1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  37 #include "gc_implementation/parNew/parNewGeneration.hpp"
  38 #include "gc_implementation/shared/collectorCounters.hpp"
  39 #include "gc_implementation/shared/gcTimer.hpp"
  40 #include "gc_implementation/shared/gcTrace.hpp"
  41 #include "gc_implementation/shared/gcTraceTime.hpp"
  42 #include "gc_implementation/shared/isGCActiveMark.hpp"
  43 #include "gc_interface/collectedHeap.inline.hpp"
  44 #include "memory/allocation.hpp"
  45 #include "memory/cardTableRS.hpp"
  46 #include "memory/collectorPolicy.hpp"
  47 #include "memory/gcLocker.inline.hpp"
  48 #include "memory/genCollectedHeap.hpp"
  49 #include "memory/genMarkSweep.hpp"
  50 #include "memory/genOopClosures.inline.hpp"
  51 #include "memory/iterator.hpp"
  52 #include "memory/referencePolicy.hpp"
  53 #include "memory/resourceArea.hpp"
  54 #include "oops/oop.inline.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "runtime/globals_extension.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "services/memoryService.hpp"
  61 #include "services/runtimeService.hpp"
  62 
  63 // statics
  64 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  65 bool CMSCollector::_full_gc_requested = false;
  66 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  67 
  68 //////////////////////////////////////////////////////////////////
  69 // In support of CMS/VM thread synchronization
  70 //////////////////////////////////////////////////////////////////
  71 // We split use of the CGC_lock into 2 "levels".
  72 // The low-level locking is of the usual CGC_lock monitor. We introduce
  73 // a higher level "token" (hereafter "CMS token") built on top of the
  74 // low level monitor (hereafter "CGC lock").
  75 // The token-passing protocol gives priority to the VM thread. The
  76 // CMS-lock doesn't provide any fairness guarantees, but clients
  77 // should ensure that it is only held for very short, bounded
  78 // durations.
  79 //
  80 // When either of the CMS thread or the VM thread is involved in
  81 // collection operations during which it does not want the other
  82 // thread to interfere, it obtains the CMS token.
  83 //
  84 // If either thread tries to get the token while the other has
  85 // it, that thread waits. However, if the VM thread and CMS thread
  86 // both want the token, then the VM thread gets priority while the
  87 // CMS thread waits. This ensures, for instance, that the "concurrent"
  88 // phases of the CMS thread's work do not block out the VM thread
  89 // for long periods of time as the CMS thread continues to hog
  90 // the token. (See bug 4616232).
  91 //
  92 // The baton-passing functions are, however, controlled by the
  93 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  94 // and here the low-level CMS lock, not the high level token,
  95 // ensures mutual exclusion.
  96 //
  97 // Two important conditions that we have to satisfy:
  98 // 1. if a thread does a low-level wait on the CMS lock, then it
  99 //    relinquishes the CMS token if it were holding that token
 100 //    when it acquired the low-level CMS lock.
 101 // 2. any low-level notifications on the low-level lock
 102 //    should only be sent when a thread has relinquished the token.
 103 //
 104 // In the absence of either property, we'd have potential deadlock.
 105 //
 106 // We protect each of the CMS (concurrent and sequential) phases
 107 // with the CMS _token_, not the CMS _lock_.
 108 //
 109 // The only code protected by CMS lock is the token acquisition code
 110 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 111 // baton-passing code.
 112 //
 113 // Unfortunately, i couldn't come up with a good abstraction to factor and
 114 // hide the naked CGC_lock manipulation in the baton-passing code
 115 // further below. That's something we should try to do. Also, the proof
 116 // of correctness of this 2-level locking scheme is far from obvious,
 117 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 118 // that there may be a theoretical possibility of delay/starvation in the
 119 // low-level lock/wait/notify scheme used for the baton-passing because of
 120 // potential intereference with the priority scheme embodied in the
 121 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 122 // invocation further below and marked with "XXX 20011219YSR".
 123 // Indeed, as we note elsewhere, this may become yet more slippery
 124 // in the presence of multiple CMS and/or multiple VM threads. XXX
 125 
 126 class CMSTokenSync: public StackObj {
 127  private:
 128   bool _is_cms_thread;
 129  public:
 130   CMSTokenSync(bool is_cms_thread):
 131     _is_cms_thread(is_cms_thread) {
 132     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 133            "Incorrect argument to constructor");
 134     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 135   }
 136 
 137   ~CMSTokenSync() {
 138     assert(_is_cms_thread ?
 139              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 140              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 141           "Incorrect state");
 142     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 143   }
 144 };
 145 
 146 // Convenience class that does a CMSTokenSync, and then acquires
 147 // upto three locks.
 148 class CMSTokenSyncWithLocks: public CMSTokenSync {
 149  private:
 150   // Note: locks are acquired in textual declaration order
 151   // and released in the opposite order
 152   MutexLockerEx _locker1, _locker2, _locker3;
 153  public:
 154   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 155                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 156     CMSTokenSync(is_cms_thread),
 157     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 158     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 159     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 160   { }
 161 };
 162 
 163 
 164 // Wrapper class to temporarily disable icms during a foreground cms collection.
 165 class ICMSDisabler: public StackObj {
 166  public:
 167   // The ctor disables icms and wakes up the thread so it notices the change;
 168   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 169   // CMSIncrementalMode.
 170   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 171   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 172 };
 173 
 174 //////////////////////////////////////////////////////////////////
 175 //  Concurrent Mark-Sweep Generation /////////////////////////////
 176 //////////////////////////////////////////////////////////////////
 177 
 178 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 179 
 180 // This struct contains per-thread things necessary to support parallel
 181 // young-gen collection.
 182 class CMSParGCThreadState: public CHeapObj<mtGC> {
 183  public:
 184   CFLS_LAB lab;
 185   PromotionInfo promo;
 186 
 187   // Constructor.
 188   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 189     promo.setSpace(cfls);
 190   }
 191 };
 192 
 193 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 194      ReservedSpace rs, size_t initial_byte_size, int level,
 195      CardTableRS* ct, bool use_adaptive_freelists,
 196      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 197   CardGeneration(rs, initial_byte_size, level, ct),
 198   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 199   _debug_collection_type(Concurrent_collection_type)
 200 {
 201   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 202   HeapWord* end    = (HeapWord*) _virtual_space.high();
 203 
 204   _direct_allocated_words = 0;
 205   NOT_PRODUCT(
 206     _numObjectsPromoted = 0;
 207     _numWordsPromoted = 0;
 208     _numObjectsAllocated = 0;
 209     _numWordsAllocated = 0;
 210   )
 211 
 212   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 213                                            use_adaptive_freelists,
 214                                            dictionaryChoice);
 215   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 216   if (_cmsSpace == NULL) {
 217     vm_exit_during_initialization(
 218       "CompactibleFreeListSpace allocation failure");
 219   }
 220   _cmsSpace->_gen = this;
 221 
 222   _gc_stats = new CMSGCStats();
 223 
 224   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 225   // offsets match. The ability to tell free chunks from objects
 226   // depends on this property.
 227   debug_only(
 228     FreeChunk* junk = NULL;
 229     assert(UseCompressedOops ||
 230            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 231            "Offset of FreeChunk::_prev within FreeChunk must match"
 232            "  that of OopDesc::_klass within OopDesc");
 233   )
 234   if (CollectedHeap::use_parallel_gc_threads()) {
 235     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 236     _par_gc_thread_states =
 237       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 238     if (_par_gc_thread_states == NULL) {
 239       vm_exit_during_initialization("Could not allocate par gc structs");
 240     }
 241     for (uint i = 0; i < ParallelGCThreads; i++) {
 242       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 243       if (_par_gc_thread_states[i] == NULL) {
 244         vm_exit_during_initialization("Could not allocate par gc structs");
 245       }
 246     }
 247   } else {
 248     _par_gc_thread_states = NULL;
 249   }
 250   _incremental_collection_failed = false;
 251   // The "dilatation_factor" is the expansion that can occur on
 252   // account of the fact that the minimum object size in the CMS
 253   // generation may be larger than that in, say, a contiguous young
 254   //  generation.
 255   // Ideally, in the calculation below, we'd compute the dilatation
 256   // factor as: MinChunkSize/(promoting_gen's min object size)
 257   // Since we do not have such a general query interface for the
 258   // promoting generation, we'll instead just use the mimimum
 259   // object size (which today is a header's worth of space);
 260   // note that all arithmetic is in units of HeapWords.
 261   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 262   assert(_dilatation_factor >= 1.0, "from previous assert");
 263 }
 264 
 265 
 266 // The field "_initiating_occupancy" represents the occupancy percentage
 267 // at which we trigger a new collection cycle.  Unless explicitly specified
 268 // via CMSInitiating[Perm]OccupancyFraction (argument "io" below), it
 269 // is calculated by:
 270 //
 271 //   Let "f" be MinHeapFreeRatio in
 272 //
 273 //    _intiating_occupancy = 100-f +
 274 //                           f * (CMSTrigger[Perm]Ratio/100)
 275 //   where CMSTrigger[Perm]Ratio is the argument "tr" below.
 276 //
 277 // That is, if we assume the heap is at its desired maximum occupancy at the
 278 // end of a collection, we let CMSTrigger[Perm]Ratio of the (purported) free
 279 // space be allocated before initiating a new collection cycle.
 280 //
 281 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, intx tr) {
 282   assert(io <= 100 && tr >= 0 && tr <= 100, "Check the arguments");
 283   if (io >= 0) {
 284     _initiating_occupancy = (double)io / 100.0;
 285   } else {
 286     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 287                              (double)(tr * MinHeapFreeRatio) / 100.0)
 288                             / 100.0;
 289   }
 290 }
 291 
 292 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 293   assert(collector() != NULL, "no collector");
 294   collector()->ref_processor_init();
 295 }
 296 
 297 void CMSCollector::ref_processor_init() {
 298   if (_ref_processor == NULL) {
 299     // Allocate and initialize a reference processor
 300     _ref_processor =
 301       new ReferenceProcessor(_span,                               // span
 302                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 303                              (int) ParallelGCThreads,             // mt processing degree
 304                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 305                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 306                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 307                              &_is_alive_closure,                  // closure for liveness info
 308                              false);                              // next field updates do not need write barrier
 309     // Initialize the _ref_processor field of CMSGen
 310     _cmsGen->set_ref_processor(_ref_processor);
 311 
 312     // Allocate a dummy ref processor for perm gen.
 313     ReferenceProcessor* rp2 = new ReferenceProcessor();
 314     if (rp2 == NULL) {
 315       vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
 316     }
 317     _permGen->set_ref_processor(rp2);
 318   }
 319 }
 320 
 321 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 322   GenCollectedHeap* gch = GenCollectedHeap::heap();
 323   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 324     "Wrong type of heap");
 325   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 326     gch->gen_policy()->size_policy();
 327   assert(sp->is_gc_cms_adaptive_size_policy(),
 328     "Wrong type of size policy");
 329   return sp;
 330 }
 331 
 332 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 333   CMSGCAdaptivePolicyCounters* results =
 334     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 335   assert(
 336     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 337     "Wrong gc policy counter kind");
 338   return results;
 339 }
 340 
 341 
 342 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 343 
 344   const char* gen_name = "old";
 345 
 346   // Generation Counters - generation 1, 1 subspace
 347   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 348 
 349   _space_counters = new GSpaceCounters(gen_name, 0,
 350                                        _virtual_space.reserved_size(),
 351                                        this, _gen_counters);
 352 }
 353 
 354 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 355   _cms_gen(cms_gen)
 356 {
 357   assert(alpha <= 100, "bad value");
 358   _saved_alpha = alpha;
 359 
 360   // Initialize the alphas to the bootstrap value of 100.
 361   _gc0_alpha = _cms_alpha = 100;
 362 
 363   _cms_begin_time.update();
 364   _cms_end_time.update();
 365 
 366   _gc0_duration = 0.0;
 367   _gc0_period = 0.0;
 368   _gc0_promoted = 0;
 369 
 370   _cms_duration = 0.0;
 371   _cms_period = 0.0;
 372   _cms_allocated = 0;
 373 
 374   _cms_used_at_gc0_begin = 0;
 375   _cms_used_at_gc0_end = 0;
 376   _allow_duty_cycle_reduction = false;
 377   _valid_bits = 0;
 378   _icms_duty_cycle = CMSIncrementalDutyCycle;
 379 }
 380 
 381 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 382   // TBD: CR 6909490
 383   return 1.0;
 384 }
 385 
 386 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 387 }
 388 
 389 // If promotion failure handling is on use
 390 // the padded average size of the promotion for each
 391 // young generation collection.
 392 double CMSStats::time_until_cms_gen_full() const {
 393   size_t cms_free = _cms_gen->cmsSpace()->free();
 394   GenCollectedHeap* gch = GenCollectedHeap::heap();
 395   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 396                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 397   if (cms_free > expected_promotion) {
 398     // Start a cms collection if there isn't enough space to promote
 399     // for the next minor collection.  Use the padded average as
 400     // a safety factor.
 401     cms_free -= expected_promotion;
 402 
 403     // Adjust by the safety factor.
 404     double cms_free_dbl = (double)cms_free;
 405     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 406     // Apply a further correction factor which tries to adjust
 407     // for recent occurance of concurrent mode failures.
 408     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 409     cms_free_dbl = cms_free_dbl * cms_adjustment;
 410 
 411     if (PrintGCDetails && Verbose) {
 412       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 413         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 414         cms_free, expected_promotion);
 415       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 416         cms_free_dbl, cms_consumption_rate() + 1.0);
 417     }
 418     // Add 1 in case the consumption rate goes to zero.
 419     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 420   }
 421   return 0.0;
 422 }
 423 
 424 // Compare the duration of the cms collection to the
 425 // time remaining before the cms generation is empty.
 426 // Note that the time from the start of the cms collection
 427 // to the start of the cms sweep (less than the total
 428 // duration of the cms collection) can be used.  This
 429 // has been tried and some applications experienced
 430 // promotion failures early in execution.  This was
 431 // possibly because the averages were not accurate
 432 // enough at the beginning.
 433 double CMSStats::time_until_cms_start() const {
 434   // We add "gc0_period" to the "work" calculation
 435   // below because this query is done (mostly) at the
 436   // end of a scavenge, so we need to conservatively
 437   // account for that much possible delay
 438   // in the query so as to avoid concurrent mode failures
 439   // due to starting the collection just a wee bit too
 440   // late.
 441   double work = cms_duration() + gc0_period();
 442   double deadline = time_until_cms_gen_full();
 443   // If a concurrent mode failure occurred recently, we want to be
 444   // more conservative and halve our expected time_until_cms_gen_full()
 445   if (work > deadline) {
 446     if (Verbose && PrintGCDetails) {
 447       gclog_or_tty->print(
 448         " CMSCollector: collect because of anticipated promotion "
 449         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 450         gc0_period(), time_until_cms_gen_full());
 451     }
 452     return 0.0;
 453   }
 454   return work - deadline;
 455 }
 456 
 457 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 458 // amount of change to prevent wild oscillation.
 459 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 460                                               unsigned int new_duty_cycle) {
 461   assert(old_duty_cycle <= 100, "bad input value");
 462   assert(new_duty_cycle <= 100, "bad input value");
 463 
 464   // Note:  use subtraction with caution since it may underflow (values are
 465   // unsigned).  Addition is safe since we're in the range 0-100.
 466   unsigned int damped_duty_cycle = new_duty_cycle;
 467   if (new_duty_cycle < old_duty_cycle) {
 468     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 469     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 470       damped_duty_cycle = old_duty_cycle - largest_delta;
 471     }
 472   } else if (new_duty_cycle > old_duty_cycle) {
 473     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 474     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 475       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 476     }
 477   }
 478   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 479 
 480   if (CMSTraceIncrementalPacing) {
 481     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 482                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 483   }
 484   return damped_duty_cycle;
 485 }
 486 
 487 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 488   assert(CMSIncrementalPacing && valid(),
 489          "should be handled in icms_update_duty_cycle()");
 490 
 491   double cms_time_so_far = cms_timer().seconds();
 492   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 493   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 494 
 495   // Avoid division by 0.
 496   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 497   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 498 
 499   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 500   if (new_duty_cycle > _icms_duty_cycle) {
 501     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 502     if (new_duty_cycle > 2) {
 503       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 504                                                 new_duty_cycle);
 505     }
 506   } else if (_allow_duty_cycle_reduction) {
 507     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 508     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 509     // Respect the minimum duty cycle.
 510     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 511     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 512   }
 513 
 514   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 515     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 516   }
 517 
 518   _allow_duty_cycle_reduction = false;
 519   return _icms_duty_cycle;
 520 }
 521 
 522 #ifndef PRODUCT
 523 void CMSStats::print_on(outputStream *st) const {
 524   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 525   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 526                gc0_duration(), gc0_period(), gc0_promoted());
 527   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 528             cms_duration(), cms_duration_per_mb(),
 529             cms_period(), cms_allocated());
 530   st->print(",cms_since_beg=%g,cms_since_end=%g",
 531             cms_time_since_begin(), cms_time_since_end());
 532   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 533             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 534   if (CMSIncrementalMode) {
 535     st->print(",dc=%d", icms_duty_cycle());
 536   }
 537 
 538   if (valid()) {
 539     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 540               promotion_rate(), cms_allocation_rate());
 541     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 542               cms_consumption_rate(), time_until_cms_gen_full());
 543   }
 544   st->print(" ");
 545 }
 546 #endif // #ifndef PRODUCT
 547 
 548 CMSCollector::CollectorState CMSCollector::_collectorState =
 549                              CMSCollector::Idling;
 550 bool CMSCollector::_foregroundGCIsActive = false;
 551 bool CMSCollector::_foregroundGCShouldWait = false;
 552 
 553 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 554                            ConcurrentMarkSweepGeneration* permGen,
 555                            CardTableRS*                   ct,
 556                            ConcurrentMarkSweepPolicy*     cp):
 557   _cmsGen(cmsGen),
 558   _permGen(permGen),
 559   _ct(ct),
 560   _ref_processor(NULL),    // will be set later
 561   _conc_workers(NULL),     // may be set later
 562   _abort_preclean(false),
 563   _start_sampling(false),
 564   _between_prologue_and_epilogue(false),
 565   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 566   _perm_gen_verify_bit_map(0, -1 /* no mutex */, "No_lock"),
 567   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 568                  -1 /* lock-free */, "No_lock" /* dummy */),
 569   _modUnionClosure(&_modUnionTable),
 570   _modUnionClosurePar(&_modUnionTable),
 571   // Adjust my span to cover old (cms) gen and perm gen
 572   _span(cmsGen->reserved()._union(permGen->reserved())),
 573   // Construct the is_alive_closure with _span & markBitMap
 574   _is_alive_closure(_span, &_markBitMap),
 575   _restart_addr(NULL),
 576   _overflow_list(NULL),
 577   _stats(cmsGen),
 578   _eden_chunk_array(NULL),     // may be set in ctor body
 579   _eden_chunk_capacity(0),     // -- ditto --
 580   _eden_chunk_index(0),        // -- ditto --
 581   _survivor_plab_array(NULL),  // -- ditto --
 582   _survivor_chunk_array(NULL), // -- ditto --
 583   _survivor_chunk_capacity(0), // -- ditto --
 584   _survivor_chunk_index(0),    // -- ditto --
 585   _ser_pmc_preclean_ovflw(0),
 586   _ser_kac_preclean_ovflw(0),
 587   _ser_pmc_remark_ovflw(0),
 588   _par_pmc_remark_ovflw(0),
 589   _ser_kac_ovflw(0),
 590   _par_kac_ovflw(0),
 591 #ifndef PRODUCT
 592   _num_par_pushes(0),
 593 #endif
 594   _collection_count_start(0),
 595   _verifying(false),
 596   _icms_start_limit(NULL),
 597   _icms_stop_limit(NULL),
 598   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 599   _completed_initialization(false),
 600   _collector_policy(cp),
 601   _should_unload_classes(false),
 602   _concurrent_cycles_since_last_unload(0),
 603   _roots_scanning_options(0),
 604   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 605   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 606   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 607   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 608   _cms_start_registered(false)
 609 {
 610   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 611     ExplicitGCInvokesConcurrent = true;
 612   }
 613   // Now expand the span and allocate the collection support structures
 614   // (MUT, marking bit map etc.) to cover both generations subject to
 615   // collection.
 616 
 617   // First check that _permGen is adjacent to _cmsGen and above it.
 618   assert(   _cmsGen->reserved().word_size()  > 0
 619          && _permGen->reserved().word_size() > 0,
 620          "generations should not be of zero size");
 621   assert(_cmsGen->reserved().intersection(_permGen->reserved()).is_empty(),
 622          "_cmsGen and _permGen should not overlap");
 623   assert(_cmsGen->reserved().end() == _permGen->reserved().start(),
 624          "_cmsGen->end() different from _permGen->start()");
 625 
 626   // For use by dirty card to oop closures.
 627   _cmsGen->cmsSpace()->set_collector(this);
 628   _permGen->cmsSpace()->set_collector(this);
 629 
 630   // Allocate MUT and marking bit map
 631   {
 632     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 633     if (!_markBitMap.allocate(_span)) {
 634       warning("Failed to allocate CMS Bit Map");
 635       return;
 636     }
 637     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 638   }
 639   {
 640     _modUnionTable.allocate(_span);
 641     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 642   }
 643 
 644   if (!_markStack.allocate(MarkStackSize)) {
 645     warning("Failed to allocate CMS Marking Stack");
 646     return;
 647   }
 648   if (!_revisitStack.allocate(CMSRevisitStackSize)) {
 649     warning("Failed to allocate CMS Revisit Stack");
 650     return;
 651   }
 652 
 653   // Support for multi-threaded concurrent phases
 654   if (CMSConcurrentMTEnabled) {
 655     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 656       // just for now
 657       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 658     }
 659     if (ConcGCThreads > 1) {
 660       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 661                                  ConcGCThreads, true);
 662       if (_conc_workers == NULL) {
 663         warning("GC/CMS: _conc_workers allocation failure: "
 664               "forcing -CMSConcurrentMTEnabled");
 665         CMSConcurrentMTEnabled = false;
 666       } else {
 667         _conc_workers->initialize_workers();
 668       }
 669     } else {
 670       CMSConcurrentMTEnabled = false;
 671     }
 672   }
 673   if (!CMSConcurrentMTEnabled) {
 674     ConcGCThreads = 0;
 675   } else {
 676     // Turn off CMSCleanOnEnter optimization temporarily for
 677     // the MT case where it's not fixed yet; see 6178663.
 678     CMSCleanOnEnter = false;
 679   }
 680   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 681          "Inconsistency");
 682 
 683   // Parallel task queues; these are shared for the
 684   // concurrent and stop-world phases of CMS, but
 685   // are not shared with parallel scavenge (ParNew).
 686   {
 687     uint i;
 688     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 689 
 690     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 691          || ParallelRefProcEnabled)
 692         && num_queues > 0) {
 693       _task_queues = new OopTaskQueueSet(num_queues);
 694       if (_task_queues == NULL) {
 695         warning("task_queues allocation failure.");
 696         return;
 697       }
 698       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 699       if (_hash_seed == NULL) {
 700         warning("_hash_seed array allocation failure");
 701         return;
 702       }
 703 
 704       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 705       for (i = 0; i < num_queues; i++) {
 706         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 707         if (q == NULL) {
 708           warning("work_queue allocation failure.");
 709           return;
 710         }
 711         _task_queues->register_queue(i, q);
 712       }
 713       for (i = 0; i < num_queues; i++) {
 714         _task_queues->queue(i)->initialize();
 715         _hash_seed[i] = 17;  // copied from ParNew
 716       }
 717     }
 718   }
 719 
 720   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 721   _permGen->init_initiating_occupancy(CMSInitiatingPermOccupancyFraction, CMSTriggerPermRatio);
 722 
 723   // Clip CMSBootstrapOccupancy between 0 and 100.
 724   _bootstrap_occupancy = ((double)MIN2((uintx)100, MAX2((uintx)0, CMSBootstrapOccupancy)))
 725                          /(double)100;
 726 
 727   _full_gcs_since_conc_gc = 0;
 728 
 729   // Now tell CMS generations the identity of their collector
 730   ConcurrentMarkSweepGeneration::set_collector(this);
 731 
 732   // Create & start a CMS thread for this CMS collector
 733   _cmsThread = ConcurrentMarkSweepThread::start(this);
 734   assert(cmsThread() != NULL, "CMS Thread should have been created");
 735   assert(cmsThread()->collector() == this,
 736          "CMS Thread should refer to this gen");
 737   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 738 
 739   // Support for parallelizing young gen rescan
 740   GenCollectedHeap* gch = GenCollectedHeap::heap();
 741   _young_gen = gch->prev_gen(_cmsGen);
 742   if (gch->supports_inline_contig_alloc()) {
 743     _top_addr = gch->top_addr();
 744     _end_addr = gch->end_addr();
 745     assert(_young_gen != NULL, "no _young_gen");
 746     _eden_chunk_index = 0;
 747     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 748     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 749     if (_eden_chunk_array == NULL) {
 750       _eden_chunk_capacity = 0;
 751       warning("GC/CMS: _eden_chunk_array allocation failure");
 752     }
 753   }
 754   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 755 
 756   // Support for parallelizing survivor space rescan
 757   if (CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) {
 758     const size_t max_plab_samples =
 759       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 760 
 761     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 762     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 763     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 764     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 765         || _cursor == NULL) {
 766       warning("Failed to allocate survivor plab/chunk array");
 767       if (_survivor_plab_array  != NULL) {
 768         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769         _survivor_plab_array = NULL;
 770       }
 771       if (_survivor_chunk_array != NULL) {
 772         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 773         _survivor_chunk_array = NULL;
 774       }
 775       if (_cursor != NULL) {
 776         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 777         _cursor = NULL;
 778       }
 779     } else {
 780       _survivor_chunk_capacity = 2*max_plab_samples;
 781       for (uint i = 0; i < ParallelGCThreads; i++) {
 782         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 783         if (vec == NULL) {
 784           warning("Failed to allocate survivor plab array");
 785           for (int j = i; j > 0; j--) {
 786             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 787           }
 788           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 789           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 790           _survivor_plab_array = NULL;
 791           _survivor_chunk_array = NULL;
 792           _survivor_chunk_capacity = 0;
 793           break;
 794         } else {
 795           ChunkArray* cur =
 796             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 797                                                         max_plab_samples);
 798           assert(cur->end() == 0, "Should be 0");
 799           assert(cur->array() == vec, "Should be vec");
 800           assert(cur->capacity() == max_plab_samples, "Error");
 801         }
 802       }
 803     }
 804   }
 805   assert(   (   _survivor_plab_array  != NULL
 806              && _survivor_chunk_array != NULL)
 807          || (   _survivor_chunk_capacity == 0
 808              && _survivor_chunk_index == 0),
 809          "Error");
 810 
 811   // Choose what strong roots should be scanned depending on verification options
 812   // and perm gen collection mode.
 813   if (!CMSClassUnloadingEnabled) {
 814     // If class unloading is disabled we want to include all classes into the root set.
 815     add_root_scanning_option(SharedHeap::SO_AllClasses);
 816   } else {
 817     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 818   }
 819 
 820   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 821   _gc_counters = new CollectorCounters("CMS", 1);
 822   _completed_initialization = true;
 823   _inter_sweep_timer.start();  // start of time
 824 }
 825 
 826 const char* ConcurrentMarkSweepGeneration::name() const {
 827   return "concurrent mark-sweep generation";
 828 }
 829 void ConcurrentMarkSweepGeneration::update_counters() {
 830   if (UsePerfData) {
 831     _space_counters->update_all();
 832     _gen_counters->update_all();
 833   }
 834 }
 835 
 836 // this is an optimized version of update_counters(). it takes the
 837 // used value as a parameter rather than computing it.
 838 //
 839 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 840   if (UsePerfData) {
 841     _space_counters->update_used(used);
 842     _space_counters->update_capacity();
 843     _gen_counters->update_all();
 844   }
 845 }
 846 
 847 void ConcurrentMarkSweepGeneration::print() const {
 848   Generation::print();
 849   cmsSpace()->print();
 850 }
 851 
 852 #ifndef PRODUCT
 853 void ConcurrentMarkSweepGeneration::print_statistics() {
 854   cmsSpace()->printFLCensus(0);
 855 }
 856 #endif
 857 
 858 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 859   GenCollectedHeap* gch = GenCollectedHeap::heap();
 860   if (PrintGCDetails) {
 861     if (Verbose) {
 862       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 863         level(), short_name(), s, used(), capacity());
 864     } else {
 865       gclog_or_tty->print(" [%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 866         level(), short_name(), s, used() / K, capacity() / K);
 867     }
 868   }
 869   if (Verbose) {
 870     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 871               gch->used(), gch->capacity());
 872   } else {
 873     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 874               gch->used() / K, gch->capacity() / K);
 875   }
 876 }
 877 
 878 size_t
 879 ConcurrentMarkSweepGeneration::contiguous_available() const {
 880   // dld proposes an improvement in precision here. If the committed
 881   // part of the space ends in a free block we should add that to
 882   // uncommitted size in the calculation below. Will make this
 883   // change later, staying with the approximation below for the
 884   // time being. -- ysr.
 885   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 886 }
 887 
 888 size_t
 889 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 890   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 891 }
 892 
 893 size_t ConcurrentMarkSweepGeneration::max_available() const {
 894   return free() + _virtual_space.uncommitted_size();
 895 }
 896 
 897 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 898   size_t available = max_available();
 899   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 900   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 901   if (Verbose && PrintGCDetails) {
 902     gclog_or_tty->print_cr(
 903       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 904       "max_promo("SIZE_FORMAT")",
 905       res? "":" not", available, res? ">=":"<",
 906       av_promo, max_promotion_in_bytes);
 907   }
 908   return res;
 909 }
 910 
 911 // At a promotion failure dump information on block layout in heap
 912 // (cms old generation).
 913 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 914   if (CMSDumpAtPromotionFailure) {
 915     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 916   }
 917 }
 918 
 919 CompactibleSpace*
 920 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 921   return _cmsSpace;
 922 }
 923 
 924 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 925   // Clear the promotion information.  These pointers can be adjusted
 926   // along with all the other pointers into the heap but
 927   // compaction is expected to be a rare event with
 928   // a heap using cms so don't do it without seeing the need.
 929   if (CollectedHeap::use_parallel_gc_threads()) {
 930     for (uint i = 0; i < ParallelGCThreads; i++) {
 931       _par_gc_thread_states[i]->promo.reset();
 932     }
 933   }
 934 }
 935 
 936 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 937   blk->do_space(_cmsSpace);
 938 }
 939 
 940 void ConcurrentMarkSweepGeneration::compute_new_size() {
 941   assert_locked_or_safepoint(Heap_lock);
 942 
 943   // If incremental collection failed, we just want to expand
 944   // to the limit.
 945   if (incremental_collection_failed()) {
 946     clear_incremental_collection_failed();
 947     grow_to_reserved();
 948     return;
 949   }
 950 
 951   size_t expand_bytes = 0;
 952   double free_percentage = ((double) free()) / capacity();
 953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 955 
 956   // compute expansion delta needed for reaching desired free percentage
 957   if (free_percentage < desired_free_percentage) {
 958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 959     assert(desired_capacity >= capacity(), "invalid expansion size");
 960     expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 961   }
 962   if (expand_bytes > 0) {
 963     if (PrintGCDetails && Verbose) {
 964       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 965       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 966       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 967       gclog_or_tty->print_cr("  Desired free fraction %f",
 968         desired_free_percentage);
 969       gclog_or_tty->print_cr("  Maximum free fraction %f",
 970         maximum_free_percentage);
 971       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 972       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 973         desired_capacity/1000);
 974       int prev_level = level() - 1;
 975       if (prev_level >= 0) {
 976         size_t prev_size = 0;
 977         GenCollectedHeap* gch = GenCollectedHeap::heap();
 978         Generation* prev_gen = gch->_gens[prev_level];
 979         prev_size = prev_gen->capacity();
 980           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 981                                  prev_size/1000);
 982       }
 983       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 984         unsafe_max_alloc_nogc()/1000);
 985       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 986         contiguous_available()/1000);
 987       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 988         expand_bytes);
 989     }
 990     // safe if expansion fails
 991     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 992     if (PrintGCDetails && Verbose) {
 993       gclog_or_tty->print_cr("  Expanded free fraction %f",
 994         ((double) free()) / capacity());
 995     }
 996   }
 997 }
 998 
 999 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1000   return cmsSpace()->freelistLock();
1001 }
1002 
1003 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1004                                                   bool   tlab) {
1005   CMSSynchronousYieldRequest yr;
1006   MutexLockerEx x(freelistLock(),
1007                   Mutex::_no_safepoint_check_flag);
1008   return have_lock_and_allocate(size, tlab);
1009 }
1010 
1011 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1012                                                   bool   tlab /* ignored */) {
1013   assert_lock_strong(freelistLock());
1014   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1015   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1016   // Allocate the object live (grey) if the background collector has
1017   // started marking. This is necessary because the marker may
1018   // have passed this address and consequently this object will
1019   // not otherwise be greyed and would be incorrectly swept up.
1020   // Note that if this object contains references, the writing
1021   // of those references will dirty the card containing this object
1022   // allowing the object to be blackened (and its references scanned)
1023   // either during a preclean phase or at the final checkpoint.
1024   if (res != NULL) {
1025     // We may block here with an uninitialized object with
1026     // its mark-bit or P-bits not yet set. Such objects need
1027     // to be safely navigable by block_start().
1028     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1029     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1030     collector()->direct_allocated(res, adjustedSize);
1031     _direct_allocated_words += adjustedSize;
1032     // allocation counters
1033     NOT_PRODUCT(
1034       _numObjectsAllocated++;
1035       _numWordsAllocated += (int)adjustedSize;
1036     )
1037   }
1038   return res;
1039 }
1040 
1041 // In the case of direct allocation by mutators in a generation that
1042 // is being concurrently collected, the object must be allocated
1043 // live (grey) if the background collector has started marking.
1044 // This is necessary because the marker may
1045 // have passed this address and consequently this object will
1046 // not otherwise be greyed and would be incorrectly swept up.
1047 // Note that if this object contains references, the writing
1048 // of those references will dirty the card containing this object
1049 // allowing the object to be blackened (and its references scanned)
1050 // either during a preclean phase or at the final checkpoint.
1051 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1052   assert(_markBitMap.covers(start, size), "Out of bounds");
1053   if (_collectorState >= Marking) {
1054     MutexLockerEx y(_markBitMap.lock(),
1055                     Mutex::_no_safepoint_check_flag);
1056     // [see comments preceding SweepClosure::do_blk() below for details]
1057     // 1. need to mark the object as live so it isn't collected
1058     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1059     // 3. need to mark the end of the object so marking, precleaning or sweeping
1060     //    can skip over uninitialized or unparsable objects. An allocated
1061     //    object is considered uninitialized for our purposes as long as
1062     //    its klass word is NULL. (Unparsable objects are those which are
1063     //    initialized in the sense just described, but whose sizes can still
1064     //    not be correctly determined. Note that the class of unparsable objects
1065     //    can only occur in the perm gen. All old gen objects are parsable
1066     //    as soon as they are initialized.)
1067     _markBitMap.mark(start);          // object is live
1068     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1069     _markBitMap.mark(start + size - 1);
1070                                       // mark end of object
1071   }
1072   // check that oop looks uninitialized
1073   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1074 }
1075 
1076 void CMSCollector::promoted(bool par, HeapWord* start,
1077                             bool is_obj_array, size_t obj_size) {
1078   assert(_markBitMap.covers(start), "Out of bounds");
1079   // See comment in direct_allocated() about when objects should
1080   // be allocated live.
1081   if (_collectorState >= Marking) {
1082     // we already hold the marking bit map lock, taken in
1083     // the prologue
1084     if (par) {
1085       _markBitMap.par_mark(start);
1086     } else {
1087       _markBitMap.mark(start);
1088     }
1089     // We don't need to mark the object as uninitialized (as
1090     // in direct_allocated above) because this is being done with the
1091     // world stopped and the object will be initialized by the
1092     // time the marking, precleaning or sweeping get to look at it.
1093     // But see the code for copying objects into the CMS generation,
1094     // where we need to ensure that concurrent readers of the
1095     // block offset table are able to safely navigate a block that
1096     // is in flux from being free to being allocated (and in
1097     // transition while being copied into) and subsequently
1098     // becoming a bona-fide object when the copy/promotion is complete.
1099     assert(SafepointSynchronize::is_at_safepoint(),
1100            "expect promotion only at safepoints");
1101 
1102     if (_collectorState < Sweeping) {
1103       // Mark the appropriate cards in the modUnionTable, so that
1104       // this object gets scanned before the sweep. If this is
1105       // not done, CMS generation references in the object might
1106       // not get marked.
1107       // For the case of arrays, which are otherwise precisely
1108       // marked, we need to dirty the entire array, not just its head.
1109       if (is_obj_array) {
1110         // The [par_]mark_range() method expects mr.end() below to
1111         // be aligned to the granularity of a bit's representation
1112         // in the heap. In the case of the MUT below, that's a
1113         // card size.
1114         MemRegion mr(start,
1115                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1116                         CardTableModRefBS::card_size /* bytes */));
1117         if (par) {
1118           _modUnionTable.par_mark_range(mr);
1119         } else {
1120           _modUnionTable.mark_range(mr);
1121         }
1122       } else {  // not an obj array; we can just mark the head
1123         if (par) {
1124           _modUnionTable.par_mark(start);
1125         } else {
1126           _modUnionTable.mark(start);
1127         }
1128       }
1129     }
1130   }
1131 }
1132 
1133 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1134 {
1135   size_t delta = pointer_delta(addr, space->bottom());
1136   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1137 }
1138 
1139 void CMSCollector::icms_update_allocation_limits()
1140 {
1141   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1142   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1143 
1144   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1145   if (CMSTraceIncrementalPacing) {
1146     stats().print();
1147   }
1148 
1149   assert(duty_cycle <= 100, "invalid duty cycle");
1150   if (duty_cycle != 0) {
1151     // The duty_cycle is a percentage between 0 and 100; convert to words and
1152     // then compute the offset from the endpoints of the space.
1153     size_t free_words = eden->free() / HeapWordSize;
1154     double free_words_dbl = (double)free_words;
1155     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1156     size_t offset_words = (free_words - duty_cycle_words) / 2;
1157 
1158     _icms_start_limit = eden->top() + offset_words;
1159     _icms_stop_limit = eden->end() - offset_words;
1160 
1161     // The limits may be adjusted (shifted to the right) by
1162     // CMSIncrementalOffset, to allow the application more mutator time after a
1163     // young gen gc (when all mutators were stopped) and before CMS starts and
1164     // takes away one or more cpus.
1165     if (CMSIncrementalOffset != 0) {
1166       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1167       size_t adjustment = (size_t)adjustment_dbl;
1168       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1169       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1170         _icms_start_limit += adjustment;
1171         _icms_stop_limit = tmp_stop;
1172       }
1173     }
1174   }
1175   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1176     _icms_start_limit = _icms_stop_limit = eden->end();
1177   }
1178 
1179   // Install the new start limit.
1180   eden->set_soft_end(_icms_start_limit);
1181 
1182   if (CMSTraceIncrementalMode) {
1183     gclog_or_tty->print(" icms alloc limits:  "
1184                            PTR_FORMAT "," PTR_FORMAT
1185                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1186                            _icms_start_limit, _icms_stop_limit,
1187                            percent_of_space(eden, _icms_start_limit),
1188                            percent_of_space(eden, _icms_stop_limit));
1189     if (Verbose) {
1190       gclog_or_tty->print("eden:  ");
1191       eden->print_on(gclog_or_tty);
1192     }
1193   }
1194 }
1195 
1196 // Any changes here should try to maintain the invariant
1197 // that if this method is called with _icms_start_limit
1198 // and _icms_stop_limit both NULL, then it should return NULL
1199 // and not notify the icms thread.
1200 HeapWord*
1201 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1202                                        size_t word_size)
1203 {
1204   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1205   // nop.
1206   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1207     if (top <= _icms_start_limit) {
1208       if (CMSTraceIncrementalMode) {
1209         space->print_on(gclog_or_tty);
1210         gclog_or_tty->stamp();
1211         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1212                                ", new limit=" PTR_FORMAT
1213                                " (" SIZE_FORMAT "%%)",
1214                                top, _icms_stop_limit,
1215                                percent_of_space(space, _icms_stop_limit));
1216       }
1217       ConcurrentMarkSweepThread::start_icms();
1218       assert(top < _icms_stop_limit, "Tautology");
1219       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1220         return _icms_stop_limit;
1221       }
1222 
1223       // The allocation will cross both the _start and _stop limits, so do the
1224       // stop notification also and return end().
1225       if (CMSTraceIncrementalMode) {
1226         space->print_on(gclog_or_tty);
1227         gclog_or_tty->stamp();
1228         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1229                                ", new limit=" PTR_FORMAT
1230                                " (" SIZE_FORMAT "%%)",
1231                                top, space->end(),
1232                                percent_of_space(space, space->end()));
1233       }
1234       ConcurrentMarkSweepThread::stop_icms();
1235       return space->end();
1236     }
1237 
1238     if (top <= _icms_stop_limit) {
1239       if (CMSTraceIncrementalMode) {
1240         space->print_on(gclog_or_tty);
1241         gclog_or_tty->stamp();
1242         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1243                                ", new limit=" PTR_FORMAT
1244                                " (" SIZE_FORMAT "%%)",
1245                                top, space->end(),
1246                                percent_of_space(space, space->end()));
1247       }
1248       ConcurrentMarkSweepThread::stop_icms();
1249       return space->end();
1250     }
1251 
1252     if (CMSTraceIncrementalMode) {
1253       space->print_on(gclog_or_tty);
1254       gclog_or_tty->stamp();
1255       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1256                              ", new limit=" PTR_FORMAT,
1257                              top, NULL);
1258     }
1259   }
1260 
1261   return NULL;
1262 }
1263 
1264 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1265   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1266   // allocate, copy and if necessary update promoinfo --
1267   // delegate to underlying space.
1268   assert_lock_strong(freelistLock());
1269 
1270 #ifndef PRODUCT
1271   if (Universe::heap()->promotion_should_fail()) {
1272     return NULL;
1273   }
1274 #endif  // #ifndef PRODUCT
1275 
1276   oop res = _cmsSpace->promote(obj, obj_size);
1277   if (res == NULL) {
1278     // expand and retry
1279     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1280     expand(s*HeapWordSize, MinHeapDeltaBytes,
1281       CMSExpansionCause::_satisfy_promotion);
1282     // Since there's currently no next generation, we don't try to promote
1283     // into a more senior generation.
1284     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1285                                "is made to pass on a possibly failing "
1286                                "promotion to next generation");
1287     res = _cmsSpace->promote(obj, obj_size);
1288   }
1289   if (res != NULL) {
1290     // See comment in allocate() about when objects should
1291     // be allocated live.
1292     assert(obj->is_oop(), "Will dereference klass pointer below");
1293     collector()->promoted(false,           // Not parallel
1294                           (HeapWord*)res, obj->is_objArray(), obj_size);
1295     // promotion counters
1296     NOT_PRODUCT(
1297       _numObjectsPromoted++;
1298       _numWordsPromoted +=
1299         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1300     )
1301   }
1302   return res;
1303 }
1304 
1305 
1306 HeapWord*
1307 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1308                                              HeapWord* top,
1309                                              size_t word_sz)
1310 {
1311   return collector()->allocation_limit_reached(space, top, word_sz);
1312 }
1313 
1314 // IMPORTANT: Notes on object size recognition in CMS.
1315 // ---------------------------------------------------
1316 // A block of storage in the CMS generation is always in
1317 // one of three states. A free block (FREE), an allocated
1318 // object (OBJECT) whose size() method reports the correct size,
1319 // and an intermediate state (TRANSIENT) in which its size cannot
1320 // be accurately determined.
1321 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1322 // -----------------------------------------------------
1323 // FREE:      klass_word & 1 == 1; mark_word holds block size
1324 //
1325 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1326 //            obj->size() computes correct size
1327 //            [Perm Gen objects needs to be "parsable" before they can be navigated]
1328 //
1329 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1330 //
1331 // STATE IDENTIFICATION: (64 bit+COOPS)
1332 // ------------------------------------
1333 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1334 //
1335 // OBJECT:    klass_word installed; klass_word != 0;
1336 //            obj->size() computes correct size
1337 //            [Perm Gen comment above continues to hold]
1338 //
1339 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1340 //
1341 //
1342 // STATE TRANSITION DIAGRAM
1343 //
1344 //        mut / parnew                     mut  /  parnew
1345 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1346 //  ^                                                                   |
1347 //  |------------------------ DEAD <------------------------------------|
1348 //         sweep                            mut
1349 //
1350 // While a block is in TRANSIENT state its size cannot be determined
1351 // so readers will either need to come back later or stall until
1352 // the size can be determined. Note that for the case of direct
1353 // allocation, P-bits, when available, may be used to determine the
1354 // size of an object that may not yet have been initialized.
1355 
1356 // Things to support parallel young-gen collection.
1357 oop
1358 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1359                                            oop old, markOop m,
1360                                            size_t word_sz) {
1361 #ifndef PRODUCT
1362   if (Universe::heap()->promotion_should_fail()) {
1363     return NULL;
1364   }
1365 #endif  // #ifndef PRODUCT
1366 
1367   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1368   PromotionInfo* promoInfo = &ps->promo;
1369   // if we are tracking promotions, then first ensure space for
1370   // promotion (including spooling space for saving header if necessary).
1371   // then allocate and copy, then track promoted info if needed.
1372   // When tracking (see PromotionInfo::track()), the mark word may
1373   // be displaced and in this case restoration of the mark word
1374   // occurs in the (oop_since_save_marks_)iterate phase.
1375   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1376     // Out of space for allocating spooling buffers;
1377     // try expanding and allocating spooling buffers.
1378     if (!expand_and_ensure_spooling_space(promoInfo)) {
1379       return NULL;
1380     }
1381   }
1382   assert(promoInfo->has_spooling_space(), "Control point invariant");
1383   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1384   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1385   if (obj_ptr == NULL) {
1386      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1387      if (obj_ptr == NULL) {
1388        return NULL;
1389      }
1390   }
1391   oop obj = oop(obj_ptr);
1392   OrderAccess::storestore();
1393   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1394   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1395   // IMPORTANT: See note on object initialization for CMS above.
1396   // Otherwise, copy the object.  Here we must be careful to insert the
1397   // klass pointer last, since this marks the block as an allocated object.
1398   // Except with compressed oops it's the mark word.
1399   HeapWord* old_ptr = (HeapWord*)old;
1400   // Restore the mark word copied above.
1401   obj->set_mark(m);
1402   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1403   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1404   OrderAccess::storestore();
1405 
1406   if (UseCompressedOops) {
1407     // Copy gap missed by (aligned) header size calculation below
1408     obj->set_klass_gap(old->klass_gap());
1409   }
1410   if (word_sz > (size_t)oopDesc::header_size()) {
1411     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1412                                  obj_ptr + oopDesc::header_size(),
1413                                  word_sz - oopDesc::header_size());
1414   }
1415 
1416   // Now we can track the promoted object, if necessary.  We take care
1417   // to delay the transition from uninitialized to full object
1418   // (i.e., insertion of klass pointer) until after, so that it
1419   // atomically becomes a promoted object.
1420   if (promoInfo->tracking()) {
1421     promoInfo->track((PromotedObject*)obj, old->klass());
1422   }
1423   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1424   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1425   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1426 
1427   // Finally, install the klass pointer (this should be volatile).
1428   OrderAccess::storestore();
1429   obj->set_klass(old->klass());
1430   // We should now be able to calculate the right size for this object
1431   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1432 
1433   collector()->promoted(true,          // parallel
1434                         obj_ptr, old->is_objArray(), word_sz);
1435 
1436   NOT_PRODUCT(
1437     Atomic::inc_ptr(&_numObjectsPromoted);
1438     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1439   )
1440 
1441   return obj;
1442 }
1443 
1444 void
1445 ConcurrentMarkSweepGeneration::
1446 par_promote_alloc_undo(int thread_num,
1447                        HeapWord* obj, size_t word_sz) {
1448   // CMS does not support promotion undo.
1449   ShouldNotReachHere();
1450 }
1451 
1452 void
1453 ConcurrentMarkSweepGeneration::
1454 par_promote_alloc_done(int thread_num) {
1455   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1456   ps->lab.retire(thread_num);
1457 }
1458 
1459 void
1460 ConcurrentMarkSweepGeneration::
1461 par_oop_since_save_marks_iterate_done(int thread_num) {
1462   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1463   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1464   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1465 }
1466 
1467 // XXXPERM
1468 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1469                                                    size_t size,
1470                                                    bool   tlab)
1471 {
1472   // We allow a STW collection only if a full
1473   // collection was requested.
1474   return full || should_allocate(size, tlab); // FIX ME !!!
1475   // This and promotion failure handling are connected at the
1476   // hip and should be fixed by untying them.
1477 }
1478 
1479 bool CMSCollector::shouldConcurrentCollect() {
1480   if (_full_gc_requested) {
1481     if (Verbose && PrintGCDetails) {
1482       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1483                              " gc request (or gc_locker)");
1484     }
1485     return true;
1486   }
1487 
1488   // For debugging purposes, change the type of collection.
1489   // If the rotation is not on the concurrent collection
1490   // type, don't start a concurrent collection.
1491   NOT_PRODUCT(
1492     if (RotateCMSCollectionTypes &&
1493         (_cmsGen->debug_collection_type() !=
1494           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1495       assert(_cmsGen->debug_collection_type() !=
1496         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1497         "Bad cms collection type");
1498       return false;
1499     }
1500   )
1501 
1502   FreelistLocker x(this);
1503   // ------------------------------------------------------------------
1504   // Print out lots of information which affects the initiation of
1505   // a collection.
1506   if (PrintCMSInitiationStatistics && stats().valid()) {
1507     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1508     gclog_or_tty->stamp();
1509     gclog_or_tty->print_cr("");
1510     stats().print_on(gclog_or_tty);
1511     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1512       stats().time_until_cms_gen_full());
1513     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1514     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1515                            _cmsGen->contiguous_available());
1516     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1517     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1518     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1519     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1520     gclog_or_tty->print_cr("initiatingPermOccupancy=%3.7f", _permGen->initiating_occupancy());
1521   }
1522   // ------------------------------------------------------------------
1523 
1524   // If the estimated time to complete a cms collection (cms_duration())
1525   // is less than the estimated time remaining until the cms generation
1526   // is full, start a collection.
1527   if (!UseCMSInitiatingOccupancyOnly) {
1528     if (stats().valid()) {
1529       if (stats().time_until_cms_start() == 0.0) {
1530         return true;
1531       }
1532     } else {
1533       // We want to conservatively collect somewhat early in order
1534       // to try and "bootstrap" our CMS/promotion statistics;
1535       // this branch will not fire after the first successful CMS
1536       // collection because the stats should then be valid.
1537       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1538         if (Verbose && PrintGCDetails) {
1539           gclog_or_tty->print_cr(
1540             " CMSCollector: collect for bootstrapping statistics:"
1541             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1542             _bootstrap_occupancy);
1543         }
1544         return true;
1545       }
1546     }
1547   }
1548 
1549   // Otherwise, we start a collection cycle if either the perm gen or
1550   // old gen want a collection cycle started. Each may use
1551   // an appropriate criterion for making this decision.
1552   // XXX We need to make sure that the gen expansion
1553   // criterion dovetails well with this. XXX NEED TO FIX THIS
1554   if (_cmsGen->should_concurrent_collect()) {
1555     if (Verbose && PrintGCDetails) {
1556       gclog_or_tty->print_cr("CMS old gen initiated");
1557     }
1558     return true;
1559   }
1560 
1561   // We start a collection if we believe an incremental collection may fail;
1562   // this is not likely to be productive in practice because it's probably too
1563   // late anyway.
1564   GenCollectedHeap* gch = GenCollectedHeap::heap();
1565   assert(gch->collector_policy()->is_two_generation_policy(),
1566          "You may want to check the correctness of the following");
1567   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1568     if (Verbose && PrintGCDetails) {
1569       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1570     }
1571     return true;
1572   }
1573 
1574   if (CMSClassUnloadingEnabled && _permGen->should_concurrent_collect()) {
1575     bool res = update_should_unload_classes();
1576     if (res) {
1577       if (Verbose && PrintGCDetails) {
1578         gclog_or_tty->print_cr("CMS perm gen initiated");
1579       }
1580       return true;
1581     }
1582   }
1583   return false;
1584 }
1585 
1586 // Clear _expansion_cause fields of constituent generations
1587 void CMSCollector::clear_expansion_cause() {
1588   _cmsGen->clear_expansion_cause();
1589   _permGen->clear_expansion_cause();
1590 }
1591 
1592 // We should be conservative in starting a collection cycle.  To
1593 // start too eagerly runs the risk of collecting too often in the
1594 // extreme.  To collect too rarely falls back on full collections,
1595 // which works, even if not optimum in terms of concurrent work.
1596 // As a work around for too eagerly collecting, use the flag
1597 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1598 // giving the user an easily understandable way of controlling the
1599 // collections.
1600 // We want to start a new collection cycle if any of the following
1601 // conditions hold:
1602 // . our current occupancy exceeds the configured initiating occupancy
1603 //   for this generation, or
1604 // . we recently needed to expand this space and have not, since that
1605 //   expansion, done a collection of this generation, or
1606 // . the underlying space believes that it may be a good idea to initiate
1607 //   a concurrent collection (this may be based on criteria such as the
1608 //   following: the space uses linear allocation and linear allocation is
1609 //   going to fail, or there is believed to be excessive fragmentation in
1610 //   the generation, etc... or ...
1611 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1612 //   the case of the old generation, not the perm generation; see CR 6543076):
1613 //   we may be approaching a point at which allocation requests may fail because
1614 //   we will be out of sufficient free space given allocation rate estimates.]
1615 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1616 
1617   assert_lock_strong(freelistLock());
1618   if (occupancy() > initiating_occupancy()) {
1619     if (PrintGCDetails && Verbose) {
1620       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1621         short_name(), occupancy(), initiating_occupancy());
1622     }
1623     return true;
1624   }
1625   if (UseCMSInitiatingOccupancyOnly) {
1626     return false;
1627   }
1628   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1629     if (PrintGCDetails && Verbose) {
1630       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1631         short_name());
1632     }
1633     return true;
1634   }
1635   if (_cmsSpace->should_concurrent_collect()) {
1636     if (PrintGCDetails && Verbose) {
1637       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1638         short_name());
1639     }
1640     return true;
1641   }
1642   return false;
1643 }
1644 
1645 void ConcurrentMarkSweepGeneration::collect(bool   full,
1646                                             bool   clear_all_soft_refs,
1647                                             size_t size,
1648                                             bool   tlab)
1649 {
1650   collector()->collect(full, clear_all_soft_refs, size, tlab);
1651 }
1652 
1653 void CMSCollector::collect(bool   full,
1654                            bool   clear_all_soft_refs,
1655                            size_t size,
1656                            bool   tlab)
1657 {
1658   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1659     // For debugging purposes skip the collection if the state
1660     // is not currently idle
1661     if (TraceCMSState) {
1662       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1663         Thread::current(), full, _collectorState);
1664     }
1665     return;
1666   }
1667 
1668   // The following "if" branch is present for defensive reasons.
1669   // In the current uses of this interface, it can be replaced with:
1670   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1671   // But I am not placing that assert here to allow future
1672   // generality in invoking this interface.
1673   if (GC_locker::is_active()) {
1674     // A consistency test for GC_locker
1675     assert(GC_locker::needs_gc(), "Should have been set already");
1676     // Skip this foreground collection, instead
1677     // expanding the heap if necessary.
1678     // Need the free list locks for the call to free() in compute_new_size()
1679     compute_new_size();
1680     return;
1681   }
1682   acquire_control_and_collect(full, clear_all_soft_refs);
1683   _full_gcs_since_conc_gc++;
1684 
1685 }
1686 
1687 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1688   GenCollectedHeap* gch = GenCollectedHeap::heap();
1689   unsigned int gc_count = gch->total_full_collections();
1690   if (gc_count == full_gc_count) {
1691     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1692     _full_gc_requested = true;
1693     _full_gc_cause = cause;
1694     CGC_lock->notify();   // nudge CMS thread
1695   } else {
1696     assert(gc_count > full_gc_count, "Error: causal loop");
1697   }
1698 }
1699 
1700 bool CMSCollector::is_external_interruption() {
1701   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1702   return GCCause::is_user_requested_gc(cause) ||
1703          GCCause::is_serviceability_requested_gc(cause);
1704 }
1705 
1706 void CMSCollector::report_concurrent_mode_interruption() {
1707   if (is_external_interruption()) {
1708     if (PrintGCDetails) {
1709       gclog_or_tty->print(" (concurrent mode interrupted)");
1710     }
1711   } else {
1712     if (PrintGCDetails) {
1713       gclog_or_tty->print(" (concurrent mode failure)");
1714     }
1715     _gc_tracer_cm->report_concurrent_mode_failure();
1716   }
1717 }
1718 
1719 // The foreground and background collectors need to coordinate in order
1720 // to make sure that they do not mutually interfere with CMS collections.
1721 // When a background collection is active,
1722 // the foreground collector may need to take over (preempt) and
1723 // synchronously complete an ongoing collection. Depending on the
1724 // frequency of the background collections and the heap usage
1725 // of the application, this preemption can be seldom or frequent.
1726 // There are only certain
1727 // points in the background collection that the "collection-baton"
1728 // can be passed to the foreground collector.
1729 //
1730 // The foreground collector will wait for the baton before
1731 // starting any part of the collection.  The foreground collector
1732 // will only wait at one location.
1733 //
1734 // The background collector will yield the baton before starting a new
1735 // phase of the collection (e.g., before initial marking, marking from roots,
1736 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1737 // of the loop which switches the phases. The background collector does some
1738 // of the phases (initial mark, final re-mark) with the world stopped.
1739 // Because of locking involved in stopping the world,
1740 // the foreground collector should not block waiting for the background
1741 // collector when it is doing a stop-the-world phase.  The background
1742 // collector will yield the baton at an additional point just before
1743 // it enters a stop-the-world phase.  Once the world is stopped, the
1744 // background collector checks the phase of the collection.  If the
1745 // phase has not changed, it proceeds with the collection.  If the
1746 // phase has changed, it skips that phase of the collection.  See
1747 // the comments on the use of the Heap_lock in collect_in_background().
1748 //
1749 // Variable used in baton passing.
1750 //   _foregroundGCIsActive - Set to true by the foreground collector when
1751 //      it wants the baton.  The foreground clears it when it has finished
1752 //      the collection.
1753 //   _foregroundGCShouldWait - Set to true by the background collector
1754 //        when it is running.  The foreground collector waits while
1755 //      _foregroundGCShouldWait is true.
1756 //  CGC_lock - monitor used to protect access to the above variables
1757 //      and to notify the foreground and background collectors.
1758 //  _collectorState - current state of the CMS collection.
1759 //
1760 // The foreground collector
1761 //   acquires the CGC_lock
1762 //   sets _foregroundGCIsActive
1763 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1764 //     various locks acquired in preparation for the collection
1765 //     are released so as not to block the background collector
1766 //     that is in the midst of a collection
1767 //   proceeds with the collection
1768 //   clears _foregroundGCIsActive
1769 //   returns
1770 //
1771 // The background collector in a loop iterating on the phases of the
1772 //      collection
1773 //   acquires the CGC_lock
1774 //   sets _foregroundGCShouldWait
1775 //   if _foregroundGCIsActive is set
1776 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1777 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1778 //     and exits the loop.
1779 //   otherwise
1780 //     proceed with that phase of the collection
1781 //     if the phase is a stop-the-world phase,
1782 //       yield the baton once more just before enqueueing
1783 //       the stop-world CMS operation (executed by the VM thread).
1784 //   returns after all phases of the collection are done
1785 //
1786 
1787 void CMSCollector::acquire_control_and_collect(bool full,
1788         bool clear_all_soft_refs) {
1789   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1790   assert(!Thread::current()->is_ConcurrentGC_thread(),
1791          "shouldn't try to acquire control from self!");
1792 
1793   // Start the protocol for acquiring control of the
1794   // collection from the background collector (aka CMS thread).
1795   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1796          "VM thread should have CMS token");
1797   // Remember the possibly interrupted state of an ongoing
1798   // concurrent collection
1799   CollectorState first_state = _collectorState;
1800 
1801   // Signal to a possibly ongoing concurrent collection that
1802   // we want to do a foreground collection.
1803   _foregroundGCIsActive = true;
1804 
1805   // Disable incremental mode during a foreground collection.
1806   ICMSDisabler icms_disabler;
1807 
1808   // release locks and wait for a notify from the background collector
1809   // releasing the locks in only necessary for phases which
1810   // do yields to improve the granularity of the collection.
1811   assert_lock_strong(bitMapLock());
1812   // We need to lock the Free list lock for the space that we are
1813   // currently collecting.
1814   assert(haveFreelistLocks(), "Must be holding free list locks");
1815   bitMapLock()->unlock();
1816   releaseFreelistLocks();
1817   {
1818     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1819     if (_foregroundGCShouldWait) {
1820       // We are going to be waiting for action for the CMS thread;
1821       // it had better not be gone (for instance at shutdown)!
1822       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1823              "CMS thread must be running");
1824       // Wait here until the background collector gives us the go-ahead
1825       ConcurrentMarkSweepThread::clear_CMS_flag(
1826         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1827       // Get a possibly blocked CMS thread going:
1828       //   Note that we set _foregroundGCIsActive true above,
1829       //   without protection of the CGC_lock.
1830       CGC_lock->notify();
1831       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1832              "Possible deadlock");
1833       while (_foregroundGCShouldWait) {
1834         // wait for notification
1835         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1836         // Possibility of delay/starvation here, since CMS token does
1837         // not know to give priority to VM thread? Actually, i think
1838         // there wouldn't be any delay/starvation, but the proof of
1839         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1840       }
1841       ConcurrentMarkSweepThread::set_CMS_flag(
1842         ConcurrentMarkSweepThread::CMS_vm_has_token);
1843     }
1844   }
1845   // The CMS_token is already held.  Get back the other locks.
1846   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1847          "VM thread should have CMS token");
1848   getFreelistLocks();
1849   bitMapLock()->lock_without_safepoint_check();
1850   if (TraceCMSState) {
1851     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1852       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1853     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1854   }
1855 
1856   // Check if we need to do a compaction, or if not, whether
1857   // we need to start the mark-sweep from scratch.
1858   bool should_compact    = false;
1859   bool should_start_over = false;
1860   decide_foreground_collection_type(clear_all_soft_refs,
1861     &should_compact, &should_start_over);
1862 
1863 NOT_PRODUCT(
1864   if (RotateCMSCollectionTypes) {
1865     if (_cmsGen->debug_collection_type() ==
1866         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1867       should_compact = true;
1868     } else if (_cmsGen->debug_collection_type() ==
1869                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1870       should_compact = false;
1871     }
1872   }
1873 )
1874 
1875   if (first_state > Idling) {
1876     report_concurrent_mode_interruption();
1877   }
1878 
1879   if (should_compact) {
1880     // If the collection is being acquired from the background
1881     // collector, there may be references on the discovered
1882     // references lists that have NULL referents (being those
1883     // that were concurrently cleared by a mutator) or
1884     // that are no longer active (having been enqueued concurrently
1885     // by the mutator).
1886     // Scrub the list of those references because Mark-Sweep-Compact
1887     // code assumes referents are not NULL and that all discovered
1888     // Reference objects are active.
1889     ref_processor()->clean_up_discovered_references();
1890 
1891     if (first_state > Idling) {
1892       save_heap_summary();
1893     }
1894 
1895     do_compaction_work(clear_all_soft_refs);
1896 
1897     // Has the GC time limit been exceeded?
1898     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1899     size_t max_eden_size = young_gen->max_capacity() -
1900                            young_gen->to()->capacity() -
1901                            young_gen->from()->capacity();
1902     GenCollectedHeap* gch = GenCollectedHeap::heap();
1903     GCCause::Cause gc_cause = gch->gc_cause();
1904     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1905                                            young_gen->eden()->used(),
1906                                            _cmsGen->max_capacity(),
1907                                            max_eden_size,
1908                                            full,
1909                                            gc_cause,
1910                                            gch->collector_policy());
1911   } else {
1912     do_mark_sweep_work(clear_all_soft_refs, first_state,
1913       should_start_over);
1914   }
1915   // Reset the expansion cause, now that we just completed
1916   // a collection cycle.
1917   clear_expansion_cause();
1918   _foregroundGCIsActive = false;
1919   return;
1920 }
1921 
1922 // Resize the perm generation and the tenured generation
1923 // after obtaining the free list locks for the
1924 // two generations.
1925 void CMSCollector::compute_new_size() {
1926   assert_locked_or_safepoint(Heap_lock);
1927   FreelistLocker z(this);
1928   _permGen->compute_new_size();
1929   _cmsGen->compute_new_size();
1930 }
1931 
1932 // A work method used by foreground collection to determine
1933 // what type of collection (compacting or not, continuing or fresh)
1934 // it should do.
1935 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1936 // and CMSCompactWhenClearAllSoftRefs the default in the future
1937 // and do away with the flags after a suitable period.
1938 void CMSCollector::decide_foreground_collection_type(
1939   bool clear_all_soft_refs, bool* should_compact,
1940   bool* should_start_over) {
1941   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1942   // flag is set, and we have either requested a System.gc() or
1943   // the number of full gc's since the last concurrent cycle
1944   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1945   // or if an incremental collection has failed
1946   GenCollectedHeap* gch = GenCollectedHeap::heap();
1947   assert(gch->collector_policy()->is_two_generation_policy(),
1948          "You may want to check the correctness of the following");
1949   // Inform cms gen if this was due to partial collection failing.
1950   // The CMS gen may use this fact to determine its expansion policy.
1951   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1952     assert(!_cmsGen->incremental_collection_failed(),
1953            "Should have been noticed, reacted to and cleared");
1954     _cmsGen->set_incremental_collection_failed();
1955   }
1956   *should_compact =
1957     UseCMSCompactAtFullCollection &&
1958     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1959      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1960      gch->incremental_collection_will_fail(true /* consult_young */));
1961   *should_start_over = false;
1962   if (clear_all_soft_refs && !*should_compact) {
1963     // We are about to do a last ditch collection attempt
1964     // so it would normally make sense to do a compaction
1965     // to reclaim as much space as possible.
1966     if (CMSCompactWhenClearAllSoftRefs) {
1967       // Default: The rationale is that in this case either
1968       // we are past the final marking phase, in which case
1969       // we'd have to start over, or so little has been done
1970       // that there's little point in saving that work. Compaction
1971       // appears to be the sensible choice in either case.
1972       *should_compact = true;
1973     } else {
1974       // We have been asked to clear all soft refs, but not to
1975       // compact. Make sure that we aren't past the final checkpoint
1976       // phase, for that is where we process soft refs. If we are already
1977       // past that phase, we'll need to redo the refs discovery phase and
1978       // if necessary clear soft refs that weren't previously
1979       // cleared. We do so by remembering the phase in which
1980       // we came in, and if we are past the refs processing
1981       // phase, we'll choose to just redo the mark-sweep
1982       // collection from scratch.
1983       if (_collectorState > FinalMarking) {
1984         // We are past the refs processing phase;
1985         // start over and do a fresh synchronous CMS cycle
1986         _collectorState = Resetting; // skip to reset to start new cycle
1987         reset(false /* == !asynch */);
1988         *should_start_over = true;
1989       } // else we can continue a possibly ongoing current cycle
1990     }
1991   }
1992 }
1993 
1994 // A work method used by the foreground collector to do
1995 // a mark-sweep-compact.
1996 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1997   GenCollectedHeap* gch = GenCollectedHeap::heap();
1998 
1999   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2000   gc_timer->register_gc_start();
2001 
2002   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2003   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2004 
2005   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2006   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2007     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2008       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2009   }
2010 
2011   // Sample collection interval time and reset for collection pause.
2012   if (UseAdaptiveSizePolicy) {
2013     size_policy()->msc_collection_begin();
2014   }
2015 
2016   // Temporarily widen the span of the weak reference processing to
2017   // the entire heap.
2018   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2019   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2020   // Temporarily, clear the "is_alive_non_header" field of the
2021   // reference processor.
2022   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2023   // Temporarily make reference _processing_ single threaded (non-MT).
2024   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2025   // Temporarily make refs discovery atomic
2026   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2027   // Temporarily make reference _discovery_ single threaded (non-MT)
2028   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2029 
2030   ref_processor()->set_enqueuing_is_done(false);
2031   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2032   ref_processor()->setup_policy(clear_all_soft_refs);
2033   // If an asynchronous collection finishes, the _modUnionTable is
2034   // all clear.  If we are assuming the collection from an asynchronous
2035   // collection, clear the _modUnionTable.
2036   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2037     "_modUnionTable should be clear if the baton was not passed");
2038   _modUnionTable.clear_all();
2039 
2040   // We must adjust the allocation statistics being maintained
2041   // in the free list space. We do so by reading and clearing
2042   // the sweep timer and updating the block flux rate estimates below.
2043   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2044   if (_inter_sweep_timer.is_active()) {
2045     _inter_sweep_timer.stop();
2046     // Note that we do not use this sample to update the _inter_sweep_estimate.
2047     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2048                                             _inter_sweep_estimate.padded_average(),
2049                                             _intra_sweep_estimate.padded_average());
2050   }
2051 
2052   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2053     ref_processor(), clear_all_soft_refs);
2054   #ifdef ASSERT
2055     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2056     size_t free_size = cms_space->free();
2057     assert(free_size ==
2058            pointer_delta(cms_space->end(), cms_space->compaction_top())
2059            * HeapWordSize,
2060       "All the free space should be compacted into one chunk at top");
2061     assert(cms_space->dictionary()->total_chunk_size(
2062                                       debug_only(cms_space->freelistLock())) == 0 ||
2063            cms_space->totalSizeInIndexedFreeLists() == 0,
2064       "All the free space should be in a single chunk");
2065     size_t num = cms_space->totalCount();
2066     assert((free_size == 0 && num == 0) ||
2067            (free_size > 0  && (num == 1 || num == 2)),
2068          "There should be at most 2 free chunks after compaction");
2069   #endif // ASSERT
2070   _collectorState = Resetting;
2071   assert(_restart_addr == NULL,
2072          "Should have been NULL'd before baton was passed");
2073   reset(false /* == !asynch */);
2074   _cmsGen->reset_after_compaction();
2075   _concurrent_cycles_since_last_unload = 0;
2076 
2077   if (verifying() && !should_unload_classes()) {
2078     perm_gen_verify_bit_map()->clear_all();
2079   }
2080 
2081   // Clear any data recorded in the PLAB chunk arrays.
2082   if (_survivor_plab_array != NULL) {
2083     reset_survivor_plab_arrays();
2084   }
2085 
2086   // Adjust the per-size allocation stats for the next epoch.
2087   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2088   // Restart the "inter sweep timer" for the next epoch.
2089   _inter_sweep_timer.reset();
2090   _inter_sweep_timer.start();
2091 
2092   // Sample collection pause time and reset for collection interval.
2093   if (UseAdaptiveSizePolicy) {
2094     size_policy()->msc_collection_end(gch->gc_cause());
2095   }
2096 
2097   gc_timer->register_gc_end();
2098 
2099   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2100 
2101   // For a mark-sweep-compact, compute_new_size() will be called
2102   // in the heap's do_collection() method.
2103 }
2104 
2105 // A work method used by the foreground collector to do
2106 // a mark-sweep, after taking over from a possibly on-going
2107 // concurrent mark-sweep collection.
2108 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2109   CollectorState first_state, bool should_start_over) {
2110   if (PrintGC && Verbose) {
2111     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2112       "collector with count %d",
2113       _full_gcs_since_conc_gc);
2114   }
2115   switch (_collectorState) {
2116     case Idling:
2117       if (first_state == Idling || should_start_over) {
2118         // The background GC was not active, or should
2119         // restarted from scratch;  start the cycle.
2120         _collectorState = InitialMarking;
2121       }
2122       // If first_state was not Idling, then a background GC
2123       // was in progress and has now finished.  No need to do it
2124       // again.  Leave the state as Idling.
2125       break;
2126     case Precleaning:
2127       // In the foreground case don't do the precleaning since
2128       // it is not done concurrently and there is extra work
2129       // required.
2130       _collectorState = FinalMarking;
2131   }
2132   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2133 
2134   // For a mark-sweep, compute_new_size() will be called
2135   // in the heap's do_collection() method.
2136 }
2137 
2138 
2139 void CMSCollector::getFreelistLocks() const {
2140   // Get locks for all free lists in all generations that this
2141   // collector is responsible for
2142   _cmsGen->freelistLock()->lock_without_safepoint_check();
2143   _permGen->freelistLock()->lock_without_safepoint_check();
2144 }
2145 
2146 void CMSCollector::releaseFreelistLocks() const {
2147   // Release locks for all free lists in all generations that this
2148   // collector is responsible for
2149   _cmsGen->freelistLock()->unlock();
2150   _permGen->freelistLock()->unlock();
2151 }
2152 
2153 bool CMSCollector::haveFreelistLocks() const {
2154   // Check locks for all free lists in all generations that this
2155   // collector is responsible for
2156   assert_lock_strong(_cmsGen->freelistLock());
2157   assert_lock_strong(_permGen->freelistLock());
2158   PRODUCT_ONLY(ShouldNotReachHere());
2159   return true;
2160 }
2161 
2162 // A utility class that is used by the CMS collector to
2163 // temporarily "release" the foreground collector from its
2164 // usual obligation to wait for the background collector to
2165 // complete an ongoing phase before proceeding.
2166 class ReleaseForegroundGC: public StackObj {
2167  private:
2168   CMSCollector* _c;
2169  public:
2170   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2171     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2172     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2173     // allow a potentially blocked foreground collector to proceed
2174     _c->_foregroundGCShouldWait = false;
2175     if (_c->_foregroundGCIsActive) {
2176       CGC_lock->notify();
2177     }
2178     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2179            "Possible deadlock");
2180   }
2181 
2182   ~ReleaseForegroundGC() {
2183     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2184     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2185     _c->_foregroundGCShouldWait = true;
2186   }
2187 };
2188 
2189 // There are separate collect_in_background and collect_in_foreground because of
2190 // the different locking requirements of the background collector and the
2191 // foreground collector.  There was originally an attempt to share
2192 // one "collect" method between the background collector and the foreground
2193 // collector but the if-then-else required made it cleaner to have
2194 // separate methods.
2195 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2196   assert(Thread::current()->is_ConcurrentGC_thread(),
2197     "A CMS asynchronous collection is only allowed on a CMS thread.");
2198 
2199   GenCollectedHeap* gch = GenCollectedHeap::heap();
2200   {
2201     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2202     MutexLockerEx hl(Heap_lock, safepoint_check);
2203     FreelistLocker fll(this);
2204     MutexLockerEx x(CGC_lock, safepoint_check);
2205     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2206       // The foreground collector is active or we're
2207       // not using asynchronous collections.  Skip this
2208       // background collection.
2209       assert(!_foregroundGCShouldWait, "Should be clear");
2210       return;
2211     } else {
2212       assert(_collectorState == Idling, "Should be idling before start.");
2213       _collectorState = InitialMarking;
2214       register_gc_start(cause);
2215       // Reset the expansion cause, now that we are about to begin
2216       // a new cycle.
2217       clear_expansion_cause();
2218     }
2219     // Decide if we want to enable class unloading as part of the
2220     // ensuing concurrent GC cycle.
2221     update_should_unload_classes();
2222     _full_gc_requested = false;           // acks all outstanding full gc requests
2223     _full_gc_cause = GCCause::_no_gc;
2224     // Signal that we are about to start a collection
2225     gch->increment_total_full_collections();  // ... starting a collection cycle
2226     _collection_count_start = gch->total_full_collections();
2227   }
2228 
2229   // Used for PrintGC
2230   size_t prev_used;
2231   if (PrintGC && Verbose) {
2232     prev_used = _cmsGen->used(); // XXXPERM
2233   }
2234 
2235   // The change of the collection state is normally done at this level;
2236   // the exceptions are phases that are executed while the world is
2237   // stopped.  For those phases the change of state is done while the
2238   // world is stopped.  For baton passing purposes this allows the
2239   // background collector to finish the phase and change state atomically.
2240   // The foreground collector cannot wait on a phase that is done
2241   // while the world is stopped because the foreground collector already
2242   // has the world stopped and would deadlock.
2243   while (_collectorState != Idling) {
2244     if (TraceCMSState) {
2245       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2246         Thread::current(), _collectorState);
2247     }
2248     // The foreground collector
2249     //   holds the Heap_lock throughout its collection.
2250     //   holds the CMS token (but not the lock)
2251     //     except while it is waiting for the background collector to yield.
2252     //
2253     // The foreground collector should be blocked (not for long)
2254     //   if the background collector is about to start a phase
2255     //   executed with world stopped.  If the background
2256     //   collector has already started such a phase, the
2257     //   foreground collector is blocked waiting for the
2258     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2259     //   are executed in the VM thread.
2260     //
2261     // The locking order is
2262     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2263     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2264     //   CMS token  (claimed in
2265     //                stop_world_and_do() -->
2266     //                  safepoint_synchronize() -->
2267     //                    CMSThread::synchronize())
2268 
2269     {
2270       // Check if the FG collector wants us to yield.
2271       CMSTokenSync x(true); // is cms thread
2272       if (waitForForegroundGC()) {
2273         // We yielded to a foreground GC, nothing more to be
2274         // done this round.
2275         assert(_foregroundGCShouldWait == false, "We set it to false in "
2276                "waitForForegroundGC()");
2277         if (TraceCMSState) {
2278           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2279             " exiting collection CMS state %d",
2280             Thread::current(), _collectorState);
2281         }
2282         return;
2283       } else {
2284         // The background collector can run but check to see if the
2285         // foreground collector has done a collection while the
2286         // background collector was waiting to get the CGC_lock
2287         // above.  If yes, break so that _foregroundGCShouldWait
2288         // is cleared before returning.
2289         if (_collectorState == Idling) {
2290           break;
2291         }
2292       }
2293     }
2294 
2295     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2296       "should be waiting");
2297 
2298     switch (_collectorState) {
2299       case InitialMarking:
2300         {
2301           ReleaseForegroundGC x(this);
2302           stats().record_cms_begin();
2303           VM_CMS_Initial_Mark initial_mark_op(this);
2304           VMThread::execute(&initial_mark_op);
2305         }
2306         // The collector state may be any legal state at this point
2307         // since the background collector may have yielded to the
2308         // foreground collector.
2309         break;
2310       case Marking:
2311         // initial marking in checkpointRootsInitialWork has been completed
2312         if (markFromRoots(true)) { // we were successful
2313           assert(_collectorState == Precleaning, "Collector state should "
2314             "have changed");
2315         } else {
2316           assert(_foregroundGCIsActive, "Internal state inconsistency");
2317         }
2318         break;
2319       case Precleaning:
2320         if (UseAdaptiveSizePolicy) {
2321           size_policy()->concurrent_precleaning_begin();
2322         }
2323         // marking from roots in markFromRoots has been completed
2324         preclean();
2325         if (UseAdaptiveSizePolicy) {
2326           size_policy()->concurrent_precleaning_end();
2327         }
2328         assert(_collectorState == AbortablePreclean ||
2329                _collectorState == FinalMarking,
2330                "Collector state should have changed");
2331         break;
2332       case AbortablePreclean:
2333         if (UseAdaptiveSizePolicy) {
2334         size_policy()->concurrent_phases_resume();
2335         }
2336         abortable_preclean();
2337         if (UseAdaptiveSizePolicy) {
2338           size_policy()->concurrent_precleaning_end();
2339         }
2340         assert(_collectorState == FinalMarking, "Collector state should "
2341           "have changed");
2342         break;
2343       case FinalMarking:
2344         {
2345           ReleaseForegroundGC x(this);
2346 
2347           VM_CMS_Final_Remark final_remark_op(this);
2348           VMThread::execute(&final_remark_op);
2349         }
2350         assert(_foregroundGCShouldWait, "block post-condition");
2351         break;
2352       case Sweeping:
2353         if (UseAdaptiveSizePolicy) {
2354           size_policy()->concurrent_sweeping_begin();
2355         }
2356         // final marking in checkpointRootsFinal has been completed
2357         sweep(true);
2358         assert(_collectorState == Resizing, "Collector state change "
2359           "to Resizing must be done under the free_list_lock");
2360         _full_gcs_since_conc_gc = 0;
2361 
2362         // Stop the timers for adaptive size policy for the concurrent phases
2363         if (UseAdaptiveSizePolicy) {
2364           size_policy()->concurrent_sweeping_end();
2365           size_policy()->concurrent_phases_end(gch->gc_cause(),
2366                                              gch->prev_gen(_cmsGen)->capacity(),
2367                                              _cmsGen->free());
2368         }
2369 
2370       case Resizing: {
2371         // Sweeping has been completed...
2372         // At this point the background collection has completed.
2373         // Don't move the call to compute_new_size() down
2374         // into code that might be executed if the background
2375         // collection was preempted.
2376         {
2377           ReleaseForegroundGC x(this);   // unblock FG collection
2378           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2379           CMSTokenSync        z(true);   // not strictly needed.
2380           if (_collectorState == Resizing) {
2381             compute_new_size();
2382             save_heap_summary();
2383             _collectorState = Resetting;
2384           } else {
2385             assert(_collectorState == Idling, "The state should only change"
2386                    " because the foreground collector has finished the collection");
2387           }
2388         }
2389         break;
2390       }
2391       case Resetting:
2392         // CMS heap resizing has been completed
2393         reset(true);
2394         assert(_collectorState == Idling, "Collector state should "
2395           "have changed");
2396         stats().record_cms_end();
2397         // Don't move the concurrent_phases_end() and compute_new_size()
2398         // calls to here because a preempted background collection
2399         // has it's state set to "Resetting".
2400         break;
2401       case Idling:
2402       default:
2403         ShouldNotReachHere();
2404         break;
2405     }
2406     if (TraceCMSState) {
2407       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2408         Thread::current(), _collectorState);
2409     }
2410     assert(_foregroundGCShouldWait, "block post-condition");
2411   }
2412 
2413   // Should this be in gc_epilogue?
2414   collector_policy()->counters()->update_counters();
2415 
2416   {
2417     // Clear _foregroundGCShouldWait and, in the event that the
2418     // foreground collector is waiting, notify it, before
2419     // returning.
2420     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2421     _foregroundGCShouldWait = false;
2422     if (_foregroundGCIsActive) {
2423       CGC_lock->notify();
2424     }
2425     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2426            "Possible deadlock");
2427   }
2428   if (TraceCMSState) {
2429     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2430       " exiting collection CMS state %d",
2431       Thread::current(), _collectorState);
2432   }
2433   if (PrintGC && Verbose) {
2434     _cmsGen->print_heap_change(prev_used);
2435   }
2436 }
2437 
2438 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2439   if (!_cms_start_registered) {
2440     register_gc_start(cause);
2441   }
2442 }
2443 
2444 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2445   _cms_start_registered = true;
2446   _gc_timer_cm->register_gc_start();
2447   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2448 }
2449 
2450 void CMSCollector::register_gc_end() {
2451   if (_cms_start_registered) {
2452     report_heap_summary(GCWhen::AfterGC);
2453 
2454     _gc_timer_cm->register_gc_end();
2455     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2456     _cms_start_registered = false;
2457   }
2458 }
2459 
2460 void CMSCollector::save_heap_summary() {
2461   GenCollectedHeap* gch = GenCollectedHeap::heap();
2462   _last_heap_summary = gch->create_heap_summary();
2463   _last_perm_gen_summary = gch->create_perm_gen_summary();
2464 }
2465 
2466 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2467   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_perm_gen_summary);
2468 }
2469 
2470 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2471   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2472          "Foreground collector should be waiting, not executing");
2473   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2474     "may only be done by the VM Thread with the world stopped");
2475   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2476          "VM thread should have CMS token");
2477 
2478   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2479     true, NULL);)
2480   if (UseAdaptiveSizePolicy) {
2481     size_policy()->ms_collection_begin();
2482   }
2483   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2484 
2485   HandleMark hm;  // Discard invalid handles created during verification
2486 
2487   if (VerifyBeforeGC &&
2488       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2489     Universe::verify();
2490   }
2491 
2492   // Snapshot the soft reference policy to be used in this collection cycle.
2493   ref_processor()->setup_policy(clear_all_soft_refs);
2494 
2495   bool init_mark_was_synchronous = false; // until proven otherwise
2496   while (_collectorState != Idling) {
2497     if (TraceCMSState) {
2498       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2499         Thread::current(), _collectorState);
2500     }
2501     switch (_collectorState) {
2502       case InitialMarking:
2503         register_foreground_gc_start(cause);
2504         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2505         checkpointRootsInitial(false);
2506         assert(_collectorState == Marking, "Collector state should have changed"
2507           " within checkpointRootsInitial()");
2508         break;
2509       case Marking:
2510         // initial marking in checkpointRootsInitialWork has been completed
2511         if (VerifyDuringGC &&
2512             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2513           Universe::verify("Verify before initial mark: ");
2514         }
2515         {
2516           bool res = markFromRoots(false);
2517           assert(res && _collectorState == FinalMarking, "Collector state should "
2518             "have changed");
2519           break;
2520         }
2521       case FinalMarking:
2522         if (VerifyDuringGC &&
2523             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2524           Universe::verify("Verify before re-mark: ");
2525         }
2526         checkpointRootsFinal(false, clear_all_soft_refs,
2527                              init_mark_was_synchronous);
2528         assert(_collectorState == Sweeping, "Collector state should not "
2529           "have changed within checkpointRootsFinal()");
2530         break;
2531       case Sweeping:
2532         // final marking in checkpointRootsFinal has been completed
2533         if (VerifyDuringGC &&
2534             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2535           Universe::verify("Verify before sweep: ");
2536         }
2537         sweep(false);
2538         assert(_collectorState == Resizing, "Incorrect state");
2539         break;
2540       case Resizing: {
2541         // Sweeping has been completed; the actual resize in this case
2542         // is done separately; nothing to be done in this state.
2543         _collectorState = Resetting;
2544         break;
2545       }
2546       case Resetting:
2547         // The heap has been resized.
2548         if (VerifyDuringGC &&
2549             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2550           Universe::verify("Verify before reset: ");
2551         }
2552         save_heap_summary();
2553         reset(false);
2554         assert(_collectorState == Idling, "Collector state should "
2555           "have changed");
2556         break;
2557       case Precleaning:
2558       case AbortablePreclean:
2559         // Elide the preclean phase
2560         _collectorState = FinalMarking;
2561         break;
2562       default:
2563         ShouldNotReachHere();
2564     }
2565     if (TraceCMSState) {
2566       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2567         Thread::current(), _collectorState);
2568     }
2569   }
2570 
2571   if (UseAdaptiveSizePolicy) {
2572     GenCollectedHeap* gch = GenCollectedHeap::heap();
2573     size_policy()->ms_collection_end(gch->gc_cause());
2574   }
2575 
2576   if (VerifyAfterGC &&
2577       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2578     Universe::verify();
2579   }
2580   if (TraceCMSState) {
2581     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2582       " exiting collection CMS state %d",
2583       Thread::current(), _collectorState);
2584   }
2585 }
2586 
2587 bool CMSCollector::waitForForegroundGC() {
2588   bool res = false;
2589   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2590          "CMS thread should have CMS token");
2591   // Block the foreground collector until the
2592   // background collectors decides whether to
2593   // yield.
2594   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2595   _foregroundGCShouldWait = true;
2596   if (_foregroundGCIsActive) {
2597     // The background collector yields to the
2598     // foreground collector and returns a value
2599     // indicating that it has yielded.  The foreground
2600     // collector can proceed.
2601     res = true;
2602     _foregroundGCShouldWait = false;
2603     ConcurrentMarkSweepThread::clear_CMS_flag(
2604       ConcurrentMarkSweepThread::CMS_cms_has_token);
2605     ConcurrentMarkSweepThread::set_CMS_flag(
2606       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2607     // Get a possibly blocked foreground thread going
2608     CGC_lock->notify();
2609     if (TraceCMSState) {
2610       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2611         Thread::current(), _collectorState);
2612     }
2613     while (_foregroundGCIsActive) {
2614       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2615     }
2616     ConcurrentMarkSweepThread::set_CMS_flag(
2617       ConcurrentMarkSweepThread::CMS_cms_has_token);
2618     ConcurrentMarkSweepThread::clear_CMS_flag(
2619       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2620   }
2621   if (TraceCMSState) {
2622     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2623       Thread::current(), _collectorState);
2624   }
2625   return res;
2626 }
2627 
2628 // Because of the need to lock the free lists and other structures in
2629 // the collector, common to all the generations that the collector is
2630 // collecting, we need the gc_prologues of individual CMS generations
2631 // delegate to their collector. It may have been simpler had the
2632 // current infrastructure allowed one to call a prologue on a
2633 // collector. In the absence of that we have the generation's
2634 // prologue delegate to the collector, which delegates back
2635 // some "local" work to a worker method in the individual generations
2636 // that it's responsible for collecting, while itself doing any
2637 // work common to all generations it's responsible for. A similar
2638 // comment applies to the  gc_epilogue()'s.
2639 // The role of the varaible _between_prologue_and_epilogue is to
2640 // enforce the invocation protocol.
2641 void CMSCollector::gc_prologue(bool full) {
2642   // Call gc_prologue_work() for each CMSGen and PermGen that
2643   // we are responsible for.
2644 
2645   // The following locking discipline assumes that we are only called
2646   // when the world is stopped.
2647   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2648 
2649   // The CMSCollector prologue must call the gc_prologues for the
2650   // "generations" (including PermGen if any) that it's responsible
2651   // for.
2652 
2653   assert(   Thread::current()->is_VM_thread()
2654          || (   CMSScavengeBeforeRemark
2655              && Thread::current()->is_ConcurrentGC_thread()),
2656          "Incorrect thread type for prologue execution");
2657 
2658   if (_between_prologue_and_epilogue) {
2659     // We have already been invoked; this is a gc_prologue delegation
2660     // from yet another CMS generation that we are responsible for, just
2661     // ignore it since all relevant work has already been done.
2662     return;
2663   }
2664 
2665   // set a bit saying prologue has been called; cleared in epilogue
2666   _between_prologue_and_epilogue = true;
2667   // Claim locks for common data structures, then call gc_prologue_work()
2668   // for each CMSGen and PermGen that we are responsible for.
2669 
2670   getFreelistLocks();   // gets free list locks on constituent spaces
2671   bitMapLock()->lock_without_safepoint_check();
2672 
2673   // Should call gc_prologue_work() for all cms gens we are responsible for
2674   bool registerClosure =    _collectorState >= Marking
2675                          && _collectorState < Sweeping;
2676   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2677                                                &_modUnionClosurePar
2678                                                : &_modUnionClosure;
2679   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2680   _permGen->gc_prologue_work(full, registerClosure, muc);
2681 
2682   if (!full) {
2683     stats().record_gc0_begin();
2684   }
2685 }
2686 
2687 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2688   // Delegate to CMScollector which knows how to coordinate between
2689   // this and any other CMS generations that it is responsible for
2690   // collecting.
2691   collector()->gc_prologue(full);
2692 }
2693 
2694 // This is a "private" interface for use by this generation's CMSCollector.
2695 // Not to be called directly by any other entity (for instance,
2696 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2697 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2698   bool registerClosure, ModUnionClosure* modUnionClosure) {
2699   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2700   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2701     "Should be NULL");
2702   if (registerClosure) {
2703     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2704   }
2705   cmsSpace()->gc_prologue();
2706   // Clear stat counters
2707   NOT_PRODUCT(
2708     assert(_numObjectsPromoted == 0, "check");
2709     assert(_numWordsPromoted   == 0, "check");
2710     if (Verbose && PrintGC) {
2711       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2712                           SIZE_FORMAT" bytes concurrently",
2713       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2714     }
2715     _numObjectsAllocated = 0;
2716     _numWordsAllocated   = 0;
2717   )
2718 }
2719 
2720 void CMSCollector::gc_epilogue(bool full) {
2721   // The following locking discipline assumes that we are only called
2722   // when the world is stopped.
2723   assert(SafepointSynchronize::is_at_safepoint(),
2724          "world is stopped assumption");
2725 
2726   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2727   // if linear allocation blocks need to be appropriately marked to allow the
2728   // the blocks to be parsable. We also check here whether we need to nudge the
2729   // CMS collector thread to start a new cycle (if it's not already active).
2730   assert(   Thread::current()->is_VM_thread()
2731          || (   CMSScavengeBeforeRemark
2732              && Thread::current()->is_ConcurrentGC_thread()),
2733          "Incorrect thread type for epilogue execution");
2734 
2735   if (!_between_prologue_and_epilogue) {
2736     // We have already been invoked; this is a gc_epilogue delegation
2737     // from yet another CMS generation that we are responsible for, just
2738     // ignore it since all relevant work has already been done.
2739     return;
2740   }
2741   assert(haveFreelistLocks(), "must have freelist locks");
2742   assert_lock_strong(bitMapLock());
2743 
2744   _cmsGen->gc_epilogue_work(full);
2745   _permGen->gc_epilogue_work(full);
2746 
2747   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2748     // in case sampling was not already enabled, enable it
2749     _start_sampling = true;
2750   }
2751   // reset _eden_chunk_array so sampling starts afresh
2752   _eden_chunk_index = 0;
2753 
2754   size_t cms_used   = _cmsGen->cmsSpace()->used();
2755   size_t perm_used  = _permGen->cmsSpace()->used();
2756 
2757   // update performance counters - this uses a special version of
2758   // update_counters() that allows the utilization to be passed as a
2759   // parameter, avoiding multiple calls to used().
2760   //
2761   _cmsGen->update_counters(cms_used);
2762   _permGen->update_counters(perm_used);
2763 
2764   if (CMSIncrementalMode) {
2765     icms_update_allocation_limits();
2766   }
2767 
2768   bitMapLock()->unlock();
2769   releaseFreelistLocks();
2770 
2771   if (!CleanChunkPoolAsync) {
2772     Chunk::clean_chunk_pool();
2773   }
2774 
2775   _between_prologue_and_epilogue = false;  // ready for next cycle
2776 }
2777 
2778 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2779   collector()->gc_epilogue(full);
2780 
2781   // Also reset promotion tracking in par gc thread states.
2782   if (CollectedHeap::use_parallel_gc_threads()) {
2783     for (uint i = 0; i < ParallelGCThreads; i++) {
2784       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2785     }
2786   }
2787 }
2788 
2789 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2790   assert(!incremental_collection_failed(), "Should have been cleared");
2791   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2792   cmsSpace()->gc_epilogue();
2793     // Print stat counters
2794   NOT_PRODUCT(
2795     assert(_numObjectsAllocated == 0, "check");
2796     assert(_numWordsAllocated == 0, "check");
2797     if (Verbose && PrintGC) {
2798       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2799                           SIZE_FORMAT" bytes",
2800                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2801     }
2802     _numObjectsPromoted = 0;
2803     _numWordsPromoted   = 0;
2804   )
2805 
2806   if (PrintGC && Verbose) {
2807     // Call down the chain in contiguous_available needs the freelistLock
2808     // so print this out before releasing the freeListLock.
2809     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2810                         contiguous_available());
2811   }
2812 }
2813 
2814 #ifndef PRODUCT
2815 bool CMSCollector::have_cms_token() {
2816   Thread* thr = Thread::current();
2817   if (thr->is_VM_thread()) {
2818     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2819   } else if (thr->is_ConcurrentGC_thread()) {
2820     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2821   } else if (thr->is_GC_task_thread()) {
2822     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2823            ParGCRareEvent_lock->owned_by_self();
2824   }
2825   return false;
2826 }
2827 #endif
2828 
2829 // Check reachability of the given heap address in CMS generation,
2830 // treating all other generations as roots.
2831 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2832   // We could "guarantee" below, rather than assert, but i'll
2833   // leave these as "asserts" so that an adventurous debugger
2834   // could try this in the product build provided some subset of
2835   // the conditions were met, provided they were intersted in the
2836   // results and knew that the computation below wouldn't interfere
2837   // with other concurrent computations mutating the structures
2838   // being read or written.
2839   assert(SafepointSynchronize::is_at_safepoint(),
2840          "Else mutations in object graph will make answer suspect");
2841   assert(have_cms_token(), "Should hold cms token");
2842   assert(haveFreelistLocks(), "must hold free list locks");
2843   assert_lock_strong(bitMapLock());
2844 
2845   // Clear the marking bit map array before starting, but, just
2846   // for kicks, first report if the given address is already marked
2847   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2848                 _markBitMap.isMarked(addr) ? "" : " not");
2849 
2850   if (verify_after_remark()) {
2851     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2852     bool result = verification_mark_bm()->isMarked(addr);
2853     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2854                            result ? "IS" : "is NOT");
2855     return result;
2856   } else {
2857     gclog_or_tty->print_cr("Could not compute result");
2858     return false;
2859   }
2860 }
2861 
2862 ////////////////////////////////////////////////////////
2863 // CMS Verification Support
2864 ////////////////////////////////////////////////////////
2865 // Following the remark phase, the following invariant
2866 // should hold -- each object in the CMS heap which is
2867 // marked in markBitMap() should be marked in the verification_mark_bm().
2868 
2869 class VerifyMarkedClosure: public BitMapClosure {
2870   CMSBitMap* _marks;
2871   bool       _failed;
2872 
2873  public:
2874   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2875 
2876   bool do_bit(size_t offset) {
2877     HeapWord* addr = _marks->offsetToHeapWord(offset);
2878     if (!_marks->isMarked(addr)) {
2879       oop(addr)->print_on(gclog_or_tty);
2880       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2881       _failed = true;
2882     }
2883     return true;
2884   }
2885 
2886   bool failed() { return _failed; }
2887 };
2888 
2889 bool CMSCollector::verify_after_remark(bool silent) {
2890   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2891   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2892   static bool init = false;
2893 
2894   assert(SafepointSynchronize::is_at_safepoint(),
2895          "Else mutations in object graph will make answer suspect");
2896   assert(have_cms_token(),
2897          "Else there may be mutual interference in use of "
2898          " verification data structures");
2899   assert(_collectorState > Marking && _collectorState <= Sweeping,
2900          "Else marking info checked here may be obsolete");
2901   assert(haveFreelistLocks(), "must hold free list locks");
2902   assert_lock_strong(bitMapLock());
2903 
2904 
2905   // Allocate marking bit map if not already allocated
2906   if (!init) { // first time
2907     if (!verification_mark_bm()->allocate(_span)) {
2908       return false;
2909     }
2910     init = true;
2911   }
2912 
2913   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2914 
2915   // Turn off refs discovery -- so we will be tracing through refs.
2916   // This is as intended, because by this time
2917   // GC must already have cleared any refs that need to be cleared,
2918   // and traced those that need to be marked; moreover,
2919   // the marking done here is not going to intefere in any
2920   // way with the marking information used by GC.
2921   NoRefDiscovery no_discovery(ref_processor());
2922 
2923   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2924 
2925   // Clear any marks from a previous round
2926   verification_mark_bm()->clear_all();
2927   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2928   verify_work_stacks_empty();
2929 
2930   GenCollectedHeap* gch = GenCollectedHeap::heap();
2931   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
2932   // Update the saved marks which may affect the root scans.
2933   gch->save_marks();
2934 
2935   if (CMSRemarkVerifyVariant == 1) {
2936     // In this first variant of verification, we complete
2937     // all marking, then check if the new marks-verctor is
2938     // a subset of the CMS marks-vector.
2939     verify_after_remark_work_1();
2940   } else if (CMSRemarkVerifyVariant == 2) {
2941     // In this second variant of verification, we flag an error
2942     // (i.e. an object reachable in the new marks-vector not reachable
2943     // in the CMS marks-vector) immediately, also indicating the
2944     // identify of an object (A) that references the unmarked object (B) --
2945     // presumably, a mutation to A failed to be picked up by preclean/remark?
2946     verify_after_remark_work_2();
2947   } else {
2948     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
2949             CMSRemarkVerifyVariant);
2950   }
2951   if (!silent) gclog_or_tty->print(" done] ");
2952   return true;
2953 }
2954 
2955 void CMSCollector::verify_after_remark_work_1() {
2956   ResourceMark rm;
2957   HandleMark  hm;
2958   GenCollectedHeap* gch = GenCollectedHeap::heap();
2959 
2960   // Mark from roots one level into CMS
2961   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2962   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2963 
2964   gch->gen_process_strong_roots(_cmsGen->level(),
2965                                 true,   // younger gens are roots
2966                                 true,   // activate StrongRootsScope
2967                                 true,   // collecting perm gen
2968                                 SharedHeap::ScanningOption(roots_scanning_options()),
2969                                 &notOlder,
2970                                 true,   // walk code active on stacks
2971                                 NULL);
2972 
2973   // Now mark from the roots
2974   assert(_revisitStack.isEmpty(), "Should be empty");
2975   MarkFromRootsClosure markFromRootsClosure(this, _span,
2976     verification_mark_bm(), verification_mark_stack(), &_revisitStack,
2977     false /* don't yield */, true /* verifying */);
2978   assert(_restart_addr == NULL, "Expected pre-condition");
2979   verification_mark_bm()->iterate(&markFromRootsClosure);
2980   while (_restart_addr != NULL) {
2981     // Deal with stack overflow: by restarting at the indicated
2982     // address.
2983     HeapWord* ra = _restart_addr;
2984     markFromRootsClosure.reset(ra);
2985     _restart_addr = NULL;
2986     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2987   }
2988   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2989   verify_work_stacks_empty();
2990   // Should reset the revisit stack above, since no class tree
2991   // surgery is forthcoming.
2992   _revisitStack.reset(); // throwing away all contents
2993 
2994   // Marking completed -- now verify that each bit marked in
2995   // verification_mark_bm() is also marked in markBitMap(); flag all
2996   // errors by printing corresponding objects.
2997   VerifyMarkedClosure vcl(markBitMap());
2998   verification_mark_bm()->iterate(&vcl);
2999   if (vcl.failed()) {
3000     gclog_or_tty->print("Verification failed");
3001     Universe::heap()->print_on(gclog_or_tty);
3002     fatal("CMS: failed marking verification after remark");
3003   }
3004 }
3005 
3006 void CMSCollector::verify_after_remark_work_2() {
3007   ResourceMark rm;
3008   HandleMark  hm;
3009   GenCollectedHeap* gch = GenCollectedHeap::heap();
3010 
3011   // Mark from roots one level into CMS
3012   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3013                                      markBitMap());
3014   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3015   gch->gen_process_strong_roots(_cmsGen->level(),
3016                                 true,   // younger gens are roots
3017                                 true,   // activate StrongRootsScope
3018                                 true,   // collecting perm gen
3019                                 SharedHeap::ScanningOption(roots_scanning_options()),
3020                                 &notOlder,
3021                                 true,   // walk code active on stacks
3022                                 NULL);
3023 
3024   // Now mark from the roots
3025   assert(_revisitStack.isEmpty(), "Should be empty");
3026   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3027     verification_mark_bm(), markBitMap(), verification_mark_stack());
3028   assert(_restart_addr == NULL, "Expected pre-condition");
3029   verification_mark_bm()->iterate(&markFromRootsClosure);
3030   while (_restart_addr != NULL) {
3031     // Deal with stack overflow: by restarting at the indicated
3032     // address.
3033     HeapWord* ra = _restart_addr;
3034     markFromRootsClosure.reset(ra);
3035     _restart_addr = NULL;
3036     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3037   }
3038   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3039   verify_work_stacks_empty();
3040   // Should reset the revisit stack above, since no class tree
3041   // surgery is forthcoming.
3042   _revisitStack.reset(); // throwing away all contents
3043 
3044   // Marking completed -- now verify that each bit marked in
3045   // verification_mark_bm() is also marked in markBitMap(); flag all
3046   // errors by printing corresponding objects.
3047   VerifyMarkedClosure vcl(markBitMap());
3048   verification_mark_bm()->iterate(&vcl);
3049   assert(!vcl.failed(), "Else verification above should not have succeeded");
3050 }
3051 
3052 void ConcurrentMarkSweepGeneration::save_marks() {
3053   // delegate to CMS space
3054   cmsSpace()->save_marks();
3055   for (uint i = 0; i < ParallelGCThreads; i++) {
3056     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3057   }
3058 }
3059 
3060 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3061   return cmsSpace()->no_allocs_since_save_marks();
3062 }
3063 
3064 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3065                                                                 \
3066 void ConcurrentMarkSweepGeneration::                            \
3067 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3068   cl->set_generation(this);                                     \
3069   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3070   cl->reset_generation();                                       \
3071   save_marks();                                                 \
3072 }
3073 
3074 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3075 
3076 void
3077 ConcurrentMarkSweepGeneration::object_iterate_since_last_GC(ObjectClosure* blk)
3078 {
3079   // Not currently implemented; need to do the following. -- ysr.
3080   // dld -- I think that is used for some sort of allocation profiler.  So it
3081   // really means the objects allocated by the mutator since the last
3082   // GC.  We could potentially implement this cheaply by recording only
3083   // the direct allocations in a side data structure.
3084   //
3085   // I think we probably ought not to be required to support these
3086   // iterations at any arbitrary point; I think there ought to be some
3087   // call to enable/disable allocation profiling in a generation/space,
3088   // and the iterator ought to return the objects allocated in the
3089   // gen/space since the enable call, or the last iterator call (which
3090   // will probably be at a GC.)  That way, for gens like CM&S that would
3091   // require some extra data structure to support this, we only pay the
3092   // cost when it's in use...
3093   cmsSpace()->object_iterate_since_last_GC(blk);
3094 }
3095 
3096 void
3097 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3098   cl->set_generation(this);
3099   younger_refs_in_space_iterate(_cmsSpace, cl);
3100   cl->reset_generation();
3101 }
3102 
3103 void
3104 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, OopClosure* cl) {
3105   if (freelistLock()->owned_by_self()) {
3106     Generation::oop_iterate(mr, cl);
3107   } else {
3108     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3109     Generation::oop_iterate(mr, cl);
3110   }
3111 }
3112 
3113 void
3114 ConcurrentMarkSweepGeneration::oop_iterate(OopClosure* cl) {
3115   if (freelistLock()->owned_by_self()) {
3116     Generation::oop_iterate(cl);
3117   } else {
3118     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3119     Generation::oop_iterate(cl);
3120   }
3121 }
3122 
3123 void
3124 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3125   if (freelistLock()->owned_by_self()) {
3126     Generation::object_iterate(cl);
3127   } else {
3128     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3129     Generation::object_iterate(cl);
3130   }
3131 }
3132 
3133 void
3134 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3135   if (freelistLock()->owned_by_self()) {
3136     Generation::safe_object_iterate(cl);
3137   } else {
3138     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3139     Generation::safe_object_iterate(cl);
3140   }
3141 }
3142 
3143 void
3144 ConcurrentMarkSweepGeneration::pre_adjust_pointers() {
3145 }
3146 
3147 void
3148 ConcurrentMarkSweepGeneration::post_compact() {
3149 }
3150 
3151 void
3152 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3153   // Fix the linear allocation blocks to look like free blocks.
3154 
3155   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3156   // are not called when the heap is verified during universe initialization and
3157   // at vm shutdown.
3158   if (freelistLock()->owned_by_self()) {
3159     cmsSpace()->prepare_for_verify();
3160   } else {
3161     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3162     cmsSpace()->prepare_for_verify();
3163   }
3164 }
3165 
3166 void
3167 ConcurrentMarkSweepGeneration::verify() {
3168   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3169   // are not called when the heap is verified during universe initialization and
3170   // at vm shutdown.
3171   if (freelistLock()->owned_by_self()) {
3172     cmsSpace()->verify();
3173   } else {
3174     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3175     cmsSpace()->verify();
3176   }
3177 }
3178 
3179 void CMSCollector::verify() {
3180   _cmsGen->verify();
3181   _permGen->verify();
3182 }
3183 
3184 #ifndef PRODUCT
3185 bool CMSCollector::overflow_list_is_empty() const {
3186   assert(_num_par_pushes >= 0, "Inconsistency");
3187   if (_overflow_list == NULL) {
3188     assert(_num_par_pushes == 0, "Inconsistency");
3189   }
3190   return _overflow_list == NULL;
3191 }
3192 
3193 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3194 // merely consolidate assertion checks that appear to occur together frequently.
3195 void CMSCollector::verify_work_stacks_empty() const {
3196   assert(_markStack.isEmpty(), "Marking stack should be empty");
3197   assert(overflow_list_is_empty(), "Overflow list should be empty");
3198 }
3199 
3200 void CMSCollector::verify_overflow_empty() const {
3201   assert(overflow_list_is_empty(), "Overflow list should be empty");
3202   assert(no_preserved_marks(), "No preserved marks");
3203 }
3204 #endif // PRODUCT
3205 
3206 // Decide if we want to enable class unloading as part of the
3207 // ensuing concurrent GC cycle. We will collect the perm gen and
3208 // unload classes if it's the case that:
3209 // (1) an explicit gc request has been made and the flag
3210 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3211 // (2) (a) class unloading is enabled at the command line, and
3212 //     (b) (i)   perm gen threshold has been crossed, or
3213 //         (ii)  old gen is getting really full, or
3214 //         (iii) the previous N CMS collections did not collect the
3215 //               perm gen
3216 // NOTE: Provided there is no change in the state of the heap between
3217 // calls to this method, it should have idempotent results. Moreover,
3218 // its results should be monotonically increasing (i.e. going from 0 to 1,
3219 // but not 1 to 0) between successive calls between which the heap was
3220 // not collected. For the implementation below, it must thus rely on
3221 // the property that concurrent_cycles_since_last_unload()
3222 // will not decrease unless a collection cycle happened and that
3223 // _permGen->should_concurrent_collect() and _cmsGen->is_too_full() are
3224 // themselves also monotonic in that sense. See check_monotonicity()
3225 // below.
3226 bool CMSCollector::update_should_unload_classes() {
3227   _should_unload_classes = false;
3228   // Condition 1 above
3229   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3230     _should_unload_classes = true;
3231   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3232     // Disjuncts 2.b.(i,ii,iii) above
3233     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3234                               CMSClassUnloadingMaxInterval)
3235                            || _permGen->should_concurrent_collect()
3236                            || _cmsGen->is_too_full();
3237   }
3238   return _should_unload_classes;
3239 }
3240 
3241 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3242   bool res = should_concurrent_collect();
3243   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3244   return res;
3245 }
3246 
3247 void CMSCollector::setup_cms_unloading_and_verification_state() {
3248   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3249                              || VerifyBeforeExit;
3250   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3251 
3252   if (should_unload_classes()) {   // Should unload classes this cycle
3253     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3254     set_verifying(should_verify);    // Set verification state for this cycle
3255     return;                            // Nothing else needs to be done at this time
3256   }
3257 
3258   // Not unloading classes this cycle
3259   assert(!should_unload_classes(), "Inconsitency!");
3260   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3261     // We were not verifying, or we _were_ unloading classes in the last cycle,
3262     // AND some verification options are enabled this cycle; in this case,
3263     // we must make sure that the deadness map is allocated if not already so,
3264     // and cleared (if already allocated previously --
3265     // CMSBitMap::sizeInBits() is used to determine if it's allocated).
3266     if (perm_gen_verify_bit_map()->sizeInBits() == 0) {
3267       if (!perm_gen_verify_bit_map()->allocate(_permGen->reserved())) {
3268         warning("Failed to allocate permanent generation verification CMS Bit Map;\n"
3269                 "permanent generation verification disabled");
3270         return;  // Note that we leave verification disabled, so we'll retry this
3271                  // allocation next cycle. We _could_ remember this failure
3272                  // and skip further attempts and permanently disable verification
3273                  // attempts if that is considered more desirable.
3274       }
3275       assert(perm_gen_verify_bit_map()->covers(_permGen->reserved()),
3276               "_perm_gen_ver_bit_map inconsistency?");
3277     } else {
3278       perm_gen_verify_bit_map()->clear_all();
3279     }
3280     // Include symbols, strings and code cache elements to prevent their resurrection.
3281     add_root_scanning_option(rso);
3282     set_verifying(true);
3283   } else if (verifying() && !should_verify) {
3284     // We were verifying, but some verification flags got disabled.
3285     set_verifying(false);
3286     // Exclude symbols, strings and code cache elements from root scanning to
3287     // reduce IM and RM pauses.
3288     remove_root_scanning_option(rso);
3289   }
3290 }
3291 
3292 
3293 #ifndef PRODUCT
3294 HeapWord* CMSCollector::block_start(const void* p) const {
3295   const HeapWord* addr = (HeapWord*)p;
3296   if (_span.contains(p)) {
3297     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3298       return _cmsGen->cmsSpace()->block_start(p);
3299     } else {
3300       assert(_permGen->cmsSpace()->is_in_reserved(addr),
3301              "Inconsistent _span?");
3302       return _permGen->cmsSpace()->block_start(p);
3303     }
3304   }
3305   return NULL;
3306 }
3307 #endif
3308 
3309 HeapWord*
3310 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3311                                                    bool   tlab,
3312                                                    bool   parallel) {
3313   CMSSynchronousYieldRequest yr;
3314   assert(!tlab, "Can't deal with TLAB allocation");
3315   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3316   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3317     CMSExpansionCause::_satisfy_allocation);
3318   if (GCExpandToAllocateDelayMillis > 0) {
3319     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3320   }
3321   return have_lock_and_allocate(word_size, tlab);
3322 }
3323 
3324 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3325 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3326 // to CardGeneration and share it...
3327 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3328   return CardGeneration::expand(bytes, expand_bytes);
3329 }
3330 
3331 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3332   CMSExpansionCause::Cause cause)
3333 {
3334 
3335   bool success = expand(bytes, expand_bytes);
3336 
3337   // remember why we expanded; this information is used
3338   // by shouldConcurrentCollect() when making decisions on whether to start
3339   // a new CMS cycle.
3340   if (success) {
3341     set_expansion_cause(cause);
3342     if (PrintGCDetails && Verbose) {
3343       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3344         CMSExpansionCause::to_string(cause));
3345     }
3346   }
3347 }
3348 
3349 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3350   HeapWord* res = NULL;
3351   MutexLocker x(ParGCRareEvent_lock);
3352   while (true) {
3353     // Expansion by some other thread might make alloc OK now:
3354     res = ps->lab.alloc(word_sz);
3355     if (res != NULL) return res;
3356     // If there's not enough expansion space available, give up.
3357     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3358       return NULL;
3359     }
3360     // Otherwise, we try expansion.
3361     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3362       CMSExpansionCause::_allocate_par_lab);
3363     // Now go around the loop and try alloc again;
3364     // A competing par_promote might beat us to the expansion space,
3365     // so we may go around the loop again if promotion fails agaion.
3366     if (GCExpandToAllocateDelayMillis > 0) {
3367       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3368     }
3369   }
3370 }
3371 
3372 
3373 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3374   PromotionInfo* promo) {
3375   MutexLocker x(ParGCRareEvent_lock);
3376   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3377   while (true) {
3378     // Expansion by some other thread might make alloc OK now:
3379     if (promo->ensure_spooling_space()) {
3380       assert(promo->has_spooling_space(),
3381              "Post-condition of successful ensure_spooling_space()");
3382       return true;
3383     }
3384     // If there's not enough expansion space available, give up.
3385     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3386       return false;
3387     }
3388     // Otherwise, we try expansion.
3389     expand(refill_size_bytes, MinHeapDeltaBytes,
3390       CMSExpansionCause::_allocate_par_spooling_space);
3391     // Now go around the loop and try alloc again;
3392     // A competing allocation might beat us to the expansion space,
3393     // so we may go around the loop again if allocation fails again.
3394     if (GCExpandToAllocateDelayMillis > 0) {
3395       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3396     }
3397   }
3398 }
3399 
3400 
3401 
3402 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3403   assert_locked_or_safepoint(Heap_lock);
3404   size_t size = ReservedSpace::page_align_size_down(bytes);
3405   if (size > 0) {
3406     shrink_by(size);
3407   }
3408 }
3409 
3410 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3411   assert_locked_or_safepoint(Heap_lock);
3412   bool result = _virtual_space.expand_by(bytes);
3413   if (result) {
3414     HeapWord* old_end = _cmsSpace->end();
3415     size_t new_word_size =
3416       heap_word_size(_virtual_space.committed_size());
3417     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3418     _bts->resize(new_word_size);  // resize the block offset shared array
3419     Universe::heap()->barrier_set()->resize_covered_region(mr);
3420     // Hmmmm... why doesn't CFLS::set_end verify locking?
3421     // This is quite ugly; FIX ME XXX
3422     _cmsSpace->assert_locked(freelistLock());
3423     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3424 
3425     // update the space and generation capacity counters
3426     if (UsePerfData) {
3427       _space_counters->update_capacity();
3428       _gen_counters->update_all();
3429     }
3430 
3431     if (Verbose && PrintGC) {
3432       size_t new_mem_size = _virtual_space.committed_size();
3433       size_t old_mem_size = new_mem_size - bytes;
3434       gclog_or_tty->print_cr("Expanding %s from %ldK by %ldK to %ldK",
3435                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3436     }
3437   }
3438   return result;
3439 }
3440 
3441 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3442   assert_locked_or_safepoint(Heap_lock);
3443   bool success = true;
3444   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3445   if (remaining_bytes > 0) {
3446     success = grow_by(remaining_bytes);
3447     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3448   }
3449   return success;
3450 }
3451 
3452 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3453   assert_locked_or_safepoint(Heap_lock);
3454   assert_lock_strong(freelistLock());
3455   // XXX Fix when compaction is implemented.
3456   warning("Shrinking of CMS not yet implemented");
3457   return;
3458 }
3459 
3460 
3461 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3462 // phases.
3463 class CMSPhaseAccounting: public StackObj {
3464  public:
3465   CMSPhaseAccounting(CMSCollector *collector,
3466                      const char *phase,
3467                      bool print_cr = true);
3468   ~CMSPhaseAccounting();
3469 
3470  private:
3471   CMSCollector *_collector;
3472   const char *_phase;
3473   elapsedTimer _wallclock;
3474   bool _print_cr;
3475 
3476  public:
3477   // Not MT-safe; so do not pass around these StackObj's
3478   // where they may be accessed by other threads.
3479   jlong wallclock_millis() {
3480     assert(_wallclock.is_active(), "Wall clock should not stop");
3481     _wallclock.stop();  // to record time
3482     jlong ret = _wallclock.milliseconds();
3483     _wallclock.start(); // restart
3484     return ret;
3485   }
3486 };
3487 
3488 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3489                                        const char *phase,
3490                                        bool print_cr) :
3491   _collector(collector), _phase(phase), _print_cr(print_cr) {
3492 
3493   if (PrintCMSStatistics != 0) {
3494     _collector->resetYields();
3495   }
3496   if (PrintGCDetails && PrintGCTimeStamps) {
3497     gclog_or_tty->date_stamp(PrintGCDateStamps);
3498     gclog_or_tty->stamp();
3499     gclog_or_tty->print_cr(": [%s-concurrent-%s-start]",
3500       _collector->cmsGen()->short_name(), _phase);
3501   }
3502   _collector->resetTimer();
3503   _wallclock.start();
3504   _collector->startTimer();
3505 }
3506 
3507 CMSPhaseAccounting::~CMSPhaseAccounting() {
3508   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3509   _collector->stopTimer();
3510   _wallclock.stop();
3511   if (PrintGCDetails) {
3512     gclog_or_tty->date_stamp(PrintGCDateStamps);
3513     gclog_or_tty->stamp(PrintGCTimeStamps);
3514     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3515                  _collector->cmsGen()->short_name(),
3516                  _phase, _collector->timerValue(), _wallclock.seconds());
3517     if (_print_cr) {
3518       gclog_or_tty->print_cr("");
3519     }
3520     if (PrintCMSStatistics != 0) {
3521       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3522                     _collector->yields());
3523     }
3524   }
3525 }
3526 
3527 // CMS work
3528 
3529 // Checkpoint the roots into this generation from outside
3530 // this generation. [Note this initial checkpoint need only
3531 // be approximate -- we'll do a catch up phase subsequently.]
3532 void CMSCollector::checkpointRootsInitial(bool asynch) {
3533   assert(_collectorState == InitialMarking, "Wrong collector state");
3534   check_correct_thread_executing();
3535   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3536 
3537   save_heap_summary();
3538   report_heap_summary(GCWhen::BeforeGC);
3539 
3540   ReferenceProcessor* rp = ref_processor();
3541   SpecializationStats::clear();
3542   assert(_restart_addr == NULL, "Control point invariant");
3543   if (asynch) {
3544     // acquire locks for subsequent manipulations
3545     MutexLockerEx x(bitMapLock(),
3546                     Mutex::_no_safepoint_check_flag);
3547     checkpointRootsInitialWork(asynch);
3548     // enable ("weak") refs discovery
3549     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3550     _collectorState = Marking;
3551   } else {
3552     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3553     // which recognizes if we are a CMS generation, and doesn't try to turn on
3554     // discovery; verify that they aren't meddling.
3555     assert(!rp->discovery_is_atomic(),
3556            "incorrect setting of discovery predicate");
3557     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3558            "ref discovery for this generation kind");
3559     // already have locks
3560     checkpointRootsInitialWork(asynch);
3561     // now enable ("weak") refs discovery
3562     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3563     _collectorState = Marking;
3564   }
3565   SpecializationStats::print();
3566 }
3567 
3568 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3569   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3570   assert(_collectorState == InitialMarking, "just checking");
3571 
3572   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3573   // precede our marking with a collection of all
3574   // younger generations to keep floating garbage to a minimum.
3575   // XXX: we won't do this for now -- it's an optimization to be done later.
3576 
3577   // already have locks
3578   assert_lock_strong(bitMapLock());
3579   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3580 
3581   // Setup the verification and class unloading state for this
3582   // CMS collection cycle.
3583   setup_cms_unloading_and_verification_state();
3584 
3585   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3586     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3587   if (UseAdaptiveSizePolicy) {
3588     size_policy()->checkpoint_roots_initial_begin();
3589   }
3590 
3591   // Reset all the PLAB chunk arrays if necessary.
3592   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3593     reset_survivor_plab_arrays();
3594   }
3595 
3596   ResourceMark rm;
3597   HandleMark  hm;
3598 
3599   FalseClosure falseClosure;
3600   // In the case of a synchronous collection, we will elide the
3601   // remark step, so it's important to catch all the nmethod oops
3602   // in this step.
3603   // The final 'true' flag to gen_process_strong_roots will ensure this.
3604   // If 'async' is true, we can relax the nmethod tracing.
3605   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3606   GenCollectedHeap* gch = GenCollectedHeap::heap();
3607 
3608   verify_work_stacks_empty();
3609   verify_overflow_empty();
3610 
3611   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3612   // Update the saved marks which may affect the root scans.
3613   gch->save_marks();
3614 
3615   // weak reference processing has not started yet.
3616   ref_processor()->set_enqueuing_is_done(false);
3617 
3618   {
3619     // This is not needed. DEBUG_ONLY(RememberKlassesChecker imx(true);)
3620     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3621     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3622     gch->gen_process_strong_roots(_cmsGen->level(),
3623                                   true,   // younger gens are roots
3624                                   true,   // activate StrongRootsScope
3625                                   true,   // collecting perm gen
3626                                   SharedHeap::ScanningOption(roots_scanning_options()),
3627                                   &notOlder,
3628                                   true,   // walk all of code cache if (so & SO_CodeCache)
3629                                   NULL);
3630   }
3631 
3632   // Clear mod-union table; it will be dirtied in the prologue of
3633   // CMS generation per each younger generation collection.
3634 
3635   assert(_modUnionTable.isAllClear(),
3636        "Was cleared in most recent final checkpoint phase"
3637        " or no bits are set in the gc_prologue before the start of the next "
3638        "subsequent marking phase.");
3639 
3640   // Save the end of the used_region of the constituent generations
3641   // to be used to limit the extent of sweep in each generation.
3642   save_sweep_limits();
3643   if (UseAdaptiveSizePolicy) {
3644     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3645   }
3646   verify_overflow_empty();
3647 }
3648 
3649 bool CMSCollector::markFromRoots(bool asynch) {
3650   // we might be tempted to assert that:
3651   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3652   //        "inconsistent argument?");
3653   // However that wouldn't be right, because it's possible that
3654   // a safepoint is indeed in progress as a younger generation
3655   // stop-the-world GC happens even as we mark in this generation.
3656   assert(_collectorState == Marking, "inconsistent state?");
3657   check_correct_thread_executing();
3658   verify_overflow_empty();
3659 
3660   bool res;
3661   if (asynch) {
3662 
3663     // Start the timers for adaptive size policy for the concurrent phases
3664     // Do it here so that the foreground MS can use the concurrent
3665     // timer since a foreground MS might has the sweep done concurrently
3666     // or STW.
3667     if (UseAdaptiveSizePolicy) {
3668       size_policy()->concurrent_marking_begin();
3669     }
3670 
3671     // Weak ref discovery note: We may be discovering weak
3672     // refs in this generation concurrent (but interleaved) with
3673     // weak ref discovery by a younger generation collector.
3674 
3675     CMSTokenSyncWithLocks ts(true, bitMapLock());
3676     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3677     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3678     res = markFromRootsWork(asynch);
3679     if (res) {
3680       _collectorState = Precleaning;
3681     } else { // We failed and a foreground collection wants to take over
3682       assert(_foregroundGCIsActive, "internal state inconsistency");
3683       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3684       if (PrintGCDetails) {
3685         gclog_or_tty->print_cr("bailing out to foreground collection");
3686       }
3687     }
3688     if (UseAdaptiveSizePolicy) {
3689       size_policy()->concurrent_marking_end();
3690     }
3691   } else {
3692     assert(SafepointSynchronize::is_at_safepoint(),
3693            "inconsistent with asynch == false");
3694     if (UseAdaptiveSizePolicy) {
3695       size_policy()->ms_collection_marking_begin();
3696     }
3697     // already have locks
3698     res = markFromRootsWork(asynch);
3699     _collectorState = FinalMarking;
3700     if (UseAdaptiveSizePolicy) {
3701       GenCollectedHeap* gch = GenCollectedHeap::heap();
3702       size_policy()->ms_collection_marking_end(gch->gc_cause());
3703     }
3704   }
3705   verify_overflow_empty();
3706   return res;
3707 }
3708 
3709 bool CMSCollector::markFromRootsWork(bool asynch) {
3710   // iterate over marked bits in bit map, doing a full scan and mark
3711   // from these roots using the following algorithm:
3712   // . if oop is to the right of the current scan pointer,
3713   //   mark corresponding bit (we'll process it later)
3714   // . else (oop is to left of current scan pointer)
3715   //   push oop on marking stack
3716   // . drain the marking stack
3717 
3718   // Note that when we do a marking step we need to hold the
3719   // bit map lock -- recall that direct allocation (by mutators)
3720   // and promotion (by younger generation collectors) is also
3721   // marking the bit map. [the so-called allocate live policy.]
3722   // Because the implementation of bit map marking is not
3723   // robust wrt simultaneous marking of bits in the same word,
3724   // we need to make sure that there is no such interference
3725   // between concurrent such updates.
3726 
3727   // already have locks
3728   assert_lock_strong(bitMapLock());
3729 
3730   // Clear the revisit stack, just in case there are any
3731   // obsolete contents from a short-circuited previous CMS cycle.
3732   _revisitStack.reset();
3733   verify_work_stacks_empty();
3734   verify_overflow_empty();
3735   assert(_revisitStack.isEmpty(), "tabula rasa");
3736   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
3737   bool result = false;
3738   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3739     result = do_marking_mt(asynch);
3740   } else {
3741     result = do_marking_st(asynch);
3742   }
3743   return result;
3744 }
3745 
3746 // Forward decl
3747 class CMSConcMarkingTask;
3748 
3749 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3750   CMSCollector*       _collector;
3751   CMSConcMarkingTask* _task;
3752  public:
3753   virtual void yield();
3754 
3755   // "n_threads" is the number of threads to be terminated.
3756   // "queue_set" is a set of work queues of other threads.
3757   // "collector" is the CMS collector associated with this task terminator.
3758   // "yield" indicates whether we need the gang as a whole to yield.
3759   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3760     ParallelTaskTerminator(n_threads, queue_set),
3761     _collector(collector) { }
3762 
3763   void set_task(CMSConcMarkingTask* task) {
3764     _task = task;
3765   }
3766 };
3767 
3768 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3769   CMSConcMarkingTask* _task;
3770  public:
3771   bool should_exit_termination();
3772   void set_task(CMSConcMarkingTask* task) {
3773     _task = task;
3774   }
3775 };
3776 
3777 // MT Concurrent Marking Task
3778 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3779   CMSCollector* _collector;
3780   int           _n_workers;                  // requested/desired # workers
3781   bool          _asynch;
3782   bool          _result;
3783   CompactibleFreeListSpace*  _cms_space;
3784   CompactibleFreeListSpace* _perm_space;
3785   char          _pad_front[64];   // padding to ...
3786   HeapWord*     _global_finger;   // ... avoid sharing cache line
3787   char          _pad_back[64];
3788   HeapWord*     _restart_addr;
3789 
3790   //  Exposed here for yielding support
3791   Mutex* const _bit_map_lock;
3792 
3793   // The per thread work queues, available here for stealing
3794   OopTaskQueueSet*  _task_queues;
3795 
3796   // Termination (and yielding) support
3797   CMSConcMarkingTerminator _term;
3798   CMSConcMarkingTerminatorTerminator _term_term;
3799 
3800  public:
3801   CMSConcMarkingTask(CMSCollector* collector,
3802                  CompactibleFreeListSpace* cms_space,
3803                  CompactibleFreeListSpace* perm_space,
3804                  bool asynch,
3805                  YieldingFlexibleWorkGang* workers,
3806                  OopTaskQueueSet* task_queues):
3807     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3808     _collector(collector),
3809     _cms_space(cms_space),
3810     _perm_space(perm_space),
3811     _asynch(asynch), _n_workers(0), _result(true),
3812     _task_queues(task_queues),
3813     _term(_n_workers, task_queues, _collector),
3814     _bit_map_lock(collector->bitMapLock())
3815   {
3816     _requested_size = _n_workers;
3817     _term.set_task(this);
3818     _term_term.set_task(this);
3819     assert(_cms_space->bottom() < _perm_space->bottom(),
3820            "Finger incorrectly initialized below");
3821     _restart_addr = _global_finger = _cms_space->bottom();
3822   }
3823 
3824 
3825   OopTaskQueueSet* task_queues()  { return _task_queues; }
3826 
3827   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3828 
3829   HeapWord** global_finger_addr() { return &_global_finger; }
3830 
3831   CMSConcMarkingTerminator* terminator() { return &_term; }
3832 
3833   virtual void set_for_termination(int active_workers) {
3834     terminator()->reset_for_reuse(active_workers);
3835   }
3836 
3837   void work(uint worker_id);
3838   bool should_yield() {
3839     return    ConcurrentMarkSweepThread::should_yield()
3840            && !_collector->foregroundGCIsActive()
3841            && _asynch;
3842   }
3843 
3844   virtual void coordinator_yield();  // stuff done by coordinator
3845   bool result() { return _result; }
3846 
3847   void reset(HeapWord* ra) {
3848     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3849     assert(_global_finger >= _perm_space->end(), "Postcondition of ::work(i)");
3850     assert(ra             <  _perm_space->end(), "ra too large");
3851     _restart_addr = _global_finger = ra;
3852     _term.reset_for_reuse();
3853   }
3854 
3855   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3856                                            OopTaskQueue* work_q);
3857 
3858  private:
3859   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3860   void do_work_steal(int i);
3861   void bump_global_finger(HeapWord* f);
3862 };
3863 
3864 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3865   assert(_task != NULL, "Error");
3866   return _task->yielding();
3867   // Note that we do not need the disjunct || _task->should_yield() above
3868   // because we want terminating threads to yield only if the task
3869   // is already in the midst of yielding, which happens only after at least one
3870   // thread has yielded.
3871 }
3872 
3873 void CMSConcMarkingTerminator::yield() {
3874   if (_task->should_yield()) {
3875     _task->yield();
3876   } else {
3877     ParallelTaskTerminator::yield();
3878   }
3879 }
3880 
3881 ////////////////////////////////////////////////////////////////
3882 // Concurrent Marking Algorithm Sketch
3883 ////////////////////////////////////////////////////////////////
3884 // Until all tasks exhausted (both spaces):
3885 // -- claim next available chunk
3886 // -- bump global finger via CAS
3887 // -- find first object that starts in this chunk
3888 //    and start scanning bitmap from that position
3889 // -- scan marked objects for oops
3890 // -- CAS-mark target, and if successful:
3891 //    . if target oop is above global finger (volatile read)
3892 //      nothing to do
3893 //    . if target oop is in chunk and above local finger
3894 //        then nothing to do
3895 //    . else push on work-queue
3896 // -- Deal with possible overflow issues:
3897 //    . local work-queue overflow causes stuff to be pushed on
3898 //      global (common) overflow queue
3899 //    . always first empty local work queue
3900 //    . then get a batch of oops from global work queue if any
3901 //    . then do work stealing
3902 // -- When all tasks claimed (both spaces)
3903 //    and local work queue empty,
3904 //    then in a loop do:
3905 //    . check global overflow stack; steal a batch of oops and trace
3906 //    . try to steal from other threads oif GOS is empty
3907 //    . if neither is available, offer termination
3908 // -- Terminate and return result
3909 //
3910 void CMSConcMarkingTask::work(uint worker_id) {
3911   elapsedTimer _timer;
3912   ResourceMark rm;
3913   HandleMark hm;
3914 
3915   DEBUG_ONLY(_collector->verify_overflow_empty();)
3916 
3917   // Before we begin work, our work queue should be empty
3918   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3919   // Scan the bitmap covering _cms_space, tracing through grey objects.
3920   _timer.start();
3921   do_scan_and_mark(worker_id, _cms_space);
3922   _timer.stop();
3923   if (PrintCMSStatistics != 0) {
3924     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
3925       worker_id, _timer.seconds());
3926       // XXX: need xxx/xxx type of notation, two timers
3927   }
3928 
3929   // ... do the same for the _perm_space
3930   _timer.reset();
3931   _timer.start();
3932   do_scan_and_mark(worker_id, _perm_space);
3933   _timer.stop();
3934   if (PrintCMSStatistics != 0) {
3935     gclog_or_tty->print_cr("Finished perm space scanning in %dth thread: %3.3f sec",
3936       worker_id, _timer.seconds());
3937       // XXX: need xxx/xxx type of notation, two timers
3938   }
3939 
3940   // ... do work stealing
3941   _timer.reset();
3942   _timer.start();
3943   do_work_steal(worker_id);
3944   _timer.stop();
3945   if (PrintCMSStatistics != 0) {
3946     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
3947       worker_id, _timer.seconds());
3948       // XXX: need xxx/xxx type of notation, two timers
3949   }
3950   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3951   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3952   // Note that under the current task protocol, the
3953   // following assertion is true even of the spaces
3954   // expanded since the completion of the concurrent
3955   // marking. XXX This will likely change under a strict
3956   // ABORT semantics.
3957   assert(_global_finger >  _cms_space->end() &&
3958          _global_finger >= _perm_space->end(),
3959          "All tasks have been completed");
3960   DEBUG_ONLY(_collector->verify_overflow_empty();)
3961 }
3962 
3963 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3964   HeapWord* read = _global_finger;
3965   HeapWord* cur  = read;
3966   while (f > read) {
3967     cur = read;
3968     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
3969     if (cur == read) {
3970       // our cas succeeded
3971       assert(_global_finger >= f, "protocol consistency");
3972       break;
3973     }
3974   }
3975 }
3976 
3977 // This is really inefficient, and should be redone by
3978 // using (not yet available) block-read and -write interfaces to the
3979 // stack and the work_queue. XXX FIX ME !!!
3980 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3981                                                       OopTaskQueue* work_q) {
3982   // Fast lock-free check
3983   if (ovflw_stk->length() == 0) {
3984     return false;
3985   }
3986   assert(work_q->size() == 0, "Shouldn't steal");
3987   MutexLockerEx ml(ovflw_stk->par_lock(),
3988                    Mutex::_no_safepoint_check_flag);
3989   // Grab up to 1/4 the size of the work queue
3990   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3991                     (size_t)ParGCDesiredObjsFromOverflowList);
3992   num = MIN2(num, ovflw_stk->length());
3993   for (int i = (int) num; i > 0; i--) {
3994     oop cur = ovflw_stk->pop();
3995     assert(cur != NULL, "Counted wrong?");
3996     work_q->push(cur);
3997   }
3998   return num > 0;
3999 }
4000 
4001 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4002   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4003   int n_tasks = pst->n_tasks();
4004   // We allow that there may be no tasks to do here because
4005   // we are restarting after a stack overflow.
4006   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4007   uint nth_task = 0;
4008 
4009   HeapWord* aligned_start = sp->bottom();
4010   if (sp->used_region().contains(_restart_addr)) {
4011     // Align down to a card boundary for the start of 0th task
4012     // for this space.
4013     aligned_start =
4014       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4015                                  CardTableModRefBS::card_size);
4016   }
4017 
4018   size_t chunk_size = sp->marking_task_size();
4019   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4020     // Having claimed the nth task in this space,
4021     // compute the chunk that it corresponds to:
4022     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4023                                aligned_start + (nth_task+1)*chunk_size);
4024     // Try and bump the global finger via a CAS;
4025     // note that we need to do the global finger bump
4026     // _before_ taking the intersection below, because
4027     // the task corresponding to that region will be
4028     // deemed done even if the used_region() expands
4029     // because of allocation -- as it almost certainly will
4030     // during start-up while the threads yield in the
4031     // closure below.
4032     HeapWord* finger = span.end();
4033     bump_global_finger(finger);   // atomically
4034     // There are null tasks here corresponding to chunks
4035     // beyond the "top" address of the space.
4036     span = span.intersection(sp->used_region());
4037     if (!span.is_empty()) {  // Non-null task
4038       HeapWord* prev_obj;
4039       assert(!span.contains(_restart_addr) || nth_task == 0,
4040              "Inconsistency");
4041       if (nth_task == 0) {
4042         // For the 0th task, we'll not need to compute a block_start.
4043         if (span.contains(_restart_addr)) {
4044           // In the case of a restart because of stack overflow,
4045           // we might additionally skip a chunk prefix.
4046           prev_obj = _restart_addr;
4047         } else {
4048           prev_obj = span.start();
4049         }
4050       } else {
4051         // We want to skip the first object because
4052         // the protocol is to scan any object in its entirety
4053         // that _starts_ in this span; a fortiori, any
4054         // object starting in an earlier span is scanned
4055         // as part of an earlier claimed task.
4056         // Below we use the "careful" version of block_start
4057         // so we do not try to navigate uninitialized objects.
4058         prev_obj = sp->block_start_careful(span.start());
4059         // Below we use a variant of block_size that uses the
4060         // Printezis bits to avoid waiting for allocated
4061         // objects to become initialized/parsable.
4062         while (prev_obj < span.start()) {
4063           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4064           if (sz > 0) {
4065             prev_obj += sz;
4066           } else {
4067             // In this case we may end up doing a bit of redundant
4068             // scanning, but that appears unavoidable, short of
4069             // locking the free list locks; see bug 6324141.
4070             break;
4071           }
4072         }
4073       }
4074       if (prev_obj < span.end()) {
4075         MemRegion my_span = MemRegion(prev_obj, span.end());
4076         // Do the marking work within a non-empty span --
4077         // the last argument to the constructor indicates whether the
4078         // iteration should be incremental with periodic yields.
4079         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4080                                     &_collector->_markBitMap,
4081                                     work_queue(i),
4082                                     &_collector->_markStack,
4083                                     &_collector->_revisitStack,
4084                                     _asynch);
4085         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4086       } // else nothing to do for this task
4087     }   // else nothing to do for this task
4088   }
4089   // We'd be tempted to assert here that since there are no
4090   // more tasks left to claim in this space, the global_finger
4091   // must exceed space->top() and a fortiori space->end(). However,
4092   // that would not quite be correct because the bumping of
4093   // global_finger occurs strictly after the claiming of a task,
4094   // so by the time we reach here the global finger may not yet
4095   // have been bumped up by the thread that claimed the last
4096   // task.
4097   pst->all_tasks_completed();
4098 }
4099 
4100 class Par_ConcMarkingClosure: public Par_KlassRememberingOopClosure {
4101  private:
4102   CMSConcMarkingTask* _task;
4103   MemRegion     _span;
4104   CMSBitMap*    _bit_map;
4105   CMSMarkStack* _overflow_stack;
4106   OopTaskQueue* _work_queue;
4107  protected:
4108   DO_OOP_WORK_DEFN
4109  public:
4110   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4111                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack,
4112                          CMSMarkStack* revisit_stack):
4113     Par_KlassRememberingOopClosure(collector, collector->ref_processor(), revisit_stack),
4114     _task(task),
4115     _span(collector->_span),
4116     _work_queue(work_queue),
4117     _bit_map(bit_map),
4118     _overflow_stack(overflow_stack)
4119   { }
4120   virtual void do_oop(oop* p);
4121   virtual void do_oop(narrowOop* p);
4122   void trim_queue(size_t max);
4123   void handle_stack_overflow(HeapWord* lost);
4124   void do_yield_check() {
4125     if (_task->should_yield()) {
4126       _task->yield();
4127     }
4128   }
4129 };
4130 
4131 // Grey object scanning during work stealing phase --
4132 // the salient assumption here is that any references
4133 // that are in these stolen objects being scanned must
4134 // already have been initialized (else they would not have
4135 // been published), so we do not need to check for
4136 // uninitialized objects before pushing here.
4137 void Par_ConcMarkingClosure::do_oop(oop obj) {
4138   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4139   HeapWord* addr = (HeapWord*)obj;
4140   // Check if oop points into the CMS generation
4141   // and is not marked
4142   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4143     // a white object ...
4144     // If we manage to "claim" the object, by being the
4145     // first thread to mark it, then we push it on our
4146     // marking stack
4147     if (_bit_map->par_mark(addr)) {     // ... now grey
4148       // push on work queue (grey set)
4149       bool simulate_overflow = false;
4150       NOT_PRODUCT(
4151         if (CMSMarkStackOverflowALot &&
4152             _collector->simulate_overflow()) {
4153           // simulate a stack overflow
4154           simulate_overflow = true;
4155         }
4156       )
4157       if (simulate_overflow ||
4158           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4159         // stack overflow
4160         if (PrintCMSStatistics != 0) {
4161           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4162                                  SIZE_FORMAT, _overflow_stack->capacity());
4163         }
4164         // We cannot assert that the overflow stack is full because
4165         // it may have been emptied since.
4166         assert(simulate_overflow ||
4167                _work_queue->size() == _work_queue->max_elems(),
4168               "Else push should have succeeded");
4169         handle_stack_overflow(addr);
4170       }
4171     } // Else, some other thread got there first
4172     do_yield_check();
4173   }
4174 }
4175 
4176 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4177 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4178 
4179 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4180   while (_work_queue->size() > max) {
4181     oop new_oop;
4182     if (_work_queue->pop_local(new_oop)) {
4183       assert(new_oop->is_oop(), "Should be an oop");
4184       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4185       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4186       assert(new_oop->is_parsable(), "Should be parsable");
4187       new_oop->oop_iterate(this);  // do_oop() above
4188       do_yield_check();
4189     }
4190   }
4191 }
4192 
4193 // Upon stack overflow, we discard (part of) the stack,
4194 // remembering the least address amongst those discarded
4195 // in CMSCollector's _restart_address.
4196 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4197   // We need to do this under a mutex to prevent other
4198   // workers from interfering with the work done below.
4199   MutexLockerEx ml(_overflow_stack->par_lock(),
4200                    Mutex::_no_safepoint_check_flag);
4201   // Remember the least grey address discarded
4202   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4203   _collector->lower_restart_addr(ra);
4204   _overflow_stack->reset();  // discard stack contents
4205   _overflow_stack->expand(); // expand the stack if possible
4206 }
4207 
4208 
4209 void CMSConcMarkingTask::do_work_steal(int i) {
4210   OopTaskQueue* work_q = work_queue(i);
4211   oop obj_to_scan;
4212   CMSBitMap* bm = &(_collector->_markBitMap);
4213   CMSMarkStack* ovflw = &(_collector->_markStack);
4214   CMSMarkStack* revisit = &(_collector->_revisitStack);
4215   int* seed = _collector->hash_seed(i);
4216   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw, revisit);
4217   while (true) {
4218     cl.trim_queue(0);
4219     assert(work_q->size() == 0, "Should have been emptied above");
4220     if (get_work_from_overflow_stack(ovflw, work_q)) {
4221       // Can't assert below because the work obtained from the
4222       // overflow stack may already have been stolen from us.
4223       // assert(work_q->size() > 0, "Work from overflow stack");
4224       continue;
4225     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4226       assert(obj_to_scan->is_oop(), "Should be an oop");
4227       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4228       obj_to_scan->oop_iterate(&cl);
4229     } else if (terminator()->offer_termination(&_term_term)) {
4230       assert(work_q->size() == 0, "Impossible!");
4231       break;
4232     } else if (yielding() || should_yield()) {
4233       yield();
4234     }
4235   }
4236 }
4237 
4238 // This is run by the CMS (coordinator) thread.
4239 void CMSConcMarkingTask::coordinator_yield() {
4240   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4241          "CMS thread should hold CMS token");
4242   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4243   // First give up the locks, then yield, then re-lock
4244   // We should probably use a constructor/destructor idiom to
4245   // do this unlock/lock or modify the MutexUnlocker class to
4246   // serve our purpose. XXX
4247   assert_lock_strong(_bit_map_lock);
4248   _bit_map_lock->unlock();
4249   ConcurrentMarkSweepThread::desynchronize(true);
4250   ConcurrentMarkSweepThread::acknowledge_yield_request();
4251   _collector->stopTimer();
4252   if (PrintCMSStatistics != 0) {
4253     _collector->incrementYields();
4254   }
4255   _collector->icms_wait();
4256 
4257   // It is possible for whichever thread initiated the yield request
4258   // not to get a chance to wake up and take the bitmap lock between
4259   // this thread releasing it and reacquiring it. So, while the
4260   // should_yield() flag is on, let's sleep for a bit to give the
4261   // other thread a chance to wake up. The limit imposed on the number
4262   // of iterations is defensive, to avoid any unforseen circumstances
4263   // putting us into an infinite loop. Since it's always been this
4264   // (coordinator_yield()) method that was observed to cause the
4265   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4266   // which is by default non-zero. For the other seven methods that
4267   // also perform the yield operation, as are using a different
4268   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4269   // can enable the sleeping for those methods too, if necessary.
4270   // See 6442774.
4271   //
4272   // We really need to reconsider the synchronization between the GC
4273   // thread and the yield-requesting threads in the future and we
4274   // should really use wait/notify, which is the recommended
4275   // way of doing this type of interaction. Additionally, we should
4276   // consolidate the eight methods that do the yield operation and they
4277   // are almost identical into one for better maintenability and
4278   // readability. See 6445193.
4279   //
4280   // Tony 2006.06.29
4281   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4282                    ConcurrentMarkSweepThread::should_yield() &&
4283                    !CMSCollector::foregroundGCIsActive(); ++i) {
4284     os::sleep(Thread::current(), 1, false);
4285     ConcurrentMarkSweepThread::acknowledge_yield_request();
4286   }
4287 
4288   ConcurrentMarkSweepThread::synchronize(true);
4289   _bit_map_lock->lock_without_safepoint_check();
4290   _collector->startTimer();
4291 }
4292 
4293 bool CMSCollector::do_marking_mt(bool asynch) {
4294   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4295   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4296                                        conc_workers()->total_workers(),
4297                                        conc_workers()->active_workers(),
4298                                        Threads::number_of_non_daemon_threads());
4299   conc_workers()->set_active_workers(num_workers);
4300 
4301   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4302   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
4303 
4304   CMSConcMarkingTask tsk(this,
4305                          cms_space,
4306                          perm_space,
4307                          asynch,
4308                          conc_workers(),
4309                          task_queues());
4310 
4311   // Since the actual number of workers we get may be different
4312   // from the number we requested above, do we need to do anything different
4313   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4314   // class?? XXX
4315   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4316   perm_space->initialize_sequential_subtasks_for_marking(num_workers);
4317 
4318   // Refs discovery is already non-atomic.
4319   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4320   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4321   DEBUG_ONLY(RememberKlassesChecker cmx(should_unload_classes());)
4322   conc_workers()->start_task(&tsk);
4323   while (tsk.yielded()) {
4324     tsk.coordinator_yield();
4325     conc_workers()->continue_task(&tsk);
4326   }
4327   // If the task was aborted, _restart_addr will be non-NULL
4328   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4329   while (_restart_addr != NULL) {
4330     // XXX For now we do not make use of ABORTED state and have not
4331     // yet implemented the right abort semantics (even in the original
4332     // single-threaded CMS case). That needs some more investigation
4333     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4334     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4335     // If _restart_addr is non-NULL, a marking stack overflow
4336     // occurred; we need to do a fresh marking iteration from the
4337     // indicated restart address.
4338     if (_foregroundGCIsActive && asynch) {
4339       // We may be running into repeated stack overflows, having
4340       // reached the limit of the stack size, while making very
4341       // slow forward progress. It may be best to bail out and
4342       // let the foreground collector do its job.
4343       // Clear _restart_addr, so that foreground GC
4344       // works from scratch. This avoids the headache of
4345       // a "rescan" which would otherwise be needed because
4346       // of the dirty mod union table & card table.
4347       _restart_addr = NULL;
4348       return false;
4349     }
4350     // Adjust the task to restart from _restart_addr
4351     tsk.reset(_restart_addr);
4352     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4353                   _restart_addr);
4354     perm_space->initialize_sequential_subtasks_for_marking(num_workers,
4355                   _restart_addr);
4356     _restart_addr = NULL;
4357     // Get the workers going again
4358     conc_workers()->start_task(&tsk);
4359     while (tsk.yielded()) {
4360       tsk.coordinator_yield();
4361       conc_workers()->continue_task(&tsk);
4362     }
4363   }
4364   assert(tsk.completed(), "Inconsistency");
4365   assert(tsk.result() == true, "Inconsistency");
4366   return true;
4367 }
4368 
4369 bool CMSCollector::do_marking_st(bool asynch) {
4370   ResourceMark rm;
4371   HandleMark   hm;
4372 
4373   // Temporarily make refs discovery single threaded (non-MT)
4374   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4375   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4376     &_markStack, &_revisitStack, CMSYield && asynch);
4377   // the last argument to iterate indicates whether the iteration
4378   // should be incremental with periodic yields.
4379   _markBitMap.iterate(&markFromRootsClosure);
4380   // If _restart_addr is non-NULL, a marking stack overflow
4381   // occurred; we need to do a fresh iteration from the
4382   // indicated restart address.
4383   while (_restart_addr != NULL) {
4384     if (_foregroundGCIsActive && asynch) {
4385       // We may be running into repeated stack overflows, having
4386       // reached the limit of the stack size, while making very
4387       // slow forward progress. It may be best to bail out and
4388       // let the foreground collector do its job.
4389       // Clear _restart_addr, so that foreground GC
4390       // works from scratch. This avoids the headache of
4391       // a "rescan" which would otherwise be needed because
4392       // of the dirty mod union table & card table.
4393       _restart_addr = NULL;
4394       return false;  // indicating failure to complete marking
4395     }
4396     // Deal with stack overflow:
4397     // we restart marking from _restart_addr
4398     HeapWord* ra = _restart_addr;
4399     markFromRootsClosure.reset(ra);
4400     _restart_addr = NULL;
4401     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4402   }
4403   return true;
4404 }
4405 
4406 void CMSCollector::preclean() {
4407   check_correct_thread_executing();
4408   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4409   verify_work_stacks_empty();
4410   verify_overflow_empty();
4411   _abort_preclean = false;
4412   if (CMSPrecleaningEnabled) {
4413     _eden_chunk_index = 0;
4414     size_t used = get_eden_used();
4415     size_t capacity = get_eden_capacity();
4416     // Don't start sampling unless we will get sufficiently
4417     // many samples.
4418     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4419                 * CMSScheduleRemarkEdenPenetration)) {
4420       _start_sampling = true;
4421     } else {
4422       _start_sampling = false;
4423     }
4424     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4425     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4426     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4427   }
4428   CMSTokenSync x(true); // is cms thread
4429   if (CMSPrecleaningEnabled) {
4430     sample_eden();
4431     _collectorState = AbortablePreclean;
4432   } else {
4433     _collectorState = FinalMarking;
4434   }
4435   verify_work_stacks_empty();
4436   verify_overflow_empty();
4437 }
4438 
4439 // Try and schedule the remark such that young gen
4440 // occupancy is CMSScheduleRemarkEdenPenetration %.
4441 void CMSCollector::abortable_preclean() {
4442   check_correct_thread_executing();
4443   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4444   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4445 
4446   // If Eden's current occupancy is below this threshold,
4447   // immediately schedule the remark; else preclean
4448   // past the next scavenge in an effort to
4449   // schedule the pause as described avove. By choosing
4450   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4451   // we will never do an actual abortable preclean cycle.
4452   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4453     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4454     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4455     // We need more smarts in the abortable preclean
4456     // loop below to deal with cases where allocation
4457     // in young gen is very very slow, and our precleaning
4458     // is running a losing race against a horde of
4459     // mutators intent on flooding us with CMS updates
4460     // (dirty cards).
4461     // One, admittedly dumb, strategy is to give up
4462     // after a certain number of abortable precleaning loops
4463     // or after a certain maximum time. We want to make
4464     // this smarter in the next iteration.
4465     // XXX FIX ME!!! YSR
4466     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4467     while (!(should_abort_preclean() ||
4468              ConcurrentMarkSweepThread::should_terminate())) {
4469       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4470       cumworkdone += workdone;
4471       loops++;
4472       // Voluntarily terminate abortable preclean phase if we have
4473       // been at it for too long.
4474       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4475           loops >= CMSMaxAbortablePrecleanLoops) {
4476         if (PrintGCDetails) {
4477           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4478         }
4479         break;
4480       }
4481       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4482         if (PrintGCDetails) {
4483           gclog_or_tty->print(" CMS: abort preclean due to time ");
4484         }
4485         break;
4486       }
4487       // If we are doing little work each iteration, we should
4488       // take a short break.
4489       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4490         // Sleep for some time, waiting for work to accumulate
4491         stopTimer();
4492         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4493         startTimer();
4494         waited++;
4495       }
4496     }
4497     if (PrintCMSStatistics > 0) {
4498       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4499                           loops, waited, cumworkdone);
4500     }
4501   }
4502   CMSTokenSync x(true); // is cms thread
4503   if (_collectorState != Idling) {
4504     assert(_collectorState == AbortablePreclean,
4505            "Spontaneous state transition?");
4506     _collectorState = FinalMarking;
4507   } // Else, a foreground collection completed this CMS cycle.
4508   return;
4509 }
4510 
4511 // Respond to an Eden sampling opportunity
4512 void CMSCollector::sample_eden() {
4513   // Make sure a young gc cannot sneak in between our
4514   // reading and recording of a sample.
4515   assert(Thread::current()->is_ConcurrentGC_thread(),
4516          "Only the cms thread may collect Eden samples");
4517   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4518          "Should collect samples while holding CMS token");
4519   if (!_start_sampling) {
4520     return;
4521   }
4522   if (_eden_chunk_array) {
4523     if (_eden_chunk_index < _eden_chunk_capacity) {
4524       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4525       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4526              "Unexpected state of Eden");
4527       // We'd like to check that what we just sampled is an oop-start address;
4528       // however, we cannot do that here since the object may not yet have been
4529       // initialized. So we'll instead do the check when we _use_ this sample
4530       // later.
4531       if (_eden_chunk_index == 0 ||
4532           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4533                          _eden_chunk_array[_eden_chunk_index-1])
4534            >= CMSSamplingGrain)) {
4535         _eden_chunk_index++;  // commit sample
4536       }
4537     }
4538   }
4539   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4540     size_t used = get_eden_used();
4541     size_t capacity = get_eden_capacity();
4542     assert(used <= capacity, "Unexpected state of Eden");
4543     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4544       _abort_preclean = true;
4545     }
4546   }
4547 }
4548 
4549 
4550 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4551   assert(_collectorState == Precleaning ||
4552          _collectorState == AbortablePreclean, "incorrect state");
4553   ResourceMark rm;
4554   HandleMark   hm;
4555 
4556   // Precleaning is currently not MT but the reference processor
4557   // may be set for MT.  Disable it temporarily here.
4558   ReferenceProcessor* rp = ref_processor();
4559   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4560 
4561   // Do one pass of scrubbing the discovered reference lists
4562   // to remove any reference objects with strongly-reachable
4563   // referents.
4564   if (clean_refs) {
4565     CMSPrecleanRefsYieldClosure yield_cl(this);
4566     assert(rp->span().equals(_span), "Spans should be equal");
4567     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4568                                    &_markStack, &_revisitStack,
4569                                    true /* preclean */);
4570     CMSDrainMarkingStackClosure complete_trace(this,
4571                                    _span, &_markBitMap, &_markStack,
4572                                    &keep_alive, true /* preclean */);
4573 
4574     // We don't want this step to interfere with a young
4575     // collection because we don't want to take CPU
4576     // or memory bandwidth away from the young GC threads
4577     // (which may be as many as there are CPUs).
4578     // Note that we don't need to protect ourselves from
4579     // interference with mutators because they can't
4580     // manipulate the discovered reference lists nor affect
4581     // the computed reachability of the referents, the
4582     // only properties manipulated by the precleaning
4583     // of these reference lists.
4584     stopTimer();
4585     CMSTokenSyncWithLocks x(true /* is cms thread */,
4586                             bitMapLock());
4587     startTimer();
4588     sample_eden();
4589 
4590     // The following will yield to allow foreground
4591     // collection to proceed promptly. XXX YSR:
4592     // The code in this method may need further
4593     // tweaking for better performance and some restructuring
4594     // for cleaner interfaces.
4595     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4596     rp->preclean_discovered_references(
4597           rp->is_alive_non_header(), &keep_alive, &complete_trace,
4598           &yield_cl, should_unload_classes(), gc_timer);
4599   }
4600 
4601   if (clean_survivor) {  // preclean the active survivor space(s)
4602     assert(_young_gen->kind() == Generation::DefNew ||
4603            _young_gen->kind() == Generation::ParNew ||
4604            _young_gen->kind() == Generation::ASParNew,
4605          "incorrect type for cast");
4606     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4607     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4608                              &_markBitMap, &_modUnionTable,
4609                              &_markStack, &_revisitStack,
4610                              true /* precleaning phase */);
4611     stopTimer();
4612     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4613                              bitMapLock());
4614     startTimer();
4615     unsigned int before_count =
4616       GenCollectedHeap::heap()->total_collections();
4617     SurvivorSpacePrecleanClosure
4618       sss_cl(this, _span, &_markBitMap, &_markStack,
4619              &pam_cl, before_count, CMSYield);
4620     DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4621     dng->from()->object_iterate_careful(&sss_cl);
4622     dng->to()->object_iterate_careful(&sss_cl);
4623   }
4624   MarkRefsIntoAndScanClosure
4625     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4626              &_markStack, &_revisitStack, this, CMSYield,
4627              true /* precleaning phase */);
4628   // CAUTION: The following closure has persistent state that may need to
4629   // be reset upon a decrease in the sequence of addresses it
4630   // processes.
4631   ScanMarkedObjectsAgainCarefullyClosure
4632     smoac_cl(this, _span,
4633       &_markBitMap, &_markStack, &_revisitStack, &mrias_cl, CMSYield);
4634 
4635   // Preclean dirty cards in ModUnionTable and CardTable using
4636   // appropriate convergence criterion;
4637   // repeat CMSPrecleanIter times unless we find that
4638   // we are losing.
4639   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4640   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4641          "Bad convergence multiplier");
4642   assert(CMSPrecleanThreshold >= 100,
4643          "Unreasonably low CMSPrecleanThreshold");
4644 
4645   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4646   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4647        numIter < CMSPrecleanIter;
4648        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4649     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4650     if (CMSPermGenPrecleaningEnabled) {
4651       curNumCards  += preclean_mod_union_table(_permGen, &smoac_cl);
4652     }
4653     if (Verbose && PrintGCDetails) {
4654       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4655     }
4656     // Either there are very few dirty cards, so re-mark
4657     // pause will be small anyway, or our pre-cleaning isn't
4658     // that much faster than the rate at which cards are being
4659     // dirtied, so we might as well stop and re-mark since
4660     // precleaning won't improve our re-mark time by much.
4661     if (curNumCards <= CMSPrecleanThreshold ||
4662         (numIter > 0 &&
4663          (curNumCards * CMSPrecleanDenominator >
4664          lastNumCards * CMSPrecleanNumerator))) {
4665       numIter++;
4666       cumNumCards += curNumCards;
4667       break;
4668     }
4669   }
4670   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4671   if (CMSPermGenPrecleaningEnabled) {
4672     curNumCards += preclean_card_table(_permGen, &smoac_cl);
4673   }
4674   cumNumCards += curNumCards;
4675   if (PrintGCDetails && PrintCMSStatistics != 0) {
4676     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4677                   curNumCards, cumNumCards, numIter);
4678   }
4679   return cumNumCards;   // as a measure of useful work done
4680 }
4681 
4682 // PRECLEANING NOTES:
4683 // Precleaning involves:
4684 // . reading the bits of the modUnionTable and clearing the set bits.
4685 // . For the cards corresponding to the set bits, we scan the
4686 //   objects on those cards. This means we need the free_list_lock
4687 //   so that we can safely iterate over the CMS space when scanning
4688 //   for oops.
4689 // . When we scan the objects, we'll be both reading and setting
4690 //   marks in the marking bit map, so we'll need the marking bit map.
4691 // . For protecting _collector_state transitions, we take the CGC_lock.
4692 //   Note that any races in the reading of of card table entries by the
4693 //   CMS thread on the one hand and the clearing of those entries by the
4694 //   VM thread or the setting of those entries by the mutator threads on the
4695 //   other are quite benign. However, for efficiency it makes sense to keep
4696 //   the VM thread from racing with the CMS thread while the latter is
4697 //   dirty card info to the modUnionTable. We therefore also use the
4698 //   CGC_lock to protect the reading of the card table and the mod union
4699 //   table by the CM thread.
4700 // . We run concurrently with mutator updates, so scanning
4701 //   needs to be done carefully  -- we should not try to scan
4702 //   potentially uninitialized objects.
4703 //
4704 // Locking strategy: While holding the CGC_lock, we scan over and
4705 // reset a maximal dirty range of the mod union / card tables, then lock
4706 // the free_list_lock and bitmap lock to do a full marking, then
4707 // release these locks; and repeat the cycle. This allows for a
4708 // certain amount of fairness in the sharing of these locks between
4709 // the CMS collector on the one hand, and the VM thread and the
4710 // mutators on the other.
4711 
4712 // NOTE: preclean_mod_union_table() and preclean_card_table()
4713 // further below are largely identical; if you need to modify
4714 // one of these methods, please check the other method too.
4715 
4716 size_t CMSCollector::preclean_mod_union_table(
4717   ConcurrentMarkSweepGeneration* gen,
4718   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4719   verify_work_stacks_empty();
4720   verify_overflow_empty();
4721 
4722   // Turn off checking for this method but turn it back on
4723   // selectively.  There are yield points in this method
4724   // but it is difficult to turn the checking off just around
4725   // the yield points.  It is simpler to selectively turn
4726   // it on.
4727   DEBUG_ONLY(RememberKlassesChecker mux(false);)
4728 
4729   // strategy: starting with the first card, accumulate contiguous
4730   // ranges of dirty cards; clear these cards, then scan the region
4731   // covered by these cards.
4732 
4733   // Since all of the MUT is committed ahead, we can just use
4734   // that, in case the generations expand while we are precleaning.
4735   // It might also be fine to just use the committed part of the
4736   // generation, but we might potentially miss cards when the
4737   // generation is rapidly expanding while we are in the midst
4738   // of precleaning.
4739   HeapWord* startAddr = gen->reserved().start();
4740   HeapWord* endAddr   = gen->reserved().end();
4741 
4742   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4743 
4744   size_t numDirtyCards, cumNumDirtyCards;
4745   HeapWord *nextAddr, *lastAddr;
4746   for (cumNumDirtyCards = numDirtyCards = 0,
4747        nextAddr = lastAddr = startAddr;
4748        nextAddr < endAddr;
4749        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4750 
4751     ResourceMark rm;
4752     HandleMark   hm;
4753 
4754     MemRegion dirtyRegion;
4755     {
4756       stopTimer();
4757       // Potential yield point
4758       CMSTokenSync ts(true);
4759       startTimer();
4760       sample_eden();
4761       // Get dirty region starting at nextOffset (inclusive),
4762       // simultaneously clearing it.
4763       dirtyRegion =
4764         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4765       assert(dirtyRegion.start() >= nextAddr,
4766              "returned region inconsistent?");
4767     }
4768     // Remember where the next search should begin.
4769     // The returned region (if non-empty) is a right open interval,
4770     // so lastOffset is obtained from the right end of that
4771     // interval.
4772     lastAddr = dirtyRegion.end();
4773     // Should do something more transparent and less hacky XXX
4774     numDirtyCards =
4775       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4776 
4777     // We'll scan the cards in the dirty region (with periodic
4778     // yields for foreground GC as needed).
4779     if (!dirtyRegion.is_empty()) {
4780       assert(numDirtyCards > 0, "consistency check");
4781       HeapWord* stop_point = NULL;
4782       stopTimer();
4783       // Potential yield point
4784       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4785                                bitMapLock());
4786       startTimer();
4787       {
4788         verify_work_stacks_empty();
4789         verify_overflow_empty();
4790         sample_eden();
4791         DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4792         stop_point =
4793           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4794       }
4795       if (stop_point != NULL) {
4796         // The careful iteration stopped early either because it found an
4797         // uninitialized object, or because we were in the midst of an
4798         // "abortable preclean", which should now be aborted. Redirty
4799         // the bits corresponding to the partially-scanned or unscanned
4800         // cards. We'll either restart at the next block boundary or
4801         // abort the preclean.
4802         assert((CMSPermGenPrecleaningEnabled && (gen == _permGen)) ||
4803                (_collectorState == AbortablePreclean && should_abort_preclean()),
4804                "Unparsable objects should only be in perm gen.");
4805         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4806         if (should_abort_preclean()) {
4807           break; // out of preclean loop
4808         } else {
4809           // Compute the next address at which preclean should pick up;
4810           // might need bitMapLock in order to read P-bits.
4811           lastAddr = next_card_start_after_block(stop_point);
4812         }
4813       }
4814     } else {
4815       assert(lastAddr == endAddr, "consistency check");
4816       assert(numDirtyCards == 0, "consistency check");
4817       break;
4818     }
4819   }
4820   verify_work_stacks_empty();
4821   verify_overflow_empty();
4822   return cumNumDirtyCards;
4823 }
4824 
4825 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4826 // below are largely identical; if you need to modify
4827 // one of these methods, please check the other method too.
4828 
4829 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4830   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4831   // strategy: it's similar to precleamModUnionTable above, in that
4832   // we accumulate contiguous ranges of dirty cards, mark these cards
4833   // precleaned, then scan the region covered by these cards.
4834   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4835   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4836 
4837   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4838 
4839   size_t numDirtyCards, cumNumDirtyCards;
4840   HeapWord *lastAddr, *nextAddr;
4841 
4842   for (cumNumDirtyCards = numDirtyCards = 0,
4843        nextAddr = lastAddr = startAddr;
4844        nextAddr < endAddr;
4845        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4846 
4847     ResourceMark rm;
4848     HandleMark   hm;
4849 
4850     MemRegion dirtyRegion;
4851     {
4852       // See comments in "Precleaning notes" above on why we
4853       // do this locking. XXX Could the locking overheads be
4854       // too high when dirty cards are sparse? [I don't think so.]
4855       stopTimer();
4856       CMSTokenSync x(true); // is cms thread
4857       startTimer();
4858       sample_eden();
4859       // Get and clear dirty region from card table
4860       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4861                                     MemRegion(nextAddr, endAddr),
4862                                     true,
4863                                     CardTableModRefBS::precleaned_card_val());
4864 
4865       assert(dirtyRegion.start() >= nextAddr,
4866              "returned region inconsistent?");
4867     }
4868     lastAddr = dirtyRegion.end();
4869     numDirtyCards =
4870       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4871 
4872     if (!dirtyRegion.is_empty()) {
4873       stopTimer();
4874       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4875       startTimer();
4876       sample_eden();
4877       verify_work_stacks_empty();
4878       verify_overflow_empty();
4879       DEBUG_ONLY(RememberKlassesChecker mx(should_unload_classes());)
4880       HeapWord* stop_point =
4881         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4882       if (stop_point != NULL) {
4883         // The careful iteration stopped early because it found an
4884         // uninitialized object.  Redirty the bits corresponding to the
4885         // partially-scanned or unscanned cards, and start again at the
4886         // next block boundary.
4887         assert(CMSPermGenPrecleaningEnabled ||
4888                (_collectorState == AbortablePreclean && should_abort_preclean()),
4889                "Unparsable objects should only be in perm gen.");
4890         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4891         if (should_abort_preclean()) {
4892           break; // out of preclean loop
4893         } else {
4894           // Compute the next address at which preclean should pick up.
4895           lastAddr = next_card_start_after_block(stop_point);
4896         }
4897       }
4898     } else {
4899       break;
4900     }
4901   }
4902   verify_work_stacks_empty();
4903   verify_overflow_empty();
4904   return cumNumDirtyCards;
4905 }
4906 
4907 void CMSCollector::checkpointRootsFinal(bool asynch,
4908   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4909   assert(_collectorState == FinalMarking, "incorrect state transition?");
4910   check_correct_thread_executing();
4911   // world is stopped at this checkpoint
4912   assert(SafepointSynchronize::is_at_safepoint(),
4913          "world should be stopped");
4914   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
4915 
4916   verify_work_stacks_empty();
4917   verify_overflow_empty();
4918 
4919   SpecializationStats::clear();
4920   if (PrintGCDetails) {
4921     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
4922                         _young_gen->used() / K,
4923                         _young_gen->capacity() / K);
4924   }
4925   if (asynch) {
4926     if (CMSScavengeBeforeRemark) {
4927       GenCollectedHeap* gch = GenCollectedHeap::heap();
4928       // Temporarily set flag to false, GCH->do_collection will
4929       // expect it to be false and set to true
4930       FlagSetting fl(gch->_is_gc_active, false);
4931       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
4932         PrintGCDetails && Verbose, true, _gc_timer_cm);)
4933       int level = _cmsGen->level() - 1;
4934       if (level >= 0) {
4935         gch->do_collection(true,        // full (i.e. force, see below)
4936                            false,       // !clear_all_soft_refs
4937                            0,           // size
4938                            false,       // is_tlab
4939                            level        // max_level
4940                           );
4941       }
4942     }
4943     FreelistLocker x(this);
4944     MutexLockerEx y(bitMapLock(),
4945                     Mutex::_no_safepoint_check_flag);
4946     assert(!init_mark_was_synchronous, "but that's impossible!");
4947     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
4948   } else {
4949     // already have all the locks
4950     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
4951                              init_mark_was_synchronous);
4952   }
4953   verify_work_stacks_empty();
4954   verify_overflow_empty();
4955   SpecializationStats::print();
4956 }
4957 
4958 void CMSCollector::checkpointRootsFinalWork(bool asynch,
4959   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
4960 
4961   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
4962 
4963   assert(haveFreelistLocks(), "must have free list locks");
4964   assert_lock_strong(bitMapLock());
4965 
4966   if (UseAdaptiveSizePolicy) {
4967     size_policy()->checkpoint_roots_final_begin();
4968   }
4969 
4970   ResourceMark rm;
4971   HandleMark   hm;
4972 
4973   GenCollectedHeap* gch = GenCollectedHeap::heap();
4974 
4975   if (should_unload_classes()) {
4976     CodeCache::gc_prologue();
4977   }
4978   assert(haveFreelistLocks(), "must have free list locks");
4979   assert_lock_strong(bitMapLock());
4980 
4981   DEBUG_ONLY(RememberKlassesChecker fmx(should_unload_classes());)
4982   if (!init_mark_was_synchronous) {
4983     // We might assume that we need not fill TLAB's when
4984     // CMSScavengeBeforeRemark is set, because we may have just done
4985     // a scavenge which would have filled all TLAB's -- and besides
4986     // Eden would be empty. This however may not always be the case --
4987     // for instance although we asked for a scavenge, it may not have
4988     // happened because of a JNI critical section. We probably need
4989     // a policy for deciding whether we can in that case wait until
4990     // the critical section releases and then do the remark following
4991     // the scavenge, and skip it here. In the absence of that policy,
4992     // or of an indication of whether the scavenge did indeed occur,
4993     // we cannot rely on TLAB's having been filled and must do
4994     // so here just in case a scavenge did not happen.
4995     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4996     // Update the saved marks which may affect the root scans.
4997     gch->save_marks();
4998 
4999     {
5000       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5001 
5002       // Note on the role of the mod union table:
5003       // Since the marker in "markFromRoots" marks concurrently with
5004       // mutators, it is possible for some reachable objects not to have been
5005       // scanned. For instance, an only reference to an object A was
5006       // placed in object B after the marker scanned B. Unless B is rescanned,
5007       // A would be collected. Such updates to references in marked objects
5008       // are detected via the mod union table which is the set of all cards
5009       // dirtied since the first checkpoint in this GC cycle and prior to
5010       // the most recent young generation GC, minus those cleaned up by the
5011       // concurrent precleaning.
5012       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5013         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5014         do_remark_parallel();
5015       } else {
5016         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5017                     _gc_timer_cm);
5018         do_remark_non_parallel();
5019       }
5020     }
5021   } else {
5022     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5023     // The initial mark was stop-world, so there's no rescanning to
5024     // do; go straight on to the next step below.
5025   }
5026   verify_work_stacks_empty();
5027   verify_overflow_empty();
5028 
5029   {
5030     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5031     refProcessingWork(asynch, clear_all_soft_refs);
5032   }
5033   verify_work_stacks_empty();
5034   verify_overflow_empty();
5035 
5036   if (should_unload_classes()) {
5037     CodeCache::gc_epilogue();
5038   }
5039   JvmtiExport::gc_epilogue();
5040 
5041   // If we encountered any (marking stack / work queue) overflow
5042   // events during the current CMS cycle, take appropriate
5043   // remedial measures, where possible, so as to try and avoid
5044   // recurrence of that condition.
5045   assert(_markStack.isEmpty(), "No grey objects");
5046   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5047                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5048   if (ser_ovflw > 0) {
5049     if (PrintCMSStatistics != 0) {
5050       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5051         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5052         ", kac_preclean="SIZE_FORMAT")",
5053         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5054         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5055     }
5056     _markStack.expand();
5057     _ser_pmc_remark_ovflw = 0;
5058     _ser_pmc_preclean_ovflw = 0;
5059     _ser_kac_preclean_ovflw = 0;
5060     _ser_kac_ovflw = 0;
5061   }
5062   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5063     if (PrintCMSStatistics != 0) {
5064       gclog_or_tty->print_cr("Work queue overflow (benign) "
5065         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5066         _par_pmc_remark_ovflw, _par_kac_ovflw);
5067     }
5068     _par_pmc_remark_ovflw = 0;
5069     _par_kac_ovflw = 0;
5070   }
5071   if (PrintCMSStatistics != 0) {
5072      if (_markStack._hit_limit > 0) {
5073        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5074                               _markStack._hit_limit);
5075      }
5076      if (_markStack._failed_double > 0) {
5077        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5078                               " current capacity "SIZE_FORMAT,
5079                               _markStack._failed_double,
5080                               _markStack.capacity());
5081      }
5082   }
5083   _markStack._hit_limit = 0;
5084   _markStack._failed_double = 0;
5085 
5086   // Check that all the klasses have been checked
5087   assert(_revisitStack.isEmpty(), "Not all klasses revisited");
5088 
5089   if ((VerifyAfterGC || VerifyDuringGC) &&
5090       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5091     verify_after_remark();
5092   }
5093 
5094   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5095 
5096   // Change under the freelistLocks.
5097   _collectorState = Sweeping;
5098   // Call isAllClear() under bitMapLock
5099   assert(_modUnionTable.isAllClear(), "Should be clear by end of the"
5100     " final marking");
5101   if (UseAdaptiveSizePolicy) {
5102     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5103   }
5104 }
5105 
5106 // Parallel remark task
5107 class CMSParRemarkTask: public AbstractGangTask {
5108   CMSCollector* _collector;
5109   int           _n_workers;
5110   CompactibleFreeListSpace* _cms_space;
5111   CompactibleFreeListSpace* _perm_space;
5112 
5113   // The per-thread work queues, available here for stealing.
5114   OopTaskQueueSet*       _task_queues;
5115   ParallelTaskTerminator _term;
5116 
5117  public:
5118   // A value of 0 passed to n_workers will cause the number of
5119   // workers to be taken from the active workers in the work gang.
5120   CMSParRemarkTask(CMSCollector* collector,
5121                    CompactibleFreeListSpace* cms_space,
5122                    CompactibleFreeListSpace* perm_space,
5123                    int n_workers, FlexibleWorkGang* workers,
5124                    OopTaskQueueSet* task_queues):
5125     AbstractGangTask("Rescan roots and grey objects in parallel"),
5126     _collector(collector),
5127     _cms_space(cms_space), _perm_space(perm_space),
5128     _n_workers(n_workers),
5129     _task_queues(task_queues),
5130     _term(n_workers, task_queues) { }
5131 
5132   OopTaskQueueSet* task_queues() { return _task_queues; }
5133 
5134   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5135 
5136   ParallelTaskTerminator* terminator() { return &_term; }
5137   int n_workers() { return _n_workers; }
5138 
5139   void work(uint worker_id);
5140 
5141  private:
5142   // Work method in support of parallel rescan ... of young gen spaces
5143   void do_young_space_rescan(int i, Par_MarkRefsIntoAndScanClosure* cl,
5144                              ContiguousSpace* space,
5145                              HeapWord** chunk_array, size_t chunk_top);
5146 
5147   // ... of  dirty cards in old space
5148   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5149                                   Par_MarkRefsIntoAndScanClosure* cl);
5150 
5151   // ... work stealing for the above
5152   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5153 };
5154 
5155 // work_queue(i) is passed to the closure
5156 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5157 // also is passed to do_dirty_card_rescan_tasks() and to
5158 // do_work_steal() to select the i-th task_queue.
5159 
5160 void CMSParRemarkTask::work(uint worker_id) {
5161   elapsedTimer _timer;
5162   ResourceMark rm;
5163   HandleMark   hm;
5164 
5165   // ---------- rescan from roots --------------
5166   _timer.start();
5167   GenCollectedHeap* gch = GenCollectedHeap::heap();
5168   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5169     _collector->_span, _collector->ref_processor(),
5170     &(_collector->_markBitMap),
5171     work_queue(worker_id), &(_collector->_revisitStack));
5172 
5173   // Rescan young gen roots first since these are likely
5174   // coarsely partitioned and may, on that account, constitute
5175   // the critical path; thus, it's best to start off that
5176   // work first.
5177   // ---------- young gen roots --------------
5178   {
5179     DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5180     EdenSpace* eden_space = dng->eden();
5181     ContiguousSpace* from_space = dng->from();
5182     ContiguousSpace* to_space   = dng->to();
5183 
5184     HeapWord** eca = _collector->_eden_chunk_array;
5185     size_t     ect = _collector->_eden_chunk_index;
5186     HeapWord** sca = _collector->_survivor_chunk_array;
5187     size_t     sct = _collector->_survivor_chunk_index;
5188 
5189     assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5190     assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5191 
5192     do_young_space_rescan(worker_id, &par_mrias_cl, to_space, NULL, 0);
5193     do_young_space_rescan(worker_id, &par_mrias_cl, from_space, sca, sct);
5194     do_young_space_rescan(worker_id, &par_mrias_cl, eden_space, eca, ect);
5195 
5196     _timer.stop();
5197     if (PrintCMSStatistics != 0) {
5198       gclog_or_tty->print_cr(
5199         "Finished young gen rescan work in %dth thread: %3.3f sec",
5200         worker_id, _timer.seconds());
5201     }
5202   }
5203 
5204   // ---------- remaining roots --------------
5205   _timer.reset();
5206   _timer.start();
5207   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5208                                 false,     // yg was scanned above
5209                                 false,     // this is parallel code
5210                                 true,      // collecting perm gen
5211                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5212                                 &par_mrias_cl,
5213                                 true,   // walk all of code cache if (so & SO_CodeCache)
5214                                 NULL);
5215   assert(_collector->should_unload_classes()
5216          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5217          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5218   _timer.stop();
5219   if (PrintCMSStatistics != 0) {
5220     gclog_or_tty->print_cr(
5221       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5222       worker_id, _timer.seconds());
5223   }
5224 
5225   // ---------- rescan dirty cards ------------
5226   _timer.reset();
5227   _timer.start();
5228 
5229   // Do the rescan tasks for each of the two spaces
5230   // (cms_space and perm_space) in turn.
5231   // "worker_id" is passed to select the task_queue for "worker_id"
5232   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5233   do_dirty_card_rescan_tasks(_perm_space, worker_id, &par_mrias_cl);
5234   _timer.stop();
5235   if (PrintCMSStatistics != 0) {
5236     gclog_or_tty->print_cr(
5237       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5238       worker_id, _timer.seconds());
5239   }
5240 
5241   // ---------- steal work from other threads ...
5242   // ---------- ... and drain overflow list.
5243   _timer.reset();
5244   _timer.start();
5245   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5246   _timer.stop();
5247   if (PrintCMSStatistics != 0) {
5248     gclog_or_tty->print_cr(
5249       "Finished work stealing in %dth thread: %3.3f sec",
5250       worker_id, _timer.seconds());
5251   }
5252 }
5253 
5254 // Note that parameter "i" is not used.
5255 void
5256 CMSParRemarkTask::do_young_space_rescan(int i,
5257   Par_MarkRefsIntoAndScanClosure* cl, ContiguousSpace* space,
5258   HeapWord** chunk_array, size_t chunk_top) {
5259   // Until all tasks completed:
5260   // . claim an unclaimed task
5261   // . compute region boundaries corresponding to task claimed
5262   //   using chunk_array
5263   // . par_oop_iterate(cl) over that region
5264 
5265   ResourceMark rm;
5266   HandleMark   hm;
5267 
5268   SequentialSubTasksDone* pst = space->par_seq_tasks();
5269   assert(pst->valid(), "Uninitialized use?");
5270 
5271   uint nth_task = 0;
5272   uint n_tasks  = pst->n_tasks();
5273 
5274   HeapWord *start, *end;
5275   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5276     // We claimed task # nth_task; compute its boundaries.
5277     if (chunk_top == 0) {  // no samples were taken
5278       assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5279       start = space->bottom();
5280       end   = space->top();
5281     } else if (nth_task == 0) {
5282       start = space->bottom();
5283       end   = chunk_array[nth_task];
5284     } else if (nth_task < (uint)chunk_top) {
5285       assert(nth_task >= 1, "Control point invariant");
5286       start = chunk_array[nth_task - 1];
5287       end   = chunk_array[nth_task];
5288     } else {
5289       assert(nth_task == (uint)chunk_top, "Control point invariant");
5290       start = chunk_array[chunk_top - 1];
5291       end   = space->top();
5292     }
5293     MemRegion mr(start, end);
5294     // Verify that mr is in space
5295     assert(mr.is_empty() || space->used_region().contains(mr),
5296            "Should be in space");
5297     // Verify that "start" is an object boundary
5298     assert(mr.is_empty() || oop(mr.start())->is_oop(),
5299            "Should be an oop");
5300     space->par_oop_iterate(mr, cl);
5301   }
5302   pst->all_tasks_completed();
5303 }
5304 
5305 void
5306 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5307   CompactibleFreeListSpace* sp, int i,
5308   Par_MarkRefsIntoAndScanClosure* cl) {
5309   // Until all tasks completed:
5310   // . claim an unclaimed task
5311   // . compute region boundaries corresponding to task claimed
5312   // . transfer dirty bits ct->mut for that region
5313   // . apply rescanclosure to dirty mut bits for that region
5314 
5315   ResourceMark rm;
5316   HandleMark   hm;
5317 
5318   OopTaskQueue* work_q = work_queue(i);
5319   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5320   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5321   // CAUTION: This closure has state that persists across calls to
5322   // the work method dirty_range_iterate_clear() in that it has
5323   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5324   // use of that state in the imbedded UpwardsObjectClosure instance
5325   // assumes that the cards are always iterated (even if in parallel
5326   // by several threads) in monotonically increasing order per each
5327   // thread. This is true of the implementation below which picks
5328   // card ranges (chunks) in monotonically increasing order globally
5329   // and, a-fortiori, in monotonically increasing order per thread
5330   // (the latter order being a subsequence of the former).
5331   // If the work code below is ever reorganized into a more chaotic
5332   // work-partitioning form than the current "sequential tasks"
5333   // paradigm, the use of that persistent state will have to be
5334   // revisited and modified appropriately. See also related
5335   // bug 4756801 work on which should examine this code to make
5336   // sure that the changes there do not run counter to the
5337   // assumptions made here and necessary for correctness and
5338   // efficiency. Note also that this code might yield inefficient
5339   // behaviour in the case of very large objects that span one or
5340   // more work chunks. Such objects would potentially be scanned
5341   // several times redundantly. Work on 4756801 should try and
5342   // address that performance anomaly if at all possible. XXX
5343   MemRegion  full_span  = _collector->_span;
5344   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5345   CMSMarkStack* rs = &(_collector->_revisitStack);   // shared
5346   MarkFromDirtyCardsClosure
5347     greyRescanClosure(_collector, full_span, // entire span of interest
5348                       sp, bm, work_q, rs, cl);
5349 
5350   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5351   assert(pst->valid(), "Uninitialized use?");
5352   uint nth_task = 0;
5353   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5354   MemRegion span = sp->used_region();
5355   HeapWord* start_addr = span.start();
5356   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5357                                            alignment);
5358   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5359   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5360          start_addr, "Check alignment");
5361   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5362          chunk_size, "Check alignment");
5363 
5364   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5365     // Having claimed the nth_task, compute corresponding mem-region,
5366     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5367     // The alignment restriction ensures that we do not need any
5368     // synchronization with other gang-workers while setting or
5369     // clearing bits in thus chunk of the MUT.
5370     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5371                                     start_addr + (nth_task+1)*chunk_size);
5372     // The last chunk's end might be way beyond end of the
5373     // used region. In that case pull back appropriately.
5374     if (this_span.end() > end_addr) {
5375       this_span.set_end(end_addr);
5376       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5377     }
5378     // Iterate over the dirty cards covering this chunk, marking them
5379     // precleaned, and setting the corresponding bits in the mod union
5380     // table. Since we have been careful to partition at Card and MUT-word
5381     // boundaries no synchronization is needed between parallel threads.
5382     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5383                                                  &modUnionClosure);
5384 
5385     // Having transferred these marks into the modUnionTable,
5386     // rescan the marked objects on the dirty cards in the modUnionTable.
5387     // Even if this is at a synchronous collection, the initial marking
5388     // may have been done during an asynchronous collection so there
5389     // may be dirty bits in the mod-union table.
5390     _collector->_modUnionTable.dirty_range_iterate_clear(
5391                   this_span, &greyRescanClosure);
5392     _collector->_modUnionTable.verifyNoOneBitsInRange(
5393                                  this_span.start(),
5394                                  this_span.end());
5395   }
5396   pst->all_tasks_completed();  // declare that i am done
5397 }
5398 
5399 // . see if we can share work_queues with ParNew? XXX
5400 void
5401 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5402                                 int* seed) {
5403   OopTaskQueue* work_q = work_queue(i);
5404   NOT_PRODUCT(int num_steals = 0;)
5405   oop obj_to_scan;
5406   CMSBitMap* bm = &(_collector->_markBitMap);
5407 
5408   while (true) {
5409     // Completely finish any left over work from (an) earlier round(s)
5410     cl->trim_queue(0);
5411     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5412                                          (size_t)ParGCDesiredObjsFromOverflowList);
5413     // Now check if there's any work in the overflow list
5414     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5415     // only affects the number of attempts made to get work from the
5416     // overflow list and does not affect the number of workers.  Just
5417     // pass ParallelGCThreads so this behavior is unchanged.
5418     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5419                                                 work_q,
5420                                                 ParallelGCThreads)) {
5421       // found something in global overflow list;
5422       // not yet ready to go stealing work from others.
5423       // We'd like to assert(work_q->size() != 0, ...)
5424       // because we just took work from the overflow list,
5425       // but of course we can't since all of that could have
5426       // been already stolen from us.
5427       // "He giveth and He taketh away."
5428       continue;
5429     }
5430     // Verify that we have no work before we resort to stealing
5431     assert(work_q->size() == 0, "Have work, shouldn't steal");
5432     // Try to steal from other queues that have work
5433     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5434       NOT_PRODUCT(num_steals++;)
5435       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5436       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5437       // Do scanning work
5438       obj_to_scan->oop_iterate(cl);
5439       // Loop around, finish this work, and try to steal some more
5440     } else if (terminator()->offer_termination()) {
5441         break;  // nirvana from the infinite cycle
5442     }
5443   }
5444   NOT_PRODUCT(
5445     if (PrintCMSStatistics != 0) {
5446       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5447     }
5448   )
5449   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5450          "Else our work is not yet done");
5451 }
5452 
5453 // Return a thread-local PLAB recording array, as appropriate.
5454 void* CMSCollector::get_data_recorder(int thr_num) {
5455   if (_survivor_plab_array != NULL &&
5456       (CMSPLABRecordAlways ||
5457        (_collectorState > Marking && _collectorState < FinalMarking))) {
5458     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5459     ChunkArray* ca = &_survivor_plab_array[thr_num];
5460     ca->reset();   // clear it so that fresh data is recorded
5461     return (void*) ca;
5462   } else {
5463     return NULL;
5464   }
5465 }
5466 
5467 // Reset all the thread-local PLAB recording arrays
5468 void CMSCollector::reset_survivor_plab_arrays() {
5469   for (uint i = 0; i < ParallelGCThreads; i++) {
5470     _survivor_plab_array[i].reset();
5471   }
5472 }
5473 
5474 // Merge the per-thread plab arrays into the global survivor chunk
5475 // array which will provide the partitioning of the survivor space
5476 // for CMS rescan.
5477 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5478                                               int no_of_gc_threads) {
5479   assert(_survivor_plab_array  != NULL, "Error");
5480   assert(_survivor_chunk_array != NULL, "Error");
5481   assert(_collectorState == FinalMarking, "Error");
5482   for (int j = 0; j < no_of_gc_threads; j++) {
5483     _cursor[j] = 0;
5484   }
5485   HeapWord* top = surv->top();
5486   size_t i;
5487   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5488     HeapWord* min_val = top;          // Higher than any PLAB address
5489     uint      min_tid = 0;            // position of min_val this round
5490     for (int j = 0; j < no_of_gc_threads; j++) {
5491       ChunkArray* cur_sca = &_survivor_plab_array[j];
5492       if (_cursor[j] == cur_sca->end()) {
5493         continue;
5494       }
5495       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5496       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5497       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5498       if (cur_val < min_val) {
5499         min_tid = j;
5500         min_val = cur_val;
5501       } else {
5502         assert(cur_val < top, "All recorded addresses should be less");
5503       }
5504     }
5505     // At this point min_val and min_tid are respectively
5506     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5507     // and the thread (j) that witnesses that address.
5508     // We record this address in the _survivor_chunk_array[i]
5509     // and increment _cursor[min_tid] prior to the next round i.
5510     if (min_val == top) {
5511       break;
5512     }
5513     _survivor_chunk_array[i] = min_val;
5514     _cursor[min_tid]++;
5515   }
5516   // We are all done; record the size of the _survivor_chunk_array
5517   _survivor_chunk_index = i; // exclusive: [0, i)
5518   if (PrintCMSStatistics > 0) {
5519     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5520   }
5521   // Verify that we used up all the recorded entries
5522   #ifdef ASSERT
5523     size_t total = 0;
5524     for (int j = 0; j < no_of_gc_threads; j++) {
5525       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5526       total += _cursor[j];
5527     }
5528     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5529     // Check that the merged array is in sorted order
5530     if (total > 0) {
5531       for (size_t i = 0; i < total - 1; i++) {
5532         if (PrintCMSStatistics > 0) {
5533           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5534                               i, _survivor_chunk_array[i]);
5535         }
5536         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5537                "Not sorted");
5538       }
5539     }
5540   #endif // ASSERT
5541 }
5542 
5543 // Set up the space's par_seq_tasks structure for work claiming
5544 // for parallel rescan of young gen.
5545 // See ParRescanTask where this is currently used.
5546 void
5547 CMSCollector::
5548 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5549   assert(n_threads > 0, "Unexpected n_threads argument");
5550   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5551 
5552   // Eden space
5553   {
5554     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5555     assert(!pst->valid(), "Clobbering existing data?");
5556     // Each valid entry in [0, _eden_chunk_index) represents a task.
5557     size_t n_tasks = _eden_chunk_index + 1;
5558     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5559     // Sets the condition for completion of the subtask (how many threads
5560     // need to finish in order to be done).
5561     pst->set_n_threads(n_threads);
5562     pst->set_n_tasks((int)n_tasks);
5563   }
5564 
5565   // Merge the survivor plab arrays into _survivor_chunk_array
5566   if (_survivor_plab_array != NULL) {
5567     merge_survivor_plab_arrays(dng->from(), n_threads);
5568   } else {
5569     assert(_survivor_chunk_index == 0, "Error");
5570   }
5571 
5572   // To space
5573   {
5574     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5575     assert(!pst->valid(), "Clobbering existing data?");
5576     // Sets the condition for completion of the subtask (how many threads
5577     // need to finish in order to be done).
5578     pst->set_n_threads(n_threads);
5579     pst->set_n_tasks(1);
5580     assert(pst->valid(), "Error");
5581   }
5582 
5583   // From space
5584   {
5585     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5586     assert(!pst->valid(), "Clobbering existing data?");
5587     size_t n_tasks = _survivor_chunk_index + 1;
5588     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5589     // Sets the condition for completion of the subtask (how many threads
5590     // need to finish in order to be done).
5591     pst->set_n_threads(n_threads);
5592     pst->set_n_tasks((int)n_tasks);
5593     assert(pst->valid(), "Error");
5594   }
5595 }
5596 
5597 // Parallel version of remark
5598 void CMSCollector::do_remark_parallel() {
5599   GenCollectedHeap* gch = GenCollectedHeap::heap();
5600   FlexibleWorkGang* workers = gch->workers();
5601   assert(workers != NULL, "Need parallel worker threads.");
5602   // Choose to use the number of GC workers most recently set
5603   // into "active_workers".  If active_workers is not set, set it
5604   // to ParallelGCThreads.
5605   int n_workers = workers->active_workers();
5606   if (n_workers == 0) {
5607     assert(n_workers > 0, "Should have been set during scavenge");
5608     n_workers = ParallelGCThreads;
5609     workers->set_active_workers(n_workers);
5610   }
5611   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5612   CompactibleFreeListSpace* perm_space = _permGen->cmsSpace();
5613 
5614   CMSParRemarkTask tsk(this,
5615     cms_space, perm_space,
5616     n_workers, workers, task_queues());
5617 
5618   // Set up for parallel process_strong_roots work.
5619   gch->set_par_threads(n_workers);
5620   // We won't be iterating over the cards in the card table updating
5621   // the younger_gen cards, so we shouldn't call the following else
5622   // the verification code as well as subsequent younger_refs_iterate
5623   // code would get confused. XXX
5624   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5625 
5626   // The young gen rescan work will not be done as part of
5627   // process_strong_roots (which currently doesn't knw how to
5628   // parallelize such a scan), but rather will be broken up into
5629   // a set of parallel tasks (via the sampling that the [abortable]
5630   // preclean phase did of EdenSpace, plus the [two] tasks of
5631   // scanning the [two] survivor spaces. Further fine-grain
5632   // parallelization of the scanning of the survivor spaces
5633   // themselves, and of precleaning of the younger gen itself
5634   // is deferred to the future.
5635   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5636 
5637   // The dirty card rescan work is broken up into a "sequence"
5638   // of parallel tasks (per constituent space) that are dynamically
5639   // claimed by the parallel threads.
5640   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5641   perm_space->initialize_sequential_subtasks_for_rescan(n_workers);
5642 
5643   // It turns out that even when we're using 1 thread, doing the work in a
5644   // separate thread causes wide variance in run times.  We can't help this
5645   // in the multi-threaded case, but we special-case n=1 here to get
5646   // repeatable measurements of the 1-thread overhead of the parallel code.
5647   if (n_workers > 1) {
5648     // Make refs discovery MT-safe, if it isn't already: it may not
5649     // necessarily be so, since it's possible that we are doing
5650     // ST marking.
5651     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5652     GenCollectedHeap::StrongRootsScope srs(gch);
5653     workers->run_task(&tsk);
5654   } else {
5655     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5656     GenCollectedHeap::StrongRootsScope srs(gch);
5657     tsk.work(0);
5658   }
5659   gch->set_par_threads(0);  // 0 ==> non-parallel.
5660   // restore, single-threaded for now, any preserved marks
5661   // as a result of work_q overflow
5662   restore_preserved_marks_if_any();
5663 }
5664 
5665 // Non-parallel version of remark
5666 void CMSCollector::do_remark_non_parallel() {
5667   ResourceMark rm;
5668   HandleMark   hm;
5669   GenCollectedHeap* gch = GenCollectedHeap::heap();
5670   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5671 
5672   MarkRefsIntoAndScanClosure
5673     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
5674              &_markStack, &_revisitStack, this,
5675              false /* should_yield */, false /* not precleaning */);
5676   MarkFromDirtyCardsClosure
5677     markFromDirtyCardsClosure(this, _span,
5678                               NULL,  // space is set further below
5679                               &_markBitMap, &_markStack, &_revisitStack,
5680                               &mrias_cl);
5681   {
5682     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5683     // Iterate over the dirty cards, setting the corresponding bits in the
5684     // mod union table.
5685     {
5686       ModUnionClosure modUnionClosure(&_modUnionTable);
5687       _ct->ct_bs()->dirty_card_iterate(
5688                       _cmsGen->used_region(),
5689                       &modUnionClosure);
5690       _ct->ct_bs()->dirty_card_iterate(
5691                       _permGen->used_region(),
5692                       &modUnionClosure);
5693     }
5694     // Having transferred these marks into the modUnionTable, we just need
5695     // to rescan the marked objects on the dirty cards in the modUnionTable.
5696     // The initial marking may have been done during an asynchronous
5697     // collection so there may be dirty bits in the mod-union table.
5698     const int alignment =
5699       CardTableModRefBS::card_size * BitsPerWord;
5700     {
5701       // ... First handle dirty cards in CMS gen
5702       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5703       MemRegion ur = _cmsGen->used_region();
5704       HeapWord* lb = ur.start();
5705       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5706       MemRegion cms_span(lb, ub);
5707       _modUnionTable.dirty_range_iterate_clear(cms_span,
5708                                                &markFromDirtyCardsClosure);
5709       verify_work_stacks_empty();
5710       if (PrintCMSStatistics != 0) {
5711         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5712           markFromDirtyCardsClosure.num_dirty_cards());
5713       }
5714     }
5715     {
5716       // .. and then repeat for dirty cards in perm gen
5717       markFromDirtyCardsClosure.set_space(_permGen->cmsSpace());
5718       MemRegion ur = _permGen->used_region();
5719       HeapWord* lb = ur.start();
5720       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5721       MemRegion perm_span(lb, ub);
5722       _modUnionTable.dirty_range_iterate_clear(perm_span,
5723                                                &markFromDirtyCardsClosure);
5724       verify_work_stacks_empty();
5725       if (PrintCMSStatistics != 0) {
5726         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in perm gen) ",
5727           markFromDirtyCardsClosure.num_dirty_cards());
5728       }
5729     }
5730   }
5731   if (VerifyDuringGC &&
5732       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5733     HandleMark hm;  // Discard invalid handles created during verification
5734     Universe::verify();
5735   }
5736   {
5737     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5738 
5739     verify_work_stacks_empty();
5740 
5741     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5742     GenCollectedHeap::StrongRootsScope srs(gch);
5743     gch->gen_process_strong_roots(_cmsGen->level(),
5744                                   true,  // younger gens as roots
5745                                   false, // use the local StrongRootsScope
5746                                   true,  // collecting perm gen
5747                                   SharedHeap::ScanningOption(roots_scanning_options()),
5748                                   &mrias_cl,
5749                                   true,   // walk code active on stacks
5750                                   NULL);
5751     assert(should_unload_classes()
5752            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5753            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5754   }
5755   verify_work_stacks_empty();
5756   // Restore evacuated mark words, if any, used for overflow list links
5757   if (!CMSOverflowEarlyRestoration) {
5758     restore_preserved_marks_if_any();
5759   }
5760   verify_overflow_empty();
5761 }
5762 
5763 ////////////////////////////////////////////////////////
5764 // Parallel Reference Processing Task Proxy Class
5765 ////////////////////////////////////////////////////////
5766 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5767   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5768   CMSCollector*          _collector;
5769   CMSBitMap*             _mark_bit_map;
5770   const MemRegion        _span;
5771   ProcessTask&           _task;
5772 
5773 public:
5774   CMSRefProcTaskProxy(ProcessTask&     task,
5775                       CMSCollector*    collector,
5776                       const MemRegion& span,
5777                       CMSBitMap*       mark_bit_map,
5778                       AbstractWorkGang* workers,
5779                       OopTaskQueueSet* task_queues):
5780     // XXX Should superclass AGTWOQ also know about AWG since it knows
5781     // about the task_queues used by the AWG? Then it could initialize
5782     // the terminator() object. See 6984287. The set_for_termination()
5783     // below is a temporary band-aid for the regression in 6984287.
5784     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5785       task_queues),
5786     _task(task),
5787     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
5788   {
5789     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5790            "Inconsistency in _span");
5791     set_for_termination(workers->active_workers());
5792   }
5793 
5794   OopTaskQueueSet* task_queues() { return queues(); }
5795 
5796   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5797 
5798   void do_work_steal(int i,
5799                      CMSParDrainMarkingStackClosure* drain,
5800                      CMSParKeepAliveClosure* keep_alive,
5801                      int* seed);
5802 
5803   virtual void work(uint worker_id);
5804 };
5805 
5806 void CMSRefProcTaskProxy::work(uint worker_id) {
5807   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5808   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5809                                         _mark_bit_map,
5810                                         &_collector->_revisitStack,
5811                                         work_queue(worker_id));
5812   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5813                                                  _mark_bit_map,
5814                                                  &_collector->_revisitStack,
5815                                                  work_queue(worker_id));
5816   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5817   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5818   if (_task.marks_oops_alive()) {
5819     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
5820                   _collector->hash_seed(worker_id));
5821   }
5822   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5823   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5824 }
5825 
5826 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
5827   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5828   EnqueueTask& _task;
5829 
5830 public:
5831   CMSRefEnqueueTaskProxy(EnqueueTask& task)
5832     : AbstractGangTask("Enqueue reference objects in parallel"),
5833       _task(task)
5834   { }
5835 
5836   virtual void work(uint worker_id)
5837   {
5838     _task.work(worker_id);
5839   }
5840 };
5841 
5842 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5843   MemRegion span, CMSBitMap* bit_map, CMSMarkStack* revisit_stack,
5844   OopTaskQueue* work_queue):
5845    Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
5846    _span(span),
5847    _bit_map(bit_map),
5848    _work_queue(work_queue),
5849    _mark_and_push(collector, span, bit_map, revisit_stack, work_queue),
5850    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
5851                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5852 { }
5853 
5854 // . see if we can share work_queues with ParNew? XXX
5855 void CMSRefProcTaskProxy::do_work_steal(int i,
5856   CMSParDrainMarkingStackClosure* drain,
5857   CMSParKeepAliveClosure* keep_alive,
5858   int* seed) {
5859   OopTaskQueue* work_q = work_queue(i);
5860   NOT_PRODUCT(int num_steals = 0;)
5861   oop obj_to_scan;
5862 
5863   while (true) {
5864     // Completely finish any left over work from (an) earlier round(s)
5865     drain->trim_queue(0);
5866     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5867                                          (size_t)ParGCDesiredObjsFromOverflowList);
5868     // Now check if there's any work in the overflow list
5869     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5870     // only affects the number of attempts made to get work from the
5871     // overflow list and does not affect the number of workers.  Just
5872     // pass ParallelGCThreads so this behavior is unchanged.
5873     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5874                                                 work_q,
5875                                                 ParallelGCThreads)) {
5876       // Found something in global overflow list;
5877       // not yet ready to go stealing work from others.
5878       // We'd like to assert(work_q->size() != 0, ...)
5879       // because we just took work from the overflow list,
5880       // but of course we can't, since all of that might have
5881       // been already stolen from us.
5882       continue;
5883     }
5884     // Verify that we have no work before we resort to stealing
5885     assert(work_q->size() == 0, "Have work, shouldn't steal");
5886     // Try to steal from other queues that have work
5887     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5888       NOT_PRODUCT(num_steals++;)
5889       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5890       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5891       // Do scanning work
5892       obj_to_scan->oop_iterate(keep_alive);
5893       // Loop around, finish this work, and try to steal some more
5894     } else if (terminator()->offer_termination()) {
5895       break;  // nirvana from the infinite cycle
5896     }
5897   }
5898   NOT_PRODUCT(
5899     if (PrintCMSStatistics != 0) {
5900       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5901     }
5902   )
5903 }
5904 
5905 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
5906 {
5907   GenCollectedHeap* gch = GenCollectedHeap::heap();
5908   FlexibleWorkGang* workers = gch->workers();
5909   assert(workers != NULL, "Need parallel worker threads.");
5910   CMSRefProcTaskProxy rp_task(task, &_collector,
5911                               _collector.ref_processor()->span(),
5912                               _collector.markBitMap(),
5913                               workers, _collector.task_queues());
5914   workers->run_task(&rp_task);
5915 }
5916 
5917 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
5918 {
5919 
5920   GenCollectedHeap* gch = GenCollectedHeap::heap();
5921   FlexibleWorkGang* workers = gch->workers();
5922   assert(workers != NULL, "Need parallel worker threads.");
5923   CMSRefEnqueueTaskProxy enq_task(task);
5924   workers->run_task(&enq_task);
5925 }
5926 
5927 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
5928 
5929   ResourceMark rm;
5930   HandleMark   hm;
5931 
5932   ReferenceProcessor* rp = ref_processor();
5933   assert(rp->span().equals(_span), "Spans should be equal");
5934   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5935   // Process weak references.
5936   rp->setup_policy(clear_all_soft_refs);
5937   verify_work_stacks_empty();
5938 
5939   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5940                                           &_markStack, &_revisitStack,
5941                                           false /* !preclean */);
5942   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5943                                 _span, &_markBitMap, &_markStack,
5944                                 &cmsKeepAliveClosure, false /* !preclean */);
5945   {
5946     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
5947 
5948     ReferenceProcessorStats stats;
5949     if (rp->processing_is_mt()) {
5950       // Set the degree of MT here.  If the discovery is done MT, there
5951       // may have been a different number of threads doing the discovery
5952       // and a different number of discovered lists may have Ref objects.
5953       // That is OK as long as the Reference lists are balanced (see
5954       // balance_all_queues() and balance_queues()).
5955       GenCollectedHeap* gch = GenCollectedHeap::heap();
5956       int active_workers = ParallelGCThreads;
5957       FlexibleWorkGang* workers = gch->workers();
5958       if (workers != NULL) {
5959         active_workers = workers->active_workers();
5960         // The expectation is that active_workers will have already
5961         // been set to a reasonable value.  If it has not been set,
5962         // investigate.
5963         assert(active_workers > 0, "Should have been set during scavenge");
5964       }
5965       rp->set_active_mt_degree(active_workers);
5966       CMSRefProcTaskExecutor task_executor(*this);
5967       stats = rp->process_discovered_references(&_is_alive_closure,
5968                                         &cmsKeepAliveClosure,
5969                                         &cmsDrainMarkingStackClosure,
5970                                         &task_executor,
5971                                         _gc_timer_cm);
5972     } else {
5973       stats = rp->process_discovered_references(&_is_alive_closure,
5974                                         &cmsKeepAliveClosure,
5975                                         &cmsDrainMarkingStackClosure,
5976                                         NULL,
5977                                         _gc_timer_cm);
5978     }
5979     _gc_tracer_cm->report_gc_reference_stats(stats);
5980 
5981     verify_work_stacks_empty();
5982   }
5983 
5984   if (should_unload_classes()) {
5985     {
5986       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
5987 
5988       // Follow SystemDictionary roots and unload classes
5989       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
5990 
5991       // Follow CodeCache roots and unload any methods marked for unloading
5992       CodeCache::do_unloading(&_is_alive_closure,
5993                               &cmsKeepAliveClosure,
5994                               purged_class);
5995 
5996       cmsDrainMarkingStackClosure.do_void();
5997       verify_work_stacks_empty();
5998 
5999       // Update subklass/sibling/implementor links in KlassKlass descendants
6000       assert(!_revisitStack.isEmpty(), "revisit stack should not be empty");
6001       oop k;
6002       while ((k = _revisitStack.pop()) != NULL) {
6003         ((Klass*)(oopDesc*)k)->follow_weak_klass_links(
6004                        &_is_alive_closure,
6005                        &cmsKeepAliveClosure);
6006       }
6007       assert(!ClassUnloading ||
6008              (_markStack.isEmpty() && overflow_list_is_empty()),
6009              "Should not have found new reachable objects");
6010       assert(_revisitStack.isEmpty(), "revisit stack should have been drained");
6011       cmsDrainMarkingStackClosure.do_void();
6012       verify_work_stacks_empty();
6013     }
6014 
6015     {
6016       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6017       // Clean up unreferenced symbols in symbol table.
6018       SymbolTable::unlink();
6019     }
6020   }
6021 
6022   if (should_unload_classes() || !JavaObjectsInPerm) {
6023     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6024     // Now clean up stale oops in StringTable
6025     StringTable::unlink(&_is_alive_closure);
6026   }
6027 
6028   verify_work_stacks_empty();
6029   // Restore any preserved marks as a result of mark stack or
6030   // work queue overflow
6031   restore_preserved_marks_if_any();  // done single-threaded for now
6032 
6033   rp->set_enqueuing_is_done(true);
6034   if (rp->processing_is_mt()) {
6035     rp->balance_all_queues();
6036     CMSRefProcTaskExecutor task_executor(*this);
6037     rp->enqueue_discovered_references(&task_executor);
6038   } else {
6039     rp->enqueue_discovered_references(NULL);
6040   }
6041   rp->verify_no_references_recorded();
6042   assert(!rp->discovery_enabled(), "should have been disabled");
6043 }
6044 
6045 #ifndef PRODUCT
6046 void CMSCollector::check_correct_thread_executing() {
6047   Thread* t = Thread::current();
6048   // Only the VM thread or the CMS thread should be here.
6049   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6050          "Unexpected thread type");
6051   // If this is the vm thread, the foreground process
6052   // should not be waiting.  Note that _foregroundGCIsActive is
6053   // true while the foreground collector is waiting.
6054   if (_foregroundGCShouldWait) {
6055     // We cannot be the VM thread
6056     assert(t->is_ConcurrentGC_thread(),
6057            "Should be CMS thread");
6058   } else {
6059     // We can be the CMS thread only if we are in a stop-world
6060     // phase of CMS collection.
6061     if (t->is_ConcurrentGC_thread()) {
6062       assert(_collectorState == InitialMarking ||
6063              _collectorState == FinalMarking,
6064              "Should be a stop-world phase");
6065       // The CMS thread should be holding the CMS_token.
6066       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6067              "Potential interference with concurrently "
6068              "executing VM thread");
6069     }
6070   }
6071 }
6072 #endif
6073 
6074 void CMSCollector::sweep(bool asynch) {
6075   assert(_collectorState == Sweeping, "just checking");
6076   check_correct_thread_executing();
6077   verify_work_stacks_empty();
6078   verify_overflow_empty();
6079   increment_sweep_count();
6080   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6081 
6082   _inter_sweep_timer.stop();
6083   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6084   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6085 
6086   // PermGen verification support: If perm gen sweeping is disabled in
6087   // this cycle, we preserve the perm gen object "deadness" information
6088   // in the perm_gen_verify_bit_map. In order to do that we traverse
6089   // all blocks in perm gen and mark all dead objects.
6090   if (verifying() && !should_unload_classes()) {
6091     assert(perm_gen_verify_bit_map()->sizeInBits() != 0,
6092            "Should have already been allocated");
6093     MarkDeadObjectsClosure mdo(this, _permGen->cmsSpace(),
6094                                markBitMap(), perm_gen_verify_bit_map());
6095     if (asynch) {
6096       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6097                                bitMapLock());
6098       _permGen->cmsSpace()->blk_iterate(&mdo);
6099     } else {
6100       // In the case of synchronous sweep, we already have
6101       // the requisite locks/tokens.
6102       _permGen->cmsSpace()->blk_iterate(&mdo);
6103     }
6104   }
6105 
6106   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6107   _intra_sweep_timer.reset();
6108   _intra_sweep_timer.start();
6109   if (asynch) {
6110     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6111     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6112     // First sweep the old gen then the perm gen
6113     {
6114       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6115                                bitMapLock());
6116       sweepWork(_cmsGen, asynch);
6117     }
6118 
6119     // Now repeat for perm gen
6120     if (should_unload_classes()) {
6121       CMSTokenSyncWithLocks ts(true, _permGen->freelistLock(),
6122                              bitMapLock());
6123       sweepWork(_permGen, asynch);
6124     }
6125 
6126     // Update Universe::_heap_*_at_gc figures.
6127     // We need all the free list locks to make the abstract state
6128     // transition from Sweeping to Resetting. See detailed note
6129     // further below.
6130     {
6131       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6132                                _permGen->freelistLock());
6133       // Update heap occupancy information which is used as
6134       // input to soft ref clearing policy at the next gc.
6135       Universe::update_heap_info_at_gc();
6136       _collectorState = Resizing;
6137     }
6138   } else {
6139     // already have needed locks
6140     sweepWork(_cmsGen,  asynch);
6141 
6142     if (should_unload_classes()) {
6143       sweepWork(_permGen, asynch);
6144     }
6145     // Update heap occupancy information which is used as
6146     // input to soft ref clearing policy at the next gc.
6147     Universe::update_heap_info_at_gc();
6148     _collectorState = Resizing;
6149   }
6150   verify_work_stacks_empty();
6151   verify_overflow_empty();
6152 
6153   _intra_sweep_timer.stop();
6154   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6155 
6156   _inter_sweep_timer.reset();
6157   _inter_sweep_timer.start();
6158 
6159   // We need to use a monotonically non-deccreasing time in ms
6160   // or we will see time-warp warnings and os::javaTimeMillis()
6161   // does not guarantee monotonicity.
6162   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6163   update_time_of_last_gc(now);
6164 
6165   // NOTE on abstract state transitions:
6166   // Mutators allocate-live and/or mark the mod-union table dirty
6167   // based on the state of the collection.  The former is done in
6168   // the interval [Marking, Sweeping] and the latter in the interval
6169   // [Marking, Sweeping).  Thus the transitions into the Marking state
6170   // and out of the Sweeping state must be synchronously visible
6171   // globally to the mutators.
6172   // The transition into the Marking state happens with the world
6173   // stopped so the mutators will globally see it.  Sweeping is
6174   // done asynchronously by the background collector so the transition
6175   // from the Sweeping state to the Resizing state must be done
6176   // under the freelistLock (as is the check for whether to
6177   // allocate-live and whether to dirty the mod-union table).
6178   assert(_collectorState == Resizing, "Change of collector state to"
6179     " Resizing must be done under the freelistLocks (plural)");
6180 
6181   // Now that sweeping has been completed, we clear
6182   // the incremental_collection_failed flag,
6183   // thus inviting a younger gen collection to promote into
6184   // this generation. If such a promotion may still fail,
6185   // the flag will be set again when a young collection is
6186   // attempted.
6187   GenCollectedHeap* gch = GenCollectedHeap::heap();
6188   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6189   gch->update_full_collections_completed(_collection_count_start);
6190 }
6191 
6192 // FIX ME!!! Looks like this belongs in CFLSpace, with
6193 // CMSGen merely delegating to it.
6194 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6195   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6196   HeapWord*  minAddr        = _cmsSpace->bottom();
6197   HeapWord*  largestAddr    =
6198     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6199   if (largestAddr == NULL) {
6200     // The dictionary appears to be empty.  In this case
6201     // try to coalesce at the end of the heap.
6202     largestAddr = _cmsSpace->end();
6203   }
6204   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6205   size_t nearLargestOffset =
6206     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6207   if (PrintFLSStatistics != 0) {
6208     gclog_or_tty->print_cr(
6209       "CMS: Large Block: " PTR_FORMAT ";"
6210       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6211       largestAddr,
6212       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6213   }
6214   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6215 }
6216 
6217 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6218   return addr >= _cmsSpace->nearLargestChunk();
6219 }
6220 
6221 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6222   return _cmsSpace->find_chunk_at_end();
6223 }
6224 
6225 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6226                                                     bool full) {
6227   // The next lower level has been collected.  Gather any statistics
6228   // that are of interest at this point.
6229   if (!full && (current_level + 1) == level()) {
6230     // Gather statistics on the young generation collection.
6231     collector()->stats().record_gc0_end(used());
6232   }
6233 }
6234 
6235 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6236   GenCollectedHeap* gch = GenCollectedHeap::heap();
6237   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6238     "Wrong type of heap");
6239   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6240     gch->gen_policy()->size_policy();
6241   assert(sp->is_gc_cms_adaptive_size_policy(),
6242     "Wrong type of size policy");
6243   return sp;
6244 }
6245 
6246 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6247   if (PrintGCDetails && Verbose) {
6248     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6249   }
6250   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6251   _debug_collection_type =
6252     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6253   if (PrintGCDetails && Verbose) {
6254     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6255   }
6256 }
6257 
6258 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6259   bool asynch) {
6260   // We iterate over the space(s) underlying this generation,
6261   // checking the mark bit map to see if the bits corresponding
6262   // to specific blocks are marked or not. Blocks that are
6263   // marked are live and are not swept up. All remaining blocks
6264   // are swept up, with coalescing on-the-fly as we sweep up
6265   // contiguous free and/or garbage blocks:
6266   // We need to ensure that the sweeper synchronizes with allocators
6267   // and stop-the-world collectors. In particular, the following
6268   // locks are used:
6269   // . CMS token: if this is held, a stop the world collection cannot occur
6270   // . freelistLock: if this is held no allocation can occur from this
6271   //                 generation by another thread
6272   // . bitMapLock: if this is held, no other thread can access or update
6273   //
6274 
6275   // Note that we need to hold the freelistLock if we use
6276   // block iterate below; else the iterator might go awry if
6277   // a mutator (or promotion) causes block contents to change
6278   // (for instance if the allocator divvies up a block).
6279   // If we hold the free list lock, for all practical purposes
6280   // young generation GC's can't occur (they'll usually need to
6281   // promote), so we might as well prevent all young generation
6282   // GC's while we do a sweeping step. For the same reason, we might
6283   // as well take the bit map lock for the entire duration
6284 
6285   // check that we hold the requisite locks
6286   assert(have_cms_token(), "Should hold cms token");
6287   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6288          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6289         "Should possess CMS token to sweep");
6290   assert_lock_strong(gen->freelistLock());
6291   assert_lock_strong(bitMapLock());
6292 
6293   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6294   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6295   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6296                                       _inter_sweep_estimate.padded_average(),
6297                                       _intra_sweep_estimate.padded_average());
6298   gen->setNearLargestChunk();
6299 
6300   {
6301     SweepClosure sweepClosure(this, gen, &_markBitMap,
6302                             CMSYield && asynch);
6303     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6304     // We need to free-up/coalesce garbage/blocks from a
6305     // co-terminal free run. This is done in the SweepClosure
6306     // destructor; so, do not remove this scope, else the
6307     // end-of-sweep-census below will be off by a little bit.
6308   }
6309   gen->cmsSpace()->sweep_completed();
6310   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6311   if (should_unload_classes()) {                // unloaded classes this cycle,
6312     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6313   } else {                                      // did not unload classes,
6314     _concurrent_cycles_since_last_unload++;     // ... increment count
6315   }
6316 }
6317 
6318 // Reset CMS data structures (for now just the marking bit map)
6319 // preparatory for the next cycle.
6320 void CMSCollector::reset(bool asynch) {
6321   GenCollectedHeap* gch = GenCollectedHeap::heap();
6322   CMSAdaptiveSizePolicy* sp = size_policy();
6323   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6324   if (asynch) {
6325     CMSTokenSyncWithLocks ts(true, bitMapLock());
6326 
6327     // If the state is not "Resetting", the foreground  thread
6328     // has done a collection and the resetting.
6329     if (_collectorState != Resetting) {
6330       assert(_collectorState == Idling, "The state should only change"
6331         " because the foreground collector has finished the collection");
6332       return;
6333     }
6334 
6335     // Clear the mark bitmap (no grey objects to start with)
6336     // for the next cycle.
6337     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6338     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6339 
6340     HeapWord* curAddr = _markBitMap.startWord();
6341     while (curAddr < _markBitMap.endWord()) {
6342       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6343       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6344       _markBitMap.clear_large_range(chunk);
6345       if (ConcurrentMarkSweepThread::should_yield() &&
6346           !foregroundGCIsActive() &&
6347           CMSYield) {
6348         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6349                "CMS thread should hold CMS token");
6350         assert_lock_strong(bitMapLock());
6351         bitMapLock()->unlock();
6352         ConcurrentMarkSweepThread::desynchronize(true);
6353         ConcurrentMarkSweepThread::acknowledge_yield_request();
6354         stopTimer();
6355         if (PrintCMSStatistics != 0) {
6356           incrementYields();
6357         }
6358         icms_wait();
6359 
6360         // See the comment in coordinator_yield()
6361         for (unsigned i = 0; i < CMSYieldSleepCount &&
6362                          ConcurrentMarkSweepThread::should_yield() &&
6363                          !CMSCollector::foregroundGCIsActive(); ++i) {
6364           os::sleep(Thread::current(), 1, false);
6365           ConcurrentMarkSweepThread::acknowledge_yield_request();
6366         }
6367 
6368         ConcurrentMarkSweepThread::synchronize(true);
6369         bitMapLock()->lock_without_safepoint_check();
6370         startTimer();
6371       }
6372       curAddr = chunk.end();
6373     }
6374     // A successful mostly concurrent collection has been done.
6375     // Because only the full (i.e., concurrent mode failure) collections
6376     // are being measured for gc overhead limits, clean the "near" flag
6377     // and count.
6378     sp->reset_gc_overhead_limit_count();
6379     _collectorState = Idling;
6380   } else {
6381     // already have the lock
6382     assert(_collectorState == Resetting, "just checking");
6383     assert_lock_strong(bitMapLock());
6384     _markBitMap.clear_all();
6385     _collectorState = Idling;
6386   }
6387 
6388   // Stop incremental mode after a cycle completes, so that any future cycles
6389   // are triggered by allocation.
6390   stop_icms();
6391 
6392   NOT_PRODUCT(
6393     if (RotateCMSCollectionTypes) {
6394       _cmsGen->rotate_debug_collection_type();
6395     }
6396   )
6397 
6398   register_gc_end();
6399 }
6400 
6401 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6402   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6403   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6404   TraceCollectorStats tcs(counters());
6405 
6406   switch (op) {
6407     case CMS_op_checkpointRootsInitial: {
6408       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6409       checkpointRootsInitial(true);       // asynch
6410       if (PrintGC) {
6411         _cmsGen->printOccupancy("initial-mark");
6412       }
6413       break;
6414     }
6415     case CMS_op_checkpointRootsFinal: {
6416       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6417       checkpointRootsFinal(true,    // asynch
6418                            false,   // !clear_all_soft_refs
6419                            false);  // !init_mark_was_synchronous
6420       if (PrintGC) {
6421         _cmsGen->printOccupancy("remark");
6422       }
6423       break;
6424     }
6425     default:
6426       fatal("No such CMS_op");
6427   }
6428 }
6429 
6430 #ifndef PRODUCT
6431 size_t const CMSCollector::skip_header_HeapWords() {
6432   return FreeChunk::header_size();
6433 }
6434 
6435 // Try and collect here conditions that should hold when
6436 // CMS thread is exiting. The idea is that the foreground GC
6437 // thread should not be blocked if it wants to terminate
6438 // the CMS thread and yet continue to run the VM for a while
6439 // after that.
6440 void CMSCollector::verify_ok_to_terminate() const {
6441   assert(Thread::current()->is_ConcurrentGC_thread(),
6442          "should be called by CMS thread");
6443   assert(!_foregroundGCShouldWait, "should be false");
6444   // We could check here that all the various low-level locks
6445   // are not held by the CMS thread, but that is overkill; see
6446   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6447   // is checked.
6448 }
6449 #endif
6450 
6451 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6452    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6453           "missing Printezis mark?");
6454   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6455   size_t size = pointer_delta(nextOneAddr + 1, addr);
6456   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6457          "alignment problem");
6458   assert(size >= 3, "Necessary for Printezis marks to work");
6459   return size;
6460 }
6461 
6462 // A variant of the above (block_size_using_printezis_bits()) except
6463 // that we return 0 if the P-bits are not yet set.
6464 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6465   if (_markBitMap.isMarked(addr + 1)) {
6466     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6467     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6468     size_t size = pointer_delta(nextOneAddr + 1, addr);
6469     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6470            "alignment problem");
6471     assert(size >= 3, "Necessary for Printezis marks to work");
6472     return size;
6473   }
6474   return 0;
6475 }
6476 
6477 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6478   size_t sz = 0;
6479   oop p = (oop)addr;
6480   if (p->klass_or_null() != NULL && p->is_parsable()) {
6481     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6482   } else {
6483     sz = block_size_using_printezis_bits(addr);
6484   }
6485   assert(sz > 0, "size must be nonzero");
6486   HeapWord* next_block = addr + sz;
6487   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6488                                              CardTableModRefBS::card_size);
6489   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6490          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6491          "must be different cards");
6492   return next_card;
6493 }
6494 
6495 
6496 // CMS Bit Map Wrapper /////////////////////////////////////////
6497 
6498 // Construct a CMS bit map infrastructure, but don't create the
6499 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6500 // further below.
6501 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6502   _bm(),
6503   _shifter(shifter),
6504   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6505 {
6506   _bmStartWord = 0;
6507   _bmWordSize  = 0;
6508 }
6509 
6510 bool CMSBitMap::allocate(MemRegion mr) {
6511   _bmStartWord = mr.start();
6512   _bmWordSize  = mr.word_size();
6513   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6514                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6515   if (!brs.is_reserved()) {
6516     warning("CMS bit map allocation failure");
6517     return false;
6518   }
6519   // For now we'll just commit all of the bit map up fromt.
6520   // Later on we'll try to be more parsimonious with swap.
6521   if (!_virtual_space.initialize(brs, brs.size())) {
6522     warning("CMS bit map backing store failure");
6523     return false;
6524   }
6525   assert(_virtual_space.committed_size() == brs.size(),
6526          "didn't reserve backing store for all of CMS bit map?");
6527   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6528   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6529          _bmWordSize, "inconsistency in bit map sizing");
6530   _bm.set_size(_bmWordSize >> _shifter);
6531 
6532   // bm.clear(); // can we rely on getting zero'd memory? verify below
6533   assert(isAllClear(),
6534          "Expected zero'd memory from ReservedSpace constructor");
6535   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6536          "consistency check");
6537   return true;
6538 }
6539 
6540 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6541   HeapWord *next_addr, *end_addr, *last_addr;
6542   assert_locked();
6543   assert(covers(mr), "out-of-range error");
6544   // XXX assert that start and end are appropriately aligned
6545   for (next_addr = mr.start(), end_addr = mr.end();
6546        next_addr < end_addr; next_addr = last_addr) {
6547     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6548     last_addr = dirty_region.end();
6549     if (!dirty_region.is_empty()) {
6550       cl->do_MemRegion(dirty_region);
6551     } else {
6552       assert(last_addr == end_addr, "program logic");
6553       return;
6554     }
6555   }
6556 }
6557 
6558 #ifndef PRODUCT
6559 void CMSBitMap::assert_locked() const {
6560   CMSLockVerifier::assert_locked(lock());
6561 }
6562 
6563 bool CMSBitMap::covers(MemRegion mr) const {
6564   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6565   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6566          "size inconsistency");
6567   return (mr.start() >= _bmStartWord) &&
6568          (mr.end()   <= endWord());
6569 }
6570 
6571 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6572     return (start >= _bmStartWord && (start + size) <= endWord());
6573 }
6574 
6575 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6576   // verify that there are no 1 bits in the interval [left, right)
6577   FalseBitMapClosure falseBitMapClosure;
6578   iterate(&falseBitMapClosure, left, right);
6579 }
6580 
6581 void CMSBitMap::region_invariant(MemRegion mr)
6582 {
6583   assert_locked();
6584   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6585   assert(!mr.is_empty(), "unexpected empty region");
6586   assert(covers(mr), "mr should be covered by bit map");
6587   // convert address range into offset range
6588   size_t start_ofs = heapWordToOffset(mr.start());
6589   // Make sure that end() is appropriately aligned
6590   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6591                         (1 << (_shifter+LogHeapWordSize))),
6592          "Misaligned mr.end()");
6593   size_t end_ofs   = heapWordToOffset(mr.end());
6594   assert(end_ofs > start_ofs, "Should mark at least one bit");
6595 }
6596 
6597 #endif
6598 
6599 bool CMSMarkStack::allocate(size_t size) {
6600   // allocate a stack of the requisite depth
6601   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6602                    size * sizeof(oop)));
6603   if (!rs.is_reserved()) {
6604     warning("CMSMarkStack allocation failure");
6605     return false;
6606   }
6607   if (!_virtual_space.initialize(rs, rs.size())) {
6608     warning("CMSMarkStack backing store failure");
6609     return false;
6610   }
6611   assert(_virtual_space.committed_size() == rs.size(),
6612          "didn't reserve backing store for all of CMS stack?");
6613   _base = (oop*)(_virtual_space.low());
6614   _index = 0;
6615   _capacity = size;
6616   NOT_PRODUCT(_max_depth = 0);
6617   return true;
6618 }
6619 
6620 // XXX FIX ME !!! In the MT case we come in here holding a
6621 // leaf lock. For printing we need to take a further lock
6622 // which has lower rank. We need to recallibrate the two
6623 // lock-ranks involved in order to be able to rpint the
6624 // messages below. (Or defer the printing to the caller.
6625 // For now we take the expedient path of just disabling the
6626 // messages for the problematic case.)
6627 void CMSMarkStack::expand() {
6628   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6629   if (_capacity == MarkStackSizeMax) {
6630     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6631       // We print a warning message only once per CMS cycle.
6632       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6633     }
6634     return;
6635   }
6636   // Double capacity if possible
6637   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6638   // Do not give up existing stack until we have managed to
6639   // get the double capacity that we desired.
6640   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6641                    new_capacity * sizeof(oop)));
6642   if (rs.is_reserved()) {
6643     // Release the backing store associated with old stack
6644     _virtual_space.release();
6645     // Reinitialize virtual space for new stack
6646     if (!_virtual_space.initialize(rs, rs.size())) {
6647       fatal("Not enough swap for expanded marking stack");
6648     }
6649     _base = (oop*)(_virtual_space.low());
6650     _index = 0;
6651     _capacity = new_capacity;
6652   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6653     // Failed to double capacity, continue;
6654     // we print a detail message only once per CMS cycle.
6655     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6656             SIZE_FORMAT"K",
6657             _capacity / K, new_capacity / K);
6658   }
6659 }
6660 
6661 
6662 // Closures
6663 // XXX: there seems to be a lot of code  duplication here;
6664 // should refactor and consolidate common code.
6665 
6666 // This closure is used to mark refs into the CMS generation in
6667 // the CMS bit map. Called at the first checkpoint. This closure
6668 // assumes that we do not need to re-mark dirty cards; if the CMS
6669 // generation on which this is used is not an oldest (modulo perm gen)
6670 // generation then this will lose younger_gen cards!
6671 
6672 MarkRefsIntoClosure::MarkRefsIntoClosure(
6673   MemRegion span, CMSBitMap* bitMap):
6674     _span(span),
6675     _bitMap(bitMap)
6676 {
6677     assert(_ref_processor == NULL, "deliberately left NULL");
6678     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6679 }
6680 
6681 void MarkRefsIntoClosure::do_oop(oop obj) {
6682   // if p points into _span, then mark corresponding bit in _markBitMap
6683   assert(obj->is_oop(), "expected an oop");
6684   HeapWord* addr = (HeapWord*)obj;
6685   if (_span.contains(addr)) {
6686     // this should be made more efficient
6687     _bitMap->mark(addr);
6688   }
6689 }
6690 
6691 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6692 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6693 
6694 // A variant of the above, used for CMS marking verification.
6695 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6696   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6697     _span(span),
6698     _verification_bm(verification_bm),
6699     _cms_bm(cms_bm)
6700 {
6701     assert(_ref_processor == NULL, "deliberately left NULL");
6702     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6703 }
6704 
6705 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6706   // if p points into _span, then mark corresponding bit in _markBitMap
6707   assert(obj->is_oop(), "expected an oop");
6708   HeapWord* addr = (HeapWord*)obj;
6709   if (_span.contains(addr)) {
6710     _verification_bm->mark(addr);
6711     if (!_cms_bm->isMarked(addr)) {
6712       oop(addr)->print();
6713       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6714       fatal("... aborting");
6715     }
6716   }
6717 }
6718 
6719 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6720 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6721 
6722 //////////////////////////////////////////////////
6723 // MarkRefsIntoAndScanClosure
6724 //////////////////////////////////////////////////
6725 
6726 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6727                                                        ReferenceProcessor* rp,
6728                                                        CMSBitMap* bit_map,
6729                                                        CMSBitMap* mod_union_table,
6730                                                        CMSMarkStack*  mark_stack,
6731                                                        CMSMarkStack*  revisit_stack,
6732                                                        CMSCollector* collector,
6733                                                        bool should_yield,
6734                                                        bool concurrent_precleaning):
6735   _collector(collector),
6736   _span(span),
6737   _bit_map(bit_map),
6738   _mark_stack(mark_stack),
6739   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6740                       mark_stack, revisit_stack, concurrent_precleaning),
6741   _yield(should_yield),
6742   _concurrent_precleaning(concurrent_precleaning),
6743   _freelistLock(NULL)
6744 {
6745   _ref_processor = rp;
6746   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6747 }
6748 
6749 // This closure is used to mark refs into the CMS generation at the
6750 // second (final) checkpoint, and to scan and transitively follow
6751 // the unmarked oops. It is also used during the concurrent precleaning
6752 // phase while scanning objects on dirty cards in the CMS generation.
6753 // The marks are made in the marking bit map and the marking stack is
6754 // used for keeping the (newly) grey objects during the scan.
6755 // The parallel version (Par_...) appears further below.
6756 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6757   if (obj != NULL) {
6758     assert(obj->is_oop(), "expected an oop");
6759     HeapWord* addr = (HeapWord*)obj;
6760     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6761     assert(_collector->overflow_list_is_empty(),
6762            "overflow list should be empty");
6763     if (_span.contains(addr) &&
6764         !_bit_map->isMarked(addr)) {
6765       // mark bit map (object is now grey)
6766       _bit_map->mark(addr);
6767       // push on marking stack (stack should be empty), and drain the
6768       // stack by applying this closure to the oops in the oops popped
6769       // from the stack (i.e. blacken the grey objects)
6770       bool res = _mark_stack->push(obj);
6771       assert(res, "Should have space to push on empty stack");
6772       do {
6773         oop new_oop = _mark_stack->pop();
6774         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
6775         assert(new_oop->is_parsable(), "Found unparsable oop");
6776         assert(_bit_map->isMarked((HeapWord*)new_oop),
6777                "only grey objects on this stack");
6778         // iterate over the oops in this oop, marking and pushing
6779         // the ones in CMS heap (i.e. in _span).
6780         new_oop->oop_iterate(&_pushAndMarkClosure);
6781         // check if it's time to yield
6782         do_yield_check();
6783       } while (!_mark_stack->isEmpty() ||
6784                (!_concurrent_precleaning && take_from_overflow_list()));
6785         // if marking stack is empty, and we are not doing this
6786         // during precleaning, then check the overflow list
6787     }
6788     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6789     assert(_collector->overflow_list_is_empty(),
6790            "overflow list was drained above");
6791     // We could restore evacuated mark words, if any, used for
6792     // overflow list links here because the overflow list is
6793     // provably empty here. That would reduce the maximum
6794     // size requirements for preserved_{oop,mark}_stack.
6795     // But we'll just postpone it until we are all done
6796     // so we can just stream through.
6797     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
6798       _collector->restore_preserved_marks_if_any();
6799       assert(_collector->no_preserved_marks(), "No preserved marks");
6800     }
6801     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
6802            "All preserved marks should have been restored above");
6803   }
6804 }
6805 
6806 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6807 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
6808 
6809 void MarkRefsIntoAndScanClosure::do_yield_work() {
6810   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6811          "CMS thread should hold CMS token");
6812   assert_lock_strong(_freelistLock);
6813   assert_lock_strong(_bit_map->lock());
6814   // relinquish the free_list_lock and bitMaplock()
6815   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6816   _bit_map->lock()->unlock();
6817   _freelistLock->unlock();
6818   ConcurrentMarkSweepThread::desynchronize(true);
6819   ConcurrentMarkSweepThread::acknowledge_yield_request();
6820   _collector->stopTimer();
6821   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6822   if (PrintCMSStatistics != 0) {
6823     _collector->incrementYields();
6824   }
6825   _collector->icms_wait();
6826 
6827   // See the comment in coordinator_yield()
6828   for (unsigned i = 0;
6829        i < CMSYieldSleepCount &&
6830        ConcurrentMarkSweepThread::should_yield() &&
6831        !CMSCollector::foregroundGCIsActive();
6832        ++i) {
6833     os::sleep(Thread::current(), 1, false);
6834     ConcurrentMarkSweepThread::acknowledge_yield_request();
6835   }
6836 
6837   ConcurrentMarkSweepThread::synchronize(true);
6838   _freelistLock->lock_without_safepoint_check();
6839   _bit_map->lock()->lock_without_safepoint_check();
6840   _collector->startTimer();
6841 }
6842 
6843 ///////////////////////////////////////////////////////////
6844 // Par_MarkRefsIntoAndScanClosure: a parallel version of
6845 //                                 MarkRefsIntoAndScanClosure
6846 ///////////////////////////////////////////////////////////
6847 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
6848   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
6849   CMSBitMap* bit_map, OopTaskQueue* work_queue, CMSMarkStack*  revisit_stack):
6850   _span(span),
6851   _bit_map(bit_map),
6852   _work_queue(work_queue),
6853   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6854                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6855   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue,
6856                           revisit_stack)
6857 {
6858   _ref_processor = rp;
6859   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6860 }
6861 
6862 // This closure is used to mark refs into the CMS generation at the
6863 // second (final) checkpoint, and to scan and transitively follow
6864 // the unmarked oops. The marks are made in the marking bit map and
6865 // the work_queue is used for keeping the (newly) grey objects during
6866 // the scan phase whence they are also available for stealing by parallel
6867 // threads. Since the marking bit map is shared, updates are
6868 // synchronized (via CAS).
6869 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6870   if (obj != NULL) {
6871     // Ignore mark word because this could be an already marked oop
6872     // that may be chained at the end of the overflow list.
6873     assert(obj->is_oop(true), "expected an oop");
6874     HeapWord* addr = (HeapWord*)obj;
6875     if (_span.contains(addr) &&
6876         !_bit_map->isMarked(addr)) {
6877       // mark bit map (object will become grey):
6878       // It is possible for several threads to be
6879       // trying to "claim" this object concurrently;
6880       // the unique thread that succeeds in marking the
6881       // object first will do the subsequent push on
6882       // to the work queue (or overflow list).
6883       if (_bit_map->par_mark(addr)) {
6884         // push on work_queue (which may not be empty), and trim the
6885         // queue to an appropriate length by applying this closure to
6886         // the oops in the oops popped from the stack (i.e. blacken the
6887         // grey objects)
6888         bool res = _work_queue->push(obj);
6889         assert(res, "Low water mark should be less than capacity?");
6890         trim_queue(_low_water_mark);
6891       } // Else, another thread claimed the object
6892     }
6893   }
6894 }
6895 
6896 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6897 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
6898 
6899 // This closure is used to rescan the marked objects on the dirty cards
6900 // in the mod union table and the card table proper.
6901 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6902   oop p, MemRegion mr) {
6903 
6904   size_t size = 0;
6905   HeapWord* addr = (HeapWord*)p;
6906   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6907   assert(_span.contains(addr), "we are scanning the CMS generation");
6908   // check if it's time to yield
6909   if (do_yield_check()) {
6910     // We yielded for some foreground stop-world work,
6911     // and we have been asked to abort this ongoing preclean cycle.
6912     return 0;
6913   }
6914   if (_bitMap->isMarked(addr)) {
6915     // it's marked; is it potentially uninitialized?
6916     if (p->klass_or_null() != NULL) {
6917       // If is_conc_safe is false, the object may be undergoing
6918       // change by the VM outside a safepoint.  Don't try to
6919       // scan it, but rather leave it for the remark phase.
6920       if (CMSPermGenPrecleaningEnabled &&
6921           (!p->is_conc_safe() || !p->is_parsable())) {
6922         // Signal precleaning to redirty the card since
6923         // the klass pointer is already installed.
6924         assert(size == 0, "Initial value");
6925       } else {
6926         assert(p->is_parsable(), "must be parsable.");
6927         // an initialized object; ignore mark word in verification below
6928         // since we are running concurrent with mutators
6929         assert(p->is_oop(true), "should be an oop");
6930         if (p->is_objArray()) {
6931           // objArrays are precisely marked; restrict scanning
6932           // to dirty cards only.
6933           size = CompactibleFreeListSpace::adjustObjectSize(
6934                    p->oop_iterate(_scanningClosure, mr));
6935         } else {
6936           // A non-array may have been imprecisely marked; we need
6937           // to scan object in its entirety.
6938           size = CompactibleFreeListSpace::adjustObjectSize(
6939                    p->oop_iterate(_scanningClosure));
6940         }
6941         #ifdef DEBUG
6942           size_t direct_size =
6943             CompactibleFreeListSpace::adjustObjectSize(p->size());
6944           assert(size == direct_size, "Inconsistency in size");
6945           assert(size >= 3, "Necessary for Printezis marks to work");
6946           if (!_bitMap->isMarked(addr+1)) {
6947             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
6948           } else {
6949             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
6950             assert(_bitMap->isMarked(addr+size-1),
6951                    "inconsistent Printezis mark");
6952           }
6953         #endif // DEBUG
6954       }
6955     } else {
6956       // an unitialized object
6957       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6958       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6959       size = pointer_delta(nextOneAddr + 1, addr);
6960       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6961              "alignment problem");
6962       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6963       // will dirty the card when the klass pointer is installed in the
6964       // object (signalling the completion of initialization).
6965     }
6966   } else {
6967     // Either a not yet marked object or an uninitialized object
6968     if (p->klass_or_null() == NULL || !p->is_parsable()) {
6969       // An uninitialized object, skip to the next card, since
6970       // we may not be able to read its P-bits yet.
6971       assert(size == 0, "Initial value");
6972     } else {
6973       // An object not (yet) reached by marking: we merely need to
6974       // compute its size so as to go look at the next block.
6975       assert(p->is_oop(true), "should be an oop");
6976       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6977     }
6978   }
6979   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6980   return size;
6981 }
6982 
6983 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6984   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6985          "CMS thread should hold CMS token");
6986   assert_lock_strong(_freelistLock);
6987   assert_lock_strong(_bitMap->lock());
6988   DEBUG_ONLY(RememberKlassesChecker mux(false);)
6989   // relinquish the free_list_lock and bitMaplock()
6990   _bitMap->lock()->unlock();
6991   _freelistLock->unlock();
6992   ConcurrentMarkSweepThread::desynchronize(true);
6993   ConcurrentMarkSweepThread::acknowledge_yield_request();
6994   _collector->stopTimer();
6995   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
6996   if (PrintCMSStatistics != 0) {
6997     _collector->incrementYields();
6998   }
6999   _collector->icms_wait();
7000 
7001   // See the comment in coordinator_yield()
7002   for (unsigned i = 0; i < CMSYieldSleepCount &&
7003                    ConcurrentMarkSweepThread::should_yield() &&
7004                    !CMSCollector::foregroundGCIsActive(); ++i) {
7005     os::sleep(Thread::current(), 1, false);
7006     ConcurrentMarkSweepThread::acknowledge_yield_request();
7007   }
7008 
7009   ConcurrentMarkSweepThread::synchronize(true);
7010   _freelistLock->lock_without_safepoint_check();
7011   _bitMap->lock()->lock_without_safepoint_check();
7012   _collector->startTimer();
7013 }
7014 
7015 
7016 //////////////////////////////////////////////////////////////////
7017 // SurvivorSpacePrecleanClosure
7018 //////////////////////////////////////////////////////////////////
7019 // This (single-threaded) closure is used to preclean the oops in
7020 // the survivor spaces.
7021 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7022 
7023   HeapWord* addr = (HeapWord*)p;
7024   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7025   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7026   assert(p->klass_or_null() != NULL, "object should be initializd");
7027   assert(p->is_parsable(), "must be parsable.");
7028   // an initialized object; ignore mark word in verification below
7029   // since we are running concurrent with mutators
7030   assert(p->is_oop(true), "should be an oop");
7031   // Note that we do not yield while we iterate over
7032   // the interior oops of p, pushing the relevant ones
7033   // on our marking stack.
7034   size_t size = p->oop_iterate(_scanning_closure);
7035   do_yield_check();
7036   // Observe that below, we do not abandon the preclean
7037   // phase as soon as we should; rather we empty the
7038   // marking stack before returning. This is to satisfy
7039   // some existing assertions. In general, it may be a
7040   // good idea to abort immediately and complete the marking
7041   // from the grey objects at a later time.
7042   while (!_mark_stack->isEmpty()) {
7043     oop new_oop = _mark_stack->pop();
7044     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7045     assert(new_oop->is_parsable(), "Found unparsable oop");
7046     assert(_bit_map->isMarked((HeapWord*)new_oop),
7047            "only grey objects on this stack");
7048     // iterate over the oops in this oop, marking and pushing
7049     // the ones in CMS heap (i.e. in _span).
7050     new_oop->oop_iterate(_scanning_closure);
7051     // check if it's time to yield
7052     do_yield_check();
7053   }
7054   unsigned int after_count =
7055     GenCollectedHeap::heap()->total_collections();
7056   bool abort = (_before_count != after_count) ||
7057                _collector->should_abort_preclean();
7058   return abort ? 0 : size;
7059 }
7060 
7061 void SurvivorSpacePrecleanClosure::do_yield_work() {
7062   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7063          "CMS thread should hold CMS token");
7064   assert_lock_strong(_bit_map->lock());
7065   DEBUG_ONLY(RememberKlassesChecker smx(false);)
7066   // Relinquish the bit map lock
7067   _bit_map->lock()->unlock();
7068   ConcurrentMarkSweepThread::desynchronize(true);
7069   ConcurrentMarkSweepThread::acknowledge_yield_request();
7070   _collector->stopTimer();
7071   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7072   if (PrintCMSStatistics != 0) {
7073     _collector->incrementYields();
7074   }
7075   _collector->icms_wait();
7076 
7077   // See the comment in coordinator_yield()
7078   for (unsigned i = 0; i < CMSYieldSleepCount &&
7079                        ConcurrentMarkSweepThread::should_yield() &&
7080                        !CMSCollector::foregroundGCIsActive(); ++i) {
7081     os::sleep(Thread::current(), 1, false);
7082     ConcurrentMarkSweepThread::acknowledge_yield_request();
7083   }
7084 
7085   ConcurrentMarkSweepThread::synchronize(true);
7086   _bit_map->lock()->lock_without_safepoint_check();
7087   _collector->startTimer();
7088 }
7089 
7090 // This closure is used to rescan the marked objects on the dirty cards
7091 // in the mod union table and the card table proper. In the parallel
7092 // case, although the bitMap is shared, we do a single read so the
7093 // isMarked() query is "safe".
7094 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7095   // Ignore mark word because we are running concurrent with mutators
7096   assert(p->is_oop_or_null(true), "expected an oop or null");
7097   HeapWord* addr = (HeapWord*)p;
7098   assert(_span.contains(addr), "we are scanning the CMS generation");
7099   bool is_obj_array = false;
7100   #ifdef DEBUG
7101     if (!_parallel) {
7102       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7103       assert(_collector->overflow_list_is_empty(),
7104              "overflow list should be empty");
7105 
7106     }
7107   #endif // DEBUG
7108   if (_bit_map->isMarked(addr)) {
7109     // Obj arrays are precisely marked, non-arrays are not;
7110     // so we scan objArrays precisely and non-arrays in their
7111     // entirety.
7112     if (p->is_objArray()) {
7113       is_obj_array = true;
7114       if (_parallel) {
7115         p->oop_iterate(_par_scan_closure, mr);
7116       } else {
7117         p->oop_iterate(_scan_closure, mr);
7118       }
7119     } else {
7120       if (_parallel) {
7121         p->oop_iterate(_par_scan_closure);
7122       } else {
7123         p->oop_iterate(_scan_closure);
7124       }
7125     }
7126   }
7127   #ifdef DEBUG
7128     if (!_parallel) {
7129       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7130       assert(_collector->overflow_list_is_empty(),
7131              "overflow list should be empty");
7132 
7133     }
7134   #endif // DEBUG
7135   return is_obj_array;
7136 }
7137 
7138 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7139                         MemRegion span,
7140                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7141                         CMSMarkStack*  revisitStack,
7142                         bool should_yield, bool verifying):
7143   _collector(collector),
7144   _span(span),
7145   _bitMap(bitMap),
7146   _mut(&collector->_modUnionTable),
7147   _markStack(markStack),
7148   _revisitStack(revisitStack),
7149   _yield(should_yield),
7150   _skipBits(0)
7151 {
7152   assert(_markStack->isEmpty(), "stack should be empty");
7153   _finger = _bitMap->startWord();
7154   _threshold = _finger;
7155   assert(_collector->_restart_addr == NULL, "Sanity check");
7156   assert(_span.contains(_finger), "Out of bounds _finger?");
7157   DEBUG_ONLY(_verifying = verifying;)
7158 }
7159 
7160 void MarkFromRootsClosure::reset(HeapWord* addr) {
7161   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7162   assert(_span.contains(addr), "Out of bounds _finger?");
7163   _finger = addr;
7164   _threshold = (HeapWord*)round_to(
7165                  (intptr_t)_finger, CardTableModRefBS::card_size);
7166 }
7167 
7168 // Should revisit to see if this should be restructured for
7169 // greater efficiency.
7170 bool MarkFromRootsClosure::do_bit(size_t offset) {
7171   if (_skipBits > 0) {
7172     _skipBits--;
7173     return true;
7174   }
7175   // convert offset into a HeapWord*
7176   HeapWord* addr = _bitMap->startWord() + offset;
7177   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7178          "address out of range");
7179   assert(_bitMap->isMarked(addr), "tautology");
7180   if (_bitMap->isMarked(addr+1)) {
7181     // this is an allocated but not yet initialized object
7182     assert(_skipBits == 0, "tautology");
7183     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7184     oop p = oop(addr);
7185     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7186       DEBUG_ONLY(if (!_verifying) {)
7187         // We re-dirty the cards on which this object lies and increase
7188         // the _threshold so that we'll come back to scan this object
7189         // during the preclean or remark phase. (CMSCleanOnEnter)
7190         if (CMSCleanOnEnter) {
7191           size_t sz = _collector->block_size_using_printezis_bits(addr);
7192           HeapWord* end_card_addr   = (HeapWord*)round_to(
7193                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7194           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7195           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7196           // Bump _threshold to end_card_addr; note that
7197           // _threshold cannot possibly exceed end_card_addr, anyhow.
7198           // This prevents future clearing of the card as the scan proceeds
7199           // to the right.
7200           assert(_threshold <= end_card_addr,
7201                  "Because we are just scanning into this object");
7202           if (_threshold < end_card_addr) {
7203             _threshold = end_card_addr;
7204           }
7205           if (p->klass_or_null() != NULL) {
7206             // Redirty the range of cards...
7207             _mut->mark_range(redirty_range);
7208           } // ...else the setting of klass will dirty the card anyway.
7209         }
7210       DEBUG_ONLY(})
7211       return true;
7212     }
7213   }
7214   scanOopsInOop(addr);
7215   return true;
7216 }
7217 
7218 // We take a break if we've been at this for a while,
7219 // so as to avoid monopolizing the locks involved.
7220 void MarkFromRootsClosure::do_yield_work() {
7221   // First give up the locks, then yield, then re-lock
7222   // We should probably use a constructor/destructor idiom to
7223   // do this unlock/lock or modify the MutexUnlocker class to
7224   // serve our purpose. XXX
7225   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7226          "CMS thread should hold CMS token");
7227   assert_lock_strong(_bitMap->lock());
7228   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7229   _bitMap->lock()->unlock();
7230   ConcurrentMarkSweepThread::desynchronize(true);
7231   ConcurrentMarkSweepThread::acknowledge_yield_request();
7232   _collector->stopTimer();
7233   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7234   if (PrintCMSStatistics != 0) {
7235     _collector->incrementYields();
7236   }
7237   _collector->icms_wait();
7238 
7239   // See the comment in coordinator_yield()
7240   for (unsigned i = 0; i < CMSYieldSleepCount &&
7241                        ConcurrentMarkSweepThread::should_yield() &&
7242                        !CMSCollector::foregroundGCIsActive(); ++i) {
7243     os::sleep(Thread::current(), 1, false);
7244     ConcurrentMarkSweepThread::acknowledge_yield_request();
7245   }
7246 
7247   ConcurrentMarkSweepThread::synchronize(true);
7248   _bitMap->lock()->lock_without_safepoint_check();
7249   _collector->startTimer();
7250 }
7251 
7252 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7253   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7254   assert(_markStack->isEmpty(),
7255          "should drain stack to limit stack usage");
7256   // convert ptr to an oop preparatory to scanning
7257   oop obj = oop(ptr);
7258   // Ignore mark word in verification below, since we
7259   // may be running concurrent with mutators.
7260   assert(obj->is_oop(true), "should be an oop");
7261   assert(_finger <= ptr, "_finger runneth ahead");
7262   // advance the finger to right end of this object
7263   _finger = ptr + obj->size();
7264   assert(_finger > ptr, "we just incremented it above");
7265   // On large heaps, it may take us some time to get through
7266   // the marking phase (especially if running iCMS). During
7267   // this time it's possible that a lot of mutations have
7268   // accumulated in the card table and the mod union table --
7269   // these mutation records are redundant until we have
7270   // actually traced into the corresponding card.
7271   // Here, we check whether advancing the finger would make
7272   // us cross into a new card, and if so clear corresponding
7273   // cards in the MUT (preclean them in the card-table in the
7274   // future).
7275 
7276   DEBUG_ONLY(if (!_verifying) {)
7277     // The clean-on-enter optimization is disabled by default,
7278     // until we fix 6178663.
7279     if (CMSCleanOnEnter && (_finger > _threshold)) {
7280       // [_threshold, _finger) represents the interval
7281       // of cards to be cleared  in MUT (or precleaned in card table).
7282       // The set of cards to be cleared is all those that overlap
7283       // with the interval [_threshold, _finger); note that
7284       // _threshold is always kept card-aligned but _finger isn't
7285       // always card-aligned.
7286       HeapWord* old_threshold = _threshold;
7287       assert(old_threshold == (HeapWord*)round_to(
7288               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7289              "_threshold should always be card-aligned");
7290       _threshold = (HeapWord*)round_to(
7291                      (intptr_t)_finger, CardTableModRefBS::card_size);
7292       MemRegion mr(old_threshold, _threshold);
7293       assert(!mr.is_empty(), "Control point invariant");
7294       assert(_span.contains(mr), "Should clear within span");
7295       // XXX When _finger crosses from old gen into perm gen
7296       // we may be doing unnecessary cleaning; do better in the
7297       // future by detecting that condition and clearing fewer
7298       // MUT/CT entries.
7299       _mut->clear_range(mr);
7300     }
7301   DEBUG_ONLY(})
7302   // Note: the finger doesn't advance while we drain
7303   // the stack below.
7304   PushOrMarkClosure pushOrMarkClosure(_collector,
7305                                       _span, _bitMap, _markStack,
7306                                       _revisitStack,
7307                                       _finger, this);
7308   bool res = _markStack->push(obj);
7309   assert(res, "Empty non-zero size stack should have space for single push");
7310   while (!_markStack->isEmpty()) {
7311     oop new_oop = _markStack->pop();
7312     // Skip verifying header mark word below because we are
7313     // running concurrent with mutators.
7314     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7315     // now scan this oop's oops
7316     new_oop->oop_iterate(&pushOrMarkClosure);
7317     do_yield_check();
7318   }
7319   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7320 }
7321 
7322 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7323                        CMSCollector* collector, MemRegion span,
7324                        CMSBitMap* bit_map,
7325                        OopTaskQueue* work_queue,
7326                        CMSMarkStack*  overflow_stack,
7327                        CMSMarkStack*  revisit_stack,
7328                        bool should_yield):
7329   _collector(collector),
7330   _whole_span(collector->_span),
7331   _span(span),
7332   _bit_map(bit_map),
7333   _mut(&collector->_modUnionTable),
7334   _work_queue(work_queue),
7335   _overflow_stack(overflow_stack),
7336   _revisit_stack(revisit_stack),
7337   _yield(should_yield),
7338   _skip_bits(0),
7339   _task(task)
7340 {
7341   assert(_work_queue->size() == 0, "work_queue should be empty");
7342   _finger = span.start();
7343   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7344   assert(_span.contains(_finger), "Out of bounds _finger?");
7345 }
7346 
7347 // Should revisit to see if this should be restructured for
7348 // greater efficiency.
7349 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7350   if (_skip_bits > 0) {
7351     _skip_bits--;
7352     return true;
7353   }
7354   // convert offset into a HeapWord*
7355   HeapWord* addr = _bit_map->startWord() + offset;
7356   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7357          "address out of range");
7358   assert(_bit_map->isMarked(addr), "tautology");
7359   if (_bit_map->isMarked(addr+1)) {
7360     // this is an allocated object that might not yet be initialized
7361     assert(_skip_bits == 0, "tautology");
7362     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7363     oop p = oop(addr);
7364     if (p->klass_or_null() == NULL || !p->is_parsable()) {
7365       // in the case of Clean-on-Enter optimization, redirty card
7366       // and avoid clearing card by increasing  the threshold.
7367       return true;
7368     }
7369   }
7370   scan_oops_in_oop(addr);
7371   return true;
7372 }
7373 
7374 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7375   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7376   // Should we assert that our work queue is empty or
7377   // below some drain limit?
7378   assert(_work_queue->size() == 0,
7379          "should drain stack to limit stack usage");
7380   // convert ptr to an oop preparatory to scanning
7381   oop obj = oop(ptr);
7382   // Ignore mark word in verification below, since we
7383   // may be running concurrent with mutators.
7384   assert(obj->is_oop(true), "should be an oop");
7385   assert(_finger <= ptr, "_finger runneth ahead");
7386   // advance the finger to right end of this object
7387   _finger = ptr + obj->size();
7388   assert(_finger > ptr, "we just incremented it above");
7389   // On large heaps, it may take us some time to get through
7390   // the marking phase (especially if running iCMS). During
7391   // this time it's possible that a lot of mutations have
7392   // accumulated in the card table and the mod union table --
7393   // these mutation records are redundant until we have
7394   // actually traced into the corresponding card.
7395   // Here, we check whether advancing the finger would make
7396   // us cross into a new card, and if so clear corresponding
7397   // cards in the MUT (preclean them in the card-table in the
7398   // future).
7399 
7400   // The clean-on-enter optimization is disabled by default,
7401   // until we fix 6178663.
7402   if (CMSCleanOnEnter && (_finger > _threshold)) {
7403     // [_threshold, _finger) represents the interval
7404     // of cards to be cleared  in MUT (or precleaned in card table).
7405     // The set of cards to be cleared is all those that overlap
7406     // with the interval [_threshold, _finger); note that
7407     // _threshold is always kept card-aligned but _finger isn't
7408     // always card-aligned.
7409     HeapWord* old_threshold = _threshold;
7410     assert(old_threshold == (HeapWord*)round_to(
7411             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7412            "_threshold should always be card-aligned");
7413     _threshold = (HeapWord*)round_to(
7414                    (intptr_t)_finger, CardTableModRefBS::card_size);
7415     MemRegion mr(old_threshold, _threshold);
7416     assert(!mr.is_empty(), "Control point invariant");
7417     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7418     // XXX When _finger crosses from old gen into perm gen
7419     // we may be doing unnecessary cleaning; do better in the
7420     // future by detecting that condition and clearing fewer
7421     // MUT/CT entries.
7422     _mut->clear_range(mr);
7423   }
7424 
7425   // Note: the local finger doesn't advance while we drain
7426   // the stack below, but the global finger sure can and will.
7427   HeapWord** gfa = _task->global_finger_addr();
7428   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7429                                       _span, _bit_map,
7430                                       _work_queue,
7431                                       _overflow_stack,
7432                                       _revisit_stack,
7433                                       _finger,
7434                                       gfa, this);
7435   bool res = _work_queue->push(obj);   // overflow could occur here
7436   assert(res, "Will hold once we use workqueues");
7437   while (true) {
7438     oop new_oop;
7439     if (!_work_queue->pop_local(new_oop)) {
7440       // We emptied our work_queue; check if there's stuff that can
7441       // be gotten from the overflow stack.
7442       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7443             _overflow_stack, _work_queue)) {
7444         do_yield_check();
7445         continue;
7446       } else {  // done
7447         break;
7448       }
7449     }
7450     // Skip verifying header mark word below because we are
7451     // running concurrent with mutators.
7452     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7453     // now scan this oop's oops
7454     new_oop->oop_iterate(&pushOrMarkClosure);
7455     do_yield_check();
7456   }
7457   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7458 }
7459 
7460 // Yield in response to a request from VM Thread or
7461 // from mutators.
7462 void Par_MarkFromRootsClosure::do_yield_work() {
7463   assert(_task != NULL, "sanity");
7464   _task->yield();
7465 }
7466 
7467 // A variant of the above used for verifying CMS marking work.
7468 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7469                         MemRegion span,
7470                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7471                         CMSMarkStack*  mark_stack):
7472   _collector(collector),
7473   _span(span),
7474   _verification_bm(verification_bm),
7475   _cms_bm(cms_bm),
7476   _mark_stack(mark_stack),
7477   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7478                       mark_stack)
7479 {
7480   assert(_mark_stack->isEmpty(), "stack should be empty");
7481   _finger = _verification_bm->startWord();
7482   assert(_collector->_restart_addr == NULL, "Sanity check");
7483   assert(_span.contains(_finger), "Out of bounds _finger?");
7484 }
7485 
7486 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7487   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7488   assert(_span.contains(addr), "Out of bounds _finger?");
7489   _finger = addr;
7490 }
7491 
7492 // Should revisit to see if this should be restructured for
7493 // greater efficiency.
7494 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7495   // convert offset into a HeapWord*
7496   HeapWord* addr = _verification_bm->startWord() + offset;
7497   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7498          "address out of range");
7499   assert(_verification_bm->isMarked(addr), "tautology");
7500   assert(_cms_bm->isMarked(addr), "tautology");
7501 
7502   assert(_mark_stack->isEmpty(),
7503          "should drain stack to limit stack usage");
7504   // convert addr to an oop preparatory to scanning
7505   oop obj = oop(addr);
7506   assert(obj->is_oop(), "should be an oop");
7507   assert(_finger <= addr, "_finger runneth ahead");
7508   // advance the finger to right end of this object
7509   _finger = addr + obj->size();
7510   assert(_finger > addr, "we just incremented it above");
7511   // Note: the finger doesn't advance while we drain
7512   // the stack below.
7513   bool res = _mark_stack->push(obj);
7514   assert(res, "Empty non-zero size stack should have space for single push");
7515   while (!_mark_stack->isEmpty()) {
7516     oop new_oop = _mark_stack->pop();
7517     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7518     // now scan this oop's oops
7519     new_oop->oop_iterate(&_pam_verify_closure);
7520   }
7521   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7522   return true;
7523 }
7524 
7525 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7526   CMSCollector* collector, MemRegion span,
7527   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7528   CMSMarkStack*  mark_stack):
7529   OopClosure(collector->ref_processor()),
7530   _collector(collector),
7531   _span(span),
7532   _verification_bm(verification_bm),
7533   _cms_bm(cms_bm),
7534   _mark_stack(mark_stack)
7535 { }
7536 
7537 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7538 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7539 
7540 // Upon stack overflow, we discard (part of) the stack,
7541 // remembering the least address amongst those discarded
7542 // in CMSCollector's _restart_address.
7543 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7544   // Remember the least grey address discarded
7545   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7546   _collector->lower_restart_addr(ra);
7547   _mark_stack->reset();  // discard stack contents
7548   _mark_stack->expand(); // expand the stack if possible
7549 }
7550 
7551 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7552   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7553   HeapWord* addr = (HeapWord*)obj;
7554   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7555     // Oop lies in _span and isn't yet grey or black
7556     _verification_bm->mark(addr);            // now grey
7557     if (!_cms_bm->isMarked(addr)) {
7558       oop(addr)->print();
7559       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7560                              addr);
7561       fatal("... aborting");
7562     }
7563 
7564     if (!_mark_stack->push(obj)) { // stack overflow
7565       if (PrintCMSStatistics != 0) {
7566         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7567                                SIZE_FORMAT, _mark_stack->capacity());
7568       }
7569       assert(_mark_stack->isFull(), "Else push should have succeeded");
7570       handle_stack_overflow(addr);
7571     }
7572     // anything including and to the right of _finger
7573     // will be scanned as we iterate over the remainder of the
7574     // bit map
7575   }
7576 }
7577 
7578 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7579                      MemRegion span,
7580                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7581                      CMSMarkStack*  revisitStack,
7582                      HeapWord* finger, MarkFromRootsClosure* parent) :
7583   KlassRememberingOopClosure(collector, collector->ref_processor(), revisitStack),
7584   _span(span),
7585   _bitMap(bitMap),
7586   _markStack(markStack),
7587   _finger(finger),
7588   _parent(parent)
7589 { }
7590 
7591 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7592                      MemRegion span,
7593                      CMSBitMap* bit_map,
7594                      OopTaskQueue* work_queue,
7595                      CMSMarkStack*  overflow_stack,
7596                      CMSMarkStack*  revisit_stack,
7597                      HeapWord* finger,
7598                      HeapWord** global_finger_addr,
7599                      Par_MarkFromRootsClosure* parent) :
7600   Par_KlassRememberingOopClosure(collector,
7601                             collector->ref_processor(),
7602                             revisit_stack),
7603   _whole_span(collector->_span),
7604   _span(span),
7605   _bit_map(bit_map),
7606   _work_queue(work_queue),
7607   _overflow_stack(overflow_stack),
7608   _finger(finger),
7609   _global_finger_addr(global_finger_addr),
7610   _parent(parent)
7611 { }
7612 
7613 // Assumes thread-safe access by callers, who are
7614 // responsible for mutual exclusion.
7615 void CMSCollector::lower_restart_addr(HeapWord* low) {
7616   assert(_span.contains(low), "Out of bounds addr");
7617   if (_restart_addr == NULL) {
7618     _restart_addr = low;
7619   } else {
7620     _restart_addr = MIN2(_restart_addr, low);
7621   }
7622 }
7623 
7624 // Upon stack overflow, we discard (part of) the stack,
7625 // remembering the least address amongst those discarded
7626 // in CMSCollector's _restart_address.
7627 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7628   // Remember the least grey address discarded
7629   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7630   _collector->lower_restart_addr(ra);
7631   _markStack->reset();  // discard stack contents
7632   _markStack->expand(); // expand the stack if possible
7633 }
7634 
7635 // Upon stack overflow, we discard (part of) the stack,
7636 // remembering the least address amongst those discarded
7637 // in CMSCollector's _restart_address.
7638 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7639   // We need to do this under a mutex to prevent other
7640   // workers from interfering with the work done below.
7641   MutexLockerEx ml(_overflow_stack->par_lock(),
7642                    Mutex::_no_safepoint_check_flag);
7643   // Remember the least grey address discarded
7644   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7645   _collector->lower_restart_addr(ra);
7646   _overflow_stack->reset();  // discard stack contents
7647   _overflow_stack->expand(); // expand the stack if possible
7648 }
7649 
7650 void PushOrMarkClosure::do_oop(oop obj) {
7651   // Ignore mark word because we are running concurrent with mutators.
7652   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7653   HeapWord* addr = (HeapWord*)obj;
7654   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7655     // Oop lies in _span and isn't yet grey or black
7656     _bitMap->mark(addr);            // now grey
7657     if (addr < _finger) {
7658       // the bit map iteration has already either passed, or
7659       // sampled, this bit in the bit map; we'll need to
7660       // use the marking stack to scan this oop's oops.
7661       bool simulate_overflow = false;
7662       NOT_PRODUCT(
7663         if (CMSMarkStackOverflowALot &&
7664             _collector->simulate_overflow()) {
7665           // simulate a stack overflow
7666           simulate_overflow = true;
7667         }
7668       )
7669       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7670         if (PrintCMSStatistics != 0) {
7671           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7672                                  SIZE_FORMAT, _markStack->capacity());
7673         }
7674         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7675         handle_stack_overflow(addr);
7676       }
7677     }
7678     // anything including and to the right of _finger
7679     // will be scanned as we iterate over the remainder of the
7680     // bit map
7681     do_yield_check();
7682   }
7683 }
7684 
7685 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7686 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7687 
7688 void Par_PushOrMarkClosure::do_oop(oop obj) {
7689   // Ignore mark word because we are running concurrent with mutators.
7690   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7691   HeapWord* addr = (HeapWord*)obj;
7692   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7693     // Oop lies in _span and isn't yet grey or black
7694     // We read the global_finger (volatile read) strictly after marking oop
7695     bool res = _bit_map->par_mark(addr);    // now grey
7696     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7697     // Should we push this marked oop on our stack?
7698     // -- if someone else marked it, nothing to do
7699     // -- if target oop is above global finger nothing to do
7700     // -- if target oop is in chunk and above local finger
7701     //      then nothing to do
7702     // -- else push on work queue
7703     if (   !res       // someone else marked it, they will deal with it
7704         || (addr >= *gfa)  // will be scanned in a later task
7705         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7706       return;
7707     }
7708     // the bit map iteration has already either passed, or
7709     // sampled, this bit in the bit map; we'll need to
7710     // use the marking stack to scan this oop's oops.
7711     bool simulate_overflow = false;
7712     NOT_PRODUCT(
7713       if (CMSMarkStackOverflowALot &&
7714           _collector->simulate_overflow()) {
7715         // simulate a stack overflow
7716         simulate_overflow = true;
7717       }
7718     )
7719     if (simulate_overflow ||
7720         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7721       // stack overflow
7722       if (PrintCMSStatistics != 0) {
7723         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7724                                SIZE_FORMAT, _overflow_stack->capacity());
7725       }
7726       // We cannot assert that the overflow stack is full because
7727       // it may have been emptied since.
7728       assert(simulate_overflow ||
7729              _work_queue->size() == _work_queue->max_elems(),
7730             "Else push should have succeeded");
7731       handle_stack_overflow(addr);
7732     }
7733     do_yield_check();
7734   }
7735 }
7736 
7737 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7738 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7739 
7740 KlassRememberingOopClosure::KlassRememberingOopClosure(CMSCollector* collector,
7741                                              ReferenceProcessor* rp,
7742                                              CMSMarkStack* revisit_stack) :
7743   OopClosure(rp),
7744   _collector(collector),
7745   _revisit_stack(revisit_stack),
7746   _should_remember_klasses(collector->should_unload_classes()) {}
7747 
7748 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7749                                        MemRegion span,
7750                                        ReferenceProcessor* rp,
7751                                        CMSBitMap* bit_map,
7752                                        CMSBitMap* mod_union_table,
7753                                        CMSMarkStack*  mark_stack,
7754                                        CMSMarkStack*  revisit_stack,
7755                                        bool           concurrent_precleaning):
7756   KlassRememberingOopClosure(collector, rp, revisit_stack),
7757   _span(span),
7758   _bit_map(bit_map),
7759   _mod_union_table(mod_union_table),
7760   _mark_stack(mark_stack),
7761   _concurrent_precleaning(concurrent_precleaning)
7762 {
7763   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7764 }
7765 
7766 // Grey object rescan during pre-cleaning and second checkpoint phases --
7767 // the non-parallel version (the parallel version appears further below.)
7768 void PushAndMarkClosure::do_oop(oop obj) {
7769   // Ignore mark word verification. If during concurrent precleaning,
7770   // the object monitor may be locked. If during the checkpoint
7771   // phases, the object may already have been reached by a  different
7772   // path and may be at the end of the global overflow list (so
7773   // the mark word may be NULL).
7774   assert(obj->is_oop_or_null(true /* ignore mark word */),
7775          "expected an oop or NULL");
7776   HeapWord* addr = (HeapWord*)obj;
7777   // Check if oop points into the CMS generation
7778   // and is not marked
7779   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7780     // a white object ...
7781     _bit_map->mark(addr);         // ... now grey
7782     // push on the marking stack (grey set)
7783     bool simulate_overflow = false;
7784     NOT_PRODUCT(
7785       if (CMSMarkStackOverflowALot &&
7786           _collector->simulate_overflow()) {
7787         // simulate a stack overflow
7788         simulate_overflow = true;
7789       }
7790     )
7791     if (simulate_overflow || !_mark_stack->push(obj)) {
7792       if (_concurrent_precleaning) {
7793          // During precleaning we can just dirty the appropriate card(s)
7794          // in the mod union table, thus ensuring that the object remains
7795          // in the grey set  and continue. In the case of object arrays
7796          // we need to dirty all of the cards that the object spans,
7797          // since the rescan of object arrays will be limited to the
7798          // dirty cards.
7799          // Note that no one can be intefering with us in this action
7800          // of dirtying the mod union table, so no locking or atomics
7801          // are required.
7802          if (obj->is_objArray()) {
7803            size_t sz = obj->size();
7804            HeapWord* end_card_addr = (HeapWord*)round_to(
7805                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7806            MemRegion redirty_range = MemRegion(addr, end_card_addr);
7807            assert(!redirty_range.is_empty(), "Arithmetical tautology");
7808            _mod_union_table->mark_range(redirty_range);
7809          } else {
7810            _mod_union_table->mark(addr);
7811          }
7812          _collector->_ser_pmc_preclean_ovflw++;
7813       } else {
7814          // During the remark phase, we need to remember this oop
7815          // in the overflow list.
7816          _collector->push_on_overflow_list(obj);
7817          _collector->_ser_pmc_remark_ovflw++;
7818       }
7819     }
7820   }
7821 }
7822 
7823 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
7824                                                MemRegion span,
7825                                                ReferenceProcessor* rp,
7826                                                CMSBitMap* bit_map,
7827                                                OopTaskQueue* work_queue,
7828                                                CMSMarkStack* revisit_stack):
7829   Par_KlassRememberingOopClosure(collector, rp, revisit_stack),
7830   _span(span),
7831   _bit_map(bit_map),
7832   _work_queue(work_queue)
7833 {
7834   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7835 }
7836 
7837 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
7838 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
7839 
7840 // Grey object rescan during second checkpoint phase --
7841 // the parallel version.
7842 void Par_PushAndMarkClosure::do_oop(oop obj) {
7843   // In the assert below, we ignore the mark word because
7844   // this oop may point to an already visited object that is
7845   // on the overflow stack (in which case the mark word has
7846   // been hijacked for chaining into the overflow stack --
7847   // if this is the last object in the overflow stack then
7848   // its mark word will be NULL). Because this object may
7849   // have been subsequently popped off the global overflow
7850   // stack, and the mark word possibly restored to the prototypical
7851   // value, by the time we get to examined this failing assert in
7852   // the debugger, is_oop_or_null(false) may subsequently start
7853   // to hold.
7854   assert(obj->is_oop_or_null(true),
7855          "expected an oop or NULL");
7856   HeapWord* addr = (HeapWord*)obj;
7857   // Check if oop points into the CMS generation
7858   // and is not marked
7859   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7860     // a white object ...
7861     // If we manage to "claim" the object, by being the
7862     // first thread to mark it, then we push it on our
7863     // marking stack
7864     if (_bit_map->par_mark(addr)) {     // ... now grey
7865       // push on work queue (grey set)
7866       bool simulate_overflow = false;
7867       NOT_PRODUCT(
7868         if (CMSMarkStackOverflowALot &&
7869             _collector->par_simulate_overflow()) {
7870           // simulate a stack overflow
7871           simulate_overflow = true;
7872         }
7873       )
7874       if (simulate_overflow || !_work_queue->push(obj)) {
7875         _collector->par_push_on_overflow_list(obj);
7876         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
7877       }
7878     } // Else, some other thread got there first
7879   }
7880 }
7881 
7882 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
7883 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
7884 
7885 void PushAndMarkClosure::remember_mdo(DataLayout* v) {
7886   // TBD
7887 }
7888 
7889 void Par_PushAndMarkClosure::remember_mdo(DataLayout* v) {
7890   // TBD
7891 }
7892 
7893 void CMSPrecleanRefsYieldClosure::do_yield_work() {
7894   DEBUG_ONLY(RememberKlassesChecker mux(false);)
7895   Mutex* bml = _collector->bitMapLock();
7896   assert_lock_strong(bml);
7897   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7898          "CMS thread should hold CMS token");
7899 
7900   bml->unlock();
7901   ConcurrentMarkSweepThread::desynchronize(true);
7902 
7903   ConcurrentMarkSweepThread::acknowledge_yield_request();
7904 
7905   _collector->stopTimer();
7906   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7907   if (PrintCMSStatistics != 0) {
7908     _collector->incrementYields();
7909   }
7910   _collector->icms_wait();
7911 
7912   // See the comment in coordinator_yield()
7913   for (unsigned i = 0; i < CMSYieldSleepCount &&
7914                        ConcurrentMarkSweepThread::should_yield() &&
7915                        !CMSCollector::foregroundGCIsActive(); ++i) {
7916     os::sleep(Thread::current(), 1, false);
7917     ConcurrentMarkSweepThread::acknowledge_yield_request();
7918   }
7919 
7920   ConcurrentMarkSweepThread::synchronize(true);
7921   bml->lock();
7922 
7923   _collector->startTimer();
7924 }
7925 
7926 bool CMSPrecleanRefsYieldClosure::should_return() {
7927   if (ConcurrentMarkSweepThread::should_yield()) {
7928     do_yield_work();
7929   }
7930   return _collector->foregroundGCIsActive();
7931 }
7932 
7933 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
7934   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
7935          "mr should be aligned to start at a card boundary");
7936   // We'd like to assert:
7937   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
7938   //        "mr should be a range of cards");
7939   // However, that would be too strong in one case -- the last
7940   // partition ends at _unallocated_block which, in general, can be
7941   // an arbitrary boundary, not necessarily card aligned.
7942   if (PrintCMSStatistics != 0) {
7943     _num_dirty_cards +=
7944          mr.word_size()/CardTableModRefBS::card_size_in_words;
7945   }
7946   _space->object_iterate_mem(mr, &_scan_cl);
7947 }
7948 
7949 SweepClosure::SweepClosure(CMSCollector* collector,
7950                            ConcurrentMarkSweepGeneration* g,
7951                            CMSBitMap* bitMap, bool should_yield) :
7952   _collector(collector),
7953   _g(g),
7954   _sp(g->cmsSpace()),
7955   _limit(_sp->sweep_limit()),
7956   _freelistLock(_sp->freelistLock()),
7957   _bitMap(bitMap),
7958   _yield(should_yield),
7959   _inFreeRange(false),           // No free range at beginning of sweep
7960   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7961   _lastFreeRangeCoalesced(false),
7962   _freeFinger(g->used_region().start())
7963 {
7964   NOT_PRODUCT(
7965     _numObjectsFreed = 0;
7966     _numWordsFreed   = 0;
7967     _numObjectsLive = 0;
7968     _numWordsLive = 0;
7969     _numObjectsAlreadyFree = 0;
7970     _numWordsAlreadyFree = 0;
7971     _last_fc = NULL;
7972 
7973     _sp->initializeIndexedFreeListArrayReturnedBytes();
7974     _sp->dictionary()->initialize_dict_returned_bytes();
7975   )
7976   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7977          "sweep _limit out of bounds");
7978   if (CMSTraceSweeper) {
7979     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
7980                         _limit);
7981   }
7982 }
7983 
7984 void SweepClosure::print_on(outputStream* st) const {
7985   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7986                 _sp->bottom(), _sp->end());
7987   tty->print_cr("_limit = " PTR_FORMAT, _limit);
7988   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
7989   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
7990   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7991                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7992 }
7993 
7994 #ifndef PRODUCT
7995 // Assertion checking only:  no useful work in product mode --
7996 // however, if any of the flags below become product flags,
7997 // you may need to review this code to see if it needs to be
7998 // enabled in product mode.
7999 SweepClosure::~SweepClosure() {
8000   assert_lock_strong(_freelistLock);
8001   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8002          "sweep _limit out of bounds");
8003   if (inFreeRange()) {
8004     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8005     print();
8006     ShouldNotReachHere();
8007   }
8008   if (Verbose && PrintGC) {
8009     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8010                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8011     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8012                            SIZE_FORMAT" bytes  "
8013       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8014       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8015       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8016     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8017                         * sizeof(HeapWord);
8018     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8019 
8020     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8021       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8022       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8023       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8024       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8025       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8026         indexListReturnedBytes);
8027       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8028         dict_returned_bytes);
8029     }
8030   }
8031   if (CMSTraceSweeper) {
8032     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8033                            _limit);
8034   }
8035 }
8036 #endif  // PRODUCT
8037 
8038 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8039     bool freeRangeInFreeLists) {
8040   if (CMSTraceSweeper) {
8041     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8042                freeFinger, freeRangeInFreeLists);
8043   }
8044   assert(!inFreeRange(), "Trampling existing free range");
8045   set_inFreeRange(true);
8046   set_lastFreeRangeCoalesced(false);
8047 
8048   set_freeFinger(freeFinger);
8049   set_freeRangeInFreeLists(freeRangeInFreeLists);
8050   if (CMSTestInFreeList) {
8051     if (freeRangeInFreeLists) {
8052       FreeChunk* fc = (FreeChunk*) freeFinger;
8053       assert(fc->is_free(), "A chunk on the free list should be free.");
8054       assert(fc->size() > 0, "Free range should have a size");
8055       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8056     }
8057   }
8058 }
8059 
8060 // Note that the sweeper runs concurrently with mutators. Thus,
8061 // it is possible for direct allocation in this generation to happen
8062 // in the middle of the sweep. Note that the sweeper also coalesces
8063 // contiguous free blocks. Thus, unless the sweeper and the allocator
8064 // synchronize appropriately freshly allocated blocks may get swept up.
8065 // This is accomplished by the sweeper locking the free lists while
8066 // it is sweeping. Thus blocks that are determined to be free are
8067 // indeed free. There is however one additional complication:
8068 // blocks that have been allocated since the final checkpoint and
8069 // mark, will not have been marked and so would be treated as
8070 // unreachable and swept up. To prevent this, the allocator marks
8071 // the bit map when allocating during the sweep phase. This leads,
8072 // however, to a further complication -- objects may have been allocated
8073 // but not yet initialized -- in the sense that the header isn't yet
8074 // installed. The sweeper can not then determine the size of the block
8075 // in order to skip over it. To deal with this case, we use a technique
8076 // (due to Printezis) to encode such uninitialized block sizes in the
8077 // bit map. Since the bit map uses a bit per every HeapWord, but the
8078 // CMS generation has a minimum object size of 3 HeapWords, it follows
8079 // that "normal marks" won't be adjacent in the bit map (there will
8080 // always be at least two 0 bits between successive 1 bits). We make use
8081 // of these "unused" bits to represent uninitialized blocks -- the bit
8082 // corresponding to the start of the uninitialized object and the next
8083 // bit are both set. Finally, a 1 bit marks the end of the object that
8084 // started with the two consecutive 1 bits to indicate its potentially
8085 // uninitialized state.
8086 
8087 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8088   FreeChunk* fc = (FreeChunk*)addr;
8089   size_t res;
8090 
8091   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8092   // than "addr == _limit" because although _limit was a block boundary when
8093   // we started the sweep, it may no longer be one because heap expansion
8094   // may have caused us to coalesce the block ending at the address _limit
8095   // with a newly expanded chunk (this happens when _limit was set to the
8096   // previous _end of the space), so we may have stepped past _limit:
8097   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8098   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8099     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8100            "sweep _limit out of bounds");
8101     assert(addr < _sp->end(), "addr out of bounds");
8102     // Flush any free range we might be holding as a single
8103     // coalesced chunk to the appropriate free list.
8104     if (inFreeRange()) {
8105       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8106              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8107       flush_cur_free_chunk(freeFinger(),
8108                            pointer_delta(addr, freeFinger()));
8109       if (CMSTraceSweeper) {
8110         gclog_or_tty->print("Sweep: last chunk: ");
8111         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8112                    "[coalesced:"SIZE_FORMAT"]\n",
8113                    freeFinger(), pointer_delta(addr, freeFinger()),
8114                    lastFreeRangeCoalesced());
8115       }
8116     }
8117 
8118     // help the iterator loop finish
8119     return pointer_delta(_sp->end(), addr);
8120   }
8121 
8122   assert(addr < _limit, "sweep invariant");
8123   // check if we should yield
8124   do_yield_check(addr);
8125   if (fc->is_free()) {
8126     // Chunk that is already free
8127     res = fc->size();
8128     do_already_free_chunk(fc);
8129     debug_only(_sp->verifyFreeLists());
8130     // If we flush the chunk at hand in lookahead_and_flush()
8131     // and it's coalesced with a preceding chunk, then the
8132     // process of "mangling" the payload of the coalesced block
8133     // will cause erasure of the size information from the
8134     // (erstwhile) header of all the coalesced blocks but the
8135     // first, so the first disjunct in the assert will not hold
8136     // in that specific case (in which case the second disjunct
8137     // will hold).
8138     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8139            "Otherwise the size info doesn't change at this step");
8140     NOT_PRODUCT(
8141       _numObjectsAlreadyFree++;
8142       _numWordsAlreadyFree += res;
8143     )
8144     NOT_PRODUCT(_last_fc = fc;)
8145   } else if (!_bitMap->isMarked(addr)) {
8146     // Chunk is fresh garbage
8147     res = do_garbage_chunk(fc);
8148     debug_only(_sp->verifyFreeLists());
8149     NOT_PRODUCT(
8150       _numObjectsFreed++;
8151       _numWordsFreed += res;
8152     )
8153   } else {
8154     // Chunk that is alive.
8155     res = do_live_chunk(fc);
8156     debug_only(_sp->verifyFreeLists());
8157     NOT_PRODUCT(
8158         _numObjectsLive++;
8159         _numWordsLive += res;
8160     )
8161   }
8162   return res;
8163 }
8164 
8165 // For the smart allocation, record following
8166 //  split deaths - a free chunk is removed from its free list because
8167 //      it is being split into two or more chunks.
8168 //  split birth - a free chunk is being added to its free list because
8169 //      a larger free chunk has been split and resulted in this free chunk.
8170 //  coal death - a free chunk is being removed from its free list because
8171 //      it is being coalesced into a large free chunk.
8172 //  coal birth - a free chunk is being added to its free list because
8173 //      it was created when two or more free chunks where coalesced into
8174 //      this free chunk.
8175 //
8176 // These statistics are used to determine the desired number of free
8177 // chunks of a given size.  The desired number is chosen to be relative
8178 // to the end of a CMS sweep.  The desired number at the end of a sweep
8179 // is the
8180 //      count-at-end-of-previous-sweep (an amount that was enough)
8181 //              - count-at-beginning-of-current-sweep  (the excess)
8182 //              + split-births  (gains in this size during interval)
8183 //              - split-deaths  (demands on this size during interval)
8184 // where the interval is from the end of one sweep to the end of the
8185 // next.
8186 //
8187 // When sweeping the sweeper maintains an accumulated chunk which is
8188 // the chunk that is made up of chunks that have been coalesced.  That
8189 // will be termed the left-hand chunk.  A new chunk of garbage that
8190 // is being considered for coalescing will be referred to as the
8191 // right-hand chunk.
8192 //
8193 // When making a decision on whether to coalesce a right-hand chunk with
8194 // the current left-hand chunk, the current count vs. the desired count
8195 // of the left-hand chunk is considered.  Also if the right-hand chunk
8196 // is near the large chunk at the end of the heap (see
8197 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8198 // left-hand chunk is coalesced.
8199 //
8200 // When making a decision about whether to split a chunk, the desired count
8201 // vs. the current count of the candidate to be split is also considered.
8202 // If the candidate is underpopulated (currently fewer chunks than desired)
8203 // a chunk of an overpopulated (currently more chunks than desired) size may
8204 // be chosen.  The "hint" associated with a free list, if non-null, points
8205 // to a free list which may be overpopulated.
8206 //
8207 
8208 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8209   const size_t size = fc->size();
8210   // Chunks that cannot be coalesced are not in the
8211   // free lists.
8212   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8213     assert(_sp->verify_chunk_in_free_list(fc),
8214       "free chunk should be in free lists");
8215   }
8216   // a chunk that is already free, should not have been
8217   // marked in the bit map
8218   HeapWord* const addr = (HeapWord*) fc;
8219   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8220   // Verify that the bit map has no bits marked between
8221   // addr and purported end of this block.
8222   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8223 
8224   // Some chunks cannot be coalesced under any circumstances.
8225   // See the definition of cantCoalesce().
8226   if (!fc->cantCoalesce()) {
8227     // This chunk can potentially be coalesced.
8228     if (_sp->adaptive_freelists()) {
8229       // All the work is done in
8230       do_post_free_or_garbage_chunk(fc, size);
8231     } else {  // Not adaptive free lists
8232       // this is a free chunk that can potentially be coalesced by the sweeper;
8233       if (!inFreeRange()) {
8234         // if the next chunk is a free block that can't be coalesced
8235         // it doesn't make sense to remove this chunk from the free lists
8236         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8237         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8238         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8239             nextChunk->is_free()               &&     // ... which is free...
8240             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8241           // nothing to do
8242         } else {
8243           // Potentially the start of a new free range:
8244           // Don't eagerly remove it from the free lists.
8245           // No need to remove it if it will just be put
8246           // back again.  (Also from a pragmatic point of view
8247           // if it is a free block in a region that is beyond
8248           // any allocated blocks, an assertion will fail)
8249           // Remember the start of a free run.
8250           initialize_free_range(addr, true);
8251           // end - can coalesce with next chunk
8252         }
8253       } else {
8254         // the midst of a free range, we are coalescing
8255         print_free_block_coalesced(fc);
8256         if (CMSTraceSweeper) {
8257           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8258         }
8259         // remove it from the free lists
8260         _sp->removeFreeChunkFromFreeLists(fc);
8261         set_lastFreeRangeCoalesced(true);
8262         // If the chunk is being coalesced and the current free range is
8263         // in the free lists, remove the current free range so that it
8264         // will be returned to the free lists in its entirety - all
8265         // the coalesced pieces included.
8266         if (freeRangeInFreeLists()) {
8267           FreeChunk* ffc = (FreeChunk*) freeFinger();
8268           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8269             "Size of free range is inconsistent with chunk size.");
8270           if (CMSTestInFreeList) {
8271             assert(_sp->verify_chunk_in_free_list(ffc),
8272               "free range is not in free lists");
8273           }
8274           _sp->removeFreeChunkFromFreeLists(ffc);
8275           set_freeRangeInFreeLists(false);
8276         }
8277       }
8278     }
8279     // Note that if the chunk is not coalescable (the else arm
8280     // below), we unconditionally flush, without needing to do
8281     // a "lookahead," as we do below.
8282     if (inFreeRange()) lookahead_and_flush(fc, size);
8283   } else {
8284     // Code path common to both original and adaptive free lists.
8285 
8286     // cant coalesce with previous block; this should be treated
8287     // as the end of a free run if any
8288     if (inFreeRange()) {
8289       // we kicked some butt; time to pick up the garbage
8290       assert(freeFinger() < addr, "freeFinger points too high");
8291       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8292     }
8293     // else, nothing to do, just continue
8294   }
8295 }
8296 
8297 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8298   // This is a chunk of garbage.  It is not in any free list.
8299   // Add it to a free list or let it possibly be coalesced into
8300   // a larger chunk.
8301   HeapWord* const addr = (HeapWord*) fc;
8302   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8303 
8304   if (_sp->adaptive_freelists()) {
8305     // Verify that the bit map has no bits marked between
8306     // addr and purported end of just dead object.
8307     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8308 
8309     do_post_free_or_garbage_chunk(fc, size);
8310   } else {
8311     if (!inFreeRange()) {
8312       // start of a new free range
8313       assert(size > 0, "A free range should have a size");
8314       initialize_free_range(addr, false);
8315     } else {
8316       // this will be swept up when we hit the end of the
8317       // free range
8318       if (CMSTraceSweeper) {
8319         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8320       }
8321       // If the chunk is being coalesced and the current free range is
8322       // in the free lists, remove the current free range so that it
8323       // will be returned to the free lists in its entirety - all
8324       // the coalesced pieces included.
8325       if (freeRangeInFreeLists()) {
8326         FreeChunk* ffc = (FreeChunk*)freeFinger();
8327         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8328           "Size of free range is inconsistent with chunk size.");
8329         if (CMSTestInFreeList) {
8330           assert(_sp->verify_chunk_in_free_list(ffc),
8331             "free range is not in free lists");
8332         }
8333         _sp->removeFreeChunkFromFreeLists(ffc);
8334         set_freeRangeInFreeLists(false);
8335       }
8336       set_lastFreeRangeCoalesced(true);
8337     }
8338     // this will be swept up when we hit the end of the free range
8339 
8340     // Verify that the bit map has no bits marked between
8341     // addr and purported end of just dead object.
8342     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8343   }
8344   assert(_limit >= addr + size,
8345          "A freshly garbage chunk can't possibly straddle over _limit");
8346   if (inFreeRange()) lookahead_and_flush(fc, size);
8347   return size;
8348 }
8349 
8350 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8351   HeapWord* addr = (HeapWord*) fc;
8352   // The sweeper has just found a live object. Return any accumulated
8353   // left hand chunk to the free lists.
8354   if (inFreeRange()) {
8355     assert(freeFinger() < addr, "freeFinger points too high");
8356     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8357   }
8358 
8359   // This object is live: we'd normally expect this to be
8360   // an oop, and like to assert the following:
8361   // assert(oop(addr)->is_oop(), "live block should be an oop");
8362   // However, as we commented above, this may be an object whose
8363   // header hasn't yet been initialized.
8364   size_t size;
8365   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8366   if (_bitMap->isMarked(addr + 1)) {
8367     // Determine the size from the bit map, rather than trying to
8368     // compute it from the object header.
8369     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8370     size = pointer_delta(nextOneAddr + 1, addr);
8371     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8372            "alignment problem");
8373 
8374 #ifdef DEBUG
8375       if (oop(addr)->klass_or_null() != NULL &&
8376           (   !_collector->should_unload_classes()
8377            || (oop(addr)->is_parsable()) &&
8378                oop(addr)->is_conc_safe())) {
8379         // Ignore mark word because we are running concurrent with mutators
8380         assert(oop(addr)->is_oop(true), "live block should be an oop");
8381         // is_conc_safe is checked before performing this assertion
8382         // because an object that is not is_conc_safe may yet have
8383         // the return from size() correct.
8384         assert(size ==
8385                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8386                "P-mark and computed size do not agree");
8387       }
8388 #endif
8389 
8390   } else {
8391     // This should be an initialized object that's alive.
8392     assert(oop(addr)->klass_or_null() != NULL &&
8393            (!_collector->should_unload_classes()
8394             || oop(addr)->is_parsable()),
8395            "Should be an initialized object");
8396     // Note that there are objects used during class redefinition,
8397     // e.g. merge_cp in VM_RedefineClasses::merge_cp_and_rewrite(),
8398     // which are discarded with their is_conc_safe state still
8399     // false.  These object may be floating garbage so may be
8400     // seen here.  If they are floating garbage their size
8401     // should be attainable from their klass.  Do not that
8402     // is_conc_safe() is true for oop(addr).
8403     // Ignore mark word because we are running concurrent with mutators
8404     assert(oop(addr)->is_oop(true), "live block should be an oop");
8405     // Verify that the bit map has no bits marked between
8406     // addr and purported end of this block.
8407     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8408     assert(size >= 3, "Necessary for Printezis marks to work");
8409     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8410     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8411   }
8412   return size;
8413 }
8414 
8415 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8416                                                  size_t chunkSize) {
8417   // do_post_free_or_garbage_chunk() should only be called in the case
8418   // of the adaptive free list allocator.
8419   const bool fcInFreeLists = fc->is_free();
8420   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8421   assert((HeapWord*)fc <= _limit, "sweep invariant");
8422   if (CMSTestInFreeList && fcInFreeLists) {
8423     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8424   }
8425 
8426   if (CMSTraceSweeper) {
8427     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8428   }
8429 
8430   HeapWord* const fc_addr = (HeapWord*) fc;
8431 
8432   bool coalesce;
8433   const size_t left  = pointer_delta(fc_addr, freeFinger());
8434   const size_t right = chunkSize;
8435   switch (FLSCoalescePolicy) {
8436     // numeric value forms a coalition aggressiveness metric
8437     case 0:  { // never coalesce
8438       coalesce = false;
8439       break;
8440     }
8441     case 1: { // coalesce if left & right chunks on overpopulated lists
8442       coalesce = _sp->coalOverPopulated(left) &&
8443                  _sp->coalOverPopulated(right);
8444       break;
8445     }
8446     case 2: { // coalesce if left chunk on overpopulated list (default)
8447       coalesce = _sp->coalOverPopulated(left);
8448       break;
8449     }
8450     case 3: { // coalesce if left OR right chunk on overpopulated list
8451       coalesce = _sp->coalOverPopulated(left) ||
8452                  _sp->coalOverPopulated(right);
8453       break;
8454     }
8455     case 4: { // always coalesce
8456       coalesce = true;
8457       break;
8458     }
8459     default:
8460      ShouldNotReachHere();
8461   }
8462 
8463   // Should the current free range be coalesced?
8464   // If the chunk is in a free range and either we decided to coalesce above
8465   // or the chunk is near the large block at the end of the heap
8466   // (isNearLargestChunk() returns true), then coalesce this chunk.
8467   const bool doCoalesce = inFreeRange()
8468                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8469   if (doCoalesce) {
8470     // Coalesce the current free range on the left with the new
8471     // chunk on the right.  If either is on a free list,
8472     // it must be removed from the list and stashed in the closure.
8473     if (freeRangeInFreeLists()) {
8474       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8475       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8476         "Size of free range is inconsistent with chunk size.");
8477       if (CMSTestInFreeList) {
8478         assert(_sp->verify_chunk_in_free_list(ffc),
8479           "Chunk is not in free lists");
8480       }
8481       _sp->coalDeath(ffc->size());
8482       _sp->removeFreeChunkFromFreeLists(ffc);
8483       set_freeRangeInFreeLists(false);
8484     }
8485     if (fcInFreeLists) {
8486       _sp->coalDeath(chunkSize);
8487       assert(fc->size() == chunkSize,
8488         "The chunk has the wrong size or is not in the free lists");
8489       _sp->removeFreeChunkFromFreeLists(fc);
8490     }
8491     set_lastFreeRangeCoalesced(true);
8492     print_free_block_coalesced(fc);
8493   } else {  // not in a free range and/or should not coalesce
8494     // Return the current free range and start a new one.
8495     if (inFreeRange()) {
8496       // In a free range but cannot coalesce with the right hand chunk.
8497       // Put the current free range into the free lists.
8498       flush_cur_free_chunk(freeFinger(),
8499                            pointer_delta(fc_addr, freeFinger()));
8500     }
8501     // Set up for new free range.  Pass along whether the right hand
8502     // chunk is in the free lists.
8503     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8504   }
8505 }
8506 
8507 // Lookahead flush:
8508 // If we are tracking a free range, and this is the last chunk that
8509 // we'll look at because its end crosses past _limit, we'll preemptively
8510 // flush it along with any free range we may be holding on to. Note that
8511 // this can be the case only for an already free or freshly garbage
8512 // chunk. If this block is an object, it can never straddle
8513 // over _limit. The "straddling" occurs when _limit is set at
8514 // the previous end of the space when this cycle started, and
8515 // a subsequent heap expansion caused the previously co-terminal
8516 // free block to be coalesced with the newly expanded portion,
8517 // thus rendering _limit a non-block-boundary making it dangerous
8518 // for the sweeper to step over and examine.
8519 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8520   assert(inFreeRange(), "Should only be called if currently in a free range.");
8521   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8522   assert(_sp->used_region().contains(eob - 1),
8523          err_msg("eob = " PTR_FORMAT " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8524                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8525                  _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8526   if (eob >= _limit) {
8527     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8528     if (CMSTraceSweeper) {
8529       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8530                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8531                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8532                              _limit, fc, eob, _sp->bottom(), _sp->end());
8533     }
8534     // Return the storage we are tracking back into the free lists.
8535     if (CMSTraceSweeper) {
8536       gclog_or_tty->print_cr("Flushing ... ");
8537     }
8538     assert(freeFinger() < eob, "Error");
8539     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8540   }
8541 }
8542 
8543 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8544   assert(inFreeRange(), "Should only be called if currently in a free range.");
8545   assert(size > 0,
8546     "A zero sized chunk cannot be added to the free lists.");
8547   if (!freeRangeInFreeLists()) {
8548     if (CMSTestInFreeList) {
8549       FreeChunk* fc = (FreeChunk*) chunk;
8550       fc->set_size(size);
8551       assert(!_sp->verify_chunk_in_free_list(fc),
8552         "chunk should not be in free lists yet");
8553     }
8554     if (CMSTraceSweeper) {
8555       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8556                     chunk, size);
8557     }
8558     // A new free range is going to be starting.  The current
8559     // free range has not been added to the free lists yet or
8560     // was removed so add it back.
8561     // If the current free range was coalesced, then the death
8562     // of the free range was recorded.  Record a birth now.
8563     if (lastFreeRangeCoalesced()) {
8564       _sp->coalBirth(size);
8565     }
8566     _sp->addChunkAndRepairOffsetTable(chunk, size,
8567             lastFreeRangeCoalesced());
8568   } else if (CMSTraceSweeper) {
8569     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8570   }
8571   set_inFreeRange(false);
8572   set_freeRangeInFreeLists(false);
8573 }
8574 
8575 // We take a break if we've been at this for a while,
8576 // so as to avoid monopolizing the locks involved.
8577 void SweepClosure::do_yield_work(HeapWord* addr) {
8578   // Return current free chunk being used for coalescing (if any)
8579   // to the appropriate freelist.  After yielding, the next
8580   // free block encountered will start a coalescing range of
8581   // free blocks.  If the next free block is adjacent to the
8582   // chunk just flushed, they will need to wait for the next
8583   // sweep to be coalesced.
8584   if (inFreeRange()) {
8585     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8586   }
8587 
8588   // First give up the locks, then yield, then re-lock.
8589   // We should probably use a constructor/destructor idiom to
8590   // do this unlock/lock or modify the MutexUnlocker class to
8591   // serve our purpose. XXX
8592   assert_lock_strong(_bitMap->lock());
8593   assert_lock_strong(_freelistLock);
8594   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8595          "CMS thread should hold CMS token");
8596   _bitMap->lock()->unlock();
8597   _freelistLock->unlock();
8598   ConcurrentMarkSweepThread::desynchronize(true);
8599   ConcurrentMarkSweepThread::acknowledge_yield_request();
8600   _collector->stopTimer();
8601   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8602   if (PrintCMSStatistics != 0) {
8603     _collector->incrementYields();
8604   }
8605   _collector->icms_wait();
8606 
8607   // See the comment in coordinator_yield()
8608   for (unsigned i = 0; i < CMSYieldSleepCount &&
8609                        ConcurrentMarkSweepThread::should_yield() &&
8610                        !CMSCollector::foregroundGCIsActive(); ++i) {
8611     os::sleep(Thread::current(), 1, false);
8612     ConcurrentMarkSweepThread::acknowledge_yield_request();
8613   }
8614 
8615   ConcurrentMarkSweepThread::synchronize(true);
8616   _freelistLock->lock();
8617   _bitMap->lock()->lock_without_safepoint_check();
8618   _collector->startTimer();
8619 }
8620 
8621 #ifndef PRODUCT
8622 // This is actually very useful in a product build if it can
8623 // be called from the debugger.  Compile it into the product
8624 // as needed.
8625 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8626   return debug_cms_space->verify_chunk_in_free_list(fc);
8627 }
8628 #endif
8629 
8630 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8631   if (CMSTraceSweeper) {
8632     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8633                            fc, fc->size());
8634   }
8635 }
8636 
8637 // CMSIsAliveClosure
8638 bool CMSIsAliveClosure::do_object_b(oop obj) {
8639   HeapWord* addr = (HeapWord*)obj;
8640   return addr != NULL &&
8641          (!_span.contains(addr) || _bit_map->isMarked(addr));
8642 }
8643 
8644 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8645                       MemRegion span,
8646                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8647                       CMSMarkStack* revisit_stack, bool cpc):
8648   KlassRememberingOopClosure(collector, NULL, revisit_stack),
8649   _span(span),
8650   _bit_map(bit_map),
8651   _mark_stack(mark_stack),
8652   _concurrent_precleaning(cpc) {
8653   assert(!_span.is_empty(), "Empty span could spell trouble");
8654 }
8655 
8656 
8657 // CMSKeepAliveClosure: the serial version
8658 void CMSKeepAliveClosure::do_oop(oop obj) {
8659   HeapWord* addr = (HeapWord*)obj;
8660   if (_span.contains(addr) &&
8661       !_bit_map->isMarked(addr)) {
8662     _bit_map->mark(addr);
8663     bool simulate_overflow = false;
8664     NOT_PRODUCT(
8665       if (CMSMarkStackOverflowALot &&
8666           _collector->simulate_overflow()) {
8667         // simulate a stack overflow
8668         simulate_overflow = true;
8669       }
8670     )
8671     if (simulate_overflow || !_mark_stack->push(obj)) {
8672       if (_concurrent_precleaning) {
8673         // We dirty the overflown object and let the remark
8674         // phase deal with it.
8675         assert(_collector->overflow_list_is_empty(), "Error");
8676         // In the case of object arrays, we need to dirty all of
8677         // the cards that the object spans. No locking or atomics
8678         // are needed since no one else can be mutating the mod union
8679         // table.
8680         if (obj->is_objArray()) {
8681           size_t sz = obj->size();
8682           HeapWord* end_card_addr =
8683             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8684           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8685           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8686           _collector->_modUnionTable.mark_range(redirty_range);
8687         } else {
8688           _collector->_modUnionTable.mark(addr);
8689         }
8690         _collector->_ser_kac_preclean_ovflw++;
8691       } else {
8692         _collector->push_on_overflow_list(obj);
8693         _collector->_ser_kac_ovflw++;
8694       }
8695     }
8696   }
8697 }
8698 
8699 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8700 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8701 
8702 // CMSParKeepAliveClosure: a parallel version of the above.
8703 // The work queues are private to each closure (thread),
8704 // but (may be) available for stealing by other threads.
8705 void CMSParKeepAliveClosure::do_oop(oop obj) {
8706   HeapWord* addr = (HeapWord*)obj;
8707   if (_span.contains(addr) &&
8708       !_bit_map->isMarked(addr)) {
8709     // In general, during recursive tracing, several threads
8710     // may be concurrently getting here; the first one to
8711     // "tag" it, claims it.
8712     if (_bit_map->par_mark(addr)) {
8713       bool res = _work_queue->push(obj);
8714       assert(res, "Low water mark should be much less than capacity");
8715       // Do a recursive trim in the hope that this will keep
8716       // stack usage lower, but leave some oops for potential stealers
8717       trim_queue(_low_water_mark);
8718     } // Else, another thread got there first
8719   }
8720 }
8721 
8722 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8723 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8724 
8725 void CMSParKeepAliveClosure::trim_queue(uint max) {
8726   while (_work_queue->size() > max) {
8727     oop new_oop;
8728     if (_work_queue->pop_local(new_oop)) {
8729       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8730       assert(_bit_map->isMarked((HeapWord*)new_oop),
8731              "no white objects on this stack!");
8732       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8733       // iterate over the oops in this oop, marking and pushing
8734       // the ones in CMS heap (i.e. in _span).
8735       new_oop->oop_iterate(&_mark_and_push);
8736     }
8737   }
8738 }
8739 
8740 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8741                                 CMSCollector* collector,
8742                                 MemRegion span, CMSBitMap* bit_map,
8743                                 CMSMarkStack* revisit_stack,
8744                                 OopTaskQueue* work_queue):
8745   Par_KlassRememberingOopClosure(collector, NULL, revisit_stack),
8746   _span(span),
8747   _bit_map(bit_map),
8748   _work_queue(work_queue) { }
8749 
8750 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8751   HeapWord* addr = (HeapWord*)obj;
8752   if (_span.contains(addr) &&
8753       !_bit_map->isMarked(addr)) {
8754     if (_bit_map->par_mark(addr)) {
8755       bool simulate_overflow = false;
8756       NOT_PRODUCT(
8757         if (CMSMarkStackOverflowALot &&
8758             _collector->par_simulate_overflow()) {
8759           // simulate a stack overflow
8760           simulate_overflow = true;
8761         }
8762       )
8763       if (simulate_overflow || !_work_queue->push(obj)) {
8764         _collector->par_push_on_overflow_list(obj);
8765         _collector->_par_kac_ovflw++;
8766       }
8767     } // Else another thread got there already
8768   }
8769 }
8770 
8771 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8772 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8773 
8774 //////////////////////////////////////////////////////////////////
8775 //  CMSExpansionCause                /////////////////////////////
8776 //////////////////////////////////////////////////////////////////
8777 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8778   switch (cause) {
8779     case _no_expansion:
8780       return "No expansion";
8781     case _satisfy_free_ratio:
8782       return "Free ratio";
8783     case _satisfy_promotion:
8784       return "Satisfy promotion";
8785     case _satisfy_allocation:
8786       return "allocation";
8787     case _allocate_par_lab:
8788       return "Par LAB";
8789     case _allocate_par_spooling_space:
8790       return "Par Spooling Space";
8791     case _adaptive_size_policy:
8792       return "Ergonomics";
8793     default:
8794       return "unknown";
8795   }
8796 }
8797 
8798 void CMSDrainMarkingStackClosure::do_void() {
8799   // the max number to take from overflow list at a time
8800   const size_t num = _mark_stack->capacity()/4;
8801   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8802          "Overflow list should be NULL during concurrent phases");
8803   while (!_mark_stack->isEmpty() ||
8804          // if stack is empty, check the overflow list
8805          _collector->take_from_overflow_list(num, _mark_stack)) {
8806     oop obj = _mark_stack->pop();
8807     HeapWord* addr = (HeapWord*)obj;
8808     assert(_span.contains(addr), "Should be within span");
8809     assert(_bit_map->isMarked(addr), "Should be marked");
8810     assert(obj->is_oop(), "Should be an oop");
8811     obj->oop_iterate(_keep_alive);
8812   }
8813 }
8814 
8815 void CMSParDrainMarkingStackClosure::do_void() {
8816   // drain queue
8817   trim_queue(0);
8818 }
8819 
8820 // Trim our work_queue so its length is below max at return
8821 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
8822   while (_work_queue->size() > max) {
8823     oop new_oop;
8824     if (_work_queue->pop_local(new_oop)) {
8825       assert(new_oop->is_oop(), "Expected an oop");
8826       assert(_bit_map->isMarked((HeapWord*)new_oop),
8827              "no white objects on this stack!");
8828       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8829       // iterate over the oops in this oop, marking and pushing
8830       // the ones in CMS heap (i.e. in _span).
8831       new_oop->oop_iterate(&_mark_and_push);
8832     }
8833   }
8834 }
8835 
8836 ////////////////////////////////////////////////////////////////////
8837 // Support for Marking Stack Overflow list handling and related code
8838 ////////////////////////////////////////////////////////////////////
8839 // Much of the following code is similar in shape and spirit to the
8840 // code used in ParNewGC. We should try and share that code
8841 // as much as possible in the future.
8842 
8843 #ifndef PRODUCT
8844 // Debugging support for CMSStackOverflowALot
8845 
8846 // It's OK to call this multi-threaded;  the worst thing
8847 // that can happen is that we'll get a bunch of closely
8848 // spaced simulated oveflows, but that's OK, in fact
8849 // probably good as it would exercise the overflow code
8850 // under contention.
8851 bool CMSCollector::simulate_overflow() {
8852   if (_overflow_counter-- <= 0) { // just being defensive
8853     _overflow_counter = CMSMarkStackOverflowInterval;
8854     return true;
8855   } else {
8856     return false;
8857   }
8858 }
8859 
8860 bool CMSCollector::par_simulate_overflow() {
8861   return simulate_overflow();
8862 }
8863 #endif
8864 
8865 // Single-threaded
8866 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
8867   assert(stack->isEmpty(), "Expected precondition");
8868   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
8869   size_t i = num;
8870   oop  cur = _overflow_list;
8871   const markOop proto = markOopDesc::prototype();
8872   NOT_PRODUCT(ssize_t n = 0;)
8873   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
8874     next = oop(cur->mark());
8875     cur->set_mark(proto);   // until proven otherwise
8876     assert(cur->is_oop(), "Should be an oop");
8877     bool res = stack->push(cur);
8878     assert(res, "Bit off more than can chew?");
8879     NOT_PRODUCT(n++;)
8880   }
8881   _overflow_list = cur;
8882 #ifndef PRODUCT
8883   assert(_num_par_pushes >= n, "Too many pops?");
8884   _num_par_pushes -=n;
8885 #endif
8886   return !stack->isEmpty();
8887 }
8888 
8889 #define BUSY  (oop(0x1aff1aff))
8890 // (MT-safe) Get a prefix of at most "num" from the list.
8891 // The overflow list is chained through the mark word of
8892 // each object in the list. We fetch the entire list,
8893 // break off a prefix of the right size and return the
8894 // remainder. If other threads try to take objects from
8895 // the overflow list at that time, they will wait for
8896 // some time to see if data becomes available. If (and
8897 // only if) another thread places one or more object(s)
8898 // on the global list before we have returned the suffix
8899 // to the global list, we will walk down our local list
8900 // to find its end and append the global list to
8901 // our suffix before returning it. This suffix walk can
8902 // prove to be expensive (quadratic in the amount of traffic)
8903 // when there are many objects in the overflow list and
8904 // there is much producer-consumer contention on the list.
8905 // *NOTE*: The overflow list manipulation code here and
8906 // in ParNewGeneration:: are very similar in shape,
8907 // except that in the ParNew case we use the old (from/eden)
8908 // copy of the object to thread the list via its klass word.
8909 // Because of the common code, if you make any changes in
8910 // the code below, please check the ParNew version to see if
8911 // similar changes might be needed.
8912 // CR 6797058 has been filed to consolidate the common code.
8913 bool CMSCollector::par_take_from_overflow_list(size_t num,
8914                                                OopTaskQueue* work_q,
8915                                                int no_of_gc_threads) {
8916   assert(work_q->size() == 0, "First empty local work queue");
8917   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
8918   if (_overflow_list == NULL) {
8919     return false;
8920   }
8921   // Grab the entire list; we'll put back a suffix
8922   oop prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8923   Thread* tid = Thread::current();
8924   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
8925   // set to ParallelGCThreads.
8926   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
8927   size_t sleep_time_millis = MAX2((size_t)1, num/100);
8928   // If the list is busy, we spin for a short while,
8929   // sleeping between attempts to get the list.
8930   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
8931     os::sleep(tid, sleep_time_millis, false);
8932     if (_overflow_list == NULL) {
8933       // Nothing left to take
8934       return false;
8935     } else if (_overflow_list != BUSY) {
8936       // Try and grab the prefix
8937       prefix = (oop)Atomic::xchg_ptr(BUSY, &_overflow_list);
8938     }
8939   }
8940   // If the list was found to be empty, or we spun long
8941   // enough, we give up and return empty-handed. If we leave
8942   // the list in the BUSY state below, it must be the case that
8943   // some other thread holds the overflow list and will set it
8944   // to a non-BUSY state in the future.
8945   if (prefix == NULL || prefix == BUSY) {
8946      // Nothing to take or waited long enough
8947      if (prefix == NULL) {
8948        // Write back the NULL in case we overwrote it with BUSY above
8949        // and it is still the same value.
8950        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8951      }
8952      return false;
8953   }
8954   assert(prefix != NULL && prefix != BUSY, "Error");
8955   size_t i = num;
8956   oop cur = prefix;
8957   // Walk down the first "num" objects, unless we reach the end.
8958   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
8959   if (cur->mark() == NULL) {
8960     // We have "num" or fewer elements in the list, so there
8961     // is nothing to return to the global list.
8962     // Write back the NULL in lieu of the BUSY we wrote
8963     // above, if it is still the same value.
8964     if (_overflow_list == BUSY) {
8965       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
8966     }
8967   } else {
8968     // Chop off the suffix and rerturn it to the global list.
8969     assert(cur->mark() != BUSY, "Error");
8970     oop suffix_head = cur->mark(); // suffix will be put back on global list
8971     cur->set_mark(NULL);           // break off suffix
8972     // It's possible that the list is still in the empty(busy) state
8973     // we left it in a short while ago; in that case we may be
8974     // able to place back the suffix without incurring the cost
8975     // of a walk down the list.
8976     oop observed_overflow_list = _overflow_list;
8977     oop cur_overflow_list = observed_overflow_list;
8978     bool attached = false;
8979     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
8980       observed_overflow_list =
8981         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
8982       if (cur_overflow_list == observed_overflow_list) {
8983         attached = true;
8984         break;
8985       } else cur_overflow_list = observed_overflow_list;
8986     }
8987     if (!attached) {
8988       // Too bad, someone else sneaked in (at least) an element; we'll need
8989       // to do a splice. Find tail of suffix so we can prepend suffix to global
8990       // list.
8991       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
8992       oop suffix_tail = cur;
8993       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
8994              "Tautology");
8995       observed_overflow_list = _overflow_list;
8996       do {
8997         cur_overflow_list = observed_overflow_list;
8998         if (cur_overflow_list != BUSY) {
8999           // Do the splice ...
9000           suffix_tail->set_mark(markOop(cur_overflow_list));
9001         } else { // cur_overflow_list == BUSY
9002           suffix_tail->set_mark(NULL);
9003         }
9004         // ... and try to place spliced list back on overflow_list ...
9005         observed_overflow_list =
9006           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9007       } while (cur_overflow_list != observed_overflow_list);
9008       // ... until we have succeeded in doing so.
9009     }
9010   }
9011 
9012   // Push the prefix elements on work_q
9013   assert(prefix != NULL, "control point invariant");
9014   const markOop proto = markOopDesc::prototype();
9015   oop next;
9016   NOT_PRODUCT(ssize_t n = 0;)
9017   for (cur = prefix; cur != NULL; cur = next) {
9018     next = oop(cur->mark());
9019     cur->set_mark(proto);   // until proven otherwise
9020     assert(cur->is_oop(), "Should be an oop");
9021     bool res = work_q->push(cur);
9022     assert(res, "Bit off more than we can chew?");
9023     NOT_PRODUCT(n++;)
9024   }
9025 #ifndef PRODUCT
9026   assert(_num_par_pushes >= n, "Too many pops?");
9027   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9028 #endif
9029   return true;
9030 }
9031 
9032 // Single-threaded
9033 void CMSCollector::push_on_overflow_list(oop p) {
9034   NOT_PRODUCT(_num_par_pushes++;)
9035   assert(p->is_oop(), "Not an oop");
9036   preserve_mark_if_necessary(p);
9037   p->set_mark((markOop)_overflow_list);
9038   _overflow_list = p;
9039 }
9040 
9041 // Multi-threaded; use CAS to prepend to overflow list
9042 void CMSCollector::par_push_on_overflow_list(oop p) {
9043   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9044   assert(p->is_oop(), "Not an oop");
9045   par_preserve_mark_if_necessary(p);
9046   oop observed_overflow_list = _overflow_list;
9047   oop cur_overflow_list;
9048   do {
9049     cur_overflow_list = observed_overflow_list;
9050     if (cur_overflow_list != BUSY) {
9051       p->set_mark(markOop(cur_overflow_list));
9052     } else {
9053       p->set_mark(NULL);
9054     }
9055     observed_overflow_list =
9056       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9057   } while (cur_overflow_list != observed_overflow_list);
9058 }
9059 #undef BUSY
9060 
9061 // Single threaded
9062 // General Note on GrowableArray: pushes may silently fail
9063 // because we are (temporarily) out of C-heap for expanding
9064 // the stack. The problem is quite ubiquitous and affects
9065 // a lot of code in the JVM. The prudent thing for GrowableArray
9066 // to do (for now) is to exit with an error. However, that may
9067 // be too draconian in some cases because the caller may be
9068 // able to recover without much harm. For such cases, we
9069 // should probably introduce a "soft_push" method which returns
9070 // an indication of success or failure with the assumption that
9071 // the caller may be able to recover from a failure; code in
9072 // the VM can then be changed, incrementally, to deal with such
9073 // failures where possible, thus, incrementally hardening the VM
9074 // in such low resource situations.
9075 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9076   _preserved_oop_stack.push(p);
9077   _preserved_mark_stack.push(m);
9078   assert(m == p->mark(), "Mark word changed");
9079   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9080          "bijection");
9081 }
9082 
9083 // Single threaded
9084 void CMSCollector::preserve_mark_if_necessary(oop p) {
9085   markOop m = p->mark();
9086   if (m->must_be_preserved(p)) {
9087     preserve_mark_work(p, m);
9088   }
9089 }
9090 
9091 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9092   markOop m = p->mark();
9093   if (m->must_be_preserved(p)) {
9094     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9095     // Even though we read the mark word without holding
9096     // the lock, we are assured that it will not change
9097     // because we "own" this oop, so no other thread can
9098     // be trying to push it on the overflow list; see
9099     // the assertion in preserve_mark_work() that checks
9100     // that m == p->mark().
9101     preserve_mark_work(p, m);
9102   }
9103 }
9104 
9105 // We should be able to do this multi-threaded,
9106 // a chunk of stack being a task (this is
9107 // correct because each oop only ever appears
9108 // once in the overflow list. However, it's
9109 // not very easy to completely overlap this with
9110 // other operations, so will generally not be done
9111 // until all work's been completed. Because we
9112 // expect the preserved oop stack (set) to be small,
9113 // it's probably fine to do this single-threaded.
9114 // We can explore cleverer concurrent/overlapped/parallel
9115 // processing of preserved marks if we feel the
9116 // need for this in the future. Stack overflow should
9117 // be so rare in practice and, when it happens, its
9118 // effect on performance so great that this will
9119 // likely just be in the noise anyway.
9120 void CMSCollector::restore_preserved_marks_if_any() {
9121   assert(SafepointSynchronize::is_at_safepoint(),
9122          "world should be stopped");
9123   assert(Thread::current()->is_ConcurrentGC_thread() ||
9124          Thread::current()->is_VM_thread(),
9125          "should be single-threaded");
9126   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9127          "bijection");
9128 
9129   while (!_preserved_oop_stack.is_empty()) {
9130     oop p = _preserved_oop_stack.pop();
9131     assert(p->is_oop(), "Should be an oop");
9132     assert(_span.contains(p), "oop should be in _span");
9133     assert(p->mark() == markOopDesc::prototype(),
9134            "Set when taken from overflow list");
9135     markOop m = _preserved_mark_stack.pop();
9136     p->set_mark(m);
9137   }
9138   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9139          "stacks were cleared above");
9140 }
9141 
9142 #ifndef PRODUCT
9143 bool CMSCollector::no_preserved_marks() const {
9144   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9145 }
9146 #endif
9147 
9148 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9149 {
9150   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9151   CMSAdaptiveSizePolicy* size_policy =
9152     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9153   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9154     "Wrong type for size policy");
9155   return size_policy;
9156 }
9157 
9158 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9159                                            size_t desired_promo_size) {
9160   if (cur_promo_size < desired_promo_size) {
9161     size_t expand_bytes = desired_promo_size - cur_promo_size;
9162     if (PrintAdaptiveSizePolicy && Verbose) {
9163       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9164         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9165         expand_bytes);
9166     }
9167     expand(expand_bytes,
9168            MinHeapDeltaBytes,
9169            CMSExpansionCause::_adaptive_size_policy);
9170   } else if (desired_promo_size < cur_promo_size) {
9171     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9172     if (PrintAdaptiveSizePolicy && Verbose) {
9173       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9174         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9175         shrink_bytes);
9176     }
9177     shrink(shrink_bytes);
9178   }
9179 }
9180 
9181 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9182   GenCollectedHeap* gch = GenCollectedHeap::heap();
9183   CMSGCAdaptivePolicyCounters* counters =
9184     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9185   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9186     "Wrong kind of counters");
9187   return counters;
9188 }
9189 
9190 
9191 void ASConcurrentMarkSweepGeneration::update_counters() {
9192   if (UsePerfData) {
9193     _space_counters->update_all();
9194     _gen_counters->update_all();
9195     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9196     GenCollectedHeap* gch = GenCollectedHeap::heap();
9197     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9198     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9199       "Wrong gc statistics type");
9200     counters->update_counters(gc_stats_l);
9201   }
9202 }
9203 
9204 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9205   if (UsePerfData) {
9206     _space_counters->update_used(used);
9207     _space_counters->update_capacity();
9208     _gen_counters->update_all();
9209 
9210     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9211     GenCollectedHeap* gch = GenCollectedHeap::heap();
9212     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9213     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9214       "Wrong gc statistics type");
9215     counters->update_counters(gc_stats_l);
9216   }
9217 }
9218 
9219 // The desired expansion delta is computed so that:
9220 // . desired free percentage or greater is used
9221 void ASConcurrentMarkSweepGeneration::compute_new_size() {
9222   assert_locked_or_safepoint(Heap_lock);
9223 
9224   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9225 
9226   // If incremental collection failed, we just want to expand
9227   // to the limit.
9228   if (incremental_collection_failed()) {
9229     clear_incremental_collection_failed();
9230     grow_to_reserved();
9231     return;
9232   }
9233 
9234   assert(UseAdaptiveSizePolicy, "Should be using adaptive sizing");
9235 
9236   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
9237     "Wrong type of heap");
9238   int prev_level = level() - 1;
9239   assert(prev_level >= 0, "The cms generation is the lowest generation");
9240   Generation* prev_gen = gch->get_gen(prev_level);
9241   assert(prev_gen->kind() == Generation::ASParNew,
9242     "Wrong type of young generation");
9243   ParNewGeneration* younger_gen = (ParNewGeneration*) prev_gen;
9244   size_t cur_eden = younger_gen->eden()->capacity();
9245   CMSAdaptiveSizePolicy* size_policy = cms_size_policy();
9246   size_t cur_promo = free();
9247   size_policy->compute_tenured_generation_free_space(cur_promo,
9248                                                        max_available(),
9249                                                        cur_eden);
9250   resize(cur_promo, size_policy->promo_size());
9251 
9252   // Record the new size of the space in the cms generation
9253   // that is available for promotions.  This is temporary.
9254   // It should be the desired promo size.
9255   size_policy->avg_cms_promo()->sample(free());
9256   size_policy->avg_old_live()->sample(used());
9257 
9258   if (UsePerfData) {
9259     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9260     counters->update_cms_capacity_counter(capacity());
9261   }
9262 }
9263 
9264 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9265   assert_locked_or_safepoint(Heap_lock);
9266   assert_lock_strong(freelistLock());
9267   HeapWord* old_end = _cmsSpace->end();
9268   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9269   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9270   FreeChunk* chunk_at_end = find_chunk_at_end();
9271   if (chunk_at_end == NULL) {
9272     // No room to shrink
9273     if (PrintGCDetails && Verbose) {
9274       gclog_or_tty->print_cr("No room to shrink: old_end  "
9275         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9276         " chunk_at_end  " PTR_FORMAT,
9277         old_end, unallocated_start, chunk_at_end);
9278     }
9279     return;
9280   } else {
9281 
9282     // Find the chunk at the end of the space and determine
9283     // how much it can be shrunk.
9284     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9285     size_t aligned_shrinkable_size_in_bytes =
9286       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9287     assert(unallocated_start <= chunk_at_end->end(),
9288       "Inconsistent chunk at end of space");
9289     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9290     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9291 
9292     // Shrink the underlying space
9293     _virtual_space.shrink_by(bytes);
9294     if (PrintGCDetails && Verbose) {
9295       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9296         " desired_bytes " SIZE_FORMAT
9297         " shrinkable_size_in_bytes " SIZE_FORMAT
9298         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9299         "  bytes  " SIZE_FORMAT,
9300         desired_bytes, shrinkable_size_in_bytes,
9301         aligned_shrinkable_size_in_bytes, bytes);
9302       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9303         "  unallocated_start  " SIZE_FORMAT,
9304         old_end, unallocated_start);
9305     }
9306 
9307     // If the space did shrink (shrinking is not guaranteed),
9308     // shrink the chunk at the end by the appropriate amount.
9309     if (((HeapWord*)_virtual_space.high()) < old_end) {
9310       size_t new_word_size =
9311         heap_word_size(_virtual_space.committed_size());
9312 
9313       // Have to remove the chunk from the dictionary because it is changing
9314       // size and might be someplace elsewhere in the dictionary.
9315 
9316       // Get the chunk at end, shrink it, and put it
9317       // back.
9318       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9319       size_t word_size_change = word_size_before - new_word_size;
9320       size_t chunk_at_end_old_size = chunk_at_end->size();
9321       assert(chunk_at_end_old_size >= word_size_change,
9322         "Shrink is too large");
9323       chunk_at_end->set_size(chunk_at_end_old_size -
9324                           word_size_change);
9325       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9326         word_size_change);
9327 
9328       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9329 
9330       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9331       _bts->resize(new_word_size);  // resize the block offset shared array
9332       Universe::heap()->barrier_set()->resize_covered_region(mr);
9333       _cmsSpace->assert_locked();
9334       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9335 
9336       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9337 
9338       // update the space and generation capacity counters
9339       if (UsePerfData) {
9340         _space_counters->update_capacity();
9341         _gen_counters->update_all();
9342       }
9343 
9344       if (Verbose && PrintGCDetails) {
9345         size_t new_mem_size = _virtual_space.committed_size();
9346         size_t old_mem_size = new_mem_size + bytes;
9347         gclog_or_tty->print_cr("Shrinking %s from %ldK by %ldK to %ldK",
9348                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9349       }
9350     }
9351 
9352     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9353       "Inconsistency at end of space");
9354     assert(chunk_at_end->end() == _cmsSpace->end(),
9355       "Shrinking is inconsistent");
9356     return;
9357   }
9358 }
9359 
9360 // Transfer some number of overflown objects to usual marking
9361 // stack. Return true if some objects were transferred.
9362 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9363   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9364                     (size_t)ParGCDesiredObjsFromOverflowList);
9365 
9366   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9367   assert(_collector->overflow_list_is_empty() || res,
9368          "If list is not empty, we should have taken something");
9369   assert(!res || !_mark_stack->isEmpty(),
9370          "If we took something, it should now be on our stack");
9371   return res;
9372 }
9373 
9374 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9375   size_t res = _sp->block_size_no_stall(addr, _collector);
9376   if (_sp->block_is_obj(addr)) {
9377     if (_live_bit_map->isMarked(addr)) {
9378       // It can't have been dead in a previous cycle
9379       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9380     } else {
9381       _dead_bit_map->mark(addr);      // mark the dead object
9382     }
9383   }
9384   // Could be 0, if the block size could not be computed without stalling.
9385   return res;
9386 }
9387 
9388 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9389 
9390   switch (phase) {
9391     case CMSCollector::InitialMarking:
9392       initialize(true  /* fullGC */ ,
9393                  cause /* cause of the GC */,
9394                  true  /* recordGCBeginTime */,
9395                  true  /* recordPreGCUsage */,
9396                  false /* recordPeakUsage */,
9397                  false /* recordPostGCusage */,
9398                  true  /* recordAccumulatedGCTime */,
9399                  false /* recordGCEndTime */,
9400                  false /* countCollection */  );
9401       break;
9402 
9403     case CMSCollector::FinalMarking:
9404       initialize(true  /* fullGC */ ,
9405                  cause /* cause of the GC */,
9406                  false /* recordGCBeginTime */,
9407                  false /* recordPreGCUsage */,
9408                  false /* recordPeakUsage */,
9409                  false /* recordPostGCusage */,
9410                  true  /* recordAccumulatedGCTime */,
9411                  false /* recordGCEndTime */,
9412                  false /* countCollection */  );
9413       break;
9414 
9415     case CMSCollector::Sweeping:
9416       initialize(true  /* fullGC */ ,
9417                  cause /* cause of the GC */,
9418                  false /* recordGCBeginTime */,
9419                  false /* recordPreGCUsage */,
9420                  true  /* recordPeakUsage */,
9421                  true  /* recordPostGCusage */,
9422                  false /* recordAccumulatedGCTime */,
9423                  true  /* recordGCEndTime */,
9424                  true  /* countCollection */  );
9425       break;
9426 
9427     default:
9428       ShouldNotReachHere();
9429   }
9430 }