< prev index next >

src/java.base/share/classes/java/util/Arrays.java

Print this page

        

@@ -21,29 +21,19 @@
  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  * or visit www.oracle.com if you need additional information or have any
  * questions.
  */
 
-package java.util;
+package javany.util;
 
 import java.lang.reflect.Array;
-import java.util.concurrent.ForkJoinPool;
-import java.util.function.BinaryOperator;
-import java.util.function.Consumer;
-import java.util.function.DoubleBinaryOperator;
-import java.util.function.IntBinaryOperator;
-import java.util.function.IntFunction;
-import java.util.function.IntToDoubleFunction;
-import java.util.function.IntToLongFunction;
-import java.util.function.IntUnaryOperator;
-import java.util.function.LongBinaryOperator;
-import java.util.function.UnaryOperator;
-import java.util.stream.DoubleStream;
-import java.util.stream.IntStream;
-import java.util.stream.LongStream;
-import java.util.stream.Stream;
-import java.util.stream.StreamSupport;
+import java.util.HashSet;
+import java.util.Objects;
+import java.util.RandomAccess;
+import java.util.Set;
+
+import javany.util.function.*;
 
 /**
  * This class contains various methods for manipulating arrays (such as
  * sorting and searching). This class also contains a static factory
  * that allows arrays to be viewed as lists.

@@ -80,33 +70,10 @@
 
     // Suppresses default constructor, ensuring non-instantiability.
     private Arrays() {}
 
     /**
-     * A comparator that implements the natural ordering of a group of
-     * mutually comparable elements. May be used when a supplied
-     * comparator is null. To simplify code-sharing within underlying
-     * implementations, the compare method only declares type Object
-     * for its second argument.
-     *
-     * Arrays class implementor's note: It is an empirical matter
-     * whether ComparableTimSort offers any performance benefit over
-     * TimSort used with this comparator.  If not, you are better off
-     * deleting or bypassing ComparableTimSort.  There is currently no
-     * empirical case for separating them for parallel sorting, so all
-     * public Object parallelSort methods use the same comparator
-     * based implementation.
-     */
-    static final class NaturalOrder implements Comparator<Object> {
-        @SuppressWarnings("unchecked")
-        public int compare(Object first, Object second) {
-            return ((Comparable<Object>)first).compareTo(second);
-        }
-        static final NaturalOrder INSTANCE = new NaturalOrder();
-    }
-
-    /**
      * Checks that {@code fromIndex} and {@code toIndex} are in
      * the range and throws an exception if they aren't.
      */
     private static void rangeCheck(int arrayLength, int fromIndex, int toIndex) {
         if (fromIndex > toIndex) {

@@ -127,3581 +94,619 @@
      * expanding arguments into those required for the internal
      * implementation methods residing in other package-private
      * classes (except for legacyMergeSort, included in this class).
      */
 
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
+    /*
+     * Sorting of complex type arrays.
      */
-    public static void sort(int[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
 
     /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
+     * Sorts the specified array of objects into ascending order, according
+     * to the {@linkplain Comparable natural ordering} of its elements.
+     * All elements in the array must implement the {@link Comparable}
+     * interface.  Furthermore, all elements in the array must be
+     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
+     * not throw a {@code ClassCastException} for any elements {@code e1}
+     * and {@code e2} in the array).
      *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
+     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
+     * not be reordered as a result of the sort.
      *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(int[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
+     * <p>Implementation note: This implementation is a stable, adaptive,
+     * iterative mergesort that requires far fewer than n lg(n) comparisons
+     * when the input array is partially sorted, while offering the
+     * performance of a traditional mergesort when the input array is
+     * randomly ordered.  If the input array is nearly sorted, the
+     * implementation requires approximately n comparisons.  Temporary
+     * storage requirements vary from a small constant for nearly sorted
+     * input arrays to n/2 object references for randomly ordered input
+     * arrays.
+     *
+     * <p>The implementation takes equal advantage of ascending and
+     * descending order in its input array, and can take advantage of
+     * ascending and descending order in different parts of the same
+     * input array.  It is well-suited to merging two or more sorted arrays:
+     * simply concatenate the arrays and sort the resulting array.
      *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
+     * <p>The implementation was adapted from Tim Peters's list sort for Python
+     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
+     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
+     * Sorting and Information Theoretic Complexity", in Proceedings of the
+     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
+     * January 1993.
      *
      * @param a the array to be sorted
+     * @throws ClassCastException if the array contains elements that are not
+     *         <i>mutually comparable</i> (for example, strings and integers)
+     * @throws IllegalArgumentException (optional) if the natural
+     *         ordering of the array elements is found to violate the
+     *         {@link Comparable} contract
      */
-    public static void sort(long[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
+    public static <any E> void sort(E[] a) {
+        TimSort.sort(a, 0, a.length, Comparator.naturalOrder(), null, 0, 0);
     }
 
     /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
+     * Sorts the specified range of the specified array of objects into
+     * ascending order, according to the
+     * {@linkplain Comparable natural ordering} of its
+     * elements.  The range to be sorted extends from index
+     * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
+     * (If {@code fromIndex==toIndex}, the range to be sorted is empty.)  All
+     * elements in this range must implement the {@link Comparable}
+     * interface.  Furthermore, all elements in this range must be <i>mutually
+     * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
+     * {@code ClassCastException} for any elements {@code e1} and
+     * {@code e2} in the array).
      *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
+     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
+     * not be reordered as a result of the sort.
      *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(long[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
+     * <p>Implementation note: This implementation is a stable, adaptive,
+     * iterative mergesort that requires far fewer than n lg(n) comparisons
+     * when the input array is partially sorted, while offering the
+     * performance of a traditional mergesort when the input array is
+     * randomly ordered.  If the input array is nearly sorted, the
+     * implementation requires approximately n comparisons.  Temporary
+     * storage requirements vary from a small constant for nearly sorted
+     * input arrays to n/2 object references for randomly ordered input
+     * arrays.
      *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
+     * <p>The implementation takes equal advantage of ascending and
+     * descending order in its input array, and can take advantage of
+     * ascending and descending order in different parts of the same
+     * input array.  It is well-suited to merging two or more sorted arrays:
+     * simply concatenate the arrays and sort the resulting array.
      *
-     * @param a the array to be sorted
-     */
-    public static void sort(short[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
+     * <p>The implementation was adapted from Tim Peters's list sort for Python
+     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
+     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
+     * Sorting and Information Theoretic Complexity", in Proceedings of the
+     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
+     * January 1993.
      *
      * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     * @param fromIndex the index of the first element (inclusive) to be
+     *        sorted
+     * @param toIndex the index of the last element (exclusive) to be sorted
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
+     *         (optional) if the natural ordering of the array elements is
+     *         found to violate the {@link Comparable} contract
+     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
+     *         {@code toIndex > a.length}
+     * @throws ClassCastException if the array contains elements that are
+     *         not <i>mutually comparable</i> (for example, strings and
+     *         integers).
      */
-    public static void sort(short[] a, int fromIndex, int toIndex) {
+    public static <any E> void sort(E[] a, int fromIndex, int toIndex) {
         rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
+        TimSort.sort(a, fromIndex, toIndex, Comparator.naturalOrder(), null, 0, 0);
     }
 
     /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
+     * Tuning parameter: list size at or below which insertion sort will be
+     * used in preference to mergesort.
+     * To be removed in a future release.
      */
-    public static void sort(char[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
-    }
+    private static final int INSERTIONSORT_THRESHOLD = 7;
 
     /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
+     * Src is the source array that starts at index 0
+     * Dest is the (possibly larger) array destination with a possible offset
+     * low is the index in dest to start sorting
+     * high is the end index in dest to end sorting
+     * off is the offset to generate corresponding low, high in src
+     * To be removed in a future release.
      */
-    public static void sort(char[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
+    @SuppressWarnings({"unchecked", "rawtypes"})
+    private static <any E> void mergeSort(E[] src,
+                                  E[] dest,
+                                  int low,
+                                  int high,
+                                  int off) {
+        int length = high - low;
 
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(byte[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1);
-    }
+        Comparator<E> natural = Comparator.naturalOrder();
 
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(byte[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
+        // Insertion sort on smallest arrays
+        if (length < INSERTIONSORT_THRESHOLD) {
+            for (int i=low; i<high; i++)
+                for (int j=i; j>low &&
+                         natural.compare(dest[j-1], dest[j]) >0 ; j--)
+                    swap(dest, j, j-1);
+            return;
     }
 
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     */
-    public static void sort(float[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
+        // Recursively sort halves of dest into src
+        int destLow  = low;
+        int destHigh = high;
+        low  += off;
+        high += off;
+        int mid = (low + high) >>> 1;
+        mergeSort(dest, src, low, mid, -off);
+        mergeSort(dest, src, mid, high, -off);
+
+        // If list is already sorted, just copy from src to dest.  This is an
+        // optimization that results in faster sorts for nearly ordered lists.
+        if (natural.compare(src[mid-1], src[mid]) <= 0) {
+            Any.arraycopy(src, low, dest, destLow, length);
+            return;
     }
 
-    /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(float[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
+        // Merge sorted halves (now in src) into dest
+        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
+            if (q >= high || p < mid && natural.compare(src[p],src[q]) <= 0)
+                dest[i] = src[p++];
+            else
+                dest[i] = src[q++];
+        }
     }
 
     /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
-     *
-     * @param a the array to be sorted
+     * Swaps x[a] with x[b].
      */
-    public static void sort(double[] a) {
-        DualPivotQuicksort.sort(a, 0, a.length - 1, null, 0, 0);
+    private static <any E> void swap(E[] x, int a, int b) {
+        E t = x[a];
+        x[a] = x[b];
+        x[b] = t;
     }
 
     /**
-     * Sorts the specified range of the array into ascending order. The range
-     * to be sorted extends from the index {@code fromIndex}, inclusive, to
-     * the index {@code toIndex}, exclusive. If {@code fromIndex == toIndex},
-     * the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * <p>Implementation note: The sorting algorithm is a Dual-Pivot Quicksort
-     * by Vladimir Yaroslavskiy, Jon Bentley, and Joshua Bloch. This algorithm
-     * offers O(n log(n)) performance on many data sets that cause other
-     * quicksorts to degrade to quadratic performance, and is typically
-     * faster than traditional (one-pivot) Quicksort implementations.
+     * Sorts the specified array of objects according to the order induced by
+     * the specified comparator.  All elements in the array must be
+     * <i>mutually comparable</i> by the specified comparator (that is,
+     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
+     * for any elements {@code e1} and {@code e2} in the array).
      *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
+     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
+     * not be reordered as a result of the sort.
      *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     */
-    public static void sort(double[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
+     * <p>Implementation note: This implementation is a stable, adaptive,
+     * iterative mergesort that requires far fewer than n lg(n) comparisons
+     * when the input array is partially sorted, while offering the
+     * performance of a traditional mergesort when the input array is
+     * randomly ordered.  If the input array is nearly sorted, the
+     * implementation requires approximately n comparisons.  Temporary
+     * storage requirements vary from a small constant for nearly sorted
+     * input arrays to n/2 object references for randomly ordered input
+     * arrays.
      *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
+     * <p>The implementation takes equal advantage of ascending and
+     * descending order in its input array, and can take advantage of
+     * ascending and descending order in different parts of the same
+     * input array.  It is well-suited to merging two or more sorted arrays:
+     * simply concatenate the arrays and sort the resulting array.
      *
-     * @param a the array to be sorted
+     * <p>The implementation was adapted from Tim Peters's list sort for Python
+     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
+     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
+     * Sorting and Information Theoretic Complexity", in Proceedings of the
+     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
+     * January 1993.
      *
-     * @since 1.8
+     * @param <T> the class of the objects to be sorted
+     * @param a the array to be sorted
+     * @param c the comparator to determine the order of the array.  A
+     *        {@code null} value indicates that the elements'
+     *        {@linkplain Comparable natural ordering} should be used.
+     * @throws ClassCastException if the array contains elements that are
+     *         not <i>mutually comparable</i> using the specified comparator
+     * @throws IllegalArgumentException (optional) if the comparator is
+     *         found to violate the {@link Comparator} contract
      */
-    public static void parallelSort(byte[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1);
-        else
-            new ArraysParallelSortHelpers.FJByte.Sorter
-                (null, a, new byte[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+    public static <any T> void sort(T[] a, Comparator<? super T> c) {
+        if (c == null) {
+            sort(a);
+        } else {
+            TimSort.sort(a, 0, a.length, c, null, 0, 0);
+        }
     }
 
