1 /*
   2  * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP
  26 #define SHARE_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP
  27 
  28 #include "gc/cms/cmsOopClosures.hpp"
  29 #include "gc/cms/gSpaceCounters.hpp"
  30 #include "gc/cms/yieldingWorkgroup.hpp"
  31 #include "gc/shared/cardGeneration.hpp"
  32 #include "gc/shared/gcHeapSummary.hpp"
  33 #include "gc/shared/gcStats.hpp"
  34 #include "gc/shared/gcWhen.hpp"
  35 #include "gc/shared/generationCounters.hpp"
  36 #include "gc/shared/space.hpp"
  37 #include "gc/shared/taskqueue.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/virtualspace.hpp"
  41 #include "runtime/mutexLocker.hpp"
  42 #include "services/memoryService.hpp"
  43 #include "utilities/bitMap.hpp"
  44 #include "utilities/stack.hpp"
  45 
  46 // ConcurrentMarkSweepGeneration is in support of a concurrent
  47 // mark-sweep old generation in the Detlefs-Printezis--Boehm-Demers-Schenker
  48 // style. We assume, for now, that this generation is always the
  49 // seniormost generation and for simplicity
  50 // in the first implementation, that this generation is a single compactible
  51 // space. Neither of these restrictions appears essential, and will be
  52 // relaxed in the future when more time is available to implement the
  53 // greater generality (and there's a need for it).
  54 //
  55 // Concurrent mode failures are currently handled by
  56 // means of a sliding mark-compact.
  57 
  58 class AdaptiveSizePolicy;
  59 class CMSCollector;
  60 class CMSConcMarkingTask;
  61 class CMSGCAdaptivePolicyCounters;
  62 class CMSTracer;
  63 class ConcurrentGCTimer;
  64 class ConcurrentMarkSweepGeneration;
  65 class ConcurrentMarkSweepPolicy;
  66 class ConcurrentMarkSweepThread;
  67 class CompactibleFreeListSpace;
  68 class FreeChunk;
  69 class ParNewGeneration;
  70 class PromotionInfo;
  71 class ScanMarkedObjectsAgainCarefullyClosure;
  72 class SerialOldTracer;
  73 
  74 // A generic CMS bit map. It's the basis for both the CMS marking bit map
  75 // as well as for the mod union table (in each case only a subset of the
  76 // methods are used). This is essentially a wrapper around the BitMap class,
  77 // with one bit per (1<<_shifter) HeapWords. (i.e. for the marking bit map,
  78 // we have _shifter == 0. and for the mod union table we have
  79 // shifter == CardTable::card_shift - LogHeapWordSize.)
  80 // XXX 64-bit issues in BitMap?
  81 class CMSBitMap {
  82   friend class VMStructs;
  83 
  84   HeapWord*    _bmStartWord;   // base address of range covered by map
  85   size_t       _bmWordSize;    // map size (in #HeapWords covered)
  86   const int    _shifter;       // shifts to convert HeapWord to bit position
  87   VirtualSpace _virtual_space; // underlying the bit map
  88   BitMapView   _bm;            // the bit map itself
  89   Mutex* const _lock;          // mutex protecting _bm;
  90 
  91  public:
  92   // constructor
  93   CMSBitMap(int shifter, int mutex_rank, const char* mutex_name);
  94 
  95   // allocates the actual storage for the map
  96   bool allocate(MemRegion mr);
  97   // field getter
  98   Mutex* lock() const { return _lock; }
  99   // locking verifier convenience function
 100   void assert_locked() const PRODUCT_RETURN;
 101 
 102   // inquiries
 103   HeapWord* startWord()   const { return _bmStartWord; }
 104   size_t    sizeInWords() const { return _bmWordSize;  }
 105   size_t    sizeInBits()  const { return _bm.size();   }
 106   // the following is one past the last word in space
 107   HeapWord* endWord()     const { return _bmStartWord + _bmWordSize; }
 108 
 109   // reading marks
 110   bool isMarked(HeapWord* addr) const;
 111   bool par_isMarked(HeapWord* addr) const; // do not lock checks
 112   bool isUnmarked(HeapWord* addr) const;
 113   bool isAllClear() const;
 114 
 115   // writing marks
 116   void mark(HeapWord* addr);
 117   // For marking by parallel GC threads;
 118   // returns true if we did, false if another thread did
 119   bool par_mark(HeapWord* addr);
 120 
 121   void mark_range(MemRegion mr);
 122   void par_mark_range(MemRegion mr);
 123   void mark_large_range(MemRegion mr);
 124   void par_mark_large_range(MemRegion mr);
 125   void par_clear(HeapWord* addr); // For unmarking by parallel GC threads.
 126   void clear_range(MemRegion mr);
 127   void par_clear_range(MemRegion mr);
 128   void clear_large_range(MemRegion mr);
 129   void par_clear_large_range(MemRegion mr);
 130   void clear_all();
 131   void clear_all_incrementally();  // Not yet implemented!!
 132 
 133   NOT_PRODUCT(
 134     // checks the memory region for validity
 135     void region_invariant(MemRegion mr);
 136   )
 137 
 138   // iteration
 139   void iterate(BitMapClosure* cl) {
 140     _bm.iterate(cl);
 141   }
 142   void iterate(BitMapClosure* cl, HeapWord* left, HeapWord* right);
 143   void dirty_range_iterate_clear(MemRegionClosure* cl);
 144   void dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl);
 145 
 146   // auxiliary support for iteration
 147   HeapWord* getNextMarkedWordAddress(HeapWord* addr) const;
 148   HeapWord* getNextMarkedWordAddress(HeapWord* start_addr,
 149                                             HeapWord* end_addr) const;
 150   HeapWord* getNextUnmarkedWordAddress(HeapWord* addr) const;
 151   HeapWord* getNextUnmarkedWordAddress(HeapWord* start_addr,
 152                                               HeapWord* end_addr) const;
 153   MemRegion getAndClearMarkedRegion(HeapWord* addr);
 154   MemRegion getAndClearMarkedRegion(HeapWord* start_addr,
 155                                            HeapWord* end_addr);
 156 
 157   // conversion utilities
 158   HeapWord* offsetToHeapWord(size_t offset) const;
 159   size_t    heapWordToOffset(HeapWord* addr) const;
 160   size_t    heapWordDiffToOffsetDiff(size_t diff) const;
 161 
 162   void print_on_error(outputStream* st, const char* prefix) const;
 163 
 164   // debugging
 165   // is this address range covered by the bit-map?
 166   NOT_PRODUCT(
 167     bool covers(MemRegion mr) const;
 168     bool covers(HeapWord* start, size_t size = 0) const;
 169   )
 170   void verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) PRODUCT_RETURN;
 171 };
 172 
 173 // Represents a marking stack used by the CMS collector.
 174 // Ideally this should be GrowableArray<> just like MSC's marking stack(s).
 175 class CMSMarkStack: public CHeapObj<mtGC>  {
 176   friend class CMSCollector;   // To get at expansion stats further below.
 177 
 178   VirtualSpace _virtual_space;  // Space for the stack
 179   oop*   _base;      // Bottom of stack
 180   size_t _index;     // One more than last occupied index
 181   size_t _capacity;  // Max #elements
 182   Mutex  _par_lock;  // An advisory lock used in case of parallel access
 183   NOT_PRODUCT(size_t _max_depth;)  // Max depth plumbed during run
 184 
 185  protected:
 186   size_t _hit_limit;      // We hit max stack size limit
 187   size_t _failed_double;  // We failed expansion before hitting limit
 188 
 189  public:
 190   CMSMarkStack():
 191     _par_lock(Mutex::event, "CMSMarkStack._par_lock", true,
 192               Monitor::_safepoint_check_never),
 193     _hit_limit(0),
 194     _failed_double(0) {}
 195 
 196   bool allocate(size_t size);
 197 
 198   size_t capacity() const { return _capacity; }
 199 
 200   oop pop() {
 201     if (!isEmpty()) {
 202       return _base[--_index] ;
 203     }
 204     return NULL;
 205   }
 206 
 207   bool push(oop ptr) {
 208     if (isFull()) {
 209       return false;
 210     } else {
 211       _base[_index++] = ptr;
 212       NOT_PRODUCT(_max_depth = MAX2(_max_depth, _index));
 213       return true;
 214     }
 215   }
 216 
 217   bool isEmpty() const { return _index == 0; }
 218   bool isFull()  const {
 219     assert(_index <= _capacity, "buffer overflow");
 220     return _index == _capacity;
 221   }
 222 
 223   size_t length() { return _index; }
 224 
 225   // "Parallel versions" of some of the above
 226   oop par_pop() {
 227     // lock and pop
 228     MutexLocker x(&_par_lock, Mutex::_no_safepoint_check_flag);
 229     return pop();
 230   }
 231 
 232   bool par_push(oop ptr) {
 233     // lock and push
 234     MutexLocker x(&_par_lock, Mutex::_no_safepoint_check_flag);
 235     return push(ptr);
 236   }
 237 
 238   // Forcibly reset the stack, losing all of its contents.
