1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/heapRegion.inline.hpp"
  31 #include "gc/g1/heapRegionBounds.inline.hpp"
  32 #include "gc/g1/heapRegionManager.inline.hpp"
  33 #include "gc/g1/heapRegionRemSet.hpp"
  34 #include "gc/shared/genOopClosures.inline.hpp"
  35 #include "gc/shared/liveRange.hpp"
  36 #include "gc/shared/space.inline.hpp"
  37 #include "memory/iterator.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "runtime/atomic.inline.hpp"
  40 #include "runtime/orderAccess.inline.hpp"
  41 
  42 int    HeapRegion::LogOfHRGrainBytes = 0;
  43 int    HeapRegion::LogOfHRGrainWords = 0;
  44 size_t HeapRegion::GrainBytes        = 0;
  45 size_t HeapRegion::GrainWords        = 0;
  46 size_t HeapRegion::CardsPerRegion    = 0;
  47 
  48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  49                                  HeapRegion* hr,
  50                                  G1ParPushHeapRSClosure* cl,
  51                                  CardTableModRefBS::PrecisionStyle precision) :
  52   DirtyCardToOopClosure(hr, cl, precision, NULL),
  53   _hr(hr), _rs_scan(cl), _g1(g1) { }
  54 
  55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  56                                                    OopClosure* oc) :
  57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  58 
  59 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  60                                       HeapWord* bottom,
  61                                       HeapWord* top) {
  62   G1CollectedHeap* g1h = _g1;
  63   size_t oop_size;
  64   HeapWord* cur = bottom;
  65 
  66   // Start filtering what we add to the remembered set. If the object is
  67   // not considered dead, either because it is marked (in the mark bitmap)
  68   // or it was allocated after marking finished, then we add it. Otherwise
  69   // we can safely ignore the object.
  70   if (!g1h->is_obj_dead(oop(cur))) {
  71     oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  72   } else {
  73     oop_size = _hr->block_size(cur);
  74   }
  75 
  76   cur += oop_size;
  77 
  78   if (cur < top) {
  79     oop cur_oop = oop(cur);
  80     oop_size = _hr->block_size(cur);
  81     HeapWord* next_obj = cur + oop_size;
  82     while (next_obj < top) {
  83       // Keep filtering the remembered set.
  84       if (!g1h->is_obj_dead(cur_oop)) {
  85         // Bottom lies entirely below top, so we can call the
  86         // non-memRegion version of oop_iterate below.
  87         cur_oop->oop_iterate(_rs_scan);
  88       }
  89       cur = next_obj;
  90       cur_oop = oop(cur);
  91       oop_size = _hr->block_size(cur);
  92       next_obj = cur + oop_size;
  93     }
  94 
  95     // Last object. Need to do dead-obj filtering here too.
  96     if (!g1h->is_obj_dead(oop(cur))) {
  97       oop(cur)->oop_iterate(_rs_scan, mr);
  98     }
  99   }
 100 }
 101 
 102 size_t HeapRegion::max_region_size() {
 103   return HeapRegionBounds::max_size();
 104 }
 105 
 106 size_t HeapRegion::min_region_size_in_words() {
 107   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 108 }
 109 
 110 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 111   size_t region_size = G1HeapRegionSize;
 112   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 113     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 114     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 115                        HeapRegionBounds::min_size());
 116   }
 117 
 118   int region_size_log = log2_long((jlong) region_size);
 119   // Recalculate the region size to make sure it's a power of
 120   // 2. This means that region_size is the largest power of 2 that's
 121   // <= what we've calculated so far.
 122   region_size = ((size_t)1 << region_size_log);
 123 
 124   // Now make sure that we don't go over or under our limits.
 125   if (region_size < HeapRegionBounds::min_size()) {
 126     region_size = HeapRegionBounds::min_size();
 127   } else if (region_size > HeapRegionBounds::max_size()) {
 128     region_size = HeapRegionBounds::max_size();
 129   }
 130 
 131   // And recalculate the log.
 132   region_size_log = log2_long((jlong) region_size);
 133 
 134   // Now, set up the globals.
 135   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 136   LogOfHRGrainBytes = region_size_log;
 137 
 138   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 139   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 140 
 141   guarantee(GrainBytes == 0, "we should only set it once");
 142   // The cast to int is safe, given that we've bounded region_size by
 143   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 144   GrainBytes = region_size;
 145 
 146   guarantee(GrainWords == 0, "we should only set it once");
 147   GrainWords = GrainBytes >> LogHeapWordSize;
 148   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 149 
 150   guarantee(CardsPerRegion == 0, "we should only set it once");
 151   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 152 }
 153 
 154 void HeapRegion::reset_after_compaction() {
 155   G1OffsetTableContigSpace::reset_after_compaction();
 156   // After a compaction the mark bitmap is invalid, so we must
 157   // treat all objects as being inside the unmarked area.
