1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "gc/cms/cmsGCStats.hpp"
  30 #include "gc/cms/cmsHeap.hpp"
  31 #include "gc/cms/cmsOopClosures.inline.hpp"
  32 #include "gc/cms/cmsVMOperations.hpp"
  33 #include "gc/cms/compactibleFreeListSpace.hpp"
  34 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  35 #include "gc/cms/concurrentMarkSweepThread.hpp"
  36 #include "gc/cms/parNewGeneration.hpp"
  37 #include "gc/cms/promotionInfo.inline.hpp"
  38 #include "gc/serial/genMarkSweep.hpp"
  39 #include "gc/serial/tenuredGeneration.hpp"
  40 #include "gc/shared/adaptiveSizePolicy.hpp"
  41 #include "gc/shared/cardGeneration.inline.hpp"
  42 #include "gc/shared/cardTableRS.hpp"
  43 #include "gc/shared/collectedHeap.inline.hpp"
  44 #include "gc/shared/collectorCounters.hpp"
  45 #include "gc/shared/gcLocker.hpp"
  46 #include "gc/shared/gcPolicyCounters.hpp"
  47 #include "gc/shared/gcTimer.hpp"
  48 #include "gc/shared/gcTrace.hpp"
  49 #include "gc/shared/gcTraceTime.inline.hpp"
  50 #include "gc/shared/genCollectedHeap.hpp"
  51 #include "gc/shared/genOopClosures.inline.hpp"
  52 #include "gc/shared/isGCActiveMark.hpp"
  53 #include "gc/shared/owstTaskTerminator.hpp"
  54 #include "gc/shared/referencePolicy.hpp"
  55 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  56 #include "gc/shared/space.inline.hpp"
  57 #include "gc/shared/strongRootsScope.hpp"
  58 #include "gc/shared/taskqueue.inline.hpp"
  59 #include "gc/shared/weakProcessor.hpp"
  60 #include "gc/shared/workerPolicy.hpp"
  61 #include "logging/log.hpp"
  62 #include "logging/logStream.hpp"
  63 #include "memory/allocation.hpp"
  64 #include "memory/binaryTreeDictionary.inline.hpp"
  65 #include "memory/iterator.inline.hpp"
  66 #include "memory/padded.hpp"
  67 #include "memory/resourceArea.hpp"
  68 #include "memory/universe.hpp"
  69 #include "oops/access.inline.hpp"
  70 #include "oops/oop.inline.hpp"
  71 #include "prims/jvmtiExport.hpp"
  72 #include "runtime/atomic.hpp"
  73 #include "runtime/flags/flagSetting.hpp"
  74 #include "runtime/globals_extension.hpp"
  75 #include "runtime/handles.inline.hpp"
  76 #include "runtime/java.hpp"
  77 #include "runtime/orderAccess.hpp"
  78 #include "runtime/timer.hpp"
  79 #include "runtime/vmThread.hpp"
  80 #include "services/memoryService.hpp"
  81 #include "services/runtimeService.hpp"
  82 #include "utilities/align.hpp"
  83 #include "utilities/stack.inline.hpp"
  84 #if INCLUDE_JVMCI
  85 #include "jvmci/jvmci.hpp"
  86 #endif
  87 
  88 // statics
  89 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  90 bool CMSCollector::_full_gc_requested = false;
  91 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  92 
  93 //////////////////////////////////////////////////////////////////
  94 // In support of CMS/VM thread synchronization
  95 //////////////////////////////////////////////////////////////////
  96 // We split use of the CGC_lock into 2 "levels".
  97 // The low-level locking is of the usual CGC_lock monitor. We introduce
  98 // a higher level "token" (hereafter "CMS token") built on top of the
  99 // low level monitor (hereafter "CGC lock").
 100 // The token-passing protocol gives priority to the VM thread. The
 101 // CMS-lock doesn't provide any fairness guarantees, but clients
 102 // should ensure that it is only held for very short, bounded
 103 // durations.
 104 //
 105 // When either of the CMS thread or the VM thread is involved in
 106 // collection operations during which it does not want the other
 107 // thread to interfere, it obtains the CMS token.
 108 //
 109 // If either thread tries to get the token while the other has
 110 // it, that thread waits. However, if the VM thread and CMS thread
 111 // both want the token, then the VM thread gets priority while the
 112 // CMS thread waits. This ensures, for instance, that the "concurrent"
 113 // phases of the CMS thread's work do not block out the VM thread
 114 // for long periods of time as the CMS thread continues to hog
 115 // the token. (See bug 4616232).
 116 //
 117 // The baton-passing functions are, however, controlled by the
 118 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 119 // and here the low-level CMS lock, not the high level token,
 120 // ensures mutual exclusion.
 121 //
 122 // Two important conditions that we have to satisfy:
 123 // 1. if a thread does a low-level wait on the CMS lock, then it
 124 //    relinquishes the CMS token if it were holding that token
 125 //    when it acquired the low-level CMS lock.
 126 // 2. any low-level notifications on the low-level lock
 127 //    should only be sent when a thread has relinquished the token.
 128 //
 129 // In the absence of either property, we'd have potential deadlock.
 130 //
 131 // We protect each of the CMS (concurrent and sequential) phases
 132 // with the CMS _token_, not the CMS _lock_.
 133 //
 134 // The only code protected by CMS lock is the token acquisition code
 135 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 136 // baton-passing code.
 137 //
 138 // Unfortunately, i couldn't come up with a good abstraction to factor and
 139 // hide the naked CGC_lock manipulation in the baton-passing code
 140 // further below. That's something we should try to do. Also, the proof
 141 // of correctness of this 2-level locking scheme is far from obvious,
 142 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 143 // that there may be a theoretical possibility of delay/starvation in the
 144 // low-level lock/wait/notify scheme used for the baton-passing because of
 145 // potential interference with the priority scheme embodied in the
 146 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 147 // invocation further below and marked with "XXX 20011219YSR".
 148 // Indeed, as we note elsewhere, this may become yet more slippery
 149 // in the presence of multiple CMS and/or multiple VM threads. XXX
 150 
 151 class CMSTokenSync: public StackObj {
 152  private:
 153   bool _is_cms_thread;
 154  public:
 155   CMSTokenSync(bool is_cms_thread):
 156     _is_cms_thread(is_cms_thread) {
 157     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 158            "Incorrect argument to constructor");
 159     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 160   }
 161 
 162   ~CMSTokenSync() {
 163     assert(_is_cms_thread ?
 164              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 165              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 166           "Incorrect state");
 167     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 168   }
 169 };
 170 
 171 // Convenience class that does a CMSTokenSync, and then acquires
 172 // upto three locks.
 173 class CMSTokenSyncWithLocks: public CMSTokenSync {
 174  private:
 175   // Note: locks are acquired in textual declaration order
 176   // and released in the opposite order
 177   MutexLocker _locker1, _locker2, _locker3;
 178  public:
 179   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 180                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 181     CMSTokenSync(is_cms_thread),
 182     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 183     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 184     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 185   { }
 186 };
 187 
 188 
 189 //////////////////////////////////////////////////////////////////
 190 //  Concurrent Mark-Sweep Generation /////////////////////////////
 191 //////////////////////////////////////////////////////////////////
 192 
 193 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 194 
 195 // This struct contains per-thread things necessary to support parallel
 196 // young-gen collection.
 197 class CMSParGCThreadState: public CHeapObj<mtGC> {
 198  public:
 199   CompactibleFreeListSpaceLAB lab;
 200   PromotionInfo promo;
 201 
 202   // Constructor.
 203   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 204     promo.setSpace(cfls);
 205   }
 206 };
 207 
 208 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 209      ReservedSpace rs,
 210      size_t initial_byte_size,
 211      size_t min_byte_size,
 212      size_t max_byte_size,
 213      CardTableRS* ct) :
 214   CardGeneration(rs, initial_byte_size, ct),
 215   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 216   _did_compact(false)
 217 {
 218   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 219   HeapWord* end    = (HeapWord*) _virtual_space.high();
 220 
 221   _direct_allocated_words = 0;
 222   NOT_PRODUCT(
 223     _numObjectsPromoted = 0;
 224     _numWordsPromoted = 0;
 225     _numObjectsAllocated = 0;
 226     _numWordsAllocated = 0;
 227   )
 228 
 229   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 230   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 231   _cmsSpace->_old_gen = this;
 232 
 233   _gc_stats = new CMSGCStats();
 234 
 235   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 236   // offsets match. The ability to tell free chunks from objects
 237   // depends on this property.
 238   debug_only(
 239     FreeChunk* junk = NULL;
 240     assert(UseCompressedClassPointers ||
 241            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 242            "Offset of FreeChunk::_prev within FreeChunk must match"
 243            "  that of OopDesc::_klass within OopDesc");
 244   )
 245 
 246   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 247   for (uint i = 0; i < ParallelGCThreads; i++) {
 248     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 249   }
 250 
 251   _incremental_collection_failed = false;
 252   // The "dilatation_factor" is the expansion that can occur on
 253   // account of the fact that the minimum object size in the CMS
 254   // generation may be larger than that in, say, a contiguous young
 255   //  generation.
 256   // Ideally, in the calculation below, we'd compute the dilatation
 257   // factor as: MinChunkSize/(promoting_gen's min object size)
 258   // Since we do not have such a general query interface for the
 259   // promoting generation, we'll instead just use the minimum
 260   // object size (which today is a header's worth of space);
 261   // note that all arithmetic is in units of HeapWords.
 262   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 263   assert(_dilatation_factor >= 1.0, "from previous assert");
 264 
 265   initialize_performance_counters(min_byte_size, max_byte_size);
 266 }
 267 
 268 
 269 // The field "_initiating_occupancy" represents the occupancy percentage
 270 // at which we trigger a new collection cycle.  Unless explicitly specified
 271 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 272 // is calculated by:
 273 //
 274 //   Let "f" be MinHeapFreeRatio in
 275 //
 276 //    _initiating_occupancy = 100-f +
 277 //                           f * (CMSTriggerRatio/100)
 278 //   where CMSTriggerRatio is the argument "tr" below.
 279 //
 280 // That is, if we assume the heap is at its desired maximum occupancy at the
 281 // end of a collection, we let CMSTriggerRatio of the (purported) free
 282 // space be allocated before initiating a new collection cycle.
 283 //
 284 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 285   assert(io <= 100 && tr <= 100, "Check the arguments");
 286   if (io >= 0) {
 287     _initiating_occupancy = (double)io / 100.0;
 288   } else {
 289     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 290                              (double)(tr * MinHeapFreeRatio) / 100.0)
 291                             / 100.0;
 292   }
 293 }
 294 
 295 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 296   assert(collector() != NULL, "no collector");
 297   collector()->ref_processor_init();
 298 }
 299 
 300 void CMSCollector::ref_processor_init() {
 301   if (_ref_processor == NULL) {
 302     // Allocate and initialize a reference processor
 303     _ref_processor =
 304       new ReferenceProcessor(&_span_based_discoverer,
 305                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 306                              ParallelGCThreads,                      // mt processing degree
 307                              _cmsGen->refs_discovery_is_mt(),        // mt discovery
 308                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 309                              _cmsGen->refs_discovery_is_atomic(),    // discovery is not atomic
 310                              &_is_alive_closure,                     // closure for liveness info
 311                              false);                                 // disable adjusting number of processing threads
 312     // Initialize the _ref_processor field of CMSGen
 313     _cmsGen->set_ref_processor(_ref_processor);
 314 
 315   }
 316 }
 317 
 318 AdaptiveSizePolicy* CMSCollector::size_policy() {
 319   return CMSHeap::heap()->size_policy();
 320 }
 321 
 322 void ConcurrentMarkSweepGeneration::initialize_performance_counters(size_t min_old_size,
 323                                                                     size_t max_old_size) {
 324 
 325   const char* gen_name = "old";
 326   // Generation Counters - generation 1, 1 subspace
 327   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 328       min_old_size, max_old_size, &_virtual_space);
 329 
 330   _space_counters = new GSpaceCounters(gen_name, 0,
 331                                        _virtual_space.reserved_size(),
 332                                        this, _gen_counters);
 333 }
 334 
 335 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 336   _cms_gen(cms_gen)
 337 {
 338   assert(alpha <= 100, "bad value");
 339   _saved_alpha = alpha;
 340 
 341   // Initialize the alphas to the bootstrap value of 100.
 342   _gc0_alpha = _cms_alpha = 100;
 343 
 344   _cms_begin_time.update();
 345   _cms_end_time.update();
 346 
 347   _gc0_duration = 0.0;
 348   _gc0_period = 0.0;
 349   _gc0_promoted = 0;
 350 
 351   _cms_duration = 0.0;
 352   _cms_period = 0.0;
 353   _cms_allocated = 0;
 354 
 355   _cms_used_at_gc0_begin = 0;
 356   _cms_used_at_gc0_end = 0;
 357   _allow_duty_cycle_reduction = false;
 358   _valid_bits = 0;
 359 }
 360 
 361 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 362   // TBD: CR 6909490
 363   return 1.0;
 364 }
 365 
 366 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 367 }
 368 
 369 // If promotion failure handling is on use
 370 // the padded average size of the promotion for each
 371 // young generation collection.
 372 double CMSStats::time_until_cms_gen_full() const {
 373   size_t cms_free = _cms_gen->cmsSpace()->free();
 374   CMSHeap* heap = CMSHeap::heap();
 375   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 376                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 377   if (cms_free > expected_promotion) {
 378     // Start a cms collection if there isn't enough space to promote
 379     // for the next young collection.  Use the padded average as
 380     // a safety factor.
 381     cms_free -= expected_promotion;
 382 
 383     // Adjust by the safety factor.
 384     double cms_free_dbl = (double)cms_free;
 385     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 386     // Apply a further correction factor which tries to adjust
 387     // for recent occurance of concurrent mode failures.
 388     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 389     cms_free_dbl = cms_free_dbl * cms_adjustment;
 390 
 391     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 392                   cms_free, expected_promotion);
 393     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 394     // Add 1 in case the consumption rate goes to zero.
 395     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 396   }
 397   return 0.0;
 398 }
 399 
 400 // Compare the duration of the cms collection to the
 401 // time remaining before the cms generation is empty.
 402 // Note that the time from the start of the cms collection
 403 // to the start of the cms sweep (less than the total
 404 // duration of the cms collection) can be used.  This
 405 // has been tried and some applications experienced
 406 // promotion failures early in execution.  This was
 407 // possibly because the averages were not accurate
 408 // enough at the beginning.
 409 double CMSStats::time_until_cms_start() const {
 410   // We add "gc0_period" to the "work" calculation
 411   // below because this query is done (mostly) at the
 412   // end of a scavenge, so we need to conservatively
 413   // account for that much possible delay
 414   // in the query so as to avoid concurrent mode failures
 415   // due to starting the collection just a wee bit too
 416   // late.
 417   double work = cms_duration() + gc0_period();
 418   double deadline = time_until_cms_gen_full();
 419   // If a concurrent mode failure occurred recently, we want to be
 420   // more conservative and halve our expected time_until_cms_gen_full()
 421   if (work > deadline) {
 422     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 423                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 424     return 0.0;
 425   }
 426   return work - deadline;
 427 }
 428 
 429 #ifndef PRODUCT
 430 void CMSStats::print_on(outputStream *st) const {
 431   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 432   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 433                gc0_duration(), gc0_period(), gc0_promoted());
 434   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 435             cms_duration(), cms_period(), cms_allocated());
 436   st->print(",cms_since_beg=%g,cms_since_end=%g",
 437             cms_time_since_begin(), cms_time_since_end());
 438   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 439             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 440 
 441   if (valid()) {
 442     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 443               promotion_rate(), cms_allocation_rate());
 444     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 445               cms_consumption_rate(), time_until_cms_gen_full());
 446   }
 447   st->cr();
 448 }
 449 #endif // #ifndef PRODUCT
 450 
 451 CMSCollector::CollectorState CMSCollector::_collectorState =
 452                              CMSCollector::Idling;
 453 bool CMSCollector::_foregroundGCIsActive = false;
 454 bool CMSCollector::_foregroundGCShouldWait = false;
 455 
 456 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 457                            CardTableRS*                   ct):
 458   _overflow_list(NULL),
 459   _conc_workers(NULL),     // may be set later
 460   _completed_initialization(false),
 461   _collection_count_start(0),
 462   _should_unload_classes(CMSClassUnloadingEnabled),
 463   _concurrent_cycles_since_last_unload(0),
 464   _roots_scanning_options(GenCollectedHeap::SO_None),
 465   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 466   _verifying(false),
 467   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 468   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 469   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 470   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 471   _cms_start_registered(false),
 472   _cmsGen(cmsGen),
 473   // Adjust span to cover old (cms) gen
 474   _span(cmsGen->reserved()),
 475   _ct(ct),
 476   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 477   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
 478                  -1 /* lock-free */, "No_lock" /* dummy */),
 479   _restart_addr(NULL),
 480   _ser_pmc_preclean_ovflw(0),
 481   _ser_pmc_remark_ovflw(0),
 482   _par_pmc_remark_ovflw(0),
 483   _ser_kac_preclean_ovflw(0),
 484   _ser_kac_ovflw(0),
 485   _par_kac_ovflw(0),
 486 #ifndef PRODUCT
 487   _num_par_pushes(0),
 488 #endif
 489   _span_based_discoverer(_span),
 490   _ref_processor(NULL),    // will be set later
 491   // Construct the is_alive_closure with _span & markBitMap
 492   _is_alive_closure(_span, &_markBitMap),
 493   _modUnionClosurePar(&_modUnionTable),
 494   _between_prologue_and_epilogue(false),
 495   _abort_preclean(false),
 496   _start_sampling(false),
 497   _stats(cmsGen),
 498   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 499                              //verify that this lock should be acquired with safepoint check.
 500                              Monitor::_safepoint_check_never)),
 501   _eden_chunk_array(NULL),     // may be set in ctor body
 502   _eden_chunk_index(0),        // -- ditto --
 503   _eden_chunk_capacity(0),     // -- ditto --
 504   _survivor_chunk_array(NULL), // -- ditto --
 505   _survivor_chunk_index(0),    // -- ditto --
 506   _survivor_chunk_capacity(0), // -- ditto --
 507   _survivor_plab_array(NULL)   // -- ditto --
 508 {
 509   // Now expand the span and allocate the collection support structures
 510   // (MUT, marking bit map etc.) to cover both generations subject to
 511   // collection.
 512 
 513   // For use by dirty card to oop closures.
 514   _cmsGen->cmsSpace()->set_collector(this);
 515 
 516   // Allocate MUT and marking bit map
 517   {
 518     MutexLocker x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 519     if (!_markBitMap.allocate(_span)) {
 520       log_warning(gc)("Failed to allocate CMS Bit Map");
 521       return;
 522     }
 523     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 524   }
 525   {
 526     _modUnionTable.allocate(_span);
 527     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 528   }
 529 
 530   if (!_markStack.allocate(MarkStackSize)) {
 531     log_warning(gc)("Failed to allocate CMS Marking Stack");
 532     return;
 533   }
 534 
 535   // Support for multi-threaded concurrent phases
 536   if (CMSConcurrentMTEnabled) {
 537     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 538       // just for now
 539       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 540     }
 541     if (ConcGCThreads > 1) {
 542       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 543                                  ConcGCThreads, true);
 544       if (_conc_workers == NULL) {
 545         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 546         CMSConcurrentMTEnabled = false;
 547       } else {
 548         _conc_workers->initialize_workers();
 549       }
 550     } else {
 551       CMSConcurrentMTEnabled = false;
 552     }
 553   }
 554   if (!CMSConcurrentMTEnabled) {
 555     ConcGCThreads = 0;
 556   } else {
 557     // Turn off CMSCleanOnEnter optimization temporarily for
 558     // the MT case where it's not fixed yet; see 6178663.
 559     CMSCleanOnEnter = false;
 560   }
 561   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 562          "Inconsistency");
 563   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 564   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 565 
 566   // Parallel task queues; these are shared for the
 567   // concurrent and stop-world phases of CMS, but
 568   // are not shared with parallel scavenge (ParNew).
 569   {
 570     uint i;
 571     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 572 
 573     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 574          || ParallelRefProcEnabled)
 575         && num_queues > 0) {
 576       _task_queues = new OopTaskQueueSet(num_queues);
 577       if (_task_queues == NULL) {
 578         log_warning(gc)("task_queues allocation failure.");
 579         return;
 580       }
 581       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 582       for (i = 0; i < num_queues; i++) {
 583         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 584         if (q == NULL) {
 585           log_warning(gc)("work_queue allocation failure.");
 586           return;
 587         }
 588         _task_queues->register_queue(i, q);
 589       }
 590       for (i = 0; i < num_queues; i++) {
 591         _task_queues->queue(i)->initialize();
 592       }
 593     }
 594   }
 595 
 596   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 597 
 598   // Clip CMSBootstrapOccupancy between 0 and 100.
 599   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 600 
 601   // Now tell CMS generations the identity of their collector
 602   ConcurrentMarkSweepGeneration::set_collector(this);
 603 
 604   // Create & start a CMS thread for this CMS collector
 605   _cmsThread = ConcurrentMarkSweepThread::start(this);
 606   assert(cmsThread() != NULL, "CMS Thread should have been created");
 607   assert(cmsThread()->collector() == this,
 608          "CMS Thread should refer to this gen");
 609   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 610 
 611   // Support for parallelizing young gen rescan
 612   CMSHeap* heap = CMSHeap::heap();
 613   _young_gen = heap->young_gen();
 614   if (heap->supports_inline_contig_alloc()) {
 615     _top_addr = heap->top_addr();
 616     _end_addr = heap->end_addr();
 617     assert(_young_gen != NULL, "no _young_gen");
 618     _eden_chunk_index = 0;
 619     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 620     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 621   }
 622 
 623   // Support for parallelizing survivor space rescan
 624   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 625     const size_t max_plab_samples =
 626       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 627 
 628     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 629     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 631     _survivor_chunk_capacity = max_plab_samples;
 632     for (uint i = 0; i < ParallelGCThreads; i++) {
 633       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 634       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 635       assert(cur->end() == 0, "Should be 0");
 636       assert(cur->array() == vec, "Should be vec");
 637       assert(cur->capacity() == max_plab_samples, "Error");
 638     }
 639   }
 640 
 641   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 642   _gc_counters = new CollectorCounters("CMS full collection pauses", 1);
 643   _cgc_counters = new CollectorCounters("CMS concurrent cycle pauses", 2);
 644   _completed_initialization = true;
 645   _inter_sweep_timer.start();  // start of time
 646 }
 647 
 648 const char* ConcurrentMarkSweepGeneration::name() const {
 649   return "concurrent mark-sweep generation";
 650 }
 651 void ConcurrentMarkSweepGeneration::update_counters() {
 652   if (UsePerfData) {
 653     _space_counters->update_all();
 654     _gen_counters->update_all();
 655   }
 656 }
 657 
 658 // this is an optimized version of update_counters(). it takes the
 659 // used value as a parameter rather than computing it.
 660 //
 661 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 662   if (UsePerfData) {
 663     _space_counters->update_used(used);
 664     _space_counters->update_capacity();
 665     _gen_counters->update_all();
 666   }
 667 }
 668 
 669 void ConcurrentMarkSweepGeneration::print() const {
 670   Generation::print();
 671   cmsSpace()->print();
 672 }
 673 
 674 #ifndef PRODUCT
 675 void ConcurrentMarkSweepGeneration::print_statistics() {
 676   cmsSpace()->printFLCensus(0);
 677 }
 678 #endif
 679 
 680 size_t
 681 ConcurrentMarkSweepGeneration::contiguous_available() const {
 682   // dld proposes an improvement in precision here. If the committed
 683   // part of the space ends in a free block we should add that to
 684   // uncommitted size in the calculation below. Will make this
 685   // change later, staying with the approximation below for the
 686   // time being. -- ysr.
 687   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 688 }
 689 
 690 size_t
 691 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 692   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 693 }
 694 
 695 size_t ConcurrentMarkSweepGeneration::max_available() const {
 696   return free() + _virtual_space.uncommitted_size();
 697 }
 698 
 699 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 700   size_t available = max_available();
 701   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 702   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 703   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 704                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 705   return res;
 706 }
 707 
 708 // At a promotion failure dump information on block layout in heap
 709 // (cms old generation).
 710 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 711   Log(gc, promotion) log;
 712   if (log.is_trace()) {
 713     LogStream ls(log.trace());
 714     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 715   }
 716 }
 717 
 718 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 719   // Clear the promotion information.  These pointers can be adjusted
 720   // along with all the other pointers into the heap but
 721   // compaction is expected to be a rare event with
 722   // a heap using cms so don't do it without seeing the need.
 723   for (uint i = 0; i < ParallelGCThreads; i++) {
 724     _par_gc_thread_states[i]->promo.reset();
 725   }
 726 }
 727 
 728 void ConcurrentMarkSweepGeneration::compute_new_size() {
 729   assert_locked_or_safepoint(Heap_lock);
 730 
 731   // If incremental collection failed, we just want to expand
 732   // to the limit.
 733   if (incremental_collection_failed()) {
 734     clear_incremental_collection_failed();
 735     grow_to_reserved();
 736     return;
 737   }
 738 
 739   // The heap has been compacted but not reset yet.
 740   // Any metric such as free() or used() will be incorrect.
 741 
 742   CardGeneration::compute_new_size();
 743 
 744   // Reset again after a possible resizing
 745   if (did_compact()) {
 746     cmsSpace()->reset_after_compaction();
 747   }
 748 }
 749 
 750 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 751   assert_locked_or_safepoint(Heap_lock);
 752 
 753   // If incremental collection failed, we just want to expand
 754   // to the limit.
 755   if (incremental_collection_failed()) {
 756     clear_incremental_collection_failed();
 757     grow_to_reserved();
 758     return;
 759   }
 760 
 761   double free_percentage = ((double) free()) / capacity();
 762   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 763   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 764 
 765   // compute expansion delta needed for reaching desired free percentage
 766   if (free_percentage < desired_free_percentage) {
 767     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 768     assert(desired_capacity >= capacity(), "invalid expansion size");
 769     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 770     Log(gc) log;
 771     if (log.is_trace()) {
 772       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 773       log.trace("From compute_new_size: ");
 774       log.trace("  Free fraction %f", free_percentage);
 775       log.trace("  Desired free fraction %f", desired_free_percentage);
 776       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 777       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 778       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 779       CMSHeap* heap = CMSHeap::heap();
 780       size_t young_size = heap->young_gen()->capacity();
 781       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 782       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 783       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 784       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 785     }
 786     // safe if expansion fails
 787     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 788     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 789   } else {
 790     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 791     assert(desired_capacity <= capacity(), "invalid expansion size");
 792     size_t shrink_bytes = capacity() - desired_capacity;
 793     // Don't shrink unless the delta is greater than the minimum shrink we want
 794     if (shrink_bytes >= MinHeapDeltaBytes) {
 795       shrink_free_list_by(shrink_bytes);
 796     }
 797   }
 798 }
 799 
 800 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 801   return cmsSpace()->freelistLock();
 802 }
 803 
 804 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 805   CMSSynchronousYieldRequest yr;
 806   MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
 807   return have_lock_and_allocate(size, tlab);
 808 }
 809 
 810 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 811                                                                 bool   tlab /* ignored */) {
 812   assert_lock_strong(freelistLock());
 813   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 814   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 815   // Allocate the object live (grey) if the background collector has
 816   // started marking. This is necessary because the marker may
 817   // have passed this address and consequently this object will
 818   // not otherwise be greyed and would be incorrectly swept up.
 819   // Note that if this object contains references, the writing
 820   // of those references will dirty the card containing this object
 821   // allowing the object to be blackened (and its references scanned)
 822   // either during a preclean phase or at the final checkpoint.
 823   if (res != NULL) {
 824     // We may block here with an uninitialized object with
 825     // its mark-bit or P-bits not yet set. Such objects need
 826     // to be safely navigable by block_start().
 827     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 828     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 829     collector()->direct_allocated(res, adjustedSize);
 830     _direct_allocated_words += adjustedSize;
 831     // allocation counters
 832     NOT_PRODUCT(
 833       _numObjectsAllocated++;
 834       _numWordsAllocated += (int)adjustedSize;
 835     )
 836   }
 837   return res;
 838 }
 839 
 840 // In the case of direct allocation by mutators in a generation that
 841 // is being concurrently collected, the object must be allocated
 842 // live (grey) if the background collector has started marking.
 843 // This is necessary because the marker may
 844 // have passed this address and consequently this object will
 845 // not otherwise be greyed and would be incorrectly swept up.
 846 // Note that if this object contains references, the writing
 847 // of those references will dirty the card containing this object
 848 // allowing the object to be blackened (and its references scanned)
 849 // either during a preclean phase or at the final checkpoint.
 850 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 851   assert(_markBitMap.covers(start, size), "Out of bounds");
 852   if (_collectorState >= Marking) {
 853     MutexLocker y(_markBitMap.lock(),
 854                   Mutex::_no_safepoint_check_flag);
 855     // [see comments preceding SweepClosure::do_blk() below for details]
 856     //
 857     // Can the P-bits be deleted now?  JJJ
 858     //
 859     // 1. need to mark the object as live so it isn't collected
 860     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 861     // 3. need to mark the end of the object so marking, precleaning or sweeping
 862     //    can skip over uninitialized or unparsable objects. An allocated
 863     //    object is considered uninitialized for our purposes as long as
 864     //    its klass word is NULL.  All old gen objects are parsable
 865     //    as soon as they are initialized.)
 866     _markBitMap.mark(start);          // object is live
 867     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 868     _markBitMap.mark(start + size - 1);
 869                                       // mark end of object
 870   }
 871   // check that oop looks uninitialized
 872   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 873 }
 874 
 875 void CMSCollector::promoted(bool par, HeapWord* start,
 876                             bool is_obj_array, size_t obj_size) {
 877   assert(_markBitMap.covers(start), "Out of bounds");
 878   // See comment in direct_allocated() about when objects should
 879   // be allocated live.
 880   if (_collectorState >= Marking) {
 881     // we already hold the marking bit map lock, taken in
 882     // the prologue
 883     if (par) {
 884       _markBitMap.par_mark(start);
 885     } else {
 886       _markBitMap.mark(start);
 887     }
 888     // We don't need to mark the object as uninitialized (as
 889     // in direct_allocated above) because this is being done with the
 890     // world stopped and the object will be initialized by the
 891     // time the marking, precleaning or sweeping get to look at it.
 892     // But see the code for copying objects into the CMS generation,
 893     // where we need to ensure that concurrent readers of the
 894     // block offset table are able to safely navigate a block that
 895     // is in flux from being free to being allocated (and in
 896     // transition while being copied into) and subsequently
 897     // becoming a bona-fide object when the copy/promotion is complete.
 898     assert(SafepointSynchronize::is_at_safepoint(),
 899            "expect promotion only at safepoints");
 900 
 901     if (_collectorState < Sweeping) {
 902       // Mark the appropriate cards in the modUnionTable, so that
 903       // this object gets scanned before the sweep. If this is
 904       // not done, CMS generation references in the object might
 905       // not get marked.
 906       // For the case of arrays, which are otherwise precisely
 907       // marked, we need to dirty the entire array, not just its head.
 908       if (is_obj_array) {
 909         // The [par_]mark_range() method expects mr.end() below to
 910         // be aligned to the granularity of a bit's representation
 911         // in the heap. In the case of the MUT below, that's a
 912         // card size.
 913         MemRegion mr(start,
 914                      align_up(start + obj_size,
 915                               CardTable::card_size /* bytes */));
 916         if (par) {
 917           _modUnionTable.par_mark_range(mr);
 918         } else {
 919           _modUnionTable.mark_range(mr);
 920         }
 921       } else {  // not an obj array; we can just mark the head
 922         if (par) {
 923           _modUnionTable.par_mark(start);
 924         } else {
 925           _modUnionTable.mark(start);
 926         }
 927       }
 928     }
 929   }
 930 }
 931 
 932 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 933   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 934   // allocate, copy and if necessary update promoinfo --
 935   // delegate to underlying space.
 936   assert_lock_strong(freelistLock());
 937 
 938 #ifndef PRODUCT
 939   if (CMSHeap::heap()->promotion_should_fail()) {
 940     return NULL;
 941   }
 942 #endif  // #ifndef PRODUCT
 943 
 944   oop res = _cmsSpace->promote(obj, obj_size);
 945   if (res == NULL) {
 946     // expand and retry
 947     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 948     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 949     // Since this is the old generation, we don't try to promote
 950     // into a more senior generation.
 951     res = _cmsSpace->promote(obj, obj_size);
 952   }
 953   if (res != NULL) {
 954     // See comment in allocate() about when objects should
 955     // be allocated live.
 956     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 957     collector()->promoted(false,           // Not parallel
 958                           (HeapWord*)res, obj->is_objArray(), obj_size);
 959     // promotion counters
 960     NOT_PRODUCT(
 961       _numObjectsPromoted++;
 962       _numWordsPromoted +=
 963         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 964     )
 965   }
 966   return res;
 967 }
 968 
 969 
 970 // IMPORTANT: Notes on object size recognition in CMS.
 971 // ---------------------------------------------------
 972 // A block of storage in the CMS generation is always in
 973 // one of three states. A free block (FREE), an allocated
 974 // object (OBJECT) whose size() method reports the correct size,
 975 // and an intermediate state (TRANSIENT) in which its size cannot
 976 // be accurately determined.
 977 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 978 // -----------------------------------------------------
 979 // FREE:      klass_word & 1 == 1; mark_word holds block size
 980 //
 981 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 982 //            obj->size() computes correct size
 983 //
 984 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 985 //
 986 // STATE IDENTIFICATION: (64 bit+COOPS)
 987 // ------------------------------------
 988 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 989 //
 990 // OBJECT:    klass_word installed; klass_word != 0;
 991 //            obj->size() computes correct size
 992 //
 993 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 994 //
 995 //
 996 // STATE TRANSITION DIAGRAM
 997 //
 998 //        mut / parnew                     mut  /  parnew
 999 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1000 //  ^                                                                   |
1001 //  |------------------------ DEAD <------------------------------------|
1002 //         sweep                            mut
1003 //
1004 // While a block is in TRANSIENT state its size cannot be determined
1005 // so readers will either need to come back later or stall until
1006 // the size can be determined. Note that for the case of direct
1007 // allocation, P-bits, when available, may be used to determine the
1008 // size of an object that may not yet have been initialized.
1009 
1010 // Things to support parallel young-gen collection.
1011 oop
1012 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1013                                            oop old, markOop m,
1014                                            size_t word_sz) {
1015 #ifndef PRODUCT
1016   if (CMSHeap::heap()->promotion_should_fail()) {
1017     return NULL;
1018   }
1019 #endif  // #ifndef PRODUCT
1020 
1021   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1022   PromotionInfo* promoInfo = &ps->promo;
1023   // if we are tracking promotions, then first ensure space for
1024   // promotion (including spooling space for saving header if necessary).
1025   // then allocate and copy, then track promoted info if needed.
1026   // When tracking (see PromotionInfo::track()), the mark word may
1027   // be displaced and in this case restoration of the mark word
1028   // occurs in the (oop_since_save_marks_)iterate phase.
1029   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1030     // Out of space for allocating spooling buffers;
1031     // try expanding and allocating spooling buffers.
1032     if (!expand_and_ensure_spooling_space(promoInfo)) {
1033       return NULL;
1034     }
1035   }
1036   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1037   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1038   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1039   if (obj_ptr == NULL) {
1040      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1041      if (obj_ptr == NULL) {
1042        return NULL;
1043      }
1044   }
1045   oop obj = oop(obj_ptr);
1046   OrderAccess::storestore();
1047   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1048   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1049   // IMPORTANT: See note on object initialization for CMS above.
1050   // Otherwise, copy the object.  Here we must be careful to insert the
1051   // klass pointer last, since this marks the block as an allocated object.
1052   // Except with compressed oops it's the mark word.