 239   void reset() {
 240     _index = 0;
 241   }
 242 
 243   // Expand the stack, typically in response to an overflow condition.
 244   void expand();
 245 
 246   // Compute the least valued stack element.
 247   oop least_value(HeapWord* low) {
 248     HeapWord* least = low;
 249     for (size_t i = 0; i < _index; i++) {
 250       least = MIN2(least, (HeapWord*)_base[i]);
 251     }
 252     return (oop)least;
 253   }
 254 
 255   // Exposed here to allow stack expansion in || case.
 256   Mutex* par_lock() { return &_par_lock; }
 257 };
 258 
 259 class CardTableRS;
 260 class CMSParGCThreadState;
 261 
 262 class ModUnionClosure: public MemRegionClosure {
 263  protected:
 264   CMSBitMap* _t;
 265  public:
 266   ModUnionClosure(CMSBitMap* t): _t(t) { }
 267   void do_MemRegion(MemRegion mr);
 268 };
 269 
 270 class ModUnionClosurePar: public ModUnionClosure {
 271  public:
 272   ModUnionClosurePar(CMSBitMap* t): ModUnionClosure(t) { }
 273   void do_MemRegion(MemRegion mr);
 274 };
 275 
 276 // Survivor Chunk Array in support of parallelization of
 277 // Survivor Space rescan.
 278 class ChunkArray: public CHeapObj<mtGC> {
 279   size_t _index;
 280   size_t _capacity;
 281   size_t _overflows;
 282   HeapWord** _array;   // storage for array
 283 
 284  public:
 285   ChunkArray() : _index(0), _capacity(0), _overflows(0), _array(NULL) {}
 286   ChunkArray(HeapWord** a, size_t c):
 287     _index(0), _capacity(c), _overflows(0), _array(a) {}
 288 
 289   HeapWord** array() { return _array; }
 290   void set_array(HeapWord** a) { _array = a; }
 291 
 292   size_t capacity() { return _capacity; }
 293   void set_capacity(size_t c) { _capacity = c; }
 294 
 295   size_t end() {
 296     assert(_index <= capacity(),
 297            "_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT "): out of bounds",
 298            _index, _capacity);
 299     return _index;
 300   }  // exclusive
 301 
 302   HeapWord* nth(size_t n) {
 303     assert(n < end(), "Out of bounds access");
 304     return _array[n];
 305   }
 306 
 307   void reset() {
 308     _index = 0;
 309     if (_overflows > 0) {
 310       log_trace(gc)("CMS: ChunkArray[" SIZE_FORMAT "] overflowed " SIZE_FORMAT " times", _capacity, _overflows);
 311     }
 312     _overflows = 0;
 313   }
 314 
 315   void record_sample(HeapWord* p, size_t sz) {
 316     // For now we do not do anything with the size
 317     if (_index < _capacity) {
 318       _array[_index++] = p;
 319     } else {
 320       ++_overflows;
 321       assert(_index == _capacity,
 322              "_index (" SIZE_FORMAT ") > _capacity (" SIZE_FORMAT
 323              "): out of bounds at overflow#" SIZE_FORMAT,
 324              _index, _capacity, _overflows);
 325     }
 326   }
 327 };
 328 
 329 //
 330 // Timing, allocation and promotion statistics for gc scheduling and incremental
 331 // mode pacing.  Most statistics are exponential averages.
 332 //
 333 class CMSStats {
 334  private:
 335   ConcurrentMarkSweepGeneration* const _cms_gen;   // The cms (old) gen.
 336 
 337   // The following are exponential averages with factor alpha:
 338   //   avg = (100 - alpha) * avg + alpha * cur_sample
 339   //
 340   //   The durations measure:  end_time[n] - start_time[n]
 341   //   The periods measure:    start_time[n] - start_time[n-1]
 342   //
 343   // The cms period and duration include only concurrent collections; time spent
 344   // in foreground cms collections due to System.gc() or because of a failure to
 345   // keep up are not included.
 346   //
 347   // There are 3 alphas to "bootstrap" the statistics.  The _saved_alpha is the
 348   // real value, but is used only after the first period.  A value of 100 is
 349   // used for the first sample so it gets the entire weight.
 350   unsigned int _saved_alpha; // 0-100
 351   unsigned int _gc0_alpha;
 352   unsigned int _cms_alpha;
 353 
 354   double _gc0_duration;
 355   double _gc0_period;
 356   size_t _gc0_promoted;         // bytes promoted per gc0
 357   double _cms_duration;
 358   double _cms_duration_pre_sweep; // time from initiation to start of sweep
 359   double _cms_period;
 360   size_t _cms_allocated;        // bytes of direct allocation per gc0 period
 361 
 362   // Timers.
 363   elapsedTimer _cms_timer;
 364   TimeStamp    _gc0_begin_time;
 365   TimeStamp    _cms_begin_time;
 366   TimeStamp    _cms_end_time;
 367 
 368   // Snapshots of the amount used in the CMS generation.
 369   size_t _cms_used_at_gc0_begin;
 370   size_t _cms_used_at_gc0_end;
 371   size_t _cms_used_at_cms_begin;
 372 
 373   // Used to prevent the duty cycle from being reduced in the middle of a cms
 374   // cycle.
 375   bool _allow_duty_cycle_reduction;
 376 
 377   enum {
 378     _GC0_VALID = 0x1,
 379     _CMS_VALID = 0x2,
 380     _ALL_VALID = _GC0_VALID | _CMS_VALID
 381   };
 382 
 383   unsigned int _valid_bits;
 384 
 385  protected:
 386   // In support of adjusting of cms trigger ratios based on history
 387   // of concurrent mode failure.
 388   double cms_free_adjustment_factor(size_t free) const;
 389   void   adjust_cms_free_adjustment_factor(bool fail, size_t free);
 390 
 391  public:
 392   CMSStats(ConcurrentMarkSweepGeneration* cms_gen,
 393            unsigned int alpha = CMSExpAvgFactor);
 394 
 395   // Whether or not the statistics contain valid data; higher level statistics
 396   // cannot be called until this returns true (they require at least one young
 397   // gen and one cms cycle to have completed).
 398   bool valid() const;
 399 
 400   // Record statistics.
 401   void record_gc0_begin();
 402   void record_gc0_end(size_t cms_gen_bytes_used);
 403   void record_cms_begin();
 404   void record_cms_end();
 405 
 406   // Allow management of the cms timer, which must be stopped/started around
 407   // yield points.
 408   elapsedTimer& cms_timer()     { return _cms_timer; }
 409   void start_cms_timer()        { _cms_timer.start(); }
 410   void stop_cms_timer()         { _cms_timer.stop(); }
 411 
 412   // Basic statistics; units are seconds or bytes.
 413   double gc0_period() const     { return _gc0_period; }
 414   double gc0_duration() const   { return _gc0_duration; }
 415   size_t gc0_promoted() const   { return _gc0_promoted; }
 416   double cms_period() const          { return _cms_period; }
 417   double cms_duration() const        { return _cms_duration; }
 418   size_t cms_allocated() const       { return _cms_allocated; }
 419 
 420   size_t cms_used_at_gc0_end() const { return _cms_used_at_gc0_end;}
 421 
 422   // Seconds since the last background cms cycle began or ended.
 423   double cms_time_since_begin() const;
 424   double cms_time_since_end() const;
 425 
 426   // Higher level statistics--caller must check that valid() returns true before
 427   // calling.