     /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(byte[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(byte[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
+     * Sorts the specified range of the specified array of objects according
+     * to the order induced by the specified comparator.  The range to be
+     * sorted extends from index {@code fromIndex}, inclusive, to index
+     * {@code toIndex}, exclusive.  (If {@code fromIndex==toIndex}, the
+     * range to be sorted is empty.)  All elements in the range must be
+     * <i>mutually comparable</i> by the specified comparator (that is,
+     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
+     * for any elements {@code e1} and {@code e2} in the range).
      *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
+     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
+     * not be reordered as a result of the sort.
      *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(byte[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1);
-        else
-            new ArraysParallelSortHelpers.FJByte.Sorter
-                (null, a, new byte[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
+     * <p>Implementation note: This implementation is a stable, adaptive,
+     * iterative mergesort that requires far fewer than n lg(n) comparisons
+     * when the input array is partially sorted, while offering the
+     * performance of a traditional mergesort when the input array is
+     * randomly ordered.  If the input array is nearly sorted, the
+     * implementation requires approximately n comparisons.  Temporary
+     * storage requirements vary from a small constant for nearly sorted
+     * input arrays to n/2 object references for randomly ordered input
+     * arrays.
      *
-     * @param a the array to be sorted
+     * <p>The implementation takes equal advantage of ascending and
+     * descending order in its input array, and can take advantage of
+     * ascending and descending order in different parts of the same
+     * input array.  It is well-suited to merging two or more sorted arrays:
+     * simply concatenate the arrays and sort the resulting array.
      *
-     * @since 1.8
-     */
-    public static void parallelSort(char[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJChar.Sorter
-                (null, a, new char[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-      @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(char[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(char[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
+     * <p>The implementation was adapted from Tim Peters's list sort for Python
+     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
+     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
+     * Sorting and Information Theoretic Complexity", in Proceedings of the
+     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
+     * January 1993.
      *
+     * @param <T> the class of the objects to be sorted
      * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
+     * @param fromIndex the index of the first element (inclusive) to be
+     *        sorted
+     * @param toIndex the index of the last element (exclusive) to be sorted
+     * @param c the comparator to determine the order of the array.  A
+     *        {@code null} value indicates that the elements'
+     *        {@linkplain Comparable natural ordering} should be used.
+     * @throws ClassCastException if the array contains elements that are not
+     *         <i>mutually comparable</i> using the specified comparator.
+     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
+     *         (optional) if the comparator is found to violate the
+     *         {@link Comparator} contract
+     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
+     *         {@code toIndex > a.length}
      */
-    public static void parallelSort(char[] a, int fromIndex, int toIndex) {
+    public static <any T> void sort(T[] a, int fromIndex, int toIndex,
+                                Comparator<? super T> c) {
+        if (c == null) {
+            sort(a, fromIndex, toIndex);
+        } else {
         rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJChar.Sorter
-                (null, a, new char[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+            TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0);
+        }
     }
 
+    // Searching
+
     /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
+     * Searches the specified array for the specified object using the binary
+     * search algorithm. The array must be sorted into ascending order
+     * according to the
+     * {@linkplain Comparable natural ordering}
+     * of its elements (as by the
+     * {@link #sort(Object[])} method) prior to making this call.
+     * If it is not sorted, the results are undefined.
+     * (If the array contains elements that are not mutually comparable (for
+     * example, strings and integers), it <i>cannot</i> be sorted according
+     * to the natural ordering of its elements, hence results are undefined.)
+     * If the array contains multiple
+     * elements equal to the specified object, there is no guarantee which
+     * one will be found.
      *
-     * @since 1.8
+     * @param a the array to be searched
+     * @param key the value to be searched for
+     * @return index of the search key, if it is contained in the array;
+     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
+     *         <i>insertion point</i> is defined as the point at which the
+     *         key would be inserted into the array: the index of the first
+     *         element greater than the key, or <tt>a.length</tt> if all
+     *         elements in the array are less than the specified key.  Note
+     *         that this guarantees that the return value will be &gt;= 0 if
+     *         and only if the key is found.
+     * @throws ClassCastException if the search key is not comparable to the
+     *         elements of the array.
      */
-    public static void parallelSort(short[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJShort.Sorter
-                (null, a, new short[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+    public static <any T> int binarySearch(T[] a, T key) {
+        return binarySearch0(a, 0, a.length, key);
     }
 
     /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(short[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(short[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
+     * Searches a range of
+     * the specified array for the specified object using the binary
+     * search algorithm.
+     * The range must be sorted into ascending order
+     * according to the
+     * {@linkplain Comparable natural ordering}
+     * of its elements (as by the
+     * {@link #sort(Object[], int, int)} method) prior to making this
+     * call.  If it is not sorted, the results are undefined.
+     * (If the range contains elements that are not mutually comparable (for
+     * example, strings and integers), it <i>cannot</i> be sorted according
+     * to the natural ordering of its elements, hence results are undefined.)
+     * If the range contains multiple
+     * elements equal to the specified object, there is no guarantee which
+     * one will be found.
      *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @param a the array to be searched
+     * @param fromIndex the index of the first element (inclusive) to be
+     *          searched
+     * @param toIndex the index of the last element (exclusive) to be searched
+     * @param key the value to be searched for
+     * @return index of the search key, if it is contained in the array
+     *         within the specified range;
+     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
+     *         <i>insertion point</i> is defined as the point at which the
+     *         key would be inserted into the array: the index of the first
+     *         element in the range greater than the key,
+     *         or <tt>toIndex</tt> if all
+     *         elements in the range are less than the specified key.  Note
+     *         that this guarantees that the return value will be &gt;= 0 if
+     *         and only if the key is found.
+     * @throws ClassCastException if the search key is not comparable to the
+     *         elements of the array within the specified range.
+     * @throws IllegalArgumentException
+     *         if {@code fromIndex > toIndex}
      * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
+     *         if {@code fromIndex < 0 or toIndex > a.length}
+     * @since 1.6
      */
-    public static void parallelSort(short[] a, int fromIndex, int toIndex) {
+    public static <any T> int binarySearch(T[] a, int fromIndex, int toIndex,
+                                   T key) {
         rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJShort.Sorter
-                (null, a, new short[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+        return binarySearch0(a, fromIndex, toIndex, key);
+    }
+
+    // Like public version, but without range checks.
+    private static <any T> int binarySearch0(T[] a, int fromIndex, int toIndex,
+                                     T key) {
+
+        return binarySearch0(a, fromIndex, toIndex, key, Comparator.naturalOrder());
     }
 
     /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
+     * Searches the specified array for the specified object using the binary
+     * search algorithm.  The array must be sorted into ascending order
+     * according to the specified comparator (as by the
+     * {@link #sort(Object[], Comparator) sort(T[], Comparator)}
+     * method) prior to making this call.  If it is
+     * not sorted, the results are undefined.
+     * If the array contains multiple
+     * elements equal to the specified object, there is no guarantee which one
+     * will be found.
      *
-     * @since 1.8
+     * @param <T> the class of the objects in the array
+     * @param a the array to be searched
+     * @param key the value to be searched for
+     * @param c the comparator by which the array is ordered.  A
+     *        <tt>null</tt> value indicates that the elements'
+     *        {@linkplain Comparable natural ordering} should be used.
+     * @return index of the search key, if it is contained in the array;
+     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
+     *         <i>insertion point</i> is defined as the point at which the
+     *         key would be inserted into the array: the index of the first
+     *         element greater than the key, or <tt>a.length</tt> if all
+     *         elements in the array are less than the specified key.  Note
+     *         that this guarantees that the return value will be &gt;= 0 if
+     *         and only if the key is found.
+     * @throws ClassCastException if the array contains elements that are not
+     *         <i>mutually comparable</i> using the specified comparator,
+     *         or the search key is not comparable to the
+     *         elements of the array using this comparator.
      */
-    public static void parallelSort(int[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJInt.Sorter
-                (null, a, new int[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+    public static <any T> int binarySearch(T[] a, T key, Comparator<? super T> c) {
+        return binarySearch0(a, 0, a.length, key, c);
     }
 
     /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(int[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(int[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
+     * Searches a range of
+     * the specified array for the specified object using the binary
+     * search algorithm.
+     * The range must be sorted into ascending order
+     * according to the specified comparator (as by the
+     * {@link #sort(Object[], int, int, Comparator)
+     * sort(T[], int, int, Comparator)}
+     * method) prior to making this call.
+     * If it is not sorted, the results are undefined.
+     * If the range contains multiple elements equal to the specified object,
+     * there is no guarantee which one will be found.
      *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
+     * @param <T> the class of the objects in the array
+     * @param a the array to be searched
+     * @param fromIndex the index of the first element (inclusive) to be
+     *          searched
+     * @param toIndex the index of the last element (exclusive) to be searched
+     * @param key the value to be searched for
+     * @param c the comparator by which the array is ordered.  A
+     *        <tt>null</tt> value indicates that the elements'
+     *        {@linkplain Comparable natural ordering} should be used.
+     * @return index of the search key, if it is contained in the array
+     *         within the specified range;
+     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
+     *         <i>insertion point</i> is defined as the point at which the
+     *         key would be inserted into the array: the index of the first
+     *         element in the range greater than the key,
+     *         or <tt>toIndex</tt> if all
+     *         elements in the range are less than the specified key.  Note
+     *         that this guarantees that the return value will be &gt;= 0 if
+     *         and only if the key is found.
+     * @throws ClassCastException if the range contains elements that are not
+     *         <i>mutually comparable</i> using the specified comparator,
+     *         or the search key is not comparable to the
+     *         elements in the range using this comparator.
+     * @throws IllegalArgumentException
+     *         if {@code fromIndex > toIndex}
      * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
+     *         if {@code fromIndex < 0 or toIndex > a.length}
+     * @since 1.6
      */
-    public static void parallelSort(int[] a, int fromIndex, int toIndex) {
+    public static <any T> int binarySearch(T[] a, int fromIndex, int toIndex,
+                                       T key, Comparator<? super T> c) {
         rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJInt.Sorter
-                (null, a, new int[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+        return binarySearch0(a, fromIndex, toIndex, key, c);
     }
 
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(long[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJLong.Sorter
-                (null, a, new long[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+    // Like public version, but without range checks.
+    private static <any T> int binarySearch0(T[] a, int fromIndex, int toIndex,
+                                         T key, Comparator<? super T> c) {
+        if (c == null) {
+            c = Comparator.naturalOrder();
     }
+        int low = fromIndex;
+        int high = toIndex - 1;
 
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(long[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(long[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(long[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
+        while (low <= high) {
+            int mid = (low + high) >>> 1;
+            T midVal = a[mid];
+            int cmp = c.compare(midVal, key);
+            if (cmp < 0)
+                low = mid + 1;
+            else if (cmp > 0)
+                high = mid - 1;
         else
-            new ArraysParallelSortHelpers.FJLong.Sorter
-                (null, a, new long[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
+                return mid; // key found
+        }
+        return -(low + 1);  // key not found.
     }
 
