1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/altHashing.hpp"
  27 #include "classfile/javaClasses.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  30 #include "gc/g1/g1StringDedup.hpp"
  31 #include "gc/g1/g1StringDedupTable.hpp"
  32 #include "gc/shared/gcLocker.hpp"
  33 #include "logging/log.hpp"
  34 #include "memory/padded.inline.hpp"
  35 #include "oops/oop.inline.hpp"
  36 #include "oops/typeArrayOop.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 
  39 //
  40 // List of deduplication table entries. Links table
  41 // entries together using their _next fields.
  42 //
  43 class G1StringDedupEntryList : public CHeapObj<mtGC> {
  44 private:
  45   G1StringDedupEntry* _list;
  46   size_t              _length;
  47 
  48 public:
  49   G1StringDedupEntryList() :
  50     _list(NULL),
  51     _length(0) {
  52   }
  53 
  54   void add(G1StringDedupEntry* entry) {
  55     entry->set_next(_list);
  56     _list = entry;
  57     _length++;
  58   }
  59 
  60   G1StringDedupEntry* remove() {
  61     G1StringDedupEntry* entry = _list;
  62     if (entry != NULL) {
  63       _list = entry->next();
  64       _length--;
  65     }
  66     return entry;
  67   }
  68 
  69   G1StringDedupEntry* remove_all() {
  70     G1StringDedupEntry* list = _list;
  71     _list = NULL;
  72     return list;
  73   }
  74 
  75   size_t length() {
  76     return _length;
  77   }
  78 };
  79 
  80 //
  81 // Cache of deduplication table entries. This cache provides fast allocation and
  82 // reuse of table entries to lower the pressure on the underlying allocator.
  83 // But more importantly, it provides fast/deferred freeing of table entries. This
  84 // is important because freeing of table entries is done during stop-the-world
  85 // phases and it is not uncommon for large number of entries to be freed at once.
  86 // Tables entries that are freed during these phases are placed onto a freelist in
  87 // the cache. The deduplication thread, which executes in a concurrent phase, will
  88 // later reuse or free the underlying memory for these entries.
  89 //
  90 // The cache allows for single-threaded allocations and multi-threaded frees.
  91 // Allocations are synchronized by StringDedupTable_lock as part of a table
  92 // modification.
  93 //
  94 class G1StringDedupEntryCache : public CHeapObj<mtGC> {
  95 private:
  96   // One cache/overflow list per GC worker to allow lock less freeing of
  97   // entries while doing a parallel scan of the table. Using PaddedEnd to
  98   // avoid false sharing.
  99   size_t                             _nlists;
 100   size_t                             _max_list_length;
 101   PaddedEnd<G1StringDedupEntryList>* _cached;
 102   PaddedEnd<G1StringDedupEntryList>* _overflowed;
 103 
 104 public:
 105   G1StringDedupEntryCache(size_t max_size);
 106   ~G1StringDedupEntryCache();
 107 
 108   // Set max number of table entries to cache.
 109   void set_max_size(size_t max_size);
 110 
 111   // Get a table entry from the cache, or allocate a new entry if the cache is empty.
 112   G1StringDedupEntry* alloc();
 113 
 114   // Insert a table entry into the cache.
 115   void free(G1StringDedupEntry* entry, uint worker_id);
 116 
 117   // Returns current number of entries in the cache.
 118   size_t size();
 119 
 120   // Deletes overflowed entries.