 428 
 429   // Returns bytes promoted per second of wall clock time.
 430   double promotion_rate() const;
 431 
 432   // Returns bytes directly allocated per second of wall clock time.
 433   double cms_allocation_rate() const;
 434 
 435   // Rate at which space in the cms generation is being consumed (sum of the
 436   // above two).
 437   double cms_consumption_rate() const;
 438 
 439   // Returns an estimate of the number of seconds until the cms generation will
 440   // fill up, assuming no collection work is done.
 441   double time_until_cms_gen_full() const;
 442 
 443   // Returns an estimate of the number of seconds remaining until
 444   // the cms generation collection should start.
 445   double time_until_cms_start() const;
 446 
 447   // End of higher level statistics.
 448 
 449   // Debugging.
 450   void print_on(outputStream* st) const PRODUCT_RETURN;
 451   void print() const { print_on(tty); }
 452 };
 453 
 454 // A closure related to weak references processing which
 455 // we embed in the CMSCollector, since we need to pass
 456 // it to the reference processor for secondary filtering
 457 // of references based on reachability of referent;
 458 // see role of _is_alive_non_header closure in the
 459 // ReferenceProcessor class.
 460 // For objects in the CMS generation, this closure checks
 461 // if the object is "live" (reachable). Used in weak
 462 // reference processing.
 463 class CMSIsAliveClosure: public BoolObjectClosure {
 464   const MemRegion  _span;
 465   const CMSBitMap* _bit_map;
 466 
 467   friend class CMSCollector;
 468  public:
 469   CMSIsAliveClosure(MemRegion span,
 470                     CMSBitMap* bit_map):
 471     _span(span),
 472     _bit_map(bit_map) {
 473     assert(!span.is_empty(), "Empty span could spell trouble");
 474   }
 475 
 476   bool do_object_b(oop obj);
 477 };
 478 
 479 
 480 // Implements AbstractRefProcTaskExecutor for CMS.
 481 class CMSRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
 482 public:
 483 
 484   CMSRefProcTaskExecutor(CMSCollector& collector)
 485     : _collector(collector)
 486   { }
 487 
 488   // Executes a task using worker threads.
 489   virtual void execute(ProcessTask& task, uint ergo_workers);
 490 private:
 491   CMSCollector& _collector;
 492 };
 493 
 494 
 495 class CMSCollector: public CHeapObj<mtGC> {
 496   friend class VMStructs;
 497   friend class ConcurrentMarkSweepThread;
 498   friend class ConcurrentMarkSweepGeneration;
 499   friend class CompactibleFreeListSpace;
 500   friend class CMSParMarkTask;
 501   friend class CMSParInitialMarkTask;
 502   friend class CMSParRemarkTask;
 503   friend class CMSConcMarkingTask;
 504   friend class CMSRefProcTaskProxy;
 505   friend class CMSRefProcTaskExecutor;
 506   friend class ScanMarkedObjectsAgainCarefullyClosure;  // for sampling eden
 507   friend class SurvivorSpacePrecleanClosure;            // --- ditto -------
 508   friend class PushOrMarkClosure;             // to access _restart_addr
 509   friend class ParPushOrMarkClosure;          // to access _restart_addr
 510   friend class MarkFromRootsClosure;          //  -- ditto --
 511                                               // ... and for clearing cards
 512   friend class ParMarkFromRootsClosure;       //  to access _restart_addr
 513                                               // ... and for clearing cards
 514   friend class ParConcMarkingClosure;         //  to access _restart_addr etc.
 515   friend class MarkFromRootsVerifyClosure;    // to access _restart_addr
 516   friend class PushAndMarkVerifyClosure;      //  -- ditto --
 517   friend class MarkRefsIntoAndScanClosure;    // to access _overflow_list
 518   friend class PushAndMarkClosure;            //  -- ditto --
 519   friend class ParPushAndMarkClosure;         //  -- ditto --
 520   friend class CMSKeepAliveClosure;           //  -- ditto --
 521   friend class CMSDrainMarkingStackClosure;   //  -- ditto --
 522   friend class CMSInnerParMarkAndPushClosure; //  -- ditto --
 523   NOT_PRODUCT(friend class ScanMarkedObjectsAgainClosure;) //  assertion on _overflow_list
 524   friend class ReleaseForegroundGC;  // to access _foregroundGCShouldWait
 525   friend class VM_CMS_Operation;
 526   friend class VM_CMS_Initial_Mark;
 527   friend class VM_CMS_Final_Remark;
 528   friend class TraceCMSMemoryManagerStats;
 529 
 530  private:
 531   jlong _time_of_last_gc;
 532   void update_time_of_last_gc(jlong now) {
 533     _time_of_last_gc = now;
 534   }
 535 
 536   OopTaskQueueSet* _task_queues;
 537 
 538   // Overflow list of grey objects, threaded through mark-word
 539   // Manipulated with CAS in the parallel/multi-threaded case.
 540   oopDesc* volatile _overflow_list;
 541   // The following array-pair keeps track of mark words
 542   // displaced for accommodating overflow list above.
 543   // This code will likely be revisited under RFE#4922830.
 544   Stack<oop, mtGC>     _preserved_oop_stack;
 545   Stack<markOop, mtGC> _preserved_mark_stack;
 546 
 547   // In support of multi-threaded concurrent phases
 548   YieldingFlexibleWorkGang* _conc_workers;
 549 
 550   // Performance Counters
 551   CollectorCounters* _gc_counters;
 552   CollectorCounters* _cgc_counters;
 553 
 554   // Initialization Errors
 555   bool _completed_initialization;
 556 
 557   // In support of ExplicitGCInvokesConcurrent
 558   static bool _full_gc_requested;
 559   static GCCause::Cause _full_gc_cause;
 560   unsigned int _collection_count_start;
 561 
 562   // Should we unload classes this concurrent cycle?
 563   bool _should_unload_classes;
 564   unsigned int  _concurrent_cycles_since_last_unload;
 565   unsigned int concurrent_cycles_since_last_unload() const {
 566     return _concurrent_cycles_since_last_unload;
 567   }
 568   // Did we (allow) unload classes in the previous concurrent cycle?
 569   bool unloaded_classes_last_cycle() const {
 570     return concurrent_cycles_since_last_unload() == 0;
 571   }
 572   // Root scanning options for perm gen
 573   int _roots_scanning_options;
 574   int roots_scanning_options() const      { return _roots_scanning_options; }
 575   void add_root_scanning_option(int o)    { _roots_scanning_options |= o;   }
 576   void remove_root_scanning_option(int o) { _roots_scanning_options &= ~o;  }
 577 
 578   // Verification support
 579   CMSBitMap     _verification_mark_bm;
 580   void verify_after_remark_work_1();
 581   void verify_after_remark_work_2();
 582 
 583   // True if any verification flag is on.
 584   bool _verifying;
 585   bool verifying() const { return _verifying; }
 586   void set_verifying(bool v) { _verifying = v; }
 587 
 588   void set_did_compact(bool v);
 589 
 590   // XXX Move these to CMSStats ??? FIX ME !!!
 591   elapsedTimer _inter_sweep_timer;   // Time between sweeps
 592   elapsedTimer _intra_sweep_timer;   // Time _in_ sweeps
 593   // Padded decaying average estimates of the above
 594   AdaptivePaddedAverage _inter_sweep_estimate;
 595   AdaptivePaddedAverage _intra_sweep_estimate;
 596 
 597   CMSTracer* _gc_tracer_cm;
 598   ConcurrentGCTimer* _gc_timer_cm;
 599 
 600   bool _cms_start_registered;
 601 
 602   GCHeapSummary _last_heap_summary;
 603   MetaspaceSummary _last_metaspace_summary;
 604 
 605   void register_gc_start(GCCause::Cause cause);
 606   void register_gc_end();
 607   void save_heap_summary();
 608   void report_heap_summary(GCWhen::Type when);
 609 
 610  protected:
 611   ConcurrentMarkSweepGeneration* _cmsGen;  // Old gen (CMS)
 612   MemRegion                      _span;    // Span covering above
 613   CardTableRS*                   _ct;      // Card table
 614 
 615   // CMS marking support structures
 616   CMSBitMap     _markBitMap;
 617   CMSBitMap     _modUnionTable;
 618   CMSMarkStack  _markStack;
 619 
 620   HeapWord*     _restart_addr; // In support of marking stack overflow
 621   void          lower_restart_addr(HeapWord* low);
 622 
 623   // Counters in support of marking stack / work queue overflow handling:
 624   // a non-zero value indicates certain types of overflow events during
 625   // the current CMS cycle and could lead to stack resizing efforts at
 626   // an opportune future time.