 158   zero_marked_bytes();
 159   init_top_at_mark_start();
 160 }
 161 
 162 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 163   assert(_humongous_start_region == NULL,
 164          "we should have already filtered out humongous regions");
 165   assert(!in_collection_set(),
 166          "Should not clear heap region %u in the collection set", hrm_index());
 167 
 168   set_allocation_context(AllocationContext::system());
 169   set_young_index_in_cset(-1);
 170   uninstall_surv_rate_group();
 171   set_free();
 172   reset_pre_dummy_top();
 173 
 174   if (!par) {
 175     // If this is parallel, this will be done later.
 176     HeapRegionRemSet* hrrs = rem_set();
 177     if (locked) {
 178       hrrs->clear_locked();
 179     } else {
 180       hrrs->clear();
 181     }
 182   }
 183   zero_marked_bytes();
 184 
 185   _offsets.resize(HeapRegion::GrainWords);
 186   init_top_at_mark_start();
 187   if (clear_space) clear(SpaceDecorator::Mangle);
 188 }
 189 
 190 void HeapRegion::par_clear() {
 191   assert(used() == 0, "the region should have been already cleared");
 192   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 193   HeapRegionRemSet* hrrs = rem_set();
 194   hrrs->clear();
 195   CardTableModRefBS* ct_bs =
 196     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 197   ct_bs->clear(MemRegion(bottom(), end()));
 198 }
 199 
 200 void HeapRegion::calc_gc_efficiency() {
 201   // GC efficiency is the ratio of how much space would be
 202   // reclaimed over how long we predict it would take to reclaim it.
 203   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 204   G1CollectorPolicy* g1p = g1h->g1_policy();
 205 
 206   // Retrieve a prediction of the elapsed time for this region for
 207   // a mixed gc because the region will only be evacuated during a
 208   // mixed gc.
 209   double region_elapsed_time_ms =
 210     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 211   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 212 }
 213 
 214 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 215   assert(!is_humongous(), "sanity / pre-condition");
 216   assert(top() == bottom(), "should be empty");
 217 
 218   _type.set_starts_humongous();
 219   _humongous_start_region = this;
 220 
 221   _offsets.set_for_starts_humongous(obj_top, fill_size);
 222 }
 223 
 224 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 225   assert(!is_humongous(), "sanity / pre-condition");
 226   assert(top() == bottom(), "should be empty");
 227   assert(first_hr->is_starts_humongous(), "pre-condition");
 228 
 229   _type.set_continues_humongous();
 230   _humongous_start_region = first_hr;
 231 }
 232 
 233 void HeapRegion::clear_humongous() {
 234   assert(is_humongous(), "pre-condition");
 235 
 236   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 237   _humongous_start_region = NULL;
 238 }
 239 
 240 HeapRegion::HeapRegion(uint hrm_index,
 241                        G1BlockOffsetSharedArray* sharedOffsetArray,
 242                        MemRegion mr) :
 243     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 244     _hrm_index(hrm_index),
 245     _allocation_context(AllocationContext::system()),
 246     _humongous_start_region(NULL),
 247     _next_in_special_set(NULL),
 248     _evacuation_failed(false),
 249     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 250     _next_young_region(NULL),
 251     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL),
 252 #ifdef ASSERT
 253     _containing_set(NULL),
 254 #endif // ASSERT
 255      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 256     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 257     _predicted_bytes_to_copy(0)
 258 {
 259   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 260   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 261 
 262   initialize(mr);
 263 }
 264 
 265 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 266   assert(_rem_set->is_empty(), "Remembered set must be empty");
 267 
 268   G1OffsetTableContigSpace::initialize(mr, clear_space, mangle_space);
 269 
 270   hr_clear(false /*par*/, false /*clear_space*/);
 271   set_top(bottom());
 272   record_timestamp();
 273 }
 274 
 275 CompactibleSpace* HeapRegion::next_compaction_space() const {
 276   return G1CollectedHeap::heap()->next_compaction_region(this);
 277 }
 278 
 279 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 280                                                     bool during_conc_mark) {
 281   // We always recreate the prev marking info and we'll explicitly
 282   // mark all objects we find to be self-forwarded on the prev
 283   // bitmap. So all objects need to be below PTAMS.
 284   _prev_marked_bytes = 0;
 285 
 286   if (during_initial_mark) {
 287     // During initial-mark, we'll also explicitly mark all objects
 288     // we find to be self-forwarded on the next bitmap. So all
 289     // objects need to be below NTAMS.
 290     _next_top_at_mark_start = top();
 291     _next_marked_bytes = 0;
 292   } else if (during_conc_mark) {
 293     // During concurrent mark, all objects in the CSet (including
 294     // the ones we find to be self-forwarded) are implicitly live.
 295     // So all objects need to be above NTAMS.
 296     _next_top_at_mark_start = bottom();
 297     _next_marked_bytes = 0;
 298   }
 299 }
 300 
 301 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 302                                                   bool during_conc_mark,
 303                                                   size_t marked_bytes) {
 304   assert(marked_bytes <= used(),
 305          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 306   _prev_top_at_mark_start = top();
 307   _prev_marked_bytes = marked_bytes;
 308 }
 309 
 310 HeapWord*
 311 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 312                                                  ObjectClosure* cl) {
 313   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 314   // We used to use "block_start_careful" here.  But we're actually happy
 315   // to update the BOT while we do this...
 316   HeapWord* cur = block_start(mr.start());
 317   mr = mr.intersection(used_region());
 318   if (mr.is_empty()) return NULL;
 319   // Otherwise, find the obj that extends onto mr.start().
 320 
 321   assert(cur <= mr.start()
 322          && (oop(cur)->klass_or_null() == NULL ||
 323              cur + oop(cur)->size() > mr.start()),
 324          "postcondition of block_start");
 325   oop obj;
 326   while (cur < mr.end()) {
 327     obj = oop(cur);
 328     if (obj->klass_or_null() == NULL) {
 329       // Ran into an unparseable point.
 330       return cur;
 331     } else if (!g1h->is_obj_dead(obj)) {
 332       cl->do_object(obj);
 333     }
 334     cur += block_size(cur);
 335   }
 336   return NULL;
 337 }
 338 
 339 HeapWord*
 340 HeapRegion::
 341 oops_on_card_seq_iterate_careful(MemRegion mr,
 342                                  FilterOutOfRegionClosure* cl,
 343                                  bool filter_young,
 344                                  jbyte* card_ptr) {
 345   // Currently, we should only have to clean the card if filter_young
 346   // is true and vice versa.
 347   if (filter_young) {
 348     assert(card_ptr != NULL, "pre-condition");
 349   } else {
 350     assert(card_ptr == NULL, "pre-condition");
 351   }
 352   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 353 
 354   // If we're within a stop-world GC, then we might look at a card in a
 355   // GC alloc region that extends onto a GC LAB, which may not be
 356   // parseable.  Stop such at the "scan_top" of the region.
 357   if (g1h->is_gc_active()) {
 358     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 359   } else {
 360     mr = mr.intersection(used_region());
 361   }
 362   if (mr.is_empty()) return NULL;
 363   // Otherwise, find the obj that extends onto mr.start().
 364 
 365   // The intersection of the incoming mr (for the card) and the
 366   // allocated part of the region is non-empty. This implies that
 367   // we have actually allocated into this region. The code in
 368   // G1CollectedHeap.cpp that allocates a new region sets the
 369   // is_young tag on the region before allocating. Thus we
 370   // safely know if this region is young.
 371   if (is_young() && filter_young) {
 372     return NULL;
 373   }
 374 
 375   assert(!is_young(), "check value of filter_young");
 376 
 377   // We can only clean the card here, after we make the decision that
 378   // the card is not young. And we only clean the card if we have been
 379   // asked to (i.e., card_ptr != NULL).
 380   if (card_ptr != NULL) {
 381     *card_ptr = CardTableModRefBS::clean_card_val();
 382     // We must complete this write before we do any of the reads below.
 383     OrderAccess::storeload();
 384   }
 385 
 386   // Cache the boundaries of the memory region in some const locals
 387   HeapWord* const start = mr.start();
 388   HeapWord* const end = mr.end();
 389 
 390   // We used to use "block_start_careful" here.  But we're actually happy
 391   // to update the BOT while we do this...
 392   HeapWord* cur = block_start(start);
 393   assert(cur <= start, "Postcondition");
 394 
 395   oop obj;
 396 
 397   HeapWord* next = cur;
 398   do {
 399     cur = next;
 400     obj = oop(cur);
 401     if (obj->klass_or_null() == NULL) {
 402       // Ran into an unparseable point.
 403       return cur;
 404     }
 405     // Otherwise...
 406     next = cur + block_size(cur);
 407   } while (next <= start);
 408 
 409   // If we finish the above loop...We have a parseable object that
 410   // begins on or before the start of the memory region, and ends
 411   // inside or spans the entire region.
 412   assert(cur <= start, "Loop postcondition");
 413   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 414 
 415   do {
 416     obj = oop(cur);
 417     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 418     if (obj->klass_or_null() == NULL) {
 419       // Ran into an unparseable point.
 420       return cur;
 421     }
 422 
 423     // Advance the current pointer. "obj" still points to the object to iterate.
 424     cur = cur + block_size(cur);
 425 
 426     if (!g1h->is_obj_dead(obj)) {
 427       // Non-objArrays are sometimes marked imprecise at the object start. We
 428       // always need to iterate over them in full.
 429       // We only iterate over object arrays in full if they are completely contained
 430       // in the memory region.
 431       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 432         obj->oop_iterate(cl);
 433       } else {
 434         obj->oop_iterate(cl, mr);
 435       }
 436     }
 437   } while (cur < end);
 438 
 439   return NULL;
 440 }
 441 
 442 // Code roots support
 443 
 444 void HeapRegion::add_strong_code_root(nmethod* nm) {
 445   HeapRegionRemSet* hrrs = rem_set();
 446   hrrs->add_strong_code_root(nm);
 447 }
 448 
 449 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 450   assert_locked_or_safepoint(CodeCache_lock);
 451   HeapRegionRemSet* hrrs = rem_set();
 452   hrrs->add_strong_code_root_locked(nm);
 453 }
 454 
 455 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 456   HeapRegionRemSet* hrrs = rem_set();
 457   hrrs->remove_strong_code_root(nm);
 458 }
 459 
 460 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 461   HeapRegionRemSet* hrrs = rem_set();
 462   hrrs->strong_code_roots_do(blk);
 463 }
 464 
 465 class VerifyStrongCodeRootOopClosure: public OopClosure {
 466   const HeapRegion* _hr;
 467   nmethod* _nm;
 468   bool _failures;
 469   bool _has_oops_in_region;
 470 
 471   template <class T> void do_oop_work(T* p) {
 472     T heap_oop = oopDesc::load_heap_oop(p);
 473     if (!oopDesc::is_null(heap_oop)) {
 474       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 475 
 476       // Note: not all the oops embedded in the nmethod are in the
 477       // current region. We only look at those which are.
 478       if (_hr->is_in(obj)) {
 479         // Object is in the region. Check that its less than top
 480         if (_hr->top() <= (HeapWord*)obj) {
 481           // Object is above top
 482           gclog_or_tty->print_cr("Object " PTR_FORMAT " in region "
 483                                  "[" PTR_FORMAT ", " PTR_FORMAT ") is above "
 484                                  "top " PTR_FORMAT,
 485                                  p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 486           _failures = true;
 487           return;
 488         }
 489         // Nmethod has at least one oop in the current region
 490         _has_oops_in_region = true;
 491       }
 492     }
 493   }
 494 
 495 public:
 496   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 497     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 498 
 499   void do_oop(narrowOop* p) { do_oop_work(p); }
 500   void do_oop(oop* p)       { do_oop_work(p); }
 501 
 502   bool failures()           { return _failures; }
 503   bool has_oops_in_region() { return _has_oops_in_region; }
 504 };
 505 
 506 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 507   const HeapRegion* _hr;
 508   bool _failures;
 509 public:
 510   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 511     _hr(hr), _failures(false) {}
 512 
 513   void do_code_blob(CodeBlob* cb) {
 514     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 515     if (nm != NULL) {
 516       // Verify that the nemthod is live
 517       if (!nm->is_alive()) {
 518         gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod "
 519                                PTR_FORMAT " in its strong code roots",
 520                                p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 521         _failures = true;
 522       } else {
 523         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 524         nm->oops_do(&oop_cl);
 525         if (!oop_cl.has_oops_in_region()) {
 526           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod "
 527                                  PTR_FORMAT " in its strong code roots "
 528                                  "with no pointers into region",
 529                                  p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 530           _failures = true;
 531         } else if (oop_cl.failures()) {
 532           gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] has other "
 533                                  "failures for nmethod " PTR_FORMAT,
 534                                  p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 535           _failures = true;
 536         }
 537       }
 538     }
 539   }
 540 
 541   bool failures()       { return _failures; }
 542 };
 543 
 544 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 545   if (!G1VerifyHeapRegionCodeRoots) {
 546     // We're not verifying code roots.
 547     return;
 548   }
 549   if (vo == VerifyOption_G1UseMarkWord) {
 550     // Marking verification during a full GC is performed after class
 551     // unloading, code cache unloading, etc so the strong code roots
 552     // attached to each heap region are in an inconsistent state. They won't
 553     // be consistent until the strong code roots are rebuilt after the
 554     // actual GC. Skip verifying the strong code roots in this particular
 555     // time.
 556     assert(VerifyDuringGC, "only way to get here");
 557     return;
 558   }
 559 
 560   HeapRegionRemSet* hrrs = rem_set();
 561   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 562 
 563   // if this region is empty then there should be no entries
 564   // on its strong code root list
 565   if (is_empty()) {
 566     if (strong_code_roots_length > 0) {
 567       gclog_or_tty->print_cr("region [" PTR_FORMAT "," PTR_FORMAT "] is empty "
 568                              "but has " SIZE_FORMAT " code root entries",
 569                              p2i(bottom()), p2i(end()), strong_code_roots_length);
 570       *failures = true;
 571     }
 572     return;
 573   }
 574 
 575   if (is_continues_humongous()) {
 576     if (strong_code_roots_length > 0) {
 577       gclog_or_tty->print_cr("region " HR_FORMAT " is a continuation of a humongous "
 578                              "region but has " SIZE_FORMAT " code root entries",
 579                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 580       *failures = true;
 581     }
 582     return;
 583   }
 584 
 585   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 586   strong_code_roots_do(&cb_cl);
 587 
 588   if (cb_cl.failures()) {
 589     *failures = true;
 590   }
 591 }
 592 
 593 void HeapRegion::print() const { print_on(gclog_or_tty); }
 594 void HeapRegion::print_on(outputStream* st) const {
 595   st->print("AC%4u", allocation_context());
 596 
 597   st->print(" %2s", get_short_type_str());
 598   if (in_collection_set())
 599     st->print(" CS");
 600   else
 601     st->print("   ");
 602   st->print(" TS %5d", _gc_time_stamp);
 603   st->print(" PTAMS " PTR_FORMAT " NTAMS " PTR_FORMAT,
 604             p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 605   G1OffsetTableContigSpace::print_on(st);
 606 }
 607 
 608 class HeapRegionVerifyClosure : public OopClosure {
 609 protected:
 610   G1CollectedHeap* _g1h;
 611   CardTableModRefBS* _bs;
 612   oop _containing_obj;
 613   bool _failures;
 614   int _n_failures;
 615   VerifyOption _vo;
 616 public:
 617   // _vo == UsePrevMarking -> use "prev" marking information,
 618   // _vo == UseNextMarking -> use "next" marking information,
 619   // _vo == UseMarkWord    -> use mark word from object header.
 620   HeapRegionVerifyClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 621     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 622     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo)
 623   { }
 624 
 625   void set_containing_obj(oop obj) {
 626     _containing_obj = obj;
 627   }
 628 
 629   bool failures() { return _failures; }
 630   int n_failures() { return _n_failures; }
 631 
 632   void print_object(outputStream* out, oop obj) {
 633 #ifdef PRODUCT
 634     Klass* k = obj->klass();
 635     const char* class_name = k->external_name();
 636     out->print_cr("class name %s", class_name);
 637 #else // PRODUCT
 638     obj->print_on(out);
 639 #endif // PRODUCT
 640   }
 641 
 642   template <class T>
 643   void verifyRemSets(T* p) {
 644     T heap_oop = oopDesc::load_heap_oop(p);
 645     if (!oopDesc::is_null(heap_oop)) {
 646       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 647       bool failed = false;
 648 
 649       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 650       HeapRegion* to = _g1h->heap_region_containing(obj);
 651       if (from != NULL && to != NULL &&
 652         from != to &&
 653         !to->is_pinned()) {
 654         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 655         jbyte cv_field = *_bs->byte_for_const(p);
 656         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 657 
 658         bool is_bad = !(from->is_young()
 659           || to->rem_set()->contains_reference(p)
 660           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 661           (_containing_obj->is_objArray() ?
 662           cv_field == dirty
 663           : cv_obj == dirty || cv_field == dirty));
 664         if (is_bad) {
 665           MutexLockerEx x(ParGCRareEvent_lock,
 666             Mutex::_no_safepoint_check_flag);
 667 
 668           if (!_failures) {
 669             gclog_or_tty->cr();
 670             gclog_or_tty->print_cr("----------");
 671           }
 672           gclog_or_tty->print_cr("Missing rem set entry:");
 673           gclog_or_tty->print_cr("Field " PTR_FORMAT " "
 674             "of obj " PTR_FORMAT ", "
 675             "in region " HR_FORMAT,
 676             p2i(p), p2i(_containing_obj),
 677             HR_FORMAT_PARAMS(from));
 678           _containing_obj->print_on(gclog_or_tty);
 679           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " "
 680             "in region " HR_FORMAT,
 681             p2i(obj),
 682             HR_FORMAT_PARAMS(to));
 683           obj->print_on(gclog_or_tty);
 684           gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 685             cv_obj, cv_field);
 686           gclog_or_tty->print_cr("----------");
 687           gclog_or_tty->flush();
 688           _failures = true;
 689           if (!failed) _n_failures++;
 690         }
 691       }
 692     }
 693   }
 694 };
 695 
 696 class VerifyRSetClosure : public HeapRegionVerifyClosure {
 697 
 698 public:
 699   VerifyRSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : HeapRegionVerifyClosure(g1h, vo) { }
 700 
 701   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 702   virtual void do_oop(oop* p) { do_oop_work(p); }
 703 
 704   template <class T>
 705   void do_oop_work(T* p) {
 706     assert(_containing_obj != NULL, "Precondition");
 707     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 708       "Precondition");
 709 
 710     verifyRemSets(p);
 711   }
 712 };
 713 
 714 class VerifyLiveClosure : public HeapRegionVerifyClosure {
 715 public:
 716   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : HeapRegionVerifyClosure(g1h, vo) { }
 717 
 718   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 719   virtual void do_oop(      oop* p) { do_oop_work(p); }
 720 
 721   template <class T>
 722   void do_oop_work(T* p) {
 723     assert(_containing_obj != NULL, "Precondition");
 724     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 725            "Precondition");
 726     T heap_oop = oopDesc::load_heap_oop(p);
 727     if (!oopDesc::is_null(heap_oop)) {
 728       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 729       bool failed = false;
 730       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 731         MutexLockerEx x(ParGCRareEvent_lock,
 732                         Mutex::_no_safepoint_check_flag);
 733 
 734         if (!_failures) {
 735           gclog_or_tty->cr();
 736           gclog_or_tty->print_cr("----------");
 737         }
 738         if (!_g1h->is_in_closed_subset(obj)) {
 739           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 740           gclog_or_tty->print_cr("Field " PTR_FORMAT
 741                                  " of live obj " PTR_FORMAT " in region "
 742                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 743                                  p2i(p), p2i(_containing_obj),
 744                                  p2i(from->bottom()), p2i(from->end()));
 745           print_object(gclog_or_tty, _containing_obj);
 746           gclog_or_tty->print_cr("points to obj " PTR_FORMAT " not in the heap",
 747                                  p2i(obj));
 748         } else {
 749           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 750           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 751           gclog_or_tty->print_cr("Field " PTR_FORMAT
 752                                  " of live obj " PTR_FORMAT " in region "
 753                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 754                                  p2i(p), p2i(_containing_obj),
 755                                  p2i(from->bottom()), p2i(from->end()));
 756           print_object(gclog_or_tty, _containing_obj);
 757           gclog_or_tty->print_cr("points to dead obj " PTR_FORMAT " in region "
 758                                  "[" PTR_FORMAT ", " PTR_FORMAT ")",
 759                                  p2i(obj), p2i(to->bottom()), p2i(to->end()));
 760           print_object(gclog_or_tty, obj);
 761         }
 762         gclog_or_tty->print_cr("----------");
 763         gclog_or_tty->flush();
 764         _failures = true;
 765         failed = true;
 766         _n_failures++;
 767       }
 768 
 769       if (!_g1h->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 770         verifyRemSets(p);
 771       }
 772     }
 773   }
 774 };
 775 
 776 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 777 // We would need a mechanism to make that code skip dead objects.
 778 
 779 void HeapRegion::verify(VerifyOption vo,
 780                         bool* failures) const {
 781   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 782   *failures = false;
 783   HeapWord* p = bottom();
 784   HeapWord* prev_p = NULL;
 785   VerifyLiveClosure vl_cl(g1, vo);
 786   bool is_region_humongous = is_humongous();
 787   size_t object_num = 0;
 788   while (p < top()) {
 789     oop obj = oop(p);
 790     size_t obj_size = block_size(p);
 791     object_num += 1;
 792 
 793     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 794       if (obj->is_oop()) {
 795         Klass* klass = obj->klass();
 796         bool is_metaspace_object = Metaspace::contains(klass) ||
 797                                    (vo == VerifyOption_G1UsePrevMarking &&
 798                                    ClassLoaderDataGraph::unload_list_contains(klass));
 799         if (!is_metaspace_object) {
 800           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 801                                  "not metadata", p2i(klass), p2i(obj));
 802           *failures = true;
 803           return;
 804         } else if (!klass->is_klass()) {
 805           gclog_or_tty->print_cr("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 806                                  "not a klass", p2i(klass), p2i(obj));
 807           *failures = true;
 808           return;
 809         } else {
 810           vl_cl.set_containing_obj(obj);
 811           obj->oop_iterate_no_header(&vl_cl);
 812           if (vl_cl.failures()) {
 813             *failures = true;
 814           }
 815           if (G1MaxVerifyFailures >= 0 &&
 816               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 817             return;
 818           }
 819         }
 820       } else {
 821         gclog_or_tty->print_cr(PTR_FORMAT " no an oop", p2i(obj));
 822         *failures = true;
 823         return;
 824       }
 825     }
 826     prev_p = p;
 827     p += obj_size;
 828   }
 829 
 830   if (!is_young() && !is_empty()) {
 831     _offsets.verify();
 832   }
 833 
 834   if (is_region_humongous) {
 835     oop obj = oop(this->humongous_start_region()->bottom());
 836     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 837       gclog_or_tty->print_cr("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 838     }
 839   }
 840 
 841   if (!is_region_humongous && p != top()) {
 842     gclog_or_tty->print_cr("end of last object " PTR_FORMAT " "
 843                            "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 844     *failures = true;
 845     return;
 846   }
 847 
 848   HeapWord* the_end = end();
 849   // Do some extra BOT consistency checking for addresses in the
 850   // range [top, end). BOT look-ups in this range should yield
 851   // top. No point in doing that if top == end (there's nothing there).
 852   if (p < the_end) {
 853     // Look up top
 854     HeapWord* addr_1 = p;
 855     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 856     if (b_start_1 != p) {
 857       gclog_or_tty->print_cr("BOT look up for top: " PTR_FORMAT " "
 858                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 859                              p2i(addr_1), p2i(b_start_1), p2i(p));
 860       *failures = true;
 861       return;
 862     }
 863 
 864     // Look up top + 1
 865     HeapWord* addr_2 = p + 1;
 866     if (addr_2 < the_end) {
 867       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 868       if (b_start_2 != p) {
 869         gclog_or_tty->print_cr("BOT look up for top + 1: " PTR_FORMAT " "
 870                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 871                                p2i(addr_2), p2i(b_start_2), p2i(p));
 872         *failures = true;
 873         return;
 874       }
 875     }
 876 
 877     // Look up an address between top and end
 878     size_t diff = pointer_delta(the_end, p) / 2;
 879     HeapWord* addr_3 = p + diff;
 880     if (addr_3 < the_end) {
 881       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 882       if (b_start_3 != p) {
 883         gclog_or_tty->print_cr("BOT look up for top + diff: " PTR_FORMAT " "
 884                                " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 885                                p2i(addr_3), p2i(b_start_3), p2i(p));
 886         *failures = true;
 887         return;
 888       }
 889     }
 890 
 891     // Look up end - 1
 892     HeapWord* addr_4 = the_end - 1;
 893     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
 894     if (b_start_4 != p) {
 895       gclog_or_tty->print_cr("BOT look up for end - 1: " PTR_FORMAT " "
 896                              " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 897                              p2i(addr_4), p2i(b_start_4), p2i(p));
 898       *failures = true;
 899       return;
 900     }
 901   }
 902 
 903   verify_strong_code_roots(vo, failures);
 904 }
 905 
 906 void HeapRegion::verify() const {
 907   bool dummy = false;
 908   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 909 }
 910 
 911 void HeapRegion::verifyRSet(VerifyOption vo,
 912   bool* failures) const {
 913   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 914   *failures = false;
 915   HeapWord* p = bottom();
 916   HeapWord* prev_p = NULL;
 917   VerifyRSetClosure v_rset_cl(g1, vo);
 918   bool is_region_humongous = is_humongous();
 919   while (p < top()) {
 920     oop obj = oop(p);
 921     size_t obj_size = block_size(p);
 922 
 923     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 924       if (obj->is_oop()) {
 925         v_rset_cl.set_containing_obj(obj);
 926         obj->oop_iterate_no_header(&v_rset_cl);
 927         if (v_rset_cl.failures()) {
 928           *failures = true;
 929         }
 930         if (G1MaxVerifyFailures >= 0 &&
 931           v_rset_cl.n_failures() >= G1MaxVerifyFailures) {
 932           return;
 933         }
 934       }
 935       else {
 936         gclog_or_tty->print_cr(PTR_FORMAT " not an oop", p2i(obj));
 937         *failures = true;
 938         return;
 939       }
 940     }
 941     prev_p = p;
 942     p += obj_size;
 943   }
 944 }
 945 
 946 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 947   scan_and_forward(this, cp);
 948 }
 949 
 950 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 951 // away eventually.
 952 
 953 void G1OffsetTableContigSpace::clear(bool mangle_space) {
 954   set_top(bottom());
 955   _scan_top = bottom();
 956   CompactibleSpace::clear(mangle_space);
 957   reset_bot();
 958 }
 959 
 960 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
 961   Space::set_bottom(new_bottom);
 962   _offsets.set_bottom(new_bottom);
 963 }
 964 
 965 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
 966   assert(new_end == _bottom + HeapRegion::GrainWords, "set_end should only ever be set to _bottom + HeapRegion::GrainWords");
 967   Space::set_end(new_end);
 968   _offsets.resize(new_end - bottom());
 969 }
 970 
 971 #ifndef PRODUCT
 972 void G1OffsetTableContigSpace::mangle_unused_area() {
 973   mangle_unused_area_complete();
 974 }
 975 
 976 void G1OffsetTableContigSpace::mangle_unused_area_complete() {
 977   SpaceMangler::mangle_region(MemRegion(top(), end()));
 978 }
 979 #endif
 980 
 981 void G1OffsetTableContigSpace::print() const {
 982   print_short();
 983   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
 984                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 985                 p2i(bottom()), p2i(top()), p2i(_offsets.threshold()), p2i(end()));
 986 }
 987 
 988 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
 989   return _offsets.initialize_threshold();
 990 }
 991 
 992 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
 993                                                     HeapWord* end) {
 994   _offsets.alloc_block(start, end);
 995   return _offsets.threshold();
 996 }
 997 
 998 HeapWord* G1OffsetTableContigSpace::scan_top() const {
 999   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1000   HeapWord* local_top = top();
1001   OrderAccess::loadload();
1002   const unsigned local_time_stamp = _gc_time_stamp;
1003   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1004   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1005     return local_top;
1006   } else {
1007     return _scan_top;
1008   }
1009 }
1010 
1011 void G1OffsetTableContigSpace::record_timestamp() {
1012   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1013   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1014 
1015   if (_gc_time_stamp < curr_gc_time_stamp) {
1016     // Setting the time stamp here tells concurrent readers to look at
1017     // scan_top to know the maximum allowed address to look at.
1018 
1019     // scan_top should be bottom for all regions except for the
1020     // retained old alloc region which should have scan_top == top
1021     HeapWord* st = _scan_top;
1022     guarantee(st == _bottom || st == _top, "invariant");
1023 
1024     _gc_time_stamp = curr_gc_time_stamp;
1025   }
1026 }
1027 
1028 void G1OffsetTableContigSpace::record_retained_region() {
1029   // scan_top is the maximum address where it's safe for the next gc to
1030   // scan this region.
1031   _scan_top = top();
1032 }
1033 
1034 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1035   object_iterate(blk);
1036 }
1037 
1038 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1039   HeapWord* p = bottom();
1040   while (p < top()) {
1041     if (block_is_obj(p)) {
1042       blk->do_object(oop(p));
1043     }
1044     p += block_size(p);
1045   }
1046 }
1047 
1048 G1OffsetTableContigSpace::
1049 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1050                          MemRegion mr) :
1051   _offsets(sharedOffsetArray, mr),
1052   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1053   _gc_time_stamp(0)
1054 {
1055   _offsets.set_space(this);
1056 }
1057 
1058 void G1OffsetTableContigSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1059   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1060   _top = bottom();
1061   _scan_top = bottom();
1062   set_saved_mark_word(NULL);
1063   reset_bot();
1064 }
1065