 121   void delete_overflowed();
 122 };
 123 
 124 G1StringDedupEntryCache::G1StringDedupEntryCache(size_t max_size) :
 125   _nlists(ParallelGCThreads),
 126   _max_list_length(max_size / _nlists),
 127   _cached(PaddedArray<G1StringDedupEntryList, mtGC>::create_unfreeable((uint)_nlists)),
 128   _overflowed(PaddedArray<G1StringDedupEntryList, mtGC>::create_unfreeable((uint)_nlists)) {
 129 }
 130 
 131 G1StringDedupEntryCache::~G1StringDedupEntryCache() {
 132   ShouldNotReachHere();
 133 }
 134 
 135 void G1StringDedupEntryCache::set_max_size(size_t size) {
 136   _max_list_length = size / _nlists;
 137 }
 138 
 139 G1StringDedupEntry* G1StringDedupEntryCache::alloc() {
 140   for (size_t i = 0; i < _nlists; i++) {
 141     G1StringDedupEntry* entry = _cached[i].remove();
 142     if (entry != NULL) {
 143       return entry;
 144     }
 145   }
 146   return new G1StringDedupEntry();
 147 }
 148 
 149 void G1StringDedupEntryCache::free(G1StringDedupEntry* entry, uint worker_id) {
 150   assert(entry->obj() != NULL, "Double free");
 151   assert(worker_id < _nlists, "Invalid worker id");
 152 
 153   entry->set_obj(NULL);
 154   entry->set_hash(0);
 155 
 156   if (_cached[worker_id].length() < _max_list_length) {
 157     // Cache is not full
 158     _cached[worker_id].add(entry);
 159   } else {
 160     // Cache is full, add to overflow list for later deletion
 161     _overflowed[worker_id].add(entry);
 162   }
 163 }
 164 
 165 size_t G1StringDedupEntryCache::size() {
 166   size_t size = 0;
 167   for (size_t i = 0; i < _nlists; i++) {
 168     size += _cached[i].length();
 169   }
 170   return size;
 171 }
 172 
 173 void G1StringDedupEntryCache::delete_overflowed() {
 174   double start = os::elapsedTime();
 175   uintx count = 0;
 176 
 177   for (size_t i = 0; i < _nlists; i++) {
 178     G1StringDedupEntry* entry;
 179 
 180     {
 181       // The overflow list can be modified during safepoints, therefore
 182       // we temporarily join the suspendible thread set while removing
 183       // all entries from the list.
 184       SuspendibleThreadSetJoiner sts_join;
 185       entry = _overflowed[i].remove_all();
 186     }
 187 
 188     // Delete all entries
 189     while (entry != NULL) {
 190       G1StringDedupEntry* next = entry->next();
 191       delete entry;
 192       entry = next;
 193       count++;
 194     }
 195   }
 196 
 197   double end = os::elapsedTime();
 198   log_trace(gc, stringdedup)("Deleted " UINTX_FORMAT " entries, " G1_STRDEDUP_TIME_FORMAT, count, end - start);
 199 }
 200 
 201 G1StringDedupTable*      G1StringDedupTable::_table = NULL;
 202 G1StringDedupEntryCache* G1StringDedupTable::_entry_cache = NULL;
 203 
 204 const size_t             G1StringDedupTable::_min_size = (1 << 10);   // 1024
 205 const size_t             G1StringDedupTable::_max_size = (1 << 24);   // 16777216
 206 const double             G1StringDedupTable::_grow_load_factor = 2.0; // Grow table at 200% load
 207 const double             G1StringDedupTable::_shrink_load_factor = _grow_load_factor / 3.0; // Shrink table at 67% load
 208 const double             G1StringDedupTable::_max_cache_factor = 0.1; // Cache a maximum of 10% of the table size
 209 const uintx              G1StringDedupTable::_rehash_multiple = 60;   // Hash bucket has 60 times more collisions than expected
 210 const uintx              G1StringDedupTable::_rehash_threshold = (uintx)(_rehash_multiple * _grow_load_factor);
 211 
 212 uintx                    G1StringDedupTable::_entries_added = 0;
 213 uintx                    G1StringDedupTable::_entries_removed = 0;
 214 uintx                    G1StringDedupTable::_resize_count = 0;
 215 uintx                    G1StringDedupTable::_rehash_count = 0;
 216 
 217 G1StringDedupTable::G1StringDedupTable(size_t size, jint hash_seed) :
 218   _size(size),
 219   _entries(0),
 220   _grow_threshold((uintx)(size * _grow_load_factor)),
 221   _shrink_threshold((uintx)(size * _shrink_load_factor)),
 222   _rehash_needed(false),
 223   _hash_seed(hash_seed) {
 224   assert(is_power_of_2(size), "Table size must be a power of 2");
 225   _buckets = NEW_C_HEAP_ARRAY(G1StringDedupEntry*, _size, mtGC);