 627   size_t        _ser_pmc_preclean_ovflw;
 628   size_t        _ser_pmc_remark_ovflw;
 629   size_t        _par_pmc_remark_ovflw;
 630   size_t        _ser_kac_preclean_ovflw;
 631   size_t        _ser_kac_ovflw;
 632   size_t        _par_kac_ovflw;
 633   NOT_PRODUCT(ssize_t _num_par_pushes;)
 634 
 635   // ("Weak") Reference processing support.
 636   SpanSubjectToDiscoveryClosure _span_based_discoverer;
 637   ReferenceProcessor*           _ref_processor;
 638   CMSIsAliveClosure             _is_alive_closure;
 639   // Keep this textually after _markBitMap and _span; c'tor dependency.
 640 
 641   ConcurrentMarkSweepThread*     _cmsThread;   // The thread doing the work
 642   ModUnionClosurePar _modUnionClosurePar;
 643 
 644   // CMS abstract state machine
 645   // initial_state: Idling
 646   // next_state(Idling)            = {Marking}
 647   // next_state(Marking)           = {Precleaning, Sweeping}
 648   // next_state(Precleaning)       = {AbortablePreclean, FinalMarking}
 649   // next_state(AbortablePreclean) = {FinalMarking}
 650   // next_state(FinalMarking)      = {Sweeping}
 651   // next_state(Sweeping)          = {Resizing}
 652   // next_state(Resizing)          = {Resetting}
 653   // next_state(Resetting)         = {Idling}
 654   // The numeric values below are chosen so that:
 655   // . _collectorState <= Idling ==  post-sweep && pre-mark
 656   // . _collectorState in (Idling, Sweeping) == {initial,final}marking ||
 657   //                                            precleaning || abortablePrecleanb
 658  public:
 659   enum CollectorState {
 660     Resizing            = 0,
 661     Resetting           = 1,
 662     Idling              = 2,
 663     InitialMarking      = 3,
 664     Marking             = 4,
 665     Precleaning         = 5,
 666     AbortablePreclean   = 6,
 667     FinalMarking        = 7,
 668     Sweeping            = 8
 669   };
 670  protected:
 671   static CollectorState _collectorState;
 672 
 673   // State related to prologue/epilogue invocation for my generations
 674   bool _between_prologue_and_epilogue;
 675 
 676   // Signaling/State related to coordination between fore- and background GC
 677   // Note: When the baton has been passed from background GC to foreground GC,
 678   // _foregroundGCIsActive is true and _foregroundGCShouldWait is false.
 679   static bool _foregroundGCIsActive;    // true iff foreground collector is active or
 680                                  // wants to go active
 681   static bool _foregroundGCShouldWait;  // true iff background GC is active and has not
 682                                  // yet passed the baton to the foreground GC
 683 
 684   // Support for CMSScheduleRemark (abortable preclean)
 685   bool _abort_preclean;
 686   bool _start_sampling;
 687 
 688   int    _numYields;
 689   size_t _numDirtyCards;
 690   size_t _sweep_count;
 691 
 692   // Occupancy used for bootstrapping stats
 693   double _bootstrap_occupancy;
 694 
 695   // Timer
 696   elapsedTimer _timer;
 697 
 698   // Timing, allocation and promotion statistics, used for scheduling.
 699   CMSStats      _stats;
 700 
 701   enum CMS_op_type {
 702     CMS_op_checkpointRootsInitial,
 703     CMS_op_checkpointRootsFinal
 704   };
 705 
 706   void do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause);
 707   bool stop_world_and_do(CMS_op_type op);
 708 
 709   OopTaskQueueSet* task_queues() { return _task_queues; }
 710   YieldingFlexibleWorkGang* conc_workers() { return _conc_workers; }
 711 
 712   // Support for parallelizing Eden rescan in CMS remark phase
 713   void sample_eden(); // ... sample Eden space top
 714 
 715  private:
 716   // Support for parallelizing young gen rescan in CMS remark phase
 717   ParNewGeneration* _young_gen;
 718 
 719   HeapWord* volatile* _top_addr;    // ... Top of Eden
 720   HeapWord**          _end_addr;    // ... End of Eden
 721   Mutex*              _eden_chunk_lock;
 722   HeapWord**          _eden_chunk_array; // ... Eden partitioning array
 723   size_t              _eden_chunk_index; // ... top (exclusive) of array
 724   size_t              _eden_chunk_capacity;  // ... max entries in array
 725 
 726   // Support for parallelizing survivor space rescan
 727   HeapWord** _survivor_chunk_array;
 728   size_t     _survivor_chunk_index;
 729   size_t     _survivor_chunk_capacity;
 730   size_t*    _cursor;
 731   ChunkArray* _survivor_plab_array;
 732 
 733   // Support for marking stack overflow handling
 734   bool take_from_overflow_list(size_t num, CMSMarkStack* to_stack);
 735   bool par_take_from_overflow_list(size_t num,
 736                                    OopTaskQueue* to_work_q,
 737                                    int no_of_gc_threads);
 738   void push_on_overflow_list(oop p);
 739   void par_push_on_overflow_list(oop p);
 740   // The following is, obviously, not, in general, "MT-stable"
 741   bool overflow_list_is_empty() const;
 742 
 743   void preserve_mark_if_necessary(oop p);
 744   void par_preserve_mark_if_necessary(oop p);
 745   void preserve_mark_work(oop p, markOop m);
 746   void restore_preserved_marks_if_any();
 747   NOT_PRODUCT(bool no_preserved_marks() const;)
 748   // In support of testing overflow code
 749   NOT_PRODUCT(int _overflow_counter;)
 750   NOT_PRODUCT(bool simulate_overflow();)       // Sequential
 751   NOT_PRODUCT(bool par_simulate_overflow();)   // MT version
 752 
 753   // CMS work methods
 754   void checkpointRootsInitialWork(); // Initial checkpoint work
 755 
 756   // A return value of false indicates failure due to stack overflow
 757   bool markFromRootsWork();  // Concurrent marking work
 758 
 759  public:   // FIX ME!!! only for testing
 760   bool do_marking_st();      // Single-threaded marking
 761   bool do_marking_mt();      // Multi-threaded  marking
 762 
 763  private:
 764 
 765   // Concurrent precleaning work
 766   size_t preclean_mod_union_table(ConcurrentMarkSweepGeneration* old_gen,
 767                                   ScanMarkedObjectsAgainCarefullyClosure* cl);
 768   size_t preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
 769                              ScanMarkedObjectsAgainCarefullyClosure* cl);
 770   // Does precleaning work, returning a quantity indicative of
 771   // the amount of "useful work" done.
 772   size_t preclean_work(bool clean_refs, bool clean_survivors);
 773   void preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock);
 774   void abortable_preclean(); // Preclean while looking for possible abort
 775   void initialize_sequential_subtasks_for_young_gen_rescan(int i);
 776   // Helper function for above; merge-sorts the per-thread plab samples
 777   void merge_survivor_plab_arrays(ContiguousSpace* surv, int no_of_gc_threads);
 778   // Resets (i.e. clears) the per-thread plab sample vectors
 779   void reset_survivor_plab_arrays();
 780 
 781   // Final (second) checkpoint work
 782   void checkpointRootsFinalWork();
 783   // Work routine for parallel version of remark
 784   void do_remark_parallel();
 785   // Work routine for non-parallel version of remark
 786   void do_remark_non_parallel();
 787   // Reference processing work routine (during second checkpoint)
 788   void refProcessingWork();
 789 
 790   // Concurrent sweeping work
 791   void sweepWork(ConcurrentMarkSweepGeneration* old_gen);
 792 
 793   // Concurrent resetting of support data structures
 794   void reset_concurrent();
 795   // Resetting of support data structures from a STW full GC
 796   void reset_stw();
 797 
 798   // Clear _expansion_cause fields of constituent generations
 799   void clear_expansion_cause();
 800 
 801   // An auxiliary method used to record the ends of
 802   // used regions of each generation to limit the extent of sweep
 803   void save_sweep_limits();
 804 
 805   // A work method used by the foreground collector to do
 806   // a mark-sweep-compact.