1053   HeapWord* old_ptr = (HeapWord*)old;
1054   // Restore the mark word copied above.
1055   obj->set_mark_raw(m);
1056   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1057   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1058   OrderAccess::storestore();
1059 
1060   if (UseCompressedClassPointers) {
1061     // Copy gap missed by (aligned) header size calculation below
1062     obj->set_klass_gap(old->klass_gap());
1063   }
1064   if (word_sz > (size_t)oopDesc::header_size()) {
1065     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1066                                  obj_ptr + oopDesc::header_size(),
1067                                  word_sz - oopDesc::header_size());
1068   }
1069 
1070   // Now we can track the promoted object, if necessary.  We take care
1071   // to delay the transition from uninitialized to full object
1072   // (i.e., insertion of klass pointer) until after, so that it
1073   // atomically becomes a promoted object.
1074   if (promoInfo->tracking()) {
1075     promoInfo->track((PromotedObject*)obj, old->klass());
1076   }
1077   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1078   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1079   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1080 
1081   // Finally, install the klass pointer (this should be volatile).
1082   OrderAccess::storestore();
1083   obj->set_klass(old->klass());
1084   // We should now be able to calculate the right size for this object
1085   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1086 
1087   collector()->promoted(true,          // parallel
1088                         obj_ptr, old->is_objArray(), word_sz);
1089 
1090   NOT_PRODUCT(
1091     Atomic::inc(&_numObjectsPromoted);
1092     Atomic::add(alloc_sz, &_numWordsPromoted);
1093   )
1094 
1095   return obj;
1096 }
1097 
1098 void
1099 ConcurrentMarkSweepGeneration::
1100 par_promote_alloc_done(int thread_num) {
1101   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1102   ps->lab.retire(thread_num);
1103 }
1104 
1105 void
1106 ConcurrentMarkSweepGeneration::
1107 par_oop_since_save_marks_iterate_done(int thread_num) {
1108   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1109   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1110   ps->promo.promoted_oops_iterate(dummy_cl);
1111 
1112   // Because card-scanning has been completed, subsequent phases
1113   // (e.g., reference processing) will not need to recognize which
1114   // objects have been promoted during this GC. So, we can now disable
1115   // promotion tracking.
1116   ps->promo.stopTrackingPromotions();
1117 }
1118 
1119 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1120                                                    size_t size,
1121                                                    bool   tlab)
1122 {
1123   // We allow a STW collection only if a full
1124   // collection was requested.
1125   return full || should_allocate(size, tlab); // FIX ME !!!
1126   // This and promotion failure handling are connected at the
1127   // hip and should be fixed by untying them.
1128 }
1129 
1130 bool CMSCollector::shouldConcurrentCollect() {
1131   LogTarget(Trace, gc) log;
1132 
1133   if (_full_gc_requested) {
1134     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1135     return true;
1136   }
1137 
1138   FreelistLocker x(this);
1139   // ------------------------------------------------------------------
1140   // Print out lots of information which affects the initiation of
1141   // a collection.
1142   if (log.is_enabled() && stats().valid()) {
1143     log.print("CMSCollector shouldConcurrentCollect: ");
1144 
1145     LogStream out(log);
1146     stats().print_on(&out);
1147 
1148     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1149     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1150     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1151     log.print("promotion_rate=%g", stats().promotion_rate());
1152     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1153     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1154     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1155     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1156     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1157     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1158   }
1159   // ------------------------------------------------------------------
1160 
1161   // If the estimated time to complete a cms collection (cms_duration())
1162   // is less than the estimated time remaining until the cms generation
1163   // is full, start a collection.
1164   if (!UseCMSInitiatingOccupancyOnly) {
1165     if (stats().valid()) {
1166       if (stats().time_until_cms_start() == 0.0) {
1167         return true;
1168       }
1169     } else {
1170       // We want to conservatively collect somewhat early in order
1171       // to try and "bootstrap" our CMS/promotion statistics;
1172       // this branch will not fire after the first successful CMS
1173       // collection because the stats should then be valid.
1174       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1175         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1176                   _cmsGen->occupancy(), _bootstrap_occupancy);
1177         return true;
1178       }
1179     }
1180   }
1181 
1182   // Otherwise, we start a collection cycle if
1183   // old gen want a collection cycle started. Each may use
1184   // an appropriate criterion for making this decision.
1185   // XXX We need to make sure that the gen expansion
1186   // criterion dovetails well with this. XXX NEED TO FIX THIS
1187   if (_cmsGen->should_concurrent_collect()) {
1188     log.print("CMS old gen initiated");
1189     return true;
1190   }
1191 
1192   // We start a collection if we believe an incremental collection may fail;
1193   // this is not likely to be productive in practice because it's probably too
1194   // late anyway.
1195   CMSHeap* heap = CMSHeap::heap();
1196   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1197     log.print("CMSCollector: collect because incremental collection will fail ");
1198     return true;
1199   }
1200 
1201   if (MetaspaceGC::should_concurrent_collect()) {
1202     log.print("CMSCollector: collect for metadata allocation ");
1203     return true;
1204   }
1205 
1206   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1207   if (CMSTriggerInterval >= 0) {
1208     if (CMSTriggerInterval == 0) {
1209       // Trigger always
1210       return true;
1211     }
1212 
1213     // Check the CMS time since begin (we do not check the stats validity
1214     // as we want to be able to trigger the first CMS cycle as well)
1215     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1216       if (stats().valid()) {
1217         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1218                   stats().cms_time_since_begin());
1219       } else {
1220         log.print("CMSCollector: collect because of trigger interval (first collection)");
1221       }
1222       return true;
1223     }
1224   }
1225 
1226   return false;
1227 }
1228 
1229 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1230 
1231 // Clear _expansion_cause fields of constituent generations
1232 void CMSCollector::clear_expansion_cause() {
1233   _cmsGen->clear_expansion_cause();
1234 }
1235 
1236 // We should be conservative in starting a collection cycle.  To
1237 // start too eagerly runs the risk of collecting too often in the
1238 // extreme.  To collect too rarely falls back on full collections,
1239 // which works, even if not optimum in terms of concurrent work.
1240 // As a work around for too eagerly collecting, use the flag
1241 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1242 // giving the user an easily understandable way of controlling the
1243 // collections.
1244 // We want to start a new collection cycle if any of the following
1245 // conditions hold:
1246 // . our current occupancy exceeds the configured initiating occupancy
1247 //   for this generation, or
1248 // . we recently needed to expand this space and have not, since that
1249 //   expansion, done a collection of this generation, or
1250 // . the underlying space believes that it may be a good idea to initiate
1251 //   a concurrent collection (this may be based on criteria such as the
1252 //   following: the space uses linear allocation and linear allocation is
1253 //   going to fail, or there is believed to be excessive fragmentation in
1254 //   the generation, etc... or ...
1255 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1256 //   the case of the old generation; see CR 6543076):
1257 //   we may be approaching a point at which allocation requests may fail because
1258 //   we will be out of sufficient free space given allocation rate estimates.]
1259 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1260 
1261   assert_lock_strong(freelistLock());
1262   if (occupancy() > initiating_occupancy()) {
1263     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1264                   short_name(), occupancy(), initiating_occupancy());
1265     return true;
1266   }
1267   if (UseCMSInitiatingOccupancyOnly) {
1268     return false;
1269   }
1270   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1271     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1272     return true;
1273   }
1274   return false;
1275 }
1276 
1277 void ConcurrentMarkSweepGeneration::collect(bool   full,
1278                                             bool   clear_all_soft_refs,
1279                                             size_t size,
1280                                             bool   tlab)
1281 {
1282   collector()->collect(full, clear_all_soft_refs, size, tlab);
1283 }
1284 
1285 void CMSCollector::collect(bool   full,
1286                            bool   clear_all_soft_refs,
1287                            size_t size,
1288                            bool   tlab)
1289 {
1290   // The following "if" branch is present for defensive reasons.
1291   // In the current uses of this interface, it can be replaced with:
1292   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1293   // But I am not placing that assert here to allow future
1294   // generality in invoking this interface.
1295   if (GCLocker::is_active()) {
1296     // A consistency test for GCLocker
1297     assert(GCLocker::needs_gc(), "Should have been set already");
1298     // Skip this foreground collection, instead
1299     // expanding the heap if necessary.
1300     // Need the free list locks for the call to free() in compute_new_size()
1301     compute_new_size();
1302     return;
1303   }
1304   acquire_control_and_collect(full, clear_all_soft_refs);
1305 }
1306 
1307 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1308   CMSHeap* heap = CMSHeap::heap();
1309   unsigned int gc_count = heap->total_full_collections();
1310   if (gc_count == full_gc_count) {
1311     MutexLocker y(CGC_lock, Mutex::_no_safepoint_check_flag);
1312     _full_gc_requested = true;
1313     _full_gc_cause = cause;
1314     CGC_lock->notify();   // nudge CMS thread
1315   } else {
1316     assert(gc_count > full_gc_count, "Error: causal loop");
1317   }
1318 }
1319 
1320 bool CMSCollector::is_external_interruption() {
1321   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1322   return GCCause::is_user_requested_gc(cause) ||
1323          GCCause::is_serviceability_requested_gc(cause);
1324 }
1325 
1326 void CMSCollector::report_concurrent_mode_interruption() {
1327   if (is_external_interruption()) {
1328     log_debug(gc)("Concurrent mode interrupted");
1329   } else {
1330     log_debug(gc)("Concurrent mode failure");
1331     _gc_tracer_cm->report_concurrent_mode_failure();
1332   }
1333 }
1334 
1335 
1336 // The foreground and background collectors need to coordinate in order
1337 // to make sure that they do not mutually interfere with CMS collections.
1338 // When a background collection is active,
1339 // the foreground collector may need to take over (preempt) and
1340 // synchronously complete an ongoing collection. Depending on the
1341 // frequency of the background collections and the heap usage
1342 // of the application, this preemption can be seldom or frequent.
1343 // There are only certain
1344 // points in the background collection that the "collection-baton"
1345 // can be passed to the foreground collector.
1346 //
1347 // The foreground collector will wait for the baton before
1348 // starting any part of the collection.  The foreground collector
1349 // will only wait at one location.
1350 //
1351 // The background collector will yield the baton before starting a new
1352 // phase of the collection (e.g., before initial marking, marking from roots,
1353 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1354 // of the loop which switches the phases. The background collector does some
1355 // of the phases (initial mark, final re-mark) with the world stopped.
1356 // Because of locking involved in stopping the world,
1357 // the foreground collector should not block waiting for the background
1358 // collector when it is doing a stop-the-world phase.  The background
1359 // collector will yield the baton at an additional point just before
1360 // it enters a stop-the-world phase.  Once the world is stopped, the
1361 // background collector checks the phase of the collection.  If the
1362 // phase has not changed, it proceeds with the collection.  If the
1363 // phase has changed, it skips that phase of the collection.  See
1364 // the comments on the use of the Heap_lock in collect_in_background().
1365 //
1366 // Variable used in baton passing.
1367 //   _foregroundGCIsActive - Set to true by the foreground collector when
1368 //      it wants the baton.  The foreground clears it when it has finished
1369 //      the collection.
1370 //   _foregroundGCShouldWait - Set to true by the background collector
1371 //        when it is running.  The foreground collector waits while
1372 //      _foregroundGCShouldWait is true.
1373 //  CGC_lock - monitor used to protect access to the above variables
1374 //      and to notify the foreground and background collectors.
1375 //  _collectorState - current state of the CMS collection.
1376 //
1377 // The foreground collector
1378 //   acquires the CGC_lock
1379 //   sets _foregroundGCIsActive
1380 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1381 //     various locks acquired in preparation for the collection
1382 //     are released so as not to block the background collector
1383 //     that is in the midst of a collection
1384 //   proceeds with the collection
1385 //   clears _foregroundGCIsActive
1386 //   returns
1387 //
1388 // The background collector in a loop iterating on the phases of the
1389 //      collection
1390 //   acquires the CGC_lock
1391 //   sets _foregroundGCShouldWait
1392 //   if _foregroundGCIsActive is set
1393 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1394 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1395 //     and exits the loop.
1396 //   otherwise
1397 //     proceed with that phase of the collection
1398 //     if the phase is a stop-the-world phase,
1399 //       yield the baton once more just before enqueueing
1400 //       the stop-world CMS operation (executed by the VM thread).
1401 //   returns after all phases of the collection are done
1402 //
1403 
1404 void CMSCollector::acquire_control_and_collect(bool full,
1405         bool clear_all_soft_refs) {
1406   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1407   assert(!Thread::current()->is_ConcurrentGC_thread(),
1408          "shouldn't try to acquire control from self!");
1409 
1410   // Start the protocol for acquiring control of the
1411   // collection from the background collector (aka CMS thread).
1412   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1413          "VM thread should have CMS token");
1414   // Remember the possibly interrupted state of an ongoing
1415   // concurrent collection
1416   CollectorState first_state = _collectorState;
1417 
1418   // Signal to a possibly ongoing concurrent collection that
1419   // we want to do a foreground collection.
1420   _foregroundGCIsActive = true;
1421 
1422   // release locks and wait for a notify from the background collector
1423   // releasing the locks in only necessary for phases which
1424   // do yields to improve the granularity of the collection.
1425   assert_lock_strong(bitMapLock());
1426   // We need to lock the Free list lock for the space that we are
1427   // currently collecting.
1428   assert(haveFreelistLocks(), "Must be holding free list locks");
1429   bitMapLock()->unlock();
1430   releaseFreelistLocks();
1431   {
1432     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1433     if (_foregroundGCShouldWait) {
1434       // We are going to be waiting for action for the CMS thread;
1435       // it had better not be gone (for instance at shutdown)!
1436       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1437              "CMS thread must be running");
1438       // Wait here until the background collector gives us the go-ahead
1439       ConcurrentMarkSweepThread::clear_CMS_flag(
1440         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1441       // Get a possibly blocked CMS thread going:
1442       //   Note that we set _foregroundGCIsActive true above,
1443       //   without protection of the CGC_lock.
1444       CGC_lock->notify();
1445       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1446              "Possible deadlock");
1447       while (_foregroundGCShouldWait) {
1448         // wait for notification
1449         CGC_lock->wait_without_safepoint_check();
1450         // Possibility of delay/starvation here, since CMS token does
1451         // not know to give priority to VM thread? Actually, i think
1452         // there wouldn't be any delay/starvation, but the proof of
1453         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1454       }
1455       ConcurrentMarkSweepThread::set_CMS_flag(
1456         ConcurrentMarkSweepThread::CMS_vm_has_token);
1457     }
1458   }
1459   // The CMS_token is already held.  Get back the other locks.
1460   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1461          "VM thread should have CMS token");
1462   getFreelistLocks();
1463   bitMapLock()->lock_without_safepoint_check();
1464   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1465                        p2i(Thread::current()), first_state);
1466   log_debug(gc, state)("    gets control with state %d", _collectorState);
1467 
1468   // Inform cms gen if this was due to partial collection failing.
1469   // The CMS gen may use this fact to determine its expansion policy.
1470   CMSHeap* heap = CMSHeap::heap();
1471   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1472     assert(!_cmsGen->incremental_collection_failed(),
1473            "Should have been noticed, reacted to and cleared");
1474     _cmsGen->set_incremental_collection_failed();
1475   }
1476 
1477   if (first_state > Idling) {
1478     report_concurrent_mode_interruption();
1479   }
1480 
1481   set_did_compact(true);
1482 
1483   // If the collection is being acquired from the background
1484   // collector, there may be references on the discovered
1485   // references lists.  Abandon those references, since some
1486   // of them may have become unreachable after concurrent
1487   // discovery; the STW compacting collector will redo discovery
1488   // more precisely, without being subject to floating garbage.
1489   // Leaving otherwise unreachable references in the discovered
1490   // lists would require special handling.
1491   ref_processor()->disable_discovery();
1492   ref_processor()->abandon_partial_discovery();
1493   ref_processor()->verify_no_references_recorded();
1494 
1495   if (first_state > Idling) {
1496     save_heap_summary();
1497   }
1498 
1499   do_compaction_work(clear_all_soft_refs);
1500 
1501   // Has the GC time limit been exceeded?
1502   size_t max_eden_size = _young_gen->max_eden_size();
1503   GCCause::Cause gc_cause = heap->gc_cause();
1504   size_policy()->check_gc_overhead_limit(_young_gen->eden()->used(),
1505                                          _cmsGen->max_capacity(),
1506                                          max_eden_size,
1507                                          full,
1508                                          gc_cause,
1509                                          heap->soft_ref_policy());
1510 
1511   // Reset the expansion cause, now that we just completed
1512   // a collection cycle.
1513   clear_expansion_cause();
1514   _foregroundGCIsActive = false;
1515   return;
1516 }
1517 
1518 // Resize the tenured generation
1519 // after obtaining the free list locks for the
1520 // two generations.
1521 void CMSCollector::compute_new_size() {
1522   assert_locked_or_safepoint(Heap_lock);
1523   FreelistLocker z(this);
1524   MetaspaceGC::compute_new_size();
1525   _cmsGen->compute_new_size_free_list();
1526 }
1527 
1528 // A work method used by the foreground collector to do
1529 // a mark-sweep-compact.
1530 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1531   CMSHeap* heap = CMSHeap::heap();
1532 
1533   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1534   gc_timer->register_gc_start();
1535 
1536   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1537   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1538 
1539   heap->pre_full_gc_dump(gc_timer);
1540 
1541   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1542 
1543   // Temporarily widen the span of the weak reference processing to
1544   // the entire heap.
1545   MemRegion new_span(CMSHeap::heap()->reserved_region());
1546   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1547   // Temporarily, clear the "is_alive_non_header" field of the
1548   // reference processor.
1549   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1550   // Temporarily make reference _processing_ single threaded (non-MT).
1551   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1552   // Temporarily make refs discovery atomic
1553   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1554   // Temporarily make reference _discovery_ single threaded (non-MT)
1555   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1556 
1557   ref_processor()->set_enqueuing_is_done(false);
1558   ref_processor()->enable_discovery();
1559   ref_processor()->setup_policy(clear_all_soft_refs);
1560   // If an asynchronous collection finishes, the _modUnionTable is
1561   // all clear.  If we are assuming the collection from an asynchronous
1562   // collection, clear the _modUnionTable.
1563   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1564     "_modUnionTable should be clear if the baton was not passed");
1565   _modUnionTable.clear_all();
1566   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1567     "mod union for klasses should be clear if the baton was passed");
1568   _ct->cld_rem_set()->clear_mod_union();
1569 
1570 
1571   // We must adjust the allocation statistics being maintained
1572   // in the free list space. We do so by reading and clearing
1573   // the sweep timer and updating the block flux rate estimates below.
1574   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1575   if (_inter_sweep_timer.is_active()) {
1576     _inter_sweep_timer.stop();
1577     // Note that we do not use this sample to update the _inter_sweep_estimate.
1578     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1579                                             _inter_sweep_estimate.padded_average(),
1580                                             _intra_sweep_estimate.padded_average());
1581   }
1582 
1583   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1584   #ifdef ASSERT
1585     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1586     size_t free_size = cms_space->free();
1587     assert(free_size ==
1588            pointer_delta(cms_space->end(), cms_space->compaction_top())
1589            * HeapWordSize,
1590       "All the free space should be compacted into one chunk at top");
1591     assert(cms_space->dictionary()->total_chunk_size(
1592                                       debug_only(cms_space->freelistLock())) == 0 ||
1593            cms_space->totalSizeInIndexedFreeLists() == 0,
1594       "All the free space should be in a single chunk");
1595     size_t num = cms_space->totalCount();
1596     assert((free_size == 0 && num == 0) ||
1597            (free_size > 0  && (num == 1 || num == 2)),
1598          "There should be at most 2 free chunks after compaction");
1599   #endif // ASSERT
1600   _collectorState = Resetting;
1601   assert(_restart_addr == NULL,
1602          "Should have been NULL'd before baton was passed");
1603   reset_stw();
1604   _cmsGen->reset_after_compaction();
1605   _concurrent_cycles_since_last_unload = 0;
1606 
1607   // Clear any data recorded in the PLAB chunk arrays.
1608   if (_survivor_plab_array != NULL) {
1609     reset_survivor_plab_arrays();
1610   }
1611 
1612   // Adjust the per-size allocation stats for the next epoch.
1613   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1614   // Restart the "inter sweep timer" for the next epoch.
1615   _inter_sweep_timer.reset();
1616   _inter_sweep_timer.start();
1617 
1618   // No longer a need to do a concurrent collection for Metaspace.
1619   MetaspaceGC::set_should_concurrent_collect(false);
1620 
1621   heap->post_full_gc_dump(gc_timer);
1622 
1623   gc_timer->register_gc_end();
1624 
1625   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1626 
1627   // For a mark-sweep-compact, compute_new_size() will be called
1628   // in the heap's do_collection() method.
1629 }
1630 
1631 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1632   Log(gc, heap) log;
1633   if (!log.is_trace()) {
1634     return;
1635   }
1636 
1637   ContiguousSpace* eden_space = _young_gen->eden();
1638   ContiguousSpace* from_space = _young_gen->from();
1639   ContiguousSpace* to_space   = _young_gen->to();
1640   // Eden
1641   if (_eden_chunk_array != NULL) {
1642     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1643               p2i(eden_space->bottom()), p2i(eden_space->top()),
1644               p2i(eden_space->end()), eden_space->capacity());
1645     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1646               _eden_chunk_index, _eden_chunk_capacity);
1647     for (size_t i = 0; i < _eden_chunk_index; i++) {
1648       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1649     }
1650   }
1651   // Survivor
1652   if (_survivor_chunk_array != NULL) {
1653     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1654               p2i(from_space->bottom()), p2i(from_space->top()),
1655               p2i(from_space->end()), from_space->capacity());
1656     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1657               _survivor_chunk_index, _survivor_chunk_capacity);
1658     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1659       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1660     }
1661   }
1662 }
1663 
1664 void CMSCollector::getFreelistLocks() const {
1665   // Get locks for all free lists in all generations that this
1666   // collector is responsible for
1667   _cmsGen->freelistLock()->lock_without_safepoint_check();
1668 }
1669 
1670 void CMSCollector::releaseFreelistLocks() const {
1671   // Release locks for all free lists in all generations that this
1672   // collector is responsible for
1673   _cmsGen->freelistLock()->unlock();
1674 }
1675 
1676 bool CMSCollector::haveFreelistLocks() const {
1677   // Check locks for all free lists in all generations that this
1678   // collector is responsible for
1679   assert_lock_strong(_cmsGen->freelistLock());
1680   PRODUCT_ONLY(ShouldNotReachHere());
1681   return true;
1682 }
1683 
1684 // A utility class that is used by the CMS collector to
1685 // temporarily "release" the foreground collector from its
1686 // usual obligation to wait for the background collector to
1687 // complete an ongoing phase before proceeding.
1688 class ReleaseForegroundGC: public StackObj {
1689  private:
1690   CMSCollector* _c;
1691  public:
1692   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1693     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1694     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1695     // allow a potentially blocked foreground collector to proceed
1696     _c->_foregroundGCShouldWait = false;
1697     if (_c->_foregroundGCIsActive) {
1698       CGC_lock->notify();
1699     }
1700     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1701            "Possible deadlock");
1702   }
1703 
1704   ~ReleaseForegroundGC() {
1705     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1706     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1707     _c->_foregroundGCShouldWait = true;
1708   }
1709 };
1710 
1711 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1712   assert(Thread::current()->is_ConcurrentGC_thread(),
1713     "A CMS asynchronous collection is only allowed on a CMS thread.");
1714 
1715   CMSHeap* heap = CMSHeap::heap();
1716   {
1717     MutexLocker hl(Heap_lock, Mutex::_no_safepoint_check_flag);
1718     FreelistLocker fll(this);
1719     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1720     if (_foregroundGCIsActive) {
1721       // The foreground collector is. Skip this
1722       // background collection.
1723       assert(!_foregroundGCShouldWait, "Should be clear");
1724       return;
1725     } else {
1726       assert(_collectorState == Idling, "Should be idling before start.");
1727       _collectorState = InitialMarking;
1728       register_gc_start(cause);
1729       // Reset the expansion cause, now that we are about to begin
1730       // a new cycle.
1731       clear_expansion_cause();
1732 
1733       // Clear the MetaspaceGC flag since a concurrent collection
1734       // is starting but also clear it after the collection.
1735       MetaspaceGC::set_should_concurrent_collect(false);
1736     }
1737     // Decide if we want to enable class unloading as part of the
1738     // ensuing concurrent GC cycle.
1739     update_should_unload_classes();
1740     _full_gc_requested = false;           // acks all outstanding full gc requests
1741     _full_gc_cause = GCCause::_no_gc;
1742     // Signal that we are about to start a collection
1743     heap->increment_total_full_collections();  // ... starting a collection cycle
1744     _collection_count_start = heap->total_full_collections();
1745   }
1746 
1747   size_t prev_used = _cmsGen->used();
1748 
1749   // The change of the collection state is normally done at this level;
1750   // the exceptions are phases that are executed while the world is
1751   // stopped.  For those phases the change of state is done while the
1752   // world is stopped.  For baton passing purposes this allows the
1753   // background collector to finish the phase and change state atomically.
1754   // The foreground collector cannot wait on a phase that is done
1755   // while the world is stopped because the foreground collector already
1756   // has the world stopped and would deadlock.
1757   while (_collectorState != Idling) {
1758     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1759                          p2i(Thread::current()), _collectorState);
1760     // The foreground collector
1761     //   holds the Heap_lock throughout its collection.
1762     //   holds the CMS token (but not the lock)
1763     //     except while it is waiting for the background collector to yield.
1764     //
1765     // The foreground collector should be blocked (not for long)
1766     //   if the background collector is about to start a phase
1767     //   executed with world stopped.  If the background
1768     //   collector has already started such a phase, the
1769     //   foreground collector is blocked waiting for the
1770     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1771     //   are executed in the VM thread.
1772     //
1773     // The locking order is
1774     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1775     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1776     //   CMS token  (claimed in
1777     //                stop_world_and_do() -->
1778     //                  safepoint_synchronize() -->
1779     //                    CMSThread::synchronize())
1780 
1781     {
1782       // Check if the FG collector wants us to yield.
1783       CMSTokenSync x(true); // is cms thread
1784       if (waitForForegroundGC()) {
1785         // We yielded to a foreground GC, nothing more to be
1786         // done this round.
1787         assert(_foregroundGCShouldWait == false, "We set it to false in "
1788                "waitForForegroundGC()");
1789         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1790                              p2i(Thread::current()), _collectorState);
1791         return;
1792       } else {
1793         // The background collector can run but check to see if the
1794         // foreground collector has done a collection while the
1795         // background collector was waiting to get the CGC_lock
1796         // above.  If yes, break so that _foregroundGCShouldWait
1797         // is cleared before returning.
1798         if (_collectorState == Idling) {
1799           break;
1800         }
1801       }
1802     }
1803 
1804     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1805       "should be waiting");
1806 
1807     switch (_collectorState) {
1808       case InitialMarking:
1809         {
1810           ReleaseForegroundGC x(this);
1811           stats().record_cms_begin();
1812           VM_CMS_Initial_Mark initial_mark_op(this);
1813           VMThread::execute(&initial_mark_op);
1814         }
1815         // The collector state may be any legal state at this point
1816         // since the background collector may have yielded to the
1817         // foreground collector.
1818         break;
1819       case Marking:
1820         // initial marking in checkpointRootsInitialWork has been completed
1821         if (markFromRoots()) { // we were successful
1822           assert(_collectorState == Precleaning, "Collector state should "
1823             "have changed");
1824         } else {
1825           assert(_foregroundGCIsActive, "Internal state inconsistency");
1826         }
1827         break;
1828       case Precleaning:
1829         // marking from roots in markFromRoots has been completed
1830         preclean();
1831         assert(_collectorState == AbortablePreclean ||
1832                _collectorState == FinalMarking,
1833                "Collector state should have changed");
1834         break;
1835       case AbortablePreclean:
1836         abortable_preclean();
1837         assert(_collectorState == FinalMarking, "Collector state should "
1838           "have changed");
1839         break;
1840       case FinalMarking:
1841         {
1842           ReleaseForegroundGC x(this);
1843 
1844           VM_CMS_Final_Remark final_remark_op(this);
1845           VMThread::execute(&final_remark_op);
1846         }
1847         assert(_foregroundGCShouldWait, "block post-condition");
1848         break;
1849       case Sweeping:
1850         // final marking in checkpointRootsFinal has been completed
1851         sweep();
1852         assert(_collectorState == Resizing, "Collector state change "
1853           "to Resizing must be done under the free_list_lock");
1854 
1855       case Resizing: {
1856         // Sweeping has been completed...
1857         // At this point the background collection has completed.
1858         // Don't move the call to compute_new_size() down
1859         // into code that might be executed if the background
1860         // collection was preempted.
1861         {
1862           ReleaseForegroundGC x(this);   // unblock FG collection
1863           MutexLocker         y(Heap_lock, Mutex::_no_safepoint_check_flag);
1864           CMSTokenSync        z(true);   // not strictly needed.
1865           if (_collectorState == Resizing) {
1866             compute_new_size();
1867             save_heap_summary();
1868             _collectorState = Resetting;
1869           } else {
1870             assert(_collectorState == Idling, "The state should only change"
1871                    " because the foreground collector has finished the collection");
1872           }
1873         }
1874         break;
1875       }
1876       case Resetting:
1877         // CMS heap resizing has been completed
1878         reset_concurrent();
1879         assert(_collectorState == Idling, "Collector state should "
1880           "have changed");
1881 
1882         MetaspaceGC::set_should_concurrent_collect(false);
1883 
1884         stats().record_cms_end();
1885         // Don't move the concurrent_phases_end() and compute_new_size()
1886         // calls to here because a preempted background collection
1887         // has it's state set to "Resetting".
1888         break;
1889       case Idling:
1890       default:
1891         ShouldNotReachHere();
1892         break;
1893     }
1894     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1895                          p2i(Thread::current()), _collectorState);
1896     assert(_foregroundGCShouldWait, "block post-condition");
1897   }
1898 
1899   // Should this be in gc_epilogue?
1900   heap->counters()->update_counters();
1901 
1902   {
1903     // Clear _foregroundGCShouldWait and, in the event that the
1904     // foreground collector is waiting, notify it, before
1905     // returning.
1906     MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1907     _foregroundGCShouldWait = false;
1908     if (_foregroundGCIsActive) {
1909       CGC_lock->notify();
1910     }
1911     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1912            "Possible deadlock");
1913   }
1914   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1915                        p2i(Thread::current()), _collectorState);
1916   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1917                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1918 }
1919 
1920 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1921   _cms_start_registered = true;
1922   _gc_timer_cm->register_gc_start();
1923   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1924 }
1925 
1926 void CMSCollector::register_gc_end() {
1927   if (_cms_start_registered) {
1928     report_heap_summary(GCWhen::AfterGC);
1929 
1930     _gc_timer_cm->register_gc_end();
1931     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1932     _cms_start_registered = false;
1933   }
1934 }
1935 
1936 void CMSCollector::save_heap_summary() {
1937   CMSHeap* heap = CMSHeap::heap();
1938   _last_heap_summary = heap->create_heap_summary();
1939   _last_metaspace_summary = heap->create_metaspace_summary();
1940 }
1941 
1942 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1943   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1944   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1945 }
1946 
1947 bool CMSCollector::waitForForegroundGC() {
1948   bool res = false;
1949   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1950          "CMS thread should have CMS token");
1951   // Block the foreground collector until the
1952   // background collectors decides whether to
1953   // yield.
1954   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
1955   _foregroundGCShouldWait = true;
1956   if (_foregroundGCIsActive) {
1957     // The background collector yields to the
1958     // foreground collector and returns a value
1959     // indicating that it has yielded.  The foreground
1960     // collector can proceed.
1961     res = true;
1962     _foregroundGCShouldWait = false;
1963     ConcurrentMarkSweepThread::clear_CMS_flag(
1964       ConcurrentMarkSweepThread::CMS_cms_has_token);
1965     ConcurrentMarkSweepThread::set_CMS_flag(
1966       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1967     // Get a possibly blocked foreground thread going
1968     CGC_lock->notify();
1969     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1970                          p2i(Thread::current()), _collectorState);
1971     while (_foregroundGCIsActive) {
1972       CGC_lock->wait_without_safepoint_check();
1973     }
1974     ConcurrentMarkSweepThread::set_CMS_flag(
1975       ConcurrentMarkSweepThread::CMS_cms_has_token);
1976     ConcurrentMarkSweepThread::clear_CMS_flag(
1977       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1978   }
1979   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1980                        p2i(Thread::current()), _collectorState);
1981   return res;
1982 }
1983 
1984 // Because of the need to lock the free lists and other structures in
1985 // the collector, common to all the generations that the collector is
1986 // collecting, we need the gc_prologues of individual CMS generations
1987 // delegate to their collector. It may have been simpler had the
1988 // current infrastructure allowed one to call a prologue on a
1989 // collector. In the absence of that we have the generation's
1990 // prologue delegate to the collector, which delegates back
1991 // some "local" work to a worker method in the individual generations
1992 // that it's responsible for collecting, while itself doing any
1993 // work common to all generations it's responsible for. A similar
1994 // comment applies to the  gc_epilogue()'s.
1995 // The role of the variable _between_prologue_and_epilogue is to
1996 // enforce the invocation protocol.
1997 void CMSCollector::gc_prologue(bool full) {
1998   // Call gc_prologue_work() for the CMSGen
1999   // we are responsible for.
2000 
2001   // The following locking discipline assumes that we are only called
2002   // when the world is stopped.
2003   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2004 
2005   // The CMSCollector prologue must call the gc_prologues for the
2006   // "generations" that it's responsible
2007   // for.
2008 
2009   assert(   Thread::current()->is_VM_thread()
2010          || (   CMSScavengeBeforeRemark
2011              && Thread::current()->is_ConcurrentGC_thread()),
2012          "Incorrect thread type for prologue execution");
2013 
2014   if (_between_prologue_and_epilogue) {
2015     // We have already been invoked; this is a gc_prologue delegation
2016     // from yet another CMS generation that we are responsible for, just
2017     // ignore it since all relevant work has already been done.
2018     return;
2019   }
2020 
2021   // set a bit saying prologue has been called; cleared in epilogue
2022   _between_prologue_and_epilogue = true;
2023   // Claim locks for common data structures, then call gc_prologue_work()
2024   // for each CMSGen.
2025 
2026   getFreelistLocks();   // gets free list locks on constituent spaces
2027   bitMapLock()->lock_without_safepoint_check();
2028 
2029   // Should call gc_prologue_work() for all cms gens we are responsible for
2030   bool duringMarking =    _collectorState >= Marking
2031                          && _collectorState < Sweeping;
2032 
2033   // The young collections clear the modified oops state, which tells if
2034   // there are any modified oops in the class. The remark phase also needs
2035   // that information. Tell the young collection to save the union of all
2036   // modified klasses.
2037   if (duringMarking) {
2038     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2039   }
2040 
2041   bool registerClosure = duringMarking;
2042 
2043   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2044 
2045   if (!full) {
2046     stats().record_gc0_begin();
2047   }
2048 }
2049 
2050 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2051 
2052   _capacity_at_prologue = capacity();
2053   _used_at_prologue = used();
2054 
2055   // We enable promotion tracking so that card-scanning can recognize
2056   // which objects have been promoted during this GC and skip them.
2057   for (uint i = 0; i < ParallelGCThreads; i++) {
2058     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2059   }
2060 
2061   // Delegate to CMScollector which knows how to coordinate between
2062   // this and any other CMS generations that it is responsible for
2063   // collecting.
2064   collector()->gc_prologue(full);
2065 }
2066 
2067 // This is a "private" interface for use by this generation's CMSCollector.