 226   memset(_buckets, 0, _size * sizeof(G1StringDedupEntry*));
 227 }
 228 
 229 G1StringDedupTable::~G1StringDedupTable() {
 230   FREE_C_HEAP_ARRAY(G1StringDedupEntry*, _buckets);
 231 }
 232 
 233 void G1StringDedupTable::create() {
 234   assert(_table == NULL, "One string deduplication table allowed");
 235   _entry_cache = new G1StringDedupEntryCache(_min_size * _max_cache_factor);
 236   _table = new G1StringDedupTable(_min_size);
 237 }
 238 
 239 void G1StringDedupTable::add(typeArrayOop value, bool latin1, unsigned int hash, G1StringDedupEntry** list) {
 240   G1StringDedupEntry* entry = _entry_cache->alloc();
 241   entry->set_obj(value);
 242   entry->set_hash(hash);
 243   entry->set_latin1(latin1);
 244   entry->set_next(*list);
 245   *list = entry;
 246   _entries++;
 247 }
 248 
 249 void G1StringDedupTable::remove(G1StringDedupEntry** pentry, uint worker_id) {
 250   G1StringDedupEntry* entry = *pentry;
 251   *pentry = entry->next();
 252   _entry_cache->free(entry, worker_id);
 253 }
 254 
 255 void G1StringDedupTable::transfer(G1StringDedupEntry** pentry, G1StringDedupTable* dest) {
 256   G1StringDedupEntry* entry = *pentry;
 257   *pentry = entry->next();
 258   unsigned int hash = entry->hash();
 259   size_t index = dest->hash_to_index(hash);
 260   G1StringDedupEntry** list = dest->bucket(index);
 261   entry->set_next(*list);
 262   *list = entry;
 263 }
 264 
 265 bool G1StringDedupTable::equals(typeArrayOop value1, typeArrayOop value2) {
 266   return (value1 == value2 ||
 267           (value1->length() == value2->length() &&
 268            (!memcmp(value1->base(T_BYTE),
 269                     value2->base(T_BYTE),
 270                     value1->length() * sizeof(jbyte)))));
 271 }
 272 
 273 typeArrayOop G1StringDedupTable::lookup(typeArrayOop value, bool latin1, unsigned int hash,
 274                                         G1StringDedupEntry** list, uintx &count) {
 275   for (G1StringDedupEntry* entry = *list; entry != NULL; entry = entry->next()) {
 276     if (entry->hash() == hash && entry->latin1() == latin1) {
 277       typeArrayOop existing_value = entry->obj();
 278       if (equals(value, existing_value)) {
 279         // Match found
 280         return existing_value;
 281       }
 282     }
 283     count++;
 284   }
 285 
 286   // Not found
 287   return NULL;
 288 }
 289 
 290 typeArrayOop G1StringDedupTable::lookup_or_add_inner(typeArrayOop value, bool latin1, unsigned int hash) {
 291   size_t index = hash_to_index(hash);
 292   G1StringDedupEntry** list = bucket(index);
 293   uintx count = 0;
 294 
 295   // Lookup in list
 296   typeArrayOop existing_value = lookup(value, latin1, hash, list, count);
 297 
 298   // Check if rehash is needed
 299   if (count > _rehash_threshold) {
 300     _rehash_needed = true;
 301   }
 302 
 303   if (existing_value == NULL) {
 304     // Not found, add new entry
 305     add(value, latin1, hash, list);
 306 
 307     // Update statistics
 308     _entries_added++;
 309   }
 310 
 311   return existing_value;
 312 }
 313 
 314 unsigned int G1StringDedupTable::hash_code(typeArrayOop value, bool latin1) {
 315   unsigned int hash;
 316   int length = value->length();
 317   if (latin1) {
 318     const jbyte* data = (jbyte*)value->base(T_BYTE);
 319     if (use_java_hash()) {
 320       hash = java_lang_String::hash_code(data, length);
 321     } else {
 322       hash = AltHashing::murmur3_32(_table->_hash_seed, data, length);
 323     }
 324   } else {
 325     length /= sizeof(jchar) / sizeof(jbyte); // Convert number of bytes to number of chars
 326     const jchar* data = (jchar*)value->base(T_CHAR);
 327     if (use_java_hash()) {
 328       hash = java_lang_String::hash_code(data, length);
 329     } else {
 330       hash = AltHashing::murmur3_32(_table->_hash_seed, data, length);
 331     }
 332   }
 333 
 334   return hash;
 335 }
 336 
 337 void G1StringDedupTable::deduplicate(oop java_string, G1StringDedupStat& stat) {
 338   assert(java_lang_String::is_instance(java_string), "Must be a string");
 339   NoSafepointVerifier nsv;
 340 
 341   stat.inc_inspected();
 342 
 343   typeArrayOop value = java_lang_String::value(java_string);
 344   if (value == NULL) {
 345     // String has no value
 346     stat.inc_skipped();
 347     return;
 348   }
 349 
 350   bool latin1 = java_lang_String::is_latin1(java_string);
 351   unsigned int hash = 0;
 352 
 353   if (use_java_hash()) {
 354     // Get hash code from cache
 355     hash = java_lang_String::hash(java_string);
 356   }
 357 
 358   if (hash == 0) {
 359     // Compute hash
 360     hash = hash_code(value, latin1);
 361     stat.inc_hashed();
 362 
 363     if (use_java_hash() && hash != 0) {
 364       // Store hash code in cache
 365       java_lang_String::set_hash(java_string, hash);
 366     }
 367   }
 368 
 369   typeArrayOop existing_value = lookup_or_add(value, latin1, hash);
 370   if (existing_value == value) {
 371     // Same value, already known
 372     stat.inc_known();
 373     return;
 374   }
 375 
 376   // Get size of value array
 377   uintx size_in_bytes = value->size() * HeapWordSize;
 378   stat.inc_new(size_in_bytes);
 379 
 380   if (existing_value != NULL) {
 381     // Enqueue the reference to make sure it is kept alive. Concurrent mark might
 382     // otherwise declare it dead if there are no other strong references to this object.
 383     G1SATBCardTableModRefBS::enqueue(existing_value);
 384 
 385     // Existing value found, deduplicate string
 386     java_lang_String::set_value(java_string, existing_value);
 387 
 388     if (G1CollectedHeap::heap()->is_in_young(value)) {
 389       stat.inc_deduped_young(size_in_bytes);
 390     } else {
 391       stat.inc_deduped_old(size_in_bytes);
 392     }
 393   }
 394 }
 395 
 396 G1StringDedupTable* G1StringDedupTable::prepare_resize() {
 397   size_t size = _table->_size;
 398 
 399   // Check if the hashtable needs to be resized
 400   if (_table->_entries > _table->_grow_threshold) {
 401     // Grow table, double the size
 402     size *= 2;
 403     if (size > _max_size) {
 404       // Too big, don't resize
 405       return NULL;
 406     }
 407   } else if (_table->_entries < _table->_shrink_threshold) {
 408     // Shrink table, half the size
 409     size /= 2;
 410     if (size < _min_size) {
 411       // Too small, don't resize
 412       return NULL;
 413     }
 414   } else if (StringDeduplicationResizeALot) {
 415     // Force grow
 416     size *= 2;
 417     if (size > _max_size) {
 418       // Too big, force shrink instead
 419       size /= 4;
 420     }
 421   } else {
 422     // Resize not needed
 423     return NULL;
 424   }
 425 
 426   // Update statistics
 427   _resize_count++;
 428 
 429   // Update max cache size
 430   _entry_cache->set_max_size(size * _max_cache_factor);
 431 
 432   // Allocate the new table. The new table will be populated by workers
 433   // calling unlink_or_oops_do() and finally installed by finish_resize().
 434   return new G1StringDedupTable(size, _table->_hash_seed);
 435 }
 436 
 437 void G1StringDedupTable::finish_resize(G1StringDedupTable* resized_table) {
 438   assert(resized_table != NULL, "Invalid table");
 439 
 440   resized_table->_entries = _table->_entries;
 441 
 442   // Free old table
 443   delete _table;
 444 
 445   // Install new table
 446   _table = resized_table;
 447 }
 448 
 449 void G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl, uint worker_id) {
 450   // The table is divided into partitions to allow lock-less parallel processing by
 451   // multiple worker threads. A worker thread first claims a partition, which ensures
 452   // exclusive access to that part of the table, then continues to process it. To allow
 453   // shrinking of the table in parallel we also need to make sure that the same worker
 454   // thread processes all partitions where entries will hash to the same destination
 455   // partition. Since the table size is always a power of two and we always shrink by
 456   // dividing the table in half, we know that for a given partition there is only one
 457   // other partition whoes entries will hash to the same destination partition. That
 458   // other partition is always the sibling partition in the second half of the table.
 459   // For example, if the table is divided into 8 partitions, the sibling of partition 0
 460   // is partition 4, the sibling of partition 1 is partition 5, etc.
 461   size_t table_half = _table->_size / 2;
 462 
 463   // Let each partition be one page worth of buckets
 464   size_t partition_size = MIN2(table_half, os::vm_page_size() / sizeof(G1StringDedupEntry*));
 465   assert(table_half % partition_size == 0, "Invalid partition size");
 466 
 467   // Number of entries removed during the scan
 468   uintx removed = 0;
 469 
 470   for (;;) {
 471     // Grab next partition to scan
 472     size_t partition_begin = cl->claim_table_partition(partition_size);
 473     size_t partition_end = partition_begin + partition_size;
 474     if (partition_begin >= table_half) {
 475       // End of table
 476       break;
 477     }
 478 
 479     // Scan the partition followed by the sibling partition in the second half of the table
 480     removed += unlink_or_oops_do(cl, partition_begin, partition_end, worker_id);
 481     removed += unlink_or_oops_do(cl, table_half + partition_begin, table_half + partition_end, worker_id);
 482   }
 483 
 484   // Delayed update to avoid contention on the table lock
 485   if (removed > 0) {
 486     MutexLockerEx ml(StringDedupTable_lock, Mutex::_no_safepoint_check_flag);
 487     _table->_entries -= removed;
 488     _entries_removed += removed;
 489   }
 490 }
 491 
 492 uintx G1StringDedupTable::unlink_or_oops_do(G1StringDedupUnlinkOrOopsDoClosure* cl,
 493                                             size_t partition_begin,
 494                                             size_t partition_end,
 495                                             uint worker_id) {
 496   uintx removed = 0;
 497   for (size_t bucket = partition_begin; bucket < partition_end; bucket++) {
 498     G1StringDedupEntry** entry = _table->bucket(bucket);
 499     while (*entry != NULL) {
 500       oop* p = (oop*)(*entry)->obj_addr();
 501       if (cl->is_alive(*p)) {
 502         cl->keep_alive(p);
 503         if (cl->is_resizing()) {
 504           // We are resizing the table, transfer entry to the new table
 505           _table->transfer(entry, cl->resized_table());
 506         } else {
 507           if (cl->is_rehashing()) {
 508             // We are rehashing the table, rehash the entry but keep it
 509             // in the table. We can't transfer entries into the new table
 510             // at this point since we don't have exclusive access to all
 511             // destination partitions. finish_rehash() will do a single
 512             // threaded transfer of all entries.
 513             typeArrayOop value = (typeArrayOop)*p;
 514             bool latin1 = (*entry)->latin1();
 515             unsigned int hash = hash_code(value, latin1);
 516             (*entry)->set_hash(hash);
 517           }
 518 
 519           // Move to next entry
 520           entry = (*entry)->next_addr();
 521         }
 522       } else {
 523         // Not alive, remove entry from table
 524         _table->remove(entry, worker_id);
 525         removed++;
 526       }
 527     }
 528   }
 529 
 530   return removed;
 531 }
 532 
 533 G1StringDedupTable* G1StringDedupTable::prepare_rehash() {
 534   if (!_table->_rehash_needed && !StringDeduplicationRehashALot) {
 535     // Rehash not needed
 536     return NULL;
 537   }
 538 
 539   // Update statistics
 540   _rehash_count++;
 541 
 542   // Compute new hash seed
 543   _table->_hash_seed = AltHashing::compute_seed();
 544 
 545   // Allocate the new table, same size and hash seed
 546   return new G1StringDedupTable(_table->_size, _table->_hash_seed);
 547 }
 548 
 549 void G1StringDedupTable::finish_rehash(G1StringDedupTable* rehashed_table) {
 550   assert(rehashed_table != NULL, "Invalid table");
 551 
 552   // Move all newly rehashed entries into the correct buckets in the new table
 553   for (size_t bucket = 0; bucket < _table->_size; bucket++) {
 554     G1StringDedupEntry** entry = _table->bucket(bucket);
 555     while (*entry != NULL) {
 556       _table->transfer(entry, rehashed_table);
 557     }
 558   }
 559 
 560   rehashed_table->_entries = _table->_entries;
 561 
 562   // Free old table
 563   delete _table;
 564 
 565   // Install new table
 566   _table = rehashed_table;
 567 }
 568 
 569 void G1StringDedupTable::verify() {
 570   for (size_t bucket = 0; bucket < _table->_size; bucket++) {
 571     // Verify entries
 572     G1StringDedupEntry** entry = _table->bucket(bucket);
 573     while (*entry != NULL) {
 574       typeArrayOop value = (*entry)->obj();
 575       guarantee(value != NULL, "Object must not be NULL");
 576       guarantee(G1CollectedHeap::heap()->is_in_reserved(value), "Object must be on the heap");
 577       guarantee(!value->is_forwarded(), "Object must not be forwarded");
 578       guarantee(value->is_typeArray(), "Object must be a typeArrayOop");
 579       bool latin1 = (*entry)->latin1();
 580       unsigned int hash = hash_code(value, latin1);
 581       guarantee((*entry)->hash() == hash, "Table entry has inorrect hash");
 582       guarantee(_table->hash_to_index(hash) == bucket, "Table entry has incorrect index");
 583       entry = (*entry)->next_addr();
 584     }
 585 
 586     // Verify that we do not have entries with identical oops or identical arrays.