 807   void do_compaction_work(bool clear_all_soft_refs);
 808 
 809   // Work methods for reporting concurrent mode interruption or failure
 810   bool is_external_interruption();
 811   void report_concurrent_mode_interruption();
 812 
 813   // If the background GC is active, acquire control from the background
 814   // GC and do the collection.
 815   void acquire_control_and_collect(bool   full, bool clear_all_soft_refs);
 816 
 817   // For synchronizing passing of control from background to foreground
 818   // GC.  waitForForegroundGC() is called by the background
 819   // collector.  It if had to wait for a foreground collection,
 820   // it returns true and the background collection should assume
 821   // that the collection was finished by the foreground
 822   // collector.
 823   bool waitForForegroundGC();
 824 
 825   size_t block_size_using_printezis_bits(HeapWord* addr) const;
 826   size_t block_size_if_printezis_bits(HeapWord* addr) const;
 827   HeapWord* next_card_start_after_block(HeapWord* addr) const;
 828 
 829   void setup_cms_unloading_and_verification_state();
 830  public:
 831   CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 832                CardTableRS*                   ct);
 833   ConcurrentMarkSweepThread* cmsThread() { return _cmsThread; }
 834 
 835   MemRegion ref_processor_span() const { return _span_based_discoverer.span(); }
 836   ReferenceProcessor* ref_processor() { return _ref_processor; }
 837   void ref_processor_init();
 838 
 839   Mutex* bitMapLock()        const { return _markBitMap.lock();    }
 840   static CollectorState abstract_state() { return _collectorState;  }
 841 
 842   bool should_abort_preclean() const; // Whether preclean should be aborted.
 843   size_t get_eden_used() const;
 844   size_t get_eden_capacity() const;
 845 
 846   ConcurrentMarkSweepGeneration* cmsGen() { return _cmsGen; }
 847 
 848   // Locking checks
 849   NOT_PRODUCT(static bool have_cms_token();)
 850 
 851   bool shouldConcurrentCollect();
 852 
 853   void collect(bool   full,
 854                bool   clear_all_soft_refs,
 855                size_t size,
 856                bool   tlab);
 857   void collect_in_background(GCCause::Cause cause);
 858 
 859   // In support of ExplicitGCInvokesConcurrent
 860   static void request_full_gc(unsigned int full_gc_count, GCCause::Cause cause);
 861   // Should we unload classes in a particular concurrent cycle?
 862   bool should_unload_classes() const {
 863     return _should_unload_classes;
 864   }
 865   void update_should_unload_classes();
 866 
 867   void direct_allocated(HeapWord* start, size_t size);
 868 
 869   // Object is dead if not marked and current phase is sweeping.
 870   bool is_dead_obj(oop obj) const;
 871 
 872   // After a promotion (of "start"), do any necessary marking.
 873   // If "par", then it's being done by a parallel GC thread.
 874   // The last two args indicate if we need precise marking
 875   // and if so the size of the object so it can be dirtied
 876   // in its entirety.
 877   void promoted(bool par, HeapWord* start,
 878                 bool is_obj_array, size_t obj_size);
 879 
 880   void getFreelistLocks() const;
 881   void releaseFreelistLocks() const;
 882   bool haveFreelistLocks() const;
 883 
 884   // Adjust size of underlying generation
 885   void compute_new_size();
 886 
 887   // GC prologue and epilogue
 888   void gc_prologue(bool full);
 889   void gc_epilogue(bool full);
 890 
 891   jlong time_of_last_gc(jlong now) {
 892     if (_collectorState <= Idling) {
 893       // gc not in progress
 894       return _time_of_last_gc;
 895     } else {
 896       // collection in progress
 897       return now;
 898     }
 899   }
 900 
 901   // Support for parallel remark of survivor space
 902   void* get_data_recorder(int thr_num);
 903   void sample_eden_chunk();
 904 
 905   CMSBitMap* markBitMap()  { return &_markBitMap; }
 906   void directAllocated(HeapWord* start, size_t size);
 907 
 908   // Main CMS steps and related support
 909   void checkpointRootsInitial();
 910   bool markFromRoots();  // a return value of false indicates failure
 911                          // due to stack overflow
 912   void preclean();
 913   void checkpointRootsFinal();
 914   void sweep();
 915 
 916   // Check that the currently executing thread is the expected
 917   // one (foreground collector or background collector).
 918   static void check_correct_thread_executing() PRODUCT_RETURN;
 919 
 920   NOT_PRODUCT(bool is_cms_reachable(HeapWord* addr);)
 921 
 922   // Performance Counter Support
 923   CollectorCounters* counters()     { return _gc_counters; }
 924   CollectorCounters* cgc_counters() { return _cgc_counters; }
 925 
 926   // Timer stuff
 927   void    startTimer() { assert(!_timer.is_active(), "Error"); _timer.start();   }
 928   void    stopTimer()  { assert( _timer.is_active(), "Error"); _timer.stop();    }
 929   void    resetTimer() { assert(!_timer.is_active(), "Error"); _timer.reset();   }
 930   jlong   timerTicks() { assert(!_timer.is_active(), "Error"); return _timer.ticks(); }
 931 
 932   int  yields()          { return _numYields; }
 933   void resetYields()     { _numYields = 0;    }
 934   void incrementYields() { _numYields++;      }
 935   void resetNumDirtyCards()               { _numDirtyCards = 0; }
 936   void incrementNumDirtyCards(size_t num) { _numDirtyCards += num; }
 937   size_t  numDirtyCards()                 { return _numDirtyCards; }
 938 
 939   static bool foregroundGCShouldWait() { return _foregroundGCShouldWait; }
 940   static void set_foregroundGCShouldWait(bool v) { _foregroundGCShouldWait = v; }
 941   static bool foregroundGCIsActive() { return _foregroundGCIsActive; }
 942   static void set_foregroundGCIsActive(bool v) { _foregroundGCIsActive = v; }
 943   size_t sweep_count() const             { return _sweep_count; }
 944   void   increment_sweep_count()         { _sweep_count++; }
 945 
 946   // Timers/stats for gc scheduling and incremental mode pacing.
 947   CMSStats& stats() { return _stats; }
 948 
 949   // Adaptive size policy
 950   AdaptiveSizePolicy* size_policy();
 951 
 952   static void print_on_error(outputStream* st);
 953 
 954   // Debugging
 955   void verify();
 956   bool verify_after_remark();
 957   void verify_ok_to_terminate() const PRODUCT_RETURN;
 958   void verify_work_stacks_empty() const PRODUCT_RETURN;
 959   void verify_overflow_empty() const PRODUCT_RETURN;
 960 
 961   // Convenience methods in support of debugging
 962   static const size_t skip_header_HeapWords() PRODUCT_RETURN0;
 963   HeapWord* block_start(const void* p) const PRODUCT_RETURN0;
 964 
 965   // Accessors
 966   CMSMarkStack* verification_mark_stack() { return &_markStack; }
 967   CMSBitMap*    verification_mark_bm()    { return &_verification_mark_bm; }
 968 
 969   // Initialization errors
 970   bool completed_initialization() { return _completed_initialization; }
 971 
 972   void print_eden_and_survivor_chunk_arrays();
 973 
 974   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
 975 };
 976 
 977 class CMSExpansionCause : public AllStatic  {
 978  public:
 979   enum Cause {
 980     _no_expansion,
 981     _satisfy_free_ratio,
 982     _satisfy_promotion,
 983     _satisfy_allocation,
 984     _allocate_par_lab,
 985     _allocate_par_spooling_space,
 986     _adaptive_size_policy
 987   };
 988   // Return a string describing the cause of the expansion.
 989   static const char* to_string(CMSExpansionCause::Cause cause);
 990 };
 991 
 992 class ConcurrentMarkSweepGeneration: public CardGeneration {
 993   friend class VMStructs;
 994   friend class ConcurrentMarkSweepThread;
 995   friend class ConcurrentMarkSweep;
 996   friend class CMSCollector;
 997  protected:
 998   static CMSCollector*       _collector; // the collector that collects us
 999   CompactibleFreeListSpace*  _cmsSpace;  // underlying space (only one for now)
1000 
1001   // Performance Counters
1002   GenerationCounters*      _gen_counters;
1003   GSpaceCounters*          _space_counters;
1004 
1005   // Words directly allocated, used by CMSStats.
1006   size_t _direct_allocated_words;
1007 
1008   // Non-product stat counters
1009   NOT_PRODUCT(
1010     size_t _numObjectsPromoted;
1011     size_t _numWordsPromoted;
1012     size_t _numObjectsAllocated;
1013     size_t _numWordsAllocated;
1014   )
1015 
1016   // Used for sizing decisions
1017   bool _incremental_collection_failed;
1018   bool incremental_collection_failed() {
1019     return _incremental_collection_failed;
1020   }
1021   void set_incremental_collection_failed() {
1022     _incremental_collection_failed = true;
1023   }
1024   void clear_incremental_collection_failed() {
1025     _incremental_collection_failed = false;
1026   }
1027 
1028   // accessors
1029   void set_expansion_cause(CMSExpansionCause::Cause v) { _expansion_cause = v;}
1030   CMSExpansionCause::Cause expansion_cause() const { return _expansion_cause; }
1031 
1032   // Accessing spaces
1033   CompactibleSpace* space() const { return (CompactibleSpace*)_cmsSpace; }
1034 
1035  private:
1036   // For parallel young-gen GC support.
1037   CMSParGCThreadState** _par_gc_thread_states;
1038 
1039   // Reason generation was expanded
1040   CMSExpansionCause::Cause _expansion_cause;
1041 
1042   // In support of MinChunkSize being larger than min object size
1043   const double _dilatation_factor;
1044 
1045   // True if a compacting collection was done.
1046   bool _did_compact;
1047   bool did_compact() { return _did_compact; }
1048 
1049   // Fraction of current occupancy at which to start a CMS collection which
1050   // will collect this generation (at least).
1051   double _initiating_occupancy;
1052 
1053  protected:
1054   // Shrink generation by specified size (returns false if unable to shrink)
1055   void shrink_free_list_by(size_t bytes);
1056 
1057   // Update statistics for GC
1058   virtual void update_gc_stats(Generation* current_generation, bool full);
1059 
1060   // Maximum available space in the generation (including uncommitted)
1061   // space.
1062   size_t max_available() const;
1063 
1064   // getter and initializer for _initiating_occupancy field.
1065   double initiating_occupancy() const { return _initiating_occupancy; }
1066   void   init_initiating_occupancy(intx io, uintx tr);
1067 
1068   void expand_for_gc_cause(size_t bytes, size_t expand_bytes, CMSExpansionCause::Cause cause);
1069 
1070   void assert_correct_size_change_locking();
1071 
1072  public:
1073   ConcurrentMarkSweepGeneration(ReservedSpace rs,
1074                                 size_t initial_byte_size,
1075                                 size_t min_byte_size,
1076                                 size_t max_byte_size,
1077                                 CardTableRS* ct);
1078 
1079   // Accessors
1080   CMSCollector* collector() const { return _collector; }
1081   static void set_collector(CMSCollector* collector) {
1082     assert(_collector == NULL, "already set");
1083     _collector = collector;
1084   }
1085   CompactibleFreeListSpace*  cmsSpace() const { return _cmsSpace;  }
1086 
1087   Mutex* freelistLock() const;
1088 
1089   virtual Generation::Name kind() { return Generation::ConcurrentMarkSweep; }
1090 
1091   void set_did_compact(bool v) { _did_compact = v; }
1092 
1093   bool refs_discovery_is_atomic() const { return false; }
1094   bool refs_discovery_is_mt()     const {
1095     // Note: CMS does MT-discovery during the parallel-remark
1096     // phases. Use ReferenceProcessorMTMutator to make refs
1097     // discovery MT-safe during such phases or other parallel
1098     // discovery phases in the future. This may all go away
1099     // if/when we decide that refs discovery is sufficiently
1100     // rare that the cost of the CAS's involved is in the
1101     // noise. That's a measurement that should be done, and
1102     // the code simplified if that turns out to be the case.
1103     return ConcGCThreads > 1;
1104   }
1105 
1106   // Override
1107   virtual void ref_processor_init();
1108 
1109   void clear_expansion_cause() { _expansion_cause = CMSExpansionCause::_no_expansion; }
1110 
1111   // Space enquiries
1112   double occupancy() const { return ((double)used())/((double)capacity()); }
1113   size_t contiguous_available() const;
1114   size_t unsafe_max_alloc_nogc() const;
1115 
1116   // over-rides
1117   MemRegion used_region_at_save_marks() const;
1118 
1119   // Adjust quantities in the generation affected by
1120   // the compaction.
1121   void reset_after_compaction();
1122 
1123   // Allocation support
1124   HeapWord* allocate(size_t size, bool tlab);
1125   HeapWord* have_lock_and_allocate(size_t size, bool tlab);
1126   oop       promote(oop obj, size_t obj_size);
1127   HeapWord* par_allocate(size_t size, bool tlab) {
1128     return allocate(size, tlab);
1129   }
1130 
1131 
1132   // Used by CMSStats to track direct allocation.  The value is sampled and
1133   // reset after each young gen collection.
1134   size_t direct_allocated_words() const { return _direct_allocated_words; }
1135   void reset_direct_allocated_words()   { _direct_allocated_words = 0; }
1136 
1137   // Overrides for parallel promotion.
1138   virtual oop par_promote(int thread_num,
1139                           oop obj, markOop m, size_t word_sz);
1140   virtual void par_promote_alloc_done(int thread_num);
1141   virtual void par_oop_since_save_marks_iterate_done(int thread_num);
1142 
1143   virtual bool promotion_attempt_is_safe(size_t promotion_in_bytes) const;
1144 
1145   // Inform this (old) generation that a promotion failure was
1146   // encountered during a collection of the young generation.
1147   virtual void promotion_failure_occurred();
1148 
1149   bool should_collect(bool full, size_t size, bool tlab);
1150   virtual bool should_concurrent_collect() const;
1151   virtual bool is_too_full() const;
1152   void collect(bool   full,
1153                bool   clear_all_soft_refs,
1154                size_t size,
1155                bool   tlab);
1156 
1157   HeapWord* expand_and_allocate(size_t word_size,
1158                                 bool tlab,
1159                                 bool parallel = false);
1160 
1161   // GC prologue and epilogue
1162   void gc_prologue(bool full);
1163   void gc_prologue_work(bool full, bool registerClosure,
1164                         ModUnionClosure* modUnionClosure);
1165   void gc_epilogue(bool full);
1166   void gc_epilogue_work(bool full);
1167 
1168   // Time since last GC of this generation
1169   jlong time_of_last_gc(jlong now) {
1170     return collector()->time_of_last_gc(now);
1171   }
1172   void update_time_of_last_gc(jlong now) {
1173     collector()-> update_time_of_last_gc(now);
1174   }
1175 
1176   // Allocation failure
1177   void shrink(size_t bytes);
1178   HeapWord* expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz);
1179   bool expand_and_ensure_spooling_space(PromotionInfo* promo);
1180 
1181   // Iteration support and related enquiries
1182   void save_marks();
1183   bool no_allocs_since_save_marks();
1184 
1185   // Iteration support specific to CMS generations
1186   void save_sweep_limit();
1187 
1188   // More iteration support
1189   virtual void oop_iterate(OopIterateClosure* cl);
1190   virtual void safe_object_iterate(ObjectClosure* cl);
1191   virtual void object_iterate(ObjectClosure* cl);
1192 
1193   template <typename OopClosureType>
1194   void oop_since_save_marks_iterate(OopClosureType* cl);
1195 
1196   // Smart allocation  XXX -- move to CFLSpace?
1197   void setNearLargestChunk();
1198   bool isNearLargestChunk(HeapWord* addr);
1199 
1200   // Get the chunk at the end of the space.  Delegates to
1201   // the space.
1202   FreeChunk* find_chunk_at_end();
1203 
1204   void post_compact();
1205 
1206   // Debugging
1207   void prepare_for_verify();
1208   void verify();
1209   void print_statistics()               PRODUCT_RETURN;
1210 
1211   // Performance Counters support
1212   virtual void update_counters();
1213   virtual void update_counters(size_t used);
1214   void initialize_performance_counters(size_t min_old_size, size_t max_old_size);
1215   CollectorCounters* counters()  { return collector()->counters(); }
1216 
1217   // Support for parallel remark of survivor space
1218   void* get_data_recorder(int thr_num) {
1219     //Delegate to collector
1220     return collector()->get_data_recorder(thr_num);
1221   }
1222   void sample_eden_chunk() {
1223     //Delegate to collector
1224     return collector()->sample_eden_chunk();
1225   }
1226 
1227   // Printing
1228   const char* name() const;
1229   virtual const char* short_name() const { return "CMS"; }
1230   void        print() const;
1231 
1232   // Resize the generation after a compacting GC.  The
1233   // generation can be treated as a contiguous space
1234   // after the compaction.
1235   virtual void compute_new_size();
1236   // Resize the generation after a non-compacting
1237   // collection.
1238   void compute_new_size_free_list();
1239 };
1240 
1241 //
1242 // Closures of various sorts used by CMS to accomplish its work
1243 //
1244 
1245 // This closure is used to do concurrent marking from the roots
1246 // following the first checkpoint.
1247 class MarkFromRootsClosure: public BitMapClosure {
1248   CMSCollector*  _collector;
1249   MemRegion      _span;
1250   CMSBitMap*     _bitMap;
1251   CMSBitMap*     _mut;
1252   CMSMarkStack*  _markStack;
1253   bool           _yield;
1254   int            _skipBits;
1255   HeapWord*      _finger;
1256   HeapWord*      _threshold;
1257   DEBUG_ONLY(bool _verifying;)
1258 
1259  public:
1260   MarkFromRootsClosure(CMSCollector* collector, MemRegion span,
1261                        CMSBitMap* bitMap,
1262                        CMSMarkStack*  markStack,
1263                        bool should_yield, bool verifying = false);
1264   bool do_bit(size_t offset);
1265   void reset(HeapWord* addr);
1266   inline void do_yield_check();
1267 
1268  private:
1269   void scanOopsInOop(HeapWord* ptr);
1270   void do_yield_work();
1271 };
1272 
1273 // This closure is used to do concurrent multi-threaded
1274 // marking from the roots following the first checkpoint.
1275 // XXX This should really be a subclass of The serial version
1276 // above, but i have not had the time to refactor things cleanly.
1277 class ParMarkFromRootsClosure: public BitMapClosure {
1278   CMSCollector*  _collector;
1279   MemRegion      _whole_span;
1280   MemRegion      _span;
1281   CMSBitMap*     _bit_map;
1282   CMSBitMap*     _mut;
1283   OopTaskQueue*  _work_queue;
1284   CMSMarkStack*  _overflow_stack;
1285   int            _skip_bits;
1286   HeapWord*      _finger;
1287   HeapWord*      _threshold;
1288   CMSConcMarkingTask* _task;
1289  public:
1290   ParMarkFromRootsClosure(CMSConcMarkingTask* task, CMSCollector* collector,
1291                           MemRegion span,
1292                           CMSBitMap* bit_map,
1293                           OopTaskQueue* work_queue,
1294                           CMSMarkStack*  overflow_stack);
1295   bool do_bit(size_t offset);
1296   inline void do_yield_check();
1297 
1298  private:
1299   void scan_oops_in_oop(HeapWord* ptr);
1300   void do_yield_work();
1301   bool get_work_from_overflow_stack();
1302 };
1303 
1304 // The following closures are used to do certain kinds of verification of
1305 // CMS marking.
1306 class PushAndMarkVerifyClosure: public MetadataVisitingOopIterateClosure {
1307   CMSCollector*    _collector;
1308   MemRegion        _span;
1309   CMSBitMap*       _verification_bm;
1310   CMSBitMap*       _cms_bm;
1311   CMSMarkStack*    _mark_stack;
1312  protected:
1313   void do_oop(oop p);
1314   template <class T> void do_oop_work(T *p);
1315 
1316  public:
1317   PushAndMarkVerifyClosure(CMSCollector* cms_collector,
1318                            MemRegion span,
1319                            CMSBitMap* verification_bm,
1320                            CMSBitMap* cms_bm,
1321                            CMSMarkStack*  mark_stack);
1322   void do_oop(oop* p);
1323   void do_oop(narrowOop* p);
1324 
1325   // Deal with a stack overflow condition
1326   void handle_stack_overflow(HeapWord* lost);
1327 };
1328 
1329 class MarkFromRootsVerifyClosure: public BitMapClosure {
1330   CMSCollector*  _collector;
1331   MemRegion      _span;
1332   CMSBitMap*     _verification_bm;
1333   CMSBitMap*     _cms_bm;
1334   CMSMarkStack*  _mark_stack;
1335   HeapWord*      _finger;
1336   PushAndMarkVerifyClosure _pam_verify_closure;
1337  public:
1338   MarkFromRootsVerifyClosure(CMSCollector* collector, MemRegion span,
1339                              CMSBitMap* verification_bm,
1340                              CMSBitMap* cms_bm,
1341                              CMSMarkStack*  mark_stack);
1342   bool do_bit(size_t offset);
1343   void reset(HeapWord* addr);
1344 };
1345 
1346 
1347 // This closure is used to check that a certain set of bits is
1348 // "empty" (i.e. the bit vector doesn't have any 1-bits).
1349 class FalseBitMapClosure: public BitMapClosure {
1350  public:
1351   bool do_bit(size_t offset) {
1352     guarantee(false, "Should not have a 1 bit");
1353     return true;
1354   }
1355 };
1356 
1357 // A version of ObjectClosure with "memory" (see _previous_address below)
1358 class UpwardsObjectClosure: public BoolObjectClosure {
1359   HeapWord* _previous_address;
1360  public:
1361   UpwardsObjectClosure() : _previous_address(NULL) { }
1362   void set_previous(HeapWord* addr) { _previous_address = addr; }
1363   HeapWord* previous()              { return _previous_address; }
1364   // A return value of "true" can be used by the caller to decide
1365   // if this object's end should *NOT* be recorded in
1366   // _previous_address above.
1367   virtual bool do_object_bm(oop obj, MemRegion mr) = 0;
1368 };
1369 
1370 // This closure is used during the second checkpointing phase
1371 // to rescan the marked objects on the dirty cards in the mod
1372 // union table and the card table proper. It's invoked via
1373 // MarkFromDirtyCardsClosure below. It uses either
1374 // [Par_]MarkRefsIntoAndScanClosure (Par_ in the parallel case)
1375 // declared in genOopClosures.hpp to accomplish some of its work.
1376 // In the parallel case the bitMap is shared, so access to
1377 // it needs to be suitably synchronized for updates by embedded
1378 // closures that update it; however, this closure itself only
1379 // reads the bit_map and because it is idempotent, is immune to
1380 // reading stale values.