2068 // Not to be called directly by any other entity (for instance,
2069 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2070 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2071   bool registerClosure, ModUnionClosure* modUnionClosure) {
2072   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2073   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2074     "Should be NULL");
2075   if (registerClosure) {
2076     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2077   }
2078   cmsSpace()->gc_prologue();
2079   // Clear stat counters
2080   NOT_PRODUCT(
2081     assert(_numObjectsPromoted == 0, "check");
2082     assert(_numWordsPromoted   == 0, "check");
2083     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2084                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2085     _numObjectsAllocated = 0;
2086     _numWordsAllocated   = 0;
2087   )
2088 }
2089 
2090 void CMSCollector::gc_epilogue(bool full) {
2091   // The following locking discipline assumes that we are only called
2092   // when the world is stopped.
2093   assert(SafepointSynchronize::is_at_safepoint(),
2094          "world is stopped assumption");
2095 
2096   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2097   // if linear allocation blocks need to be appropriately marked to allow the
2098   // the blocks to be parsable. We also check here whether we need to nudge the
2099   // CMS collector thread to start a new cycle (if it's not already active).
2100   assert(   Thread::current()->is_VM_thread()
2101          || (   CMSScavengeBeforeRemark
2102              && Thread::current()->is_ConcurrentGC_thread()),
2103          "Incorrect thread type for epilogue execution");
2104 
2105   if (!_between_prologue_and_epilogue) {
2106     // We have already been invoked; this is a gc_epilogue delegation
2107     // from yet another CMS generation that we are responsible for, just
2108     // ignore it since all relevant work has already been done.
2109     return;
2110   }
2111   assert(haveFreelistLocks(), "must have freelist locks");
2112   assert_lock_strong(bitMapLock());
2113 
2114   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2115 
2116   _cmsGen->gc_epilogue_work(full);
2117 
2118   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2119     // in case sampling was not already enabled, enable it
2120     _start_sampling = true;
2121   }
2122   // reset _eden_chunk_array so sampling starts afresh
2123   _eden_chunk_index = 0;
2124 
2125   size_t cms_used   = _cmsGen->cmsSpace()->used();
2126 
2127   // update performance counters - this uses a special version of
2128   // update_counters() that allows the utilization to be passed as a
2129   // parameter, avoiding multiple calls to used().
2130   //
2131   _cmsGen->update_counters(cms_used);
2132 
2133   bitMapLock()->unlock();
2134   releaseFreelistLocks();
2135 
2136   if (!CleanChunkPoolAsync) {
2137     Chunk::clean_chunk_pool();
2138   }
2139 
2140   set_did_compact(false);
2141   _between_prologue_and_epilogue = false;  // ready for next cycle
2142 }
2143 
2144 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2145   collector()->gc_epilogue(full);
2146 
2147   // When using ParNew, promotion tracking should have already been
2148   // disabled. However, the prologue (which enables promotion
2149   // tracking) and epilogue are called irrespective of the type of
2150   // GC. So they will also be called before and after Full GCs, during
2151   // which promotion tracking will not be explicitly disabled. So,
2152   // it's safer to also disable it here too (to be symmetric with
2153   // enabling it in the prologue).
2154   for (uint i = 0; i < ParallelGCThreads; i++) {
2155     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2156   }
2157 }
2158 
2159 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2160   assert(!incremental_collection_failed(), "Should have been cleared");
2161   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2162   cmsSpace()->gc_epilogue();
2163     // Print stat counters
2164   NOT_PRODUCT(
2165     assert(_numObjectsAllocated == 0, "check");
2166     assert(_numWordsAllocated == 0, "check");
2167     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2168                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2169     _numObjectsPromoted = 0;
2170     _numWordsPromoted   = 0;
2171   )
2172 
2173   // Call down the chain in contiguous_available needs the freelistLock
2174   // so print this out before releasing the freeListLock.
2175   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2176 }
2177 
2178 #ifndef PRODUCT
2179 bool CMSCollector::have_cms_token() {
2180   Thread* thr = Thread::current();
2181   if (thr->is_VM_thread()) {
2182     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2183   } else if (thr->is_ConcurrentGC_thread()) {
2184     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2185   } else if (thr->is_GC_task_thread()) {
2186     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2187            ParGCRareEvent_lock->owned_by_self();
2188   }
2189   return false;
2190 }
2191 
2192 // Check reachability of the given heap address in CMS generation,
2193 // treating all other generations as roots.
2194 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2195   // We could "guarantee" below, rather than assert, but I'll
2196   // leave these as "asserts" so that an adventurous debugger
2197   // could try this in the product build provided some subset of
2198   // the conditions were met, provided they were interested in the
2199   // results and knew that the computation below wouldn't interfere
2200   // with other concurrent computations mutating the structures
2201   // being read or written.
2202   assert(SafepointSynchronize::is_at_safepoint(),
2203          "Else mutations in object graph will make answer suspect");
2204   assert(have_cms_token(), "Should hold cms token");
2205   assert(haveFreelistLocks(), "must hold free list locks");
2206   assert_lock_strong(bitMapLock());
2207 
2208   // Clear the marking bit map array before starting, but, just
2209   // for kicks, first report if the given address is already marked
2210   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2211                 _markBitMap.isMarked(addr) ? "" : " not");
2212 
2213   if (verify_after_remark()) {
2214     MutexLocker x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2215     bool result = verification_mark_bm()->isMarked(addr);
2216     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2217                   result ? "IS" : "is NOT");
2218     return result;
2219   } else {
2220     tty->print_cr("Could not compute result");
2221     return false;
2222   }
2223 }
2224 #endif
2225 
2226 void
2227 CMSCollector::print_on_error(outputStream* st) {
2228   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2229   if (collector != NULL) {
2230     CMSBitMap* bitmap = &collector->_markBitMap;
2231     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2232     bitmap->print_on_error(st, " Bits: ");
2233 
2234     st->cr();
2235 
2236     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2237     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2238     mut_bitmap->print_on_error(st, " Bits: ");
2239   }
2240 }
2241 
2242 ////////////////////////////////////////////////////////
2243 // CMS Verification Support
2244 ////////////////////////////////////////////////////////
2245 // Following the remark phase, the following invariant
2246 // should hold -- each object in the CMS heap which is
2247 // marked in markBitMap() should be marked in the verification_mark_bm().
2248 
2249 class VerifyMarkedClosure: public BitMapClosure {
2250   CMSBitMap* _marks;
2251   bool       _failed;
2252 
2253  public:
2254   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2255 
2256   bool do_bit(size_t offset) {
2257     HeapWord* addr = _marks->offsetToHeapWord(offset);
2258     if (!_marks->isMarked(addr)) {
2259       Log(gc, verify) log;
2260       ResourceMark rm;
2261       LogStream ls(log.error());
2262       oop(addr)->print_on(&ls);
2263       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2264       _failed = true;
2265     }
2266     return true;
2267   }
2268 
2269   bool failed() { return _failed; }
2270 };
2271 
2272 bool CMSCollector::verify_after_remark() {
2273   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2274   MutexLocker ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2275   static bool init = false;
2276 
2277   assert(SafepointSynchronize::is_at_safepoint(),
2278          "Else mutations in object graph will make answer suspect");
2279   assert(have_cms_token(),
2280          "Else there may be mutual interference in use of "
2281          " verification data structures");
2282   assert(_collectorState > Marking && _collectorState <= Sweeping,
2283          "Else marking info checked here may be obsolete");
2284   assert(haveFreelistLocks(), "must hold free list locks");
2285   assert_lock_strong(bitMapLock());
2286 
2287 
2288   // Allocate marking bit map if not already allocated
2289   if (!init) { // first time
2290     if (!verification_mark_bm()->allocate(_span)) {
2291       return false;
2292     }
2293     init = true;
2294   }
2295 
2296   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2297 
2298   // Turn off refs discovery -- so we will be tracing through refs.
2299   // This is as intended, because by this time
2300   // GC must already have cleared any refs that need to be cleared,
2301   // and traced those that need to be marked; moreover,
2302   // the marking done here is not going to interfere in any
2303   // way with the marking information used by GC.
2304   NoRefDiscovery no_discovery(ref_processor());
2305 
2306 #if COMPILER2_OR_JVMCI
2307   DerivedPointerTableDeactivate dpt_deact;
2308 #endif
2309 
2310   // Clear any marks from a previous round
2311   verification_mark_bm()->clear_all();
2312   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2313   verify_work_stacks_empty();
2314 
2315   CMSHeap* heap = CMSHeap::heap();
2316   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2317   // Update the saved marks which may affect the root scans.
2318   heap->save_marks();
2319 
2320   if (CMSRemarkVerifyVariant == 1) {
2321     // In this first variant of verification, we complete
2322     // all marking, then check if the new marks-vector is
2323     // a subset of the CMS marks-vector.
2324     verify_after_remark_work_1();
2325   } else {
2326     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2327     // In this second variant of verification, we flag an error
2328     // (i.e. an object reachable in the new marks-vector not reachable
2329     // in the CMS marks-vector) immediately, also indicating the
2330     // identify of an object (A) that references the unmarked object (B) --
2331     // presumably, a mutation to A failed to be picked up by preclean/remark?
2332     verify_after_remark_work_2();
2333   }
2334 
2335   return true;
2336 }
2337 
2338 void CMSCollector::verify_after_remark_work_1() {
2339   ResourceMark rm;
2340   HandleMark  hm;
2341   CMSHeap* heap = CMSHeap::heap();
2342 
2343   // Get a clear set of claim bits for the roots processing to work with.
2344   ClassLoaderDataGraph::clear_claimed_marks();
2345 
2346   // Mark from roots one level into CMS
2347   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2348   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2349 
2350   {
2351     StrongRootsScope srs(1);
2352 
2353     heap->cms_process_roots(&srs,
2354                            true,   // young gen as roots
2355                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2356                            should_unload_classes(),
2357                            &notOlder,
2358                            NULL);
2359   }
2360 
2361   // Now mark from the roots
2362   MarkFromRootsClosure markFromRootsClosure(this, _span,
2363     verification_mark_bm(), verification_mark_stack(),
2364     false /* don't yield */, true /* verifying */);
2365   assert(_restart_addr == NULL, "Expected pre-condition");
2366   verification_mark_bm()->iterate(&markFromRootsClosure);
2367   while (_restart_addr != NULL) {
2368     // Deal with stack overflow: by restarting at the indicated
2369     // address.
2370     HeapWord* ra = _restart_addr;
2371     markFromRootsClosure.reset(ra);
2372     _restart_addr = NULL;
2373     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2374   }
2375   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2376   verify_work_stacks_empty();
2377 
2378   // Marking completed -- now verify that each bit marked in
2379   // verification_mark_bm() is also marked in markBitMap(); flag all
2380   // errors by printing corresponding objects.
2381   VerifyMarkedClosure vcl(markBitMap());
2382   verification_mark_bm()->iterate(&vcl);
2383   if (vcl.failed()) {
2384     Log(gc, verify) log;
2385     log.error("Failed marking verification after remark");
2386     ResourceMark rm;
2387     LogStream ls(log.error());
2388     heap->print_on(&ls);
2389     fatal("CMS: failed marking verification after remark");
2390   }
2391 }
2392 
2393 class VerifyCLDOopsCLDClosure : public CLDClosure {
2394   class VerifyCLDOopsClosure : public OopClosure {
2395     CMSBitMap* _bitmap;
2396    public:
2397     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2398     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2399     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2400   } _oop_closure;
2401  public:
2402   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2403   void do_cld(ClassLoaderData* cld) {
2404     cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, false);
2405   }
2406 };
2407 
2408 void CMSCollector::verify_after_remark_work_2() {
2409   ResourceMark rm;
2410   HandleMark  hm;
2411   CMSHeap* heap = CMSHeap::heap();
2412 
2413   // Get a clear set of claim bits for the roots processing to work with.
2414   ClassLoaderDataGraph::clear_claimed_marks();
2415 
2416   // Mark from roots one level into CMS
2417   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2418                                      markBitMap());
2419   CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
2420 
2421   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2422 
2423   {
2424     StrongRootsScope srs(1);
2425 
2426     heap->cms_process_roots(&srs,
2427                            true,   // young gen as roots
2428                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2429                            should_unload_classes(),
2430                            &notOlder,
2431                            &cld_closure);
2432   }
2433 
2434   // Now mark from the roots
2435   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2436     verification_mark_bm(), markBitMap(), verification_mark_stack());
2437   assert(_restart_addr == NULL, "Expected pre-condition");
2438   verification_mark_bm()->iterate(&markFromRootsClosure);
2439   while (_restart_addr != NULL) {
2440     // Deal with stack overflow: by restarting at the indicated
2441     // address.
2442     HeapWord* ra = _restart_addr;
2443     markFromRootsClosure.reset(ra);
2444     _restart_addr = NULL;
2445     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2446   }
2447   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2448   verify_work_stacks_empty();
2449 
2450   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2451   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2452 
2453   // Marking completed -- now verify that each bit marked in
2454   // verification_mark_bm() is also marked in markBitMap(); flag all
2455   // errors by printing corresponding objects.
2456   VerifyMarkedClosure vcl(markBitMap());
2457   verification_mark_bm()->iterate(&vcl);
2458   assert(!vcl.failed(), "Else verification above should not have succeeded");
2459 }
2460 
2461 void ConcurrentMarkSweepGeneration::save_marks() {
2462   // delegate to CMS space
2463   cmsSpace()->save_marks();
2464 }
2465 
2466 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2467   return cmsSpace()->no_allocs_since_save_marks();
2468 }
2469 
2470 void
2471 ConcurrentMarkSweepGeneration::oop_iterate(OopIterateClosure* cl) {
2472   if (freelistLock()->owned_by_self()) {
2473     Generation::oop_iterate(cl);
2474   } else {
2475     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2476     Generation::oop_iterate(cl);
2477   }
2478 }
2479 
2480 void
2481 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2482   if (freelistLock()->owned_by_self()) {
2483     Generation::object_iterate(cl);
2484   } else {
2485     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2486     Generation::object_iterate(cl);
2487   }
2488 }
2489 
2490 void
2491 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2492   if (freelistLock()->owned_by_self()) {
2493     Generation::safe_object_iterate(cl);
2494   } else {
2495     MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2496     Generation::safe_object_iterate(cl);
2497   }
2498 }
2499 
2500 void
2501 ConcurrentMarkSweepGeneration::post_compact() {
2502 }
2503 
2504 void
2505 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2506   // Fix the linear allocation blocks to look like free blocks.
2507 
2508   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2509   // are not called when the heap is verified during universe initialization and
2510   // at vm shutdown.
2511   if (freelistLock()->owned_by_self()) {
2512     cmsSpace()->prepare_for_verify();
2513   } else {
2514     MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2515     cmsSpace()->prepare_for_verify();
2516   }
2517 }
2518 
2519 void
2520 ConcurrentMarkSweepGeneration::verify() {
2521   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2522   // are not called when the heap is verified during universe initialization and
2523   // at vm shutdown.
2524   if (freelistLock()->owned_by_self()) {
2525     cmsSpace()->verify();
2526   } else {
2527     MutexLocker fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2528     cmsSpace()->verify();
2529   }
2530 }
2531 
2532 void CMSCollector::verify() {
2533   _cmsGen->verify();
2534 }
2535 
2536 #ifndef PRODUCT
2537 bool CMSCollector::overflow_list_is_empty() const {
2538   assert(_num_par_pushes >= 0, "Inconsistency");
2539   if (_overflow_list == NULL) {
2540     assert(_num_par_pushes == 0, "Inconsistency");
2541   }
2542   return _overflow_list == NULL;
2543 }
2544 
2545 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2546 // merely consolidate assertion checks that appear to occur together frequently.
2547 void CMSCollector::verify_work_stacks_empty() const {
2548   assert(_markStack.isEmpty(), "Marking stack should be empty");
2549   assert(overflow_list_is_empty(), "Overflow list should be empty");
2550 }
2551 
2552 void CMSCollector::verify_overflow_empty() const {
2553   assert(overflow_list_is_empty(), "Overflow list should be empty");
2554   assert(no_preserved_marks(), "No preserved marks");
2555 }
2556 #endif // PRODUCT
2557 
2558 // Decide if we want to enable class unloading as part of the
2559 // ensuing concurrent GC cycle. We will collect and
2560 // unload classes if it's the case that:
2561 //  (a) class unloading is enabled at the command line, and
2562 //  (b) old gen is getting really full
2563 // NOTE: Provided there is no change in the state of the heap between
2564 // calls to this method, it should have idempotent results. Moreover,
2565 // its results should be monotonically increasing (i.e. going from 0 to 1,
2566 // but not 1 to 0) between successive calls between which the heap was
2567 // not collected. For the implementation below, it must thus rely on
2568 // the property that concurrent_cycles_since_last_unload()
2569 // will not decrease unless a collection cycle happened and that
2570 // _cmsGen->is_too_full() are
2571 // themselves also monotonic in that sense. See check_monotonicity()
2572 // below.
2573 void CMSCollector::update_should_unload_classes() {
2574   _should_unload_classes = false;
2575   if (CMSClassUnloadingEnabled) {
2576     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2577                               CMSClassUnloadingMaxInterval)
2578                            || _cmsGen->is_too_full();
2579   }
2580 }
2581 
2582 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2583   bool res = should_concurrent_collect();
2584   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2585   return res;
2586 }
2587 
2588 void CMSCollector::setup_cms_unloading_and_verification_state() {
2589   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2590                              || VerifyBeforeExit;
2591   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2592 
2593   // We set the proper root for this CMS cycle here.
2594   if (should_unload_classes()) {   // Should unload classes this cycle
2595     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2596     set_verifying(should_verify);    // Set verification state for this cycle
2597     return;                            // Nothing else needs to be done at this time
2598   }
2599 
2600   // Not unloading classes this cycle
2601   assert(!should_unload_classes(), "Inconsistency!");
2602 
2603   // If we are not unloading classes then add SO_AllCodeCache to root
2604   // scanning options.
2605   add_root_scanning_option(rso);
2606 
2607   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2608     set_verifying(true);
2609   } else if (verifying() && !should_verify) {
2610     // We were verifying, but some verification flags got disabled.
2611     set_verifying(false);
2612     // Exclude symbols, strings and code cache elements from root scanning to
2613     // reduce IM and RM pauses.
2614     remove_root_scanning_option(rso);
2615   }
2616 }
2617 
2618 
2619 #ifndef PRODUCT
2620 HeapWord* CMSCollector::block_start(const void* p) const {
2621   const HeapWord* addr = (HeapWord*)p;
2622   if (_span.contains(p)) {
2623     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2624       return _cmsGen->cmsSpace()->block_start(p);
2625     }
2626   }
2627   return NULL;
2628 }
2629 #endif
2630 
2631 HeapWord*
2632 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2633                                                    bool   tlab,
2634                                                    bool   parallel) {
2635   CMSSynchronousYieldRequest yr;
2636   assert(!tlab, "Can't deal with TLAB allocation");
2637   MutexLocker x(freelistLock(), Mutex::_no_safepoint_check_flag);
2638   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2639   if (GCExpandToAllocateDelayMillis > 0) {
2640     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2641   }
2642   return have_lock_and_allocate(word_size, tlab);
2643 }
2644 
2645 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2646     size_t bytes,
2647     size_t expand_bytes,
2648     CMSExpansionCause::Cause cause)
2649 {
2650 
2651   bool success = expand(bytes, expand_bytes);
2652 
2653   // remember why we expanded; this information is used
2654   // by shouldConcurrentCollect() when making decisions on whether to start
2655   // a new CMS cycle.
2656   if (success) {
2657     set_expansion_cause(cause);
2658     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2659   }
2660 }
2661 
2662 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2663   HeapWord* res = NULL;
2664   MutexLocker x(ParGCRareEvent_lock);
2665   while (true) {
2666     // Expansion by some other thread might make alloc OK now:
2667     res = ps->lab.alloc(word_sz);
2668     if (res != NULL) return res;
2669     // If there's not enough expansion space available, give up.
2670     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2671       return NULL;
2672     }
2673     // Otherwise, we try expansion.
2674     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2675     // Now go around the loop and try alloc again;
2676     // A competing par_promote might beat us to the expansion space,
2677     // so we may go around the loop again if promotion fails again.
2678     if (GCExpandToAllocateDelayMillis > 0) {
2679       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2680     }
2681   }
2682 }
2683 
2684 
2685 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2686   PromotionInfo* promo) {
2687   MutexLocker x(ParGCRareEvent_lock);
2688   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2689   while (true) {
2690     // Expansion by some other thread might make alloc OK now:
2691     if (promo->ensure_spooling_space()) {
2692       assert(promo->has_spooling_space(),
2693              "Post-condition of successful ensure_spooling_space()");
2694       return true;
2695     }
2696     // If there's not enough expansion space available, give up.
2697     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2698       return false;
2699     }
2700     // Otherwise, we try expansion.
2701     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2702     // Now go around the loop and try alloc again;
2703     // A competing allocation might beat us to the expansion space,
2704     // so we may go around the loop again if allocation fails again.
2705     if (GCExpandToAllocateDelayMillis > 0) {
2706       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2707     }
2708   }
2709 }
2710 
2711 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2712   // Only shrink if a compaction was done so that all the free space
2713   // in the generation is in a contiguous block at the end.
2714   if (did_compact()) {
2715     CardGeneration::shrink(bytes);
2716   }
2717 }
2718 
2719 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2720   assert_locked_or_safepoint(Heap_lock);
2721 }
2722 
2723 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2724   assert_locked_or_safepoint(Heap_lock);
2725   assert_lock_strong(freelistLock());
2726   log_trace(gc)("Shrinking of CMS not yet implemented");
2727   return;
2728 }
2729 
2730 
2731 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2732 // phases.
2733 class CMSPhaseAccounting: public StackObj {
2734  public:
2735   CMSPhaseAccounting(CMSCollector *collector,
2736                      const char *title);
2737   ~CMSPhaseAccounting();
2738 
2739  private:
2740   CMSCollector *_collector;
2741   const char *_title;
2742   GCTraceConcTime(Info, gc) _trace_time;
2743 
2744  public:
2745   // Not MT-safe; so do not pass around these StackObj's
2746   // where they may be accessed by other threads.
2747   double wallclock_millis() {
2748     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2749   }
2750 };
2751 
2752 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2753                                        const char *title) :
2754   _collector(collector), _title(title), _trace_time(title) {
2755 
2756   _collector->resetYields();
2757   _collector->resetTimer();
2758   _collector->startTimer();
2759   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2760 }
2761 
2762 CMSPhaseAccounting::~CMSPhaseAccounting() {
2763   _collector->gc_timer_cm()->register_gc_concurrent_end();
2764   _collector->stopTimer();
2765   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_millis(_collector->timerTicks()));
2766   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2767 }
2768 
2769 // CMS work
2770 
2771 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2772 class CMSParMarkTask : public AbstractGangTask {
2773  protected:
2774   CMSCollector*     _collector;
2775   uint              _n_workers;
2776   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2777       AbstractGangTask(name),
2778       _collector(collector),
2779       _n_workers(n_workers) {}
2780   // Work method in support of parallel rescan ... of young gen spaces
2781   void do_young_space_rescan(OopsInGenClosure* cl,
2782                              ContiguousSpace* space,
2783                              HeapWord** chunk_array, size_t chunk_top);
2784   void work_on_young_gen_roots(OopsInGenClosure* cl);
2785 };
2786 
2787 // Parallel initial mark task
2788 class CMSParInitialMarkTask: public CMSParMarkTask {
2789   StrongRootsScope* _strong_roots_scope;
2790  public:
2791   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2792       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2793       _strong_roots_scope(strong_roots_scope) {}
2794   void work(uint worker_id);
2795 };
2796 
2797 // Checkpoint the roots into this generation from outside
2798 // this generation. [Note this initial checkpoint need only
2799 // be approximate -- we'll do a catch up phase subsequently.]
2800 void CMSCollector::checkpointRootsInitial() {
2801   assert(_collectorState == InitialMarking, "Wrong collector state");
2802   check_correct_thread_executing();
2803   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2804 
2805   save_heap_summary();
2806   report_heap_summary(GCWhen::BeforeGC);
2807 
2808   ReferenceProcessor* rp = ref_processor();
2809   assert(_restart_addr == NULL, "Control point invariant");
2810   {
2811     // acquire locks for subsequent manipulations
2812     MutexLocker x(bitMapLock(),
2813                   Mutex::_no_safepoint_check_flag);
2814     checkpointRootsInitialWork();
2815     // enable ("weak") refs discovery
2816     rp->enable_discovery();
2817     _collectorState = Marking;
2818   }
2819 }
2820 
2821 void CMSCollector::checkpointRootsInitialWork() {
2822   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2823   assert(_collectorState == InitialMarking, "just checking");
2824 
2825   // Already have locks.
2826   assert_lock_strong(bitMapLock());
2827   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2828 
2829   // Setup the verification and class unloading state for this
2830   // CMS collection cycle.
2831   setup_cms_unloading_and_verification_state();
2832 
2833   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2834 
2835   // Reset all the PLAB chunk arrays if necessary.
2836   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2837     reset_survivor_plab_arrays();
2838   }
2839 
2840   ResourceMark rm;
2841   HandleMark  hm;
2842 
2843   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2844   CMSHeap* heap = CMSHeap::heap();
2845 
2846   verify_work_stacks_empty();
2847   verify_overflow_empty();
2848 
2849   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2850   // Update the saved marks which may affect the root scans.
2851   heap->save_marks();
2852 
2853   // weak reference processing has not started yet.
2854   ref_processor()->set_enqueuing_is_done(false);
2855 
2856   // Need to remember all newly created CLDs,
2857   // so that we can guarantee that the remark finds them.
2858   ClassLoaderDataGraph::remember_new_clds(true);
2859 
2860   // Whenever a CLD is found, it will be claimed before proceeding to mark
2861   // the klasses. The claimed marks need to be cleared before marking starts.
2862   ClassLoaderDataGraph::clear_claimed_marks();
2863 
2864   print_eden_and_survivor_chunk_arrays();
2865 
2866   {
2867 #if COMPILER2_OR_JVMCI
2868     DerivedPointerTableDeactivate dpt_deact;
2869 #endif
2870     if (CMSParallelInitialMarkEnabled) {
2871       // The parallel version.
2872       WorkGang* workers = heap->workers();
2873       assert(workers != NULL, "Need parallel worker threads.");
2874       uint n_workers = workers->active_workers();
2875 
2876       StrongRootsScope srs(n_workers);
2877 
2878       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2879       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2880       // If the total workers is greater than 1, then multiple workers
2881       // may be used at some time and the initialization has been set
2882       // such that the single threaded path cannot be used.
2883       if (workers->total_workers() > 1) {
2884         workers->run_task(&tsk);
2885       } else {
2886         tsk.work(0);
2887       }
2888     } else {
2889       // The serial version.
2890       CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
2891       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2892 
2893       StrongRootsScope srs(1);
2894 
2895       heap->cms_process_roots(&srs,
2896                              true,   // young gen as roots
2897                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2898                              should_unload_classes(),
2899                              &notOlder,
2900                              &cld_closure);
2901     }
2902   }
2903 
2904   // Clear mod-union table; it will be dirtied in the prologue of
2905   // CMS generation per each young generation collection.
2906 
2907   assert(_modUnionTable.isAllClear(),
2908        "Was cleared in most recent final checkpoint phase"
2909        " or no bits are set in the gc_prologue before the start of the next "
2910        "subsequent marking phase.");
2911 
2912   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2913 
2914   // Save the end of the used_region of the constituent generations
2915   // to be used to limit the extent of sweep in each generation.
2916   save_sweep_limits();
2917   verify_overflow_empty();
2918 }
2919 
2920 bool CMSCollector::markFromRoots() {
2921   // we might be tempted to assert that:
2922   // assert(!SafepointSynchronize::is_at_safepoint(),
2923   //        "inconsistent argument?");
2924   // However that wouldn't be right, because it's possible that
2925   // a safepoint is indeed in progress as a young generation
2926   // stop-the-world GC happens even as we mark in this generation.
2927   assert(_collectorState == Marking, "inconsistent state?");
2928   check_correct_thread_executing();
2929   verify_overflow_empty();
2930 
2931   // Weak ref discovery note: We may be discovering weak
2932   // refs in this generation concurrent (but interleaved) with
2933   // weak ref discovery by the young generation collector.
2934 
2935   CMSTokenSyncWithLocks ts(true, bitMapLock());
2936   GCTraceCPUTime tcpu;
2937   CMSPhaseAccounting pa(this, "Concurrent Mark");
2938   bool res = markFromRootsWork();
2939   if (res) {
2940     _collectorState = Precleaning;
2941   } else { // We failed and a foreground collection wants to take over
2942     assert(_foregroundGCIsActive, "internal state inconsistency");
2943     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2944     log_debug(gc)("bailing out to foreground collection");
2945   }
2946   verify_overflow_empty();
2947   return res;
2948 }
2949 
2950 bool CMSCollector::markFromRootsWork() {
2951   // iterate over marked bits in bit map, doing a full scan and mark
2952   // from these roots using the following algorithm:
2953   // . if oop is to the right of the current scan pointer,
2954   //   mark corresponding bit (we'll process it later)
2955   // . else (oop is to left of current scan pointer)
2956   //   push oop on marking stack
2957   // . drain the marking stack
2958 
2959   // Note that when we do a marking step we need to hold the
2960   // bit map lock -- recall that direct allocation (by mutators)
2961   // and promotion (by the young generation collector) is also
2962   // marking the bit map. [the so-called allocate live policy.]
2963   // Because the implementation of bit map marking is not
2964   // robust wrt simultaneous marking of bits in the same word,
2965   // we need to make sure that there is no such interference
2966   // between concurrent such updates.
2967 
2968   // already have locks
2969   assert_lock_strong(bitMapLock());
2970 
2971   verify_work_stacks_empty();
2972   verify_overflow_empty();
2973   bool result = false;
2974   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2975     result = do_marking_mt();
2976   } else {
2977     result = do_marking_st();
2978   }
2979   return result;
2980 }
2981 
2982 // Forward decl
2983 class CMSConcMarkingTask;
2984 
2985 class CMSConcMarkingParallelTerminator: public ParallelTaskTerminator {
2986   CMSCollector*       _collector;
2987   CMSConcMarkingTask* _task;
2988  public:
2989   virtual void yield();
2990 
2991   // "n_threads" is the number of threads to be terminated.
2992   // "queue_set" is a set of work queues of other threads.
2993   // "collector" is the CMS collector associated with this task terminator.
2994   // "yield" indicates whether we need the gang as a whole to yield.
2995   CMSConcMarkingParallelTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2996     ParallelTaskTerminator(n_threads, queue_set),
2997     _collector(collector) { }
2998 
2999   void set_task(CMSConcMarkingTask* task) {
3000     _task = task;
3001   }
3002 };
3003 
3004 class CMSConcMarkingOWSTTerminator: public OWSTTaskTerminator {
3005   CMSCollector*       _collector;
3006   CMSConcMarkingTask* _task;
3007  public:
3008   virtual void yield();
3009 
3010   // "n_threads" is the number of threads to be terminated.
3011   // "queue_set" is a set of work queues of other threads.
3012   // "collector" is the CMS collector associated with this task terminator.
3013   // "yield" indicates whether we need the gang as a whole to yield.
3014   CMSConcMarkingOWSTTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3015     OWSTTaskTerminator(n_threads, queue_set),
3016     _collector(collector) { }
3017 
3018   void set_task(CMSConcMarkingTask* task) {
3019     _task = task;
3020   }
3021 };
3022 
3023 class CMSConcMarkingTaskTerminator {
3024  private:
3025   ParallelTaskTerminator* _term;
3026  public:
3027   CMSConcMarkingTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) {
3028     if (UseOWSTTaskTerminator) {
3029       _term = new CMSConcMarkingOWSTTerminator(n_threads, queue_set, collector);
3030     } else {
3031       _term = new CMSConcMarkingParallelTerminator(n_threads, queue_set, collector);
3032     }
3033   }
3034   ~CMSConcMarkingTaskTerminator() {
3035     assert(_term != NULL, "Must not be NULL");
3036     delete _term;
3037   }
3038 
3039   void set_task(CMSConcMarkingTask* task);
3040   ParallelTaskTerminator* terminator() const { return _term; }
3041 };
3042 
3043 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3044   CMSConcMarkingTask* _task;
3045  public:
3046   bool should_exit_termination();
3047   void set_task(CMSConcMarkingTask* task) {
3048     _task = task;
3049   }
3050 };
3051 
3052 // MT Concurrent Marking Task
3053 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3054   CMSCollector*             _collector;
3055   uint                      _n_workers;      // requested/desired # workers
3056   bool                      _result;
3057   CompactibleFreeListSpace* _cms_space;
3058   char                      _pad_front[64];   // padding to ...
3059   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3060   char                      _pad_back[64];
3061   HeapWord*                 _restart_addr;
3062 
3063   //  Exposed here for yielding support
3064   Mutex* const _bit_map_lock;
3065 
3066   // The per thread work queues, available here for stealing
3067   OopTaskQueueSet*  _task_queues;
3068 
3069   // Termination (and yielding) support
3070   CMSConcMarkingTaskTerminator       _term;
3071   CMSConcMarkingTerminatorTerminator _term_term;
3072 
3073  public:
3074   CMSConcMarkingTask(CMSCollector* collector,
3075                  CompactibleFreeListSpace* cms_space,
3076                  YieldingFlexibleWorkGang* workers,
3077                  OopTaskQueueSet* task_queues):
3078     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3079     _collector(collector),
3080     _n_workers(0),
3081     _result(true),
3082     _cms_space(cms_space),
3083     _bit_map_lock(collector->bitMapLock()),
3084     _task_queues(task_queues),
3085     _term(_n_workers, task_queues, _collector)
3086   {
3087     _requested_size = _n_workers;
3088     _term.set_task(this);
3089     _term_term.set_task(this);
3090     _restart_addr = _global_finger = _cms_space->bottom();
3091   }
3092 
3093 
3094   OopTaskQueueSet* task_queues()  { return _task_queues; }
3095 
3096   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3097 
3098   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3099 
3100   ParallelTaskTerminator* terminator() { return _term.terminator(); }
3101 
3102   virtual void set_for_termination(uint active_workers) {
3103     terminator()->reset_for_reuse(active_workers);
3104   }
3105 
3106   void work(uint worker_id);
3107   bool should_yield() {
3108     return    ConcurrentMarkSweepThread::should_yield()
3109            && !_collector->foregroundGCIsActive();
3110   }
3111 
3112   virtual void coordinator_yield();  // stuff done by coordinator
3113   bool result() { return _result; }
3114 
3115   void reset(HeapWord* ra) {
3116     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3117     _restart_addr = _global_finger = ra;
3118     _term.terminator()->reset_for_reuse();
3119   }
3120 
3121   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3122                                            OopTaskQueue* work_q);
3123 
3124  private:
3125   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3126   void do_work_steal(int i);
3127   void bump_global_finger(HeapWord* f);
3128 };
3129 
3130 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3131   assert(_task != NULL, "Error");
3132   return _task->yielding();
3133   // Note that we do not need the disjunct || _task->should_yield() above
3134   // because we want terminating threads to yield only if the task
3135   // is already in the midst of yielding, which happens only after at least one
3136   // thread has yielded.
3137 }
3138 
3139 void CMSConcMarkingParallelTerminator::yield() {
3140   if (_task->should_yield()) {
3141     _task->yield();
3142   } else {
3143     ParallelTaskTerminator::yield();
3144   }
3145 }
3146 
3147 void CMSConcMarkingOWSTTerminator::yield() {
3148   if (_task->should_yield()) {
3149     _task->yield();
3150   } else {
3151     OWSTTaskTerminator::yield();
3152   }
3153 }
3154 
3155 void CMSConcMarkingTaskTerminator::set_task(CMSConcMarkingTask* task) {
3156   if (UseOWSTTaskTerminator) {
3157     ((CMSConcMarkingOWSTTerminator*)_term)->set_task(task);
3158   } else {
3159     ((CMSConcMarkingParallelTerminator*)_term)->set_task(task);
3160   }
3161 }
3162 
3163 ////////////////////////////////////////////////////////////////
3164 // Concurrent Marking Algorithm Sketch
3165 ////////////////////////////////////////////////////////////////
3166 // Until all tasks exhausted (both spaces):
3167 // -- claim next available chunk
3168 // -- bump global finger via CAS
3169 // -- find first object that starts in this chunk
3170 //    and start scanning bitmap from that position
3171 // -- scan marked objects for oops
3172 // -- CAS-mark target, and if successful:
3173 //    . if target oop is above global finger (volatile read)
3174 //      nothing to do
3175 //    . if target oop is in chunk and above local finger
3176 //        then nothing to do
3177 //    . else push on work-queue
3178 // -- Deal with possible overflow issues:
3179 //    . local work-queue overflow causes stuff to be pushed on
3180 //      global (common) overflow queue
3181 //    . always first empty local work queue
3182 //    . then get a batch of oops from global work queue if any
3183 //    . then do work stealing
3184 // -- When all tasks claimed (both spaces)
3185 //    and local work queue empty,
3186 //    then in a loop do:
3187 //    . check global overflow stack; steal a batch of oops and trace
3188 //    . try to steal from other threads oif GOS is empty
3189 //    . if neither is available, offer termination
3190 // -- Terminate and return result
3191 //
3192 void CMSConcMarkingTask::work(uint worker_id) {
3193   elapsedTimer _timer;
3194   ResourceMark rm;
3195   HandleMark hm;
3196 
3197   DEBUG_ONLY(_collector->verify_overflow_empty();)
3198 
3199   // Before we begin work, our work queue should be empty
3200   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3201   // Scan the bitmap covering _cms_space, tracing through grey objects.
3202   _timer.start();
3203   do_scan_and_mark(worker_id, _cms_space);
3204   _timer.stop();
3205   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3206 
3207   // ... do work stealing
3208   _timer.reset();
3209   _timer.start();
3210   do_work_steal(worker_id);
3211   _timer.stop();
3212   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3213   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3214   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3215   // Note that under the current task protocol, the
3216   // following assertion is true even of the spaces
3217   // expanded since the completion of the concurrent
3218   // marking. XXX This will likely change under a strict
3219   // ABORT semantics.
3220   // After perm removal the comparison was changed to
3221   // greater than or equal to from strictly greater than.
3222   // Before perm removal the highest address sweep would
3223   // have been at the end of perm gen but now is at the
3224   // end of the tenured gen.
3225   assert(_global_finger >=  _cms_space->end(),
3226          "All tasks have been completed");
3227   DEBUG_ONLY(_collector->verify_overflow_empty();)
3228 }
3229 
3230 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3231   HeapWord* read = _global_finger;
3232   HeapWord* cur  = read;
3233   while (f > read) {
3234     cur = read;
3235     read = Atomic::cmpxchg(f, &_global_finger, cur);
3236     if (cur == read) {
3237       // our cas succeeded
3238       assert(_global_finger >= f, "protocol consistency");
3239       break;
3240     }
3241   }
3242 }
3243 
3244 // This is really inefficient, and should be redone by
3245 // using (not yet available) block-read and -write interfaces to the
3246 // stack and the work_queue. XXX FIX ME !!!
3247 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3248                                                       OopTaskQueue* work_q) {
3249   // Fast lock-free check
3250   if (ovflw_stk->length() == 0) {
3251     return false;
3252   }
3253   assert(work_q->size() == 0, "Shouldn't steal");
3254   MutexLocker ml(ovflw_stk->par_lock(),
3255                  Mutex::_no_safepoint_check_flag);
3256   // Grab up to 1/4 the size of the work queue
3257   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3258                     (size_t)ParGCDesiredObjsFromOverflowList);
3259   num = MIN2(num, ovflw_stk->length());
3260   for (int i = (int) num; i > 0; i--) {
3261     oop cur = ovflw_stk->pop();
3262     assert(cur != NULL, "Counted wrong?");
3263     work_q->push(cur);
3264   }
3265   return num > 0;
3266 }
3267 
3268 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3269   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3270   int n_tasks = pst->n_tasks();
3271   // We allow that there may be no tasks to do here because
3272   // we are restarting after a stack overflow.
3273   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3274   uint nth_task = 0;
3275 
3276   HeapWord* aligned_start = sp->bottom();
3277   if (sp->used_region().contains(_restart_addr)) {
3278     // Align down to a card boundary for the start of 0th task
3279     // for this space.
3280     aligned_start = align_down(_restart_addr, CardTable::card_size);
3281   }
3282 
3283   size_t chunk_size = sp->marking_task_size();
3284   while (pst->try_claim_task(/* reference */ nth_task)) {
3285     // Having claimed the nth task in this space,
3286     // compute the chunk that it corresponds to:
3287     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3288                                aligned_start + (nth_task+1)*chunk_size);
3289     // Try and bump the global finger via a CAS;
3290     // note that we need to do the global finger bump
3291     // _before_ taking the intersection below, because
3292     // the task corresponding to that region will be
3293     // deemed done even if the used_region() expands
3294     // because of allocation -- as it almost certainly will
3295     // during start-up while the threads yield in the
3296     // closure below.
3297     HeapWord* finger = span.end();
3298     bump_global_finger(finger);   // atomically
3299     // There are null tasks here corresponding to chunks
3300     // beyond the "top" address of the space.
3301     span = span.intersection(sp->used_region());
3302     if (!span.is_empty()) {  // Non-null task
3303       HeapWord* prev_obj;
3304       assert(!span.contains(_restart_addr) || nth_task == 0,
3305              "Inconsistency");
3306       if (nth_task == 0) {
3307         // For the 0th task, we'll not need to compute a block_start.
3308         if (span.contains(_restart_addr)) {
3309           // In the case of a restart because of stack overflow,
3310           // we might additionally skip a chunk prefix.
3311           prev_obj = _restart_addr;
3312         } else {
3313           prev_obj = span.start();
3314         }
3315       } else {
3316         // We want to skip the first object because
3317         // the protocol is to scan any object in its entirety
3318         // that _starts_ in this span; a fortiori, any
3319         // object starting in an earlier span is scanned
3320         // as part of an earlier claimed task.
3321         // Below we use the "careful" version of block_start
3322         // so we do not try to navigate uninitialized objects.
3323         prev_obj = sp->block_start_careful(span.start());
3324         // Below we use a variant of block_size that uses the
3325         // Printezis bits to avoid waiting for allocated
3326         // objects to become initialized/parsable.
3327         while (prev_obj < span.start()) {
3328           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3329           if (sz > 0) {
3330             prev_obj += sz;
3331           } else {
3332             // In this case we may end up doing a bit of redundant
3333             // scanning, but that appears unavoidable, short of
3334             // locking the free list locks; see bug 6324141.
3335             break;
3336           }
3337         }
3338       }
3339       if (prev_obj < span.end()) {
3340         MemRegion my_span = MemRegion(prev_obj, span.end());
3341         // Do the marking work within a non-empty span --
3342         // the last argument to the constructor indicates whether the
3343         // iteration should be incremental with periodic yields.
3344         ParMarkFromRootsClosure cl(this, _collector, my_span,
3345                                    &_collector->_markBitMap,
3346                                    work_queue(i),
3347                                    &_collector->_markStack);
3348         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3349       } // else nothing to do for this task
3350     }   // else nothing to do for this task
3351   }
3352   // We'd be tempted to assert here that since there are no
3353   // more tasks left to claim in this space, the global_finger
3354   // must exceed space->top() and a fortiori space->end(). However,
3355   // that would not quite be correct because the bumping of
3356   // global_finger occurs strictly after the claiming of a task,
3357   // so by the time we reach here the global finger may not yet
3358   // have been bumped up by the thread that claimed the last
3359   // task.
3360   pst->all_tasks_completed();
3361 }
3362 
3363 class ParConcMarkingClosure: public MetadataVisitingOopIterateClosure {
3364  private:
3365   CMSCollector* _collector;
3366   CMSConcMarkingTask* _task;
3367   MemRegion     _span;
3368   CMSBitMap*    _bit_map;
3369   CMSMarkStack* _overflow_stack;
3370   OopTaskQueue* _work_queue;
3371  protected:
3372   DO_OOP_WORK_DEFN
3373  public:
3374   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3375                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3376     MetadataVisitingOopIterateClosure(collector->ref_processor()),
3377     _collector(collector),
3378     _task(task),
3379     _span(collector->_span),
3380     _bit_map(bit_map),
3381     _overflow_stack(overflow_stack),
3382     _work_queue(work_queue)
3383   { }
3384   virtual void do_oop(oop* p);
3385   virtual void do_oop(narrowOop* p);
3386 
3387   void trim_queue(size_t max);
3388   void handle_stack_overflow(HeapWord* lost);
3389   void do_yield_check() {
3390     if (_task->should_yield()) {
3391       _task->yield();
3392     }
3393   }
3394 };
3395 
3396 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3397 
3398 // Grey object scanning during work stealing phase --
3399 // the salient assumption here is that any references
3400 // that are in these stolen objects being scanned must
3401 // already have been initialized (else they would not have
3402 // been published), so we do not need to check for
3403 // uninitialized objects before pushing here.
3404 void ParConcMarkingClosure::do_oop(oop obj) {
3405   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3406   HeapWord* addr = (HeapWord*)obj;
3407   // Check if oop points into the CMS generation
3408   // and is not marked
3409   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3410     // a white object ...
3411     // If we manage to "claim" the object, by being the
3412     // first thread to mark it, then we push it on our
3413     // marking stack
3414     if (_bit_map->par_mark(addr)) {     // ... now grey
3415       // push on work queue (grey set)
3416       bool simulate_overflow = false;
3417       NOT_PRODUCT(
3418         if (CMSMarkStackOverflowALot &&
3419             _collector->simulate_overflow()) {
3420           // simulate a stack overflow
3421           simulate_overflow = true;
3422         }
3423       )
3424       if (simulate_overflow ||
3425           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3426         // stack overflow
3427         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3428         // We cannot assert that the overflow stack is full because
3429         // it may have been emptied since.
3430         assert(simulate_overflow ||
3431                _work_queue->size() == _work_queue->max_elems(),
3432               "Else push should have succeeded");
3433         handle_stack_overflow(addr);
3434       }
3435     } // Else, some other thread got there first
3436     do_yield_check();
3437   }
3438 }
3439 
3440 void ParConcMarkingClosure::trim_queue(size_t max) {
3441   while (_work_queue->size() > max) {
3442     oop new_oop;
3443     if (_work_queue->pop_local(new_oop)) {
3444       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3445       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3446       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3447       new_oop->oop_iterate(this);  // do_oop() above
3448       do_yield_check();
3449     }
3450   }
3451 }
3452 
3453 // Upon stack overflow, we discard (part of) the stack,
3454 // remembering the least address amongst those discarded
3455 // in CMSCollector's _restart_address.
3456 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3457   // We need to do this under a mutex to prevent other
3458   // workers from interfering with the work done below.
3459   MutexLocker ml(_overflow_stack->par_lock(),
3460                  Mutex::_no_safepoint_check_flag);
3461   // Remember the least grey address discarded
3462   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3463   _collector->lower_restart_addr(ra);
3464   _overflow_stack->reset();  // discard stack contents
3465   _overflow_stack->expand(); // expand the stack if possible
3466 }
3467 
3468 
3469 void CMSConcMarkingTask::do_work_steal(int i) {
3470   OopTaskQueue* work_q = work_queue(i);
3471   oop obj_to_scan;
3472   CMSBitMap* bm = &(_collector->_markBitMap);
3473   CMSMarkStack* ovflw = &(_collector->_markStack);
3474   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3475   while (true) {
3476     cl.trim_queue(0);
3477     assert(work_q->size() == 0, "Should have been emptied above");
3478     if (get_work_from_overflow_stack(ovflw, work_q)) {
3479       // Can't assert below because the work obtained from the
3480       // overflow stack may already have been stolen from us.
3481       // assert(work_q->size() > 0, "Work from overflow stack");
3482       continue;
3483     } else if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
3484       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3485       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3486       obj_to_scan->oop_iterate(&cl);
3487     } else if (terminator()->offer_termination(&_term_term)) {
3488       assert(work_q->size() == 0, "Impossible!");
3489       break;
3490     } else if (yielding() || should_yield()) {
3491       yield();
3492     }
3493   }
3494 }
3495 
3496 // This is run by the CMS (coordinator) thread.
3497 void CMSConcMarkingTask::coordinator_yield() {
3498   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3499          "CMS thread should hold CMS token");
3500   // First give up the locks, then yield, then re-lock
3501   // We should probably use a constructor/destructor idiom to
3502   // do this unlock/lock or modify the MutexUnlocker class to
3503   // serve our purpose. XXX
3504   assert_lock_strong(_bit_map_lock);
3505   _bit_map_lock->unlock();
3506   ConcurrentMarkSweepThread::desynchronize(true);
3507   _collector->stopTimer();
3508   _collector->incrementYields();
3509 
3510   // It is possible for whichever thread initiated the yield request
3511   // not to get a chance to wake up and take the bitmap lock between
3512   // this thread releasing it and reacquiring it. So, while the
3513   // should_yield() flag is on, let's sleep for a bit to give the
3514   // other thread a chance to wake up. The limit imposed on the number
3515   // of iterations is defensive, to avoid any unforseen circumstances
3516   // putting us into an infinite loop. Since it's always been this
3517   // (coordinator_yield()) method that was observed to cause the
3518   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3519   // which is by default non-zero. For the other seven methods that
3520   // also perform the yield operation, as are using a different
3521   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3522   // can enable the sleeping for those methods too, if necessary.
3523   // See 6442774.
3524   //
3525   // We really need to reconsider the synchronization between the GC
3526   // thread and the yield-requesting threads in the future and we
3527   // should really use wait/notify, which is the recommended
3528   // way of doing this type of interaction. Additionally, we should
3529   // consolidate the eight methods that do the yield operation and they
3530   // are almost identical into one for better maintainability and
3531   // readability. See 6445193.
3532   //
3533   // Tony 2006.06.29
3534   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3535                    ConcurrentMarkSweepThread::should_yield() &&
3536                    !CMSCollector::foregroundGCIsActive(); ++i) {
3537     os::sleep(Thread::current(), 1, false);
3538   }
3539 
3540   ConcurrentMarkSweepThread::synchronize(true);
3541   _bit_map_lock->lock_without_safepoint_check();
3542   _collector->startTimer();
3543 }
3544 
3545 bool CMSCollector::do_marking_mt() {
3546   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3547   uint num_workers = WorkerPolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3548                                                             conc_workers()->active_workers(),
3549                                                             Threads::number_of_non_daemon_threads());
3550   num_workers = conc_workers()->update_active_workers(num_workers);
3551   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3552 
3553   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3554 
3555   CMSConcMarkingTask tsk(this,
3556                          cms_space,
3557                          conc_workers(),
3558                          task_queues());
3559 
3560   // Since the actual number of workers we get may be different
3561   // from the number we requested above, do we need to do anything different
3562   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3563   // class?? XXX
3564   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3565 
3566   // Refs discovery is already non-atomic.
3567   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3568   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3569   conc_workers()->start_task(&tsk);
3570   while (tsk.yielded()) {
3571     tsk.coordinator_yield();
3572     conc_workers()->continue_task(&tsk);
3573   }
3574   // If the task was aborted, _restart_addr will be non-NULL
3575   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3576   while (_restart_addr != NULL) {
3577     // XXX For now we do not make use of ABORTED state and have not
3578     // yet implemented the right abort semantics (even in the original
3579     // single-threaded CMS case). That needs some more investigation
3580     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3581     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3582     // If _restart_addr is non-NULL, a marking stack overflow
3583     // occurred; we need to do a fresh marking iteration from the
3584     // indicated restart address.
3585     if (_foregroundGCIsActive) {
3586       // We may be running into repeated stack overflows, having
3587       // reached the limit of the stack size, while making very
3588       // slow forward progress. It may be best to bail out and
3589       // let the foreground collector do its job.
3590       // Clear _restart_addr, so that foreground GC
3591       // works from scratch. This avoids the headache of
3592       // a "rescan" which would otherwise be needed because
3593       // of the dirty mod union table & card table.
3594       _restart_addr = NULL;
3595       return false;
3596     }
3597     // Adjust the task to restart from _restart_addr
3598     tsk.reset(_restart_addr);
3599     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3600                   _restart_addr);
3601     _restart_addr = NULL;
3602     // Get the workers going again
3603     conc_workers()->start_task(&tsk);
3604     while (tsk.yielded()) {
3605       tsk.coordinator_yield();
3606       conc_workers()->continue_task(&tsk);
3607     }
3608   }
3609   assert(tsk.completed(), "Inconsistency");
3610   assert(tsk.result() == true, "Inconsistency");
3611   return true;
3612 }
3613 
3614 bool CMSCollector::do_marking_st() {
3615   ResourceMark rm;
3616   HandleMark   hm;
3617 
3618   // Temporarily make refs discovery single threaded (non-MT)
3619   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3620   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3621     &_markStack, CMSYield);
3622   // the last argument to iterate indicates whether the iteration
3623   // should be incremental with periodic yields.
3624   _markBitMap.iterate(&markFromRootsClosure);
3625   // If _restart_addr is non-NULL, a marking stack overflow
3626   // occurred; we need to do a fresh iteration from the
3627   // indicated restart address.
3628   while (_restart_addr != NULL) {
3629     if (_foregroundGCIsActive) {
3630       // We may be running into repeated stack overflows, having
3631       // reached the limit of the stack size, while making very
3632       // slow forward progress. It may be best to bail out and
3633       // let the foreground collector do its job.
3634       // Clear _restart_addr, so that foreground GC
3635       // works from scratch. This avoids the headache of
3636       // a "rescan" which would otherwise be needed because
3637       // of the dirty mod union table & card table.
3638       _restart_addr = NULL;
3639       return false;  // indicating failure to complete marking
3640     }
3641     // Deal with stack overflow:
3642     // we restart marking from _restart_addr
3643     HeapWord* ra = _restart_addr;
3644     markFromRootsClosure.reset(ra);
3645     _restart_addr = NULL;
3646     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3647   }
3648   return true;
3649 }
3650 
3651 void CMSCollector::preclean() {
3652   check_correct_thread_executing();
3653   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3654   verify_work_stacks_empty();
3655   verify_overflow_empty();
3656   _abort_preclean = false;
3657   if (CMSPrecleaningEnabled) {
3658     if (!CMSEdenChunksRecordAlways) {
3659       _eden_chunk_index = 0;
3660     }
3661     size_t used = get_eden_used();
3662     size_t capacity = get_eden_capacity();
3663     // Don't start sampling unless we will get sufficiently
3664     // many samples.
3665     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3666                 * CMSScheduleRemarkEdenPenetration)) {
3667       _start_sampling = true;
3668     } else {
3669       _start_sampling = false;
3670     }
3671     GCTraceCPUTime tcpu;
3672     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3673     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3674   }
3675   CMSTokenSync x(true); // is cms thread
3676   if (CMSPrecleaningEnabled) {
3677     sample_eden();
3678     _collectorState = AbortablePreclean;
3679   } else {
3680     _collectorState = FinalMarking;
3681   }
3682   verify_work_stacks_empty();
3683   verify_overflow_empty();
3684 }
3685 
3686 // Try and schedule the remark such that young gen
3687 // occupancy is CMSScheduleRemarkEdenPenetration %.
3688 void CMSCollector::abortable_preclean() {
3689   check_correct_thread_executing();
3690   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3691   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3692 
3693   // If Eden's current occupancy is below this threshold,
3694   // immediately schedule the remark; else preclean
3695   // past the next scavenge in an effort to
3696   // schedule the pause as described above. By choosing
3697   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3698   // we will never do an actual abortable preclean cycle.
3699   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3700     GCTraceCPUTime tcpu;
3701     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3702     // We need more smarts in the abortable preclean
3703     // loop below to deal with cases where allocation
3704     // in young gen is very very slow, and our precleaning
3705     // is running a losing race against a horde of
3706     // mutators intent on flooding us with CMS updates
3707     // (dirty cards).
3708     // One, admittedly dumb, strategy is to give up
3709     // after a certain number of abortable precleaning loops
3710     // or after a certain maximum time. We want to make
3711     // this smarter in the next iteration.
3712     // XXX FIX ME!!! YSR
3713     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3714     while (!(should_abort_preclean() ||
3715              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3716       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3717       cumworkdone += workdone;
3718       loops++;
3719       // Voluntarily terminate abortable preclean phase if we have
3720       // been at it for too long.
3721       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3722           loops >= CMSMaxAbortablePrecleanLoops) {
3723         log_debug(gc)(" CMS: abort preclean due to loops ");
3724         break;
3725       }
3726       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3727         log_debug(gc)(" CMS: abort preclean due to time ");
3728         break;
3729       }
3730       // If we are doing little work each iteration, we should
3731       // take a short break.
3732       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3733         // Sleep for some time, waiting for work to accumulate
3734         stopTimer();
3735         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3736         startTimer();
3737         waited++;
3738       }
3739     }
3740     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3741                                loops, waited, cumworkdone);
3742   }
3743   CMSTokenSync x(true); // is cms thread
3744   if (_collectorState != Idling) {
3745     assert(_collectorState == AbortablePreclean,
3746            "Spontaneous state transition?");
3747     _collectorState = FinalMarking;
3748   } // Else, a foreground collection completed this CMS cycle.
3749   return;
3750 }
3751 
3752 // Respond to an Eden sampling opportunity
3753 void CMSCollector::sample_eden() {
3754   // Make sure a young gc cannot sneak in between our
3755   // reading and recording of a sample.
3756   assert(Thread::current()->is_ConcurrentGC_thread(),
3757          "Only the cms thread may collect Eden samples");
3758   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3759          "Should collect samples while holding CMS token");
3760   if (!_start_sampling) {
3761     return;
3762   }
3763   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3764   // is populated by the young generation.
3765   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3766     if (_eden_chunk_index < _eden_chunk_capacity) {
3767       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3768       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3769              "Unexpected state of Eden");
3770       // We'd like to check that what we just sampled is an oop-start address;
3771       // however, we cannot do that here since the object may not yet have been
3772       // initialized. So we'll instead do the check when we _use_ this sample
3773       // later.
3774       if (_eden_chunk_index == 0 ||
3775           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3776                          _eden_chunk_array[_eden_chunk_index-1])
3777            >= CMSSamplingGrain)) {
3778         _eden_chunk_index++;  // commit sample
3779       }
3780     }
3781   }
3782   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3783     size_t used = get_eden_used();
3784     size_t capacity = get_eden_capacity();
3785     assert(used <= capacity, "Unexpected state of Eden");
3786     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3787       _abort_preclean = true;
3788     }
3789   }
3790 }
3791 
3792 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3793   assert(_collectorState == Precleaning ||
3794          _collectorState == AbortablePreclean, "incorrect state");
3795   ResourceMark rm;
3796   HandleMark   hm;
3797 
3798   // Precleaning is currently not MT but the reference processor
3799   // may be set for MT.  Disable it temporarily here.
3800   ReferenceProcessor* rp = ref_processor();
3801   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3802 
3803   // Do one pass of scrubbing the discovered reference lists
3804   // to remove any reference objects with strongly-reachable
3805   // referents.
3806   if (clean_refs) {
3807     CMSPrecleanRefsYieldClosure yield_cl(this);
3808     assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
3809     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3810                                    &_markStack, true /* preclean */);
3811     CMSDrainMarkingStackClosure complete_trace(this,
3812                                    _span, &_markBitMap, &_markStack,
3813                                    &keep_alive, true /* preclean */);
3814 
3815     // We don't want this step to interfere with a young
3816     // collection because we don't want to take CPU
3817     // or memory bandwidth away from the young GC threads
3818     // (which may be as many as there are CPUs).
3819     // Note that we don't need to protect ourselves from
3820     // interference with mutators because they can't
3821     // manipulate the discovered reference lists nor affect
3822     // the computed reachability of the referents, the
3823     // only properties manipulated by the precleaning
3824     // of these reference lists.
3825     stopTimer();
3826     CMSTokenSyncWithLocks x(true /* is cms thread */,
3827                             bitMapLock());
3828     startTimer();
3829     sample_eden();
3830 
3831     // The following will yield to allow foreground
3832     // collection to proceed promptly. XXX YSR:
3833     // The code in this method may need further
3834     // tweaking for better performance and some restructuring
3835     // for cleaner interfaces.
3836     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3837     rp->preclean_discovered_references(
3838           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3839           gc_timer);
3840   }
3841 
3842   if (clean_survivor) {  // preclean the active survivor space(s)
3843     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3844                              &_markBitMap, &_modUnionTable,
3845                              &_markStack, true /* precleaning phase */);
3846     stopTimer();
3847     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3848                              bitMapLock());
3849     startTimer();
3850     unsigned int before_count =
3851       CMSHeap::heap()->total_collections();
3852     SurvivorSpacePrecleanClosure
3853       sss_cl(this, _span, &_markBitMap, &_markStack,
3854              &pam_cl, before_count, CMSYield);
3855     _young_gen->from()->object_iterate_careful(&sss_cl);
3856     _young_gen->to()->object_iterate_careful(&sss_cl);
3857   }
3858   MarkRefsIntoAndScanClosure
3859     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3860              &_markStack, this, CMSYield,
3861              true /* precleaning phase */);
3862   // CAUTION: The following closure has persistent state that may need to
3863   // be reset upon a decrease in the sequence of addresses it
3864   // processes.
3865   ScanMarkedObjectsAgainCarefullyClosure
3866     smoac_cl(this, _span,
3867       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3868 
3869   // Preclean dirty cards in ModUnionTable and CardTable using
3870   // appropriate convergence criterion;
3871   // repeat CMSPrecleanIter times unless we find that
3872   // we are losing.
3873   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3874   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3875          "Bad convergence multiplier");
3876   assert(CMSPrecleanThreshold >= 100,
3877          "Unreasonably low CMSPrecleanThreshold");
3878 
3879   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3880   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3881        numIter < CMSPrecleanIter;
3882        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3883     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3884     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3885     // Either there are very few dirty cards, so re-mark
3886     // pause will be small anyway, or our pre-cleaning isn't
3887     // that much faster than the rate at which cards are being
3888     // dirtied, so we might as well stop and re-mark since
3889     // precleaning won't improve our re-mark time by much.
3890     if (curNumCards <= CMSPrecleanThreshold ||
3891         (numIter > 0 &&
3892          (curNumCards * CMSPrecleanDenominator >
3893          lastNumCards * CMSPrecleanNumerator))) {
3894       numIter++;
3895       cumNumCards += curNumCards;
3896       break;
3897     }
3898   }
3899 
3900   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3901 
3902   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3903   cumNumCards += curNumCards;
3904   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3905                              curNumCards, cumNumCards, numIter);
3906   return cumNumCards;   // as a measure of useful work done
3907 }
3908 
3909 // PRECLEANING NOTES:
3910 // Precleaning involves:
3911 // . reading the bits of the modUnionTable and clearing the set bits.
3912 // . For the cards corresponding to the set bits, we scan the
3913 //   objects on those cards. This means we need the free_list_lock
3914 //   so that we can safely iterate over the CMS space when scanning
3915 //   for oops.
3916 // . When we scan the objects, we'll be both reading and setting
3917 //   marks in the marking bit map, so we'll need the marking bit map.
3918 // . For protecting _collector_state transitions, we take the CGC_lock.
3919 //   Note that any races in the reading of of card table entries by the
3920 //   CMS thread on the one hand and the clearing of those entries by the
3921 //   VM thread or the setting of those entries by the mutator threads on the
3922 //   other are quite benign. However, for efficiency it makes sense to keep
3923 //   the VM thread from racing with the CMS thread while the latter is
3924 //   dirty card info to the modUnionTable. We therefore also use the
3925 //   CGC_lock to protect the reading of the card table and the mod union
3926 //   table by the CM thread.
3927 // . We run concurrently with mutator updates, so scanning
3928 //   needs to be done carefully  -- we should not try to scan
3929 //   potentially uninitialized objects.
3930 //
3931 // Locking strategy: While holding the CGC_lock, we scan over and
3932 // reset a maximal dirty range of the mod union / card tables, then lock
3933 // the free_list_lock and bitmap lock to do a full marking, then
3934 // release these locks; and repeat the cycle. This allows for a
3935 // certain amount of fairness in the sharing of these locks between
3936 // the CMS collector on the one hand, and the VM thread and the
3937 // mutators on the other.
3938 
3939 // NOTE: preclean_mod_union_table() and preclean_card_table()
3940 // further below are largely identical; if you need to modify
3941 // one of these methods, please check the other method too.
3942 
3943 size_t CMSCollector::preclean_mod_union_table(
3944   ConcurrentMarkSweepGeneration* old_gen,
3945   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3946   verify_work_stacks_empty();
3947   verify_overflow_empty();
3948 
3949   // strategy: starting with the first card, accumulate contiguous
3950   // ranges of dirty cards; clear these cards, then scan the region
3951   // covered by these cards.
3952 
3953   // Since all of the MUT is committed ahead, we can just use
3954   // that, in case the generations expand while we are precleaning.
3955   // It might also be fine to just use the committed part of the
3956   // generation, but we might potentially miss cards when the
3957   // generation is rapidly expanding while we are in the midst
3958   // of precleaning.
3959   HeapWord* startAddr = old_gen->reserved().start();
3960   HeapWord* endAddr   = old_gen->reserved().end();
3961 
3962   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3963 
3964   size_t numDirtyCards, cumNumDirtyCards;
3965   HeapWord *nextAddr, *lastAddr;
3966   for (cumNumDirtyCards = numDirtyCards = 0,
3967        nextAddr = lastAddr = startAddr;
3968        nextAddr < endAddr;
3969        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3970 
3971     ResourceMark rm;
3972     HandleMark   hm;
3973 
3974     MemRegion dirtyRegion;
3975     {
3976       stopTimer();
3977       // Potential yield point
3978       CMSTokenSync ts(true);
3979       startTimer();
3980       sample_eden();
3981       // Get dirty region starting at nextOffset (inclusive),
3982       // simultaneously clearing it.
3983       dirtyRegion =
3984         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3985       assert(dirtyRegion.start() >= nextAddr,
3986              "returned region inconsistent?");
3987     }
3988     // Remember where the next search should begin.
3989     // The returned region (if non-empty) is a right open interval,
3990     // so lastOffset is obtained from the right end of that
3991     // interval.
3992     lastAddr = dirtyRegion.end();
3993     // Should do something more transparent and less hacky XXX
3994     numDirtyCards =
3995       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3996 
3997     // We'll scan the cards in the dirty region (with periodic
3998     // yields for foreground GC as needed).
3999     if (!dirtyRegion.is_empty()) {
4000       assert(numDirtyCards > 0, "consistency check");
4001       HeapWord* stop_point = NULL;
4002       stopTimer();
4003       // Potential yield point
4004       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
4005                                bitMapLock());
4006       startTimer();
4007       {
4008         verify_work_stacks_empty();
4009         verify_overflow_empty();
4010         sample_eden();
4011         stop_point =
4012           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4013       }
4014       if (stop_point != NULL) {
4015         // The careful iteration stopped early either because it found an
4016         // uninitialized object, or because we were in the midst of an
4017         // "abortable preclean", which should now be aborted. Redirty
4018         // the bits corresponding to the partially-scanned or unscanned
4019         // cards. We'll either restart at the next block boundary or
4020         // abort the preclean.
4021         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4022                "Should only be AbortablePreclean.");
4023         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4024         if (should_abort_preclean()) {
4025           break; // out of preclean loop
4026         } else {
4027           // Compute the next address at which preclean should pick up;
4028           // might need bitMapLock in order to read P-bits.
4029           lastAddr = next_card_start_after_block(stop_point);
4030         }
4031       }
4032     } else {
4033       assert(lastAddr == endAddr, "consistency check");
4034       assert(numDirtyCards == 0, "consistency check");
4035       break;
4036     }
4037   }
4038   verify_work_stacks_empty();
4039   verify_overflow_empty();
4040   return cumNumDirtyCards;
4041 }
4042 
4043 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4044 // below are largely identical; if you need to modify
4045 // one of these methods, please check the other method too.
4046 
4047 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
4048   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4049   // strategy: it's similar to precleamModUnionTable above, in that
4050   // we accumulate contiguous ranges of dirty cards, mark these cards
4051   // precleaned, then scan the region covered by these cards.
4052   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
4053   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
4054 
4055   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4056 
4057   size_t numDirtyCards, cumNumDirtyCards;
4058   HeapWord *lastAddr, *nextAddr;
4059 
4060   for (cumNumDirtyCards = numDirtyCards = 0,
4061        nextAddr = lastAddr = startAddr;
4062        nextAddr < endAddr;
4063        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4064 
4065     ResourceMark rm;
4066     HandleMark   hm;
4067 
4068     MemRegion dirtyRegion;
4069     {
4070       // See comments in "Precleaning notes" above on why we
4071       // do this locking. XXX Could the locking overheads be
4072       // too high when dirty cards are sparse? [I don't think so.]
4073       stopTimer();
4074       CMSTokenSync x(true); // is cms thread
4075       startTimer();
4076       sample_eden();
4077       // Get and clear dirty region from card table
4078       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
4079                                                       true,
4080                                                       CardTable::precleaned_card_val());
4081 
4082       assert(dirtyRegion.start() >= nextAddr,
4083              "returned region inconsistent?");
4084     }
4085     lastAddr = dirtyRegion.end();
4086     numDirtyCards =
4087       dirtyRegion.word_size()/CardTable::card_size_in_words;
4088 
4089     if (!dirtyRegion.is_empty()) {
4090       stopTimer();
4091       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4092       startTimer();
4093       sample_eden();
4094       verify_work_stacks_empty();
4095       verify_overflow_empty();
4096       HeapWord* stop_point =
4097         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4098       if (stop_point != NULL) {
4099         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4100                "Should only be AbortablePreclean.");
4101         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4102         if (should_abort_preclean()) {
4103           break; // out of preclean loop
4104         } else {
4105           // Compute the next address at which preclean should pick up.
4106           lastAddr = next_card_start_after_block(stop_point);
4107         }
4108       }
4109     } else {
4110       break;
4111     }
4112   }
4113   verify_work_stacks_empty();
4114   verify_overflow_empty();
4115   return cumNumDirtyCards;
4116 }
4117 
4118 class PrecleanCLDClosure : public CLDClosure {
4119   MetadataVisitingOopsInGenClosure* _cm_closure;
4120  public:
4121   PrecleanCLDClosure(MetadataVisitingOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4122   void do_cld(ClassLoaderData* cld) {
4123     if (cld->has_accumulated_modified_oops()) {
4124       cld->clear_accumulated_modified_oops();
4125 
4126       _cm_closure->do_cld(cld);
4127     }
4128   }
4129 };
4130 
4131 // The freelist lock is needed to prevent asserts, is it really needed?
4132 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4133   // Needed to walk CLDG
4134   MutexLocker ml(ClassLoaderDataGraph_lock);
4135 
4136   cl->set_freelistLock(freelistLock);
4137 
4138   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4139 
4140   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4141   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4142   PrecleanCLDClosure preclean_closure(cl);
4143   ClassLoaderDataGraph::cld_do(&preclean_closure);
4144 
4145   verify_work_stacks_empty();
4146   verify_overflow_empty();
4147 }
4148 
4149 void CMSCollector::checkpointRootsFinal() {
4150   assert(_collectorState == FinalMarking, "incorrect state transition?");
4151   check_correct_thread_executing();
4152   // world is stopped at this checkpoint
4153   assert(SafepointSynchronize::is_at_safepoint(),
4154          "world should be stopped");
4155   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4156 
4157   verify_work_stacks_empty();
4158   verify_overflow_empty();
4159 
4160   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4161                 _young_gen->used() / K, _young_gen->capacity() / K);
4162   {
4163     if (CMSScavengeBeforeRemark) {
4164       CMSHeap* heap = CMSHeap::heap();
4165       // Temporarily set flag to false, GCH->do_collection will
4166       // expect it to be false and set to true
4167       FlagSetting fl(heap->_is_gc_active, false);
4168 
4169       heap->do_collection(true,                      // full (i.e. force, see below)
4170                           false,                     // !clear_all_soft_refs
4171                           0,                         // size
4172                           false,                     // is_tlab
4173                           GenCollectedHeap::YoungGen // type
4174         );
4175     }
4176     FreelistLocker x(this);
4177     MutexLocker y(bitMapLock(),
4178                   Mutex::_no_safepoint_check_flag);
4179     checkpointRootsFinalWork();
4180   }
4181   verify_work_stacks_empty();
4182   verify_overflow_empty();
4183 }
4184 
4185 void CMSCollector::checkpointRootsFinalWork() {
4186   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4187 
4188   assert(haveFreelistLocks(), "must have free list locks");
4189   assert_lock_strong(bitMapLock());
4190 
4191   ResourceMark rm;
4192   HandleMark   hm;
4193 
4194   CMSHeap* heap = CMSHeap::heap();
4195 
4196   assert(haveFreelistLocks(), "must have free list locks");
4197   assert_lock_strong(bitMapLock());
4198 
4199   // We might assume that we need not fill TLAB's when
4200   // CMSScavengeBeforeRemark is set, because we may have just done
4201   // a scavenge which would have filled all TLAB's -- and besides
4202   // Eden would be empty. This however may not always be the case --
4203   // for instance although we asked for a scavenge, it may not have
4204   // happened because of a JNI critical section. We probably need
4205   // a policy for deciding whether we can in that case wait until
4206   // the critical section releases and then do the remark following
4207   // the scavenge, and skip it here. In the absence of that policy,
4208   // or of an indication of whether the scavenge did indeed occur,
4209   // we cannot rely on TLAB's having been filled and must do
4210   // so here just in case a scavenge did not happen.
4211   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4212   // Update the saved marks which may affect the root scans.
4213   heap->save_marks();
4214 
4215   print_eden_and_survivor_chunk_arrays();
4216 
4217   {
4218 #if COMPILER2_OR_JVMCI
4219     DerivedPointerTableDeactivate dpt_deact;
4220 #endif
4221 
4222     // Note on the role of the mod union table:
4223     // Since the marker in "markFromRoots" marks concurrently with
4224     // mutators, it is possible for some reachable objects not to have been
4225     // scanned. For instance, an only reference to an object A was
4226     // placed in object B after the marker scanned B. Unless B is rescanned,
4227     // A would be collected. Such updates to references in marked objects
4228     // are detected via the mod union table which is the set of all cards
4229     // dirtied since the first checkpoint in this GC cycle and prior to
4230     // the most recent young generation GC, minus those cleaned up by the
4231     // concurrent precleaning.
4232     if (CMSParallelRemarkEnabled) {
4233       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4234       do_remark_parallel();
4235     } else {
4236       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4237       do_remark_non_parallel();
4238     }
4239   }
4240   verify_work_stacks_empty();
4241   verify_overflow_empty();
4242 
4243   {
4244     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4245     refProcessingWork();
4246   }
4247   verify_work_stacks_empty();
4248   verify_overflow_empty();
4249 
4250   if (should_unload_classes()) {
4251     heap->prune_scavengable_nmethods();
4252   }
4253   JvmtiExport::gc_epilogue();
4254 
4255   // If we encountered any (marking stack / work queue) overflow
4256   // events during the current CMS cycle, take appropriate
4257   // remedial measures, where possible, so as to try and avoid
4258   // recurrence of that condition.
4259   assert(_markStack.isEmpty(), "No grey objects");
4260   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4261                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4262   if (ser_ovflw > 0) {
4263     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4264                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4265     _markStack.expand();
4266     _ser_pmc_remark_ovflw = 0;
4267     _ser_pmc_preclean_ovflw = 0;
4268     _ser_kac_preclean_ovflw = 0;
4269     _ser_kac_ovflw = 0;
4270   }
4271   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4272      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4273                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4274      _par_pmc_remark_ovflw = 0;
4275     _par_kac_ovflw = 0;
4276   }
4277    if (_markStack._hit_limit > 0) {
4278      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4279                           _markStack._hit_limit);
4280    }
4281    if (_markStack._failed_double > 0) {
4282      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4283                           _markStack._failed_double, _markStack.capacity());
4284    }
4285   _markStack._hit_limit = 0;
4286   _markStack._failed_double = 0;
4287 
4288   if ((VerifyAfterGC || VerifyDuringGC) &&
4289       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4290     verify_after_remark();
4291   }
4292 
4293   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4294 
4295   // Change under the freelistLocks.
4296   _collectorState = Sweeping;
4297   // Call isAllClear() under bitMapLock
4298   assert(_modUnionTable.isAllClear(),
4299       "Should be clear by end of the final marking");
4300   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4301       "Should be clear by end of the final marking");
4302 }
4303 
4304 void CMSParInitialMarkTask::work(uint worker_id) {
4305   elapsedTimer _timer;
4306   ResourceMark rm;
4307   HandleMark   hm;
4308 
4309   // ---------- scan from roots --------------
4310   _timer.start();
4311   CMSHeap* heap = CMSHeap::heap();
4312   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4313 
4314   // ---------- young gen roots --------------
4315   {
4316     work_on_young_gen_roots(&par_mri_cl);
4317     _timer.stop();
4318     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4319   }
4320 
4321   // ---------- remaining roots --------------
4322   _timer.reset();
4323   _timer.start();
4324 
4325   CLDToOopClosure cld_closure(&par_mri_cl, ClassLoaderData::_claim_strong);
4326 
4327   heap->cms_process_roots(_strong_roots_scope,
4328                           false,     // yg was scanned above
4329                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4330                           _collector->should_unload_classes(),
4331                           &par_mri_cl,
4332                           &cld_closure);
4333 
4334   assert(_collector->should_unload_classes()
4335          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4336          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4337   _timer.stop();
4338   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4339 }
4340 
4341 // Parallel remark task
4342 class CMSParRemarkTask: public CMSParMarkTask {
4343   CompactibleFreeListSpace* _cms_space;
4344 
4345   // The per-thread work queues, available here for stealing.
4346   OopTaskQueueSet*       _task_queues;
4347   TaskTerminator         _term;
4348   StrongRootsScope*      _strong_roots_scope;
4349 
4350  public:
4351   // A value of 0 passed to n_workers will cause the number of
4352   // workers to be taken from the active workers in the work gang.
4353   CMSParRemarkTask(CMSCollector* collector,
4354                    CompactibleFreeListSpace* cms_space,
4355                    uint n_workers, WorkGang* workers,
4356                    OopTaskQueueSet* task_queues,
4357                    StrongRootsScope* strong_roots_scope):
4358     CMSParMarkTask("Rescan roots and grey objects in parallel",
4359                    collector, n_workers),
4360     _cms_space(cms_space),
4361     _task_queues(task_queues),
4362     _term(n_workers, task_queues),
4363     _strong_roots_scope(strong_roots_scope) { }
4364 
4365   OopTaskQueueSet* task_queues() { return _task_queues; }
4366 
4367   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4368 
4369   ParallelTaskTerminator* terminator() { return _term.terminator(); }
4370   uint n_workers() { return _n_workers; }
4371 
4372   void work(uint worker_id);
4373 
4374  private:
4375   // ... of  dirty cards in old space
4376   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4377                                   ParMarkRefsIntoAndScanClosure* cl);
4378 
4379   // ... work stealing for the above
4380   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl);
4381 };
4382 
4383 class RemarkCLDClosure : public CLDClosure {
4384   CLDToOopClosure _cm_closure;
4385  public:
4386   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure, ClassLoaderData::_claim_strong) {}
4387   void do_cld(ClassLoaderData* cld) {
4388     // Check if we have modified any oops in the CLD during the concurrent marking.
4389     if (cld->has_accumulated_modified_oops()) {
4390       cld->clear_accumulated_modified_oops();
4391 
4392       // We could have transfered the current modified marks to the accumulated marks,
4393       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4394     } else if (cld->has_modified_oops()) {
4395       // Don't clear anything, this info is needed by the next young collection.
4396     } else {
4397       // No modified oops in the ClassLoaderData.
4398       return;
4399     }
4400 
4401     // The klass has modified fields, need to scan the klass.
4402     _cm_closure.do_cld(cld);
4403   }
4404 };
4405 
4406 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4407   ParNewGeneration* young_gen = _collector->_young_gen;
4408   ContiguousSpace* eden_space = young_gen->eden();
4409   ContiguousSpace* from_space = young_gen->from();
4410   ContiguousSpace* to_space   = young_gen->to();
4411 
4412   HeapWord** eca = _collector->_eden_chunk_array;
4413   size_t     ect = _collector->_eden_chunk_index;
4414   HeapWord** sca = _collector->_survivor_chunk_array;
4415   size_t     sct = _collector->_survivor_chunk_index;
4416 
4417   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4418   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4419 
4420   do_young_space_rescan(cl, to_space, NULL, 0);
4421   do_young_space_rescan(cl, from_space, sca, sct);
4422   do_young_space_rescan(cl, eden_space, eca, ect);
4423 }
4424 
4425 // work_queue(i) is passed to the closure
4426 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4427 // also is passed to do_dirty_card_rescan_tasks() and to
4428 // do_work_steal() to select the i-th task_queue.
4429 
4430 void CMSParRemarkTask::work(uint worker_id) {
4431   elapsedTimer _timer;
4432   ResourceMark rm;
4433   HandleMark   hm;
4434 
4435   // ---------- rescan from roots --------------
4436   _timer.start();
4437   CMSHeap* heap = CMSHeap::heap();
4438   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4439     _collector->_span, _collector->ref_processor(),
4440     &(_collector->_markBitMap),
4441     work_queue(worker_id));
4442 
4443   // Rescan young gen roots first since these are likely
4444   // coarsely partitioned and may, on that account, constitute
4445   // the critical path; thus, it's best to start off that
4446   // work first.
4447   // ---------- young gen roots --------------
4448   {
4449     work_on_young_gen_roots(&par_mrias_cl);
4450     _timer.stop();
4451     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4452   }
4453 
4454   // ---------- remaining roots --------------
4455   _timer.reset();
4456   _timer.start();
4457   heap->cms_process_roots(_strong_roots_scope,
4458                           false,     // yg was scanned above
4459                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4460                           _collector->should_unload_classes(),
4461                           &par_mrias_cl,
4462                           NULL);     // The dirty klasses will be handled below
4463 
4464   assert(_collector->should_unload_classes()
4465          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4466          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4467   _timer.stop();
4468   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4469 
4470   // ---------- unhandled CLD scanning ----------
4471   if (worker_id == 0) { // Single threaded at the moment.
4472     _timer.reset();
4473     _timer.start();
4474 
4475     // Scan all new class loader data objects and new dependencies that were
4476     // introduced during concurrent marking.
4477     ResourceMark rm;
4478     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4479     for (int i = 0; i < array->length(); i++) {
4480       Devirtualizer::do_cld(&par_mrias_cl, array->at(i));
4481     }
4482 
4483     // We don't need to keep track of new CLDs anymore.
4484     ClassLoaderDataGraph::remember_new_clds(false);
4485 
4486     _timer.stop();
4487     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4488   }
4489 
4490   // We might have added oops to ClassLoaderData::_handles during the
4491   // concurrent marking phase. These oops do not always point to newly allocated objects
4492   // that are guaranteed to be kept alive.  Hence,
4493   // we do have to revisit the _handles block during the remark phase.
4494 
4495   // ---------- dirty CLD scanning ----------
4496   if (worker_id == 0) { // Single threaded at the moment.
4497     _timer.reset();
4498     _timer.start();
4499 
4500     // Scan all classes that was dirtied during the concurrent marking phase.
4501     RemarkCLDClosure remark_closure(&par_mrias_cl);
4502     ClassLoaderDataGraph::cld_do(&remark_closure);
4503 
4504     _timer.stop();
4505     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4506   }
4507 
4508 
4509   // ---------- rescan dirty cards ------------
4510   _timer.reset();
4511   _timer.start();
4512 
4513   // Do the rescan tasks for each of the two spaces
4514   // (cms_space) in turn.
4515   // "worker_id" is passed to select the task_queue for "worker_id"
4516   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4517   _timer.stop();
4518   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4519 
4520   // ---------- steal work from other threads ...
4521   // ---------- ... and drain overflow list.
4522   _timer.reset();
4523   _timer.start();
4524   do_work_steal(worker_id, &par_mrias_cl);
4525   _timer.stop();
4526   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4527 }
4528 
4529 void
4530 CMSParMarkTask::do_young_space_rescan(
4531   OopsInGenClosure* cl, ContiguousSpace* space,
4532   HeapWord** chunk_array, size_t chunk_top) {
4533   // Until all tasks completed:
4534   // . claim an unclaimed task
4535   // . compute region boundaries corresponding to task claimed
4536   //   using chunk_array
4537   // . par_oop_iterate(cl) over that region
4538 
4539   ResourceMark rm;
4540   HandleMark   hm;
4541 
4542   SequentialSubTasksDone* pst = space->par_seq_tasks();
4543 
4544   uint nth_task = 0;
4545   uint n_tasks  = pst->n_tasks();
4546 
4547   if (n_tasks > 0) {
4548     assert(pst->valid(), "Uninitialized use?");
4549     HeapWord *start, *end;
4550     while (pst->try_claim_task(/* reference */ nth_task)) {
4551       // We claimed task # nth_task; compute its boundaries.
4552       if (chunk_top == 0) {  // no samples were taken
4553         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4554         start = space->bottom();
4555         end   = space->top();
4556       } else if (nth_task == 0) {
4557         start = space->bottom();
4558         end   = chunk_array[nth_task];
4559       } else if (nth_task < (uint)chunk_top) {
4560         assert(nth_task >= 1, "Control point invariant");
4561         start = chunk_array[nth_task - 1];
4562         end   = chunk_array[nth_task];
4563       } else {
4564         assert(nth_task == (uint)chunk_top, "Control point invariant");
4565         start = chunk_array[chunk_top - 1];
4566         end   = space->top();
4567       }
4568       MemRegion mr(start, end);
4569       // Verify that mr is in space
4570       assert(mr.is_empty() || space->used_region().contains(mr),
4571              "Should be in space");
4572       // Verify that "start" is an object boundary
4573       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4574              "Should be an oop");
4575       space->par_oop_iterate(mr, cl);
4576     }
4577     pst->all_tasks_completed();
4578   }
4579 }
4580 
4581 void
4582 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4583   CompactibleFreeListSpace* sp, int i,
4584   ParMarkRefsIntoAndScanClosure* cl) {
4585   // Until all tasks completed:
4586   // . claim an unclaimed task
4587   // . compute region boundaries corresponding to task claimed
4588   // . transfer dirty bits ct->mut for that region
4589   // . apply rescanclosure to dirty mut bits for that region
4590 
4591   ResourceMark rm;
4592   HandleMark   hm;
4593 
4594   OopTaskQueue* work_q = work_queue(i);
4595   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4596   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4597   // CAUTION: This closure has state that persists across calls to
4598   // the work method dirty_range_iterate_clear() in that it has
4599   // embedded in it a (subtype of) UpwardsObjectClosure. The
4600   // use of that state in the embedded UpwardsObjectClosure instance
4601   // assumes that the cards are always iterated (even if in parallel
4602   // by several threads) in monotonically increasing order per each
4603   // thread. This is true of the implementation below which picks
4604   // card ranges (chunks) in monotonically increasing order globally
4605   // and, a-fortiori, in monotonically increasing order per thread
4606   // (the latter order being a subsequence of the former).
4607   // If the work code below is ever reorganized into a more chaotic
4608   // work-partitioning form than the current "sequential tasks"
4609   // paradigm, the use of that persistent state will have to be
4610   // revisited and modified appropriately. See also related
4611   // bug 4756801 work on which should examine this code to make
4612   // sure that the changes there do not run counter to the
4613   // assumptions made here and necessary for correctness and
4614   // efficiency. Note also that this code might yield inefficient
4615   // behavior in the case of very large objects that span one or
4616   // more work chunks. Such objects would potentially be scanned
4617   // several times redundantly. Work on 4756801 should try and
4618   // address that performance anomaly if at all possible. XXX
4619   MemRegion  full_span  = _collector->_span;
4620   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4621   MarkFromDirtyCardsClosure
4622     greyRescanClosure(_collector, full_span, // entire span of interest
4623                       sp, bm, work_q, cl);
4624 
4625   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4626   assert(pst->valid(), "Uninitialized use?");
4627   uint nth_task = 0;
4628   const int alignment = CardTable::card_size * BitsPerWord;
4629   MemRegion span = sp->used_region();
4630   HeapWord* start_addr = span.start();
4631   HeapWord* end_addr = align_up(span.end(), alignment);
4632   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4633   assert(is_aligned(start_addr, alignment), "Check alignment");
4634   assert(is_aligned(chunk_size, alignment), "Check alignment");
4635 
4636   while (pst->try_claim_task(/* reference */ nth_task)) {
4637     // Having claimed the nth_task, compute corresponding mem-region,
4638     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4639     // The alignment restriction ensures that we do not need any
4640     // synchronization with other gang-workers while setting or
4641     // clearing bits in thus chunk of the MUT.
4642     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4643                                     start_addr + (nth_task+1)*chunk_size);
4644     // The last chunk's end might be way beyond end of the
4645     // used region. In that case pull back appropriately.
4646     if (this_span.end() > end_addr) {
4647       this_span.set_end(end_addr);
4648       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4649     }
4650     // Iterate over the dirty cards covering this chunk, marking them
4651     // precleaned, and setting the corresponding bits in the mod union
4652     // table. Since we have been careful to partition at Card and MUT-word
4653     // boundaries no synchronization is needed between parallel threads.
4654     _collector->_ct->dirty_card_iterate(this_span,
4655                                                  &modUnionClosure);
4656 
4657     // Having transferred these marks into the modUnionTable,
4658     // rescan the marked objects on the dirty cards in the modUnionTable.
4659     // Even if this is at a synchronous collection, the initial marking
4660     // may have been done during an asynchronous collection so there
4661     // may be dirty bits in the mod-union table.
4662     _collector->_modUnionTable.dirty_range_iterate_clear(
4663                   this_span, &greyRescanClosure);
4664     _collector->_modUnionTable.verifyNoOneBitsInRange(
4665                                  this_span.start(),
4666                                  this_span.end());
4667   }
4668   pst->all_tasks_completed();  // declare that i am done
4669 }
4670 
4671 // . see if we can share work_queues with ParNew? XXX
4672 void
4673 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl) {
4674   OopTaskQueue* work_q = work_queue(i);
4675   NOT_PRODUCT(int num_steals = 0;)
4676   oop obj_to_scan;
4677   CMSBitMap* bm = &(_collector->_markBitMap);
4678 
4679   while (true) {
4680     // Completely finish any left over work from (an) earlier round(s)
4681     cl->trim_queue(0);
4682     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4683                                          (size_t)ParGCDesiredObjsFromOverflowList);
4684     // Now check if there's any work in the overflow list
4685     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4686     // only affects the number of attempts made to get work from the
4687     // overflow list and does not affect the number of workers.  Just
4688     // pass ParallelGCThreads so this behavior is unchanged.
4689     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4690                                                 work_q,
4691                                                 ParallelGCThreads)) {
4692       // found something in global overflow list;
4693       // not yet ready to go stealing work from others.
4694       // We'd like to assert(work_q->size() != 0, ...)
4695       // because we just took work from the overflow list,
4696       // but of course we can't since all of that could have
4697       // been already stolen from us.
4698       // "He giveth and He taketh away."
4699       continue;
4700     }
4701     // Verify that we have no work before we resort to stealing
4702     assert(work_q->size() == 0, "Have work, shouldn't steal");
4703     // Try to steal from other queues that have work
4704     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
4705       NOT_PRODUCT(num_steals++;)
4706       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4707       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4708       // Do scanning work
4709       obj_to_scan->oop_iterate(cl);
4710       // Loop around, finish this work, and try to steal some more
4711     } else if (terminator()->offer_termination()) {
4712         break;  // nirvana from the infinite cycle
4713     }
4714   }
4715   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4716   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4717          "Else our work is not yet done");
4718 }
4719 
4720 // Record object boundaries in _eden_chunk_array by sampling the eden
4721 // top in the slow-path eden object allocation code path and record
4722 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4723 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4724 // sampling in sample_eden() that activates during the part of the
4725 // preclean phase.
4726 void CMSCollector::sample_eden_chunk() {
4727   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4728     if (_eden_chunk_lock->try_lock()) {
4729       // Record a sample. This is the critical section. The contents
4730       // of the _eden_chunk_array have to be non-decreasing in the
4731       // address order.
4732       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4733       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4734              "Unexpected state of Eden");
4735       if (_eden_chunk_index == 0 ||
4736           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4737            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4738                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4739         _eden_chunk_index++;  // commit sample
4740       }
4741       _eden_chunk_lock->unlock();
4742     }
4743   }
4744 }
4745 
4746 // Return a thread-local PLAB recording array, as appropriate.
4747 void* CMSCollector::get_data_recorder(int thr_num) {
4748   if (_survivor_plab_array != NULL &&
4749       (CMSPLABRecordAlways ||
4750        (_collectorState > Marking && _collectorState < FinalMarking))) {
4751     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4752     ChunkArray* ca = &_survivor_plab_array[thr_num];
4753     ca->reset();   // clear it so that fresh data is recorded
4754     return (void*) ca;
4755   } else {
4756     return NULL;
4757   }
4758 }
4759 
4760 // Reset all the thread-local PLAB recording arrays
4761 void CMSCollector::reset_survivor_plab_arrays() {
4762   for (uint i = 0; i < ParallelGCThreads; i++) {
4763     _survivor_plab_array[i].reset();
4764   }
4765 }
4766 
4767 // Merge the per-thread plab arrays into the global survivor chunk
4768 // array which will provide the partitioning of the survivor space
4769 // for CMS initial scan and rescan.
4770 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4771                                               int no_of_gc_threads) {
4772   assert(_survivor_plab_array  != NULL, "Error");
4773   assert(_survivor_chunk_array != NULL, "Error");
4774   assert(_collectorState == FinalMarking ||
4775          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4776   for (int j = 0; j < no_of_gc_threads; j++) {
4777     _cursor[j] = 0;
4778   }
4779   HeapWord* top = surv->top();
4780   size_t i;
4781   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4782     HeapWord* min_val = top;          // Higher than any PLAB address
4783     uint      min_tid = 0;            // position of min_val this round
4784     for (int j = 0; j < no_of_gc_threads; j++) {
4785       ChunkArray* cur_sca = &_survivor_plab_array[j];
4786       if (_cursor[j] == cur_sca->end()) {
4787         continue;
4788       }
4789       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4790       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4791       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4792       if (cur_val < min_val) {
4793         min_tid = j;
4794         min_val = cur_val;
4795       } else {
4796         assert(cur_val < top, "All recorded addresses should be less");
4797       }
4798     }
4799     // At this point min_val and min_tid are respectively
4800     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4801     // and the thread (j) that witnesses that address.
4802     // We record this address in the _survivor_chunk_array[i]
4803     // and increment _cursor[min_tid] prior to the next round i.
4804     if (min_val == top) {
4805       break;
4806     }
4807     _survivor_chunk_array[i] = min_val;
4808     _cursor[min_tid]++;
4809   }
4810   // We are all done; record the size of the _survivor_chunk_array
4811   _survivor_chunk_index = i; // exclusive: [0, i)
4812   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4813   // Verify that we used up all the recorded entries
4814   #ifdef ASSERT
4815     size_t total = 0;
4816     for (int j = 0; j < no_of_gc_threads; j++) {
4817       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4818       total += _cursor[j];
4819     }
4820     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4821     // Check that the merged array is in sorted order
4822     if (total > 0) {
4823       for (size_t i = 0; i < total - 1; i++) {
4824         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4825                                      i, p2i(_survivor_chunk_array[i]));
4826         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4827                "Not sorted");
4828       }
4829     }
4830   #endif // ASSERT
4831 }
4832 
4833 // Set up the space's par_seq_tasks structure for work claiming
4834 // for parallel initial scan and rescan of young gen.
4835 // See ParRescanTask where this is currently used.
4836 void
4837 CMSCollector::
4838 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4839   assert(n_threads > 0, "Unexpected n_threads argument");
4840 
4841   // Eden space
4842   if (!_young_gen->eden()->is_empty()) {
4843     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4844     assert(!pst->valid(), "Clobbering existing data?");
4845     // Each valid entry in [0, _eden_chunk_index) represents a task.
4846     size_t n_tasks = _eden_chunk_index + 1;
4847     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4848     // Sets the condition for completion of the subtask (how many threads
4849     // need to finish in order to be done).
4850     pst->set_n_threads(n_threads);
4851     pst->set_n_tasks((int)n_tasks);
4852   }
4853 
4854   // Merge the survivor plab arrays into _survivor_chunk_array
4855   if (_survivor_plab_array != NULL) {
4856     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4857   } else {
4858     assert(_survivor_chunk_index == 0, "Error");
4859   }
4860 
4861   // To space
4862   {
4863     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4864     assert(!pst->valid(), "Clobbering existing data?");
4865     // Sets the condition for completion of the subtask (how many threads
4866     // need to finish in order to be done).
4867     pst->set_n_threads(n_threads);
4868     pst->set_n_tasks(1);
4869     assert(pst->valid(), "Error");
4870   }
4871 
4872   // From space
4873   {
4874     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4875     assert(!pst->valid(), "Clobbering existing data?");
4876     size_t n_tasks = _survivor_chunk_index + 1;
4877     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4878     // Sets the condition for completion of the subtask (how many threads
4879     // need to finish in order to be done).
4880     pst->set_n_threads(n_threads);
4881     pst->set_n_tasks((int)n_tasks);
4882     assert(pst->valid(), "Error");
4883   }
4884 }
4885 
4886 // Parallel version of remark
4887 void CMSCollector::do_remark_parallel() {
4888   CMSHeap* heap = CMSHeap::heap();
4889   WorkGang* workers = heap->workers();
4890   assert(workers != NULL, "Need parallel worker threads.");
4891   // Choose to use the number of GC workers most recently set
4892   // into "active_workers".
4893   uint n_workers = workers->active_workers();
4894 
4895   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4896 
4897   StrongRootsScope srs(n_workers);
4898 
4899   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4900 
4901   // We won't be iterating over the cards in the card table updating
4902   // the younger_gen cards, so we shouldn't call the following else
4903   // the verification code as well as subsequent younger_refs_iterate
4904   // code would get confused. XXX
4905   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4906 
4907   // The young gen rescan work will not be done as part of
4908   // process_roots (which currently doesn't know how to
4909   // parallelize such a scan), but rather will be broken up into
4910   // a set of parallel tasks (via the sampling that the [abortable]
4911   // preclean phase did of eden, plus the [two] tasks of
4912   // scanning the [two] survivor spaces. Further fine-grain
4913   // parallelization of the scanning of the survivor spaces
4914   // themselves, and of precleaning of the young gen itself
4915   // is deferred to the future.
4916   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4917 
4918   // The dirty card rescan work is broken up into a "sequence"
4919   // of parallel tasks (per constituent space) that are dynamically
4920   // claimed by the parallel threads.
4921   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4922 
4923   // It turns out that even when we're using 1 thread, doing the work in a
4924   // separate thread causes wide variance in run times.  We can't help this
4925   // in the multi-threaded case, but we special-case n=1 here to get
4926   // repeatable measurements of the 1-thread overhead of the parallel code.
4927   if (n_workers > 1) {
4928     // Make refs discovery MT-safe, if it isn't already: it may not
4929     // necessarily be so, since it's possible that we are doing
4930     // ST marking.
4931     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4932     workers->run_task(&tsk);
4933   } else {
4934     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4935     tsk.work(0);
4936   }
4937 
4938   // restore, single-threaded for now, any preserved marks
4939   // as a result of work_q overflow
4940   restore_preserved_marks_if_any();
4941 }
4942 
4943 // Non-parallel version of remark
4944 void CMSCollector::do_remark_non_parallel() {
4945   ResourceMark rm;
4946   HandleMark   hm;
4947   CMSHeap* heap = CMSHeap::heap();
4948   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4949 
4950   MarkRefsIntoAndScanClosure
4951     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4952              &_markStack, this,
4953              false /* should_yield */, false /* not precleaning */);
4954   MarkFromDirtyCardsClosure
4955     markFromDirtyCardsClosure(this, _span,
4956                               NULL,  // space is set further below
4957                               &_markBitMap, &_markStack, &mrias_cl);
4958   {
4959     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4960     // Iterate over the dirty cards, setting the corresponding bits in the
4961     // mod union table.
4962     {
4963       ModUnionClosure modUnionClosure(&_modUnionTable);
4964       _ct->dirty_card_iterate(_cmsGen->used_region(),
4965                               &modUnionClosure);
4966     }
4967     // Having transferred these marks into the modUnionTable, we just need
4968     // to rescan the marked objects on the dirty cards in the modUnionTable.
4969     // The initial marking may have been done during an asynchronous
4970     // collection so there may be dirty bits in the mod-union table.
4971     const int alignment = CardTable::card_size * BitsPerWord;
4972     {
4973       // ... First handle dirty cards in CMS gen
4974       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4975       MemRegion ur = _cmsGen->used_region();
4976       HeapWord* lb = ur.start();
4977       HeapWord* ub = align_up(ur.end(), alignment);
4978       MemRegion cms_span(lb, ub);
4979       _modUnionTable.dirty_range_iterate_clear(cms_span,
4980                                                &markFromDirtyCardsClosure);
4981       verify_work_stacks_empty();
4982       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4983     }
4984   }
4985   if (VerifyDuringGC &&
4986       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4987     HandleMark hm;  // Discard invalid handles created during verification
4988     Universe::verify();
4989   }
4990   {
4991     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4992 
4993     verify_work_stacks_empty();
4994 
4995     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4996     StrongRootsScope srs(1);
4997 
4998     heap->cms_process_roots(&srs,
4999                             true,  // young gen as roots
5000                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
5001                             should_unload_classes(),
5002                             &mrias_cl,
5003                             NULL); // The dirty klasses will be handled below
5004 
5005     assert(should_unload_classes()
5006            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
5007            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5008   }
5009 
5010   {
5011     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
5012 
5013     verify_work_stacks_empty();
5014 
5015     // Scan all class loader data objects that might have been introduced
5016     // during concurrent marking.
5017     ResourceMark rm;
5018     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5019     for (int i = 0; i < array->length(); i++) {
5020       Devirtualizer::do_cld(&mrias_cl, array->at(i));
5021     }
5022 
5023     // We don't need to keep track of new CLDs anymore.
5024     ClassLoaderDataGraph::remember_new_clds(false);
5025 
5026     verify_work_stacks_empty();
5027   }
5028 
5029   // We might have added oops to ClassLoaderData::_handles during the
5030   // concurrent marking phase. These oops do not point to newly allocated objects
5031   // that are guaranteed to be kept alive.  Hence,
5032   // we do have to revisit the _handles block during the remark phase.
5033   {
5034     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
5035 
5036     verify_work_stacks_empty();
5037 
5038     RemarkCLDClosure remark_closure(&mrias_cl);
5039     ClassLoaderDataGraph::cld_do(&remark_closure);
5040 
5041     verify_work_stacks_empty();
5042   }
5043 
5044   verify_work_stacks_empty();
5045   // Restore evacuated mark words, if any, used for overflow list links
5046   restore_preserved_marks_if_any();
5047 
5048   verify_overflow_empty();
5049 }
5050 
5051 ////////////////////////////////////////////////////////
5052 // Parallel Reference Processing Task Proxy Class
5053 ////////////////////////////////////////////////////////
5054 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5055   OopTaskQueueSet*       _queues;
5056   TaskTerminator         _terminator;
5057  public:
5058   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5059     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5060   ParallelTaskTerminator* terminator() { return _terminator.terminator(); }
5061   OopTaskQueueSet* queues() { return _queues; }
5062 };
5063 
5064 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5065   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5066   CMSCollector*          _collector;
5067   CMSBitMap*             _mark_bit_map;
5068   const MemRegion        _span;
5069   ProcessTask&           _task;
5070 
5071 public:
5072   CMSRefProcTaskProxy(ProcessTask&     task,
5073                       CMSCollector*    collector,
5074                       const MemRegion& span,
5075                       CMSBitMap*       mark_bit_map,
5076                       AbstractWorkGang* workers,
5077                       OopTaskQueueSet* task_queues):
5078     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5079       task_queues,
5080       workers->active_workers()),
5081     _collector(collector),
5082     _mark_bit_map(mark_bit_map),
5083     _span(span),
5084     _task(task)
5085   {
5086     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5087            "Inconsistency in _span");
5088   }
5089 
5090   OopTaskQueueSet* task_queues() { return queues(); }
5091 
5092   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5093 
5094   void do_work_steal(int i,
5095                      CMSParDrainMarkingStackClosure* drain,
5096                      CMSParKeepAliveClosure* keep_alive);
5097 
5098   virtual void work(uint worker_id);
5099 };
5100 
5101 void CMSRefProcTaskProxy::work(uint worker_id) {
5102   ResourceMark rm;
5103   HandleMark hm;
5104   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5105   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5106                                         _mark_bit_map,
5107                                         work_queue(worker_id));
5108   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5109                                                  _mark_bit_map,
5110                                                  work_queue(worker_id));
5111   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5112   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5113   if (_task.marks_oops_alive()) {
5114     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive);
5115   }
5116   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5117   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5118 }
5119 
5120 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5121   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5122    _span(span),
5123    _work_queue(work_queue),
5124    _bit_map(bit_map),
5125    _mark_and_push(collector, span, bit_map, work_queue),
5126    _low_water_mark(MIN2((work_queue->max_elems()/4),
5127                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5128 { }
5129 
5130 // . see if we can share work_queues with ParNew? XXX
5131 void CMSRefProcTaskProxy::do_work_steal(int i,
5132   CMSParDrainMarkingStackClosure* drain,
5133   CMSParKeepAliveClosure* keep_alive) {
5134   OopTaskQueue* work_q = work_queue(i);
5135   NOT_PRODUCT(int num_steals = 0;)
5136   oop obj_to_scan;
5137 
5138   while (true) {
5139     // Completely finish any left over work from (an) earlier round(s)
5140     drain->trim_queue(0);
5141     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5142                                          (size_t)ParGCDesiredObjsFromOverflowList);
5143     // Now check if there's any work in the overflow list
5144     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5145     // only affects the number of attempts made to get work from the
5146     // overflow list and does not affect the number of workers.  Just
5147     // pass ParallelGCThreads so this behavior is unchanged.
5148     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5149                                                 work_q,
5150                                                 ParallelGCThreads)) {
5151       // Found something in global overflow list;
5152       // not yet ready to go stealing work from others.
5153       // We'd like to assert(work_q->size() != 0, ...)
5154       // because we just took work from the overflow list,
5155       // but of course we can't, since all of that might have
5156       // been already stolen from us.
5157       continue;
5158     }
5159     // Verify that we have no work before we resort to stealing
5160     assert(work_q->size() == 0, "Have work, shouldn't steal");
5161     // Try to steal from other queues that have work
5162     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
5163       NOT_PRODUCT(num_steals++;)
5164       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5165       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5166       // Do scanning work
5167       obj_to_scan->oop_iterate(keep_alive);
5168       // Loop around, finish this work, and try to steal some more
5169     } else if (terminator()->offer_termination()) {
5170       break;  // nirvana from the infinite cycle
5171     }
5172   }
5173   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5174 }
5175 
5176 void CMSRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) {
5177   CMSHeap* heap = CMSHeap::heap();
5178   WorkGang* workers = heap->workers();
5179   assert(workers != NULL, "Need parallel worker threads.");
5180   assert(workers->active_workers() == ergo_workers,
5181          "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
5182          ergo_workers, workers->active_workers());
5183   CMSRefProcTaskProxy rp_task(task, &_collector,
5184                               _collector.ref_processor_span(),
5185                               _collector.markBitMap(),
5186                               workers, _collector.task_queues());
5187   workers->run_task(&rp_task, workers->active_workers());
5188 }
5189 
5190 void CMSCollector::refProcessingWork() {
5191   ResourceMark rm;
5192   HandleMark   hm;
5193 
5194   ReferenceProcessor* rp = ref_processor();
5195   assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
5196   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5197   // Process weak references.
5198   rp->setup_policy(false);
5199   verify_work_stacks_empty();
5200 
5201   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
5202   {
5203     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5204 
5205     // Setup keep_alive and complete closures.
5206     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5207                                             &_markStack, false /* !preclean */);
5208     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5209                                   _span, &_markBitMap, &_markStack,
5210                                   &cmsKeepAliveClosure, false /* !preclean */);
5211 
5212     ReferenceProcessorStats stats;
5213     if (rp->processing_is_mt()) {
5214       // Set the degree of MT here.  If the discovery is done MT, there
5215       // may have been a different number of threads doing the discovery
5216       // and a different number of discovered lists may have Ref objects.
5217       // That is OK as long as the Reference lists are balanced (see
5218       // balance_all_queues() and balance_queues()).
5219       CMSHeap* heap = CMSHeap::heap();
5220       uint active_workers = ParallelGCThreads;
5221       WorkGang* workers = heap->workers();
5222       if (workers != NULL) {
5223         active_workers = workers->active_workers();
5224         // The expectation is that active_workers will have already
5225         // been set to a reasonable value.  If it has not been set,
5226         // investigate.
5227         assert(active_workers > 0, "Should have been set during scavenge");
5228       }
5229       rp->set_active_mt_degree(active_workers);
5230       CMSRefProcTaskExecutor task_executor(*this);
5231       stats = rp->process_discovered_references(&_is_alive_closure,
5232                                         &cmsKeepAliveClosure,
5233                                         &cmsDrainMarkingStackClosure,
5234                                         &task_executor,
5235                                         &pt);
5236     } else {
5237       stats = rp->process_discovered_references(&_is_alive_closure,
5238                                         &cmsKeepAliveClosure,
5239                                         &cmsDrainMarkingStackClosure,
5240                                         NULL,
5241                                         &pt);
5242     }
5243     _gc_tracer_cm->report_gc_reference_stats(stats);
5244     pt.print_all_references();
5245   }
5246 
5247   // This is the point where the entire marking should have completed.
5248   verify_work_stacks_empty();
5249 
5250   {
5251     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5252     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5253   }
5254 
5255   if (should_unload_classes()) {
5256     {
5257       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5258 
5259       // Unload classes and purge the SystemDictionary.
5260       bool purged_class = SystemDictionary::do_unloading(_gc_timer_cm);
5261 
5262       // Unload nmethods.
5263       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5264 
5265       // Prune dead klasses from subklass/sibling/implementor lists.
5266       Klass::clean_weak_klass_links(purged_class);
5267 
5268       // Clean JVMCI metadata handles.
5269       JVMCI_ONLY(JVMCI::do_unloading(purged_class));
5270     }
5271   }
5272 
5273   // Restore any preserved marks as a result of mark stack or
5274   // work queue overflow
5275   restore_preserved_marks_if_any();  // done single-threaded for now
5276 
5277   rp->set_enqueuing_is_done(true);
5278   rp->verify_no_references_recorded();
5279 }
5280 
5281 #ifndef PRODUCT
5282 void CMSCollector::check_correct_thread_executing() {
5283   Thread* t = Thread::current();
5284   // Only the VM thread or the CMS thread should be here.
5285   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5286          "Unexpected thread type");
5287   // If this is the vm thread, the foreground process
5288   // should not be waiting.  Note that _foregroundGCIsActive is
5289   // true while the foreground collector is waiting.
5290   if (_foregroundGCShouldWait) {
5291     // We cannot be the VM thread
5292     assert(t->is_ConcurrentGC_thread(),
5293            "Should be CMS thread");
5294   } else {
5295     // We can be the CMS thread only if we are in a stop-world
5296     // phase of CMS collection.
5297     if (t->is_ConcurrentGC_thread()) {
5298       assert(_collectorState == InitialMarking ||
5299              _collectorState == FinalMarking,
5300              "Should be a stop-world phase");
5301       // The CMS thread should be holding the CMS_token.
5302       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5303              "Potential interference with concurrently "
5304              "executing VM thread");
5305     }
5306   }
5307 }
5308 #endif
5309 
5310 void CMSCollector::sweep() {
5311   assert(_collectorState == Sweeping, "just checking");
5312   check_correct_thread_executing();
5313   verify_work_stacks_empty();
5314   verify_overflow_empty();
5315   increment_sweep_count();
5316   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5317 
5318   _inter_sweep_timer.stop();
5319   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5320 
5321   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5322   _intra_sweep_timer.reset();
5323   _intra_sweep_timer.start();
5324   {
5325     GCTraceCPUTime tcpu;
5326     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5327     // First sweep the old gen
5328     {
5329       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5330                                bitMapLock());
5331       sweepWork(_cmsGen);
5332     }
5333 
5334     // Update Universe::_heap_*_at_gc figures.
5335     // We need all the free list locks to make the abstract state
5336     // transition from Sweeping to Resetting. See detailed note
5337     // further below.
5338     {
5339       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5340       // Update heap occupancy information which is used as
5341       // input to soft ref clearing policy at the next gc.
5342       Universe::update_heap_info_at_gc();
5343       _collectorState = Resizing;
5344     }
5345   }
5346   verify_work_stacks_empty();
5347   verify_overflow_empty();
5348 
5349   if (should_unload_classes()) {
5350     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5351     // requires that the virtual spaces are stable and not deleted.
5352     ClassLoaderDataGraph::set_should_purge(true);
5353   }
5354 
5355   _intra_sweep_timer.stop();
5356   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5357 
5358   _inter_sweep_timer.reset();
5359   _inter_sweep_timer.start();
5360 
5361   // We need to use a monotonically non-decreasing time in ms
5362   // or we will see time-warp warnings and os::javaTimeMillis()
5363   // does not guarantee monotonicity.
5364   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5365   update_time_of_last_gc(now);
5366 
5367   // NOTE on abstract state transitions:
5368   // Mutators allocate-live and/or mark the mod-union table dirty
5369   // based on the state of the collection.  The former is done in
5370   // the interval [Marking, Sweeping] and the latter in the interval
5371   // [Marking, Sweeping).  Thus the transitions into the Marking state
5372   // and out of the Sweeping state must be synchronously visible
5373   // globally to the mutators.
5374   // The transition into the Marking state happens with the world
5375   // stopped so the mutators will globally see it.  Sweeping is
5376   // done asynchronously by the background collector so the transition
5377   // from the Sweeping state to the Resizing state must be done
5378   // under the freelistLock (as is the check for whether to
5379   // allocate-live and whether to dirty the mod-union table).
5380   assert(_collectorState == Resizing, "Change of collector state to"
5381     " Resizing must be done under the freelistLocks (plural)");
5382 
5383   // Now that sweeping has been completed, we clear
5384   // the incremental_collection_failed flag,
5385   // thus inviting a younger gen collection to promote into
5386   // this generation. If such a promotion may still fail,
5387   // the flag will be set again when a young collection is
5388   // attempted.
5389   CMSHeap* heap = CMSHeap::heap();
5390   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5391   heap->update_full_collections_completed(_collection_count_start);
5392 }
5393 
5394 // FIX ME!!! Looks like this belongs in CFLSpace, with
5395 // CMSGen merely delegating to it.
5396 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5397   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5398   HeapWord*  minAddr        = _cmsSpace->bottom();
5399   HeapWord*  largestAddr    =
5400     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5401   if (largestAddr == NULL) {
5402     // The dictionary appears to be empty.  In this case
5403     // try to coalesce at the end of the heap.
5404     largestAddr = _cmsSpace->end();
5405   }
5406   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5407   size_t nearLargestOffset =
5408     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5409   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5410                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5411   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5412 }
5413 
5414 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5415   return addr >= _cmsSpace->nearLargestChunk();
5416 }
5417 
5418 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5419   return _cmsSpace->find_chunk_at_end();
5420 }
5421 
5422 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5423                                                     bool full) {
5424   // If the young generation has been collected, gather any statistics
5425   // that are of interest at this point.
5426   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5427   if (!full && current_is_young) {
5428     // Gather statistics on the young generation collection.
5429     collector()->stats().record_gc0_end(used());
5430   }
5431 }
5432 
5433 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5434   // We iterate over the space(s) underlying this generation,
5435   // checking the mark bit map to see if the bits corresponding
5436   // to specific blocks are marked or not. Blocks that are
5437   // marked are live and are not swept up. All remaining blocks
5438   // are swept up, with coalescing on-the-fly as we sweep up
5439   // contiguous free and/or garbage blocks:
5440   // We need to ensure that the sweeper synchronizes with allocators
5441   // and stop-the-world collectors. In particular, the following
5442   // locks are used:
5443   // . CMS token: if this is held, a stop the world collection cannot occur
5444   // . freelistLock: if this is held no allocation can occur from this
5445   //                 generation by another thread
5446   // . bitMapLock: if this is held, no other thread can access or update
5447   //
5448 
5449   // Note that we need to hold the freelistLock if we use
5450   // block iterate below; else the iterator might go awry if
5451   // a mutator (or promotion) causes block contents to change
5452   // (for instance if the allocator divvies up a block).
5453   // If we hold the free list lock, for all practical purposes
5454   // young generation GC's can't occur (they'll usually need to
5455   // promote), so we might as well prevent all young generation
5456   // GC's while we do a sweeping step. For the same reason, we might
5457   // as well take the bit map lock for the entire duration
5458 
5459   // check that we hold the requisite locks
5460   assert(have_cms_token(), "Should hold cms token");
5461   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5462   assert_lock_strong(old_gen->freelistLock());
5463   assert_lock_strong(bitMapLock());
5464 
5465   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5466   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5467   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5468                                           _inter_sweep_estimate.padded_average(),
5469                                           _intra_sweep_estimate.padded_average());
5470   old_gen->setNearLargestChunk();
5471 
5472   {
5473     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5474     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5475     // We need to free-up/coalesce garbage/blocks from a
5476     // co-terminal free run. This is done in the SweepClosure
5477     // destructor; so, do not remove this scope, else the
5478     // end-of-sweep-census below will be off by a little bit.
5479   }
5480   old_gen->cmsSpace()->sweep_completed();
5481   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5482   if (should_unload_classes()) {                // unloaded classes this cycle,
5483     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5484   } else {                                      // did not unload classes,
5485     _concurrent_cycles_since_last_unload++;     // ... increment count
5486   }
5487 }
5488 
5489 // Reset CMS data structures (for now just the marking bit map)
5490 // preparatory for the next cycle.
5491 void CMSCollector::reset_concurrent() {
5492   CMSTokenSyncWithLocks ts(true, bitMapLock());
5493 
5494   // If the state is not "Resetting", the foreground  thread
5495   // has done a collection and the resetting.
5496   if (_collectorState != Resetting) {
5497     assert(_collectorState == Idling, "The state should only change"
5498       " because the foreground collector has finished the collection");
5499     return;
5500   }
5501 
5502   {
5503     // Clear the mark bitmap (no grey objects to start with)
5504     // for the next cycle.
5505     GCTraceCPUTime tcpu;
5506     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5507 
5508     HeapWord* curAddr = _markBitMap.startWord();
5509     while (curAddr < _markBitMap.endWord()) {
5510       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5511       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5512       _markBitMap.clear_large_range(chunk);
5513       if (ConcurrentMarkSweepThread::should_yield() &&
5514           !foregroundGCIsActive() &&
5515           CMSYield) {
5516         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5517                "CMS thread should hold CMS token");
5518         assert_lock_strong(bitMapLock());
5519         bitMapLock()->unlock();
5520         ConcurrentMarkSweepThread::desynchronize(true);
5521         stopTimer();
5522         incrementYields();
5523 
5524         // See the comment in coordinator_yield()
5525         for (unsigned i = 0; i < CMSYieldSleepCount &&
5526                          ConcurrentMarkSweepThread::should_yield() &&
5527                          !CMSCollector::foregroundGCIsActive(); ++i) {
5528           os::sleep(Thread::current(), 1, false);
5529         }
5530 
5531         ConcurrentMarkSweepThread::synchronize(true);
5532         bitMapLock()->lock_without_safepoint_check();
5533         startTimer();
5534       }
5535       curAddr = chunk.end();
5536     }
5537     // A successful mostly concurrent collection has been done.
5538     // Because only the full (i.e., concurrent mode failure) collections
5539     // are being measured for gc overhead limits, clean the "near" flag
5540     // and count.
5541     size_policy()->reset_gc_overhead_limit_count();
5542     _collectorState = Idling;
5543   }
5544 
5545   register_gc_end();
5546 }
5547 
5548 // Same as above but for STW paths
5549 void CMSCollector::reset_stw() {
5550   // already have the lock
5551   assert(_collectorState == Resetting, "just checking");
5552   assert_lock_strong(bitMapLock());
5553   GCIdMark gc_id_mark(_cmsThread->gc_id());
5554   _markBitMap.clear_all();
5555   _collectorState = Idling;
5556   register_gc_end();
5557 }
5558 
5559 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5560   GCTraceCPUTime tcpu;
5561   TraceCollectorStats tcs_cgc(cgc_counters());
5562 
5563   switch (op) {
5564     case CMS_op_checkpointRootsInitial: {
5565       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5566       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5567       checkpointRootsInitial();
5568       break;
5569     }
5570     case CMS_op_checkpointRootsFinal: {
5571       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5572       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5573       checkpointRootsFinal();
5574       break;
5575     }
5576     default:
5577       fatal("No such CMS_op");
5578   }
5579 }
5580 
5581 #ifndef PRODUCT
5582 size_t const CMSCollector::skip_header_HeapWords() {
5583   return FreeChunk::header_size();
5584 }
5585 
5586 // Try and collect here conditions that should hold when
5587 // CMS thread is exiting. The idea is that the foreground GC
5588 // thread should not be blocked if it wants to terminate
5589 // the CMS thread and yet continue to run the VM for a while
5590 // after that.
5591 void CMSCollector::verify_ok_to_terminate() const {
5592   assert(Thread::current()->is_ConcurrentGC_thread(),
5593          "should be called by CMS thread");
5594   assert(!_foregroundGCShouldWait, "should be false");
5595   // We could check here that all the various low-level locks
5596   // are not held by the CMS thread, but that is overkill; see
5597   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5598   // is checked.
5599 }
5600 #endif
5601 
5602 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5603    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5604           "missing Printezis mark?");
5605   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5606   size_t size = pointer_delta(nextOneAddr + 1, addr);
5607   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5608          "alignment problem");
5609   assert(size >= 3, "Necessary for Printezis marks to work");
5610   return size;
5611 }
5612 
5613 // A variant of the above (block_size_using_printezis_bits()) except
5614 // that we return 0 if the P-bits are not yet set.
5615 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5616   if (_markBitMap.isMarked(addr + 1)) {
5617     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5618     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5619     size_t size = pointer_delta(nextOneAddr + 1, addr);
5620     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5621            "alignment problem");
5622     assert(size >= 3, "Necessary for Printezis marks to work");
5623     return size;
5624   }
5625   return 0;
5626 }
5627 
5628 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5629   size_t sz = 0;
5630   oop p = (oop)addr;
5631   if (p->klass_or_null_acquire() != NULL) {
5632     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5633   } else {
5634     sz = block_size_using_printezis_bits(addr);
5635   }
5636   assert(sz > 0, "size must be nonzero");
5637   HeapWord* next_block = addr + sz;
5638   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
5639   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
5640          align_down((uintptr_t)next_card, CardTable::card_size),
5641          "must be different cards");
5642   return next_card;
5643 }
5644 
5645 
5646 // CMS Bit Map Wrapper /////////////////////////////////////////
5647 
5648 // Construct a CMS bit map infrastructure, but don't create the
5649 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5650 // further below.
5651 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5652   _shifter(shifter),
5653   _bm(),
5654   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5655                                     Monitor::_safepoint_check_never) : NULL)
5656 {
5657   _bmStartWord = 0;
5658   _bmWordSize  = 0;
5659 }
5660 
5661 bool CMSBitMap::allocate(MemRegion mr) {
5662   _bmStartWord = mr.start();
5663   _bmWordSize  = mr.word_size();
5664   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5665                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5666   if (!brs.is_reserved()) {
5667     log_warning(gc)("CMS bit map allocation failure");
5668     return false;
5669   }
5670   // For now we'll just commit all of the bit map up front.
5671   // Later on we'll try to be more parsimonious with swap.
5672   if (!_virtual_space.initialize(brs, brs.size())) {
5673     log_warning(gc)("CMS bit map backing store failure");
5674     return false;
5675   }
5676   assert(_virtual_space.committed_size() == brs.size(),
5677          "didn't reserve backing store for all of CMS bit map?");
5678   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5679          _bmWordSize, "inconsistency in bit map sizing");
5680   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5681 
5682   // bm.clear(); // can we rely on getting zero'd memory? verify below
5683   assert(isAllClear(),
5684          "Expected zero'd memory from ReservedSpace constructor");
5685   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5686          "consistency check");
5687   return true;
5688 }
5689 
5690 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5691   HeapWord *next_addr, *end_addr, *last_addr;
5692   assert_locked();
5693   assert(covers(mr), "out-of-range error");
5694   // XXX assert that start and end are appropriately aligned
5695   for (next_addr = mr.start(), end_addr = mr.end();
5696        next_addr < end_addr; next_addr = last_addr) {
5697     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5698     last_addr = dirty_region.end();
5699     if (!dirty_region.is_empty()) {
5700       cl->do_MemRegion(dirty_region);
5701     } else {
5702       assert(last_addr == end_addr, "program logic");
5703       return;
5704     }
5705   }
5706 }
5707 
5708 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5709   _bm.print_on_error(st, prefix);
5710 }
5711 
5712 #ifndef PRODUCT
5713 void CMSBitMap::assert_locked() const {
5714   CMSLockVerifier::assert_locked(lock());
5715 }
5716 
5717 bool CMSBitMap::covers(MemRegion mr) const {
5718   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5719   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5720          "size inconsistency");
5721   return (mr.start() >= _bmStartWord) &&
5722          (mr.end()   <= endWord());
5723 }
5724 
5725 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5726     return (start >= _bmStartWord && (start + size) <= endWord());
5727 }
5728 
5729 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5730   // verify that there are no 1 bits in the interval [left, right)
5731   FalseBitMapClosure falseBitMapClosure;
5732   iterate(&falseBitMapClosure, left, right);
5733 }
5734 
5735 void CMSBitMap::region_invariant(MemRegion mr)
5736 {
5737   assert_locked();
5738   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5739   assert(!mr.is_empty(), "unexpected empty region");
5740   assert(covers(mr), "mr should be covered by bit map");
5741   // convert address range into offset range
5742   size_t start_ofs = heapWordToOffset(mr.start());
5743   // Make sure that end() is appropriately aligned
5744   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5745          "Misaligned mr.end()");
5746   size_t end_ofs   = heapWordToOffset(mr.end());
5747   assert(end_ofs > start_ofs, "Should mark at least one bit");
5748 }
5749 
5750 #endif
5751 
5752 bool CMSMarkStack::allocate(size_t size) {
5753   // allocate a stack of the requisite depth
5754   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5755                    size * sizeof(oop)));
5756   if (!rs.is_reserved()) {
5757     log_warning(gc)("CMSMarkStack allocation failure");
5758     return false;
5759   }
5760   if (!_virtual_space.initialize(rs, rs.size())) {
5761     log_warning(gc)("CMSMarkStack backing store failure");
5762     return false;
5763   }
5764   assert(_virtual_space.committed_size() == rs.size(),
5765          "didn't reserve backing store for all of CMS stack?");
5766   _base = (oop*)(_virtual_space.low());
5767   _index = 0;
5768   _capacity = size;
5769   NOT_PRODUCT(_max_depth = 0);
5770   return true;
5771 }
5772 
5773 // XXX FIX ME !!! In the MT case we come in here holding a
5774 // leaf lock. For printing we need to take a further lock
5775 // which has lower rank. We need to recalibrate the two
5776 // lock-ranks involved in order to be able to print the
5777 // messages below. (Or defer the printing to the caller.
5778 // For now we take the expedient path of just disabling the
5779 // messages for the problematic case.)
5780 void CMSMarkStack::expand() {
5781   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5782   if (_capacity == MarkStackSizeMax) {
5783     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5784       // We print a warning message only once per CMS cycle.
5785       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5786     }
5787     return;
5788   }
5789   // Double capacity if possible
5790   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5791   // Do not give up existing stack until we have managed to
5792   // get the double capacity that we desired.
5793   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5794                    new_capacity * sizeof(oop)));
5795   if (rs.is_reserved()) {
5796     // Release the backing store associated with old stack
5797     _virtual_space.release();
5798     // Reinitialize virtual space for new stack
5799     if (!_virtual_space.initialize(rs, rs.size())) {
5800       fatal("Not enough swap for expanded marking stack");
5801     }
5802     _base = (oop*)(_virtual_space.low());
5803     _index = 0;
5804     _capacity = new_capacity;
5805   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5806     // Failed to double capacity, continue;
5807     // we print a detail message only once per CMS cycle.
5808     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5809                         _capacity / K, new_capacity / K);
5810   }
5811 }
5812 
5813 
5814 // Closures
5815 // XXX: there seems to be a lot of code  duplication here;
5816 // should refactor and consolidate common code.
5817 
5818 // This closure is used to mark refs into the CMS generation in
5819 // the CMS bit map. Called at the first checkpoint. This closure
5820 // assumes that we do not need to re-mark dirty cards; if the CMS
5821 // generation on which this is used is not an oldest
5822 // generation then this will lose younger_gen cards!
5823 
5824 MarkRefsIntoClosure::MarkRefsIntoClosure(
5825   MemRegion span, CMSBitMap* bitMap):
5826     _span(span),
5827     _bitMap(bitMap)
5828 {
5829   assert(ref_discoverer() == NULL, "deliberately left NULL");
5830   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5831 }
5832 
5833 void MarkRefsIntoClosure::do_oop(oop obj) {
5834   // if p points into _span, then mark corresponding bit in _markBitMap
5835   assert(oopDesc::is_oop(obj), "expected an oop");
5836   HeapWord* addr = (HeapWord*)obj;
5837   if (_span.contains(addr)) {
5838     // this should be made more efficient
5839     _bitMap->mark(addr);
5840   }
5841 }
5842 
5843 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5844   MemRegion span, CMSBitMap* bitMap):
5845     _span(span),
5846     _bitMap(bitMap)
5847 {
5848   assert(ref_discoverer() == NULL, "deliberately left NULL");
5849   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5850 }
5851 
5852 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5853   // if p points into _span, then mark corresponding bit in _markBitMap
5854   assert(oopDesc::is_oop(obj), "expected an oop");
5855   HeapWord* addr = (HeapWord*)obj;
5856   if (_span.contains(addr)) {
5857     // this should be made more efficient
5858     _bitMap->par_mark(addr);
5859   }
5860 }
5861 
5862 // A variant of the above, used for CMS marking verification.
5863 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5864   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5865     _span(span),
5866     _verification_bm(verification_bm),
5867     _cms_bm(cms_bm)
5868 {
5869   assert(ref_discoverer() == NULL, "deliberately left NULL");
5870   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5871 }
5872 
5873 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5874   // if p points into _span, then mark corresponding bit in _markBitMap
5875   assert(oopDesc::is_oop(obj), "expected an oop");
5876   HeapWord* addr = (HeapWord*)obj;
5877   if (_span.contains(addr)) {
5878     _verification_bm->mark(addr);
5879     if (!_cms_bm->isMarked(addr)) {
5880       Log(gc, verify) log;
5881       ResourceMark rm;
5882       LogStream ls(log.error());
5883       oop(addr)->print_on(&ls);
5884       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5885       fatal("... aborting");
5886     }
5887   }
5888 }
5889 
5890 //////////////////////////////////////////////////
5891 // MarkRefsIntoAndScanClosure
5892 //////////////////////////////////////////////////
5893 
5894 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5895                                                        ReferenceDiscoverer* rd,
5896                                                        CMSBitMap* bit_map,
5897                                                        CMSBitMap* mod_union_table,
5898                                                        CMSMarkStack*  mark_stack,
5899                                                        CMSCollector* collector,
5900                                                        bool should_yield,
5901                                                        bool concurrent_precleaning):
5902   _span(span),
5903   _bit_map(bit_map),
5904   _mark_stack(mark_stack),
5905   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
5906                       mark_stack, concurrent_precleaning),
5907   _collector(collector),
5908   _freelistLock(NULL),
5909   _yield(should_yield),
5910   _concurrent_precleaning(concurrent_precleaning)
5911 {
5912   // FIXME: Should initialize in base class constructor.
5913   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5914   set_ref_discoverer_internal(rd);
5915 }
5916 
5917 // This closure is used to mark refs into the CMS generation at the
5918 // second (final) checkpoint, and to scan and transitively follow
5919 // the unmarked oops. It is also used during the concurrent precleaning
5920 // phase while scanning objects on dirty cards in the CMS generation.
5921 // The marks are made in the marking bit map and the marking stack is
5922 // used for keeping the (newly) grey objects during the scan.
5923 // The parallel version (Par_...) appears further below.
5924 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5925   if (obj != NULL) {
5926     assert(oopDesc::is_oop(obj), "expected an oop");
5927     HeapWord* addr = (HeapWord*)obj;
5928     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5929     assert(_collector->overflow_list_is_empty(),
5930            "overflow list should be empty");
5931     if (_span.contains(addr) &&
5932         !_bit_map->isMarked(addr)) {
5933       // mark bit map (object is now grey)
5934       _bit_map->mark(addr);
5935       // push on marking stack (stack should be empty), and drain the
5936       // stack by applying this closure to the oops in the oops popped
5937       // from the stack (i.e. blacken the grey objects)
5938       bool res = _mark_stack->push(obj);
5939       assert(res, "Should have space to push on empty stack");
5940       do {
5941         oop new_oop = _mark_stack->pop();
5942         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5943         assert(_bit_map->isMarked((HeapWord*)new_oop),
5944                "only grey objects on this stack");
5945         // iterate over the oops in this oop, marking and pushing
5946         // the ones in CMS heap (i.e. in _span).
5947         new_oop->oop_iterate(&_pushAndMarkClosure);
5948         // check if it's time to yield
5949         do_yield_check();
5950       } while (!_mark_stack->isEmpty() ||
5951                (!_concurrent_precleaning && take_from_overflow_list()));
5952         // if marking stack is empty, and we are not doing this
5953         // during precleaning, then check the overflow list
5954     }
5955     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5956     assert(_collector->overflow_list_is_empty(),
5957            "overflow list was drained above");
5958 
5959     assert(_collector->no_preserved_marks(),
5960            "All preserved marks should have been restored above");
5961   }
5962 }
5963 
5964 void MarkRefsIntoAndScanClosure::do_yield_work() {
5965   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5966          "CMS thread should hold CMS token");
5967   assert_lock_strong(_freelistLock);
5968   assert_lock_strong(_bit_map->lock());
5969   // relinquish the free_list_lock and bitMaplock()
5970   _bit_map->lock()->unlock();
5971   _freelistLock->unlock();
5972   ConcurrentMarkSweepThread::desynchronize(true);
5973   _collector->stopTimer();
5974   _collector->incrementYields();
5975 
5976   // See the comment in coordinator_yield()
5977   for (unsigned i = 0;
5978        i < CMSYieldSleepCount &&
5979        ConcurrentMarkSweepThread::should_yield() &&
5980        !CMSCollector::foregroundGCIsActive();
5981        ++i) {
5982     os::sleep(Thread::current(), 1, false);
5983   }
5984 
5985   ConcurrentMarkSweepThread::synchronize(true);
5986   _freelistLock->lock_without_safepoint_check();
5987   _bit_map->lock()->lock_without_safepoint_check();
5988   _collector->startTimer();
5989 }
5990 
5991 ///////////////////////////////////////////////////////////
5992 // ParMarkRefsIntoAndScanClosure: a parallel version of
5993 //                                MarkRefsIntoAndScanClosure
5994 ///////////////////////////////////////////////////////////
5995 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
5996   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
5997   CMSBitMap* bit_map, OopTaskQueue* work_queue):
5998   _span(span),
5999   _bit_map(bit_map),
6000   _work_queue(work_queue),
6001   _low_water_mark(MIN2((work_queue->max_elems()/4),
6002                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
6003   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
6004 {
6005   // FIXME: Should initialize in base class constructor.
6006   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
6007   set_ref_discoverer_internal(rd);
6008 }
6009 
6010 // This closure is used to mark refs into the CMS generation at the
6011 // second (final) checkpoint, and to scan and transitively follow
6012 // the unmarked oops. The marks are made in the marking bit map and
6013 // the work_queue is used for keeping the (newly) grey objects during
6014 // the scan phase whence they are also available for stealing by parallel
6015 // threads. Since the marking bit map is shared, updates are
6016 // synchronized (via CAS).
6017 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
6018   if (obj != NULL) {
6019     // Ignore mark word because this could be an already marked oop
6020     // that may be chained at the end of the overflow list.
6021     assert(oopDesc::is_oop(obj, true), "expected an oop");
6022     HeapWord* addr = (HeapWord*)obj;
6023     if (_span.contains(addr) &&
6024         !_bit_map->isMarked(addr)) {
6025       // mark bit map (object will become grey):
6026       // It is possible for several threads to be
6027       // trying to "claim" this object concurrently;
6028       // the unique thread that succeeds in marking the
6029       // object first will do the subsequent push on
6030       // to the work queue (or overflow list).
6031       if (_bit_map->par_mark(addr)) {
6032         // push on work_queue (which may not be empty), and trim the
6033         // queue to an appropriate length by applying this closure to
6034         // the oops in the oops popped from the stack (i.e. blacken the
6035         // grey objects)
6036         bool res = _work_queue->push(obj);
6037         assert(res, "Low water mark should be less than capacity?");
6038         trim_queue(_low_water_mark);
6039       } // Else, another thread claimed the object
6040     }
6041   }
6042 }
6043 
6044 // This closure is used to rescan the marked objects on the dirty cards
6045 // in the mod union table and the card table proper.
6046 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6047   oop p, MemRegion mr) {
6048 
6049   size_t size = 0;
6050   HeapWord* addr = (HeapWord*)p;
6051   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6052   assert(_span.contains(addr), "we are scanning the CMS generation");
6053   // check if it's time to yield
6054   if (do_yield_check()) {
6055     // We yielded for some foreground stop-world work,
6056     // and we have been asked to abort this ongoing preclean cycle.
6057     return 0;
6058   }
6059   if (_bitMap->isMarked(addr)) {
6060     // it's marked; is it potentially uninitialized?
6061     if (p->klass_or_null_acquire() != NULL) {
6062         // an initialized object; ignore mark word in verification below
6063         // since we are running concurrent with mutators
6064         assert(oopDesc::is_oop(p, true), "should be an oop");
6065         if (p->is_objArray()) {
6066           // objArrays are precisely marked; restrict scanning
6067           // to dirty cards only.
6068           size = CompactibleFreeListSpace::adjustObjectSize(
6069                    p->oop_iterate_size(_scanningClosure, mr));
6070         } else {
6071           // A non-array may have been imprecisely marked; we need
6072           // to scan object in its entirety.
6073           size = CompactibleFreeListSpace::adjustObjectSize(
6074                    p->oop_iterate_size(_scanningClosure));
6075         }
6076       #ifdef ASSERT
6077         size_t direct_size =
6078           CompactibleFreeListSpace::adjustObjectSize(p->size());
6079         assert(size == direct_size, "Inconsistency in size");
6080         assert(size >= 3, "Necessary for Printezis marks to work");
6081         HeapWord* start_pbit = addr + 1;
6082         HeapWord* end_pbit = addr + size - 1;
6083         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6084                "inconsistent Printezis mark");
6085         // Verify inner mark bits (between Printezis bits) are clear,
6086         // but don't repeat if there are multiple dirty regions for
6087         // the same object, to avoid potential O(N^2) performance.
6088         if (addr != _last_scanned_object) {
6089           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6090           _last_scanned_object = addr;
6091         }
6092       #endif // ASSERT
6093     } else {
6094       // An uninitialized object.
6095       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6096       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6097       size = pointer_delta(nextOneAddr + 1, addr);
6098       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6099              "alignment problem");
6100       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6101       // will dirty the card when the klass pointer is installed in the
6102       // object (signaling the completion of initialization).
6103     }
6104   } else {
6105     // Either a not yet marked object or an uninitialized object
6106     if (p->klass_or_null_acquire() == NULL) {
6107       // An uninitialized object, skip to the next card, since
6108       // we may not be able to read its P-bits yet.
6109       assert(size == 0, "Initial value");
6110     } else {
6111       // An object not (yet) reached by marking: we merely need to
6112       // compute its size so as to go look at the next block.
6113       assert(oopDesc::is_oop(p, true), "should be an oop");
6114       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6115     }
6116   }
6117   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6118   return size;
6119 }
6120 
6121 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6122   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6123          "CMS thread should hold CMS token");
6124   assert_lock_strong(_freelistLock);
6125   assert_lock_strong(_bitMap->lock());
6126   // relinquish the free_list_lock and bitMaplock()
6127   _bitMap->lock()->unlock();
6128   _freelistLock->unlock();
6129   ConcurrentMarkSweepThread::desynchronize(true);
6130   _collector->stopTimer();
6131   _collector->incrementYields();
6132 
6133   // See the comment in coordinator_yield()
6134   for (unsigned i = 0; i < CMSYieldSleepCount &&
6135                    ConcurrentMarkSweepThread::should_yield() &&
6136                    !CMSCollector::foregroundGCIsActive(); ++i) {
6137     os::sleep(Thread::current(), 1, false);
6138   }
6139 
6140   ConcurrentMarkSweepThread::synchronize(true);
6141   _freelistLock->lock_without_safepoint_check();
6142   _bitMap->lock()->lock_without_safepoint_check();
6143   _collector->startTimer();
6144 }
6145 
6146 
6147 //////////////////////////////////////////////////////////////////
6148 // SurvivorSpacePrecleanClosure
6149 //////////////////////////////////////////////////////////////////
6150 // This (single-threaded) closure is used to preclean the oops in
6151 // the survivor spaces.
6152 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6153 
6154   HeapWord* addr = (HeapWord*)p;
6155   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6156   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6157   assert(p->klass_or_null() != NULL, "object should be initialized");
6158   // an initialized object; ignore mark word in verification below
6159   // since we are running concurrent with mutators
6160   assert(oopDesc::is_oop(p, true), "should be an oop");
6161   // Note that we do not yield while we iterate over
6162   // the interior oops of p, pushing the relevant ones
6163   // on our marking stack.
6164   size_t size = p->oop_iterate_size(_scanning_closure);
6165   do_yield_check();
6166   // Observe that below, we do not abandon the preclean
6167   // phase as soon as we should; rather we empty the
6168   // marking stack before returning. This is to satisfy
6169   // some existing assertions. In general, it may be a
6170   // good idea to abort immediately and complete the marking
6171   // from the grey objects at a later time.
6172   while (!_mark_stack->isEmpty()) {
6173     oop new_oop = _mark_stack->pop();
6174     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6175     assert(_bit_map->isMarked((HeapWord*)new_oop),
6176            "only grey objects on this stack");
6177     // iterate over the oops in this oop, marking and pushing
6178     // the ones in CMS heap (i.e. in _span).
6179     new_oop->oop_iterate(_scanning_closure);
6180     // check if it's time to yield
6181     do_yield_check();
6182   }
6183   unsigned int after_count =
6184     CMSHeap::heap()->total_collections();
6185   bool abort = (_before_count != after_count) ||
6186                _collector->should_abort_preclean();
6187   return abort ? 0 : size;
6188 }
6189 
6190 void SurvivorSpacePrecleanClosure::do_yield_work() {
6191   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6192          "CMS thread should hold CMS token");
6193   assert_lock_strong(_bit_map->lock());
6194   // Relinquish the bit map lock
6195   _bit_map->lock()->unlock();
6196   ConcurrentMarkSweepThread::desynchronize(true);
6197   _collector->stopTimer();
6198   _collector->incrementYields();
6199 
6200   // See the comment in coordinator_yield()
6201   for (unsigned i = 0; i < CMSYieldSleepCount &&
6202                        ConcurrentMarkSweepThread::should_yield() &&
6203                        !CMSCollector::foregroundGCIsActive(); ++i) {
6204     os::sleep(Thread::current(), 1, false);
6205   }
6206 
6207   ConcurrentMarkSweepThread::synchronize(true);
6208   _bit_map->lock()->lock_without_safepoint_check();
6209   _collector->startTimer();
6210 }
6211 
6212 // This closure is used to rescan the marked objects on the dirty cards
6213 // in the mod union table and the card table proper. In the parallel
6214 // case, although the bitMap is shared, we do a single read so the
6215 // isMarked() query is "safe".
6216 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6217   // Ignore mark word because we are running concurrent with mutators
6218   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6219   HeapWord* addr = (HeapWord*)p;
6220   assert(_span.contains(addr), "we are scanning the CMS generation");
6221   bool is_obj_array = false;
6222   #ifdef ASSERT
6223     if (!_parallel) {
6224       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6225       assert(_collector->overflow_list_is_empty(),
6226              "overflow list should be empty");
6227 
6228     }
6229   #endif // ASSERT
6230   if (_bit_map->isMarked(addr)) {
6231     // Obj arrays are precisely marked, non-arrays are not;
6232     // so we scan objArrays precisely and non-arrays in their
6233     // entirety.
6234     if (p->is_objArray()) {
6235       is_obj_array = true;
6236       if (_parallel) {
6237         p->oop_iterate(_par_scan_closure, mr);
6238       } else {
6239         p->oop_iterate(_scan_closure, mr);
6240       }
6241     } else {
6242       if (_parallel) {
6243         p->oop_iterate(_par_scan_closure);
6244       } else {
6245         p->oop_iterate(_scan_closure);
6246       }
6247     }
6248   }
6249   #ifdef ASSERT
6250     if (!_parallel) {
6251       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6252       assert(_collector->overflow_list_is_empty(),
6253              "overflow list should be empty");
6254 
6255     }
6256   #endif // ASSERT
6257   return is_obj_array;
6258 }
6259 
6260 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6261                         MemRegion span,
6262                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6263                         bool should_yield, bool verifying):
6264   _collector(collector),
6265   _span(span),
6266   _bitMap(bitMap),
6267   _mut(&collector->_modUnionTable),
6268   _markStack(markStack),
6269   _yield(should_yield),
6270   _skipBits(0)
6271 {
6272   assert(_markStack->isEmpty(), "stack should be empty");
6273   _finger = _bitMap->startWord();
6274   _threshold = _finger;
6275   assert(_collector->_restart_addr == NULL, "Sanity check");
6276   assert(_span.contains(_finger), "Out of bounds _finger?");
6277   DEBUG_ONLY(_verifying = verifying;)
6278 }
6279 
6280 void MarkFromRootsClosure::reset(HeapWord* addr) {
6281   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6282   assert(_span.contains(addr), "Out of bounds _finger?");
6283   _finger = addr;
6284   _threshold = align_up(_finger, CardTable::card_size);
6285 }
6286 
6287 // Should revisit to see if this should be restructured for
6288 // greater efficiency.
6289 bool MarkFromRootsClosure::do_bit(size_t offset) {
6290   if (_skipBits > 0) {
6291     _skipBits--;
6292     return true;
6293   }
6294   // convert offset into a HeapWord*
6295   HeapWord* addr = _bitMap->startWord() + offset;
6296   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6297          "address out of range");
6298   assert(_bitMap->isMarked(addr), "tautology");
6299   if (_bitMap->isMarked(addr+1)) {
6300     // this is an allocated but not yet initialized object
6301     assert(_skipBits == 0, "tautology");
6302     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6303     oop p = oop(addr);
6304     if (p->klass_or_null_acquire() == NULL) {
6305       DEBUG_ONLY(if (!_verifying) {)
6306         // We re-dirty the cards on which this object lies and increase
6307         // the _threshold so that we'll come back to scan this object
6308         // during the preclean or remark phase. (CMSCleanOnEnter)
6309         if (CMSCleanOnEnter) {
6310           size_t sz = _collector->block_size_using_printezis_bits(addr);
6311           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6312           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6313           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6314           // Bump _threshold to end_card_addr; note that
6315           // _threshold cannot possibly exceed end_card_addr, anyhow.
6316           // This prevents future clearing of the card as the scan proceeds
6317           // to the right.
6318           assert(_threshold <= end_card_addr,
6319                  "Because we are just scanning into this object");
6320           if (_threshold < end_card_addr) {
6321             _threshold = end_card_addr;
6322           }
6323           if (p->klass_or_null_acquire() != NULL) {
6324             // Redirty the range of cards...
6325             _mut->mark_range(redirty_range);
6326           } // ...else the setting of klass will dirty the card anyway.
6327         }
6328       DEBUG_ONLY(})
6329       return true;
6330     }
6331   }
6332   scanOopsInOop(addr);
6333   return true;
6334 }
6335 
6336 // We take a break if we've been at this for a while,
6337 // so as to avoid monopolizing the locks involved.
6338 void MarkFromRootsClosure::do_yield_work() {
6339   // First give up the locks, then yield, then re-lock
6340   // We should probably use a constructor/destructor idiom to
6341   // do this unlock/lock or modify the MutexUnlocker class to
6342   // serve our purpose. XXX
6343   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6344          "CMS thread should hold CMS token");
6345   assert_lock_strong(_bitMap->lock());
6346   _bitMap->lock()->unlock();
6347   ConcurrentMarkSweepThread::desynchronize(true);
6348   _collector->stopTimer();
6349   _collector->incrementYields();
6350 
6351   // See the comment in coordinator_yield()
6352   for (unsigned i = 0; i < CMSYieldSleepCount &&
6353                        ConcurrentMarkSweepThread::should_yield() &&
6354                        !CMSCollector::foregroundGCIsActive(); ++i) {
6355     os::sleep(Thread::current(), 1, false);
6356   }
6357 
6358   ConcurrentMarkSweepThread::synchronize(true);
6359   _bitMap->lock()->lock_without_safepoint_check();
6360   _collector->startTimer();
6361 }
6362 
6363 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6364   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6365   assert(_markStack->isEmpty(),
6366          "should drain stack to limit stack usage");
6367   // convert ptr to an oop preparatory to scanning
6368   oop obj = oop(ptr);
6369   // Ignore mark word in verification below, since we
6370   // may be running concurrent with mutators.
6371   assert(oopDesc::is_oop(obj, true), "should be an oop");
6372   assert(_finger <= ptr, "_finger runneth ahead");
6373   // advance the finger to right end of this object
6374   _finger = ptr + obj->size();
6375   assert(_finger > ptr, "we just incremented it above");
6376   // On large heaps, it may take us some time to get through
6377   // the marking phase. During
6378   // this time it's possible that a lot of mutations have
6379   // accumulated in the card table and the mod union table --
6380   // these mutation records are redundant until we have
6381   // actually traced into the corresponding card.
6382   // Here, we check whether advancing the finger would make
6383   // us cross into a new card, and if so clear corresponding
6384   // cards in the MUT (preclean them in the card-table in the
6385   // future).
6386 
6387   DEBUG_ONLY(if (!_verifying) {)
6388     // The clean-on-enter optimization is disabled by default,
6389     // until we fix 6178663.
6390     if (CMSCleanOnEnter && (_finger > _threshold)) {
6391       // [_threshold, _finger) represents the interval
6392       // of cards to be cleared  in MUT (or precleaned in card table).
6393       // The set of cards to be cleared is all those that overlap
6394       // with the interval [_threshold, _finger); note that
6395       // _threshold is always kept card-aligned but _finger isn't
6396       // always card-aligned.
6397       HeapWord* old_threshold = _threshold;
6398       assert(is_aligned(old_threshold, CardTable::card_size),
6399              "_threshold should always be card-aligned");
6400       _threshold = align_up(_finger, CardTable::card_size);
6401       MemRegion mr(old_threshold, _threshold);
6402       assert(!mr.is_empty(), "Control point invariant");
6403       assert(_span.contains(mr), "Should clear within span");
6404       _mut->clear_range(mr);
6405     }
6406   DEBUG_ONLY(})
6407   // Note: the finger doesn't advance while we drain
6408   // the stack below.
6409   PushOrMarkClosure pushOrMarkClosure(_collector,
6410                                       _span, _bitMap, _markStack,
6411                                       _finger, this);
6412   bool res = _markStack->push(obj);
6413   assert(res, "Empty non-zero size stack should have space for single push");
6414   while (!_markStack->isEmpty()) {
6415     oop new_oop = _markStack->pop();
6416     // Skip verifying header mark word below because we are
6417     // running concurrent with mutators.
6418     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6419     // now scan this oop's oops
6420     new_oop->oop_iterate(&pushOrMarkClosure);
6421     do_yield_check();
6422   }
6423   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6424 }
6425 
6426 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6427                        CMSCollector* collector, MemRegion span,
6428                        CMSBitMap* bit_map,
6429                        OopTaskQueue* work_queue,
6430                        CMSMarkStack*  overflow_stack):
6431   _collector(collector),
6432   _whole_span(collector->_span),
6433   _span(span),
6434   _bit_map(bit_map),
6435   _mut(&collector->_modUnionTable),
6436   _work_queue(work_queue),
6437   _overflow_stack(overflow_stack),
6438   _skip_bits(0),
6439   _task(task)
6440 {
6441   assert(_work_queue->size() == 0, "work_queue should be empty");
6442   _finger = span.start();
6443   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6444   assert(_span.contains(_finger), "Out of bounds _finger?");
6445 }
6446 
6447 // Should revisit to see if this should be restructured for
6448 // greater efficiency.
6449 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6450   if (_skip_bits > 0) {
6451     _skip_bits--;
6452     return true;
6453   }
6454   // convert offset into a HeapWord*
6455   HeapWord* addr = _bit_map->startWord() + offset;
6456   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6457          "address out of range");
6458   assert(_bit_map->isMarked(addr), "tautology");
6459   if (_bit_map->isMarked(addr+1)) {
6460     // this is an allocated object that might not yet be initialized
6461     assert(_skip_bits == 0, "tautology");
6462     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6463     oop p = oop(addr);
6464     if (p->klass_or_null_acquire() == NULL) {
6465       // in the case of Clean-on-Enter optimization, redirty card
6466       // and avoid clearing card by increasing  the threshold.
6467       return true;
6468     }
6469   }
6470   scan_oops_in_oop(addr);
6471   return true;
6472 }
6473 
6474 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6475   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6476   // Should we assert that our work queue is empty or
6477   // below some drain limit?
6478   assert(_work_queue->size() == 0,
6479          "should drain stack to limit stack usage");
6480   // convert ptr to an oop preparatory to scanning
6481   oop obj = oop(ptr);
6482   // Ignore mark word in verification below, since we
6483   // may be running concurrent with mutators.
6484   assert(oopDesc::is_oop(obj, true), "should be an oop");
6485   assert(_finger <= ptr, "_finger runneth ahead");
6486   // advance the finger to right end of this object
6487   _finger = ptr + obj->size();
6488   assert(_finger > ptr, "we just incremented it above");
6489   // On large heaps, it may take us some time to get through
6490   // the marking phase. During
6491   // this time it's possible that a lot of mutations have
6492   // accumulated in the card table and the mod union table --
6493   // these mutation records are redundant until we have
6494   // actually traced into the corresponding card.
6495   // Here, we check whether advancing the finger would make
6496   // us cross into a new card, and if so clear corresponding
6497   // cards in the MUT (preclean them in the card-table in the
6498   // future).
6499 
6500   // The clean-on-enter optimization is disabled by default,
6501   // until we fix 6178663.
6502   if (CMSCleanOnEnter && (_finger > _threshold)) {
6503     // [_threshold, _finger) represents the interval
6504     // of cards to be cleared  in MUT (or precleaned in card table).
6505     // The set of cards to be cleared is all those that overlap
6506     // with the interval [_threshold, _finger); note that
6507     // _threshold is always kept card-aligned but _finger isn't
6508     // always card-aligned.
6509     HeapWord* old_threshold = _threshold;
6510     assert(is_aligned(old_threshold, CardTable::card_size),
6511            "_threshold should always be card-aligned");
6512     _threshold = align_up(_finger, CardTable::card_size);
6513     MemRegion mr(old_threshold, _threshold);
6514     assert(!mr.is_empty(), "Control point invariant");
6515     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6516     _mut->clear_range(mr);
6517   }
6518 
6519   // Note: the local finger doesn't advance while we drain
6520   // the stack below, but the global finger sure can and will.
6521   HeapWord* volatile* gfa = _task->global_finger_addr();
6522   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6523                                          _span, _bit_map,
6524                                          _work_queue,
6525                                          _overflow_stack,
6526                                          _finger,
6527                                          gfa, this);
6528   bool res = _work_queue->push(obj);   // overflow could occur here
6529   assert(res, "Will hold once we use workqueues");
6530   while (true) {
6531     oop new_oop;
6532     if (!_work_queue->pop_local(new_oop)) {
6533       // We emptied our work_queue; check if there's stuff that can
6534       // be gotten from the overflow stack.
6535       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6536             _overflow_stack, _work_queue)) {
6537         do_yield_check();
6538         continue;
6539       } else {  // done
6540         break;
6541       }
6542     }
6543     // Skip verifying header mark word below because we are
6544     // running concurrent with mutators.
6545     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6546     // now scan this oop's oops
6547     new_oop->oop_iterate(&pushOrMarkClosure);
6548     do_yield_check();
6549   }
6550   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6551 }
6552 
6553 // Yield in response to a request from VM Thread or
6554 // from mutators.
6555 void ParMarkFromRootsClosure::do_yield_work() {
6556   assert(_task != NULL, "sanity");
6557   _task->yield();
6558 }
6559 
6560 // A variant of the above used for verifying CMS marking work.
6561 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6562                         MemRegion span,
6563                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6564                         CMSMarkStack*  mark_stack):
6565   _collector(collector),
6566   _span(span),
6567   _verification_bm(verification_bm),
6568   _cms_bm(cms_bm),
6569   _mark_stack(mark_stack),
6570   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6571                       mark_stack)
6572 {
6573   assert(_mark_stack->isEmpty(), "stack should be empty");
6574   _finger = _verification_bm->startWord();
6575   assert(_collector->_restart_addr == NULL, "Sanity check");
6576   assert(_span.contains(_finger), "Out of bounds _finger?");
6577 }
6578 
6579 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6580   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6581   assert(_span.contains(addr), "Out of bounds _finger?");
6582   _finger = addr;
6583 }
6584 
6585 // Should revisit to see if this should be restructured for
6586 // greater efficiency.
6587 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6588   // convert offset into a HeapWord*
6589   HeapWord* addr = _verification_bm->startWord() + offset;
6590   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6591          "address out of range");
6592   assert(_verification_bm->isMarked(addr), "tautology");
6593   assert(_cms_bm->isMarked(addr), "tautology");
6594 
6595   assert(_mark_stack->isEmpty(),
6596          "should drain stack to limit stack usage");
6597   // convert addr to an oop preparatory to scanning
6598   oop obj = oop(addr);
6599   assert(oopDesc::is_oop(obj), "should be an oop");
6600   assert(_finger <= addr, "_finger runneth ahead");
6601   // advance the finger to right end of this object
6602   _finger = addr + obj->size();
6603   assert(_finger > addr, "we just incremented it above");
6604   // Note: the finger doesn't advance while we drain
6605   // the stack below.
6606   bool res = _mark_stack->push(obj);
6607   assert(res, "Empty non-zero size stack should have space for single push");
6608   while (!_mark_stack->isEmpty()) {
6609     oop new_oop = _mark_stack->pop();
6610     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6611     // now scan this oop's oops
6612     new_oop->oop_iterate(&_pam_verify_closure);
6613   }
6614   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6615   return true;
6616 }
6617 
6618 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6619   CMSCollector* collector, MemRegion span,
6620   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6621   CMSMarkStack*  mark_stack):
6622   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6623   _collector(collector),
6624   _span(span),
6625   _verification_bm(verification_bm),
6626   _cms_bm(cms_bm),
6627   _mark_stack(mark_stack)
6628 { }
6629 
6630 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
6631   oop obj = RawAccess<>::oop_load(p);
6632   do_oop(obj);
6633 }
6634 
6635 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6636 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6637 
6638 // Upon stack overflow, we discard (part of) the stack,
6639 // remembering the least address amongst those discarded
6640 // in CMSCollector's _restart_address.
6641 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6642   // Remember the least grey address discarded
6643   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6644   _collector->lower_restart_addr(ra);
6645   _mark_stack->reset();  // discard stack contents
6646   _mark_stack->expand(); // expand the stack if possible
6647 }
6648 
6649 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6650   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6651   HeapWord* addr = (HeapWord*)obj;
6652   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6653     // Oop lies in _span and isn't yet grey or black
6654     _verification_bm->mark(addr);            // now grey
6655     if (!_cms_bm->isMarked(addr)) {
6656       Log(gc, verify) log;
6657       ResourceMark rm;
6658       LogStream ls(log.error());
6659       oop(addr)->print_on(&ls);
6660       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6661       fatal("... aborting");
6662     }
6663 
6664     if (!_mark_stack->push(obj)) { // stack overflow
6665       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6666       assert(_mark_stack->isFull(), "Else push should have succeeded");
6667       handle_stack_overflow(addr);
6668     }
6669     // anything including and to the right of _finger
6670     // will be scanned as we iterate over the remainder of the
6671     // bit map
6672   }
6673 }
6674 
6675 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6676                      MemRegion span,
6677                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6678                      HeapWord* finger, MarkFromRootsClosure* parent) :
6679   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6680   _collector(collector),
6681   _span(span),
6682   _bitMap(bitMap),
6683   _markStack(markStack),
6684   _finger(finger),
6685   _parent(parent)
6686 { }
6687 
6688 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6689                                            MemRegion span,
6690                                            CMSBitMap* bit_map,
6691                                            OopTaskQueue* work_queue,
6692                                            CMSMarkStack*  overflow_stack,
6693                                            HeapWord* finger,
6694                                            HeapWord* volatile* global_finger_addr,
6695                                            ParMarkFromRootsClosure* parent) :
6696   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6697   _collector(collector),
6698   _whole_span(collector->_span),
6699   _span(span),
6700   _bit_map(bit_map),
6701   _work_queue(work_queue),
6702   _overflow_stack(overflow_stack),
6703   _finger(finger),
6704   _global_finger_addr(global_finger_addr),
6705   _parent(parent)
6706 { }
6707 
6708 // Assumes thread-safe access by callers, who are
6709 // responsible for mutual exclusion.
6710 void CMSCollector::lower_restart_addr(HeapWord* low) {
6711   assert(_span.contains(low), "Out of bounds addr");
6712   if (_restart_addr == NULL) {
6713     _restart_addr = low;
6714   } else {
6715     _restart_addr = MIN2(_restart_addr, low);
6716   }
6717 }
6718 
6719 // Upon stack overflow, we discard (part of) the stack,
6720 // remembering the least address amongst those discarded
6721 // in CMSCollector's _restart_address.
6722 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6723   // Remember the least grey address discarded
6724   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6725   _collector->lower_restart_addr(ra);
6726   _markStack->reset();  // discard stack contents
6727   _markStack->expand(); // expand the stack if possible
6728 }
6729 
6730 // Upon stack overflow, we discard (part of) the stack,
6731 // remembering the least address amongst those discarded
6732 // in CMSCollector's _restart_address.
6733 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6734   // We need to do this under a mutex to prevent other
6735   // workers from interfering with the work done below.
6736   MutexLocker ml(_overflow_stack->par_lock(),
6737                  Mutex::_no_safepoint_check_flag);
6738   // Remember the least grey address discarded
6739   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6740   _collector->lower_restart_addr(ra);
6741   _overflow_stack->reset();  // discard stack contents
6742   _overflow_stack->expand(); // expand the stack if possible
6743 }
6744 
6745 void PushOrMarkClosure::do_oop(oop obj) {
6746   // Ignore mark word because we are running concurrent with mutators.
6747   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6748   HeapWord* addr = (HeapWord*)obj;
6749   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6750     // Oop lies in _span and isn't yet grey or black
6751     _bitMap->mark(addr);            // now grey
6752     if (addr < _finger) {
6753       // the bit map iteration has already either passed, or
6754       // sampled, this bit in the bit map; we'll need to
6755       // use the marking stack to scan this oop's oops.
6756       bool simulate_overflow = false;
6757       NOT_PRODUCT(
6758         if (CMSMarkStackOverflowALot &&
6759             _collector->simulate_overflow()) {
6760           // simulate a stack overflow
6761           simulate_overflow = true;
6762         }
6763       )
6764       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6765         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6766         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6767         handle_stack_overflow(addr);
6768       }
6769     }
6770     // anything including and to the right of _finger
6771     // will be scanned as we iterate over the remainder of the
6772     // bit map
6773     do_yield_check();
6774   }
6775 }
6776 
6777 void ParPushOrMarkClosure::do_oop(oop obj) {
6778   // Ignore mark word because we are running concurrent with mutators.
6779   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6780   HeapWord* addr = (HeapWord*)obj;
6781   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6782     // Oop lies in _span and isn't yet grey or black
6783     // We read the global_finger (volatile read) strictly after marking oop
6784     bool res = _bit_map->par_mark(addr);    // now grey
6785     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6786     // Should we push this marked oop on our stack?
6787     // -- if someone else marked it, nothing to do
6788     // -- if target oop is above global finger nothing to do
6789     // -- if target oop is in chunk and above local finger
6790     //      then nothing to do
6791     // -- else push on work queue
6792     if (   !res       // someone else marked it, they will deal with it
6793         || (addr >= *gfa)  // will be scanned in a later task
6794         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6795       return;
6796     }
6797     // the bit map iteration has already either passed, or
6798     // sampled, this bit in the bit map; we'll need to
6799     // use the marking stack to scan this oop's oops.
6800     bool simulate_overflow = false;
6801     NOT_PRODUCT(
6802       if (CMSMarkStackOverflowALot &&
6803           _collector->simulate_overflow()) {
6804         // simulate a stack overflow
6805         simulate_overflow = true;
6806       }
6807     )
6808     if (simulate_overflow ||
6809         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6810       // stack overflow
6811       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6812       // We cannot assert that the overflow stack is full because
6813       // it may have been emptied since.
6814       assert(simulate_overflow ||
6815              _work_queue->size() == _work_queue->max_elems(),
6816             "Else push should have succeeded");
6817       handle_stack_overflow(addr);
6818     }
6819     do_yield_check();
6820   }
6821 }
6822 
6823 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6824                                        MemRegion span,
6825                                        ReferenceDiscoverer* rd,
6826                                        CMSBitMap* bit_map,
6827                                        CMSBitMap* mod_union_table,
6828                                        CMSMarkStack*  mark_stack,
6829                                        bool           concurrent_precleaning):
6830   MetadataVisitingOopIterateClosure(rd),
6831   _collector(collector),
6832   _span(span),
6833   _bit_map(bit_map),
6834   _mod_union_table(mod_union_table),
6835   _mark_stack(mark_stack),
6836   _concurrent_precleaning(concurrent_precleaning)
6837 {
6838   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6839 }
6840 
6841 // Grey object rescan during pre-cleaning and second checkpoint phases --
6842 // the non-parallel version (the parallel version appears further below.)
6843 void PushAndMarkClosure::do_oop(oop obj) {
6844   // Ignore mark word verification. If during concurrent precleaning,
6845   // the object monitor may be locked. If during the checkpoint
6846   // phases, the object may already have been reached by a  different
6847   // path and may be at the end of the global overflow list (so
6848   // the mark word may be NULL).
6849   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6850          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6851   HeapWord* addr = (HeapWord*)obj;
6852   // Check if oop points into the CMS generation
6853   // and is not marked
6854   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6855     // a white object ...
6856     _bit_map->mark(addr);         // ... now grey
6857     // push on the marking stack (grey set)
6858     bool simulate_overflow = false;
6859     NOT_PRODUCT(
6860       if (CMSMarkStackOverflowALot &&
6861           _collector->simulate_overflow()) {
6862         // simulate a stack overflow
6863         simulate_overflow = true;
6864       }
6865     )
6866     if (simulate_overflow || !_mark_stack->push(obj)) {
6867       if (_concurrent_precleaning) {
6868          // During precleaning we can just dirty the appropriate card(s)
6869          // in the mod union table, thus ensuring that the object remains
6870          // in the grey set  and continue. In the case of object arrays
6871          // we need to dirty all of the cards that the object spans,
6872          // since the rescan of object arrays will be limited to the
6873          // dirty cards.
6874          // Note that no one can be interfering with us in this action
6875          // of dirtying the mod union table, so no locking or atomics
6876          // are required.
6877          if (obj->is_objArray()) {
6878            size_t sz = obj->size();
6879            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6880            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6881            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6882            _mod_union_table->mark_range(redirty_range);
6883          } else {
6884            _mod_union_table->mark(addr);
6885          }
6886          _collector->_ser_pmc_preclean_ovflw++;
6887       } else {
6888          // During the remark phase, we need to remember this oop
6889          // in the overflow list.
6890          _collector->push_on_overflow_list(obj);
6891          _collector->_ser_pmc_remark_ovflw++;
6892       }
6893     }
6894   }
6895 }
6896 
6897 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6898                                              MemRegion span,
6899                                              ReferenceDiscoverer* rd,
6900                                              CMSBitMap* bit_map,
6901                                              OopTaskQueue* work_queue):
6902   MetadataVisitingOopIterateClosure(rd),
6903   _collector(collector),
6904   _span(span),
6905   _bit_map(bit_map),
6906   _work_queue(work_queue)
6907 {
6908   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6909 }
6910 
6911 // Grey object rescan during second checkpoint phase --
6912 // the parallel version.
6913 void ParPushAndMarkClosure::do_oop(oop obj) {
6914   // In the assert below, we ignore the mark word because
6915   // this oop may point to an already visited object that is
6916   // on the overflow stack (in which case the mark word has
6917   // been hijacked for chaining into the overflow stack --
6918   // if this is the last object in the overflow stack then
6919   // its mark word will be NULL). Because this object may
6920   // have been subsequently popped off the global overflow
6921   // stack, and the mark word possibly restored to the prototypical
6922   // value, by the time we get to examined this failing assert in
6923   // the debugger, is_oop_or_null(false) may subsequently start
6924   // to hold.
6925   assert(oopDesc::is_oop_or_null(obj, true),
6926          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6927   HeapWord* addr = (HeapWord*)obj;
6928   // Check if oop points into the CMS generation
6929   // and is not marked
6930   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6931     // a white object ...
6932     // If we manage to "claim" the object, by being the
6933     // first thread to mark it, then we push it on our
6934     // marking stack
6935     if (_bit_map->par_mark(addr)) {     // ... now grey
6936       // push on work queue (grey set)
6937       bool simulate_overflow = false;
6938       NOT_PRODUCT(
6939         if (CMSMarkStackOverflowALot &&
6940             _collector->par_simulate_overflow()) {
6941           // simulate a stack overflow
6942           simulate_overflow = true;
6943         }
6944       )
6945       if (simulate_overflow || !_work_queue->push(obj)) {
6946         _collector->par_push_on_overflow_list(obj);
6947         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6948       }
6949     } // Else, some other thread got there first
6950   }
6951 }
6952 
6953 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6954   Mutex* bml = _collector->bitMapLock();
6955   assert_lock_strong(bml);
6956   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6957          "CMS thread should hold CMS token");
6958 
6959   bml->unlock();
6960   ConcurrentMarkSweepThread::desynchronize(true);
6961 
6962   _collector->stopTimer();
6963   _collector->incrementYields();
6964 
6965   // See the comment in coordinator_yield()
6966   for (unsigned i = 0; i < CMSYieldSleepCount &&
6967                        ConcurrentMarkSweepThread::should_yield() &&
6968                        !CMSCollector::foregroundGCIsActive(); ++i) {
6969     os::sleep(Thread::current(), 1, false);
6970   }
6971 
6972   ConcurrentMarkSweepThread::synchronize(true);
6973   bml->lock();
6974 
6975   _collector->startTimer();
6976 }
6977 
6978 bool CMSPrecleanRefsYieldClosure::should_return() {
6979   if (ConcurrentMarkSweepThread::should_yield()) {
6980     do_yield_work();
6981   }
6982   return _collector->foregroundGCIsActive();
6983 }
6984 
6985 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
6986   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
6987          "mr should be aligned to start at a card boundary");
6988   // We'd like to assert:
6989   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
6990   //        "mr should be a range of cards");
6991   // However, that would be too strong in one case -- the last
6992   // partition ends at _unallocated_block which, in general, can be
6993   // an arbitrary boundary, not necessarily card aligned.
6994   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
6995   _space->object_iterate_mem(mr, &_scan_cl);
6996 }
6997 
6998 SweepClosure::SweepClosure(CMSCollector* collector,
6999                            ConcurrentMarkSweepGeneration* g,
7000                            CMSBitMap* bitMap, bool should_yield) :
7001   _collector(collector),
7002   _g(g),
7003   _sp(g->cmsSpace()),
7004   _limit(_sp->sweep_limit()),
7005   _freelistLock(_sp->freelistLock()),
7006   _bitMap(bitMap),
7007   _inFreeRange(false),           // No free range at beginning of sweep
7008   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
7009   _lastFreeRangeCoalesced(false),
7010   _yield(should_yield),
7011   _freeFinger(g->used_region().start())
7012 {
7013   NOT_PRODUCT(
7014     _numObjectsFreed = 0;
7015     _numWordsFreed   = 0;
7016     _numObjectsLive = 0;
7017     _numWordsLive = 0;
7018     _numObjectsAlreadyFree = 0;
7019     _numWordsAlreadyFree = 0;
7020     _last_fc = NULL;
7021 
7022     _sp->initializeIndexedFreeListArrayReturnedBytes();
7023     _sp->dictionary()->initialize_dict_returned_bytes();
7024   )
7025   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7026          "sweep _limit out of bounds");
7027   log_develop_trace(gc, sweep)("====================");
7028   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
7029 }
7030 
7031 void SweepClosure::print_on(outputStream* st) const {
7032   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
7033                p2i(_sp->bottom()), p2i(_sp->end()));
7034   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
7035   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
7036   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
7037   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
7038                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
7039 }
7040 
7041 #ifndef PRODUCT
7042 // Assertion checking only:  no useful work in product mode --
7043 // however, if any of the flags below become product flags,
7044 // you may need to review this code to see if it needs to be
7045 // enabled in product mode.
7046 SweepClosure::~SweepClosure() {
7047   assert_lock_strong(_freelistLock);
7048   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7049          "sweep _limit out of bounds");
7050   if (inFreeRange()) {
7051     Log(gc, sweep) log;
7052     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7053     ResourceMark rm;
7054     LogStream ls(log.error());
7055     print_on(&ls);
7056     ShouldNotReachHere();
7057   }
7058 
7059   if (log_is_enabled(Debug, gc, sweep)) {
7060     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7061                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7062     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7063                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7064     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7065     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7066   }
7067 
7068   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7069     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7070     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7071     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7072     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7073                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7074   }
7075   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7076   log_develop_trace(gc, sweep)("================");
7077 }
7078 #endif  // PRODUCT
7079 
7080 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7081     bool freeRangeInFreeLists) {
7082   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7083                                p2i(freeFinger), freeRangeInFreeLists);
7084   assert(!inFreeRange(), "Trampling existing free range");
7085   set_inFreeRange(true);
7086   set_lastFreeRangeCoalesced(false);
7087 
7088   set_freeFinger(freeFinger);
7089   set_freeRangeInFreeLists(freeRangeInFreeLists);
7090   if (CMSTestInFreeList) {
7091     if (freeRangeInFreeLists) {
7092       FreeChunk* fc = (FreeChunk*) freeFinger;
7093       assert(fc->is_free(), "A chunk on the free list should be free.");
7094       assert(fc->size() > 0, "Free range should have a size");
7095       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7096     }
7097   }
7098 }
7099 
7100 // Note that the sweeper runs concurrently with mutators. Thus,
7101 // it is possible for direct allocation in this generation to happen
7102 // in the middle of the sweep. Note that the sweeper also coalesces
7103 // contiguous free blocks. Thus, unless the sweeper and the allocator
7104 // synchronize appropriately freshly allocated blocks may get swept up.
7105 // This is accomplished by the sweeper locking the free lists while
7106 // it is sweeping. Thus blocks that are determined to be free are
7107 // indeed free. There is however one additional complication:
7108 // blocks that have been allocated since the final checkpoint and
7109 // mark, will not have been marked and so would be treated as
7110 // unreachable and swept up. To prevent this, the allocator marks
7111 // the bit map when allocating during the sweep phase. This leads,
7112 // however, to a further complication -- objects may have been allocated
7113 // but not yet initialized -- in the sense that the header isn't yet
7114 // installed. The sweeper can not then determine the size of the block
7115 // in order to skip over it. To deal with this case, we use a technique
7116 // (due to Printezis) to encode such uninitialized block sizes in the
7117 // bit map. Since the bit map uses a bit per every HeapWord, but the
7118 // CMS generation has a minimum object size of 3 HeapWords, it follows
7119 // that "normal marks" won't be adjacent in the bit map (there will
7120 // always be at least two 0 bits between successive 1 bits). We make use
7121 // of these "unused" bits to represent uninitialized blocks -- the bit
7122 // corresponding to the start of the uninitialized object and the next
7123 // bit are both set. Finally, a 1 bit marks the end of the object that
7124 // started with the two consecutive 1 bits to indicate its potentially
7125 // uninitialized state.
7126 
7127 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7128   FreeChunk* fc = (FreeChunk*)addr;
7129   size_t res;
7130 
7131   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7132   // than "addr == _limit" because although _limit was a block boundary when
7133   // we started the sweep, it may no longer be one because heap expansion
7134   // may have caused us to coalesce the block ending at the address _limit
7135   // with a newly expanded chunk (this happens when _limit was set to the
7136   // previous _end of the space), so we may have stepped past _limit:
7137   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7138   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7139     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7140            "sweep _limit out of bounds");
7141     assert(addr < _sp->end(), "addr out of bounds");
7142     // Flush any free range we might be holding as a single
7143     // coalesced chunk to the appropriate free list.
7144     if (inFreeRange()) {
7145       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7146              "freeFinger() " PTR_FORMAT " is out of bounds", p2i(freeFinger()));
7147       flush_cur_free_chunk(freeFinger(),
7148                            pointer_delta(addr, freeFinger()));
7149       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7150                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7151                                    lastFreeRangeCoalesced() ? 1 : 0);
7152     }
7153 
7154     // help the iterator loop finish
7155     return pointer_delta(_sp->end(), addr);
7156   }
7157 
7158   assert(addr < _limit, "sweep invariant");
7159   // check if we should yield
7160   do_yield_check(addr);
7161   if (fc->is_free()) {
7162     // Chunk that is already free
7163     res = fc->size();
7164     do_already_free_chunk(fc);
7165     debug_only(_sp->verifyFreeLists());
7166     // If we flush the chunk at hand in lookahead_and_flush()
7167     // and it's coalesced with a preceding chunk, then the
7168     // process of "mangling" the payload of the coalesced block
7169     // will cause erasure of the size information from the
7170     // (erstwhile) header of all the coalesced blocks but the
7171     // first, so the first disjunct in the assert will not hold
7172     // in that specific case (in which case the second disjunct
7173     // will hold).
7174     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7175            "Otherwise the size info doesn't change at this step");
7176     NOT_PRODUCT(
7177       _numObjectsAlreadyFree++;
7178       _numWordsAlreadyFree += res;
7179     )
7180     NOT_PRODUCT(_last_fc = fc;)
7181   } else if (!_bitMap->isMarked(addr)) {
7182     // Chunk is fresh garbage
7183     res = do_garbage_chunk(fc);
7184     debug_only(_sp->verifyFreeLists());
7185     NOT_PRODUCT(
7186       _numObjectsFreed++;
7187       _numWordsFreed += res;
7188     )
7189   } else {
7190     // Chunk that is alive.
7191     res = do_live_chunk(fc);
7192     debug_only(_sp->verifyFreeLists());
7193     NOT_PRODUCT(
7194         _numObjectsLive++;
7195         _numWordsLive += res;
7196     )
7197   }
7198   return res;
7199 }
7200 
7201 // For the smart allocation, record following
7202 //  split deaths - a free chunk is removed from its free list because
7203 //      it is being split into two or more chunks.
7204 //  split birth - a free chunk is being added to its free list because
7205 //      a larger free chunk has been split and resulted in this free chunk.
7206 //  coal death - a free chunk is being removed from its free list because
7207 //      it is being coalesced into a large free chunk.
7208 //  coal birth - a free chunk is being added to its free list because
7209 //      it was created when two or more free chunks where coalesced into
7210 //      this free chunk.
7211 //
7212 // These statistics are used to determine the desired number of free
7213 // chunks of a given size.  The desired number is chosen to be relative
7214 // to the end of a CMS sweep.  The desired number at the end of a sweep
7215 // is the
7216 //      count-at-end-of-previous-sweep (an amount that was enough)
7217 //              - count-at-beginning-of-current-sweep  (the excess)
7218 //              + split-births  (gains in this size during interval)
7219 //              - split-deaths  (demands on this size during interval)
7220 // where the interval is from the end of one sweep to the end of the
7221 // next.
7222 //
7223 // When sweeping the sweeper maintains an accumulated chunk which is
7224 // the chunk that is made up of chunks that have been coalesced.  That
7225 // will be termed the left-hand chunk.  A new chunk of garbage that
7226 // is being considered for coalescing will be referred to as the
7227 // right-hand chunk.
7228 //
7229 // When making a decision on whether to coalesce a right-hand chunk with
7230 // the current left-hand chunk, the current count vs. the desired count
7231 // of the left-hand chunk is considered.  Also if the right-hand chunk
7232 // is near the large chunk at the end of the heap (see
7233 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7234 // left-hand chunk is coalesced.
7235 //
7236 // When making a decision about whether to split a chunk, the desired count
7237 // vs. the current count of the candidate to be split is also considered.
7238 // If the candidate is underpopulated (currently fewer chunks than desired)
7239 // a chunk of an overpopulated (currently more chunks than desired) size may
7240 // be chosen.  The "hint" associated with a free list, if non-null, points
7241 // to a free list which may be overpopulated.
7242 //
7243 
7244 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7245   const size_t size = fc->size();
7246   // Chunks that cannot be coalesced are not in the
7247   // free lists.
7248   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7249     assert(_sp->verify_chunk_in_free_list(fc),
7250            "free chunk should be in free lists");
7251   }
7252   // a chunk that is already free, should not have been
7253   // marked in the bit map
7254   HeapWord* const addr = (HeapWord*) fc;
7255   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7256   // Verify that the bit map has no bits marked between
7257   // addr and purported end of this block.
7258   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7259 
7260   // Some chunks cannot be coalesced under any circumstances.
7261   // See the definition of cantCoalesce().
7262   if (!fc->cantCoalesce()) {
7263     // This chunk can potentially be coalesced.
7264     // All the work is done in
7265     do_post_free_or_garbage_chunk(fc, size);
7266     // Note that if the chunk is not coalescable (the else arm
7267     // below), we unconditionally flush, without needing to do
7268     // a "lookahead," as we do below.
7269     if (inFreeRange()) lookahead_and_flush(fc, size);
7270   } else {
7271     // Code path common to both original and adaptive free lists.
7272 
7273     // cant coalesce with previous block; this should be treated
7274     // as the end of a free run if any
7275     if (inFreeRange()) {
7276       // we kicked some butt; time to pick up the garbage
7277       assert(freeFinger() < addr, "freeFinger points too high");
7278       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7279     }
7280     // else, nothing to do, just continue
7281   }
7282 }
7283 
7284 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7285   // This is a chunk of garbage.  It is not in any free list.
7286   // Add it to a free list or let it possibly be coalesced into
7287   // a larger chunk.
7288   HeapWord* const addr = (HeapWord*) fc;
7289   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7290 
7291   // Verify that the bit map has no bits marked between
7292   // addr and purported end of just dead object.
7293   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7294   do_post_free_or_garbage_chunk(fc, size);
7295 
7296   assert(_limit >= addr + size,
7297          "A freshly garbage chunk can't possibly straddle over _limit");
7298   if (inFreeRange()) lookahead_and_flush(fc, size);
7299   return size;
7300 }
7301 
7302 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7303   HeapWord* addr = (HeapWord*) fc;
7304   // The sweeper has just found a live object. Return any accumulated
7305   // left hand chunk to the free lists.
7306   if (inFreeRange()) {
7307     assert(freeFinger() < addr, "freeFinger points too high");
7308     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7309   }
7310 
7311   // This object is live: we'd normally expect this to be
7312   // an oop, and like to assert the following:
7313   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7314   // However, as we commented above, this may be an object whose
7315   // header hasn't yet been initialized.
7316   size_t size;
7317   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7318   if (_bitMap->isMarked(addr + 1)) {
7319     // Determine the size from the bit map, rather than trying to
7320     // compute it from the object header.
7321     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7322     size = pointer_delta(nextOneAddr + 1, addr);
7323     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7324            "alignment problem");
7325 
7326 #ifdef ASSERT
7327       if (oop(addr)->klass_or_null_acquire() != NULL) {
7328         // Ignore mark word because we are running concurrent with mutators
7329         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7330         assert(size ==
7331                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7332                "P-mark and computed size do not agree");
7333       }
7334 #endif
7335 
7336   } else {
7337     // This should be an initialized object that's alive.
7338     assert(oop(addr)->klass_or_null_acquire() != NULL,
7339            "Should be an initialized object");
7340     // Ignore mark word because we are running concurrent with mutators
7341     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7342     // Verify that the bit map has no bits marked between
7343     // addr and purported end of this block.
7344     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7345     assert(size >= 3, "Necessary for Printezis marks to work");
7346     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7347     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7348   }
7349   return size;
7350 }
7351 
7352 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7353                                                  size_t chunkSize) {
7354   // do_post_free_or_garbage_chunk() should only be called in the case
7355   // of the adaptive free list allocator.
7356   const bool fcInFreeLists = fc->is_free();
7357   assert((HeapWord*)fc <= _limit, "sweep invariant");
7358   if (CMSTestInFreeList && fcInFreeLists) {
7359     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7360   }
7361 
7362   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7363 
7364   HeapWord* const fc_addr = (HeapWord*) fc;
7365 
7366   bool coalesce = false;
7367   const size_t left  = pointer_delta(fc_addr, freeFinger());
7368   const size_t right = chunkSize;
7369   switch (FLSCoalescePolicy) {
7370     // numeric value forms a coalition aggressiveness metric
7371     case 0:  { // never coalesce
7372       coalesce = false;
7373       break;
7374     }
7375     case 1: { // coalesce if left & right chunks on overpopulated lists
7376       coalesce = _sp->coalOverPopulated(left) &&
7377                  _sp->coalOverPopulated(right);
7378       break;
7379     }
7380     case 2: { // coalesce if left chunk on overpopulated list (default)
7381       coalesce = _sp->coalOverPopulated(left);
7382       break;
7383     }
7384     case 3: { // coalesce if left OR right chunk on overpopulated list
7385       coalesce = _sp->coalOverPopulated(left) ||
7386                  _sp->coalOverPopulated(right);
7387       break;
7388     }
7389     case 4: { // always coalesce
7390       coalesce = true;
7391       break;
7392     }
7393     default:
7394      ShouldNotReachHere();
7395   }
7396 
7397   // Should the current free range be coalesced?
7398   // If the chunk is in a free range and either we decided to coalesce above
7399   // or the chunk is near the large block at the end of the heap
7400   // (isNearLargestChunk() returns true), then coalesce this chunk.
7401   const bool doCoalesce = inFreeRange()
7402                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7403   if (doCoalesce) {
7404     // Coalesce the current free range on the left with the new
7405     // chunk on the right.  If either is on a free list,
7406     // it must be removed from the list and stashed in the closure.
7407     if (freeRangeInFreeLists()) {
7408       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7409       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7410              "Size of free range is inconsistent with chunk size.");
7411       if (CMSTestInFreeList) {
7412         assert(_sp->verify_chunk_in_free_list(ffc),
7413                "Chunk is not in free lists");
7414       }
7415       _sp->coalDeath(ffc->size());
7416       _sp->removeFreeChunkFromFreeLists(ffc);
7417       set_freeRangeInFreeLists(false);
7418     }
7419     if (fcInFreeLists) {
7420       _sp->coalDeath(chunkSize);
7421       assert(fc->size() == chunkSize,
7422         "The chunk has the wrong size or is not in the free lists");
7423       _sp->removeFreeChunkFromFreeLists(fc);
7424     }
7425     set_lastFreeRangeCoalesced(true);
7426     print_free_block_coalesced(fc);
7427   } else {  // not in a free range and/or should not coalesce
7428     // Return the current free range and start a new one.
7429     if (inFreeRange()) {
7430       // In a free range but cannot coalesce with the right hand chunk.
7431       // Put the current free range into the free lists.
7432       flush_cur_free_chunk(freeFinger(),
7433                            pointer_delta(fc_addr, freeFinger()));
7434     }
7435     // Set up for new free range.  Pass along whether the right hand
7436     // chunk is in the free lists.
7437     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7438   }
7439 }
7440 
7441 // Lookahead flush:
7442 // If we are tracking a free range, and this is the last chunk that
7443 // we'll look at because its end crosses past _limit, we'll preemptively
7444 // flush it along with any free range we may be holding on to. Note that
7445 // this can be the case only for an already free or freshly garbage
7446 // chunk. If this block is an object, it can never straddle
7447 // over _limit. The "straddling" occurs when _limit is set at
7448 // the previous end of the space when this cycle started, and
7449 // a subsequent heap expansion caused the previously co-terminal
7450 // free block to be coalesced with the newly expanded portion,
7451 // thus rendering _limit a non-block-boundary making it dangerous
7452 // for the sweeper to step over and examine.
7453 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7454   assert(inFreeRange(), "Should only be called if currently in a free range.");
7455   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7456   assert(_sp->used_region().contains(eob - 1),
7457          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7458          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7459          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7460          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7461   if (eob >= _limit) {
7462     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7463     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7464                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7465                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7466                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7467     // Return the storage we are tracking back into the free lists.
7468     log_develop_trace(gc, sweep)("Flushing ... ");
7469     assert(freeFinger() < eob, "Error");
7470     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7471   }
7472 }
7473 
7474 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7475   assert(inFreeRange(), "Should only be called if currently in a free range.");
7476   assert(size > 0,
7477     "A zero sized chunk cannot be added to the free lists.");
7478   if (!freeRangeInFreeLists()) {
7479     if (CMSTestInFreeList) {
7480       FreeChunk* fc = (FreeChunk*) chunk;
7481       fc->set_size(size);
7482       assert(!_sp->verify_chunk_in_free_list(fc),
7483              "chunk should not be in free lists yet");
7484     }
7485     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7486     // A new free range is going to be starting.  The current
7487     // free range has not been added to the free lists yet or
7488     // was removed so add it back.
7489     // If the current free range was coalesced, then the death
7490     // of the free range was recorded.  Record a birth now.
7491     if (lastFreeRangeCoalesced()) {
7492       _sp->coalBirth(size);
7493     }
7494     _sp->addChunkAndRepairOffsetTable(chunk, size,
7495             lastFreeRangeCoalesced());
7496   } else {
7497     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7498   }
7499   set_inFreeRange(false);
7500   set_freeRangeInFreeLists(false);
7501 }
7502 
7503 // We take a break if we've been at this for a while,
7504 // so as to avoid monopolizing the locks involved.
7505 void SweepClosure::do_yield_work(HeapWord* addr) {
7506   // Return current free chunk being used for coalescing (if any)
7507   // to the appropriate freelist.  After yielding, the next
7508   // free block encountered will start a coalescing range of
7509   // free blocks.  If the next free block is adjacent to the
7510   // chunk just flushed, they will need to wait for the next
7511   // sweep to be coalesced.
7512   if (inFreeRange()) {
7513     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7514   }
7515 
7516   // First give up the locks, then yield, then re-lock.
7517   // We should probably use a constructor/destructor idiom to
7518   // do this unlock/lock or modify the MutexUnlocker class to
7519   // serve our purpose. XXX
7520   assert_lock_strong(_bitMap->lock());
7521   assert_lock_strong(_freelistLock);
7522   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7523          "CMS thread should hold CMS token");
7524   _bitMap->lock()->unlock();
7525   _freelistLock->unlock();
7526   ConcurrentMarkSweepThread::desynchronize(true);
7527   _collector->stopTimer();
7528   _collector->incrementYields();
7529 
7530   // See the comment in coordinator_yield()
7531   for (unsigned i = 0; i < CMSYieldSleepCount &&
7532                        ConcurrentMarkSweepThread::should_yield() &&
7533                        !CMSCollector::foregroundGCIsActive(); ++i) {
7534     os::sleep(Thread::current(), 1, false);
7535   }
7536 
7537   ConcurrentMarkSweepThread::synchronize(true);
7538   _freelistLock->lock_without_safepoint_check();
7539   _bitMap->lock()->lock_without_safepoint_check();
7540   _collector->startTimer();
7541 }
7542 
7543 #ifndef PRODUCT
7544 // This is actually very useful in a product build if it can
7545 // be called from the debugger.  Compile it into the product
7546 // as needed.
7547 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7548   return debug_cms_space->verify_chunk_in_free_list(fc);
7549 }
7550 #endif
7551 
7552 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7553   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7554                                p2i(fc), fc->size());
7555 }
7556 
7557 // CMSIsAliveClosure
7558 bool CMSIsAliveClosure::do_object_b(oop obj) {
7559   HeapWord* addr = (HeapWord*)obj;
7560   return addr != NULL &&
7561          (!_span.contains(addr) || _bit_map->isMarked(addr));
7562 }
7563 
7564 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7565                       MemRegion span,
7566                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7567                       bool cpc):
7568   _collector(collector),
7569   _span(span),
7570   _mark_stack(mark_stack),
7571   _bit_map(bit_map),
7572   _concurrent_precleaning(cpc) {
7573   assert(!_span.is_empty(), "Empty span could spell trouble");
7574 }
7575 
7576 
7577 // CMSKeepAliveClosure: the serial version
7578 void CMSKeepAliveClosure::do_oop(oop obj) {
7579   HeapWord* addr = (HeapWord*)obj;
7580   if (_span.contains(addr) &&
7581       !_bit_map->isMarked(addr)) {
7582     _bit_map->mark(addr);
7583     bool simulate_overflow = false;
7584     NOT_PRODUCT(
7585       if (CMSMarkStackOverflowALot &&
7586           _collector->simulate_overflow()) {
7587         // simulate a stack overflow
7588         simulate_overflow = true;
7589       }
7590     )
7591     if (simulate_overflow || !_mark_stack->push(obj)) {
7592       if (_concurrent_precleaning) {
7593         // We dirty the overflown object and let the remark
7594         // phase deal with it.
7595         assert(_collector->overflow_list_is_empty(), "Error");
7596         // In the case of object arrays, we need to dirty all of
7597         // the cards that the object spans. No locking or atomics
7598         // are needed since no one else can be mutating the mod union
7599         // table.
7600         if (obj->is_objArray()) {
7601           size_t sz = obj->size();
7602           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
7603           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7604           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7605           _collector->_modUnionTable.mark_range(redirty_range);
7606         } else {
7607           _collector->_modUnionTable.mark(addr);
7608         }
7609         _collector->_ser_kac_preclean_ovflw++;
7610       } else {
7611         _collector->push_on_overflow_list(obj);
7612         _collector->_ser_kac_ovflw++;
7613       }
7614     }
7615   }
7616 }
7617 
7618 // CMSParKeepAliveClosure: a parallel version of the above.
7619 // The work queues are private to each closure (thread),
7620 // but (may be) available for stealing by other threads.
7621 void CMSParKeepAliveClosure::do_oop(oop obj) {
7622   HeapWord* addr = (HeapWord*)obj;
7623   if (_span.contains(addr) &&
7624       !_bit_map->isMarked(addr)) {
7625     // In general, during recursive tracing, several threads
7626     // may be concurrently getting here; the first one to
7627     // "tag" it, claims it.
7628     if (_bit_map->par_mark(addr)) {
7629       bool res = _work_queue->push(obj);
7630       assert(res, "Low water mark should be much less than capacity");
7631       // Do a recursive trim in the hope that this will keep
7632       // stack usage lower, but leave some oops for potential stealers
7633       trim_queue(_low_water_mark);
7634     } // Else, another thread got there first
7635   }
7636 }
7637 
7638 void CMSParKeepAliveClosure::trim_queue(uint max) {
7639   while (_work_queue->size() > max) {
7640     oop new_oop;
7641     if (_work_queue->pop_local(new_oop)) {
7642       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7643       assert(_bit_map->isMarked((HeapWord*)new_oop),
7644              "no white objects on this stack!");
7645       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7646       // iterate over the oops in this oop, marking and pushing
7647       // the ones in CMS heap (i.e. in _span).
7648       new_oop->oop_iterate(&_mark_and_push);
7649     }
7650   }
7651 }
7652 
7653 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7654                                 CMSCollector* collector,
7655                                 MemRegion span, CMSBitMap* bit_map,
7656                                 OopTaskQueue* work_queue):
7657   _collector(collector),
7658   _span(span),
7659   _work_queue(work_queue),
7660   _bit_map(bit_map) { }
7661 
7662 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7663   HeapWord* addr = (HeapWord*)obj;
7664   if (_span.contains(addr) &&
7665       !_bit_map->isMarked(addr)) {
7666     if (_bit_map->par_mark(addr)) {
7667       bool simulate_overflow = false;
7668       NOT_PRODUCT(
7669         if (CMSMarkStackOverflowALot &&
7670             _collector->par_simulate_overflow()) {
7671           // simulate a stack overflow
7672           simulate_overflow = true;
7673         }
7674       )
7675       if (simulate_overflow || !_work_queue->push(obj)) {
7676         _collector->par_push_on_overflow_list(obj);
7677         _collector->_par_kac_ovflw++;
7678       }
7679     } // Else another thread got there already
7680   }
7681 }
7682 
7683 //////////////////////////////////////////////////////////////////
7684 //  CMSExpansionCause                /////////////////////////////
7685 //////////////////////////////////////////////////////////////////
7686 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7687   switch (cause) {
7688     case _no_expansion:
7689       return "No expansion";
7690     case _satisfy_free_ratio:
7691       return "Free ratio";
7692     case _satisfy_promotion:
7693       return "Satisfy promotion";
7694     case _satisfy_allocation:
7695       return "allocation";
7696     case _allocate_par_lab:
7697       return "Par LAB";
7698     case _allocate_par_spooling_space:
7699       return "Par Spooling Space";
7700     case _adaptive_size_policy:
7701       return "Ergonomics";
7702     default:
7703       return "unknown";
7704   }
7705 }
7706 
7707 void CMSDrainMarkingStackClosure::do_void() {
7708   // the max number to take from overflow list at a time
7709   const size_t num = _mark_stack->capacity()/4;
7710   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7711          "Overflow list should be NULL during concurrent phases");
7712   while (!_mark_stack->isEmpty() ||
7713          // if stack is empty, check the overflow list
7714          _collector->take_from_overflow_list(num, _mark_stack)) {
7715     oop obj = _mark_stack->pop();
7716     HeapWord* addr = (HeapWord*)obj;
7717     assert(_span.contains(addr), "Should be within span");
7718     assert(_bit_map->isMarked(addr), "Should be marked");
7719     assert(oopDesc::is_oop(obj), "Should be an oop");
7720     obj->oop_iterate(_keep_alive);
7721   }
7722 }
7723 
7724 void CMSParDrainMarkingStackClosure::do_void() {
7725   // drain queue
7726   trim_queue(0);
7727 }
7728 
7729 // Trim our work_queue so its length is below max at return
7730 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7731   while (_work_queue->size() > max) {
7732     oop new_oop;
7733     if (_work_queue->pop_local(new_oop)) {
7734       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7735       assert(_bit_map->isMarked((HeapWord*)new_oop),
7736              "no white objects on this stack!");
7737       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7738       // iterate over the oops in this oop, marking and pushing
7739       // the ones in CMS heap (i.e. in _span).
7740       new_oop->oop_iterate(&_mark_and_push);
7741     }
7742   }
7743 }
7744 
7745 ////////////////////////////////////////////////////////////////////
7746 // Support for Marking Stack Overflow list handling and related code
7747 ////////////////////////////////////////////////////////////////////
7748 // Much of the following code is similar in shape and spirit to the
7749 // code used in ParNewGC. We should try and share that code
7750 // as much as possible in the future.
7751 
7752 #ifndef PRODUCT
7753 // Debugging support for CMSStackOverflowALot
7754 
7755 // It's OK to call this multi-threaded;  the worst thing
7756 // that can happen is that we'll get a bunch of closely
7757 // spaced simulated overflows, but that's OK, in fact
7758 // probably good as it would exercise the overflow code
7759 // under contention.
7760 bool CMSCollector::simulate_overflow() {
7761   if (_overflow_counter-- <= 0) { // just being defensive
7762     _overflow_counter = CMSMarkStackOverflowInterval;
7763     return true;
7764   } else {
7765     return false;
7766   }
7767 }
7768 
7769 bool CMSCollector::par_simulate_overflow() {
7770   return simulate_overflow();
7771 }
7772 #endif
7773 
7774 // Single-threaded
7775 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7776   assert(stack->isEmpty(), "Expected precondition");
7777   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7778   size_t i = num;
7779   oop  cur = _overflow_list;
7780   const markOop proto = markOopDesc::prototype();
7781   NOT_PRODUCT(ssize_t n = 0;)
7782   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7783     next = oop(cur->mark_raw());
7784     cur->set_mark_raw(proto);   // until proven otherwise
7785     assert(oopDesc::is_oop(cur), "Should be an oop");
7786     bool res = stack->push(cur);
7787     assert(res, "Bit off more than can chew?");
7788     NOT_PRODUCT(n++;)
7789   }
7790   _overflow_list = cur;
7791 #ifndef PRODUCT
7792   assert(_num_par_pushes >= n, "Too many pops?");
7793   _num_par_pushes -=n;
7794 #endif
7795   return !stack->isEmpty();
7796 }
7797 
7798 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7799 // (MT-safe) Get a prefix of at most "num" from the list.
7800 // The overflow list is chained through the mark word of
7801 // each object in the list. We fetch the entire list,
7802 // break off a prefix of the right size and return the
7803 // remainder. If other threads try to take objects from
7804 // the overflow list at that time, they will wait for
7805 // some time to see if data becomes available. If (and
7806 // only if) another thread places one or more object(s)
7807 // on the global list before we have returned the suffix
7808 // to the global list, we will walk down our local list
7809 // to find its end and append the global list to
7810 // our suffix before returning it. This suffix walk can
7811 // prove to be expensive (quadratic in the amount of traffic)
7812 // when there are many objects in the overflow list and
7813 // there is much producer-consumer contention on the list.
7814 // *NOTE*: The overflow list manipulation code here and
7815 // in ParNewGeneration:: are very similar in shape,
7816 // except that in the ParNew case we use the old (from/eden)
7817 // copy of the object to thread the list via its klass word.
7818 // Because of the common code, if you make any changes in
7819 // the code below, please check the ParNew version to see if
7820 // similar changes might be needed.
7821 // CR 6797058 has been filed to consolidate the common code.
7822 bool CMSCollector::par_take_from_overflow_list(size_t num,
7823                                                OopTaskQueue* work_q,
7824                                                int no_of_gc_threads) {
7825   assert(work_q->size() == 0, "First empty local work queue");
7826   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7827   if (_overflow_list == NULL) {
7828     return false;
7829   }
7830   // Grab the entire list; we'll put back a suffix
7831   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7832   Thread* tid = Thread::current();
7833   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7834   // set to ParallelGCThreads.
7835   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7836   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7837   // If the list is busy, we spin for a short while,
7838   // sleeping between attempts to get the list.
7839   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7840     os::sleep(tid, sleep_time_millis, false);
7841     if (_overflow_list == NULL) {
7842       // Nothing left to take
7843       return false;
7844     } else if (_overflow_list != BUSY) {
7845       // Try and grab the prefix
7846       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7847     }
7848   }
7849   // If the list was found to be empty, or we spun long
7850   // enough, we give up and return empty-handed. If we leave
7851   // the list in the BUSY state below, it must be the case that
7852   // some other thread holds the overflow list and will set it
7853   // to a non-BUSY state in the future.
7854   if (prefix == NULL || prefix == BUSY) {
7855      // Nothing to take or waited long enough
7856      if (prefix == NULL) {
7857        // Write back the NULL in case we overwrote it with BUSY above
7858        // and it is still the same value.
7859        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7860      }
7861      return false;
7862   }
7863   assert(prefix != NULL && prefix != BUSY, "Error");
7864   size_t i = num;
7865   oop cur = prefix;
7866   // Walk down the first "num" objects, unless we reach the end.
7867   for (; i > 1 && cur->mark_raw() != NULL; cur = oop(cur->mark_raw()), i--);
7868   if (cur->mark_raw() == NULL) {
7869     // We have "num" or fewer elements in the list, so there
7870     // is nothing to return to the global list.
7871     // Write back the NULL in lieu of the BUSY we wrote
7872     // above, if it is still the same value.
7873     if (_overflow_list == BUSY) {
7874       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7875     }
7876   } else {
7877     // Chop off the suffix and return it to the global list.
7878     assert(cur->mark_raw() != BUSY, "Error");
7879     oop suffix_head = cur->mark_raw(); // suffix will be put back on global list
7880     cur->set_mark_raw(NULL);           // break off suffix
7881     // It's possible that the list is still in the empty(busy) state
7882     // we left it in a short while ago; in that case we may be
7883     // able to place back the suffix without incurring the cost
7884     // of a walk down the list.
7885     oop observed_overflow_list = _overflow_list;
7886     oop cur_overflow_list = observed_overflow_list;
7887     bool attached = false;
7888     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7889       observed_overflow_list =
7890         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7891       if (cur_overflow_list == observed_overflow_list) {
7892         attached = true;
7893         break;
7894       } else cur_overflow_list = observed_overflow_list;
7895     }
7896     if (!attached) {
7897       // Too bad, someone else sneaked in (at least) an element; we'll need
7898       // to do a splice. Find tail of suffix so we can prepend suffix to global
7899       // list.
7900       for (cur = suffix_head; cur->mark_raw() != NULL; cur = (oop)(cur->mark_raw()));
7901       oop suffix_tail = cur;
7902       assert(suffix_tail != NULL && suffix_tail->mark_raw() == NULL,
7903              "Tautology");
7904       observed_overflow_list = _overflow_list;
7905       do {
7906         cur_overflow_list = observed_overflow_list;
7907         if (cur_overflow_list != BUSY) {
7908           // Do the splice ...
7909           suffix_tail->set_mark_raw(markOop(cur_overflow_list));
7910         } else { // cur_overflow_list == BUSY
7911           suffix_tail->set_mark_raw(NULL);
7912         }
7913         // ... and try to place spliced list back on overflow_list ...
7914         observed_overflow_list =
7915           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7916       } while (cur_overflow_list != observed_overflow_list);
7917       // ... until we have succeeded in doing so.
7918     }
7919   }
7920 
7921   // Push the prefix elements on work_q
7922   assert(prefix != NULL, "control point invariant");
7923   const markOop proto = markOopDesc::prototype();
7924   oop next;
7925   NOT_PRODUCT(ssize_t n = 0;)
7926   for (cur = prefix; cur != NULL; cur = next) {
7927     next = oop(cur->mark_raw());
7928     cur->set_mark_raw(proto);   // until proven otherwise
7929     assert(oopDesc::is_oop(cur), "Should be an oop");
7930     bool res = work_q->push(cur);
7931     assert(res, "Bit off more than we can chew?");
7932     NOT_PRODUCT(n++;)
7933   }
7934 #ifndef PRODUCT
7935   assert(_num_par_pushes >= n, "Too many pops?");
7936   Atomic::sub(n, &_num_par_pushes);
7937 #endif
7938   return true;
7939 }
7940 
7941 // Single-threaded
7942 void CMSCollector::push_on_overflow_list(oop p) {
7943   NOT_PRODUCT(_num_par_pushes++;)
7944   assert(oopDesc::is_oop(p), "Not an oop");
7945   preserve_mark_if_necessary(p);
7946   p->set_mark_raw((markOop)_overflow_list);
7947   _overflow_list = p;
7948 }
7949 
7950 // Multi-threaded; use CAS to prepend to overflow list
7951 void CMSCollector::par_push_on_overflow_list(oop p) {
7952   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7953   assert(oopDesc::is_oop(p), "Not an oop");
7954   par_preserve_mark_if_necessary(p);
7955   oop observed_overflow_list = _overflow_list;
7956   oop cur_overflow_list;
7957   do {
7958     cur_overflow_list = observed_overflow_list;
7959     if (cur_overflow_list != BUSY) {
7960       p->set_mark_raw(markOop(cur_overflow_list));
7961     } else {
7962       p->set_mark_raw(NULL);
7963     }
7964     observed_overflow_list =
7965       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
7966   } while (cur_overflow_list != observed_overflow_list);
7967 }
7968 #undef BUSY
7969 
7970 // Single threaded
7971 // General Note on GrowableArray: pushes may silently fail
7972 // because we are (temporarily) out of C-heap for expanding
7973 // the stack. The problem is quite ubiquitous and affects
7974 // a lot of code in the JVM. The prudent thing for GrowableArray
7975 // to do (for now) is to exit with an error. However, that may
7976 // be too draconian in some cases because the caller may be
7977 // able to recover without much harm. For such cases, we
7978 // should probably introduce a "soft_push" method which returns
7979 // an indication of success or failure with the assumption that
7980 // the caller may be able to recover from a failure; code in
7981 // the VM can then be changed, incrementally, to deal with such
7982 // failures where possible, thus, incrementally hardening the VM
7983 // in such low resource situations.
7984 void CMSCollector::preserve_mark_work(oop p, markOop m) {
7985   _preserved_oop_stack.push(p);
7986   _preserved_mark_stack.push(m);
7987   assert(m == p->mark_raw(), "Mark word changed");
7988   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
7989          "bijection");
7990 }
7991 
7992 // Single threaded
7993 void CMSCollector::preserve_mark_if_necessary(oop p) {
7994   markOop m = p->mark_raw();
7995   if (m->must_be_preserved(p)) {
7996     preserve_mark_work(p, m);
7997   }
7998 }
7999 
8000 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
8001   markOop m = p->mark_raw();
8002   if (m->must_be_preserved(p)) {
8003     MutexLocker x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
8004     // Even though we read the mark word without holding
8005     // the lock, we are assured that it will not change
8006     // because we "own" this oop, so no other thread can
8007     // be trying to push it on the overflow list; see
8008     // the assertion in preserve_mark_work() that checks
8009     // that m == p->mark_raw().
8010     preserve_mark_work(p, m);
8011   }
8012 }
8013 
8014 // We should be able to do this multi-threaded,
8015 // a chunk of stack being a task (this is
8016 // correct because each oop only ever appears
8017 // once in the overflow list. However, it's
8018 // not very easy to completely overlap this with
8019 // other operations, so will generally not be done
8020 // until all work's been completed. Because we
8021 // expect the preserved oop stack (set) to be small,
8022 // it's probably fine to do this single-threaded.
8023 // We can explore cleverer concurrent/overlapped/parallel
8024 // processing of preserved marks if we feel the
8025 // need for this in the future. Stack overflow should
8026 // be so rare in practice and, when it happens, its
8027 // effect on performance so great that this will
8028 // likely just be in the noise anyway.
8029 void CMSCollector::restore_preserved_marks_if_any() {
8030   assert(SafepointSynchronize::is_at_safepoint(),
8031          "world should be stopped");
8032   assert(Thread::current()->is_ConcurrentGC_thread() ||
8033          Thread::current()->is_VM_thread(),
8034          "should be single-threaded");
8035   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
8036          "bijection");
8037 
8038   while (!_preserved_oop_stack.is_empty()) {
8039     oop p = _preserved_oop_stack.pop();
8040     assert(oopDesc::is_oop(p), "Should be an oop");
8041     assert(_span.contains(p), "oop should be in _span");
8042     assert(p->mark_raw() == markOopDesc::prototype(),
8043            "Set when taken from overflow list");
8044     markOop m = _preserved_mark_stack.pop();
8045     p->set_mark_raw(m);
8046   }
8047   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8048          "stacks were cleared above");
8049 }
8050 
8051 #ifndef PRODUCT
8052 bool CMSCollector::no_preserved_marks() const {
8053   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8054 }
8055 #endif
8056 
8057 // Transfer some number of overflown objects to usual marking
8058 // stack. Return true if some objects were transferred.
8059 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8060   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8061                     (size_t)ParGCDesiredObjsFromOverflowList);
8062 
8063   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8064   assert(_collector->overflow_list_is_empty() || res,
8065          "If list is not empty, we should have taken something");
8066   assert(!res || !_mark_stack->isEmpty(),
8067          "If we took something, it should now be on our stack");
8068   return res;
8069 }
8070 
8071 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8072   size_t res = _sp->block_size_no_stall(addr, _collector);
8073   if (_sp->block_is_obj(addr)) {
8074     if (_live_bit_map->isMarked(addr)) {
8075       // It can't have been dead in a previous cycle
8076       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8077     } else {
8078       _dead_bit_map->mark(addr);      // mark the dead object
8079     }
8080   }
8081   // Could be 0, if the block size could not be computed without stalling.
8082   return res;
8083 }
8084 
8085 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8086   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8087   switch (phase) {
8088     case CMSCollector::InitialMarking:
8089       initialize(manager /* GC manager */ ,
8090                  cause   /* cause of the GC */,
8091                  true    /* allMemoryPoolsAffected */,
8092                  true    /* recordGCBeginTime */,
8093                  true    /* recordPreGCUsage */,
8094                  false   /* recordPeakUsage */,
8095                  false   /* recordPostGCusage */,
8096                  true    /* recordAccumulatedGCTime */,
8097                  false   /* recordGCEndTime */,
8098                  false   /* countCollection */  );
8099       break;
8100 
8101     case CMSCollector::FinalMarking:
8102       initialize(manager /* GC manager */ ,
8103                  cause   /* cause of the GC */,
8104                  true    /* allMemoryPoolsAffected */,
8105                  false   /* recordGCBeginTime */,
8106                  false   /* recordPreGCUsage */,
8107                  false   /* recordPeakUsage */,
8108                  false   /* recordPostGCusage */,
8109                  true    /* recordAccumulatedGCTime */,
8110                  false   /* recordGCEndTime */,
8111                  false   /* countCollection */  );
8112       break;
8113 
8114     case CMSCollector::Sweeping:
8115       initialize(manager /* GC manager */ ,
8116                  cause   /* cause of the GC */,
8117                  true    /* allMemoryPoolsAffected */,
8118                  false   /* recordGCBeginTime */,
8119                  false   /* recordPreGCUsage */,
8120                  true    /* recordPeakUsage */,
8121                  true    /* recordPostGCusage */,
8122                  false   /* recordAccumulatedGCTime */,
8123                  true    /* recordGCEndTime */,
8124                  true    /* countCollection */  );
8125       break;
8126 
8127     default:
8128       ShouldNotReachHere();
8129   }
8130 }