+    // Equality Testing
+
     /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(float[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJFloat.Sorter
-                (null, a, new float[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all float
-     * values: {@code -0.0f == 0.0f} is {@code true} and a {@code Float.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Float#compareTo}: {@code -0.0f} is treated as less than value
-     * {@code 0.0f} and {@code Float.NaN} is considered greater than any
-     * other value and all {@code Float.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(float[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(float[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(float[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJFloat.Sorter
-                (null, a, new float[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array into ascending numerical order.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(double[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, 0, n - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJDouble.Sorter
-                (null, a, new double[n], 0, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the array into ascending numerical order.
-     * The range to be sorted extends from the index {@code fromIndex},
-     * inclusive, to the index {@code toIndex}, exclusive. If
-     * {@code fromIndex == toIndex}, the range to be sorted is empty.
-     *
-     * <p>The {@code <} relation does not provide a total order on all double
-     * values: {@code -0.0d == 0.0d} is {@code true} and a {@code Double.NaN}
-     * value compares neither less than, greater than, nor equal to any value,
-     * even itself. This method uses the total order imposed by the method
-     * {@link Double#compareTo}: {@code -0.0d} is treated as less than value
-     * {@code 0.0d} and {@code Double.NaN} is considered greater than any
-     * other value and all {@code Double.NaN} values are considered equal.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(double[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(double[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element, inclusive, to be sorted
-     * @param toIndex the index of the last element, exclusive, to be sorted
-     *
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > a.length}
-     *
-     * @since 1.8
-     */
-    public static void parallelSort(double[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            DualPivotQuicksort.sort(a, fromIndex, toIndex - 1, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJDouble.Sorter
-                (null, a, new double[n], fromIndex, n, 0,
-                 ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g).invoke();
-    }
-
-    /**
-     * Sorts the specified array of objects into ascending order, according
-     * to the {@linkplain Comparable natural ordering} of its elements.
-     * All elements in the array must implement the {@link Comparable}
-     * interface.  Furthermore, all elements in the array must be
-     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
-     * not throw a {@code ClassCastException} for any elements {@code e1}
-     * and {@code e2} in the array).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param <T> the class of the objects to be sorted
-     * @param a the array to be sorted
-     *
-     * @throws ClassCastException if the array contains elements that are not
-     *         <i>mutually comparable</i> (for example, strings and integers)
-     * @throws IllegalArgumentException (optional) if the natural
-     *         ordering of the array elements is found to violate the
-     *         {@link Comparable} contract
-     *
-     * @since 1.8
-     */
-    @SuppressWarnings("unchecked")
-    public static <T extends Comparable<? super T>> void parallelSort(T[] a) {
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            TimSort.sort(a, 0, n, NaturalOrder.INSTANCE, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJObject.Sorter<>
-                (null, a,
-                 (T[])Array.newInstance(a.getClass().getComponentType(), n),
-                 0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the specified array of objects into
-     * ascending order, according to the
-     * {@linkplain Comparable natural ordering} of its
-     * elements.  The range to be sorted extends from index
-     * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
-     * (If {@code fromIndex==toIndex}, the range to be sorted is empty.)  All
-     * elements in this range must implement the {@link Comparable}
-     * interface.  Furthermore, all elements in this range must be <i>mutually
-     * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
-     * {@code ClassCastException} for any elements {@code e1} and
-     * {@code e2} in the array).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param <T> the class of the objects to be sorted
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        sorted
-     * @param toIndex the index of the last element (exclusive) to be sorted
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
-     *         (optional) if the natural ordering of the array elements is
-     *         found to violate the {@link Comparable} contract
-     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
-     *         {@code toIndex > a.length}
-     * @throws ClassCastException if the array contains elements that are
-     *         not <i>mutually comparable</i> (for example, strings and
-     *         integers).
-     *
-     * @since 1.8
-     */
-    @SuppressWarnings("unchecked")
-    public static <T extends Comparable<? super T>>
-    void parallelSort(T[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            TimSort.sort(a, fromIndex, toIndex, NaturalOrder.INSTANCE, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJObject.Sorter<>
-                (null, a,
-                 (T[])Array.newInstance(a.getClass().getComponentType(), n),
-                 fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g, NaturalOrder.INSTANCE).invoke();
-    }
-
-    /**
-     * Sorts the specified array of objects according to the order induced by
-     * the specified comparator.  All elements in the array must be
-     * <i>mutually comparable</i> by the specified comparator (that is,
-     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
-     * for any elements {@code e1} and {@code e2} in the array).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a
-     * working space no greater than the size of the original array. The
-     * {@link ForkJoinPool#commonPool() ForkJoin common pool} is used to
-     * execute any parallel tasks.
-     *
-     * @param <T> the class of the objects to be sorted
-     * @param a the array to be sorted
-     * @param cmp the comparator to determine the order of the array.  A
-     *        {@code null} value indicates that the elements'
-     *        {@linkplain Comparable natural ordering} should be used.
-     * @throws ClassCastException if the array contains elements that are
-     *         not <i>mutually comparable</i> using the specified comparator
-     * @throws IllegalArgumentException (optional) if the comparator is
-     *         found to violate the {@link java.util.Comparator} contract
-     *
-     * @since 1.8
-     */
-    @SuppressWarnings("unchecked")
-    public static <T> void parallelSort(T[] a, Comparator<? super T> cmp) {
-        if (cmp == null)
-            cmp = NaturalOrder.INSTANCE;
-        int n = a.length, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            TimSort.sort(a, 0, n, cmp, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJObject.Sorter<>
-                (null, a,
-                 (T[])Array.newInstance(a.getClass().getComponentType(), n),
-                 0, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g, cmp).invoke();
-    }
-
-    /**
-     * Sorts the specified range of the specified array of objects according
-     * to the order induced by the specified comparator.  The range to be
-     * sorted extends from index {@code fromIndex}, inclusive, to index
-     * {@code toIndex}, exclusive.  (If {@code fromIndex==toIndex}, the
-     * range to be sorted is empty.)  All elements in the range must be
-     * <i>mutually comparable</i> by the specified comparator (that is,
-     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
-     * for any elements {@code e1} and {@code e2} in the range).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * @implNote The sorting algorithm is a parallel sort-merge that breaks the
-     * array into sub-arrays that are themselves sorted and then merged. When
-     * the sub-array length reaches a minimum granularity, the sub-array is
-     * sorted using the appropriate {@link Arrays#sort(Object[]) Arrays.sort}
-     * method. If the length of the specified array is less than the minimum
-     * granularity, then it is sorted using the appropriate {@link
-     * Arrays#sort(Object[]) Arrays.sort} method. The algorithm requires a working
-     * space no greater than the size of the specified range of the original
-     * array. The {@link ForkJoinPool#commonPool() ForkJoin common pool} is
-     * used to execute any parallel tasks.
-     *
-     * @param <T> the class of the objects to be sorted
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        sorted
-     * @param toIndex the index of the last element (exclusive) to be sorted
-     * @param cmp the comparator to determine the order of the array.  A
-     *        {@code null} value indicates that the elements'
-     *        {@linkplain Comparable natural ordering} should be used.
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
-     *         (optional) if the natural ordering of the array elements is
-     *         found to violate the {@link Comparable} contract
-     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
-     *         {@code toIndex > a.length}
-     * @throws ClassCastException if the array contains elements that are
-     *         not <i>mutually comparable</i> (for example, strings and
-     *         integers).
-     *
-     * @since 1.8
-     */
-    @SuppressWarnings("unchecked")
-    public static <T> void parallelSort(T[] a, int fromIndex, int toIndex,
-                                        Comparator<? super T> cmp) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        if (cmp == null)
-            cmp = NaturalOrder.INSTANCE;
-        int n = toIndex - fromIndex, p, g;
-        if (n <= MIN_ARRAY_SORT_GRAN ||
-            (p = ForkJoinPool.getCommonPoolParallelism()) == 1)
-            TimSort.sort(a, fromIndex, toIndex, cmp, null, 0, 0);
-        else
-            new ArraysParallelSortHelpers.FJObject.Sorter<>
-                (null, a,
-                 (T[])Array.newInstance(a.getClass().getComponentType(), n),
-                 fromIndex, n, 0, ((g = n / (p << 2)) <= MIN_ARRAY_SORT_GRAN) ?
-                 MIN_ARRAY_SORT_GRAN : g, cmp).invoke();
-    }
-
-    /*
-     * Sorting of complex type arrays.
-     */
-
-    /**
-     * Old merge sort implementation can be selected (for
-     * compatibility with broken comparators) using a system property.
-     * Cannot be a static boolean in the enclosing class due to
-     * circular dependencies. To be removed in a future release.
-     */
-    static final class LegacyMergeSort {
-        private static final boolean userRequested =
-            java.security.AccessController.doPrivileged(
-                new sun.security.action.GetBooleanAction(
-                    "java.util.Arrays.useLegacyMergeSort")).booleanValue();
-    }
-
-    /**
-     * Sorts the specified array of objects into ascending order, according
-     * to the {@linkplain Comparable natural ordering} of its elements.
-     * All elements in the array must implement the {@link Comparable}
-     * interface.  Furthermore, all elements in the array must be
-     * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)} must
-     * not throw a {@code ClassCastException} for any elements {@code e1}
-     * and {@code e2} in the array).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * <p>Implementation note: This implementation is a stable, adaptive,
-     * iterative mergesort that requires far fewer than n lg(n) comparisons
-     * when the input array is partially sorted, while offering the
-     * performance of a traditional mergesort when the input array is
-     * randomly ordered.  If the input array is nearly sorted, the
-     * implementation requires approximately n comparisons.  Temporary
-     * storage requirements vary from a small constant for nearly sorted
-     * input arrays to n/2 object references for randomly ordered input
-     * arrays.
-     *
-     * <p>The implementation takes equal advantage of ascending and
-     * descending order in its input array, and can take advantage of
-     * ascending and descending order in different parts of the same
-     * input array.  It is well-suited to merging two or more sorted arrays:
-     * simply concatenate the arrays and sort the resulting array.
-     *
-     * <p>The implementation was adapted from Tim Peters's list sort for Python
-     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
-     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
-     * Sorting and Information Theoretic Complexity", in Proceedings of the
-     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
-     * January 1993.
-     *
-     * @param a the array to be sorted
-     * @throws ClassCastException if the array contains elements that are not
-     *         <i>mutually comparable</i> (for example, strings and integers)
-     * @throws IllegalArgumentException (optional) if the natural
-     *         ordering of the array elements is found to violate the
-     *         {@link Comparable} contract
-     */
-    public static void sort(Object[] a) {
-        if (LegacyMergeSort.userRequested)
-            legacyMergeSort(a);
-        else
-            ComparableTimSort.sort(a, 0, a.length, null, 0, 0);
-    }
-
-    /** To be removed in a future release. */
-    private static void legacyMergeSort(Object[] a) {
-        Object[] aux = a.clone();
-        mergeSort(aux, a, 0, a.length, 0);
-    }
-
-    /**
-     * Sorts the specified range of the specified array of objects into
-     * ascending order, according to the
-     * {@linkplain Comparable natural ordering} of its
-     * elements.  The range to be sorted extends from index
-     * {@code fromIndex}, inclusive, to index {@code toIndex}, exclusive.
-     * (If {@code fromIndex==toIndex}, the range to be sorted is empty.)  All
-     * elements in this range must implement the {@link Comparable}
-     * interface.  Furthermore, all elements in this range must be <i>mutually
-     * comparable</i> (that is, {@code e1.compareTo(e2)} must not throw a
-     * {@code ClassCastException} for any elements {@code e1} and
-     * {@code e2} in the array).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * <p>Implementation note: This implementation is a stable, adaptive,
-     * iterative mergesort that requires far fewer than n lg(n) comparisons
-     * when the input array is partially sorted, while offering the
-     * performance of a traditional mergesort when the input array is
-     * randomly ordered.  If the input array is nearly sorted, the
-     * implementation requires approximately n comparisons.  Temporary
-     * storage requirements vary from a small constant for nearly sorted
-     * input arrays to n/2 object references for randomly ordered input
-     * arrays.
-     *
-     * <p>The implementation takes equal advantage of ascending and
-     * descending order in its input array, and can take advantage of
-     * ascending and descending order in different parts of the same
-     * input array.  It is well-suited to merging two or more sorted arrays:
-     * simply concatenate the arrays and sort the resulting array.
-     *
-     * <p>The implementation was adapted from Tim Peters's list sort for Python
-     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
-     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
-     * Sorting and Information Theoretic Complexity", in Proceedings of the
-     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
-     * January 1993.
-     *
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        sorted
-     * @param toIndex the index of the last element (exclusive) to be sorted
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
-     *         (optional) if the natural ordering of the array elements is
-     *         found to violate the {@link Comparable} contract
-     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
-     *         {@code toIndex > a.length}
-     * @throws ClassCastException if the array contains elements that are
-     *         not <i>mutually comparable</i> (for example, strings and
-     *         integers).
-     */
-    public static void sort(Object[] a, int fromIndex, int toIndex) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        if (LegacyMergeSort.userRequested)
-            legacyMergeSort(a, fromIndex, toIndex);
-        else
-            ComparableTimSort.sort(a, fromIndex, toIndex, null, 0, 0);
-    }
-
-    /** To be removed in a future release. */
-    private static void legacyMergeSort(Object[] a,
-                                        int fromIndex, int toIndex) {
-        Object[] aux = copyOfRange(a, fromIndex, toIndex);
-        mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
-    }
-
-    /**
-     * Tuning parameter: list size at or below which insertion sort will be
-     * used in preference to mergesort.
-     * To be removed in a future release.
-     */
-    private static final int INSERTIONSORT_THRESHOLD = 7;
-
-    /**
-     * Src is the source array that starts at index 0
-     * Dest is the (possibly larger) array destination with a possible offset
-     * low is the index in dest to start sorting
-     * high is the end index in dest to end sorting
-     * off is the offset to generate corresponding low, high in src
-     * To be removed in a future release.
-     */
-    @SuppressWarnings({"unchecked", "rawtypes"})
-    private static void mergeSort(Object[] src,
-                                  Object[] dest,
-                                  int low,
-                                  int high,
-                                  int off) {
-        int length = high - low;
-
-        // Insertion sort on smallest arrays
-        if (length < INSERTIONSORT_THRESHOLD) {
-            for (int i=low; i<high; i++)
-                for (int j=i; j>low &&
-                         ((Comparable) dest[j-1]).compareTo(dest[j])>0; j--)
-                    swap(dest, j, j-1);
-            return;
-        }
-
-        // Recursively sort halves of dest into src
-        int destLow  = low;
-        int destHigh = high;
-        low  += off;
-        high += off;
-        int mid = (low + high) >>> 1;
-        mergeSort(dest, src, low, mid, -off);
-        mergeSort(dest, src, mid, high, -off);
-
-        // If list is already sorted, just copy from src to dest.  This is an
-        // optimization that results in faster sorts for nearly ordered lists.
-        if (((Comparable)src[mid-1]).compareTo(src[mid]) <= 0) {
-            System.arraycopy(src, low, dest, destLow, length);
-            return;
-        }
-
-        // Merge sorted halves (now in src) into dest
-        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
-            if (q >= high || p < mid && ((Comparable)src[p]).compareTo(src[q])<=0)
-                dest[i] = src[p++];
-            else
-                dest[i] = src[q++];
-        }
-    }
-
-    /**
-     * Swaps x[a] with x[b].
-     */
-    private static void swap(Object[] x, int a, int b) {
-        Object t = x[a];
-        x[a] = x[b];
-        x[b] = t;
-    }
-
-    /**
-     * Sorts the specified array of objects according to the order induced by
-     * the specified comparator.  All elements in the array must be
-     * <i>mutually comparable</i> by the specified comparator (that is,
-     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
-     * for any elements {@code e1} and {@code e2} in the array).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * <p>Implementation note: This implementation is a stable, adaptive,
-     * iterative mergesort that requires far fewer than n lg(n) comparisons
-     * when the input array is partially sorted, while offering the
-     * performance of a traditional mergesort when the input array is
-     * randomly ordered.  If the input array is nearly sorted, the
-     * implementation requires approximately n comparisons.  Temporary
-     * storage requirements vary from a small constant for nearly sorted
-     * input arrays to n/2 object references for randomly ordered input
-     * arrays.
-     *
-     * <p>The implementation takes equal advantage of ascending and
-     * descending order in its input array, and can take advantage of
-     * ascending and descending order in different parts of the same
-     * input array.  It is well-suited to merging two or more sorted arrays:
-     * simply concatenate the arrays and sort the resulting array.
-     *
-     * <p>The implementation was adapted from Tim Peters's list sort for Python
-     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
-     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
-     * Sorting and Information Theoretic Complexity", in Proceedings of the
-     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
-     * January 1993.
-     *
-     * @param <T> the class of the objects to be sorted
-     * @param a the array to be sorted
-     * @param c the comparator to determine the order of the array.  A
-     *        {@code null} value indicates that the elements'
-     *        {@linkplain Comparable natural ordering} should be used.
-     * @throws ClassCastException if the array contains elements that are
-     *         not <i>mutually comparable</i> using the specified comparator
-     * @throws IllegalArgumentException (optional) if the comparator is
-     *         found to violate the {@link Comparator} contract
-     */
-    public static <T> void sort(T[] a, Comparator<? super T> c) {
-        if (c == null) {
-            sort(a);
-        } else {
-            if (LegacyMergeSort.userRequested)
-                legacyMergeSort(a, c);
-            else
-                TimSort.sort(a, 0, a.length, c, null, 0, 0);
-        }
-    }
-
-    /** To be removed in a future release. */
-    private static <T> void legacyMergeSort(T[] a, Comparator<? super T> c) {
-        T[] aux = a.clone();
-        if (c==null)
-            mergeSort(aux, a, 0, a.length, 0);
-        else
-            mergeSort(aux, a, 0, a.length, 0, c);
-    }
-
-    /**
-     * Sorts the specified range of the specified array of objects according
-     * to the order induced by the specified comparator.  The range to be
-     * sorted extends from index {@code fromIndex}, inclusive, to index
-     * {@code toIndex}, exclusive.  (If {@code fromIndex==toIndex}, the
-     * range to be sorted is empty.)  All elements in the range must be
-     * <i>mutually comparable</i> by the specified comparator (that is,
-     * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
-     * for any elements {@code e1} and {@code e2} in the range).
-     *
-     * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
-     * not be reordered as a result of the sort.
-     *
-     * <p>Implementation note: This implementation is a stable, adaptive,
-     * iterative mergesort that requires far fewer than n lg(n) comparisons
-     * when the input array is partially sorted, while offering the
-     * performance of a traditional mergesort when the input array is
-     * randomly ordered.  If the input array is nearly sorted, the
-     * implementation requires approximately n comparisons.  Temporary
-     * storage requirements vary from a small constant for nearly sorted
-     * input arrays to n/2 object references for randomly ordered input
-     * arrays.
-     *
-     * <p>The implementation takes equal advantage of ascending and
-     * descending order in its input array, and can take advantage of
-     * ascending and descending order in different parts of the same
-     * input array.  It is well-suited to merging two or more sorted arrays:
-     * simply concatenate the arrays and sort the resulting array.
-     *
-     * <p>The implementation was adapted from Tim Peters's list sort for Python
-     * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
-     * TimSort</a>).  It uses techniques from Peter McIlroy's "Optimistic
-     * Sorting and Information Theoretic Complexity", in Proceedings of the
-     * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
-     * January 1993.
-     *
-     * @param <T> the class of the objects to be sorted
-     * @param a the array to be sorted
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        sorted
-     * @param toIndex the index of the last element (exclusive) to be sorted
-     * @param c the comparator to determine the order of the array.  A
-     *        {@code null} value indicates that the elements'
-     *        {@linkplain Comparable natural ordering} should be used.
-     * @throws ClassCastException if the array contains elements that are not
-     *         <i>mutually comparable</i> using the specified comparator.
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex} or
-     *         (optional) if the comparator is found to violate the
-     *         {@link Comparator} contract
-     * @throws ArrayIndexOutOfBoundsException if {@code fromIndex < 0} or
-     *         {@code toIndex > a.length}
-     */
-    public static <T> void sort(T[] a, int fromIndex, int toIndex,
-                                Comparator<? super T> c) {
-        if (c == null) {
-            sort(a, fromIndex, toIndex);
-        } else {
-            rangeCheck(a.length, fromIndex, toIndex);
-            if (LegacyMergeSort.userRequested)
-                legacyMergeSort(a, fromIndex, toIndex, c);
-            else
-                TimSort.sort(a, fromIndex, toIndex, c, null, 0, 0);
-        }
-    }
-
-    /** To be removed in a future release. */
-    private static <T> void legacyMergeSort(T[] a, int fromIndex, int toIndex,
-                                            Comparator<? super T> c) {
-        T[] aux = copyOfRange(a, fromIndex, toIndex);
-        if (c==null)
-            mergeSort(aux, a, fromIndex, toIndex, -fromIndex);
-        else
-            mergeSort(aux, a, fromIndex, toIndex, -fromIndex, c);
-    }
-
-    /**
-     * Src is the source array that starts at index 0
-     * Dest is the (possibly larger) array destination with a possible offset
-     * low is the index in dest to start sorting
-     * high is the end index in dest to end sorting
-     * off is the offset into src corresponding to low in dest
-     * To be removed in a future release.
-     */
-    @SuppressWarnings({"rawtypes", "unchecked"})
-    private static void mergeSort(Object[] src,
-                                  Object[] dest,
-                                  int low, int high, int off,
-                                  Comparator c) {
-        int length = high - low;
-
-        // Insertion sort on smallest arrays
-        if (length < INSERTIONSORT_THRESHOLD) {
-            for (int i=low; i<high; i++)
-                for (int j=i; j>low && c.compare(dest[j-1], dest[j])>0; j--)
-                    swap(dest, j, j-1);
-            return;
-        }
-
-        // Recursively sort halves of dest into src
-        int destLow  = low;
-        int destHigh = high;
-        low  += off;
-        high += off;
-        int mid = (low + high) >>> 1;
-        mergeSort(dest, src, low, mid, -off, c);
-        mergeSort(dest, src, mid, high, -off, c);
-
-        // If list is already sorted, just copy from src to dest.  This is an
-        // optimization that results in faster sorts for nearly ordered lists.
-        if (c.compare(src[mid-1], src[mid]) <= 0) {
-           System.arraycopy(src, low, dest, destLow, length);
-           return;
-        }
-
-        // Merge sorted halves (now in src) into dest
-        for(int i = destLow, p = low, q = mid; i < destHigh; i++) {
-            if (q >= high || p < mid && c.compare(src[p], src[q]) <= 0)
-                dest[i] = src[p++];
-            else
-                dest[i] = src[q++];
-        }
-    }
-
-    // Parallel prefix
-
-    /**
-     * Cumulates, in parallel, each element of the given array in place,
-     * using the supplied function. For example if the array initially
-     * holds {@code [2, 1, 0, 3]} and the operation performs addition,
-     * then upon return the array holds {@code [2, 3, 3, 6]}.
-     * Parallel prefix computation is usually more efficient than
-     * sequential loops for large arrays.
-     *
-     * @param <T> the class of the objects in the array
-     * @param array the array, which is modified in-place by this method
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static <T> void parallelPrefix(T[] array, BinaryOperator<T> op) {
-        Objects.requireNonNull(op);
-        if (array.length > 0)
-            new ArrayPrefixHelpers.CumulateTask<>
-                    (null, op, array, 0, array.length).invoke();
-    }
-
-    /**
-     * Performs {@link #parallelPrefix(Object[], BinaryOperator)}
-     * for the given subrange of the array.
-     *
-     * @param <T> the class of the objects in the array
-     * @param array the array
-     * @param fromIndex the index of the first element, inclusive
-     * @param toIndex the index of the last element, exclusive
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > array.length}
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static <T> void parallelPrefix(T[] array, int fromIndex,
-                                          int toIndex, BinaryOperator<T> op) {
-        Objects.requireNonNull(op);
-        rangeCheck(array.length, fromIndex, toIndex);
-        if (fromIndex < toIndex)
-            new ArrayPrefixHelpers.CumulateTask<>
-                    (null, op, array, fromIndex, toIndex).invoke();
-    }
-
-    /**
-     * Cumulates, in parallel, each element of the given array in place,
-     * using the supplied function. For example if the array initially
-     * holds {@code [2, 1, 0, 3]} and the operation performs addition,
-     * then upon return the array holds {@code [2, 3, 3, 6]}.
-     * Parallel prefix computation is usually more efficient than
-     * sequential loops for large arrays.
-     *
-     * @param array the array, which is modified in-place by this method
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static void parallelPrefix(long[] array, LongBinaryOperator op) {
-        Objects.requireNonNull(op);
-        if (array.length > 0)
-            new ArrayPrefixHelpers.LongCumulateTask
-                    (null, op, array, 0, array.length).invoke();
-    }
-
-    /**
-     * Performs {@link #parallelPrefix(long[], LongBinaryOperator)}
-     * for the given subrange of the array.
-     *
-     * @param array the array
-     * @param fromIndex the index of the first element, inclusive
-     * @param toIndex the index of the last element, exclusive
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > array.length}
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static void parallelPrefix(long[] array, int fromIndex,
-                                      int toIndex, LongBinaryOperator op) {
-        Objects.requireNonNull(op);
-        rangeCheck(array.length, fromIndex, toIndex);
-        if (fromIndex < toIndex)
-            new ArrayPrefixHelpers.LongCumulateTask
-                    (null, op, array, fromIndex, toIndex).invoke();
-    }
-
-    /**
-     * Cumulates, in parallel, each element of the given array in place,
-     * using the supplied function. For example if the array initially
-     * holds {@code [2.0, 1.0, 0.0, 3.0]} and the operation performs addition,
-     * then upon return the array holds {@code [2.0, 3.0, 3.0, 6.0]}.
-     * Parallel prefix computation is usually more efficient than
-     * sequential loops for large arrays.
-     *
-     * <p> Because floating-point operations may not be strictly associative,
-     * the returned result may not be identical to the value that would be
-     * obtained if the operation was performed sequentially.
-     *
-     * @param array the array, which is modified in-place by this method
-     * @param op a side-effect-free function to perform the cumulation
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static void parallelPrefix(double[] array, DoubleBinaryOperator op) {
-        Objects.requireNonNull(op);
-        if (array.length > 0)
-            new ArrayPrefixHelpers.DoubleCumulateTask
-                    (null, op, array, 0, array.length).invoke();
-    }
-
-    /**
-     * Performs {@link #parallelPrefix(double[], DoubleBinaryOperator)}
-     * for the given subrange of the array.
-     *
-     * @param array the array
-     * @param fromIndex the index of the first element, inclusive
-     * @param toIndex the index of the last element, exclusive
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > array.length}
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static void parallelPrefix(double[] array, int fromIndex,
-                                      int toIndex, DoubleBinaryOperator op) {
-        Objects.requireNonNull(op);
-        rangeCheck(array.length, fromIndex, toIndex);
-        if (fromIndex < toIndex)
-            new ArrayPrefixHelpers.DoubleCumulateTask
-                    (null, op, array, fromIndex, toIndex).invoke();
-    }
-
-    /**
-     * Cumulates, in parallel, each element of the given array in place,
-     * using the supplied function. For example if the array initially
-     * holds {@code [2, 1, 0, 3]} and the operation performs addition,
-     * then upon return the array holds {@code [2, 3, 3, 6]}.
-     * Parallel prefix computation is usually more efficient than
-     * sequential loops for large arrays.
-     *
-     * @param array the array, which is modified in-place by this method
