end of GC (called by the garbage collector)
 494   bool enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor = NULL);
 495 
 496   // If a discovery is in process that is being superceded, abandon it: all
 497   // the discovered lists will be empty, and all the objects on them will
 498   // have NULL discovered fields.  Must be called only at a safepoint.
 499   void abandon_partial_discovery();
 500 
 501   // debugging
 502   void verify_no_references_recorded() PRODUCT_RETURN;
 503   void verify_referent(oop obj)        PRODUCT_RETURN;
 504 };
 505 
 506 // A utility class to disable reference discovery in
 507 // the scope which contains it, for given ReferenceProcessor.
 508 class NoRefDiscovery: StackObj {
 509  private:
 510   ReferenceProcessor* _rp;
 511   bool _was_discovering_refs;
 512  public:
 513   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 514     _was_discovering_refs = _rp->discovery_enabled();
 515     if (_was_discovering_refs) {
 516       _rp->disable_discovery();
 517     }
 518   }
 519 
 520   ~NoRefDiscovery() {
 521     if (_was_discovering_refs) {
 522       _rp->enable_discovery(false /*check_no_refs*/);
 523     }
 524   }
 525 };
 526 
 527 
 528 // A utility class to temporarily mutate the span of the
 529 // given ReferenceProcessor in the scope that contains it.
 530 class ReferenceProcessorSpanMutator: StackObj {
 531  private:
 532   ReferenceProcessor* _rp;
 533   MemRegion           _saved_span;
 534 
 535  public:
 536   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 537                                 MemRegion span):
 538     _rp(rp) {
 539     _saved_span = _rp->span();
 540     _rp->set_span(span);
 541   }
 542 
 543   ~ReferenceProcessorSpanMutator() {
 544     _rp->set_span(_saved_span);
 545   }
 546 };
 547 
 548 // A utility class to temporarily change the MT'ness of
 549 // reference discovery for the given ReferenceProcessor
 550 // in the scope that contains it.
 551 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 552  private:
 553   ReferenceProcessor* _rp;
 554   bool                _saved_mt;
 555 
 556  public:
 557   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 558                                        bool mt):
 559     _rp(rp) {
 560     _saved_mt = _rp->discovery_is_mt();
 561     _rp->set_mt_discovery(mt);
 562   }
 563 
 564   ~ReferenceProcessorMTDiscoveryMutator() {
 565     _rp->set_mt_discovery(_saved_mt);
 566   }
 567 };
 568 
 569 
 570 // A utility class to temporarily change the disposition
 571 // of the "is_alive_non_header" closure field of the
 572 // given ReferenceProcessor in the scope that contains it.
 573 class ReferenceProcessorIsAliveMutator: StackObj {
 574  private:
 575   ReferenceProcessor* _rp;
 576   BoolObjectClosure*  _saved_cl;
 577 
 578  public:
 579   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 580                                    BoolObjectClosure*  cl):
 581     _rp(rp) {
 582     _saved_cl = _rp->is_alive_non_header();
 583     _rp->set_is_alive_non_header(cl);
 584   }
 585 
 586   ~ReferenceProcessorIsAliveMutator() {
 587     _rp->set_is_alive_non_header(_saved_cl);
 588   }
 589 };
 590 
 591 // A utility class to temporarily change the disposition
 592 // of the "discovery_is_atomic" field of the
 593 // given ReferenceProcessor in the scope that contains it.
 594 class ReferenceProcessorAtomicMutator: StackObj {
 595  private:
 596   ReferenceProcessor* _rp;
 597   bool                _saved_atomic_discovery;
 598 
 599  public:
 600   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 601                                   bool atomic):
 602     _rp(rp) {
 603     _saved_atomic_discovery = _rp->discovery_is_atomic();
 604     _rp->set_atomic_discovery(atomic);
 605   }
 606 
 607   ~ReferenceProcessorAtomicMutator() {
 608     _rp->set_atomic_discovery(_saved_atomic_discovery);
 609   }
 610 };
 611 
 612 
 613 // A utility class to temporarily change the MT processing
 614 // disposition of the given ReferenceProcessor instance
 615 // in the scope that contains it.
 616 class ReferenceProcessorMTProcMutator: StackObj {
 617  private:
 618   ReferenceProcessor* _rp;
 619   bool  _saved_mt;
 620 
 621  public:
 622   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 623                                   bool mt):
 624     _rp(rp) {
 625     _saved_mt = _rp->processing_is_mt();
 626     _rp->set_mt_processing(mt);
 627   }
 628 
 629   ~ReferenceProcessorMTProcMutator() {
 630     _rp->set_mt_processing(_saved_mt);
 631   }
 632 };
 633 
 634 
 635 // This class is an interface used to implement task execution for the
 636 // reference processing.
 637 class AbstractRefProcTaskExecutor {
 638 public:
 639 
 640   // Abstract tasks to execute.
 641   class ProcessTask;
 642   class EnqueueTask;
 643 
 644   // Executes a task using worker threads.
 645   virtual void execute(ProcessTask& task) = 0;
 646   virtual void execute(EnqueueTask& task) = 0;
 647 
 648   // Switch to single threaded mode.
 649   virtual void set_single_threaded_mode() { };
 650 };
 651 
 652 // Abstract reference processing task to execute.
 653 class AbstractRefProcTaskExecutor::ProcessTask {
 654 protected:
 655   ProcessTask(ReferenceProcessor& ref_processor,
 656               DiscoveredList      refs_lists[],
 657               bool                marks_oops_alive)
 658     : _ref_processor(ref_processor),
 659       _refs_lists(refs_lists),
 660       _marks_oops_alive(marks_oops_alive)
 661   { }
 662 
 663 public:
 664   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 665                     OopClosure& keep_alive,
 666                     VoidClosure& complete_gc) = 0;
 667 
 668   // Returns true if a task marks some oops as alive.
 669   bool marks_oops_alive() const
 670   { return _marks_oops_alive; }
 671 
 672 protected:
 673   ReferenceProcessor& _ref_processor;
 674   DiscoveredList*     _refs_lists;
 675   const bool          _marks_oops_alive;
 676 };
 677 
 678 // Abstract reference processing task to execute.
 679 class AbstractRefProcTaskExecutor::EnqueueTask {
 680 protected:
 681   EnqueueTask(ReferenceProcessor& ref_processor,
 682               DiscoveredList      refs_lists[],
 683               HeapWord*           pending_list_addr,
 684               int                 n_queues)
 685     : _ref_processor(ref_processor),
 686       _refs_lists(refs_lists),
 687       _pending_list_addr(pending_list_addr),
 688       _n_queues(n_queues)
 689   { }
 690 
 691 public:
 692   virtual void work(unsigned int work_id) = 0;
 693 
 694 protected:
 695   ReferenceProcessor& _ref_processor;
 696   DiscoveredList*     _refs_lists;
 697   HeapWord*           _pending_list_addr;
 698   int                 _n_queues;
 699 };
 700 
 701 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP