1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "prims/jniFastGetField.hpp"
  42 #include "prims/jvm.h"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/timer.hpp"
  63 #include "semaphore_posix.hpp"
  64 #include "services/attachListener.hpp"
  65 #include "services/memTracker.hpp"
  66 #include "services/runtimeService.hpp"
  67 #include "utilities/decoder.hpp"
  68 #include "utilities/defaultStream.hpp"
  69 #include "utilities/events.hpp"
  70 #include "utilities/elfFile.hpp"
  71 #include "utilities/growableArray.hpp"
  72 #include "utilities/macros.hpp"
  73 #include "utilities/vmError.hpp"
  74 
  75 // put OS-includes here
  76 # include <sys/types.h>
  77 # include <sys/mman.h>
  78 # include <sys/stat.h>
  79 # include <sys/select.h>
  80 # include <pthread.h>
  81 # include <signal.h>
  82 # include <errno.h>
  83 # include <dlfcn.h>
  84 # include <stdio.h>
  85 # include <unistd.h>
  86 # include <sys/resource.h>
  87 # include <pthread.h>
  88 # include <sys/stat.h>
  89 # include <sys/time.h>
  90 # include <sys/times.h>
  91 # include <sys/utsname.h>
  92 # include <sys/socket.h>
  93 # include <sys/wait.h>
  94 # include <pwd.h>
  95 # include <poll.h>
  96 # include <semaphore.h>
  97 # include <fcntl.h>
  98 # include <string.h>
  99 # include <syscall.h>
 100 # include <sys/sysinfo.h>
 101 # include <gnu/libc-version.h>
 102 # include <sys/ipc.h>
 103 # include <sys/shm.h>
 104 # include <link.h>
 105 # include <stdint.h>
 106 # include <inttypes.h>
 107 # include <sys/ioctl.h>
 108 
 109 #ifndef _GNU_SOURCE
 110   #define _GNU_SOURCE
 111   #include <sched.h>
 112   #undef _GNU_SOURCE
 113 #else
 114   #include <sched.h>
 115 #endif
 116 
 117 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 118 // getrusage() is prepared to handle the associated failure.
 119 #ifndef RUSAGE_THREAD
 120   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 121 #endif
 122 
 123 #define MAX_PATH    (2 * K)
 124 
 125 #define MAX_SECS 100000000
 126 
 127 // for timer info max values which include all bits
 128 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 129 
 130 #define LARGEPAGES_BIT (1 << 6)
 131 ////////////////////////////////////////////////////////////////////////////////
 132 // global variables
 133 julong os::Linux::_physical_memory = 0;
 134 
 135 address   os::Linux::_initial_thread_stack_bottom = NULL;
 136 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 137 
 138 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 139 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 140 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 141 Mutex* os::Linux::_createThread_lock = NULL;
 142 pthread_t os::Linux::_main_thread;
 143 int os::Linux::_page_size = -1;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 uint32_t os::Linux::_os_version = 0;
 146 const char * os::Linux::_glibc_version = NULL;
 147 const char * os::Linux::_libpthread_version = NULL;
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 // Signal number used to suspend/resume a thread
 158 
 159 // do not use any signal number less than SIGSEGV, see 4355769
 160 static int SR_signum = SIGUSR2;
 161 sigset_t SR_sigset;
 162 
 163 // utility functions
 164 
 165 static int SR_initialize();
 166 
 167 julong os::available_memory() {
 168   return Linux::available_memory();
 169 }
 170 
 171 julong os::Linux::available_memory() {
 172   // values in struct sysinfo are "unsigned long"
 173   struct sysinfo si;
 174   sysinfo(&si);
 175 
 176   return (julong)si.freeram * si.mem_unit;
 177 }
 178 
 179 julong os::physical_memory() {
 180   return Linux::physical_memory();
 181 }
 182 
 183 // Return true if user is running as root.
 184 
 185 bool os::have_special_privileges() {
 186   static bool init = false;
 187   static bool privileges = false;
 188   if (!init) {
 189     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 190     init = true;
 191   }
 192   return privileges;
 193 }
 194 
 195 
 196 #ifndef SYS_gettid
 197 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 198   #ifdef __ia64__
 199     #define SYS_gettid 1105
 200   #else
 201     #ifdef __i386__
 202       #define SYS_gettid 224
 203     #else
 204       #ifdef __amd64__
 205         #define SYS_gettid 186
 206       #else
 207         #ifdef __sparc__
 208           #define SYS_gettid 143
 209         #else
 210           #error define gettid for the arch
 211         #endif
 212       #endif
 213     #endif
 214   #endif
 215 #endif
 216 
 217 
 218 // pid_t gettid()
 219 //
 220 // Returns the kernel thread id of the currently running thread. Kernel
 221 // thread id is used to access /proc.
 222 pid_t os::Linux::gettid() {
 223   int rslt = syscall(SYS_gettid);
 224   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 225   return (pid_t)rslt;
 226 }
 227 
 228 // Most versions of linux have a bug where the number of processors are
 229 // determined by looking at the /proc file system.  In a chroot environment,
 230 // the system call returns 1.  This causes the VM to act as if it is
 231 // a single processor and elide locking (see is_MP() call).
 232 static bool unsafe_chroot_detected = false;
 233 static const char *unstable_chroot_error = "/proc file system not found.\n"
 234                      "Java may be unstable running multithreaded in a chroot "
 235                      "environment on Linux when /proc filesystem is not mounted.";
 236 
 237 void os::Linux::initialize_system_info() {
 238   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 239   if (processor_count() == 1) {
 240     pid_t pid = os::Linux::gettid();
 241     char fname[32];
 242     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 243     FILE *fp = fopen(fname, "r");
 244     if (fp == NULL) {
 245       unsafe_chroot_detected = true;
 246     } else {
 247       fclose(fp);
 248     }
 249   }
 250   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 251   assert(processor_count() > 0, "linux error");
 252 }
 253 
 254 void os::init_system_properties_values() {
 255   // The next steps are taken in the product version:
 256   //
 257   // Obtain the JAVA_HOME value from the location of libjvm.so.
 258   // This library should be located at:
 259   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 260   //
 261   // If "/jre/lib/" appears at the right place in the path, then we
 262   // assume libjvm.so is installed in a JDK and we use this path.
 263   //
 264   // Otherwise exit with message: "Could not create the Java virtual machine."
 265   //
 266   // The following extra steps are taken in the debugging version:
 267   //
 268   // If "/jre/lib/" does NOT appear at the right place in the path
 269   // instead of exit check for $JAVA_HOME environment variable.
 270   //
 271   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 272   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 273   // it looks like libjvm.so is installed there
 274   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 275   //
 276   // Otherwise exit.
 277   //
 278   // Important note: if the location of libjvm.so changes this
 279   // code needs to be changed accordingly.
 280 
 281   // See ld(1):
 282   //      The linker uses the following search paths to locate required
 283   //      shared libraries:
 284   //        1: ...
 285   //        ...
 286   //        7: The default directories, normally /lib and /usr/lib.
 287 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 288   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 289 #else
 290   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 291 #endif
 292 
 293 // Base path of extensions installed on the system.
 294 #define SYS_EXT_DIR     "/usr/java/packages"
 295 #define EXTENSIONS_DIR  "/lib/ext"
 296 
 297   // Buffer that fits several sprintfs.
 298   // Note that the space for the colon and the trailing null are provided
 299   // by the nulls included by the sizeof operator.
 300   const size_t bufsize =
 301     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 302          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 303   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 304 
 305   // sysclasspath, java_home, dll_dir
 306   {
 307     char *pslash;
 308     os::jvm_path(buf, bufsize);
 309 
 310     // Found the full path to libjvm.so.
 311     // Now cut the path to <java_home>/jre if we can.
 312     pslash = strrchr(buf, '/');
 313     if (pslash != NULL) {
 314       *pslash = '\0';            // Get rid of /libjvm.so.
 315     }
 316     pslash = strrchr(buf, '/');
 317     if (pslash != NULL) {
 318       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 319     }
 320     Arguments::set_dll_dir(buf);
 321 
 322     if (pslash != NULL) {
 323       pslash = strrchr(buf, '/');
 324       if (pslash != NULL) {
 325         *pslash = '\0';        // Get rid of /lib.
 326       }
 327     }
 328     Arguments::set_java_home(buf);
 329     set_boot_path('/', ':');
 330   }
 331 
 332   // Where to look for native libraries.
 333   //
 334   // Note: Due to a legacy implementation, most of the library path
 335   // is set in the launcher. This was to accomodate linking restrictions
 336   // on legacy Linux implementations (which are no longer supported).
 337   // Eventually, all the library path setting will be done here.
 338   //
 339   // However, to prevent the proliferation of improperly built native
 340   // libraries, the new path component /usr/java/packages is added here.
 341   // Eventually, all the library path setting will be done here.
 342   {
 343     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 344     // should always exist (until the legacy problem cited above is
 345     // addressed).
 346     const char *v = ::getenv("LD_LIBRARY_PATH");
 347     const char *v_colon = ":";
 348     if (v == NULL) { v = ""; v_colon = ""; }
 349     // That's +1 for the colon and +1 for the trailing '\0'.
 350     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 351                                                      strlen(v) + 1 +
 352                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 353                                                      mtInternal);
 354     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 355     Arguments::set_library_path(ld_library_path);
 356     FREE_C_HEAP_ARRAY(char, ld_library_path);
 357   }
 358 
 359   // Extensions directories.
 360   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 361   Arguments::set_ext_dirs(buf);
 362 
 363   FREE_C_HEAP_ARRAY(char, buf);
 364 
 365 #undef DEFAULT_LIBPATH
 366 #undef SYS_EXT_DIR
 367 #undef EXTENSIONS_DIR
 368 }
 369 
 370 ////////////////////////////////////////////////////////////////////////////////
 371 // breakpoint support
 372 
 373 void os::breakpoint() {
 374   BREAKPOINT;
 375 }
 376 
 377 extern "C" void breakpoint() {
 378   // use debugger to set breakpoint here
 379 }
 380 
 381 ////////////////////////////////////////////////////////////////////////////////
 382 // signal support
 383 
 384 debug_only(static bool signal_sets_initialized = false);
 385 static sigset_t unblocked_sigs, vm_sigs;
 386 
 387 bool os::Linux::is_sig_ignored(int sig) {
 388   struct sigaction oact;
 389   sigaction(sig, (struct sigaction*)NULL, &oact);
 390   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 391                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 392   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 393     return true;
 394   } else {
 395     return false;
 396   }
 397 }
 398 
 399 void os::Linux::signal_sets_init() {
 400   // Should also have an assertion stating we are still single-threaded.
 401   assert(!signal_sets_initialized, "Already initialized");
 402   // Fill in signals that are necessarily unblocked for all threads in
 403   // the VM. Currently, we unblock the following signals:
 404   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 405   //                         by -Xrs (=ReduceSignalUsage));
 406   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 407   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 408   // the dispositions or masks wrt these signals.
 409   // Programs embedding the VM that want to use the above signals for their
 410   // own purposes must, at this time, use the "-Xrs" option to prevent
 411   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 412   // (See bug 4345157, and other related bugs).
 413   // In reality, though, unblocking these signals is really a nop, since
 414   // these signals are not blocked by default.
 415   sigemptyset(&unblocked_sigs);
 416   sigaddset(&unblocked_sigs, SIGILL);
 417   sigaddset(&unblocked_sigs, SIGSEGV);
 418   sigaddset(&unblocked_sigs, SIGBUS);
 419   sigaddset(&unblocked_sigs, SIGFPE);
 420 #if defined(PPC64)
 421   sigaddset(&unblocked_sigs, SIGTRAP);
 422 #endif
 423   sigaddset(&unblocked_sigs, SR_signum);
 424 
 425   if (!ReduceSignalUsage) {
 426     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 427       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 428     }
 429     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 430       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 431     }
 432     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 433       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 434     }
 435   }
 436   // Fill in signals that are blocked by all but the VM thread.
 437   sigemptyset(&vm_sigs);
 438   if (!ReduceSignalUsage) {
 439     sigaddset(&vm_sigs, BREAK_SIGNAL);
 440   }
 441   debug_only(signal_sets_initialized = true);
 442 
 443 }
 444 
 445 // These are signals that are unblocked while a thread is running Java.
 446 // (For some reason, they get blocked by default.)
 447 sigset_t* os::Linux::unblocked_signals() {
 448   assert(signal_sets_initialized, "Not initialized");
 449   return &unblocked_sigs;
 450 }
 451 
 452 // These are the signals that are blocked while a (non-VM) thread is
 453 // running Java. Only the VM thread handles these signals.
 454 sigset_t* os::Linux::vm_signals() {
 455   assert(signal_sets_initialized, "Not initialized");
 456   return &vm_sigs;
 457 }
 458 
 459 void os::Linux::hotspot_sigmask(Thread* thread) {
 460 
 461   //Save caller's signal mask before setting VM signal mask
 462   sigset_t caller_sigmask;
 463   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 464 
 465   OSThread* osthread = thread->osthread();
 466   osthread->set_caller_sigmask(caller_sigmask);
 467 
 468   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 469 
 470   if (!ReduceSignalUsage) {
 471     if (thread->is_VM_thread()) {
 472       // Only the VM thread handles BREAK_SIGNAL ...
 473       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 474     } else {
 475       // ... all other threads block BREAK_SIGNAL
 476       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 477     }
 478   }
 479 }
 480 
 481 //////////////////////////////////////////////////////////////////////////////
 482 // detecting pthread library
 483 
 484 void os::Linux::libpthread_init() {
 485   // Save glibc and pthread version strings.
 486 #if !defined(_CS_GNU_LIBC_VERSION) || \
 487     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 488   #error "glibc too old (< 2.3.2)"
 489 #endif
 490 
 491   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 492   assert(n > 0, "cannot retrieve glibc version");
 493   char *str = (char *)malloc(n, mtInternal);
 494   confstr(_CS_GNU_LIBC_VERSION, str, n);
 495   os::Linux::set_glibc_version(str);
 496 
 497   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 498   assert(n > 0, "cannot retrieve pthread version");
 499   str = (char *)malloc(n, mtInternal);
 500   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 501   os::Linux::set_libpthread_version(str);
 502 }
 503 
 504 /////////////////////////////////////////////////////////////////////////////
 505 // thread stack expansion
 506 
 507 // os::Linux::manually_expand_stack() takes care of expanding the thread
 508 // stack. Note that this is normally not needed: pthread stacks allocate
 509 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 510 // committed. Therefore it is not necessary to expand the stack manually.
 511 //
 512 // Manually expanding the stack was historically needed on LinuxThreads
 513 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 514 // it is kept to deal with very rare corner cases:
 515 //
 516 // For one, user may run the VM on an own implementation of threads
 517 // whose stacks are - like the old LinuxThreads - implemented using
 518 // mmap(MAP_GROWSDOWN).
 519 //
 520 // Also, this coding may be needed if the VM is running on the primordial
 521 // thread. Normally we avoid running on the primordial thread; however,
 522 // user may still invoke the VM on the primordial thread.
 523 //
 524 // The following historical comment describes the details about running
 525 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 526 
 527 
 528 // Force Linux kernel to expand current thread stack. If "bottom" is close
 529 // to the stack guard, caller should block all signals.
 530 //
 531 // MAP_GROWSDOWN:
 532 //   A special mmap() flag that is used to implement thread stacks. It tells
 533 //   kernel that the memory region should extend downwards when needed. This
 534 //   allows early versions of LinuxThreads to only mmap the first few pages
 535 //   when creating a new thread. Linux kernel will automatically expand thread
 536 //   stack as needed (on page faults).
 537 //
 538 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 539 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 540 //   region, it's hard to tell if the fault is due to a legitimate stack
 541 //   access or because of reading/writing non-exist memory (e.g. buffer
 542 //   overrun). As a rule, if the fault happens below current stack pointer,
 543 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 544 //   application (see Linux kernel fault.c).
 545 //
 546 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 547 //   stack overflow detection.
 548 //
 549 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 550 //   not use MAP_GROWSDOWN.
 551 //
 552 // To get around the problem and allow stack banging on Linux, we need to
 553 // manually expand thread stack after receiving the SIGSEGV.
 554 //
 555 // There are two ways to expand thread stack to address "bottom", we used
 556 // both of them in JVM before 1.5:
 557 //   1. adjust stack pointer first so that it is below "bottom", and then
 558 //      touch "bottom"
 559 //   2. mmap() the page in question
 560 //
 561 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 562 // if current sp is already near the lower end of page 101, and we need to
 563 // call mmap() to map page 100, it is possible that part of the mmap() frame
 564 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 565 // That will destroy the mmap() frame and cause VM to crash.
 566 //
 567 // The following code works by adjusting sp first, then accessing the "bottom"
 568 // page to force a page fault. Linux kernel will then automatically expand the
 569 // stack mapping.
 570 //
 571 // _expand_stack_to() assumes its frame size is less than page size, which
 572 // should always be true if the function is not inlined.
 573 
 574 static void NOINLINE _expand_stack_to(address bottom) {
 575   address sp;
 576   size_t size;
 577   volatile char *p;
 578 
 579   // Adjust bottom to point to the largest address within the same page, it
 580   // gives us a one-page buffer if alloca() allocates slightly more memory.
 581   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 582   bottom += os::Linux::page_size() - 1;
 583 
 584   // sp might be slightly above current stack pointer; if that's the case, we
 585   // will alloca() a little more space than necessary, which is OK. Don't use
 586   // os::current_stack_pointer(), as its result can be slightly below current
 587   // stack pointer, causing us to not alloca enough to reach "bottom".
 588   sp = (address)&sp;
 589 
 590   if (sp > bottom) {
 591     size = sp - bottom;
 592     p = (volatile char *)alloca(size);
 593     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 594     p[0] = '\0';
 595   }
 596 }
 597 
 598 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 599   assert(t!=NULL, "just checking");
 600   assert(t->osthread()->expanding_stack(), "expand should be set");
 601   assert(t->stack_base() != NULL, "stack_base was not initialized");
 602 
 603   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 604     sigset_t mask_all, old_sigset;
 605     sigfillset(&mask_all);
 606     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 607     _expand_stack_to(addr);
 608     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 609     return true;
 610   }
 611   return false;
 612 }
 613 
 614 //////////////////////////////////////////////////////////////////////////////
 615 // create new thread
 616 
 617 // Thread start routine for all newly created threads
 618 static void *thread_native_entry(Thread *thread) {
 619   // Try to randomize the cache line index of hot stack frames.
 620   // This helps when threads of the same stack traces evict each other's
 621   // cache lines. The threads can be either from the same JVM instance, or
 622   // from different JVM instances. The benefit is especially true for
 623   // processors with hyperthreading technology.
 624   static int counter = 0;
 625   int pid = os::current_process_id();
 626   alloca(((pid ^ counter++) & 7) * 128);
 627 
 628   thread->initialize_thread_current();
 629 
 630   OSThread* osthread = thread->osthread();
 631   Monitor* sync = osthread->startThread_lock();
 632 
 633   osthread->set_thread_id(os::current_thread_id());
 634 
 635   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 636     os::current_thread_id(), (uintx) pthread_self());
 637 
 638   if (UseNUMA) {
 639     int lgrp_id = os::numa_get_group_id();
 640     if (lgrp_id != -1) {
 641       thread->set_lgrp_id(lgrp_id);
 642     }
 643   }
 644   // initialize signal mask for this thread
 645   os::Linux::hotspot_sigmask(thread);
 646 
 647   // initialize floating point control register
 648   os::Linux::init_thread_fpu_state();
 649 
 650   // handshaking with parent thread
 651   {
 652     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 653 
 654     // notify parent thread
 655     osthread->set_state(INITIALIZED);
 656     sync->notify_all();
 657 
 658     // wait until os::start_thread()
 659     while (osthread->get_state() == INITIALIZED) {
 660       sync->wait(Mutex::_no_safepoint_check_flag);
 661     }
 662   }
 663 
 664   // call one more level start routine
 665   thread->run();
 666 
 667   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 668     os::current_thread_id(), (uintx) pthread_self());
 669 
 670   // If a thread has not deleted itself ("delete this") as part of its
 671   // termination sequence, we have to ensure thread-local-storage is
 672   // cleared before we actually terminate. No threads should ever be
 673   // deleted asynchronously with respect to their termination.
 674   if (Thread::current_or_null_safe() != NULL) {
 675     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 676     thread->clear_thread_current();
 677   }
 678 
 679   return 0;
 680 }
 681 
 682 bool os::create_thread(Thread* thread, ThreadType thr_type,
 683                        size_t req_stack_size) {
 684   assert(thread->osthread() == NULL, "caller responsible");
 685 
 686   // Allocate the OSThread object
 687   OSThread* osthread = new OSThread(NULL, NULL);
 688   if (osthread == NULL) {
 689     return false;
 690   }
 691 
 692   // set the correct thread state
 693   osthread->set_thread_type(thr_type);
 694 
 695   // Initial state is ALLOCATED but not INITIALIZED
 696   osthread->set_state(ALLOCATED);
 697 
 698   thread->set_osthread(osthread);
 699 
 700   // init thread attributes
 701   pthread_attr_t attr;
 702   pthread_attr_init(&attr);
 703   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 704 
 705   // Calculate stack size if it's not specified by caller.
 706   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 707   // In the Linux NPTL pthread implementation the guard size mechanism
 708   // is not implemented properly. The posix standard requires adding
 709   // the size of the guard pages to the stack size, instead Linux
 710   // takes the space out of 'stacksize'. Thus we adapt the requested
 711   // stack_size by the size of the guard pages to mimick proper
 712   // behaviour. However, be careful not to end up with a size
 713   // of zero due to overflow. Don't add the guard page in that case.
 714   size_t guard_size = os::Linux::default_guard_size(thr_type);
 715   if (stack_size <= SIZE_MAX - guard_size) {
 716     stack_size += guard_size;
 717   }
 718   assert(is_size_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 719 
 720   int status = pthread_attr_setstacksize(&attr, stack_size);
 721   assert_status(status == 0, status, "pthread_attr_setstacksize");
 722 
 723   // Configure glibc guard page.
 724   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 725 
 726   ThreadState state;
 727 
 728   {
 729     pthread_t tid;
 730     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 731 
 732     char buf[64];
 733     if (ret == 0) {
 734       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 735         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 736     } else {
 737       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 738         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 739     }
 740 
 741     pthread_attr_destroy(&attr);
 742 
 743     if (ret != 0) {
 744       // Need to clean up stuff we've allocated so far
 745       thread->set_osthread(NULL);
 746       delete osthread;
 747       return false;
 748     }
 749 
 750     // Store pthread info into the OSThread
 751     osthread->set_pthread_id(tid);
 752 
 753     // Wait until child thread is either initialized or aborted
 754     {
 755       Monitor* sync_with_child = osthread->startThread_lock();
 756       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 757       while ((state = osthread->get_state()) == ALLOCATED) {
 758         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 759       }
 760     }
 761   }
 762 
 763   // Aborted due to thread limit being reached
 764   if (state == ZOMBIE) {
 765     thread->set_osthread(NULL);
 766     delete osthread;
 767     return false;
 768   }
 769 
 770   // The thread is returned suspended (in state INITIALIZED),
 771   // and is started higher up in the call chain
 772   assert(state == INITIALIZED, "race condition");
 773   return true;
 774 }
 775 
 776 /////////////////////////////////////////////////////////////////////////////
 777 // attach existing thread
 778 
 779 // bootstrap the main thread
 780 bool os::create_main_thread(JavaThread* thread) {
 781   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 782   return create_attached_thread(thread);
 783 }
 784 
 785 bool os::create_attached_thread(JavaThread* thread) {
 786 #ifdef ASSERT
 787   thread->verify_not_published();
 788 #endif
 789 
 790   // Allocate the OSThread object
 791   OSThread* osthread = new OSThread(NULL, NULL);
 792 
 793   if (osthread == NULL) {
 794     return false;
 795   }
 796 
 797   // Store pthread info into the OSThread
 798   osthread->set_thread_id(os::Linux::gettid());
 799   osthread->set_pthread_id(::pthread_self());
 800 
 801   // initialize floating point control register
 802   os::Linux::init_thread_fpu_state();
 803 
 804   // Initial thread state is RUNNABLE
 805   osthread->set_state(RUNNABLE);
 806 
 807   thread->set_osthread(osthread);
 808 
 809   if (UseNUMA) {
 810     int lgrp_id = os::numa_get_group_id();
 811     if (lgrp_id != -1) {
 812       thread->set_lgrp_id(lgrp_id);
 813     }
 814   }
 815 
 816   if (os::Linux::is_initial_thread()) {
 817     // If current thread is initial thread, its stack is mapped on demand,
 818     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 819     // the entire stack region to avoid SEGV in stack banging.
 820     // It is also useful to get around the heap-stack-gap problem on SuSE
 821     // kernel (see 4821821 for details). We first expand stack to the top
 822     // of yellow zone, then enable stack yellow zone (order is significant,
 823     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 824     // is no gap between the last two virtual memory regions.
 825 
 826     JavaThread *jt = (JavaThread *)thread;
 827     address addr = jt->stack_reserved_zone_base();
 828     assert(addr != NULL, "initialization problem?");
 829     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 830 
 831     osthread->set_expanding_stack();
 832     os::Linux::manually_expand_stack(jt, addr);
 833     osthread->clear_expanding_stack();
 834   }
 835 
 836   // initialize signal mask for this thread
 837   // and save the caller's signal mask
 838   os::Linux::hotspot_sigmask(thread);
 839 
 840   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 841     os::current_thread_id(), (uintx) pthread_self());
 842 
 843   return true;
 844 }
 845 
 846 void os::pd_start_thread(Thread* thread) {
 847   OSThread * osthread = thread->osthread();
 848   assert(osthread->get_state() != INITIALIZED, "just checking");
 849   Monitor* sync_with_child = osthread->startThread_lock();
 850   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 851   sync_with_child->notify();
 852 }
 853 
 854 // Free Linux resources related to the OSThread
 855 void os::free_thread(OSThread* osthread) {
 856   assert(osthread != NULL, "osthread not set");
 857 
 858   // We are told to free resources of the argument thread,
 859   // but we can only really operate on the current thread.
 860   assert(Thread::current()->osthread() == osthread,
 861          "os::free_thread but not current thread");
 862 
 863 #ifdef ASSERT
 864   sigset_t current;
 865   sigemptyset(&current);
 866   pthread_sigmask(SIG_SETMASK, NULL, &current);
 867   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 868 #endif
 869 
 870   // Restore caller's signal mask
 871   sigset_t sigmask = osthread->caller_sigmask();
 872   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 873 
 874   delete osthread;
 875 }
 876 
 877 //////////////////////////////////////////////////////////////////////////////
 878 // initial thread
 879 
 880 // Check if current thread is the initial thread, similar to Solaris thr_main.
 881 bool os::Linux::is_initial_thread(void) {
 882   char dummy;
 883   // If called before init complete, thread stack bottom will be null.
 884   // Can be called if fatal error occurs before initialization.
 885   if (initial_thread_stack_bottom() == NULL) return false;
 886   assert(initial_thread_stack_bottom() != NULL &&
 887          initial_thread_stack_size()   != 0,
 888          "os::init did not locate initial thread's stack region");
 889   if ((address)&dummy >= initial_thread_stack_bottom() &&
 890       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size()) {
 891     return true;
 892   } else {
 893     return false;
 894   }
 895 }
 896 
 897 // Find the virtual memory area that contains addr
 898 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 899   FILE *fp = fopen("/proc/self/maps", "r");
 900   if (fp) {
 901     address low, high;
 902     while (!feof(fp)) {
 903       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 904         if (low <= addr && addr < high) {
 905           if (vma_low)  *vma_low  = low;
 906           if (vma_high) *vma_high = high;
 907           fclose(fp);
 908           return true;
 909         }
 910       }
 911       for (;;) {
 912         int ch = fgetc(fp);
 913         if (ch == EOF || ch == (int)'\n') break;
 914       }
 915     }
 916     fclose(fp);
 917   }
 918   return false;
 919 }
 920 
 921 // Locate initial thread stack. This special handling of initial thread stack
 922 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 923 // bogus value for the primordial process thread. While the launcher has created
 924 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 925 // JNI invocation API from a primordial thread.
 926 void os::Linux::capture_initial_stack(size_t max_size) {
 927 
 928   // max_size is either 0 (which means accept OS default for thread stacks) or
 929   // a user-specified value known to be at least the minimum needed. If we
 930   // are actually on the primordial thread we can make it appear that we have a
 931   // smaller max_size stack by inserting the guard pages at that location. But we
 932   // cannot do anything to emulate a larger stack than what has been provided by
 933   // the OS or threading library. In fact if we try to use a stack greater than
 934   // what is set by rlimit then we will crash the hosting process.
 935 
 936   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 937   // If this is "unlimited" then it will be a huge value.
 938   struct rlimit rlim;
 939   getrlimit(RLIMIT_STACK, &rlim);
 940   size_t stack_size = rlim.rlim_cur;
 941 
 942   // 6308388: a bug in ld.so will relocate its own .data section to the
 943   //   lower end of primordial stack; reduce ulimit -s value a little bit
 944   //   so we won't install guard page on ld.so's data section.
 945   stack_size -= 2 * page_size();
 946 
 947   // Try to figure out where the stack base (top) is. This is harder.
 948   //
 949   // When an application is started, glibc saves the initial stack pointer in
 950   // a global variable "__libc_stack_end", which is then used by system
 951   // libraries. __libc_stack_end should be pretty close to stack top. The
 952   // variable is available since the very early days. However, because it is
 953   // a private interface, it could disappear in the future.
 954   //
 955   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 956   // to __libc_stack_end, it is very close to stack top, but isn't the real
 957   // stack top. Note that /proc may not exist if VM is running as a chroot
 958   // program, so reading /proc/<pid>/stat could fail. Also the contents of
 959   // /proc/<pid>/stat could change in the future (though unlikely).
 960   //
 961   // We try __libc_stack_end first. If that doesn't work, look for
 962   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
 963   // as a hint, which should work well in most cases.
 964 
 965   uintptr_t stack_start;
 966 
 967   // try __libc_stack_end first
 968   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
 969   if (p && *p) {
 970     stack_start = *p;
 971   } else {
 972     // see if we can get the start_stack field from /proc/self/stat
 973     FILE *fp;
 974     int pid;
 975     char state;
 976     int ppid;
 977     int pgrp;
 978     int session;
 979     int nr;
 980     int tpgrp;
 981     unsigned long flags;
 982     unsigned long minflt;
 983     unsigned long cminflt;
 984     unsigned long majflt;
 985     unsigned long cmajflt;
 986     unsigned long utime;
 987     unsigned long stime;
 988     long cutime;
 989     long cstime;
 990     long prio;
 991     long nice;
 992     long junk;
 993     long it_real;
 994     uintptr_t start;
 995     uintptr_t vsize;
 996     intptr_t rss;
 997     uintptr_t rsslim;
 998     uintptr_t scodes;
 999     uintptr_t ecode;
1000     int i;
1001 
1002     // Figure what the primordial thread stack base is. Code is inspired
1003     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1004     // followed by command name surrounded by parentheses, state, etc.
1005     char stat[2048];
1006     int statlen;
1007 
1008     fp = fopen("/proc/self/stat", "r");
1009     if (fp) {
1010       statlen = fread(stat, 1, 2047, fp);
1011       stat[statlen] = '\0';
1012       fclose(fp);
1013 
1014       // Skip pid and the command string. Note that we could be dealing with
1015       // weird command names, e.g. user could decide to rename java launcher
1016       // to "java 1.4.2 :)", then the stat file would look like
1017       //                1234 (java 1.4.2 :)) R ... ...
1018       // We don't really need to know the command string, just find the last
1019       // occurrence of ")" and then start parsing from there. See bug 4726580.
1020       char * s = strrchr(stat, ')');
1021 
1022       i = 0;
1023       if (s) {
1024         // Skip blank chars
1025         do { s++; } while (s && isspace(*s));
1026 
1027 #define _UFM UINTX_FORMAT
1028 #define _DFM INTX_FORMAT
1029 
1030         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1031         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1032         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1033                    &state,          // 3  %c
1034                    &ppid,           // 4  %d
1035                    &pgrp,           // 5  %d
1036                    &session,        // 6  %d
1037                    &nr,             // 7  %d
1038                    &tpgrp,          // 8  %d
1039                    &flags,          // 9  %lu
1040                    &minflt,         // 10 %lu
1041                    &cminflt,        // 11 %lu
1042                    &majflt,         // 12 %lu
1043                    &cmajflt,        // 13 %lu
1044                    &utime,          // 14 %lu
1045                    &stime,          // 15 %lu
1046                    &cutime,         // 16 %ld
1047                    &cstime,         // 17 %ld
1048                    &prio,           // 18 %ld
1049                    &nice,           // 19 %ld
1050                    &junk,           // 20 %ld
1051                    &it_real,        // 21 %ld
1052                    &start,          // 22 UINTX_FORMAT
1053                    &vsize,          // 23 UINTX_FORMAT
1054                    &rss,            // 24 INTX_FORMAT
1055                    &rsslim,         // 25 UINTX_FORMAT
1056                    &scodes,         // 26 UINTX_FORMAT
1057                    &ecode,          // 27 UINTX_FORMAT
1058                    &stack_start);   // 28 UINTX_FORMAT
1059       }
1060 
1061 #undef _UFM
1062 #undef _DFM
1063 
1064       if (i != 28 - 2) {
1065         assert(false, "Bad conversion from /proc/self/stat");
1066         // product mode - assume we are the initial thread, good luck in the
1067         // embedded case.
1068         warning("Can't detect initial thread stack location - bad conversion");
1069         stack_start = (uintptr_t) &rlim;
1070       }
1071     } else {
1072       // For some reason we can't open /proc/self/stat (for example, running on
1073       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1074       // most cases, so don't abort:
1075       warning("Can't detect initial thread stack location - no /proc/self/stat");
1076       stack_start = (uintptr_t) &rlim;
1077     }
1078   }
1079 
1080   // Now we have a pointer (stack_start) very close to the stack top, the
1081   // next thing to do is to figure out the exact location of stack top. We
1082   // can find out the virtual memory area that contains stack_start by
1083   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1084   // and its upper limit is the real stack top. (again, this would fail if
1085   // running inside chroot, because /proc may not exist.)
1086 
1087   uintptr_t stack_top;
1088   address low, high;
1089   if (find_vma((address)stack_start, &low, &high)) {
1090     // success, "high" is the true stack top. (ignore "low", because initial
1091     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1092     stack_top = (uintptr_t)high;
1093   } else {
1094     // failed, likely because /proc/self/maps does not exist
1095     warning("Can't detect initial thread stack location - find_vma failed");
1096     // best effort: stack_start is normally within a few pages below the real
1097     // stack top, use it as stack top, and reduce stack size so we won't put
1098     // guard page outside stack.
1099     stack_top = stack_start;
1100     stack_size -= 16 * page_size();
1101   }
1102 
1103   // stack_top could be partially down the page so align it
1104   stack_top = align_size_up(stack_top, page_size());
1105 
1106   // Allowed stack value is minimum of max_size and what we derived from rlimit
1107   if (max_size > 0) {
1108     _initial_thread_stack_size = MIN2(max_size, stack_size);
1109   } else {
1110     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1111     // clamp it at 8MB as we do on Solaris
1112     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1113   }
1114   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1115   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1116 
1117   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1118 
1119   if (log_is_enabled(Info, os, thread)) {
1120     // See if we seem to be on primordial process thread
1121     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1122                       uintptr_t(&rlim) < stack_top;
1123 
1124     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1125                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1126                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1127                          stack_top, intptr_t(_initial_thread_stack_bottom));
1128   }
1129 }
1130 
1131 ////////////////////////////////////////////////////////////////////////////////
1132 // time support
1133 
1134 // Time since start-up in seconds to a fine granularity.
1135 // Used by VMSelfDestructTimer and the MemProfiler.
1136 double os::elapsedTime() {
1137 
1138   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1139 }
1140 
1141 jlong os::elapsed_counter() {
1142   return javaTimeNanos() - initial_time_count;
1143 }
1144 
1145 jlong os::elapsed_frequency() {
1146   return NANOSECS_PER_SEC; // nanosecond resolution
1147 }
1148 
1149 bool os::supports_vtime() { return true; }
1150 bool os::enable_vtime()   { return false; }
1151 bool os::vtime_enabled()  { return false; }
1152 
1153 double os::elapsedVTime() {
1154   struct rusage usage;
1155   int retval = getrusage(RUSAGE_THREAD, &usage);
1156   if (retval == 0) {
1157     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1158   } else {
1159     // better than nothing, but not much
1160     return elapsedTime();
1161   }
1162 }
1163 
1164 jlong os::javaTimeMillis() {
1165   timeval time;
1166   int status = gettimeofday(&time, NULL);
1167   assert(status != -1, "linux error");
1168   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1169 }
1170 
1171 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1172   timeval time;
1173   int status = gettimeofday(&time, NULL);
1174   assert(status != -1, "linux error");
1175   seconds = jlong(time.tv_sec);
1176   nanos = jlong(time.tv_usec) * 1000;
1177 }
1178 
1179 
1180 #ifndef CLOCK_MONOTONIC
1181   #define CLOCK_MONOTONIC (1)
1182 #endif
1183 
1184 void os::Linux::clock_init() {
1185   // we do dlopen's in this particular order due to bug in linux
1186   // dynamical loader (see 6348968) leading to crash on exit
1187   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1188   if (handle == NULL) {
1189     handle = dlopen("librt.so", RTLD_LAZY);
1190   }
1191 
1192   if (handle) {
1193     int (*clock_getres_func)(clockid_t, struct timespec*) =
1194            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1195     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1196            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1197     if (clock_getres_func && clock_gettime_func) {
1198       // See if monotonic clock is supported by the kernel. Note that some
1199       // early implementations simply return kernel jiffies (updated every
1200       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1201       // for nano time (though the monotonic property is still nice to have).
1202       // It's fixed in newer kernels, however clock_getres() still returns
1203       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1204       // resolution for now. Hopefully as people move to new kernels, this
1205       // won't be a problem.
1206       struct timespec res;
1207       struct timespec tp;
1208       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1209           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1210         // yes, monotonic clock is supported
1211         _clock_gettime = clock_gettime_func;
1212         return;
1213       } else {
1214         // close librt if there is no monotonic clock
1215         dlclose(handle);
1216       }
1217     }
1218   }
1219   warning("No monotonic clock was available - timed services may " \
1220           "be adversely affected if the time-of-day clock changes");
1221 }
1222 
1223 #ifndef SYS_clock_getres
1224   #if defined(X86) || defined(PPC64) || defined(S390)
1225     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1226     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1227   #else
1228     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1229     #define sys_clock_getres(x,y)  -1
1230   #endif
1231 #else
1232   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1233 #endif
1234 
1235 void os::Linux::fast_thread_clock_init() {
1236   if (!UseLinuxPosixThreadCPUClocks) {
1237     return;
1238   }
1239   clockid_t clockid;
1240   struct timespec tp;
1241   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1242       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1243 
1244   // Switch to using fast clocks for thread cpu time if
1245   // the sys_clock_getres() returns 0 error code.
1246   // Note, that some kernels may support the current thread
1247   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1248   // returned by the pthread_getcpuclockid().
1249   // If the fast Posix clocks are supported then the sys_clock_getres()
1250   // must return at least tp.tv_sec == 0 which means a resolution
1251   // better than 1 sec. This is extra check for reliability.
1252 
1253   if (pthread_getcpuclockid_func &&
1254       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1255       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1256     _supports_fast_thread_cpu_time = true;
1257     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1258   }
1259 }
1260 
1261 jlong os::javaTimeNanos() {
1262   if (os::supports_monotonic_clock()) {
1263     struct timespec tp;
1264     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1265     assert(status == 0, "gettime error");
1266     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1267     return result;
1268   } else {
1269     timeval time;
1270     int status = gettimeofday(&time, NULL);
1271     assert(status != -1, "linux error");
1272     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1273     return 1000 * usecs;
1274   }
1275 }
1276 
1277 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1278   if (os::supports_monotonic_clock()) {
1279     info_ptr->max_value = ALL_64_BITS;
1280 
1281     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1282     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1283     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1284   } else {
1285     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1286     info_ptr->max_value = ALL_64_BITS;
1287 
1288     // gettimeofday is a real time clock so it skips
1289     info_ptr->may_skip_backward = true;
1290     info_ptr->may_skip_forward = true;
1291   }
1292 
1293   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1294 }
1295 
1296 // Return the real, user, and system times in seconds from an
1297 // arbitrary fixed point in the past.
1298 bool os::getTimesSecs(double* process_real_time,
1299                       double* process_user_time,
1300                       double* process_system_time) {
1301   struct tms ticks;
1302   clock_t real_ticks = times(&ticks);
1303 
1304   if (real_ticks == (clock_t) (-1)) {
1305     return false;
1306   } else {
1307     double ticks_per_second = (double) clock_tics_per_sec;
1308     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1309     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1310     *process_real_time = ((double) real_ticks) / ticks_per_second;
1311 
1312     return true;
1313   }
1314 }
1315 
1316 
1317 char * os::local_time_string(char *buf, size_t buflen) {
1318   struct tm t;
1319   time_t long_time;
1320   time(&long_time);
1321   localtime_r(&long_time, &t);
1322   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1323                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1324                t.tm_hour, t.tm_min, t.tm_sec);
1325   return buf;
1326 }
1327 
1328 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1329   return localtime_r(clock, res);
1330 }
1331 
1332 ////////////////////////////////////////////////////////////////////////////////
1333 // runtime exit support
1334 
1335 // Note: os::shutdown() might be called very early during initialization, or
1336 // called from signal handler. Before adding something to os::shutdown(), make
1337 // sure it is async-safe and can handle partially initialized VM.
1338 void os::shutdown() {
1339 
1340   // allow PerfMemory to attempt cleanup of any persistent resources
1341   perfMemory_exit();
1342 
1343   // needs to remove object in file system
1344   AttachListener::abort();
1345 
1346   // flush buffered output, finish log files
1347   ostream_abort();
1348 
1349   // Check for abort hook
1350   abort_hook_t abort_hook = Arguments::abort_hook();
1351   if (abort_hook != NULL) {
1352     abort_hook();
1353   }
1354 
1355 }
1356 
1357 // Note: os::abort() might be called very early during initialization, or
1358 // called from signal handler. Before adding something to os::abort(), make
1359 // sure it is async-safe and can handle partially initialized VM.
1360 void os::abort(bool dump_core, void* siginfo, const void* context) {
1361   os::shutdown();
1362   if (dump_core) {
1363 #ifndef PRODUCT
1364     fdStream out(defaultStream::output_fd());
1365     out.print_raw("Current thread is ");
1366     char buf[16];
1367     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1368     out.print_raw_cr(buf);
1369     out.print_raw_cr("Dumping core ...");
1370 #endif
1371     ::abort(); // dump core
1372   }
1373 
1374   ::exit(1);
1375 }
1376 
1377 // Die immediately, no exit hook, no abort hook, no cleanup.
1378 void os::die() {
1379   ::abort();
1380 }
1381 
1382 
1383 // This method is a copy of JDK's sysGetLastErrorString
1384 // from src/solaris/hpi/src/system_md.c
1385 
1386 size_t os::lasterror(char *buf, size_t len) {
1387   if (errno == 0)  return 0;
1388 
1389   const char *s = os::strerror(errno);
1390   size_t n = ::strlen(s);
1391   if (n >= len) {
1392     n = len - 1;
1393   }
1394   ::strncpy(buf, s, n);
1395   buf[n] = '\0';
1396   return n;
1397 }
1398 
1399 // thread_id is kernel thread id (similar to Solaris LWP id)
1400 intx os::current_thread_id() { return os::Linux::gettid(); }
1401 int os::current_process_id() {
1402   return ::getpid();
1403 }
1404 
1405 // DLL functions
1406 
1407 const char* os::dll_file_extension() { return ".so"; }
1408 
1409 // This must be hard coded because it's the system's temporary
1410 // directory not the java application's temp directory, ala java.io.tmpdir.
1411 const char* os::get_temp_directory() { return "/tmp"; }
1412 
1413 static bool file_exists(const char* filename) {
1414   struct stat statbuf;
1415   if (filename == NULL || strlen(filename) == 0) {
1416     return false;
1417   }
1418   return os::stat(filename, &statbuf) == 0;
1419 }
1420 
1421 bool os::dll_build_name(char* buffer, size_t buflen,
1422                         const char* pname, const char* fname) {
1423   bool retval = false;
1424   // Copied from libhpi
1425   const size_t pnamelen = pname ? strlen(pname) : 0;
1426 
1427   // Return error on buffer overflow.
1428   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1429     return retval;
1430   }
1431 
1432   if (pnamelen == 0) {
1433     snprintf(buffer, buflen, "lib%s.so", fname);
1434     retval = true;
1435   } else if (strchr(pname, *os::path_separator()) != NULL) {
1436     int n;
1437     char** pelements = split_path(pname, &n);
1438     if (pelements == NULL) {
1439       return false;
1440     }
1441     for (int i = 0; i < n; i++) {
1442       // Really shouldn't be NULL, but check can't hurt
1443       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1444         continue; // skip the empty path values
1445       }
1446       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1447       if (file_exists(buffer)) {
1448         retval = true;
1449         break;
1450       }
1451     }
1452     // release the storage
1453     for (int i = 0; i < n; i++) {
1454       if (pelements[i] != NULL) {
1455         FREE_C_HEAP_ARRAY(char, pelements[i]);
1456       }
1457     }
1458     if (pelements != NULL) {
1459       FREE_C_HEAP_ARRAY(char*, pelements);
1460     }
1461   } else {
1462     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1463     retval = true;
1464   }
1465   return retval;
1466 }
1467 
1468 // check if addr is inside libjvm.so
1469 bool os::address_is_in_vm(address addr) {
1470   static address libjvm_base_addr;
1471   Dl_info dlinfo;
1472 
1473   if (libjvm_base_addr == NULL) {
1474     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1475       libjvm_base_addr = (address)dlinfo.dli_fbase;
1476     }
1477     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1478   }
1479 
1480   if (dladdr((void *)addr, &dlinfo) != 0) {
1481     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1482   }
1483 
1484   return false;
1485 }
1486 
1487 bool os::dll_address_to_function_name(address addr, char *buf,
1488                                       int buflen, int *offset,
1489                                       bool demangle) {
1490   // buf is not optional, but offset is optional
1491   assert(buf != NULL, "sanity check");
1492 
1493   Dl_info dlinfo;
1494 
1495   if (dladdr((void*)addr, &dlinfo) != 0) {
1496     // see if we have a matching symbol
1497     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1498       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1499         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1500       }
1501       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1502       return true;
1503     }
1504     // no matching symbol so try for just file info
1505     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1506       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1507                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1508         return true;
1509       }
1510     }
1511   }
1512 
1513   buf[0] = '\0';
1514   if (offset != NULL) *offset = -1;
1515   return false;
1516 }
1517 
1518 struct _address_to_library_name {
1519   address addr;          // input : memory address
1520   size_t  buflen;        //         size of fname
1521   char*   fname;         // output: library name
1522   address base;          //         library base addr
1523 };
1524 
1525 static int address_to_library_name_callback(struct dl_phdr_info *info,
1526                                             size_t size, void *data) {
1527   int i;
1528   bool found = false;
1529   address libbase = NULL;
1530   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1531 
1532   // iterate through all loadable segments
1533   for (i = 0; i < info->dlpi_phnum; i++) {
1534     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1535     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1536       // base address of a library is the lowest address of its loaded
1537       // segments.
1538       if (libbase == NULL || libbase > segbase) {
1539         libbase = segbase;
1540       }
1541       // see if 'addr' is within current segment
1542       if (segbase <= d->addr &&
1543           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1544         found = true;
1545       }
1546     }
1547   }
1548 
1549   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1550   // so dll_address_to_library_name() can fall through to use dladdr() which
1551   // can figure out executable name from argv[0].
1552   if (found && info->dlpi_name && info->dlpi_name[0]) {
1553     d->base = libbase;
1554     if (d->fname) {
1555       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1556     }
1557     return 1;
1558   }
1559   return 0;
1560 }
1561 
1562 bool os::dll_address_to_library_name(address addr, char* buf,
1563                                      int buflen, int* offset) {
1564   // buf is not optional, but offset is optional
1565   assert(buf != NULL, "sanity check");
1566 
1567   Dl_info dlinfo;
1568   struct _address_to_library_name data;
1569 
1570   // There is a bug in old glibc dladdr() implementation that it could resolve
1571   // to wrong library name if the .so file has a base address != NULL. Here
1572   // we iterate through the program headers of all loaded libraries to find
1573   // out which library 'addr' really belongs to. This workaround can be
1574   // removed once the minimum requirement for glibc is moved to 2.3.x.
1575   data.addr = addr;
1576   data.fname = buf;
1577   data.buflen = buflen;
1578   data.base = NULL;
1579   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1580 
1581   if (rslt) {
1582     // buf already contains library name
1583     if (offset) *offset = addr - data.base;
1584     return true;
1585   }
1586   if (dladdr((void*)addr, &dlinfo) != 0) {
1587     if (dlinfo.dli_fname != NULL) {
1588       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1589     }
1590     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1591       *offset = addr - (address)dlinfo.dli_fbase;
1592     }
1593     return true;
1594   }
1595 
1596   buf[0] = '\0';
1597   if (offset) *offset = -1;
1598   return false;
1599 }
1600 
1601 // Loads .dll/.so and
1602 // in case of error it checks if .dll/.so was built for the
1603 // same architecture as Hotspot is running on
1604 
1605 
1606 // Remember the stack's state. The Linux dynamic linker will change
1607 // the stack to 'executable' at most once, so we must safepoint only once.
1608 bool os::Linux::_stack_is_executable = false;
1609 
1610 // VM operation that loads a library.  This is necessary if stack protection
1611 // of the Java stacks can be lost during loading the library.  If we
1612 // do not stop the Java threads, they can stack overflow before the stacks
1613 // are protected again.
1614 class VM_LinuxDllLoad: public VM_Operation {
1615  private:
1616   const char *_filename;
1617   char *_ebuf;
1618   int _ebuflen;
1619   void *_lib;
1620  public:
1621   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1622     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1623   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1624   void doit() {
1625     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1626     os::Linux::_stack_is_executable = true;
1627   }
1628   void* loaded_library() { return _lib; }
1629 };
1630 
1631 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1632   void * result = NULL;
1633   bool load_attempted = false;
1634 
1635   // Check whether the library to load might change execution rights
1636   // of the stack. If they are changed, the protection of the stack
1637   // guard pages will be lost. We need a safepoint to fix this.
1638   //
1639   // See Linux man page execstack(8) for more info.
1640   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1641     ElfFile ef(filename);
1642     if (!ef.specifies_noexecstack()) {
1643       if (!is_init_completed()) {
1644         os::Linux::_stack_is_executable = true;
1645         // This is OK - No Java threads have been created yet, and hence no
1646         // stack guard pages to fix.
1647         //
1648         // This should happen only when you are building JDK7 using a very
1649         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1650         //
1651         // Dynamic loader will make all stacks executable after
1652         // this function returns, and will not do that again.
1653         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1654       } else {
1655         warning("You have loaded library %s which might have disabled stack guard. "
1656                 "The VM will try to fix the stack guard now.\n"
1657                 "It's highly recommended that you fix the library with "
1658                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1659                 filename);
1660 
1661         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1662         JavaThread *jt = JavaThread::current();
1663         if (jt->thread_state() != _thread_in_native) {
1664           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1665           // that requires ExecStack. Cannot enter safe point. Let's give up.
1666           warning("Unable to fix stack guard. Giving up.");
1667         } else {
1668           if (!LoadExecStackDllInVMThread) {
1669             // This is for the case where the DLL has an static
1670             // constructor function that executes JNI code. We cannot
1671             // load such DLLs in the VMThread.
1672             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1673           }
1674 
1675           ThreadInVMfromNative tiv(jt);
1676           debug_only(VMNativeEntryWrapper vew;)
1677 
1678           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1679           VMThread::execute(&op);
1680           if (LoadExecStackDllInVMThread) {
1681             result = op.loaded_library();
1682           }
1683           load_attempted = true;
1684         }
1685       }
1686     }
1687   }
1688 
1689   if (!load_attempted) {
1690     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1691   }
1692 
1693   if (result != NULL) {
1694     // Successful loading
1695     return result;
1696   }
1697 
1698   Elf32_Ehdr elf_head;
1699   int diag_msg_max_length=ebuflen-strlen(ebuf);
1700   char* diag_msg_buf=ebuf+strlen(ebuf);
1701 
1702   if (diag_msg_max_length==0) {
1703     // No more space in ebuf for additional diagnostics message
1704     return NULL;
1705   }
1706 
1707 
1708   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1709 
1710   if (file_descriptor < 0) {
1711     // Can't open library, report dlerror() message
1712     return NULL;
1713   }
1714 
1715   bool failed_to_read_elf_head=
1716     (sizeof(elf_head)!=
1717      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1718 
1719   ::close(file_descriptor);
1720   if (failed_to_read_elf_head) {
1721     // file i/o error - report dlerror() msg
1722     return NULL;
1723   }
1724 
1725   typedef struct {
1726     Elf32_Half    code;         // Actual value as defined in elf.h
1727     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1728     unsigned char elf_class;    // 32 or 64 bit
1729     unsigned char endianess;    // MSB or LSB
1730     char*         name;         // String representation
1731   } arch_t;
1732 
1733 #ifndef EM_486
1734   #define EM_486          6               /* Intel 80486 */
1735 #endif
1736 #ifndef EM_AARCH64
1737   #define EM_AARCH64    183               /* ARM AARCH64 */
1738 #endif
1739 
1740   static const arch_t arch_array[]={
1741     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1742     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1743     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1744     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1745     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1746     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1747     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1748     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1749 #if defined(VM_LITTLE_ENDIAN)
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1751 #else
1752     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64 LE"},
1753 #endif
1754     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1755     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1756     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1757     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1758     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1759     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1760     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1761     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1762   };
1763 
1764 #if  (defined IA32)
1765   static  Elf32_Half running_arch_code=EM_386;
1766 #elif   (defined AMD64)
1767   static  Elf32_Half running_arch_code=EM_X86_64;
1768 #elif  (defined IA64)
1769   static  Elf32_Half running_arch_code=EM_IA_64;
1770 #elif  (defined __sparc) && (defined _LP64)
1771   static  Elf32_Half running_arch_code=EM_SPARCV9;
1772 #elif  (defined __sparc) && (!defined _LP64)
1773   static  Elf32_Half running_arch_code=EM_SPARC;
1774 #elif  (defined __powerpc64__)
1775   static  Elf32_Half running_arch_code=EM_PPC64;
1776 #elif  (defined __powerpc__)
1777   static  Elf32_Half running_arch_code=EM_PPC;
1778 #elif  (defined AARCH64)
1779   static  Elf32_Half running_arch_code=EM_AARCH64;
1780 #elif  (defined ARM)
1781   static  Elf32_Half running_arch_code=EM_ARM;
1782 #elif  (defined S390)
1783   static  Elf32_Half running_arch_code=EM_S390;
1784 #elif  (defined ALPHA)
1785   static  Elf32_Half running_arch_code=EM_ALPHA;
1786 #elif  (defined MIPSEL)
1787   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1788 #elif  (defined PARISC)
1789   static  Elf32_Half running_arch_code=EM_PARISC;
1790 #elif  (defined MIPS)
1791   static  Elf32_Half running_arch_code=EM_MIPS;
1792 #elif  (defined M68K)
1793   static  Elf32_Half running_arch_code=EM_68K;
1794 #else
1795     #error Method os::dll_load requires that one of following is defined:\
1796         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, __sparc
1797 #endif
1798 
1799   // Identify compatability class for VM's architecture and library's architecture
1800   // Obtain string descriptions for architectures
1801 
1802   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1803   int running_arch_index=-1;
1804 
1805   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1806     if (running_arch_code == arch_array[i].code) {
1807       running_arch_index    = i;
1808     }
1809     if (lib_arch.code == arch_array[i].code) {
1810       lib_arch.compat_class = arch_array[i].compat_class;
1811       lib_arch.name         = arch_array[i].name;
1812     }
1813   }
1814 
1815   assert(running_arch_index != -1,
1816          "Didn't find running architecture code (running_arch_code) in arch_array");
1817   if (running_arch_index == -1) {
1818     // Even though running architecture detection failed
1819     // we may still continue with reporting dlerror() message
1820     return NULL;
1821   }
1822 
1823   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1824     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1825     return NULL;
1826   }
1827 
1828 #ifndef S390
1829   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1830     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1831     return NULL;
1832   }
1833 #endif // !S390
1834 
1835   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1836     if (lib_arch.name!=NULL) {
1837       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1838                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1839                  lib_arch.name, arch_array[running_arch_index].name);
1840     } else {
1841       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1842                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1843                  lib_arch.code,
1844                  arch_array[running_arch_index].name);
1845     }
1846   }
1847 
1848   return NULL;
1849 }
1850 
1851 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1852                                 int ebuflen) {
1853   void * result = ::dlopen(filename, RTLD_LAZY);
1854   if (result == NULL) {
1855     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1856     ebuf[ebuflen-1] = '\0';
1857   }
1858   return result;
1859 }
1860 
1861 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1862                                        int ebuflen) {
1863   void * result = NULL;
1864   if (LoadExecStackDllInVMThread) {
1865     result = dlopen_helper(filename, ebuf, ebuflen);
1866   }
1867 
1868   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1869   // library that requires an executable stack, or which does not have this
1870   // stack attribute set, dlopen changes the stack attribute to executable. The
1871   // read protection of the guard pages gets lost.
1872   //
1873   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1874   // may have been queued at the same time.
1875 
1876   if (!_stack_is_executable) {
1877     JavaThread *jt = Threads::first();
1878 
1879     while (jt) {
1880       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1881           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1882         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1883           warning("Attempt to reguard stack yellow zone failed.");
1884         }
1885       }
1886       jt = jt->next();
1887     }
1888   }
1889 
1890   return result;
1891 }
1892 
1893 void* os::dll_lookup(void* handle, const char* name) {
1894   void* res = dlsym(handle, name);
1895   return res;
1896 }
1897 
1898 void* os::get_default_process_handle() {
1899   return (void*)::dlopen(NULL, RTLD_LAZY);
1900 }
1901 
1902 static bool _print_ascii_file(const char* filename, outputStream* st) {
1903   int fd = ::open(filename, O_RDONLY);
1904   if (fd == -1) {
1905     return false;
1906   }
1907 
1908   char buf[33];
1909   int bytes;
1910   buf[32] = '\0';
1911   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1912     st->print_raw(buf, bytes);
1913   }
1914 
1915   ::close(fd);
1916 
1917   return true;
1918 }
1919 
1920 void os::print_dll_info(outputStream *st) {
1921   st->print_cr("Dynamic libraries:");
1922 
1923   char fname[32];
1924   pid_t pid = os::Linux::gettid();
1925 
1926   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1927 
1928   if (!_print_ascii_file(fname, st)) {
1929     st->print("Can not get library information for pid = %d\n", pid);
1930   }
1931 }
1932 
1933 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1934   FILE *procmapsFile = NULL;
1935 
1936   // Open the procfs maps file for the current process
1937   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1938     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1939     char line[PATH_MAX + 100];
1940 
1941     // Read line by line from 'file'
1942     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1943       u8 base, top, offset, inode;
1944       char permissions[5];
1945       char device[6];
1946       char name[PATH_MAX + 1];
1947 
1948       // Parse fields from line
1949       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1950              &base, &top, permissions, &offset, device, &inode, name);
1951 
1952       // Filter by device id '00:00' so that we only get file system mapped files.
1953       if (strcmp(device, "00:00") != 0) {
1954 
1955         // Call callback with the fields of interest
1956         if(callback(name, (address)base, (address)top, param)) {
1957           // Oops abort, callback aborted
1958           fclose(procmapsFile);
1959           return 1;
1960         }
1961       }
1962     }
1963     fclose(procmapsFile);
1964   }
1965   return 0;
1966 }
1967 
1968 void os::print_os_info_brief(outputStream* st) {
1969   os::Linux::print_distro_info(st);
1970 
1971   os::Posix::print_uname_info(st);
1972 
1973   os::Linux::print_libversion_info(st);
1974 
1975 }
1976 
1977 void os::print_os_info(outputStream* st) {
1978   st->print("OS:");
1979 
1980   os::Linux::print_distro_info(st);
1981 
1982   os::Posix::print_uname_info(st);
1983 
1984   // Print warning if unsafe chroot environment detected
1985   if (unsafe_chroot_detected) {
1986     st->print("WARNING!! ");
1987     st->print_cr("%s", unstable_chroot_error);
1988   }
1989 
1990   os::Linux::print_libversion_info(st);
1991 
1992   os::Posix::print_rlimit_info(st);
1993 
1994   os::Posix::print_load_average(st);
1995 
1996   os::Linux::print_full_memory_info(st);
1997 }
1998 
1999 // Try to identify popular distros.
2000 // Most Linux distributions have a /etc/XXX-release file, which contains
2001 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2002 // file that also contains the OS version string. Some have more than one
2003 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2004 // /etc/redhat-release.), so the order is important.
2005 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2006 // their own specific XXX-release file as well as a redhat-release file.
2007 // Because of this the XXX-release file needs to be searched for before the
2008 // redhat-release file.
2009 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2010 // search for redhat-release / SuSE-release needs to be before lsb-release.
2011 // Since the lsb-release file is the new standard it needs to be searched
2012 // before the older style release files.
2013 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2014 // next to last resort.  The os-release file is a new standard that contains
2015 // distribution information and the system-release file seems to be an old
2016 // standard that has been replaced by the lsb-release and os-release files.
2017 // Searching for the debian_version file is the last resort.  It contains
2018 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2019 // "Debian " is printed before the contents of the debian_version file.
2020 
2021 const char* distro_files[] = {
2022   "/etc/oracle-release",
2023   "/etc/mandriva-release",
2024   "/etc/mandrake-release",
2025   "/etc/sun-release",
2026   "/etc/redhat-release",
2027   "/etc/SuSE-release",
2028   "/etc/lsb-release",
2029   "/etc/turbolinux-release",
2030   "/etc/gentoo-release",
2031   "/etc/ltib-release",
2032   "/etc/angstrom-version",
2033   "/etc/system-release",
2034   "/etc/os-release",
2035   NULL };
2036 
2037 void os::Linux::print_distro_info(outputStream* st) {
2038   for (int i = 0;; i++) {
2039     const char* file = distro_files[i];
2040     if (file == NULL) {
2041       break;  // done
2042     }
2043     // If file prints, we found it.
2044     if (_print_ascii_file(file, st)) {
2045       return;
2046     }
2047   }
2048 
2049   if (file_exists("/etc/debian_version")) {
2050     st->print("Debian ");
2051     _print_ascii_file("/etc/debian_version", st);
2052   } else {
2053     st->print("Linux");
2054   }
2055   st->cr();
2056 }
2057 
2058 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2059   char buf[256];
2060   while (fgets(buf, sizeof(buf), fp)) {
2061     // Edit out extra stuff in expected format
2062     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2063       char* ptr = strstr(buf, "\"");  // the name is in quotes
2064       if (ptr != NULL) {
2065         ptr++; // go beyond first quote
2066         char* nl = strchr(ptr, '\"');
2067         if (nl != NULL) *nl = '\0';
2068         strncpy(distro, ptr, length);
2069       } else {
2070         ptr = strstr(buf, "=");
2071         ptr++; // go beyond equals then
2072         char* nl = strchr(ptr, '\n');
2073         if (nl != NULL) *nl = '\0';
2074         strncpy(distro, ptr, length);
2075       }
2076       return;
2077     } else if (get_first_line) {
2078       char* nl = strchr(buf, '\n');
2079       if (nl != NULL) *nl = '\0';
2080       strncpy(distro, buf, length);
2081       return;
2082     }
2083   }
2084   // print last line and close
2085   char* nl = strchr(buf, '\n');
2086   if (nl != NULL) *nl = '\0';
2087   strncpy(distro, buf, length);
2088 }
2089 
2090 static void parse_os_info(char* distro, size_t length, const char* file) {
2091   FILE* fp = fopen(file, "r");
2092   if (fp != NULL) {
2093     // if suse format, print out first line
2094     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2095     parse_os_info_helper(fp, distro, length, get_first_line);
2096     fclose(fp);
2097   }
2098 }
2099 
2100 void os::get_summary_os_info(char* buf, size_t buflen) {
2101   for (int i = 0;; i++) {
2102     const char* file = distro_files[i];
2103     if (file == NULL) {
2104       break; // ran out of distro_files
2105     }
2106     if (file_exists(file)) {
2107       parse_os_info(buf, buflen, file);
2108       return;
2109     }
2110   }
2111   // special case for debian
2112   if (file_exists("/etc/debian_version")) {
2113     strncpy(buf, "Debian ", buflen);
2114     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2115   } else {
2116     strncpy(buf, "Linux", buflen);
2117   }
2118 }
2119 
2120 void os::Linux::print_libversion_info(outputStream* st) {
2121   // libc, pthread
2122   st->print("libc:");
2123   st->print("%s ", os::Linux::glibc_version());
2124   st->print("%s ", os::Linux::libpthread_version());
2125   st->cr();
2126 }
2127 
2128 void os::Linux::print_full_memory_info(outputStream* st) {
2129   st->print("\n/proc/meminfo:\n");
2130   _print_ascii_file("/proc/meminfo", st);
2131   st->cr();
2132 }
2133 
2134 void os::print_memory_info(outputStream* st) {
2135 
2136   st->print("Memory:");
2137   st->print(" %dk page", os::vm_page_size()>>10);
2138 
2139   // values in struct sysinfo are "unsigned long"
2140   struct sysinfo si;
2141   sysinfo(&si);
2142 
2143   st->print(", physical " UINT64_FORMAT "k",
2144             os::physical_memory() >> 10);
2145   st->print("(" UINT64_FORMAT "k free)",
2146             os::available_memory() >> 10);
2147   st->print(", swap " UINT64_FORMAT "k",
2148             ((jlong)si.totalswap * si.mem_unit) >> 10);
2149   st->print("(" UINT64_FORMAT "k free)",
2150             ((jlong)si.freeswap * si.mem_unit) >> 10);
2151   st->cr();
2152 }
2153 
2154 // Print the first "model name" line and the first "flags" line
2155 // that we find and nothing more. We assume "model name" comes
2156 // before "flags" so if we find a second "model name", then the
2157 // "flags" field is considered missing.
2158 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2159 #if defined(IA32) || defined(AMD64)
2160   // Other platforms have less repetitive cpuinfo files
2161   FILE *fp = fopen("/proc/cpuinfo", "r");
2162   if (fp) {
2163     while (!feof(fp)) {
2164       if (fgets(buf, buflen, fp)) {
2165         // Assume model name comes before flags
2166         bool model_name_printed = false;
2167         if (strstr(buf, "model name") != NULL) {
2168           if (!model_name_printed) {
2169             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2170             st->print_raw(buf);
2171             model_name_printed = true;
2172           } else {
2173             // model name printed but not flags?  Odd, just return
2174             fclose(fp);
2175             return true;
2176           }
2177         }
2178         // print the flags line too
2179         if (strstr(buf, "flags") != NULL) {
2180           st->print_raw(buf);
2181           fclose(fp);
2182           return true;
2183         }
2184       }
2185     }
2186     fclose(fp);
2187   }
2188 #endif // x86 platforms
2189   return false;
2190 }
2191 
2192 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2193   // Only print the model name if the platform provides this as a summary
2194   if (!print_model_name_and_flags(st, buf, buflen)) {
2195     st->print("\n/proc/cpuinfo:\n");
2196     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2197       st->print_cr("  <Not Available>");
2198     }
2199   }
2200 }
2201 
2202 #if defined(AMD64) || defined(IA32) || defined(X32)
2203 const char* search_string = "model name";
2204 #elif defined(PPC64)
2205 const char* search_string = "cpu";
2206 #elif defined(S390)
2207 const char* search_string = "processor";
2208 #elif defined(SPARC)
2209 const char* search_string = "cpu";
2210 #else
2211 const char* search_string = "Processor";
2212 #endif
2213 
2214 // Parses the cpuinfo file for string representing the model name.
2215 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2216   FILE* fp = fopen("/proc/cpuinfo", "r");
2217   if (fp != NULL) {
2218     while (!feof(fp)) {
2219       char buf[256];
2220       if (fgets(buf, sizeof(buf), fp)) {
2221         char* start = strstr(buf, search_string);
2222         if (start != NULL) {
2223           char *ptr = start + strlen(search_string);
2224           char *end = buf + strlen(buf);
2225           while (ptr != end) {
2226              // skip whitespace and colon for the rest of the name.
2227              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2228                break;
2229              }
2230              ptr++;
2231           }
2232           if (ptr != end) {
2233             // reasonable string, get rid of newline and keep the rest
2234             char* nl = strchr(buf, '\n');
2235             if (nl != NULL) *nl = '\0';
2236             strncpy(cpuinfo, ptr, length);
2237             fclose(fp);
2238             return;
2239           }
2240         }
2241       }
2242     }
2243     fclose(fp);
2244   }
2245   // cpuinfo not found or parsing failed, just print generic string.  The entire
2246   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2247 #if   defined(AARCH64)
2248   strncpy(cpuinfo, "AArch64", length);
2249 #elif defined(AMD64)
2250   strncpy(cpuinfo, "x86_64", length);
2251 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2252   strncpy(cpuinfo, "ARM", length);
2253 #elif defined(IA32)
2254   strncpy(cpuinfo, "x86_32", length);
2255 #elif defined(IA64)
2256   strncpy(cpuinfo, "IA64", length);
2257 #elif defined(PPC)
2258   strncpy(cpuinfo, "PPC64", length);
2259 #elif defined(S390)
2260   strncpy(cpuinfo, "S390", length);
2261 #elif defined(SPARC)
2262   strncpy(cpuinfo, "sparcv9", length);
2263 #elif defined(ZERO_LIBARCH)
2264   strncpy(cpuinfo, ZERO_LIBARCH, length);
2265 #else
2266   strncpy(cpuinfo, "unknown", length);
2267 #endif
2268 }
2269 
2270 static void print_signal_handler(outputStream* st, int sig,
2271                                  char* buf, size_t buflen);
2272 
2273 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2274   st->print_cr("Signal Handlers:");
2275   print_signal_handler(st, SIGSEGV, buf, buflen);
2276   print_signal_handler(st, SIGBUS , buf, buflen);
2277   print_signal_handler(st, SIGFPE , buf, buflen);
2278   print_signal_handler(st, SIGPIPE, buf, buflen);
2279   print_signal_handler(st, SIGXFSZ, buf, buflen);
2280   print_signal_handler(st, SIGILL , buf, buflen);
2281   print_signal_handler(st, SR_signum, buf, buflen);
2282   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2283   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2284   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2285   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2286 #if defined(PPC64)
2287   print_signal_handler(st, SIGTRAP, buf, buflen);
2288 #endif
2289 }
2290 
2291 static char saved_jvm_path[MAXPATHLEN] = {0};
2292 
2293 // Find the full path to the current module, libjvm.so
2294 void os::jvm_path(char *buf, jint buflen) {
2295   // Error checking.
2296   if (buflen < MAXPATHLEN) {
2297     assert(false, "must use a large-enough buffer");
2298     buf[0] = '\0';
2299     return;
2300   }
2301   // Lazy resolve the path to current module.
2302   if (saved_jvm_path[0] != 0) {
2303     strcpy(buf, saved_jvm_path);
2304     return;
2305   }
2306 
2307   char dli_fname[MAXPATHLEN];
2308   bool ret = dll_address_to_library_name(
2309                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2310                                          dli_fname, sizeof(dli_fname), NULL);
2311   assert(ret, "cannot locate libjvm");
2312   char *rp = NULL;
2313   if (ret && dli_fname[0] != '\0') {
2314     rp = os::Posix::realpath(dli_fname, buf, buflen);
2315   }
2316   if (rp == NULL) {
2317     return;
2318   }
2319 
2320   if (Arguments::sun_java_launcher_is_altjvm()) {
2321     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2322     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2323     // If "/jre/lib/" appears at the right place in the string, then
2324     // assume we are installed in a JDK and we're done. Otherwise, check
2325     // for a JAVA_HOME environment variable and fix up the path so it
2326     // looks like libjvm.so is installed there (append a fake suffix
2327     // hotspot/libjvm.so).
2328     const char *p = buf + strlen(buf) - 1;
2329     for (int count = 0; p > buf && count < 5; ++count) {
2330       for (--p; p > buf && *p != '/'; --p)
2331         /* empty */ ;
2332     }
2333 
2334     if (strncmp(p, "/jre/lib/", 9) != 0) {
2335       // Look for JAVA_HOME in the environment.
2336       char* java_home_var = ::getenv("JAVA_HOME");
2337       if (java_home_var != NULL && java_home_var[0] != 0) {
2338         char* jrelib_p;
2339         int len;
2340 
2341         // Check the current module name "libjvm.so".
2342         p = strrchr(buf, '/');
2343         if (p == NULL) {
2344           return;
2345         }
2346         assert(strstr(p, "/libjvm") == p, "invalid library name");
2347 
2348         rp = os::Posix::realpath(java_home_var, buf, buflen);
2349         if (rp == NULL) {
2350           return;
2351         }
2352 
2353         // determine if this is a legacy image or modules image
2354         // modules image doesn't have "jre" subdirectory
2355         len = strlen(buf);
2356         assert(len < buflen, "Ran out of buffer room");
2357         jrelib_p = buf + len;
2358         snprintf(jrelib_p, buflen-len, "/jre/lib");
2359         if (0 != access(buf, F_OK)) {
2360           snprintf(jrelib_p, buflen-len, "/lib");
2361         }
2362 
2363         if (0 == access(buf, F_OK)) {
2364           // Use current module name "libjvm.so"
2365           len = strlen(buf);
2366           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2367         } else {
2368           // Go back to path of .so
2369           rp = os::Posix::realpath(dli_fname, buf, buflen);
2370           if (rp == NULL) {
2371             return;
2372           }
2373         }
2374       }
2375     }
2376   }
2377 
2378   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2379   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2380 }
2381 
2382 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2383   // no prefix required, not even "_"
2384 }
2385 
2386 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2387   // no suffix required
2388 }
2389 
2390 ////////////////////////////////////////////////////////////////////////////////
2391 // sun.misc.Signal support
2392 
2393 static volatile jint sigint_count = 0;
2394 
2395 static void UserHandler(int sig, void *siginfo, void *context) {
2396   // 4511530 - sem_post is serialized and handled by the manager thread. When
2397   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2398   // don't want to flood the manager thread with sem_post requests.
2399   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2400     return;
2401   }
2402 
2403   // Ctrl-C is pressed during error reporting, likely because the error
2404   // handler fails to abort. Let VM die immediately.
2405   if (sig == SIGINT && is_error_reported()) {
2406     os::die();
2407   }
2408 
2409   os::signal_notify(sig);
2410 }
2411 
2412 void* os::user_handler() {
2413   return CAST_FROM_FN_PTR(void*, UserHandler);
2414 }
2415 
2416 struct timespec PosixSemaphore::create_timespec(unsigned int sec, int nsec) {
2417   struct timespec ts;
2418   // Semaphore's are always associated with CLOCK_REALTIME
2419   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2420   // see unpackTime for discussion on overflow checking
2421   if (sec >= MAX_SECS) {
2422     ts.tv_sec += MAX_SECS;
2423     ts.tv_nsec = 0;
2424   } else {
2425     ts.tv_sec += sec;
2426     ts.tv_nsec += nsec;
2427     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2428       ts.tv_nsec -= NANOSECS_PER_SEC;
2429       ++ts.tv_sec; // note: this must be <= max_secs
2430     }
2431   }
2432 
2433   return ts;
2434 }
2435 
2436 extern "C" {
2437   typedef void (*sa_handler_t)(int);
2438   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2439 }
2440 
2441 void* os::signal(int signal_number, void* handler) {
2442   struct sigaction sigAct, oldSigAct;
2443 
2444   sigfillset(&(sigAct.sa_mask));
2445   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2446   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2447 
2448   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2449     // -1 means registration failed
2450     return (void *)-1;
2451   }
2452 
2453   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2454 }
2455 
2456 void os::signal_raise(int signal_number) {
2457   ::raise(signal_number);
2458 }
2459 
2460 // The following code is moved from os.cpp for making this
2461 // code platform specific, which it is by its very nature.
2462 
2463 // Will be modified when max signal is changed to be dynamic
2464 int os::sigexitnum_pd() {
2465   return NSIG;
2466 }
2467 
2468 // a counter for each possible signal value
2469 static volatile jint pending_signals[NSIG+1] = { 0 };
2470 
2471 // Linux(POSIX) specific hand shaking semaphore.
2472 static sem_t sig_sem;
2473 static PosixSemaphore sr_semaphore;
2474 
2475 void os::signal_init_pd() {
2476   // Initialize signal structures
2477   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2478 
2479   // Initialize signal semaphore
2480   ::sem_init(&sig_sem, 0, 0);
2481 }
2482 
2483 void os::signal_notify(int sig) {
2484   Atomic::inc(&pending_signals[sig]);
2485   ::sem_post(&sig_sem);
2486 }
2487 
2488 static int check_pending_signals(bool wait) {
2489   Atomic::store(0, &sigint_count);
2490   for (;;) {
2491     for (int i = 0; i < NSIG + 1; i++) {
2492       jint n = pending_signals[i];
2493       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2494         return i;
2495       }
2496     }
2497     if (!wait) {
2498       return -1;
2499     }
2500     JavaThread *thread = JavaThread::current();
2501     ThreadBlockInVM tbivm(thread);
2502 
2503     bool threadIsSuspended;
2504     do {
2505       thread->set_suspend_equivalent();
2506       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2507       ::sem_wait(&sig_sem);
2508 
2509       // were we externally suspended while we were waiting?
2510       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2511       if (threadIsSuspended) {
2512         // The semaphore has been incremented, but while we were waiting
2513         // another thread suspended us. We don't want to continue running
2514         // while suspended because that would surprise the thread that
2515         // suspended us.
2516         ::sem_post(&sig_sem);
2517 
2518         thread->java_suspend_self();
2519       }
2520     } while (threadIsSuspended);
2521   }
2522 }
2523 
2524 int os::signal_lookup() {
2525   return check_pending_signals(false);
2526 }
2527 
2528 int os::signal_wait() {
2529   return check_pending_signals(true);
2530 }
2531 
2532 ////////////////////////////////////////////////////////////////////////////////
2533 // Virtual Memory
2534 
2535 int os::vm_page_size() {
2536   // Seems redundant as all get out
2537   assert(os::Linux::page_size() != -1, "must call os::init");
2538   return os::Linux::page_size();
2539 }
2540 
2541 // Solaris allocates memory by pages.
2542 int os::vm_allocation_granularity() {
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Rationale behind this function:
2548 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2549 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2550 //  samples for JITted code. Here we create private executable mapping over the code cache
2551 //  and then we can use standard (well, almost, as mapping can change) way to provide
2552 //  info for the reporting script by storing timestamp and location of symbol
2553 void linux_wrap_code(char* base, size_t size) {
2554   static volatile jint cnt = 0;
2555 
2556   if (!UseOprofile) {
2557     return;
2558   }
2559 
2560   char buf[PATH_MAX+1];
2561   int num = Atomic::add(1, &cnt);
2562 
2563   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2564            os::get_temp_directory(), os::current_process_id(), num);
2565   unlink(buf);
2566 
2567   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2568 
2569   if (fd != -1) {
2570     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2571     if (rv != (off_t)-1) {
2572       if (::write(fd, "", 1) == 1) {
2573         mmap(base, size,
2574              PROT_READ|PROT_WRITE|PROT_EXEC,
2575              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2576       }
2577     }
2578     ::close(fd);
2579     unlink(buf);
2580   }
2581 }
2582 
2583 static bool recoverable_mmap_error(int err) {
2584   // See if the error is one we can let the caller handle. This
2585   // list of errno values comes from JBS-6843484. I can't find a
2586   // Linux man page that documents this specific set of errno
2587   // values so while this list currently matches Solaris, it may
2588   // change as we gain experience with this failure mode.
2589   switch (err) {
2590   case EBADF:
2591   case EINVAL:
2592   case ENOTSUP:
2593     // let the caller deal with these errors
2594     return true;
2595 
2596   default:
2597     // Any remaining errors on this OS can cause our reserved mapping
2598     // to be lost. That can cause confusion where different data
2599     // structures think they have the same memory mapped. The worst
2600     // scenario is if both the VM and a library think they have the
2601     // same memory mapped.
2602     return false;
2603   }
2604 }
2605 
2606 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2607                                     int err) {
2608   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2609           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2610           os::strerror(err), err);
2611 }
2612 
2613 static void warn_fail_commit_memory(char* addr, size_t size,
2614                                     size_t alignment_hint, bool exec,
2615                                     int err) {
2616   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2617           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2618           alignment_hint, exec, os::strerror(err), err);
2619 }
2620 
2621 // NOTE: Linux kernel does not really reserve the pages for us.
2622 //       All it does is to check if there are enough free pages
2623 //       left at the time of mmap(). This could be a potential
2624 //       problem.
2625 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2626   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2627   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2628                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2629   if (res != (uintptr_t) MAP_FAILED) {
2630     if (UseNUMAInterleaving) {
2631       numa_make_global(addr, size);
2632     }
2633     return 0;
2634   }
2635 
2636   int err = errno;  // save errno from mmap() call above
2637 
2638   if (!recoverable_mmap_error(err)) {
2639     warn_fail_commit_memory(addr, size, exec, err);
2640     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2641   }
2642 
2643   return err;
2644 }
2645 
2646 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2647   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2648 }
2649 
2650 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2651                                   const char* mesg) {
2652   assert(mesg != NULL, "mesg must be specified");
2653   int err = os::Linux::commit_memory_impl(addr, size, exec);
2654   if (err != 0) {
2655     // the caller wants all commit errors to exit with the specified mesg:
2656     warn_fail_commit_memory(addr, size, exec, err);
2657     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2658   }
2659 }
2660 
2661 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2662 #ifndef MAP_HUGETLB
2663   #define MAP_HUGETLB 0x40000
2664 #endif
2665 
2666 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2667 #ifndef MADV_HUGEPAGE
2668   #define MADV_HUGEPAGE 14
2669 #endif
2670 
2671 int os::Linux::commit_memory_impl(char* addr, size_t size,
2672                                   size_t alignment_hint, bool exec) {
2673   int err = os::Linux::commit_memory_impl(addr, size, exec);
2674   if (err == 0) {
2675     realign_memory(addr, size, alignment_hint);
2676   }
2677   return err;
2678 }
2679 
2680 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2681                           bool exec) {
2682   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2683 }
2684 
2685 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2686                                   size_t alignment_hint, bool exec,
2687                                   const char* mesg) {
2688   assert(mesg != NULL, "mesg must be specified");
2689   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2690   if (err != 0) {
2691     // the caller wants all commit errors to exit with the specified mesg:
2692     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2693     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2694   }
2695 }
2696 
2697 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2698   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2699     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2700     // be supported or the memory may already be backed by huge pages.
2701     ::madvise(addr, bytes, MADV_HUGEPAGE);
2702   }
2703 }
2704 
2705 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2706   // This method works by doing an mmap over an existing mmaping and effectively discarding
2707   // the existing pages. However it won't work for SHM-based large pages that cannot be
2708   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2709   // small pages on top of the SHM segment. This method always works for small pages, so we
2710   // allow that in any case.
2711   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2712     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2713   }
2714 }
2715 
2716 void os::numa_make_global(char *addr, size_t bytes) {
2717   Linux::numa_interleave_memory(addr, bytes);
2718 }
2719 
2720 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2721 // bind policy to MPOL_PREFERRED for the current thread.
2722 #define USE_MPOL_PREFERRED 0
2723 
2724 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2725   // To make NUMA and large pages more robust when both enabled, we need to ease
2726   // the requirements on where the memory should be allocated. MPOL_BIND is the
2727   // default policy and it will force memory to be allocated on the specified
2728   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2729   // the specified node, but will not force it. Using this policy will prevent
2730   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2731   // free large pages.
2732   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2733   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2734 }
2735 
2736 bool os::numa_topology_changed() { return false; }
2737 
2738 size_t os::numa_get_groups_num() {
2739   // Return just the number of nodes in which it's possible to allocate memory
2740   // (in numa terminology, configured nodes).
2741   return Linux::numa_num_configured_nodes();
2742 }
2743 
2744 int os::numa_get_group_id() {
2745   int cpu_id = Linux::sched_getcpu();
2746   if (cpu_id != -1) {
2747     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2748     if (lgrp_id != -1) {
2749       return lgrp_id;
2750     }
2751   }
2752   return 0;
2753 }
2754 
2755 int os::Linux::get_existing_num_nodes() {
2756   size_t node;
2757   size_t highest_node_number = Linux::numa_max_node();
2758   int num_nodes = 0;
2759 
2760   // Get the total number of nodes in the system including nodes without memory.
2761   for (node = 0; node <= highest_node_number; node++) {
2762     if (isnode_in_existing_nodes(node)) {
2763       num_nodes++;
2764     }
2765   }
2766   return num_nodes;
2767 }
2768 
2769 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2770   size_t highest_node_number = Linux::numa_max_node();
2771   size_t i = 0;
2772 
2773   // Map all node ids in which is possible to allocate memory. Also nodes are
2774   // not always consecutively available, i.e. available from 0 to the highest
2775   // node number.
2776   for (size_t node = 0; node <= highest_node_number; node++) {
2777     if (Linux::isnode_in_configured_nodes(node)) {
2778       ids[i++] = node;
2779     }
2780   }
2781   return i;
2782 }
2783 
2784 bool os::get_page_info(char *start, page_info* info) {
2785   return false;
2786 }
2787 
2788 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2789                      page_info* page_found) {
2790   return end;
2791 }
2792 
2793 
2794 int os::Linux::sched_getcpu_syscall(void) {
2795   unsigned int cpu = 0;
2796   int retval = -1;
2797 
2798 #if defined(IA32)
2799   #ifndef SYS_getcpu
2800     #define SYS_getcpu 318
2801   #endif
2802   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2803 #elif defined(AMD64)
2804 // Unfortunately we have to bring all these macros here from vsyscall.h
2805 // to be able to compile on old linuxes.
2806   #define __NR_vgetcpu 2
2807   #define VSYSCALL_START (-10UL << 20)
2808   #define VSYSCALL_SIZE 1024
2809   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2810   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2811   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2812   retval = vgetcpu(&cpu, NULL, NULL);
2813 #endif
2814 
2815   return (retval == -1) ? retval : cpu;
2816 }
2817 
2818 // Something to do with the numa-aware allocator needs these symbols
2819 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2820 extern "C" JNIEXPORT void numa_error(char *where) { }
2821 
2822 
2823 // If we are running with libnuma version > 2, then we should
2824 // be trying to use symbols with versions 1.1
2825 // If we are running with earlier version, which did not have symbol versions,
2826 // we should use the base version.
2827 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2828   void *f = dlvsym(handle, name, "libnuma_1.1");
2829   if (f == NULL) {
2830     f = dlsym(handle, name);
2831   }
2832   return f;
2833 }
2834 
2835 bool os::Linux::libnuma_init() {
2836   // sched_getcpu() should be in libc.
2837   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2838                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2839 
2840   // If it's not, try a direct syscall.
2841   if (sched_getcpu() == -1) {
2842     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2843                                     (void*)&sched_getcpu_syscall));
2844   }
2845 
2846   if (sched_getcpu() != -1) { // Does it work?
2847     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2848     if (handle != NULL) {
2849       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2850                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2851       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2852                                        libnuma_dlsym(handle, "numa_max_node")));
2853       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2854                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2855       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2856                                         libnuma_dlsym(handle, "numa_available")));
2857       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2858                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2859       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2860                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2861       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2862                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2863       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2864                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2865       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2866                                        libnuma_dlsym(handle, "numa_distance")));
2867 
2868       if (numa_available() != -1) {
2869         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2870         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2871         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2872         // Create an index -> node mapping, since nodes are not always consecutive
2873         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2874         rebuild_nindex_to_node_map();
2875         // Create a cpu -> node mapping
2876         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2877         rebuild_cpu_to_node_map();
2878         return true;
2879       }
2880     }
2881   }
2882   return false;
2883 }
2884 
2885 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2886   // Creating guard page is very expensive. Java thread has HotSpot
2887   // guard pages, only enable glibc guard page for non-Java threads.
2888   // (Remember: compiler thread is a Java thread, too!)
2889   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2890 }
2891 
2892 void os::Linux::rebuild_nindex_to_node_map() {
2893   int highest_node_number = Linux::numa_max_node();
2894 
2895   nindex_to_node()->clear();
2896   for (int node = 0; node <= highest_node_number; node++) {
2897     if (Linux::isnode_in_existing_nodes(node)) {
2898       nindex_to_node()->append(node);
2899     }
2900   }
2901 }
2902 
2903 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2904 // The table is later used in get_node_by_cpu().
2905 void os::Linux::rebuild_cpu_to_node_map() {
2906   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2907                               // in libnuma (possible values are starting from 16,
2908                               // and continuing up with every other power of 2, but less
2909                               // than the maximum number of CPUs supported by kernel), and
2910                               // is a subject to change (in libnuma version 2 the requirements
2911                               // are more reasonable) we'll just hardcode the number they use
2912                               // in the library.
2913   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2914 
2915   size_t cpu_num = processor_count();
2916   size_t cpu_map_size = NCPUS / BitsPerCLong;
2917   size_t cpu_map_valid_size =
2918     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2919 
2920   cpu_to_node()->clear();
2921   cpu_to_node()->at_grow(cpu_num - 1);
2922 
2923   size_t node_num = get_existing_num_nodes();
2924 
2925   int distance = 0;
2926   int closest_distance = INT_MAX;
2927   int closest_node = 0;
2928   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2929   for (size_t i = 0; i < node_num; i++) {
2930     // Check if node is configured (not a memory-less node). If it is not, find
2931     // the closest configured node.
2932     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2933       closest_distance = INT_MAX;
2934       // Check distance from all remaining nodes in the system. Ignore distance
2935       // from itself and from another non-configured node.
2936       for (size_t m = 0; m < node_num; m++) {
2937         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2938           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2939           // If a closest node is found, update. There is always at least one
2940           // configured node in the system so there is always at least one node
2941           // close.
2942           if (distance != 0 && distance < closest_distance) {
2943             closest_distance = distance;
2944             closest_node = nindex_to_node()->at(m);
2945           }
2946         }
2947       }
2948      } else {
2949        // Current node is already a configured node.
2950        closest_node = nindex_to_node()->at(i);
2951      }
2952 
2953     // Get cpus from the original node and map them to the closest node. If node
2954     // is a configured node (not a memory-less node), then original node and
2955     // closest node are the same.
2956     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2957       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2958         if (cpu_map[j] != 0) {
2959           for (size_t k = 0; k < BitsPerCLong; k++) {
2960             if (cpu_map[j] & (1UL << k)) {
2961               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2962             }
2963           }
2964         }
2965       }
2966     }
2967   }
2968   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
2969 }
2970 
2971 int os::Linux::get_node_by_cpu(int cpu_id) {
2972   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2973     return cpu_to_node()->at(cpu_id);
2974   }
2975   return -1;
2976 }
2977 
2978 GrowableArray<int>* os::Linux::_cpu_to_node;
2979 GrowableArray<int>* os::Linux::_nindex_to_node;
2980 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2981 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2982 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2983 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2984 os::Linux::numa_available_func_t os::Linux::_numa_available;
2985 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2986 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2987 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2988 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2989 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2990 unsigned long* os::Linux::_numa_all_nodes;
2991 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2992 struct bitmask* os::Linux::_numa_nodes_ptr;
2993 
2994 bool os::pd_uncommit_memory(char* addr, size_t size) {
2995   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2996                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2997   return res  != (uintptr_t) MAP_FAILED;
2998 }
2999 
3000 static address get_stack_commited_bottom(address bottom, size_t size) {
3001   address nbot = bottom;
3002   address ntop = bottom + size;
3003 
3004   size_t page_sz = os::vm_page_size();
3005   unsigned pages = size / page_sz;
3006 
3007   unsigned char vec[1];
3008   unsigned imin = 1, imax = pages + 1, imid;
3009   int mincore_return_value = 0;
3010 
3011   assert(imin <= imax, "Unexpected page size");
3012 
3013   while (imin < imax) {
3014     imid = (imax + imin) / 2;
3015     nbot = ntop - (imid * page_sz);
3016 
3017     // Use a trick with mincore to check whether the page is mapped or not.
3018     // mincore sets vec to 1 if page resides in memory and to 0 if page
3019     // is swapped output but if page we are asking for is unmapped
3020     // it returns -1,ENOMEM
3021     mincore_return_value = mincore(nbot, page_sz, vec);
3022 
3023     if (mincore_return_value == -1) {
3024       // Page is not mapped go up
3025       // to find first mapped page
3026       if (errno != EAGAIN) {
3027         assert(errno == ENOMEM, "Unexpected mincore errno");
3028         imax = imid;
3029       }
3030     } else {
3031       // Page is mapped go down
3032       // to find first not mapped page
3033       imin = imid + 1;
3034     }
3035   }
3036 
3037   nbot = nbot + page_sz;
3038 
3039   // Adjust stack bottom one page up if last checked page is not mapped
3040   if (mincore_return_value == -1) {
3041     nbot = nbot + page_sz;
3042   }
3043 
3044   return nbot;
3045 }
3046 
3047 
3048 // Linux uses a growable mapping for the stack, and if the mapping for
3049 // the stack guard pages is not removed when we detach a thread the
3050 // stack cannot grow beyond the pages where the stack guard was
3051 // mapped.  If at some point later in the process the stack expands to
3052 // that point, the Linux kernel cannot expand the stack any further
3053 // because the guard pages are in the way, and a segfault occurs.
3054 //
3055 // However, it's essential not to split the stack region by unmapping
3056 // a region (leaving a hole) that's already part of the stack mapping,
3057 // so if the stack mapping has already grown beyond the guard pages at
3058 // the time we create them, we have to truncate the stack mapping.
3059 // So, we need to know the extent of the stack mapping when
3060 // create_stack_guard_pages() is called.
3061 
3062 // We only need this for stacks that are growable: at the time of
3063 // writing thread stacks don't use growable mappings (i.e. those
3064 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3065 // only applies to the main thread.
3066 
3067 // If the (growable) stack mapping already extends beyond the point
3068 // where we're going to put our guard pages, truncate the mapping at
3069 // that point by munmap()ping it.  This ensures that when we later
3070 // munmap() the guard pages we don't leave a hole in the stack
3071 // mapping. This only affects the main/initial thread
3072 
3073 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3074   if (os::Linux::is_initial_thread()) {
3075     // As we manually grow stack up to bottom inside create_attached_thread(),
3076     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3077     // we don't need to do anything special.
3078     // Check it first, before calling heavy function.
3079     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3080     unsigned char vec[1];
3081 
3082     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3083       // Fallback to slow path on all errors, including EAGAIN
3084       stack_extent = (uintptr_t) get_stack_commited_bottom(
3085                                                            os::Linux::initial_thread_stack_bottom(),
3086                                                            (size_t)addr - stack_extent);
3087     }
3088 
3089     if (stack_extent < (uintptr_t)addr) {
3090       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3091     }
3092   }
3093 
3094   return os::commit_memory(addr, size, !ExecMem);
3095 }
3096 
3097 // If this is a growable mapping, remove the guard pages entirely by
3098 // munmap()ping them.  If not, just call uncommit_memory(). This only
3099 // affects the main/initial thread, but guard against future OS changes
3100 // It's safe to always unmap guard pages for initial thread because we
3101 // always place it right after end of the mapped region
3102 
3103 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3104   uintptr_t stack_extent, stack_base;
3105 
3106   if (os::Linux::is_initial_thread()) {
3107     return ::munmap(addr, size) == 0;
3108   }
3109 
3110   return os::uncommit_memory(addr, size);
3111 }
3112 
3113 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3114 // at 'requested_addr'. If there are existing memory mappings at the same
3115 // location, however, they will be overwritten. If 'fixed' is false,
3116 // 'requested_addr' is only treated as a hint, the return value may or
3117 // may not start from the requested address. Unlike Linux mmap(), this
3118 // function returns NULL to indicate failure.
3119 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3120   char * addr;
3121   int flags;
3122 
3123   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3124   if (fixed) {
3125     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3126     flags |= MAP_FIXED;
3127   }
3128 
3129   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3130   // touch an uncommitted page. Otherwise, the read/write might
3131   // succeed if we have enough swap space to back the physical page.
3132   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3133                        flags, -1, 0);
3134 
3135   return addr == MAP_FAILED ? NULL : addr;
3136 }
3137 
3138 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3139 //   (req_addr != NULL) or with a given alignment.
3140 //  - bytes shall be a multiple of alignment.
3141 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3142 //  - alignment sets the alignment at which memory shall be allocated.
3143 //     It must be a multiple of allocation granularity.
3144 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3145 //  req_addr or NULL.
3146 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3147 
3148   size_t extra_size = bytes;
3149   if (req_addr == NULL && alignment > 0) {
3150     extra_size += alignment;
3151   }
3152 
3153   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3154     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3155     -1, 0);
3156   if (start == MAP_FAILED) {
3157     start = NULL;
3158   } else {
3159     if (req_addr != NULL) {
3160       if (start != req_addr) {
3161         ::munmap(start, extra_size);
3162         start = NULL;
3163       }
3164     } else {
3165       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3166       char* const end_aligned = start_aligned + bytes;
3167       char* const end = start + extra_size;
3168       if (start_aligned > start) {
3169         ::munmap(start, start_aligned - start);
3170       }
3171       if (end_aligned < end) {
3172         ::munmap(end_aligned, end - end_aligned);
3173       }
3174       start = start_aligned;
3175     }
3176   }
3177   return start;
3178 }
3179 
3180 static int anon_munmap(char * addr, size_t size) {
3181   return ::munmap(addr, size) == 0;
3182 }
3183 
3184 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3185                             size_t alignment_hint) {
3186   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3187 }
3188 
3189 bool os::pd_release_memory(char* addr, size_t size) {
3190   return anon_munmap(addr, size);
3191 }
3192 
3193 static bool linux_mprotect(char* addr, size_t size, int prot) {
3194   // Linux wants the mprotect address argument to be page aligned.
3195   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3196 
3197   // According to SUSv3, mprotect() should only be used with mappings
3198   // established by mmap(), and mmap() always maps whole pages. Unaligned
3199   // 'addr' likely indicates problem in the VM (e.g. trying to change
3200   // protection of malloc'ed or statically allocated memory). Check the
3201   // caller if you hit this assert.
3202   assert(addr == bottom, "sanity check");
3203 
3204   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3205   return ::mprotect(bottom, size, prot) == 0;
3206 }
3207 
3208 // Set protections specified
3209 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3210                         bool is_committed) {
3211   unsigned int p = 0;
3212   switch (prot) {
3213   case MEM_PROT_NONE: p = PROT_NONE; break;
3214   case MEM_PROT_READ: p = PROT_READ; break;
3215   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3216   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3217   default:
3218     ShouldNotReachHere();
3219   }
3220   // is_committed is unused.
3221   return linux_mprotect(addr, bytes, p);
3222 }
3223 
3224 bool os::guard_memory(char* addr, size_t size) {
3225   return linux_mprotect(addr, size, PROT_NONE);
3226 }
3227 
3228 bool os::unguard_memory(char* addr, size_t size) {
3229   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3230 }
3231 
3232 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3233                                                     size_t page_size) {
3234   bool result = false;
3235   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3236                  MAP_ANONYMOUS|MAP_PRIVATE,
3237                  -1, 0);
3238   if (p != MAP_FAILED) {
3239     void *aligned_p = align_ptr_up(p, page_size);
3240 
3241     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3242 
3243     munmap(p, page_size * 2);
3244   }
3245 
3246   if (warn && !result) {
3247     warning("TransparentHugePages is not supported by the operating system.");
3248   }
3249 
3250   return result;
3251 }
3252 
3253 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3254   bool result = false;
3255   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3256                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3257                  -1, 0);
3258 
3259   if (p != MAP_FAILED) {
3260     // We don't know if this really is a huge page or not.
3261     FILE *fp = fopen("/proc/self/maps", "r");
3262     if (fp) {
3263       while (!feof(fp)) {
3264         char chars[257];
3265         long x = 0;
3266         if (fgets(chars, sizeof(chars), fp)) {
3267           if (sscanf(chars, "%lx-%*x", &x) == 1
3268               && x == (long)p) {
3269             if (strstr (chars, "hugepage")) {
3270               result = true;
3271               break;
3272             }
3273           }
3274         }
3275       }
3276       fclose(fp);
3277     }
3278     munmap(p, page_size);
3279   }
3280 
3281   if (warn && !result) {
3282     warning("HugeTLBFS is not supported by the operating system.");
3283   }
3284 
3285   return result;
3286 }
3287 
3288 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3289 //
3290 // From the coredump_filter documentation:
3291 //
3292 // - (bit 0) anonymous private memory
3293 // - (bit 1) anonymous shared memory
3294 // - (bit 2) file-backed private memory
3295 // - (bit 3) file-backed shared memory
3296 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3297 //           effective only if the bit 2 is cleared)
3298 // - (bit 5) hugetlb private memory
3299 // - (bit 6) hugetlb shared memory
3300 //
3301 static void set_coredump_filter(void) {
3302   FILE *f;
3303   long cdm;
3304 
3305   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3306     return;
3307   }
3308 
3309   if (fscanf(f, "%lx", &cdm) != 1) {
3310     fclose(f);
3311     return;
3312   }
3313 
3314   rewind(f);
3315 
3316   if ((cdm & LARGEPAGES_BIT) == 0) {
3317     cdm |= LARGEPAGES_BIT;
3318     fprintf(f, "%#lx", cdm);
3319   }
3320 
3321   fclose(f);
3322 }
3323 
3324 // Large page support
3325 
3326 static size_t _large_page_size = 0;
3327 
3328 size_t os::Linux::find_large_page_size() {
3329   size_t large_page_size = 0;
3330 
3331   // large_page_size on Linux is used to round up heap size. x86 uses either
3332   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3333   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3334   // page as large as 256M.
3335   //
3336   // Here we try to figure out page size by parsing /proc/meminfo and looking
3337   // for a line with the following format:
3338   //    Hugepagesize:     2048 kB
3339   //
3340   // If we can't determine the value (e.g. /proc is not mounted, or the text
3341   // format has been changed), we'll use the largest page size supported by
3342   // the processor.
3343 
3344 #ifndef ZERO
3345   large_page_size =
3346     AARCH64_ONLY(2 * M)
3347     AMD64_ONLY(2 * M)
3348     ARM32_ONLY(2 * M)
3349     IA32_ONLY(4 * M)
3350     IA64_ONLY(256 * M)
3351     PPC_ONLY(4 * M)
3352     S390_ONLY(1 * M)
3353     SPARC_ONLY(4 * M);
3354 #endif // ZERO
3355 
3356   FILE *fp = fopen("/proc/meminfo", "r");
3357   if (fp) {
3358     while (!feof(fp)) {
3359       int x = 0;
3360       char buf[16];
3361       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3362         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3363           large_page_size = x * K;
3364           break;
3365         }
3366       } else {
3367         // skip to next line
3368         for (;;) {
3369           int ch = fgetc(fp);
3370           if (ch == EOF || ch == (int)'\n') break;
3371         }
3372       }
3373     }
3374     fclose(fp);
3375   }
3376 
3377   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3378     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3379             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3380             proper_unit_for_byte_size(large_page_size));
3381   }
3382 
3383   return large_page_size;
3384 }
3385 
3386 size_t os::Linux::setup_large_page_size() {
3387   _large_page_size = Linux::find_large_page_size();
3388   const size_t default_page_size = (size_t)Linux::page_size();
3389   if (_large_page_size > default_page_size) {
3390     _page_sizes[0] = _large_page_size;
3391     _page_sizes[1] = default_page_size;
3392     _page_sizes[2] = 0;
3393   }
3394 
3395   return _large_page_size;
3396 }
3397 
3398 bool os::Linux::setup_large_page_type(size_t page_size) {
3399   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3400       FLAG_IS_DEFAULT(UseSHM) &&
3401       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3402 
3403     // The type of large pages has not been specified by the user.
3404 
3405     // Try UseHugeTLBFS and then UseSHM.
3406     UseHugeTLBFS = UseSHM = true;
3407 
3408     // Don't try UseTransparentHugePages since there are known
3409     // performance issues with it turned on. This might change in the future.
3410     UseTransparentHugePages = false;
3411   }
3412 
3413   if (UseTransparentHugePages) {
3414     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3415     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3416       UseHugeTLBFS = false;
3417       UseSHM = false;
3418       return true;
3419     }
3420     UseTransparentHugePages = false;
3421   }
3422 
3423   if (UseHugeTLBFS) {
3424     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3425     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3426       UseSHM = false;
3427       return true;
3428     }
3429     UseHugeTLBFS = false;
3430   }
3431 
3432   return UseSHM;
3433 }
3434 
3435 void os::large_page_init() {
3436   if (!UseLargePages &&
3437       !UseTransparentHugePages &&
3438       !UseHugeTLBFS &&
3439       !UseSHM) {
3440     // Not using large pages.
3441     return;
3442   }
3443 
3444   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3445     // The user explicitly turned off large pages.
3446     // Ignore the rest of the large pages flags.
3447     UseTransparentHugePages = false;
3448     UseHugeTLBFS = false;
3449     UseSHM = false;
3450     return;
3451   }
3452 
3453   size_t large_page_size = Linux::setup_large_page_size();
3454   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3455 
3456   set_coredump_filter();
3457 }
3458 
3459 #ifndef SHM_HUGETLB
3460   #define SHM_HUGETLB 04000
3461 #endif
3462 
3463 #define shm_warning_format(format, ...)              \
3464   do {                                               \
3465     if (UseLargePages &&                             \
3466         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3467          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3468          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3469       warning(format, __VA_ARGS__);                  \
3470     }                                                \
3471   } while (0)
3472 
3473 #define shm_warning(str) shm_warning_format("%s", str)
3474 
3475 #define shm_warning_with_errno(str)                \
3476   do {                                             \
3477     int err = errno;                               \
3478     shm_warning_format(str " (error = %d)", err);  \
3479   } while (0)
3480 
3481 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3482   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3483 
3484   if (!is_size_aligned(alignment, SHMLBA)) {
3485     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3486     return NULL;
3487   }
3488 
3489   // To ensure that we get 'alignment' aligned memory from shmat,
3490   // we pre-reserve aligned virtual memory and then attach to that.
3491 
3492   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3493   if (pre_reserved_addr == NULL) {
3494     // Couldn't pre-reserve aligned memory.
3495     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3496     return NULL;
3497   }
3498 
3499   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3500   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3501 
3502   if ((intptr_t)addr == -1) {
3503     int err = errno;
3504     shm_warning_with_errno("Failed to attach shared memory.");
3505 
3506     assert(err != EACCES, "Unexpected error");
3507     assert(err != EIDRM,  "Unexpected error");
3508     assert(err != EINVAL, "Unexpected error");
3509 
3510     // Since we don't know if the kernel unmapped the pre-reserved memory area
3511     // we can't unmap it, since that would potentially unmap memory that was
3512     // mapped from other threads.
3513     return NULL;
3514   }
3515 
3516   return addr;
3517 }
3518 
3519 static char* shmat_at_address(int shmid, char* req_addr) {
3520   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3521     assert(false, "Requested address needs to be SHMLBA aligned");
3522     return NULL;
3523   }
3524 
3525   char* addr = (char*)shmat(shmid, req_addr, 0);
3526 
3527   if ((intptr_t)addr == -1) {
3528     shm_warning_with_errno("Failed to attach shared memory.");
3529     return NULL;
3530   }
3531 
3532   return addr;
3533 }
3534 
3535 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3536   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3537   if (req_addr != NULL) {
3538     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3539     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3540     return shmat_at_address(shmid, req_addr);
3541   }
3542 
3543   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3544   // return large page size aligned memory addresses when req_addr == NULL.
3545   // However, if the alignment is larger than the large page size, we have
3546   // to manually ensure that the memory returned is 'alignment' aligned.
3547   if (alignment > os::large_page_size()) {
3548     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3549     return shmat_with_alignment(shmid, bytes, alignment);
3550   } else {
3551     return shmat_at_address(shmid, NULL);
3552   }
3553 }
3554 
3555 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3556                                             char* req_addr, bool exec) {
3557   // "exec" is passed in but not used.  Creating the shared image for
3558   // the code cache doesn't have an SHM_X executable permission to check.
3559   assert(UseLargePages && UseSHM, "only for SHM large pages");
3560   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3561   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3562 
3563   if (!is_size_aligned(bytes, os::large_page_size())) {
3564     return NULL; // Fallback to small pages.
3565   }
3566 
3567   // Create a large shared memory region to attach to based on size.
3568   // Currently, size is the total size of the heap.
3569   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3570   if (shmid == -1) {
3571     // Possible reasons for shmget failure:
3572     // 1. shmmax is too small for Java heap.
3573     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3574     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3575     // 2. not enough large page memory.
3576     //    > check available large pages: cat /proc/meminfo
3577     //    > increase amount of large pages:
3578     //          echo new_value > /proc/sys/vm/nr_hugepages
3579     //      Note 1: different Linux may use different name for this property,
3580     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3581     //      Note 2: it's possible there's enough physical memory available but
3582     //            they are so fragmented after a long run that they can't
3583     //            coalesce into large pages. Try to reserve large pages when
3584     //            the system is still "fresh".
3585     shm_warning_with_errno("Failed to reserve shared memory.");
3586     return NULL;
3587   }
3588 
3589   // Attach to the region.
3590   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3591 
3592   // Remove shmid. If shmat() is successful, the actual shared memory segment
3593   // will be deleted when it's detached by shmdt() or when the process
3594   // terminates. If shmat() is not successful this will remove the shared
3595   // segment immediately.
3596   shmctl(shmid, IPC_RMID, NULL);
3597 
3598   return addr;
3599 }
3600 
3601 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3602                                         int error) {
3603   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3604 
3605   bool warn_on_failure = UseLargePages &&
3606       (!FLAG_IS_DEFAULT(UseLargePages) ||
3607        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3608        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3609 
3610   if (warn_on_failure) {
3611     char msg[128];
3612     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3613                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3614     warning("%s", msg);
3615   }
3616 }
3617 
3618 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3619                                                         char* req_addr,
3620                                                         bool exec) {
3621   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3622   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3623   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3624 
3625   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3626   char* addr = (char*)::mmap(req_addr, bytes, prot,
3627                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3628                              -1, 0);
3629 
3630   if (addr == MAP_FAILED) {
3631     warn_on_large_pages_failure(req_addr, bytes, errno);
3632     return NULL;
3633   }
3634 
3635   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3636 
3637   return addr;
3638 }
3639 
3640 // Reserve memory using mmap(MAP_HUGETLB).
3641 //  - bytes shall be a multiple of alignment.
3642 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3643 //  - alignment sets the alignment at which memory shall be allocated.
3644 //     It must be a multiple of allocation granularity.
3645 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3646 //  req_addr or NULL.
3647 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3648                                                          size_t alignment,
3649                                                          char* req_addr,
3650                                                          bool exec) {
3651   size_t large_page_size = os::large_page_size();
3652   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3653 
3654   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3655   assert(is_size_aligned(bytes, alignment), "Must be");
3656 
3657   // First reserve - but not commit - the address range in small pages.
3658   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3659 
3660   if (start == NULL) {
3661     return NULL;
3662   }
3663 
3664   assert(is_ptr_aligned(start, alignment), "Must be");
3665 
3666   char* end = start + bytes;
3667 
3668   // Find the regions of the allocated chunk that can be promoted to large pages.
3669   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3670   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3671 
3672   size_t lp_bytes = lp_end - lp_start;
3673 
3674   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3675 
3676   if (lp_bytes == 0) {
3677     // The mapped region doesn't even span the start and the end of a large page.
3678     // Fall back to allocate a non-special area.
3679     ::munmap(start, end - start);
3680     return NULL;
3681   }
3682 
3683   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3684 
3685   void* result;
3686 
3687   // Commit small-paged leading area.
3688   if (start != lp_start) {
3689     result = ::mmap(start, lp_start - start, prot,
3690                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3691                     -1, 0);
3692     if (result == MAP_FAILED) {
3693       ::munmap(lp_start, end - lp_start);
3694       return NULL;
3695     }
3696   }
3697 
3698   // Commit large-paged area.
3699   result = ::mmap(lp_start, lp_bytes, prot,
3700                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3701                   -1, 0);
3702   if (result == MAP_FAILED) {
3703     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3704     // If the mmap above fails, the large pages region will be unmapped and we
3705     // have regions before and after with small pages. Release these regions.
3706     //
3707     // |  mapped  |  unmapped  |  mapped  |
3708     // ^          ^            ^          ^
3709     // start      lp_start     lp_end     end
3710     //
3711     ::munmap(start, lp_start - start);
3712     ::munmap(lp_end, end - lp_end);
3713     return NULL;
3714   }
3715 
3716   // Commit small-paged trailing area.
3717   if (lp_end != end) {
3718     result = ::mmap(lp_end, end - lp_end, prot,
3719                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3720                     -1, 0);
3721     if (result == MAP_FAILED) {
3722       ::munmap(start, lp_end - start);
3723       return NULL;
3724     }
3725   }
3726 
3727   return start;
3728 }
3729 
3730 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3731                                                    size_t alignment,
3732                                                    char* req_addr,
3733                                                    bool exec) {
3734   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3735   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3736   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3737   assert(is_power_of_2(os::large_page_size()), "Must be");
3738   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3739 
3740   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3741     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3742   } else {
3743     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3744   }
3745 }
3746 
3747 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3748                                  char* req_addr, bool exec) {
3749   assert(UseLargePages, "only for large pages");
3750 
3751   char* addr;
3752   if (UseSHM) {
3753     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3754   } else {
3755     assert(UseHugeTLBFS, "must be");
3756     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3757   }
3758 
3759   if (addr != NULL) {
3760     if (UseNUMAInterleaving) {
3761       numa_make_global(addr, bytes);
3762     }
3763 
3764     // The memory is committed
3765     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3766   }
3767 
3768   return addr;
3769 }
3770 
3771 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3772   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3773   return shmdt(base) == 0;
3774 }
3775 
3776 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3777   return pd_release_memory(base, bytes);
3778 }
3779 
3780 bool os::release_memory_special(char* base, size_t bytes) {
3781   bool res;
3782   if (MemTracker::tracking_level() > NMT_minimal) {
3783     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3784     res = os::Linux::release_memory_special_impl(base, bytes);
3785     if (res) {
3786       tkr.record((address)base, bytes);
3787     }
3788 
3789   } else {
3790     res = os::Linux::release_memory_special_impl(base, bytes);
3791   }
3792   return res;
3793 }
3794 
3795 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3796   assert(UseLargePages, "only for large pages");
3797   bool res;
3798 
3799   if (UseSHM) {
3800     res = os::Linux::release_memory_special_shm(base, bytes);
3801   } else {
3802     assert(UseHugeTLBFS, "must be");
3803     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3804   }
3805   return res;
3806 }
3807 
3808 size_t os::large_page_size() {
3809   return _large_page_size;
3810 }
3811 
3812 // With SysV SHM the entire memory region must be allocated as shared
3813 // memory.
3814 // HugeTLBFS allows application to commit large page memory on demand.
3815 // However, when committing memory with HugeTLBFS fails, the region
3816 // that was supposed to be committed will lose the old reservation
3817 // and allow other threads to steal that memory region. Because of this
3818 // behavior we can't commit HugeTLBFS memory.
3819 bool os::can_commit_large_page_memory() {
3820   return UseTransparentHugePages;
3821 }
3822 
3823 bool os::can_execute_large_page_memory() {
3824   return UseTransparentHugePages || UseHugeTLBFS;
3825 }
3826 
3827 // Reserve memory at an arbitrary address, only if that area is
3828 // available (and not reserved for something else).
3829 
3830 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3831   const int max_tries = 10;
3832   char* base[max_tries];
3833   size_t size[max_tries];
3834   const size_t gap = 0x000000;
3835 
3836   // Assert only that the size is a multiple of the page size, since
3837   // that's all that mmap requires, and since that's all we really know
3838   // about at this low abstraction level.  If we need higher alignment,
3839   // we can either pass an alignment to this method or verify alignment
3840   // in one of the methods further up the call chain.  See bug 5044738.
3841   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3842 
3843   // Repeatedly allocate blocks until the block is allocated at the
3844   // right spot.
3845 
3846   // Linux mmap allows caller to pass an address as hint; give it a try first,
3847   // if kernel honors the hint then we can return immediately.
3848   char * addr = anon_mmap(requested_addr, bytes, false);
3849   if (addr == requested_addr) {
3850     return requested_addr;
3851   }
3852 
3853   if (addr != NULL) {
3854     // mmap() is successful but it fails to reserve at the requested address
3855     anon_munmap(addr, bytes);
3856   }
3857 
3858   int i;
3859   for (i = 0; i < max_tries; ++i) {
3860     base[i] = reserve_memory(bytes);
3861 
3862     if (base[i] != NULL) {
3863       // Is this the block we wanted?
3864       if (base[i] == requested_addr) {
3865         size[i] = bytes;
3866         break;
3867       }
3868 
3869       // Does this overlap the block we wanted? Give back the overlapped
3870       // parts and try again.
3871 
3872       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3873       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3874         unmap_memory(base[i], top_overlap);
3875         base[i] += top_overlap;
3876         size[i] = bytes - top_overlap;
3877       } else {
3878         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3879         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3880           unmap_memory(requested_addr, bottom_overlap);
3881           size[i] = bytes - bottom_overlap;
3882         } else {
3883           size[i] = bytes;
3884         }
3885       }
3886     }
3887   }
3888 
3889   // Give back the unused reserved pieces.
3890 
3891   for (int j = 0; j < i; ++j) {
3892     if (base[j] != NULL) {
3893       unmap_memory(base[j], size[j]);
3894     }
3895   }
3896 
3897   if (i < max_tries) {
3898     return requested_addr;
3899   } else {
3900     return NULL;
3901   }
3902 }
3903 
3904 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3905   return ::read(fd, buf, nBytes);
3906 }
3907 
3908 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3909   return ::pread(fd, buf, nBytes, offset);
3910 }
3911 
3912 // Short sleep, direct OS call.
3913 //
3914 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3915 // sched_yield(2) will actually give up the CPU:
3916 //
3917 //   * Alone on this pariticular CPU, keeps running.
3918 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3919 //     (pre 2.6.39).
3920 //
3921 // So calling this with 0 is an alternative.
3922 //
3923 void os::naked_short_sleep(jlong ms) {
3924   struct timespec req;
3925 
3926   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3927   req.tv_sec = 0;
3928   if (ms > 0) {
3929     req.tv_nsec = (ms % 1000) * 1000000;
3930   } else {
3931     req.tv_nsec = 1;
3932   }
3933 
3934   nanosleep(&req, NULL);
3935 
3936   return;
3937 }
3938 
3939 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3940 void os::infinite_sleep() {
3941   while (true) {    // sleep forever ...
3942     ::sleep(100);   // ... 100 seconds at a time
3943   }
3944 }
3945 
3946 // Used to convert frequent JVM_Yield() to nops
3947 bool os::dont_yield() {
3948   return DontYieldALot;
3949 }
3950 
3951 void os::naked_yield() {
3952   sched_yield();
3953 }
3954 
3955 ////////////////////////////////////////////////////////////////////////////////
3956 // thread priority support
3957 
3958 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3959 // only supports dynamic priority, static priority must be zero. For real-time
3960 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3961 // However, for large multi-threaded applications, SCHED_RR is not only slower
3962 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3963 // of 5 runs - Sep 2005).
3964 //
3965 // The following code actually changes the niceness of kernel-thread/LWP. It
3966 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3967 // not the entire user process, and user level threads are 1:1 mapped to kernel
3968 // threads. It has always been the case, but could change in the future. For
3969 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3970 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3971 
3972 int os::java_to_os_priority[CriticalPriority + 1] = {
3973   19,              // 0 Entry should never be used
3974 
3975    4,              // 1 MinPriority
3976    3,              // 2
3977    2,              // 3
3978 
3979    1,              // 4
3980    0,              // 5 NormPriority
3981   -1,              // 6
3982 
3983   -2,              // 7
3984   -3,              // 8
3985   -4,              // 9 NearMaxPriority
3986 
3987   -5,              // 10 MaxPriority
3988 
3989   -5               // 11 CriticalPriority
3990 };
3991 
3992 static int prio_init() {
3993   if (ThreadPriorityPolicy == 1) {
3994     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3995     // if effective uid is not root. Perhaps, a more elegant way of doing
3996     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3997     if (geteuid() != 0) {
3998       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3999         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4000       }
4001       ThreadPriorityPolicy = 0;
4002     }
4003   }
4004   if (UseCriticalJavaThreadPriority) {
4005     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4006   }
4007   return 0;
4008 }
4009 
4010 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4011   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4012 
4013   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4014   return (ret == 0) ? OS_OK : OS_ERR;
4015 }
4016 
4017 OSReturn os::get_native_priority(const Thread* const thread,
4018                                  int *priority_ptr) {
4019   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4020     *priority_ptr = java_to_os_priority[NormPriority];
4021     return OS_OK;
4022   }
4023 
4024   errno = 0;
4025   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4026   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4027 }
4028 
4029 // Hint to the underlying OS that a task switch would not be good.
4030 // Void return because it's a hint and can fail.
4031 void os::hint_no_preempt() {}
4032 
4033 ////////////////////////////////////////////////////////////////////////////////
4034 // suspend/resume support
4035 
4036 //  the low-level signal-based suspend/resume support is a remnant from the
4037 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4038 //  within hotspot. Now there is a single use-case for this:
4039 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4040 //      that runs in the watcher thread.
4041 //  The remaining code is greatly simplified from the more general suspension
4042 //  code that used to be used.
4043 //
4044 //  The protocol is quite simple:
4045 //  - suspend:
4046 //      - sends a signal to the target thread
4047 //      - polls the suspend state of the osthread using a yield loop
4048 //      - target thread signal handler (SR_handler) sets suspend state
4049 //        and blocks in sigsuspend until continued
4050 //  - resume:
4051 //      - sets target osthread state to continue
4052 //      - sends signal to end the sigsuspend loop in the SR_handler
4053 //
4054 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4055 //  but is checked for NULL in SR_handler as a thread termination indicator.
4056 
4057 static void resume_clear_context(OSThread *osthread) {
4058   osthread->set_ucontext(NULL);
4059   osthread->set_siginfo(NULL);
4060 }
4061 
4062 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4063                                  ucontext_t* context) {
4064   osthread->set_ucontext(context);
4065   osthread->set_siginfo(siginfo);
4066 }
4067 
4068 // Handler function invoked when a thread's execution is suspended or
4069 // resumed. We have to be careful that only async-safe functions are
4070 // called here (Note: most pthread functions are not async safe and
4071 // should be avoided.)
4072 //
4073 // Note: sigwait() is a more natural fit than sigsuspend() from an
4074 // interface point of view, but sigwait() prevents the signal hander
4075 // from being run. libpthread would get very confused by not having
4076 // its signal handlers run and prevents sigwait()'s use with the
4077 // mutex granting granting signal.
4078 //
4079 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4080 //
4081 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4082   // Save and restore errno to avoid confusing native code with EINTR
4083   // after sigsuspend.
4084   int old_errno = errno;
4085 
4086   Thread* thread = Thread::current_or_null_safe();
4087   assert(thread != NULL, "Missing current thread in SR_handler");
4088 
4089   // On some systems we have seen signal delivery get "stuck" until the signal
4090   // mask is changed as part of thread termination. Check that the current thread
4091   // has not already terminated (via SR_lock()) - else the following assertion
4092   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4093   // destructor has completed.
4094 
4095   if (thread->SR_lock() == NULL) {
4096     return;
4097   }
4098 
4099   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4100 
4101   OSThread* osthread = thread->osthread();
4102 
4103   os::SuspendResume::State current = osthread->sr.state();
4104   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4105     suspend_save_context(osthread, siginfo, context);
4106 
4107     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4108     os::SuspendResume::State state = osthread->sr.suspended();
4109     if (state == os::SuspendResume::SR_SUSPENDED) {
4110       sigset_t suspend_set;  // signals for sigsuspend()
4111       sigemptyset(&suspend_set);
4112       // get current set of blocked signals and unblock resume signal
4113       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4114       sigdelset(&suspend_set, SR_signum);
4115 
4116       sr_semaphore.signal();
4117       // wait here until we are resumed
4118       while (1) {
4119         sigsuspend(&suspend_set);
4120 
4121         os::SuspendResume::State result = osthread->sr.running();
4122         if (result == os::SuspendResume::SR_RUNNING) {
4123           sr_semaphore.signal();
4124           break;
4125         }
4126       }
4127 
4128     } else if (state == os::SuspendResume::SR_RUNNING) {
4129       // request was cancelled, continue
4130     } else {
4131       ShouldNotReachHere();
4132     }
4133 
4134     resume_clear_context(osthread);
4135   } else if (current == os::SuspendResume::SR_RUNNING) {
4136     // request was cancelled, continue
4137   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4138     // ignore
4139   } else {
4140     // ignore
4141   }
4142 
4143   errno = old_errno;
4144 }
4145 
4146 static int SR_initialize() {
4147   struct sigaction act;
4148   char *s;
4149 
4150   // Get signal number to use for suspend/resume
4151   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4152     int sig = ::strtol(s, 0, 10);
4153     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4154         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4155       SR_signum = sig;
4156     } else {
4157       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4158               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4159     }
4160   }
4161 
4162   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4163          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4164 
4165   sigemptyset(&SR_sigset);
4166   sigaddset(&SR_sigset, SR_signum);
4167 
4168   // Set up signal handler for suspend/resume
4169   act.sa_flags = SA_RESTART|SA_SIGINFO;
4170   act.sa_handler = (void (*)(int)) SR_handler;
4171 
4172   // SR_signum is blocked by default.
4173   // 4528190 - We also need to block pthread restart signal (32 on all
4174   // supported Linux platforms). Note that LinuxThreads need to block
4175   // this signal for all threads to work properly. So we don't have
4176   // to use hard-coded signal number when setting up the mask.
4177   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4178 
4179   if (sigaction(SR_signum, &act, 0) == -1) {
4180     return -1;
4181   }
4182 
4183   // Save signal flag
4184   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4185   return 0;
4186 }
4187 
4188 static int sr_notify(OSThread* osthread) {
4189   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4190   assert_status(status == 0, status, "pthread_kill");
4191   return status;
4192 }
4193 
4194 // "Randomly" selected value for how long we want to spin
4195 // before bailing out on suspending a thread, also how often
4196 // we send a signal to a thread we want to resume
4197 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4198 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4199 
4200 // returns true on success and false on error - really an error is fatal
4201 // but this seems the normal response to library errors
4202 static bool do_suspend(OSThread* osthread) {
4203   assert(osthread->sr.is_running(), "thread should be running");
4204   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4205 
4206   // mark as suspended and send signal
4207   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4208     // failed to switch, state wasn't running?
4209     ShouldNotReachHere();
4210     return false;
4211   }
4212 
4213   if (sr_notify(osthread) != 0) {
4214     ShouldNotReachHere();
4215   }
4216 
4217   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4218   while (true) {
4219     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4220       break;
4221     } else {
4222       // timeout
4223       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4224       if (cancelled == os::SuspendResume::SR_RUNNING) {
4225         return false;
4226       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4227         // make sure that we consume the signal on the semaphore as well
4228         sr_semaphore.wait();
4229         break;
4230       } else {
4231         ShouldNotReachHere();
4232         return false;
4233       }
4234     }
4235   }
4236 
4237   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4238   return true;
4239 }
4240 
4241 static void do_resume(OSThread* osthread) {
4242   assert(osthread->sr.is_suspended(), "thread should be suspended");
4243   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4244 
4245   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4246     // failed to switch to WAKEUP_REQUEST
4247     ShouldNotReachHere();
4248     return;
4249   }
4250 
4251   while (true) {
4252     if (sr_notify(osthread) == 0) {
4253       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4254         if (osthread->sr.is_running()) {
4255           return;
4256         }
4257       }
4258     } else {
4259       ShouldNotReachHere();
4260     }
4261   }
4262 
4263   guarantee(osthread->sr.is_running(), "Must be running!");
4264 }
4265 
4266 ///////////////////////////////////////////////////////////////////////////////////
4267 // signal handling (except suspend/resume)
4268 
4269 // This routine may be used by user applications as a "hook" to catch signals.
4270 // The user-defined signal handler must pass unrecognized signals to this
4271 // routine, and if it returns true (non-zero), then the signal handler must
4272 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4273 // routine will never retun false (zero), but instead will execute a VM panic
4274 // routine kill the process.
4275 //
4276 // If this routine returns false, it is OK to call it again.  This allows
4277 // the user-defined signal handler to perform checks either before or after
4278 // the VM performs its own checks.  Naturally, the user code would be making
4279 // a serious error if it tried to handle an exception (such as a null check
4280 // or breakpoint) that the VM was generating for its own correct operation.
4281 //
4282 // This routine may recognize any of the following kinds of signals:
4283 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4284 // It should be consulted by handlers for any of those signals.
4285 //
4286 // The caller of this routine must pass in the three arguments supplied
4287 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4288 // field of the structure passed to sigaction().  This routine assumes that
4289 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4290 //
4291 // Note that the VM will print warnings if it detects conflicting signal
4292 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4293 //
4294 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4295                                                  siginfo_t* siginfo,
4296                                                  void* ucontext,
4297                                                  int abort_if_unrecognized);
4298 
4299 void signalHandler(int sig, siginfo_t* info, void* uc) {
4300   assert(info != NULL && uc != NULL, "it must be old kernel");
4301   int orig_errno = errno;  // Preserve errno value over signal handler.
4302   JVM_handle_linux_signal(sig, info, uc, true);
4303   errno = orig_errno;
4304 }
4305 
4306 
4307 // This boolean allows users to forward their own non-matching signals
4308 // to JVM_handle_linux_signal, harmlessly.
4309 bool os::Linux::signal_handlers_are_installed = false;
4310 
4311 // For signal-chaining
4312 struct sigaction sigact[NSIG];
4313 uint64_t sigs = 0;
4314 #if (64 < NSIG-1)
4315 #error "Not all signals can be encoded in sigs. Adapt its type!"
4316 #endif
4317 bool os::Linux::libjsig_is_loaded = false;
4318 typedef struct sigaction *(*get_signal_t)(int);
4319 get_signal_t os::Linux::get_signal_action = NULL;
4320 
4321 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4322   struct sigaction *actp = NULL;
4323 
4324   if (libjsig_is_loaded) {
4325     // Retrieve the old signal handler from libjsig
4326     actp = (*get_signal_action)(sig);
4327   }
4328   if (actp == NULL) {
4329     // Retrieve the preinstalled signal handler from jvm
4330     actp = get_preinstalled_handler(sig);
4331   }
4332 
4333   return actp;
4334 }
4335 
4336 static bool call_chained_handler(struct sigaction *actp, int sig,
4337                                  siginfo_t *siginfo, void *context) {
4338   // Call the old signal handler
4339   if (actp->sa_handler == SIG_DFL) {
4340     // It's more reasonable to let jvm treat it as an unexpected exception
4341     // instead of taking the default action.
4342     return false;
4343   } else if (actp->sa_handler != SIG_IGN) {
4344     if ((actp->sa_flags & SA_NODEFER) == 0) {
4345       // automaticlly block the signal
4346       sigaddset(&(actp->sa_mask), sig);
4347     }
4348 
4349     sa_handler_t hand = NULL;
4350     sa_sigaction_t sa = NULL;
4351     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4352     // retrieve the chained handler
4353     if (siginfo_flag_set) {
4354       sa = actp->sa_sigaction;
4355     } else {
4356       hand = actp->sa_handler;
4357     }
4358 
4359     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4360       actp->sa_handler = SIG_DFL;
4361     }
4362 
4363     // try to honor the signal mask
4364     sigset_t oset;
4365     sigemptyset(&oset);
4366     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4367 
4368     // call into the chained handler
4369     if (siginfo_flag_set) {
4370       (*sa)(sig, siginfo, context);
4371     } else {
4372       (*hand)(sig);
4373     }
4374 
4375     // restore the signal mask
4376     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4377   }
4378   // Tell jvm's signal handler the signal is taken care of.
4379   return true;
4380 }
4381 
4382 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4383   bool chained = false;
4384   // signal-chaining
4385   if (UseSignalChaining) {
4386     struct sigaction *actp = get_chained_signal_action(sig);
4387     if (actp != NULL) {
4388       chained = call_chained_handler(actp, sig, siginfo, context);
4389     }
4390   }
4391   return chained;
4392 }
4393 
4394 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4395   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4396     return &sigact[sig];
4397   }
4398   return NULL;
4399 }
4400 
4401 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4402   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4403   sigact[sig] = oldAct;
4404   sigs |= (uint64_t)1 << (sig-1);
4405 }
4406 
4407 // for diagnostic
4408 int sigflags[NSIG];
4409 
4410 int os::Linux::get_our_sigflags(int sig) {
4411   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4412   return sigflags[sig];
4413 }
4414 
4415 void os::Linux::set_our_sigflags(int sig, int flags) {
4416   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4417   if (sig > 0 && sig < NSIG) {
4418     sigflags[sig] = flags;
4419   }
4420 }
4421 
4422 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4423   // Check for overwrite.
4424   struct sigaction oldAct;
4425   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4426 
4427   void* oldhand = oldAct.sa_sigaction
4428                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4429                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4430   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4431       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4432       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4433     if (AllowUserSignalHandlers || !set_installed) {
4434       // Do not overwrite; user takes responsibility to forward to us.
4435       return;
4436     } else if (UseSignalChaining) {
4437       // save the old handler in jvm
4438       save_preinstalled_handler(sig, oldAct);
4439       // libjsig also interposes the sigaction() call below and saves the
4440       // old sigaction on it own.
4441     } else {
4442       fatal("Encountered unexpected pre-existing sigaction handler "
4443             "%#lx for signal %d.", (long)oldhand, sig);
4444     }
4445   }
4446 
4447   struct sigaction sigAct;
4448   sigfillset(&(sigAct.sa_mask));
4449   sigAct.sa_handler = SIG_DFL;
4450   if (!set_installed) {
4451     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4452   } else {
4453     sigAct.sa_sigaction = signalHandler;
4454     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4455   }
4456   // Save flags, which are set by ours
4457   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4458   sigflags[sig] = sigAct.sa_flags;
4459 
4460   int ret = sigaction(sig, &sigAct, &oldAct);
4461   assert(ret == 0, "check");
4462 
4463   void* oldhand2  = oldAct.sa_sigaction
4464                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4465                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4466   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4467 }
4468 
4469 // install signal handlers for signals that HotSpot needs to
4470 // handle in order to support Java-level exception handling.
4471 
4472 void os::Linux::install_signal_handlers() {
4473   if (!signal_handlers_are_installed) {
4474     signal_handlers_are_installed = true;
4475 
4476     // signal-chaining
4477     typedef void (*signal_setting_t)();
4478     signal_setting_t begin_signal_setting = NULL;
4479     signal_setting_t end_signal_setting = NULL;
4480     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4481                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4482     if (begin_signal_setting != NULL) {
4483       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4484                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4485       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4486                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4487       libjsig_is_loaded = true;
4488       assert(UseSignalChaining, "should enable signal-chaining");
4489     }
4490     if (libjsig_is_loaded) {
4491       // Tell libjsig jvm is setting signal handlers
4492       (*begin_signal_setting)();
4493     }
4494 
4495     set_signal_handler(SIGSEGV, true);
4496     set_signal_handler(SIGPIPE, true);
4497     set_signal_handler(SIGBUS, true);
4498     set_signal_handler(SIGILL, true);
4499     set_signal_handler(SIGFPE, true);
4500 #if defined(PPC64)
4501     set_signal_handler(SIGTRAP, true);
4502 #endif
4503     set_signal_handler(SIGXFSZ, true);
4504 
4505     if (libjsig_is_loaded) {
4506       // Tell libjsig jvm finishes setting signal handlers
4507       (*end_signal_setting)();
4508     }
4509 
4510     // We don't activate signal checker if libjsig is in place, we trust ourselves
4511     // and if UserSignalHandler is installed all bets are off.
4512     // Log that signal checking is off only if -verbose:jni is specified.
4513     if (CheckJNICalls) {
4514       if (libjsig_is_loaded) {
4515         if (PrintJNIResolving) {
4516           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4517         }
4518         check_signals = false;
4519       }
4520       if (AllowUserSignalHandlers) {
4521         if (PrintJNIResolving) {
4522           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4523         }
4524         check_signals = false;
4525       }
4526     }
4527   }
4528 }
4529 
4530 // This is the fastest way to get thread cpu time on Linux.
4531 // Returns cpu time (user+sys) for any thread, not only for current.
4532 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4533 // It might work on 2.6.10+ with a special kernel/glibc patch.
4534 // For reference, please, see IEEE Std 1003.1-2004:
4535 //   http://www.unix.org/single_unix_specification
4536 
4537 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4538   struct timespec tp;
4539   int rc = os::Linux::clock_gettime(clockid, &tp);
4540   assert(rc == 0, "clock_gettime is expected to return 0 code");
4541 
4542   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4543 }
4544 
4545 void os::Linux::initialize_os_info() {
4546   assert(_os_version == 0, "OS info already initialized");
4547 
4548   struct utsname _uname;
4549 
4550   uint32_t major;
4551   uint32_t minor;
4552   uint32_t fix;
4553 
4554   int rc;
4555 
4556   // Kernel version is unknown if
4557   // verification below fails.
4558   _os_version = 0x01000000;
4559 
4560   rc = uname(&_uname);
4561   if (rc != -1) {
4562 
4563     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4564     if (rc == 3) {
4565 
4566       if (major < 256 && minor < 256 && fix < 256) {
4567         // Kernel version format is as expected,
4568         // set it overriding unknown state.
4569         _os_version = (major << 16) |
4570                       (minor << 8 ) |
4571                       (fix   << 0 ) ;
4572       }
4573     }
4574   }
4575 }
4576 
4577 uint32_t os::Linux::os_version() {
4578   assert(_os_version != 0, "not initialized");
4579   return _os_version & 0x00FFFFFF;
4580 }
4581 
4582 bool os::Linux::os_version_is_known() {
4583   assert(_os_version != 0, "not initialized");
4584   return _os_version & 0x01000000 ? false : true;
4585 }
4586 
4587 /////
4588 // glibc on Linux platform uses non-documented flag
4589 // to indicate, that some special sort of signal
4590 // trampoline is used.
4591 // We will never set this flag, and we should
4592 // ignore this flag in our diagnostic
4593 #ifdef SIGNIFICANT_SIGNAL_MASK
4594   #undef SIGNIFICANT_SIGNAL_MASK
4595 #endif
4596 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4597 
4598 static const char* get_signal_handler_name(address handler,
4599                                            char* buf, int buflen) {
4600   int offset = 0;
4601   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4602   if (found) {
4603     // skip directory names
4604     const char *p1, *p2;
4605     p1 = buf;
4606     size_t len = strlen(os::file_separator());
4607     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4608     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4609   } else {
4610     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4611   }
4612   return buf;
4613 }
4614 
4615 static void print_signal_handler(outputStream* st, int sig,
4616                                  char* buf, size_t buflen) {
4617   struct sigaction sa;
4618 
4619   sigaction(sig, NULL, &sa);
4620 
4621   // See comment for SIGNIFICANT_SIGNAL_MASK define
4622   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4623 
4624   st->print("%s: ", os::exception_name(sig, buf, buflen));
4625 
4626   address handler = (sa.sa_flags & SA_SIGINFO)
4627     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4628     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4629 
4630   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4631     st->print("SIG_DFL");
4632   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4633     st->print("SIG_IGN");
4634   } else {
4635     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4636   }
4637 
4638   st->print(", sa_mask[0]=");
4639   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4640 
4641   address rh = VMError::get_resetted_sighandler(sig);
4642   // May be, handler was resetted by VMError?
4643   if (rh != NULL) {
4644     handler = rh;
4645     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4646   }
4647 
4648   st->print(", sa_flags=");
4649   os::Posix::print_sa_flags(st, sa.sa_flags);
4650 
4651   // Check: is it our handler?
4652   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4653       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4654     // It is our signal handler
4655     // check for flags, reset system-used one!
4656     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4657       st->print(
4658                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4659                 os::Linux::get_our_sigflags(sig));
4660     }
4661   }
4662   st->cr();
4663 }
4664 
4665 
4666 #define DO_SIGNAL_CHECK(sig)                      \
4667   do {                                            \
4668     if (!sigismember(&check_signal_done, sig)) {  \
4669       os::Linux::check_signal_handler(sig);       \
4670     }                                             \
4671   } while (0)
4672 
4673 // This method is a periodic task to check for misbehaving JNI applications
4674 // under CheckJNI, we can add any periodic checks here
4675 
4676 void os::run_periodic_checks() {
4677   if (check_signals == false) return;
4678 
4679   // SEGV and BUS if overridden could potentially prevent
4680   // generation of hs*.log in the event of a crash, debugging
4681   // such a case can be very challenging, so we absolutely
4682   // check the following for a good measure:
4683   DO_SIGNAL_CHECK(SIGSEGV);
4684   DO_SIGNAL_CHECK(SIGILL);
4685   DO_SIGNAL_CHECK(SIGFPE);
4686   DO_SIGNAL_CHECK(SIGBUS);
4687   DO_SIGNAL_CHECK(SIGPIPE);
4688   DO_SIGNAL_CHECK(SIGXFSZ);
4689 #if defined(PPC64)
4690   DO_SIGNAL_CHECK(SIGTRAP);
4691 #endif
4692 
4693   // ReduceSignalUsage allows the user to override these handlers
4694   // see comments at the very top and jvm_solaris.h
4695   if (!ReduceSignalUsage) {
4696     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4697     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4698     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4699     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4700   }
4701 
4702   DO_SIGNAL_CHECK(SR_signum);
4703 }
4704 
4705 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4706 
4707 static os_sigaction_t os_sigaction = NULL;
4708 
4709 void os::Linux::check_signal_handler(int sig) {
4710   char buf[O_BUFLEN];
4711   address jvmHandler = NULL;
4712 
4713 
4714   struct sigaction act;
4715   if (os_sigaction == NULL) {
4716     // only trust the default sigaction, in case it has been interposed
4717     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4718     if (os_sigaction == NULL) return;
4719   }
4720 
4721   os_sigaction(sig, (struct sigaction*)NULL, &act);
4722 
4723 
4724   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4725 
4726   address thisHandler = (act.sa_flags & SA_SIGINFO)
4727     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4728     : CAST_FROM_FN_PTR(address, act.sa_handler);
4729 
4730 
4731   switch (sig) {
4732   case SIGSEGV:
4733   case SIGBUS:
4734   case SIGFPE:
4735   case SIGPIPE:
4736   case SIGILL:
4737   case SIGXFSZ:
4738     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4739     break;
4740 
4741   case SHUTDOWN1_SIGNAL:
4742   case SHUTDOWN2_SIGNAL:
4743   case SHUTDOWN3_SIGNAL:
4744   case BREAK_SIGNAL:
4745     jvmHandler = (address)user_handler();
4746     break;
4747 
4748   default:
4749     if (sig == SR_signum) {
4750       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4751     } else {
4752       return;
4753     }
4754     break;
4755   }
4756 
4757   if (thisHandler != jvmHandler) {
4758     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4759     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4760     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4761     // No need to check this sig any longer
4762     sigaddset(&check_signal_done, sig);
4763     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4764     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4765       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4766                     exception_name(sig, buf, O_BUFLEN));
4767     }
4768   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4769     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4770     tty->print("expected:");
4771     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4772     tty->cr();
4773     tty->print("  found:");
4774     os::Posix::print_sa_flags(tty, act.sa_flags);
4775     tty->cr();
4776     // No need to check this sig any longer
4777     sigaddset(&check_signal_done, sig);
4778   }
4779 
4780   // Dump all the signal
4781   if (sigismember(&check_signal_done, sig)) {
4782     print_signal_handlers(tty, buf, O_BUFLEN);
4783   }
4784 }
4785 
4786 extern void report_error(char* file_name, int line_no, char* title,
4787                          char* format, ...);
4788 
4789 // this is called _before_ the most of global arguments have been parsed
4790 void os::init(void) {
4791   char dummy;   // used to get a guess on initial stack address
4792 //  first_hrtime = gethrtime();
4793 
4794   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4795 
4796   init_random(1234567);
4797 
4798   ThreadCritical::initialize();
4799 
4800   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4801   if (Linux::page_size() == -1) {
4802     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4803           os::strerror(errno));
4804   }
4805   init_page_sizes((size_t) Linux::page_size());
4806 
4807   Linux::initialize_system_info();
4808 
4809   Linux::initialize_os_info();
4810 
4811   // main_thread points to the aboriginal thread
4812   Linux::_main_thread = pthread_self();
4813 
4814   Linux::clock_init();
4815   initial_time_count = javaTimeNanos();
4816 
4817   // retrieve entry point for pthread_setname_np
4818   Linux::_pthread_setname_np =
4819     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4820 
4821   os::Posix::init();
4822 }
4823 
4824 // To install functions for atexit system call
4825 extern "C" {
4826   static void perfMemory_exit_helper() {
4827     perfMemory_exit();
4828   }
4829 }
4830 
4831 // this is called _after_ the global arguments have been parsed
4832 jint os::init_2(void) {
4833 
4834   os::Posix::init_2();
4835 
4836   Linux::fast_thread_clock_init();
4837 
4838   // Allocate a single page and mark it as readable for safepoint polling
4839   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4840   guarantee(polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page");
4841 
4842   os::set_polling_page(polling_page);
4843   log_info(os)("SafePoint Polling address: " INTPTR_FORMAT, p2i(polling_page));
4844 
4845   if (!UseMembar) {
4846     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4847     guarantee(mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4848     os::set_memory_serialize_page(mem_serialize_page);
4849     log_info(os)("Memory Serialize Page address: " INTPTR_FORMAT, p2i(mem_serialize_page));
4850   }
4851 
4852   // initialize suspend/resume support - must do this before signal_sets_init()
4853   if (SR_initialize() != 0) {
4854     perror("SR_initialize failed");
4855     return JNI_ERR;
4856   }
4857 
4858   Linux::signal_sets_init();
4859   Linux::install_signal_handlers();
4860 
4861   // Check and sets minimum stack sizes against command line options
4862   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4863     return JNI_ERR;
4864   }
4865   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4866 
4867 #if defined(IA32)
4868   workaround_expand_exec_shield_cs_limit();
4869 #endif
4870 
4871   Linux::libpthread_init();
4872   log_info(os)("HotSpot is running with %s, %s",
4873                Linux::glibc_version(), Linux::libpthread_version());
4874 
4875   if (UseNUMA) {
4876     if (!Linux::libnuma_init()) {
4877       UseNUMA = false;
4878     } else {
4879       if ((Linux::numa_max_node() < 1)) {
4880         // There's only one node(they start from 0), disable NUMA.
4881         UseNUMA = false;
4882       }
4883     }
4884     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4885     // we can make the adaptive lgrp chunk resizing work. If the user specified
4886     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4887     // disable adaptive resizing.
4888     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4889       if (FLAG_IS_DEFAULT(UseNUMA)) {
4890         UseNUMA = false;
4891       } else {
4892         if (FLAG_IS_DEFAULT(UseLargePages) &&
4893             FLAG_IS_DEFAULT(UseSHM) &&
4894             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4895           UseLargePages = false;
4896         } else if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4897           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4898           UseAdaptiveSizePolicy = false;
4899           UseAdaptiveNUMAChunkSizing = false;
4900         }
4901       }
4902     }
4903     if (!UseNUMA && ForceNUMA) {
4904       UseNUMA = true;
4905     }
4906   }
4907 
4908   if (MaxFDLimit) {
4909     // set the number of file descriptors to max. print out error
4910     // if getrlimit/setrlimit fails but continue regardless.
4911     struct rlimit nbr_files;
4912     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4913     if (status != 0) {
4914       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4915     } else {
4916       nbr_files.rlim_cur = nbr_files.rlim_max;
4917       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4918       if (status != 0) {
4919         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4920       }
4921     }
4922   }
4923 
4924   // Initialize lock used to serialize thread creation (see os::create_thread)
4925   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4926 
4927   // at-exit methods are called in the reverse order of their registration.
4928   // atexit functions are called on return from main or as a result of a
4929   // call to exit(3C). There can be only 32 of these functions registered
4930   // and atexit() does not set errno.
4931 
4932   if (PerfAllowAtExitRegistration) {
4933     // only register atexit functions if PerfAllowAtExitRegistration is set.
4934     // atexit functions can be delayed until process exit time, which
4935     // can be problematic for embedded VM situations. Embedded VMs should
4936     // call DestroyJavaVM() to assure that VM resources are released.
4937 
4938     // note: perfMemory_exit_helper atexit function may be removed in
4939     // the future if the appropriate cleanup code can be added to the
4940     // VM_Exit VMOperation's doit method.
4941     if (atexit(perfMemory_exit_helper) != 0) {
4942       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4943     }
4944   }
4945 
4946   // initialize thread priority policy
4947   prio_init();
4948 
4949   return JNI_OK;
4950 }
4951 
4952 // Mark the polling page as unreadable
4953 void os::make_polling_page_unreadable(void) {
4954   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
4955     fatal("Could not disable polling page");
4956   }
4957 }
4958 
4959 // Mark the polling page as readable
4960 void os::make_polling_page_readable(void) {
4961   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4962     fatal("Could not enable polling page");
4963   }
4964 }
4965 
4966 // older glibc versions don't have this macro (which expands to
4967 // an optimized bit-counting function) so we have to roll our own
4968 #ifndef CPU_COUNT
4969 
4970 static int _cpu_count(const cpu_set_t* cpus) {
4971   int count = 0;
4972   // only look up to the number of configured processors
4973   for (int i = 0; i < os::processor_count(); i++) {
4974     if (CPU_ISSET(i, cpus)) {
4975       count++;
4976     }
4977   }
4978   return count;
4979 }
4980 
4981 #define CPU_COUNT(cpus) _cpu_count(cpus)
4982 
4983 #endif // CPU_COUNT
4984 
4985 // Get the current number of available processors for this process.
4986 // This value can change at any time during a process's lifetime.
4987 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
4988 // If it appears there may be more than 1024 processors then we do a
4989 // dynamic check - see 6515172 for details.
4990 // If anything goes wrong we fallback to returning the number of online
4991 // processors - which can be greater than the number available to the process.
4992 int os::active_processor_count() {
4993   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
4994   cpu_set_t* cpus_p = &cpus;
4995   int cpus_size = sizeof(cpu_set_t);
4996 
4997   int configured_cpus = processor_count();  // upper bound on available cpus
4998   int cpu_count = 0;
4999 
5000 // old build platforms may not support dynamic cpu sets
5001 #ifdef CPU_ALLOC
5002 
5003   // To enable easy testing of the dynamic path on different platforms we
5004   // introduce a diagnostic flag: UseCpuAllocPath
5005   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5006     // kernel may use a mask bigger than cpu_set_t
5007     log_trace(os)("active_processor_count: using dynamic path %s"
5008                   "- configured processors: %d",
5009                   UseCpuAllocPath ? "(forced) " : "",
5010                   configured_cpus);
5011     cpus_p = CPU_ALLOC(configured_cpus);
5012     if (cpus_p != NULL) {
5013       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5014       // zero it just to be safe
5015       CPU_ZERO_S(cpus_size, cpus_p);
5016     }
5017     else {
5018        // failed to allocate so fallback to online cpus
5019        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5020        log_trace(os)("active_processor_count: "
5021                      "CPU_ALLOC failed (%s) - using "
5022                      "online processor count: %d",
5023                      os::strerror(errno), online_cpus);
5024        return online_cpus;
5025     }
5026   }
5027   else {
5028     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5029                   configured_cpus);
5030   }
5031 #else // CPU_ALLOC
5032 // these stubs won't be executed
5033 #define CPU_COUNT_S(size, cpus) -1
5034 #define CPU_FREE(cpus)
5035 
5036   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5037                 configured_cpus);
5038 #endif // CPU_ALLOC
5039 
5040   // pid 0 means the current thread - which we have to assume represents the process
5041   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5042     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5043       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5044     }
5045     else {
5046       cpu_count = CPU_COUNT(cpus_p);
5047     }
5048     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5049   }
5050   else {
5051     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5052     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5053             "which may exceed available processors", os::strerror(errno), cpu_count);
5054   }
5055 
5056   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5057     CPU_FREE(cpus_p);
5058   }
5059 
5060   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5061   return cpu_count;
5062 }
5063 
5064 void os::set_native_thread_name(const char *name) {
5065   if (Linux::_pthread_setname_np) {
5066     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5067     snprintf(buf, sizeof(buf), "%s", name);
5068     buf[sizeof(buf) - 1] = '\0';
5069     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5070     // ERANGE should not happen; all other errors should just be ignored.
5071     assert(rc != ERANGE, "pthread_setname_np failed");
5072   }
5073 }
5074 
5075 bool os::distribute_processes(uint length, uint* distribution) {
5076   // Not yet implemented.
5077   return false;
5078 }
5079 
5080 bool os::bind_to_processor(uint processor_id) {
5081   // Not yet implemented.
5082   return false;
5083 }
5084 
5085 ///
5086 
5087 void os::SuspendedThreadTask::internal_do_task() {
5088   if (do_suspend(_thread->osthread())) {
5089     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5090     do_task(context);
5091     do_resume(_thread->osthread());
5092   }
5093 }
5094 
5095 class PcFetcher : public os::SuspendedThreadTask {
5096  public:
5097   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5098   ExtendedPC result();
5099  protected:
5100   void do_task(const os::SuspendedThreadTaskContext& context);
5101  private:
5102   ExtendedPC _epc;
5103 };
5104 
5105 ExtendedPC PcFetcher::result() {
5106   guarantee(is_done(), "task is not done yet.");
5107   return _epc;
5108 }
5109 
5110 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5111   Thread* thread = context.thread();
5112   OSThread* osthread = thread->osthread();
5113   if (osthread->ucontext() != NULL) {
5114     _epc = os::Linux::ucontext_get_pc((const ucontext_t *) context.ucontext());
5115   } else {
5116     // NULL context is unexpected, double-check this is the VMThread
5117     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5118   }
5119 }
5120 
5121 // Suspends the target using the signal mechanism and then grabs the PC before
5122 // resuming the target. Used by the flat-profiler only
5123 ExtendedPC os::get_thread_pc(Thread* thread) {
5124   // Make sure that it is called by the watcher for the VMThread
5125   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5126   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5127 
5128   PcFetcher fetcher(thread);
5129   fetcher.run();
5130   return fetcher.result();
5131 }
5132 
5133 ////////////////////////////////////////////////////////////////////////////////
5134 // debug support
5135 
5136 bool os::find(address addr, outputStream* st) {
5137   Dl_info dlinfo;
5138   memset(&dlinfo, 0, sizeof(dlinfo));
5139   if (dladdr(addr, &dlinfo) != 0) {
5140     st->print(PTR_FORMAT ": ", p2i(addr));
5141     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5142       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5143                 p2i(addr) - p2i(dlinfo.dli_saddr));
5144     } else if (dlinfo.dli_fbase != NULL) {
5145       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5146     } else {
5147       st->print("<absolute address>");
5148     }
5149     if (dlinfo.dli_fname != NULL) {
5150       st->print(" in %s", dlinfo.dli_fname);
5151     }
5152     if (dlinfo.dli_fbase != NULL) {
5153       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5154     }
5155     st->cr();
5156 
5157     if (Verbose) {
5158       // decode some bytes around the PC
5159       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5160       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5161       address       lowest = (address) dlinfo.dli_sname;
5162       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5163       if (begin < lowest)  begin = lowest;
5164       Dl_info dlinfo2;
5165       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5166           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5167         end = (address) dlinfo2.dli_saddr;
5168       }
5169       Disassembler::decode(begin, end, st);
5170     }
5171     return true;
5172   }
5173   return false;
5174 }
5175 
5176 ////////////////////////////////////////////////////////////////////////////////
5177 // misc
5178 
5179 // This does not do anything on Linux. This is basically a hook for being
5180 // able to use structured exception handling (thread-local exception filters)
5181 // on, e.g., Win32.
5182 void
5183 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5184                          JavaCallArguments* args, Thread* thread) {
5185   f(value, method, args, thread);
5186 }
5187 
5188 void os::print_statistics() {
5189 }
5190 
5191 bool os::message_box(const char* title, const char* message) {
5192   int i;
5193   fdStream err(defaultStream::error_fd());
5194   for (i = 0; i < 78; i++) err.print_raw("=");
5195   err.cr();
5196   err.print_raw_cr(title);
5197   for (i = 0; i < 78; i++) err.print_raw("-");
5198   err.cr();
5199   err.print_raw_cr(message);
5200   for (i = 0; i < 78; i++) err.print_raw("=");
5201   err.cr();
5202 
5203   char buf[16];
5204   // Prevent process from exiting upon "read error" without consuming all CPU
5205   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5206 
5207   return buf[0] == 'y' || buf[0] == 'Y';
5208 }
5209 
5210 int os::stat(const char *path, struct stat *sbuf) {
5211   char pathbuf[MAX_PATH];
5212   if (strlen(path) > MAX_PATH - 1) {
5213     errno = ENAMETOOLONG;
5214     return -1;
5215   }
5216   os::native_path(strcpy(pathbuf, path));
5217   return ::stat(pathbuf, sbuf);
5218 }
5219 
5220 // Is a (classpath) directory empty?
5221 bool os::dir_is_empty(const char* path) {
5222   DIR *dir = NULL;
5223   struct dirent *ptr;
5224 
5225   dir = opendir(path);
5226   if (dir == NULL) return true;
5227 
5228   // Scan the directory
5229   bool result = true;
5230   char buf[sizeof(struct dirent) + MAX_PATH];
5231   while (result && (ptr = ::readdir(dir)) != NULL) {
5232     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5233       result = false;
5234     }
5235   }
5236   closedir(dir);
5237   return result;
5238 }
5239 
5240 // This code originates from JDK's sysOpen and open64_w
5241 // from src/solaris/hpi/src/system_md.c
5242 
5243 int os::open(const char *path, int oflag, int mode) {
5244   if (strlen(path) > MAX_PATH - 1) {
5245     errno = ENAMETOOLONG;
5246     return -1;
5247   }
5248 
5249   // All file descriptors that are opened in the Java process and not
5250   // specifically destined for a subprocess should have the close-on-exec
5251   // flag set.  If we don't set it, then careless 3rd party native code
5252   // might fork and exec without closing all appropriate file descriptors
5253   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5254   // turn might:
5255   //
5256   // - cause end-of-file to fail to be detected on some file
5257   //   descriptors, resulting in mysterious hangs, or
5258   //
5259   // - might cause an fopen in the subprocess to fail on a system
5260   //   suffering from bug 1085341.
5261   //
5262   // (Yes, the default setting of the close-on-exec flag is a Unix
5263   // design flaw)
5264   //
5265   // See:
5266   // 1085341: 32-bit stdio routines should support file descriptors >255
5267   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5268   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5269   //
5270   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5271   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5272   // because it saves a system call and removes a small window where the flag
5273   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5274   // and we fall back to using FD_CLOEXEC (see below).
5275 #ifdef O_CLOEXEC
5276   oflag |= O_CLOEXEC;
5277 #endif
5278 
5279   int fd = ::open64(path, oflag, mode);
5280   if (fd == -1) return -1;
5281 
5282   //If the open succeeded, the file might still be a directory
5283   {
5284     struct stat64 buf64;
5285     int ret = ::fstat64(fd, &buf64);
5286     int st_mode = buf64.st_mode;
5287 
5288     if (ret != -1) {
5289       if ((st_mode & S_IFMT) == S_IFDIR) {
5290         errno = EISDIR;
5291         ::close(fd);
5292         return -1;
5293       }
5294     } else {
5295       ::close(fd);
5296       return -1;
5297     }
5298   }
5299 
5300 #ifdef FD_CLOEXEC
5301   // Validate that the use of the O_CLOEXEC flag on open above worked.
5302   // With recent kernels, we will perform this check exactly once.
5303   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5304   if (!O_CLOEXEC_is_known_to_work) {
5305     int flags = ::fcntl(fd, F_GETFD);
5306     if (flags != -1) {
5307       if ((flags & FD_CLOEXEC) != 0)
5308         O_CLOEXEC_is_known_to_work = 1;
5309       else
5310         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5311     }
5312   }
5313 #endif
5314 
5315   return fd;
5316 }
5317 
5318 
5319 // create binary file, rewriting existing file if required
5320 int os::create_binary_file(const char* path, bool rewrite_existing) {
5321   int oflags = O_WRONLY | O_CREAT;
5322   if (!rewrite_existing) {
5323     oflags |= O_EXCL;
5324   }
5325   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5326 }
5327 
5328 // return current position of file pointer
5329 jlong os::current_file_offset(int fd) {
5330   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5331 }
5332 
5333 // move file pointer to the specified offset
5334 jlong os::seek_to_file_offset(int fd, jlong offset) {
5335   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5336 }
5337 
5338 // This code originates from JDK's sysAvailable
5339 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5340 
5341 int os::available(int fd, jlong *bytes) {
5342   jlong cur, end;
5343   int mode;
5344   struct stat64 buf64;
5345 
5346   if (::fstat64(fd, &buf64) >= 0) {
5347     mode = buf64.st_mode;
5348     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5349       int n;
5350       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5351         *bytes = n;
5352         return 1;
5353       }
5354     }
5355   }
5356   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5357     return 0;
5358   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5359     return 0;
5360   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5361     return 0;
5362   }
5363   *bytes = end - cur;
5364   return 1;
5365 }
5366 
5367 // Map a block of memory.
5368 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5369                         char *addr, size_t bytes, bool read_only,
5370                         bool allow_exec) {
5371   int prot;
5372   int flags = MAP_PRIVATE;
5373 
5374   if (read_only) {
5375     prot = PROT_READ;
5376   } else {
5377     prot = PROT_READ | PROT_WRITE;
5378   }
5379 
5380   if (allow_exec) {
5381     prot |= PROT_EXEC;
5382   }
5383 
5384   if (addr != NULL) {
5385     flags |= MAP_FIXED;
5386   }
5387 
5388   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5389                                      fd, file_offset);
5390   if (mapped_address == MAP_FAILED) {
5391     return NULL;
5392   }
5393   return mapped_address;
5394 }
5395 
5396 
5397 // Remap a block of memory.
5398 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5399                           char *addr, size_t bytes, bool read_only,
5400                           bool allow_exec) {
5401   // same as map_memory() on this OS
5402   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5403                         allow_exec);
5404 }
5405 
5406 
5407 // Unmap a block of memory.
5408 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5409   return munmap(addr, bytes) == 0;
5410 }
5411 
5412 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5413 
5414 static clockid_t thread_cpu_clockid(Thread* thread) {
5415   pthread_t tid = thread->osthread()->pthread_id();
5416   clockid_t clockid;
5417 
5418   // Get thread clockid
5419   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5420   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5421   return clockid;
5422 }
5423 
5424 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5425 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5426 // of a thread.
5427 //
5428 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5429 // the fast estimate available on the platform.
5430 
5431 jlong os::current_thread_cpu_time() {
5432   if (os::Linux::supports_fast_thread_cpu_time()) {
5433     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5434   } else {
5435     // return user + sys since the cost is the same
5436     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5437   }
5438 }
5439 
5440 jlong os::thread_cpu_time(Thread* thread) {
5441   // consistent with what current_thread_cpu_time() returns
5442   if (os::Linux::supports_fast_thread_cpu_time()) {
5443     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5444   } else {
5445     return slow_thread_cpu_time(thread, true /* user + sys */);
5446   }
5447 }
5448 
5449 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5450   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5451     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5452   } else {
5453     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5454   }
5455 }
5456 
5457 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5458   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5459     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5460   } else {
5461     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5462   }
5463 }
5464 
5465 //  -1 on error.
5466 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5467   pid_t  tid = thread->osthread()->thread_id();
5468   char *s;
5469   char stat[2048];
5470   int statlen;
5471   char proc_name[64];
5472   int count;
5473   long sys_time, user_time;
5474   char cdummy;
5475   int idummy;
5476   long ldummy;
5477   FILE *fp;
5478 
5479   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5480   fp = fopen(proc_name, "r");
5481   if (fp == NULL) return -1;
5482   statlen = fread(stat, 1, 2047, fp);
5483   stat[statlen] = '\0';
5484   fclose(fp);
5485 
5486   // Skip pid and the command string. Note that we could be dealing with
5487   // weird command names, e.g. user could decide to rename java launcher
5488   // to "java 1.4.2 :)", then the stat file would look like
5489   //                1234 (java 1.4.2 :)) R ... ...
5490   // We don't really need to know the command string, just find the last
5491   // occurrence of ")" and then start parsing from there. See bug 4726580.
5492   s = strrchr(stat, ')');
5493   if (s == NULL) return -1;
5494 
5495   // Skip blank chars
5496   do { s++; } while (s && isspace(*s));
5497 
5498   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5499                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5500                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5501                  &user_time, &sys_time);
5502   if (count != 13) return -1;
5503   if (user_sys_cpu_time) {
5504     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5505   } else {
5506     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5507   }
5508 }
5509 
5510 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5511   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5512   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5513   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5514   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5515 }
5516 
5517 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5518   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5519   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5520   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5521   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5522 }
5523 
5524 bool os::is_thread_cpu_time_supported() {
5525   return true;
5526 }
5527 
5528 // System loadavg support.  Returns -1 if load average cannot be obtained.
5529 // Linux doesn't yet have a (official) notion of processor sets,
5530 // so just return the system wide load average.
5531 int os::loadavg(double loadavg[], int nelem) {
5532   return ::getloadavg(loadavg, nelem);
5533 }
5534 
5535 void os::pause() {
5536   char filename[MAX_PATH];
5537   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5538     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5539   } else {
5540     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5541   }
5542 
5543   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5544   if (fd != -1) {
5545     struct stat buf;
5546     ::close(fd);
5547     while (::stat(filename, &buf) == 0) {
5548       (void)::poll(NULL, 0, 100);
5549     }
5550   } else {
5551     jio_fprintf(stderr,
5552                 "Could not open pause file '%s', continuing immediately.\n", filename);
5553   }
5554 }
5555 
5556 extern char** environ;
5557 
5558 // Run the specified command in a separate process. Return its exit value,
5559 // or -1 on failure (e.g. can't fork a new process).
5560 // Unlike system(), this function can be called from signal handler. It
5561 // doesn't block SIGINT et al.
5562 int os::fork_and_exec(char* cmd) {
5563   const char * argv[4] = {"sh", "-c", cmd, NULL};
5564 
5565   pid_t pid = fork();
5566 
5567   if (pid < 0) {
5568     // fork failed
5569     return -1;
5570 
5571   } else if (pid == 0) {
5572     // child process
5573 
5574     execve("/bin/sh", (char* const*)argv, environ);
5575 
5576     // execve failed
5577     _exit(-1);
5578 
5579   } else  {
5580     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5581     // care about the actual exit code, for now.
5582 
5583     int status;
5584 
5585     // Wait for the child process to exit.  This returns immediately if
5586     // the child has already exited. */
5587     while (waitpid(pid, &status, 0) < 0) {
5588       switch (errno) {
5589       case ECHILD: return 0;
5590       case EINTR: break;
5591       default: return -1;
5592       }
5593     }
5594 
5595     if (WIFEXITED(status)) {
5596       // The child exited normally; get its exit code.
5597       return WEXITSTATUS(status);
5598     } else if (WIFSIGNALED(status)) {
5599       // The child exited because of a signal
5600       // The best value to return is 0x80 + signal number,
5601       // because that is what all Unix shells do, and because
5602       // it allows callers to distinguish between process exit and
5603       // process death by signal.
5604       return 0x80 + WTERMSIG(status);
5605     } else {
5606       // Unknown exit code; pass it through
5607       return status;
5608     }
5609   }
5610 }
5611 
5612 // is_headless_jre()
5613 //
5614 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5615 // in order to report if we are running in a headless jre
5616 //
5617 // Since JDK8 xawt/libmawt.so was moved into the same directory
5618 // as libawt.so, and renamed libawt_xawt.so
5619 //
5620 bool os::is_headless_jre() {
5621   struct stat statbuf;
5622   char buf[MAXPATHLEN];
5623   char libmawtpath[MAXPATHLEN];
5624   const char *xawtstr  = "/xawt/libmawt.so";
5625   const char *new_xawtstr = "/libawt_xawt.so";
5626   char *p;
5627 
5628   // Get path to libjvm.so
5629   os::jvm_path(buf, sizeof(buf));
5630 
5631   // Get rid of libjvm.so
5632   p = strrchr(buf, '/');
5633   if (p == NULL) {
5634     return false;
5635   } else {
5636     *p = '\0';
5637   }
5638 
5639   // Get rid of client or server
5640   p = strrchr(buf, '/');
5641   if (p == NULL) {
5642     return false;
5643   } else {
5644     *p = '\0';
5645   }
5646 
5647   // check xawt/libmawt.so
5648   strcpy(libmawtpath, buf);
5649   strcat(libmawtpath, xawtstr);
5650   if (::stat(libmawtpath, &statbuf) == 0) return false;
5651 
5652   // check libawt_xawt.so
5653   strcpy(libmawtpath, buf);
5654   strcat(libmawtpath, new_xawtstr);
5655   if (::stat(libmawtpath, &statbuf) == 0) return false;
5656 
5657   return true;
5658 }
5659 
5660 // Get the default path to the core file
5661 // Returns the length of the string
5662 int os::get_core_path(char* buffer, size_t bufferSize) {
5663   /*
5664    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5665    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5666    */
5667   const int core_pattern_len = 129;
5668   char core_pattern[core_pattern_len] = {0};
5669 
5670   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5671   if (core_pattern_file == -1) {
5672     return -1;
5673   }
5674 
5675   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5676   ::close(core_pattern_file);
5677   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5678     return -1;
5679   }
5680   if (core_pattern[ret-1] == '\n') {
5681     core_pattern[ret-1] = '\0';
5682   } else {
5683     core_pattern[ret] = '\0';
5684   }
5685 
5686   char *pid_pos = strstr(core_pattern, "%p");
5687   int written;
5688 
5689   if (core_pattern[0] == '/') {
5690     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5691   } else {
5692     char cwd[PATH_MAX];
5693 
5694     const char* p = get_current_directory(cwd, PATH_MAX);
5695     if (p == NULL) {
5696       return -1;
5697     }
5698 
5699     if (core_pattern[0] == '|') {
5700       written = jio_snprintf(buffer, bufferSize,
5701                              "\"%s\" (or dumping to %s/core.%d)",
5702                              &core_pattern[1], p, current_process_id());
5703     } else {
5704       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5705     }
5706   }
5707 
5708   if (written < 0) {
5709     return -1;
5710   }
5711 
5712   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5713     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5714 
5715     if (core_uses_pid_file != -1) {
5716       char core_uses_pid = 0;
5717       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5718       ::close(core_uses_pid_file);
5719 
5720       if (core_uses_pid == '1') {
5721         jio_snprintf(buffer + written, bufferSize - written,
5722                                           ".%d", current_process_id());
5723       }
5724     }
5725   }
5726 
5727   return strlen(buffer);
5728 }
5729 
5730 bool os::start_debugging(char *buf, int buflen) {
5731   int len = (int)strlen(buf);
5732   char *p = &buf[len];
5733 
5734   jio_snprintf(p, buflen-len,
5735                "\n\n"
5736                "Do you want to debug the problem?\n\n"
5737                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5738                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5739                "Otherwise, press RETURN to abort...",
5740                os::current_process_id(), os::current_process_id(),
5741                os::current_thread_id(), os::current_thread_id());
5742 
5743   bool yes = os::message_box("Unexpected Error", buf);
5744 
5745   if (yes) {
5746     // yes, user asked VM to launch debugger
5747     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5748                  os::current_process_id(), os::current_process_id());
5749 
5750     os::fork_and_exec(buf);
5751     yes = false;
5752   }
5753   return yes;
5754 }
5755 
5756 
5757 // Java/Compiler thread:
5758 //
5759 //   Low memory addresses
5760 // P0 +------------------------+
5761 //    |                        |\  Java thread created by VM does not have glibc
5762 //    |    glibc guard page    | - guard page, attached Java thread usually has
5763 //    |                        |/  1 glibc guard page.
5764 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5765 //    |                        |\
5766 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5767 //    |                        |/
5768 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5769 //    |                        |\
5770 //    |      Normal Stack      | -
5771 //    |                        |/
5772 // P2 +------------------------+ Thread::stack_base()
5773 //
5774 // Non-Java thread:
5775 //
5776 //   Low memory addresses
5777 // P0 +------------------------+
5778 //    |                        |\
5779 //    |  glibc guard page      | - usually 1 page
5780 //    |                        |/
5781 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5782 //    |                        |\
5783 //    |      Normal Stack      | -
5784 //    |                        |/
5785 // P2 +------------------------+ Thread::stack_base()
5786 //
5787 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5788 //    returned from pthread_attr_getstack().
5789 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5790 //    of the stack size given in pthread_attr. We work around this for
5791 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5792 //
5793 #ifndef ZERO
5794 static void current_stack_region(address * bottom, size_t * size) {
5795   if (os::Linux::is_initial_thread()) {
5796     // initial thread needs special handling because pthread_getattr_np()
5797     // may return bogus value.
5798     *bottom = os::Linux::initial_thread_stack_bottom();
5799     *size   = os::Linux::initial_thread_stack_size();
5800   } else {
5801     pthread_attr_t attr;
5802 
5803     int rslt = pthread_getattr_np(pthread_self(), &attr);
5804 
5805     // JVM needs to know exact stack location, abort if it fails
5806     if (rslt != 0) {
5807       if (rslt == ENOMEM) {
5808         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5809       } else {
5810         fatal("pthread_getattr_np failed with error = %d", rslt);
5811       }
5812     }
5813 
5814     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5815       fatal("Cannot locate current stack attributes!");
5816     }
5817 
5818     // Work around NPTL stack guard error.
5819     size_t guard_size = 0;
5820     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5821     if (rslt != 0) {
5822       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5823     }
5824     *bottom += guard_size;
5825     *size   -= guard_size;
5826 
5827     pthread_attr_destroy(&attr);
5828 
5829   }
5830   assert(os::current_stack_pointer() >= *bottom &&
5831          os::current_stack_pointer() < *bottom + *size, "just checking");
5832 }
5833 
5834 address os::current_stack_base() {
5835   address bottom;
5836   size_t size;
5837   current_stack_region(&bottom, &size);
5838   return (bottom + size);
5839 }
5840 
5841 size_t os::current_stack_size() {
5842   // This stack size includes the usable stack and HotSpot guard pages
5843   // (for the threads that have Hotspot guard pages).
5844   address bottom;
5845   size_t size;
5846   current_stack_region(&bottom, &size);
5847   return size;
5848 }
5849 #endif
5850 
5851 static inline struct timespec get_mtime(const char* filename) {
5852   struct stat st;
5853   int ret = os::stat(filename, &st);
5854   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5855   return st.st_mtim;
5856 }
5857 
5858 int os::compare_file_modified_times(const char* file1, const char* file2) {
5859   struct timespec filetime1 = get_mtime(file1);
5860   struct timespec filetime2 = get_mtime(file2);
5861   int diff = filetime1.tv_sec - filetime2.tv_sec;
5862   if (diff == 0) {
5863     return filetime1.tv_nsec - filetime2.tv_nsec;
5864   }
5865   return diff;
5866 }
5867 
5868 /////////////// Unit tests ///////////////
5869 
5870 #ifndef PRODUCT
5871 
5872 #define test_log(...)              \
5873   do {                             \
5874     if (VerboseInternalVMTests) {  \
5875       tty->print_cr(__VA_ARGS__);  \
5876       tty->flush();                \
5877     }                              \
5878   } while (false)
5879 
5880 class TestReserveMemorySpecial : AllStatic {
5881  public:
5882   static void small_page_write(void* addr, size_t size) {
5883     size_t page_size = os::vm_page_size();
5884 
5885     char* end = (char*)addr + size;
5886     for (char* p = (char*)addr; p < end; p += page_size) {
5887       *p = 1;
5888     }
5889   }
5890 
5891   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5892     if (!UseHugeTLBFS) {
5893       return;
5894     }
5895 
5896     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5897 
5898     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5899 
5900     if (addr != NULL) {
5901       small_page_write(addr, size);
5902 
5903       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5904     }
5905   }
5906 
5907   static void test_reserve_memory_special_huge_tlbfs_only() {
5908     if (!UseHugeTLBFS) {
5909       return;
5910     }
5911 
5912     size_t lp = os::large_page_size();
5913 
5914     for (size_t size = lp; size <= lp * 10; size += lp) {
5915       test_reserve_memory_special_huge_tlbfs_only(size);
5916     }
5917   }
5918 
5919   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5920     size_t lp = os::large_page_size();
5921     size_t ag = os::vm_allocation_granularity();
5922 
5923     // sizes to test
5924     const size_t sizes[] = {
5925       lp, lp + ag, lp + lp / 2, lp * 2,
5926       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5927       lp * 10, lp * 10 + lp / 2
5928     };
5929     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5930 
5931     // For each size/alignment combination, we test three scenarios:
5932     // 1) with req_addr == NULL
5933     // 2) with a non-null req_addr at which we expect to successfully allocate
5934     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5935     //    expect the allocation to either fail or to ignore req_addr
5936 
5937     // Pre-allocate two areas; they shall be as large as the largest allocation
5938     //  and aligned to the largest alignment we will be testing.
5939     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5940     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5941       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5942       -1, 0);
5943     assert(mapping1 != MAP_FAILED, "should work");
5944 
5945     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5946       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5947       -1, 0);
5948     assert(mapping2 != MAP_FAILED, "should work");
5949 
5950     // Unmap the first mapping, but leave the second mapping intact: the first
5951     // mapping will serve as a value for a "good" req_addr (case 2). The second
5952     // mapping, still intact, as "bad" req_addr (case 3).
5953     ::munmap(mapping1, mapping_size);
5954 
5955     // Case 1
5956     test_log("%s, req_addr NULL:", __FUNCTION__);
5957     test_log("size            align           result");
5958 
5959     for (int i = 0; i < num_sizes; i++) {
5960       const size_t size = sizes[i];
5961       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
5962         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5963         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5964                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5965         if (p != NULL) {
5966           assert(is_ptr_aligned(p, alignment), "must be");
5967           small_page_write(p, size);
5968           os::Linux::release_memory_special_huge_tlbfs(p, size);
5969         }
5970       }
5971     }
5972 
5973     // Case 2
5974     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5975     test_log("size            align           req_addr         result");
5976 
5977     for (int i = 0; i < num_sizes; i++) {
5978       const size_t size = sizes[i];
5979       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
5980         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
5981         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
5982         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
5983                  size, alignment, p2i(req_addr), p2i(p),
5984                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
5985         if (p != NULL) {
5986           assert(p == req_addr, "must be");
5987           small_page_write(p, size);
5988           os::Linux::release_memory_special_huge_tlbfs(p, size);
5989         }
5990       }
5991     }
5992 
5993     // Case 3
5994     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
5995     test_log("size            align           req_addr         result");
5996 
5997     for (int i = 0; i < num_sizes; i++) {
5998       const size_t size = sizes[i];
5999       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6000         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6001         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6002         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6003                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6004         // as the area around req_addr contains already existing mappings, the API should always
6005         // return NULL (as per contract, it cannot return another address)
6006         assert(p == NULL, "must be");
6007       }
6008     }
6009 
6010     ::munmap(mapping2, mapping_size);
6011 
6012   }
6013 
6014   static void test_reserve_memory_special_huge_tlbfs() {
6015     if (!UseHugeTLBFS) {
6016       return;
6017     }
6018 
6019     test_reserve_memory_special_huge_tlbfs_only();
6020     test_reserve_memory_special_huge_tlbfs_mixed();
6021   }
6022 
6023   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6024     if (!UseSHM) {
6025       return;
6026     }
6027 
6028     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6029 
6030     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6031 
6032     if (addr != NULL) {
6033       assert(is_ptr_aligned(addr, alignment), "Check");
6034       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6035 
6036       small_page_write(addr, size);
6037 
6038       os::Linux::release_memory_special_shm(addr, size);
6039     }
6040   }
6041 
6042   static void test_reserve_memory_special_shm() {
6043     size_t lp = os::large_page_size();
6044     size_t ag = os::vm_allocation_granularity();
6045 
6046     for (size_t size = ag; size < lp * 3; size += ag) {
6047       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6048         test_reserve_memory_special_shm(size, alignment);
6049       }
6050     }
6051   }
6052 
6053   static void test() {
6054     test_reserve_memory_special_huge_tlbfs();
6055     test_reserve_memory_special_shm();
6056   }
6057 };
6058 
6059 void TestReserveMemorySpecial_test() {
6060   TestReserveMemorySpecial::test();
6061 }
6062 
6063 #endif