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static void parallelPrefix(int[] array, IntBinaryOperator op) {
-        Objects.requireNonNull(op);
-        if (array.length > 0)
-            new ArrayPrefixHelpers.IntCumulateTask
-                    (null, op, array, 0, array.length).invoke();
-    }
-
-    /**
-     * Performs {@link #parallelPrefix(int[], IntBinaryOperator)}
-     * for the given subrange of the array.
-     *
-     * @param array the array
-     * @param fromIndex the index of the first element, inclusive
-     * @param toIndex the index of the last element, exclusive
-     * @param op a side-effect-free, associative function to perform the
-     * cumulation
-     * @throws IllegalArgumentException if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *     if {@code fromIndex < 0} or {@code toIndex > array.length}
-     * @throws NullPointerException if the specified array or function is null
-     * @since 1.8
-     */
-    public static void parallelPrefix(int[] array, int fromIndex,
-                                      int toIndex, IntBinaryOperator op) {
-        Objects.requireNonNull(op);
-        rangeCheck(array.length, fromIndex, toIndex);
-        if (fromIndex < toIndex)
-            new ArrayPrefixHelpers.IntCumulateTask
-                    (null, op, array, fromIndex, toIndex).invoke();
-    }
-
-    // Searching
-
-    /**
-     * Searches the specified array of longs for the specified value using the
-     * binary search algorithm.  The array must be sorted (as
-     * by the {@link #sort(long[])} method) prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(long[] a, long key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of longs for the specified value using the
-     * binary search algorithm.
-     * The range must be sorted (as
-     * by the {@link #sort(long[], int, int)} method)
-     * prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(long[] a, int fromIndex, int toIndex,
-                                   long key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(long[] a, int fromIndex, int toIndex,
-                                     long key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            long midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;
-            else if (midVal > key)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array of ints for the specified value using the
-     * binary search algorithm.  The array must be sorted (as
-     * by the {@link #sort(int[])} method) prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(int[] a, int key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of ints for the specified value using the
-     * binary search algorithm.
-     * The range must be sorted (as
-     * by the {@link #sort(int[], int, int)} method)
-     * prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(int[] a, int fromIndex, int toIndex,
-                                   int key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(int[] a, int fromIndex, int toIndex,
-                                     int key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            int midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;
-            else if (midVal > key)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array of shorts for the specified value using
-     * the binary search algorithm.  The array must be sorted
-     * (as by the {@link #sort(short[])} method) prior to making this call.  If
-     * it is not sorted, the results are undefined.  If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(short[] a, short key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of shorts for the specified value using
-     * the binary search algorithm.
-     * The range must be sorted
-     * (as by the {@link #sort(short[], int, int)} method)
-     * prior to making this call.  If
-     * it is not sorted, the results are undefined.  If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(short[] a, int fromIndex, int toIndex,
-                                   short key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(short[] a, int fromIndex, int toIndex,
-                                     short key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            short midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;
-            else if (midVal > key)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array of chars for the specified value using the
-     * binary search algorithm.  The array must be sorted (as
-     * by the {@link #sort(char[])} method) prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(char[] a, char key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of chars for the specified value using the
-     * binary search algorithm.
-     * The range must be sorted (as
-     * by the {@link #sort(char[], int, int)} method)
-     * prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(char[] a, int fromIndex, int toIndex,
-                                   char key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(char[] a, int fromIndex, int toIndex,
-                                     char key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            char midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;
-            else if (midVal > key)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array of bytes for the specified value using the
-     * binary search algorithm.  The array must be sorted (as
-     * by the {@link #sort(byte[])} method) prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(byte[] a, byte key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of bytes for the specified value using the
-     * binary search algorithm.
-     * The range must be sorted (as
-     * by the {@link #sort(byte[], int, int)} method)
-     * prior to making this call.  If it
-     * is not sorted, the results are undefined.  If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(byte[] a, int fromIndex, int toIndex,
-                                   byte key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(byte[] a, int fromIndex, int toIndex,
-                                     byte key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            byte midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;
-            else if (midVal > key)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array of doubles for the specified value using
-     * the binary search algorithm.  The array must be sorted
-     * (as by the {@link #sort(double[])} method) prior to making this call.
-     * If it is not sorted, the results are undefined.  If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.  This method considers all NaN values to be
-     * equivalent and equal.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(double[] a, double key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of doubles for the specified value using
-     * the binary search algorithm.
-     * The range must be sorted
-     * (as by the {@link #sort(double[], int, int)} method)
-     * prior to making this call.
-     * If it is not sorted, the results are undefined.  If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found.  This method considers all NaN values to be
-     * equivalent and equal.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(double[] a, int fromIndex, int toIndex,
-                                   double key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(double[] a, int fromIndex, int toIndex,
-                                     double key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            double midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;  // Neither val is NaN, thisVal is smaller
-            else if (midVal > key)
-                high = mid - 1; // Neither val is NaN, thisVal is larger
-            else {
-                long midBits = Double.doubleToLongBits(midVal);
-                long keyBits = Double.doubleToLongBits(key);
-                if (midBits == keyBits)     // Values are equal
-                    return mid;             // Key found
-                else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
-                    low = mid + 1;
-                else                        // (0.0, -0.0) or (NaN, !NaN)
-                    high = mid - 1;
-            }
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array of floats for the specified value using
-     * the binary search algorithm. The array must be sorted
-     * (as by the {@link #sort(float[])} method) prior to making this call. If
-     * it is not sorted, the results are undefined. If the array contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found. This method considers all NaN values to be
-     * equivalent and equal.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key. Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     */
-    public static int binarySearch(float[] a, float key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array of floats for the specified value using
-     * the binary search algorithm.
-     * The range must be sorted
-     * (as by the {@link #sort(float[], int, int)} method)
-     * prior to making this call. If
-     * it is not sorted, the results are undefined. If the range contains
-     * multiple elements with the specified value, there is no guarantee which
-     * one will be found. This method considers all NaN values to be
-     * equivalent and equal.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>. The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key. Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(float[] a, int fromIndex, int toIndex,
-                                   float key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(float[] a, int fromIndex, int toIndex,
-                                     float key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            float midVal = a[mid];
-
-            if (midVal < key)
-                low = mid + 1;  // Neither val is NaN, thisVal is smaller
-            else if (midVal > key)
-                high = mid - 1; // Neither val is NaN, thisVal is larger
-            else {
-                int midBits = Float.floatToIntBits(midVal);
-                int keyBits = Float.floatToIntBits(key);
-                if (midBits == keyBits)     // Values are equal
-                    return mid;             // Key found
-                else if (midBits < keyBits) // (-0.0, 0.0) or (!NaN, NaN)
-                    low = mid + 1;
-                else                        // (0.0, -0.0) or (NaN, !NaN)
-                    high = mid - 1;
-            }
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array for the specified object using the binary
-     * search algorithm. The array must be sorted into ascending order
-     * according to the
-     * {@linkplain Comparable natural ordering}
-     * of its elements (as by the
-     * {@link #sort(Object[])} method) prior to making this call.
-     * If it is not sorted, the results are undefined.
-     * (If the array contains elements that are not mutually comparable (for
-     * example, strings and integers), it <i>cannot</i> be sorted according
-     * to the natural ordering of its elements, hence results are undefined.)
-     * If the array contains multiple
-     * elements equal to the specified object, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws ClassCastException if the search key is not comparable to the
-     *         elements of the array.
-     */
-    public static int binarySearch(Object[] a, Object key) {
-        return binarySearch0(a, 0, a.length, key);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array for the specified object using the binary
-     * search algorithm.
-     * The range must be sorted into ascending order
-     * according to the
-     * {@linkplain Comparable natural ordering}
-     * of its elements (as by the
-     * {@link #sort(Object[], int, int)} method) prior to making this
-     * call.  If it is not sorted, the results are undefined.
-     * (If the range contains elements that are not mutually comparable (for
-     * example, strings and integers), it <i>cannot</i> be sorted according
-     * to the natural ordering of its elements, hence results are undefined.)
-     * If the range contains multiple
-     * elements equal to the specified object, there is no guarantee which
-     * one will be found.
-     *
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws ClassCastException if the search key is not comparable to the
-     *         elements of the array within the specified range.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static int binarySearch(Object[] a, int fromIndex, int toIndex,
-                                   Object key) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key);
-    }
-
-    // Like public version, but without range checks.
-    private static int binarySearch0(Object[] a, int fromIndex, int toIndex,
-                                     Object key) {
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            @SuppressWarnings("rawtypes")
-            Comparable midVal = (Comparable)a[mid];
-            @SuppressWarnings("unchecked")
-            int cmp = midVal.compareTo(key);
-
-            if (cmp < 0)
-                low = mid + 1;
-            else if (cmp > 0)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    /**
-     * Searches the specified array for the specified object using the binary
-     * search algorithm.  The array must be sorted into ascending order
-     * according to the specified comparator (as by the
-     * {@link #sort(Object[], Comparator) sort(T[], Comparator)}
-     * method) prior to making this call.  If it is
-     * not sorted, the results are undefined.
-     * If the array contains multiple
-     * elements equal to the specified object, there is no guarantee which one
-     * will be found.
-     *
-     * @param <T> the class of the objects in the array
-     * @param a the array to be searched
-     * @param key the value to be searched for
-     * @param c the comparator by which the array is ordered.  A
-     *        <tt>null</tt> value indicates that the elements'
-     *        {@linkplain Comparable natural ordering} should be used.
-     * @return index of the search key, if it is contained in the array;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element greater than the key, or <tt>a.length</tt> if all
-     *         elements in the array are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws ClassCastException if the array contains elements that are not
-     *         <i>mutually comparable</i> using the specified comparator,
-     *         or the search key is not comparable to the
-     *         elements of the array using this comparator.
-     */
-    public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c) {
-        return binarySearch0(a, 0, a.length, key, c);
-    }
-
-    /**
-     * Searches a range of
-     * the specified array for the specified object using the binary
-     * search algorithm.
-     * The range must be sorted into ascending order
-     * according to the specified comparator (as by the
-     * {@link #sort(Object[], int, int, Comparator)
-     * sort(T[], int, int, Comparator)}
-     * method) prior to making this call.
-     * If it is not sorted, the results are undefined.
-     * If the range contains multiple elements equal to the specified object,
-     * there is no guarantee which one will be found.
-     *
-     * @param <T> the class of the objects in the array
-     * @param a the array to be searched
-     * @param fromIndex the index of the first element (inclusive) to be
-     *          searched
-     * @param toIndex the index of the last element (exclusive) to be searched
-     * @param key the value to be searched for
-     * @param c the comparator by which the array is ordered.  A
-     *        <tt>null</tt> value indicates that the elements'
-     *        {@linkplain Comparable natural ordering} should be used.
-     * @return index of the search key, if it is contained in the array
-     *         within the specified range;
-     *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
-     *         <i>insertion point</i> is defined as the point at which the
-     *         key would be inserted into the array: the index of the first
-     *         element in the range greater than the key,
-     *         or <tt>toIndex</tt> if all
-     *         elements in the range are less than the specified key.  Note
-     *         that this guarantees that the return value will be &gt;= 0 if
-     *         and only if the key is found.
-     * @throws ClassCastException if the range contains elements that are not
-     *         <i>mutually comparable</i> using the specified comparator,
-     *         or the search key is not comparable to the
-     *         elements in the range using this comparator.
-     * @throws IllegalArgumentException
-     *         if {@code fromIndex > toIndex}
-     * @throws ArrayIndexOutOfBoundsException
-     *         if {@code fromIndex < 0 or toIndex > a.length}
-     * @since 1.6
-     */
-    public static <T> int binarySearch(T[] a, int fromIndex, int toIndex,
-                                       T key, Comparator<? super T> c) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        return binarySearch0(a, fromIndex, toIndex, key, c);
-    }
-
-    // Like public version, but without range checks.
-    private static <T> int binarySearch0(T[] a, int fromIndex, int toIndex,
-                                         T key, Comparator<? super T> c) {
-        if (c == null) {
-            return binarySearch0(a, fromIndex, toIndex, key);
-        }
-        int low = fromIndex;
-        int high = toIndex - 1;
-
-        while (low <= high) {
-            int mid = (low + high) >>> 1;
-            T midVal = a[mid];
-            int cmp = c.compare(midVal, key);
-            if (cmp < 0)
-                low = mid + 1;
-            else if (cmp > 0)
-                high = mid - 1;
-            else
-                return mid; // key found
-        }
-        return -(low + 1);  // key not found.
-    }
-
-    // Equality Testing
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of longs are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(long[] a, long[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (a[i] != a2[i])
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of ints are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(int[] a, int[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (a[i] != a2[i])
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of shorts are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(short[] a, short a2[]) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (a[i] != a2[i])
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of chars are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(char[] a, char[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (a[i] != a2[i])
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of bytes are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(byte[] a, byte[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (a[i] != a2[i])
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of booleans are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(boolean[] a, boolean[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (a[i] != a2[i])
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of doubles are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * Two doubles <tt>d1</tt> and <tt>d2</tt> are considered equal if:
-     * <pre>    <tt>new Double(d1).equals(new Double(d2))</tt></pre>
-     * (Unlike the <tt>==</tt> operator, this method considers
-     * <tt>NaN</tt> equals to itself, and 0.0d unequal to -0.0d.)
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     * @see Double#equals(Object)
-     */
-    public static boolean equals(double[] a, double[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (Double.doubleToLongBits(a[i])!=Double.doubleToLongBits(a2[i]))
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of floats are
-     * <i>equal</i> to one another.  Two arrays are considered equal if both
-     * arrays contain the same number of elements, and all corresponding pairs
-     * of elements in the two arrays are equal.  In other words, two arrays
-     * are equal if they contain the same elements in the same order.  Also,
-     * two array references are considered equal if both are <tt>null</tt>.
-     *
-     * Two floats <tt>f1</tt> and <tt>f2</tt> are considered equal if:
-     * <pre>    <tt>new Float(f1).equals(new Float(f2))</tt></pre>
-     * (Unlike the <tt>==</tt> operator, this method considers
-     * <tt>NaN</tt> equals to itself, and 0.0f unequal to -0.0f.)
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     * @see Float#equals(Object)
-     */
-    public static boolean equals(float[] a, float[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++)
-            if (Float.floatToIntBits(a[i])!=Float.floatToIntBits(a2[i]))
-                return false;
-
-        return true;
-    }
-
-    /**
-     * Returns <tt>true</tt> if the two specified arrays of Objects are
-     * <i>equal</i> to one another.  The two arrays are considered equal if
-     * both arrays contain the same number of elements, and all corresponding
-     * pairs of elements in the two arrays are equal.  Two objects <tt>e1</tt>
-     * and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null
-     * : e1.equals(e2))</tt>.  In other words, the two arrays are equal if
-     * they contain the same elements in the same order.  Also, two array
-     * references are considered equal if both are <tt>null</tt>.
-     *
-     * @param a one array to be tested for equality
-     * @param a2 the other array to be tested for equality
-     * @return <tt>true</tt> if the two arrays are equal
-     */
-    public static boolean equals(Object[] a, Object[] a2) {
-        if (a==a2)
-            return true;
-        if (a==null || a2==null)
-            return false;
-
-        int length = a.length;
-        if (a2.length != length)
-            return false;
-
-        for (int i=0; i<length; i++) {
-            Object o1 = a[i];
-            Object o2 = a2[i];
-            if (!(o1==null ? o2==null : o1.equals(o2)))
-                return false;
-        }
-
-        return true;
-    }
-
-    // Filling
-
-    /**
-     * Assigns the specified long value to each element of the specified array
-     * of longs.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(long[] a, long val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified long value to each element of the specified
-     * range of the specified array of longs.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(long[] a, int fromIndex, int toIndex, long val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified int value to each element of the specified array
-     * of ints.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(int[] a, int val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified int value to each element of the specified
-     * range of the specified array of ints.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(int[] a, int fromIndex, int toIndex, int val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified short value to each element of the specified array
-     * of shorts.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(short[] a, short val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified short value to each element of the specified
-     * range of the specified array of shorts.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(short[] a, int fromIndex, int toIndex, short val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified char value to each element of the specified array
-     * of chars.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(char[] a, char val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified char value to each element of the specified
-     * range of the specified array of chars.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(char[] a, int fromIndex, int toIndex, char val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified byte value to each element of the specified array
-     * of bytes.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(byte[] a, byte val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified byte value to each element of the specified
-     * range of the specified array of bytes.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(byte[] a, int fromIndex, int toIndex, byte val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified boolean value to each element of the specified
-     * array of booleans.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(boolean[] a, boolean val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified boolean value to each element of the specified
-     * range of the specified array of booleans.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(boolean[] a, int fromIndex, int toIndex,
-                            boolean val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified double value to each element of the specified
-     * array of doubles.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(double[] a, double val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified double value to each element of the specified
-     * range of the specified array of doubles.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(double[] a, int fromIndex, int toIndex,double val){
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified float value to each element of the specified array
-     * of floats.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     */
-    public static void fill(float[] a, float val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified float value to each element of the specified
-     * range of the specified array of floats.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     */
-    public static void fill(float[] a, int fromIndex, int toIndex, float val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified Object reference to each element of the specified
-     * array of Objects.
-     *
-     * @param a the array to be filled
-     * @param val the value to be stored in all elements of the array
-     * @throws ArrayStoreException if the specified value is not of a
-     *         runtime type that can be stored in the specified array
-     */
-    public static void fill(Object[] a, Object val) {
-        for (int i = 0, len = a.length; i < len; i++)
-            a[i] = val;
-    }
-
-    /**
-     * Assigns the specified Object reference to each element of the specified
-     * range of the specified array of Objects.  The range to be filled
-     * extends from index <tt>fromIndex</tt>, inclusive, to index
-     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
-     * range to be filled is empty.)
-     *
-     * @param a the array to be filled
-     * @param fromIndex the index of the first element (inclusive) to be
-     *        filled with the specified value
-     * @param toIndex the index of the last element (exclusive) to be
-     *        filled with the specified value
-     * @param val the value to be stored in all elements of the array
-     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
-     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
-     *         <tt>toIndex &gt; a.length</tt>
-     * @throws ArrayStoreException if the specified value is not of a
-     *         runtime type that can be stored in the specified array
-     */
-    public static void fill(Object[] a, int fromIndex, int toIndex, Object val) {
-        rangeCheck(a.length, fromIndex, toIndex);
-        for (int i = fromIndex; i < toIndex; i++)
-            a[i] = val;
-    }
-
-    // Cloning
-
-    /**
-     * Copies the specified array, truncating or padding with nulls (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>null</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     * The resulting array is of exactly the same class as the original array.
-     *
-     * @param <T> the class of the objects in the array
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with nulls
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    @SuppressWarnings("unchecked")
-    public static <T> T[] copyOf(T[] original, int newLength) {
-        return (T[]) copyOf(original, newLength, original.getClass());
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with nulls (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>null</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     * The resulting array is of the class <tt>newType</tt>.
-     *
-     * @param <U> the class of the objects in the original array
-     * @param <T> the class of the objects in the returned array
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @param newType the class of the copy to be returned
-     * @return a copy of the original array, truncated or padded with nulls
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @throws ArrayStoreException if an element copied from
-     *     <tt>original</tt> is not of a runtime type that can be stored in
-     *     an array of class <tt>newType</tt>
-     * @since 1.6
-     */
-    public static <T,U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
-        @SuppressWarnings("unchecked")
-        T[] copy = ((Object)newType == (Object)Object[].class)
-            ? (T[]) new Object[newLength]
-            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with zeros (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>(byte)0</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with zeros
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static byte[] copyOf(byte[] original, int newLength) {
-        byte[] copy = new byte[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with zeros (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>(short)0</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with zeros
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static short[] copyOf(short[] original, int newLength) {
-        short[] copy = new short[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with zeros (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>0</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with zeros
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static int[] copyOf(int[] original, int newLength) {
-        int[] copy = new int[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with zeros (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>0L</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with zeros
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static long[] copyOf(long[] original, int newLength) {
-        long[] copy = new long[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with null characters (if necessary)
-     * so the copy has the specified length.  For all indices that are valid
-     * in both the original array and the copy, the two arrays will contain
-     * identical values.  For any indices that are valid in the copy but not
-     * the original, the copy will contain <tt>'\\u000'</tt>.  Such indices
-     * will exist if and only if the specified length is greater than that of
-     * the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with null characters
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static char[] copyOf(char[] original, int newLength) {
-        char[] copy = new char[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with zeros (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>0f</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with zeros
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static float[] copyOf(float[] original, int newLength) {
-        float[] copy = new float[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with zeros (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>0d</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
-     *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with zeros
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static double[] copyOf(double[] original, int newLength) {
-        double[] copy = new double[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified array, truncating or padding with <tt>false</tt> (if necessary)
-     * so the copy has the specified length.  For all indices that are
-     * valid in both the original array and the copy, the two arrays will
-     * contain identical values.  For any indices that are valid in the
-     * copy but not the original, the copy will contain <tt>false</tt>.
-     * Such indices will exist if and only if the specified length
-     * is greater than that of the original array.
+     * Returns <tt>true</tt> if the two specified arrays of elements are
+     * <i>equal</i> to one another.  The two arrays are considered equal if
+     * both arrays contain the same number of elements, and all corresponding
+     * pairs of elements in the two arrays are equal.  Two objects <tt>e1</tt>
+     * and <tt>e2</tt> are considered <i>equal</i> if <tt>(e1==null ? e2==null
+     * : e1.equals(e2))</tt>.  In other words, the two arrays are equal if
+     * they contain the same elements in the same order.  Also, two array
+     * references are considered equal if both are <tt>null</tt>.
      *
-     * @param original the array to be copied
-     * @param newLength the length of the copy to be returned
-     * @return a copy of the original array, truncated or padded with false elements
-     *     to obtain the specified length
-     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
+     * @param a one array to be tested for equality
+     * @param a2 the other array to be tested for equality
+     * @return <tt>true</tt> if the two arrays are equal
      */
-    public static boolean[] copyOf(boolean[] original, int newLength) {
-        boolean[] copy = new boolean[newLength];
-        System.arraycopy(original, 0, copy, 0,
-                         Math.min(original.length, newLength));
-        return copy;
-    }
+    public static <any T> boolean equals(T[] a, T[] a2) {
+        if (a==a2)
+            return true;
+        if (a==null || a2==null)
+            return false;
 
-    /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>null</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
-     * <p>
-     * The resulting array is of exactly the same class as the original array.
-     *
-     * @param <T> the class of the objects in the array
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with nulls to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    @SuppressWarnings("unchecked")
-    public static <T> T[] copyOfRange(T[] original, int from, int to) {
-        return copyOfRange(original, from, to, (Class<? extends T[]>) original.getClass());
-    }
+        int length = a.length;
+        if (a2.length != length)
+            return false;
 
-    /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>null</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
-     * The resulting array is of the class <tt>newType</tt>.
-     *
-     * @param <U> the class of the objects in the original array
-     * @param <T> the class of the objects in the returned array
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @param newType the class of the copy to be returned
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with nulls to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @throws ArrayStoreException if an element copied from
-     *     <tt>original</tt> is not of a runtime type that can be stored in
-     *     an array of class <tt>newType</tt>.
-     * @since 1.6
-     */
-    public static <T,U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        @SuppressWarnings("unchecked")
-        T[] copy = ((Object)newType == (Object)Object[].class)
-            ? (T[]) new Object[newLength]
-            : (T[]) Array.newInstance(newType.getComponentType(), newLength);
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
+        for (int i=0; i<length; i++) {
+            if (!Any.equals(a[i], a2[i]))
+                return false;
     }
 