 587     // We only need to compare entries in the same bucket. If the same oop or an
 588     // identical array has been inserted more than once into different/incorrect
 589     // buckets the verification step above will catch that.
 590     G1StringDedupEntry** entry1 = _table->bucket(bucket);
 591     while (*entry1 != NULL) {
 592       typeArrayOop value1 = (*entry1)->obj();
 593       bool latin1_1 = (*entry1)->latin1();
 594       G1StringDedupEntry** entry2 = (*entry1)->next_addr();
 595       while (*entry2 != NULL) {
 596         typeArrayOop value2 = (*entry2)->obj();
 597         bool latin1_2 = (*entry2)->latin1();
 598         guarantee(latin1_1 != latin1_2 || !equals(value1, value2), "Table entries must not have identical arrays");
 599         entry2 = (*entry2)->next_addr();
 600       }
 601       entry1 = (*entry1)->next_addr();
 602     }
 603   }
 604 }
 605 
 606 void G1StringDedupTable::clean_entry_cache() {
 607   _entry_cache->delete_overflowed();
 608 }
 609 
 610 void G1StringDedupTable::print_statistics() {
 611   Log(gc, stringdedup) log;
 612   log.debug("   [Table]");
 613   log.debug("      [Memory Usage: " G1_STRDEDUP_BYTES_FORMAT_NS "]",
 614             G1_STRDEDUP_BYTES_PARAM(_table->_size * sizeof(G1StringDedupEntry*) + (_table->_entries + _entry_cache->size()) * sizeof(G1StringDedupEntry)));
 615   log.debug("      [Size: " SIZE_FORMAT ", Min: " SIZE_FORMAT ", Max: " SIZE_FORMAT "]", _table->_size, _min_size, _max_size);
 616   log.debug("      [Entries: " UINTX_FORMAT ", Load: " G1_STRDEDUP_PERCENT_FORMAT_NS ", Cached: " UINTX_FORMAT ", Added: " UINTX_FORMAT ", Removed: " UINTX_FORMAT "]",
 617             _table->_entries, (double)_table->_entries / (double)_table->_size * 100.0, _entry_cache->size(), _entries_added, _entries_removed);
 618   log.debug("      [Resize Count: " UINTX_FORMAT ", Shrink Threshold: " UINTX_FORMAT "(" G1_STRDEDUP_PERCENT_FORMAT_NS "), Grow Threshold: " UINTX_FORMAT "(" G1_STRDEDUP_PERCENT_FORMAT_NS ")]",
 619             _resize_count, _table->_shrink_threshold, _shrink_load_factor * 100.0, _table->_grow_threshold, _grow_load_factor * 100.0);
 620   log.debug("      [Rehash Count: " UINTX_FORMAT ", Rehash Threshold: " UINTX_FORMAT ", Hash Seed: 0x%x]", _rehash_count, _rehash_threshold, _table->_hash_seed);
 621   log.debug("      [Age Threshold: " UINTX_FORMAT "]", StringDeduplicationAgeThreshold);
 622 }