-    /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>(byte)0</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
-     *
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with zeros to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static byte[] copyOfRange(byte[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        byte[] copy = new byte[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
+        return true;
     }
 
-    /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>(short)0</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
-     *
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with zeros to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
-     */
-    public static short[] copyOfRange(short[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        short[] copy = new short[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
-    }
+    // Filling
 
     /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>0</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
+     * Assigns the specified Object reference to each element of the specified
+     * array of Objects.
      *
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with zeros to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
+     * @param a the array to be filled
+     * @param val the value to be stored in all elements of the array
+     * @throws ArrayStoreException if the specified value is not of a
+     *         runtime type that can be stored in the specified array
      */
-    public static int[] copyOfRange(int[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        int[] copy = new int[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
-    }
-
-    /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>0L</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
-     *
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with zeros to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
-     * @throws NullPointerException if <tt>original</tt> is null
-     * @since 1.6
+    public static <any T> void fill(T[] a, T val) {
+        for (int i = 0, len = a.length; i < len; i++)
+            a[i] = val;
+    }
+
+    /**
+     * Assigns the specified Object reference to each element of the specified
+     * range of the specified array of Objects.  The range to be filled
+     * extends from index <tt>fromIndex</tt>, inclusive, to index
+     * <tt>toIndex</tt>, exclusive.  (If <tt>fromIndex==toIndex</tt>, the
+     * range to be filled is empty.)
+     *
+     * @param a the array to be filled
+     * @param fromIndex the index of the first element (inclusive) to be
+     *        filled with the specified value
+     * @param toIndex the index of the last element (exclusive) to be
+     *        filled with the specified value
+     * @param val the value to be stored in all elements of the array
+     * @throws IllegalArgumentException if <tt>fromIndex &gt; toIndex</tt>
+     * @throws ArrayIndexOutOfBoundsException if <tt>fromIndex &lt; 0</tt> or
+     *         <tt>toIndex &gt; a.length</tt>
+     * @throws ArrayStoreException if the specified value is not of a
+     *         runtime type that can be stored in the specified array
      */
-    public static long[] copyOfRange(long[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        long[] copy = new long[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
+    public static <any T> void fill(T[] a, int fromIndex, int toIndex, T val) {
+        rangeCheck(a.length, fromIndex, toIndex);
+        for (int i = fromIndex; i < toIndex; i++)
+            a[i] = val;
     }
 
+    // Cloning
+
     /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>'\\u000'</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
+     * Copies the specified array, truncating or padding with nulls (if necessary)
+     * so the copy has the specified length.  For all indices that are
+     * valid in both the original array and the copy, the two arrays will
+     * contain identical values.  For any indices that are valid in the
+     * copy but not the original, the copy will contain <tt>null</tt>.
+     * Such indices will exist if and only if the specified length
+     * is greater than that of the original array.
+     * The resulting array is of exactly the same class as the original array.
      *
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with null characters to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
+     * @param <T> the class of the objects in the array
+     * @param original the array to be copied
+     * @param newLength the length of the copy to be returned
+     * @return a copy of the original array, truncated or padded with nulls
+     *     to obtain the specified length
+     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
      * @throws NullPointerException if <tt>original</tt> is null
      * @since 1.6
      */
-    public static char[] copyOfRange(char[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        char[] copy = new char[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
+    @SuppressWarnings("unchecked")
+    public static <any T> T[] copyOf(T[] original, int newLength) {
+        return Arrays.<T, T>copyOf(original, newLength, (Class<T[]>) original.getClass());
     }
 
     /**
-     * Copies the specified range of the specified array into a new array.
-     * The initial index of the range (<tt>from</tt>) must lie between zero
-     * and <tt>original.length</tt>, inclusive.  The value at
-     * <tt>original[from]</tt> is placed into the initial element of the copy
-     * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
-     * Values from subsequent elements in the original array are placed into
-     * subsequent elements in the copy.  The final index of the range
-     * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
-     * may be greater than <tt>original.length</tt>, in which case
-     * <tt>0f</tt> is placed in all elements of the copy whose index is
-     * greater than or equal to <tt>original.length - from</tt>.  The length
-     * of the returned array will be <tt>to - from</tt>.
+     * Copies the specified array, truncating or padding with nulls (if necessary)
+     * so the copy has the specified length.  For all indices that are
+     * valid in both the original array and the copy, the two arrays will
+     * contain identical values.  For any indices that are valid in the
+     * copy but not the original, the copy will contain <tt>null</tt>.
+     * Such indices will exist if and only if the specified length
+     * is greater than that of the original array.
+     * The resulting array is of the class <tt>newType</tt>.
      *
-     * @param original the array from which a range is to be copied
-     * @param from the initial index of the range to be copied, inclusive
-     * @param to the final index of the range to be copied, exclusive.
-     *     (This index may lie outside the array.)
-     * @return a new array containing the specified range from the original array,
-     *     truncated or padded with zeros to obtain the required length
-     * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
-     *     or {@code from > original.length}
-     * @throws IllegalArgumentException if <tt>from &gt; to</tt>
+     * @param <U> the class of the objects in the original array
+     * @param <T> the class of the objects in the returned array
+     * @param original the array to be copied
+     * @param newLength the length of the copy to be returned
+     * @param newType the class of the copy to be returned
+     * @return a copy of the original array, truncated or padded with nulls
+     *     to obtain the specified length
+     * @throws NegativeArraySizeException if <tt>newLength</tt> is negative
      * @throws NullPointerException if <tt>original</tt> is null
+     * @throws ArrayStoreException if an element copied from
+     *     <tt>original</tt> is not of a runtime type that can be stored in
+     *     an array of class <tt>newType</tt>
      * @since 1.6
      */
-    public static float[] copyOfRange(float[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        float[] copy = new float[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
+    public static <any T, any U> T[] copyOf(U[] original, int newLength, Class<? extends T[]> newType) {
+        T[] copy = Any.<T>newArray(newLength, newType);
+        Any.arraycopy(original, 0, copy, 0,
+            Math.min(original.length, newLength));
         return copy;
     }
 
     /**
      * Copies the specified range of the specified array into a new array.

@@ -3711,34 +716,32 @@
      * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
      * Values from subsequent elements in the original array are placed into
      * subsequent elements in the copy.  The final index of the range
      * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
      * may be greater than <tt>original.length</tt>, in which case
-     * <tt>0d</tt> is placed in all elements of the copy whose index is
+     * <tt>null</tt> is placed in all elements of the copy whose index is
      * greater than or equal to <tt>original.length - from</tt>.  The length
      * of the returned array will be <tt>to - from</tt>.
+     * <p>
+     * The resulting array is of exactly the same class as the original array.
      *
+     * @param <T> the class of the objects in the array
      * @param original the array from which a range is to be copied
      * @param from the initial index of the range to be copied, inclusive
      * @param to the final index of the range to be copied, exclusive.
      *     (This index may lie outside the array.)
      * @return a new array containing the specified range from the original array,
-     *     truncated or padded with zeros to obtain the required length
+     *     truncated or padded with nulls to obtain the required length
      * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
      *     or {@code from > original.length}
      * @throws IllegalArgumentException if <tt>from &gt; to</tt>
      * @throws NullPointerException if <tt>original</tt> is null
      * @since 1.6
      */
-    public static double[] copyOfRange(double[] original, int from, int to) {
-        int newLength = to - from;
-        if (newLength < 0)
-            throw new IllegalArgumentException(from + " > " + to);
-        double[] copy = new double[newLength];
-        System.arraycopy(original, from, copy, 0,
-                         Math.min(original.length - from, newLength));
-        return copy;
+    @SuppressWarnings("unchecked")
+    public static <any T> T[] copyOfRange(T[] original, int from, int to) {
+        return copyOfRange(original, from, to, (Class<? extends T[]>) original.getClass());
     }
 
     /**
      * Copies the specified range of the specified array into a new array.
      * The initial index of the range (<tt>from</tt>) must lie between zero

@@ -3747,32 +750,39 @@
      * (unless <tt>from == original.length</tt> or <tt>from == to</tt>).
      * Values from subsequent elements in the original array are placed into
      * subsequent elements in the copy.  The final index of the range
      * (<tt>to</tt>), which must be greater than or equal to <tt>from</tt>,
      * may be greater than <tt>original.length</tt>, in which case
-     * <tt>false</tt> is placed in all elements of the copy whose index is
+     * <tt>null</tt> is placed in all elements of the copy whose index is
      * greater than or equal to <tt>original.length - from</tt>.  The length
      * of the returned array will be <tt>to - from</tt>.
+     * The resulting array is of the class <tt>newType</tt>.
      *
+     * @param <U> the class of the objects in the original array
+     * @param <T> the class of the objects in the returned array
      * @param original the array from which a range is to be copied
      * @param from the initial index of the range to be copied, inclusive
      * @param to the final index of the range to be copied, exclusive.
      *     (This index may lie outside the array.)
+     * @param newType the class of the copy to be returned
      * @return a new array containing the specified range from the original array,
-     *     truncated or padded with false elements to obtain the required length
+     *     truncated or padded with nulls to obtain the required length
      * @throws ArrayIndexOutOfBoundsException if {@code from < 0}
      *     or {@code from > original.length}
      * @throws IllegalArgumentException if <tt>from &gt; to</tt>
      * @throws NullPointerException if <tt>original</tt> is null
+     * @throws ArrayStoreException if an element copied from
+     *     <tt>original</tt> is not of a runtime type that can be stored in
+     *     an array of class <tt>newType</tt>.
      * @since 1.6
      */
-    public static boolean[] copyOfRange(boolean[] original, int from, int to) {
+    public static <any T, any U> T[] copyOfRange(U[] original, int from, int to, Class<? extends T[]> newType) {
         int newLength = to - from;
         if (newLength < 0)
             throw new IllegalArgumentException(from + " > " + to);
-        boolean[] copy = new boolean[newLength];
-        System.arraycopy(original, from, copy, 0,
+        T[] copy = Any.<T>newArray(newLength, newType);
+        Any.arraycopy(original, from, copy, 0,
                          Math.min(original.length - from, newLength));
         return copy;
     }
 
     // Misc

@@ -3788,24 +798,24 @@
      * list initialized to contain several elements:
      * <pre>
      *     List&lt;String&gt; stooges = Arrays.asList("Larry", "Moe", "Curly");
      * </pre>
      *
-     * @param <T> the class of the objects in the array
+     * @param <T> the class of the elements in the array
      * @param a the array by which the list will be backed
      * @return a list view of the specified array
      */
     @SafeVarargs
     @SuppressWarnings("varargs")
-    public static <T> List<T> asList(T... a) {
+    public static <any T> List<T> asList(T... a) {
         return new ArrayList<>(a);
     }
 
     /**
      * @serial include
      */
-    private static class ArrayList<E> extends AbstractList<E>
+    private static class ArrayList<any E> extends AbstractList<E>
         implements RandomAccess, java.io.Serializable
     {
         private static final long serialVersionUID = -2764017481108945198L;
         private final E[] a;
 

@@ -3818,23 +828,28 @@
             return a.length;
         }
 
         @Override
         public Object[] toArray() {
-            return a.clone();
+            Object[] oa = new Object[a.length];
+            Function<E, Object> box = Any.converter();
+            for (int i = 0; i < a.length; i++) {
+                oa[i] = box.apply(a[i]); // boxing
+            }
+            return oa;
         }
 
         @Override
         @SuppressWarnings("unchecked")
-        public <T> T[] toArray(T[] a) {
+        public <any T> T[] toArray(T[] a) {
             int size = size();
             if (a.length < size)
                 return Arrays.copyOf(this.a, size,
                                      (Class<? extends T[]>) a.getClass());
-            System.arraycopy(this.a, 0, a, 0, size);
+            Any.arraycopy(this.a, 0, a, 0, size);
             if (a.length > size)
-                a[size] = null;
+                a[size] = Any.defaultValue();
             return a;
         }
 
         @Override
         public E get(int index) {

@@ -3848,273 +863,76 @@
             return oldValue;
         }
 
         @Override
         public int indexOf(Object o) {
-            E[] a = this.a;
+            __WhereVal(E) {
             if (o == null) {
+                    return -1;
+                }
+                E[] a = this.a;
+                Function<E, Object> box = Any.converter();
                 for (int i = 0; i < a.length; i++)
-                    if (a[i] == null)
-                        return i;
-            } else {
-                for (int i = 0; i < a.length; i++)
-                    if (o.equals(a[i]))
+                    if (o.equals(box.apply(a[i]))) // boxing
                         return i;
-            }
             return -1;
         }
-
-        @Override
-        public boolean contains(Object o) {
-            return indexOf(o) >= 0;
-        }
-
-        @Override
-        public Spliterator<E> spliterator() {
-            return Spliterators.spliterator(a, Spliterator.ORDERED);
-        }
-
-        @Override
-        public void forEach(Consumer<? super E> action) {
-            Objects.requireNonNull(action);
-            for (E e : a) {
-                action.accept(e);
-            }
-        }
-
-        @Override
-        public void replaceAll(UnaryOperator<E> operator) {
-            Objects.requireNonNull(operator);
+            __WhereRef(E) {
             E[] a = this.a;
-            for (int i = 0; i < a.length; i++) {
-                a[i] = operator.apply(a[i]);
-            }
-        }
-
-        @Override
-        public void sort(Comparator<? super E> c) {
-            Arrays.sort(a, c);
-        }
-    }
-
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>long</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Long}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(long a[]) {
-        if (a == null)
-            return 0;
-
-        int result = 1;
-        for (long element : a) {
-            int elementHash = (int)(element ^ (element >>> 32));
-            result = 31 * result + elementHash;
-        }
-
-        return result;
-    }
-
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two non-null <tt>int</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Integer}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(int a[]) {
-        if (a == null)
-            return 0;
-
-        int result = 1;
-        for (int element : a)
-            result = 31 * result + element;
-
-        return result;
-    }
-
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>short</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Short}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(short a[]) {
-        if (a == null)
-            return 0;
-
-        int result = 1;
-        for (short element : a)
-            result = 31 * result + element;
-
-        return result;
-    }
-
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>char</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Character}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(char a[]) {
-        if (a == null)
-            return 0;
-
-        int result = 1;
-        for (char element : a)
-            result = 31 * result + element;
-
-        return result;
-    }
-
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>byte</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Byte}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(byte a[]) {
-        if (a == null)
-            return 0;
-
-        int result = 1;
-        for (byte element : a)
-            result = 31 * result + element;
-
-        return result;
+                if (o == null) {
+                    for (int i = 0; i < a.length; i++)
+                        if (a[i] == null)
+                            return i;
+                } else {
+                    for (int i = 0; i < a.length; i++)
+                        if (o.equals(a[i]))
+                            return i;
+                }
+                return -1;
+            }
     }
 
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>boolean</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Boolean}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(boolean a[]) {
-        if (a == null)
-            return 0;
-
-        int result = 1;
-        for (boolean element : a)
-            result = 31 * result + (element ? 1231 : 1237);
-
-        return result;
+        @Override
+        public int indexOfElement(E e) {
+            E[] a = this.a;
+            for (int i = 0; i < a.length; i++)
+                if (Any.equals(e, a[i]))
+                    return i;
+            return -1;
     }
 
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>float</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Float}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(float a[]) {
-        if (a == null)
-            return 0;
+        @Override
+        public boolean contains(Object o) {
+            return indexOf(o) >= 0;
+        }
 
-        int result = 1;
-        for (float element : a)
-            result = 31 * result + Float.floatToIntBits(element);
+        @Override
+        public boolean containsElement(E e) {
+            return indexOfElement(e) >= 0;
+        }
 
-        return result;
+        @Override
+        public void forEach(Consumer<? super E> action) {
+            Objects.requireNonNull(action);
+            for (E e : a) {
+                action.accept(e);
+            }
     }
 
-    /**
-     * Returns a hash code based on the contents of the specified array.
-     * For any two <tt>double</tt> arrays <tt>a</tt> and <tt>b</tt>
-     * such that <tt>Arrays.equals(a, b)</tt>, it is also the case that
-     * <tt>Arrays.hashCode(a) == Arrays.hashCode(b)</tt>.
-     *
-     * <p>The value returned by this method is the same value that would be
-     * obtained by invoking the {@link List#hashCode() <tt>hashCode</tt>}
-     * method on a {@link List} containing a sequence of {@link Double}
-     * instances representing the elements of <tt>a</tt> in the same order.
-     * If <tt>a</tt> is <tt>null</tt>, this method returns 0.
-     *
-     * @param a the array whose hash value to compute
-     * @return a content-based hash code for <tt>a</tt>
-     * @since 1.5
-     */
-    public static int hashCode(double a[]) {
-        if (a == null)
-            return 0;
+        @Override
+        public void replaceAll(UnaryOperator<E> operator) {
+            Objects.requireNonNull(operator);
+            E[] a = this.a;
+            for (int i = 0; i < a.length; i++) {
+                a[i] = operator.apply(a[i]);
+            }
+        }
 
-        int result = 1;
-        for (double element : a) {
-            long bits = Double.doubleToLongBits(element);
-            result = 31 * result + (int)(bits ^ (bits >>> 32));
+        @Override
+        public void sort(Comparator<? super E> c) {
+            Arrays.sort(a, c);
         }
-        return result;
     }
 
     /**
      * Returns a hash code based on the contents of the specified array.  If
      * the array contains other arrays as elements, the hash code is based on

@@ -4134,18 +952,18 @@
      * @param a the array whose content-based hash code to compute
      * @return a content-based hash code for <tt>a</tt>
      * @see #deepHashCode(Object[])
      * @since 1.5
      */
-    public static int hashCode(Object a[]) {
+    public static <any E> int hashCode(E[] a) {
         if (a == null)
             return 0;
 
         int result = 1;
 
-        for (Object element : a)
-            result = 31 * result + (element == null ? 0 : element.hashCode());
+        for (E element : a)
+            result = 31 * result + Any.hashCode(element);
 
         return result;
     }
 
     /**

@@ -4182,11 +1000,11 @@
             return 0;
 
         int result = 1;
 
         for (Object element : a) {
-            int elementHash = 0;
+            int elementHash;
             if (element instanceof Object[])
                 elementHash = deepHashCode((Object[]) element);
             else if (element instanceof byte[])
                 elementHash = hashCode((byte[]) element);
             else if (element instanceof short[])

@@ -4203,10 +1021,12 @@
                 elementHash = hashCode((double[]) element);
             else if (element instanceof boolean[])
                 elementHash = hashCode((boolean[]) element);
             else if (element != null)
                 elementHash = element.hashCode();
+            else
+                elementHash = 0;
 
             result = 31 * result + elementHash;
         }
 
         return result;

@@ -4263,284 +1083,43 @@
             if (e1 == e2)
                 continue;
             if (e1 == null)
                 return false;
 
-            // Figure out whether the two elements are equal
-            boolean eq = deepEquals0(e1, e2);
-
-            if (!eq)
-                return false;
-        }
-        return true;
-    }
-
-    static boolean deepEquals0(Object e1, Object e2) {
-        assert e1 != null;
-        boolean eq;
-        if (e1 instanceof Object[] && e2 instanceof Object[])
-            eq = deepEquals ((Object[]) e1, (Object[]) e2);
-        else if (e1 instanceof byte[] && e2 instanceof byte[])
-            eq = equals((byte[]) e1, (byte[]) e2);
-        else if (e1 instanceof short[] && e2 instanceof short[])
-            eq = equals((short[]) e1, (short[]) e2);
-        else if (e1 instanceof int[] && e2 instanceof int[])
-            eq = equals((int[]) e1, (int[]) e2);
-        else if (e1 instanceof long[] && e2 instanceof long[])
-            eq = equals((long[]) e1, (long[]) e2);
-        else if (e1 instanceof char[] && e2 instanceof char[])
-            eq = equals((char[]) e1, (char[]) e2);
-        else if (e1 instanceof float[] && e2 instanceof float[])
-            eq = equals((float[]) e1, (float[]) e2);
-        else if (e1 instanceof double[] && e2 instanceof double[])
-            eq = equals((double[]) e1, (double[]) e2);
-        else if (e1 instanceof boolean[] && e2 instanceof boolean[])
-            eq = equals((boolean[]) e1, (boolean[]) e2);
-        else
-            eq = e1.equals(e2);
-        return eq;
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(long)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
-     * is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(long[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(int)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt> is
-     * <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(int[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(short)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
-     * is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(short[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(char)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
-     * is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(char[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements
-     * are separated by the characters <tt>", "</tt> (a comma followed
-     * by a space).  Elements are converted to strings as by
-     * <tt>String.valueOf(byte)</tt>.  Returns <tt>"null"</tt> if
-     * <tt>a</tt> is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(byte[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(boolean)</tt>.  Returns <tt>"null"</tt> if
-     * <tt>a</tt> is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(boolean[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
-    }
-
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(float)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
-     * is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(float[] a) {
-        if (a == null)
-            return "null";
-
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
+            // Figure out whether the two elements are equal
+            boolean eq = deepEquals0(e1, e2);
+
+            if (!eq)
+                return false;
         }
+        return true;
     }
 
-    /**
-     * Returns a string representation of the contents of the specified array.
-     * The string representation consists of a list of the array's elements,
-     * enclosed in square brackets (<tt>"[]"</tt>).  Adjacent elements are
-     * separated by the characters <tt>", "</tt> (a comma followed by a
-     * space).  Elements are converted to strings as by
-     * <tt>String.valueOf(double)</tt>.  Returns <tt>"null"</tt> if <tt>a</tt>
-     * is <tt>null</tt>.
-     *
-     * @param a the array whose string representation to return
-     * @return a string representation of <tt>a</tt>
-     * @since 1.5
-     */
-    public static String toString(double[] a) {
-        if (a == null)
-            return "null";
-        int iMax = a.length - 1;
-        if (iMax == -1)
-            return "[]";
-
-        StringBuilder b = new StringBuilder();
-        b.append('[');
-        for (int i = 0; ; i++) {
-            b.append(a[i]);
-            if (i == iMax)
-                return b.append(']').toString();
-            b.append(", ");
-        }
+    static boolean deepEquals0(Object e1, Object e2) {
+        assert e1 != null;
+        boolean eq;
+        if (e1 instanceof Object[] && e2 instanceof Object[])
+            eq = deepEquals ((Object[]) e1, (Object[]) e2);
+        else if (e1 instanceof byte[] && e2 instanceof byte[])
+            eq = equals((byte[]) e1, (byte[]) e2);
+        else if (e1 instanceof short[] && e2 instanceof short[])
+            eq = equals((short[]) e1, (short[]) e2);
+        else if (e1 instanceof int[] && e2 instanceof int[])
+            eq = equals((int[]) e1, (int[]) e2);
+        else if (e1 instanceof long[] && e2 instanceof long[])
+            eq = equals((long[]) e1, (long[]) e2);
+        else if (e1 instanceof char[] && e2 instanceof char[])
+            eq = equals((char[]) e1, (char[]) e2);
+        else if (e1 instanceof float[] && e2 instanceof float[])
+            eq = equals((float[]) e1, (float[]) e2);
+        else if (e1 instanceof double[] && e2 instanceof double[])
+            eq = equals((double[]) e1, (double[]) e2);
+        else if (e1 instanceof boolean[] && e2 instanceof boolean[])
+            eq = equals((boolean[]) e1, (boolean[]) e2);
+        else
+            eq = e1.equals(e2);
+        return eq;
     }
 
     /**
      * Returns a string representation of the contents of the specified array.
      * If the array contains other arrays as elements, they are converted to

@@ -4555,22 +1134,23 @@
      * @param a the array whose string representation to return
      * @return a string representation of <tt>a</tt>
      * @see #deepToString(Object[])
      * @since 1.5
      */
-    public static String toString(Object[] a) {
+    public static <any E> String toString(E[] a) {
         if (a == null)
             return "null";
 
         int iMax = a.length - 1;
         if (iMax == -1)
             return "[]";
 
+        Function<E, Object> box = Any.converter();
         StringBuilder b = new StringBuilder();
         b.append('[');
         for (int i = 0; ; i++) {
-            b.append(String.valueOf(a[i]));
+            b.append(String.valueOf(box.apply(a[i]))); // boxing
             if (i == iMax)
                 return b.append(']').toString();
             b.append(", ");
         }
     }

@@ -4690,426 +1270,11 @@
      * @param generator a function accepting an index and producing the desired
      *        value for that position
      * @throws NullPointerException if the generator is null
      * @since 1.8
      */
-    public static <T> void setAll(T[] array, IntFunction<? extends T> generator) {
+    public static <any T> void setAll(T[] array, Function<int, ? extends T> generator) {
         Objects.requireNonNull(generator);
         for (int i = 0; i < array.length; i++)
             array[i] = generator.apply(i);
     }
-
-    /**
-     * Set all elements of the specified array, in parallel, using the
-     * provided generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, an unchecked exception
-     * is thrown from {@code parallelSetAll} and the array is left in an
-     * indeterminate state.
-     *
-     * @param <T> type of elements of the array
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     *        value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static <T> void parallelSetAll(T[] array, IntFunction<? extends T> generator) {
-        Objects.requireNonNull(generator);
-        IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.apply(i); });
-    }
-
-    /**
-     * Set all elements of the specified array, using the provided
-     * generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, it is relayed to
-     * the caller and the array is left in an indeterminate state.
-     *
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     *        value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static void setAll(int[] array, IntUnaryOperator generator) {
-        Objects.requireNonNull(generator);
-        for (int i = 0; i < array.length; i++)
-            array[i] = generator.applyAsInt(i);
-    }
-
-    /**
-     * Set all elements of the specified array, in parallel, using the
-     * provided generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, an unchecked exception
-     * is thrown from {@code parallelSetAll} and the array is left in an
-     * indeterminate state.
-     *
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     * value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static void parallelSetAll(int[] array, IntUnaryOperator generator) {
-        Objects.requireNonNull(generator);
-        IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsInt(i); });
-    }
-
-    /**
-     * Set all elements of the specified array, using the provided
-     * generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, it is relayed to
-     * the caller and the array is left in an indeterminate state.
-     *
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     *        value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static void setAll(long[] array, IntToLongFunction generator) {
-        Objects.requireNonNull(generator);
-        for (int i = 0; i < array.length; i++)
-            array[i] = generator.applyAsLong(i);
-    }
-
-    /**
-     * Set all elements of the specified array, in parallel, using the
-     * provided generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, an unchecked exception
-     * is thrown from {@code parallelSetAll} and the array is left in an
-     * indeterminate state.
-     *
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     *        value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static void parallelSetAll(long[] array, IntToLongFunction generator) {
-        Objects.requireNonNull(generator);
-        IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsLong(i); });
-    }
-
-    /**
-     * Set all elements of the specified array, using the provided
-     * generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, it is relayed to
-     * the caller and the array is left in an indeterminate state.
-     *
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     *        value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static void setAll(double[] array, IntToDoubleFunction generator) {
-        Objects.requireNonNull(generator);
-        for (int i = 0; i < array.length; i++)
-            array[i] = generator.applyAsDouble(i);
-    }
-
-    /**
-     * Set all elements of the specified array, in parallel, using the
-     * provided generator function to compute each element.
-     *
-     * <p>If the generator function throws an exception, an unchecked exception
-     * is thrown from {@code parallelSetAll} and the array is left in an
-     * indeterminate state.
-     *
-     * @param array array to be initialized
-     * @param generator a function accepting an index and producing the desired
-     *        value for that position
-     * @throws NullPointerException if the generator is null
-     * @since 1.8
-     */
-    public static void parallelSetAll(double[] array, IntToDoubleFunction generator) {
-        Objects.requireNonNull(generator);
-        IntStream.range(0, array.length).parallel().forEach(i -> { array[i] = generator.applyAsDouble(i); });
-    }
-
-    /**
-     * Returns a {@link Spliterator} covering all of the specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param <T> type of elements
-     * @param array the array, assumed to be unmodified during use
-     * @return a spliterator for the array elements
-     * @since 1.8
-     */
-    public static <T> Spliterator<T> spliterator(T[] array) {
-        return Spliterators.spliterator(array,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator} covering the specified range of the
-     * specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param <T> type of elements
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a spliterator for the array elements
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static <T> Spliterator<T> spliterator(T[] array, int startInclusive, int endExclusive) {
-        return Spliterators.spliterator(array, startInclusive, endExclusive,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator.OfInt} covering all of the specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @return a spliterator for the array elements
-     * @since 1.8
-     */
-    public static Spliterator.OfInt spliterator(int[] array) {
-        return Spliterators.spliterator(array,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator.OfInt} covering the specified range of the
-     * specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a spliterator for the array elements
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static Spliterator.OfInt spliterator(int[] array, int startInclusive, int endExclusive) {
-        return Spliterators.spliterator(array, startInclusive, endExclusive,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator.OfLong} covering all of the specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @return the spliterator for the array elements
-     * @since 1.8
-     */
-    public static Spliterator.OfLong spliterator(long[] array) {
-        return Spliterators.spliterator(array,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator.OfLong} covering the specified range of the
-     * specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a spliterator for the array elements
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static Spliterator.OfLong spliterator(long[] array, int startInclusive, int endExclusive) {
-        return Spliterators.spliterator(array, startInclusive, endExclusive,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator.OfDouble} covering all of the specified
-     * array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @return a spliterator for the array elements
-     * @since 1.8
-     */
-    public static Spliterator.OfDouble spliterator(double[] array) {
-        return Spliterators.spliterator(array,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a {@link Spliterator.OfDouble} covering the specified range of
-     * the specified array.
-     *
-     * <p>The spliterator reports {@link Spliterator#SIZED},
-     * {@link Spliterator#SUBSIZED}, {@link Spliterator#ORDERED}, and
-     * {@link Spliterator#IMMUTABLE}.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a spliterator for the array elements
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static Spliterator.OfDouble spliterator(double[] array, int startInclusive, int endExclusive) {
-        return Spliterators.spliterator(array, startInclusive, endExclusive,
-                                        Spliterator.ORDERED | Spliterator.IMMUTABLE);
-    }
-
-    /**
-     * Returns a sequential {@link Stream} with the specified array as its
-     * source.
-     *
-     * @param <T> The type of the array elements
-     * @param array The array, assumed to be unmodified during use
-     * @return a {@code Stream} for the array
-     * @since 1.8
-     */
-    public static <T> Stream<T> stream(T[] array) {
-        return stream(array, 0, array.length);
-    }
-
-    /**
-     * Returns a sequential {@link Stream} with the specified range of the
-     * specified array as its source.
-     *
-     * @param <T> the type of the array elements
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a {@code Stream} for the array range
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static <T> Stream<T> stream(T[] array, int startInclusive, int endExclusive) {
-        return StreamSupport.stream(spliterator(array, startInclusive, endExclusive), false);
-    }
-
-    /**
-     * Returns a sequential {@link IntStream} with the specified array as its
-     * source.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @return an {@code IntStream} for the array
-     * @since 1.8
-     */
-    public static IntStream stream(int[] array) {
-        return stream(array, 0, array.length);
-    }
-
-    /**
-     * Returns a sequential {@link IntStream} with the specified range of the
-     * specified array as its source.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return an {@code IntStream} for the array range
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static IntStream stream(int[] array, int startInclusive, int endExclusive) {
-        return StreamSupport.intStream(spliterator(array, startInclusive, endExclusive), false);
-    }
-
-    /**
-     * Returns a sequential {@link LongStream} with the specified array as its
-     * source.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @return a {@code LongStream} for the array
-     * @since 1.8
-     */
-    public static LongStream stream(long[] array) {
-        return stream(array, 0, array.length);
-    }
-
-    /**
-     * Returns a sequential {@link LongStream} with the specified range of the
-     * specified array as its source.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a {@code LongStream} for the array range
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static LongStream stream(long[] array, int startInclusive, int endExclusive) {
-        return StreamSupport.longStream(spliterator(array, startInclusive, endExclusive), false);
-    }
-
-    /**
-     * Returns a sequential {@link DoubleStream} with the specified array as its
-     * source.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @return a {@code DoubleStream} for the array
-     * @since 1.8
-     */
-    public static DoubleStream stream(double[] array) {
-        return stream(array, 0, array.length);
-    }
-
-    /**
-     * Returns a sequential {@link DoubleStream} with the specified range of the
-     * specified array as its source.
-     *
-     * @param array the array, assumed to be unmodified during use
-     * @param startInclusive the first index to cover, inclusive
-     * @param endExclusive index immediately past the last index to cover
-     * @return a {@code DoubleStream} for the array range
-     * @throws ArrayIndexOutOfBoundsException if {@code startInclusive} is
-     *         negative, {@code endExclusive} is less than
-     *         {@code startInclusive}, or {@code endExclusive} is greater than
-     *         the array size
-     * @since 1.8
-     */
-    public static DoubleStream stream(double[] array, int startInclusive, int endExclusive) {
-        return StreamSupport.doubleStream(spliterator(array, startInclusive, endExclusive), false);
-    }
 }
< prev index next >