1381 class ScanMarkedObjectsAgainClosure: public UpwardsObjectClosure {
1382   #ifdef ASSERT
1383     CMSCollector*          _collector;
1384     MemRegion              _span;
1385     union {
1386       CMSMarkStack*        _mark_stack;
1387       OopTaskQueue*        _work_queue;
1388     };
1389   #endif // ASSERT
1390   bool                       _parallel;
1391   CMSBitMap*                 _bit_map;
1392   union {
1393     MarkRefsIntoAndScanClosure*    _scan_closure;
1394     ParMarkRefsIntoAndScanClosure* _par_scan_closure;
1395   };
1396 
1397  public:
1398   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1399                                 MemRegion span,
1400                                 ReferenceProcessor* rp,
1401                                 CMSBitMap* bit_map,
1402                                 CMSMarkStack*  mark_stack,
1403                                 MarkRefsIntoAndScanClosure* cl):
1404     #ifdef ASSERT
1405       _collector(collector),
1406       _span(span),
1407       _mark_stack(mark_stack),
1408     #endif // ASSERT
1409     _parallel(false),
1410     _bit_map(bit_map),
1411     _scan_closure(cl) { }
1412 
1413   ScanMarkedObjectsAgainClosure(CMSCollector* collector,
1414                                 MemRegion span,
1415                                 ReferenceProcessor* rp,
1416                                 CMSBitMap* bit_map,
1417                                 OopTaskQueue* work_queue,
1418                                 ParMarkRefsIntoAndScanClosure* cl):
1419     #ifdef ASSERT
1420       _collector(collector),
1421       _span(span),
1422       _work_queue(work_queue),
1423     #endif // ASSERT
1424     _parallel(true),
1425     _bit_map(bit_map),
1426     _par_scan_closure(cl) { }
1427 
1428   bool do_object_b(oop obj) {
1429     guarantee(false, "Call do_object_b(oop, MemRegion) form instead");
1430     return false;
1431   }
1432   bool do_object_bm(oop p, MemRegion mr);
1433 };
1434 
1435 // This closure is used during the second checkpointing phase
1436 // to rescan the marked objects on the dirty cards in the mod
1437 // union table and the card table proper. It invokes
1438 // ScanMarkedObjectsAgainClosure above to accomplish much of its work.
1439 // In the parallel case, the bit map is shared and requires
1440 // synchronized access.
1441 class MarkFromDirtyCardsClosure: public MemRegionClosure {
1442   CompactibleFreeListSpace*      _space;
1443   ScanMarkedObjectsAgainClosure  _scan_cl;
1444   size_t                         _num_dirty_cards;
1445 
1446  public:
1447   MarkFromDirtyCardsClosure(CMSCollector* collector,
1448                             MemRegion span,
1449                             CompactibleFreeListSpace* space,
1450                             CMSBitMap* bit_map,
1451                             CMSMarkStack* mark_stack,
1452                             MarkRefsIntoAndScanClosure* cl):
1453     _space(space),
1454     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1455                  mark_stack, cl),
1456     _num_dirty_cards(0) { }
1457 
1458   MarkFromDirtyCardsClosure(CMSCollector* collector,
1459                             MemRegion span,
1460                             CompactibleFreeListSpace* space,
1461                             CMSBitMap* bit_map,
1462                             OopTaskQueue* work_queue,
1463                             ParMarkRefsIntoAndScanClosure* cl):
1464     _space(space),
1465     _scan_cl(collector, span, collector->ref_processor(), bit_map,
1466              work_queue, cl),
1467     _num_dirty_cards(0) { }
1468 
1469   void do_MemRegion(MemRegion mr);
1470   void set_space(CompactibleFreeListSpace* space) { _space = space; }
1471   size_t num_dirty_cards() { return _num_dirty_cards; }
1472 };
1473 
1474 // This closure is used in the non-product build to check
1475 // that there are no MemRegions with a certain property.
1476 class FalseMemRegionClosure: public MemRegionClosure {
1477   void do_MemRegion(MemRegion mr) {
1478     guarantee(!mr.is_empty(), "Shouldn't be empty");
1479     guarantee(false, "Should never be here");
1480   }
1481 };
1482 
1483 // This closure is used during the precleaning phase
1484 // to "carefully" rescan marked objects on dirty cards.
1485 // It uses MarkRefsIntoAndScanClosure declared in genOopClosures.hpp
1486 // to accomplish some of its work.
1487 class ScanMarkedObjectsAgainCarefullyClosure: public ObjectClosureCareful {
1488   CMSCollector*                  _collector;
1489   MemRegion                      _span;
1490   bool                           _yield;
1491   Mutex*                         _freelistLock;
1492   CMSBitMap*                     _bitMap;
1493   CMSMarkStack*                  _markStack;
1494   MarkRefsIntoAndScanClosure*    _scanningClosure;
1495   DEBUG_ONLY(HeapWord*           _last_scanned_object;)
1496 
1497  public:
1498   ScanMarkedObjectsAgainCarefullyClosure(CMSCollector* collector,
1499                                          MemRegion     span,
1500                                          CMSBitMap* bitMap,
1501                                          CMSMarkStack*  markStack,
1502                                          MarkRefsIntoAndScanClosure* cl,
1503                                          bool should_yield):
1504     _collector(collector),
1505     _span(span),
1506     _yield(should_yield),
1507     _bitMap(bitMap),
1508     _markStack(markStack),
1509     _scanningClosure(cl)
1510     DEBUG_ONLY(COMMA _last_scanned_object(NULL))
1511   { }
1512 
1513   void do_object(oop p) {
1514     guarantee(false, "call do_object_careful instead");
1515   }
1516 
1517   size_t      do_object_careful(oop p) {
1518     guarantee(false, "Unexpected caller");
1519     return 0;
1520   }
1521 
1522   size_t      do_object_careful_m(oop p, MemRegion mr);
1523 
1524   void setFreelistLock(Mutex* m) {
1525     _freelistLock = m;
1526     _scanningClosure->set_freelistLock(m);
1527   }
1528 
1529  private:
1530   inline bool do_yield_check();
1531 
1532   void do_yield_work();
1533 };
1534 
1535 class SurvivorSpacePrecleanClosure: public ObjectClosureCareful {
1536   CMSCollector*                  _collector;
1537   MemRegion                      _span;
1538   bool                           _yield;
1539   CMSBitMap*                     _bit_map;
1540   CMSMarkStack*                  _mark_stack;
1541   PushAndMarkClosure*            _scanning_closure;
1542   unsigned int                   _before_count;
1543 
1544  public:
1545   SurvivorSpacePrecleanClosure(CMSCollector* collector,
1546                                MemRegion     span,
1547                                CMSBitMap*    bit_map,
1548                                CMSMarkStack* mark_stack,
1549                                PushAndMarkClosure* cl,
1550                                unsigned int  before_count,
1551                                bool          should_yield):
1552     _collector(collector),
1553     _span(span),
1554     _yield(should_yield),
1555     _bit_map(bit_map),
1556     _mark_stack(mark_stack),
1557     _scanning_closure(cl),
1558     _before_count(before_count)
1559   { }
1560 
1561   void do_object(oop p) {
1562     guarantee(false, "call do_object_careful instead");
1563   }
1564 
1565   size_t      do_object_careful(oop p);
1566 
1567   size_t      do_object_careful_m(oop p, MemRegion mr) {
1568     guarantee(false, "Unexpected caller");
1569     return 0;
1570   }
1571 
1572  private:
1573   inline void do_yield_check();
1574   void do_yield_work();
1575 };
1576 
1577 // This closure is used to accomplish the sweeping work
1578 // after the second checkpoint but before the concurrent reset
1579 // phase.
1580 //
1581 // Terminology
1582 //   left hand chunk (LHC) - block of one or more chunks currently being
1583 //     coalesced.  The LHC is available for coalescing with a new chunk.
1584 //   right hand chunk (RHC) - block that is currently being swept that is
1585 //     free or garbage that can be coalesced with the LHC.
1586 // _inFreeRange is true if there is currently a LHC
1587 // _lastFreeRangeCoalesced is true if the LHC consists of more than one chunk.
1588 // _freeRangeInFreeLists is true if the LHC is in the free lists.
1589 // _freeFinger is the address of the current LHC
1590 class SweepClosure: public BlkClosureCareful {
1591   CMSCollector*                  _collector;  // collector doing the work
1592   ConcurrentMarkSweepGeneration* _g;    // Generation being swept
1593   CompactibleFreeListSpace*      _sp;   // Space being swept
1594   HeapWord*                      _limit;// the address at or above which the sweep should stop
1595                                         // because we do not expect newly garbage blocks
1596                                         // eligible for sweeping past that address.
1597   Mutex*                         _freelistLock; // Free list lock (in space)
1598   CMSBitMap*                     _bitMap;       // Marking bit map (in
1599                                                 // generation)
1600   bool                           _inFreeRange;  // Indicates if we are in the
1601                                                 // midst of a free run
1602   bool                           _freeRangeInFreeLists;
1603                                         // Often, we have just found
1604                                         // a free chunk and started
1605                                         // a new free range; we do not
1606                                         // eagerly remove this chunk from
1607                                         // the free lists unless there is
1608                                         // a possibility of coalescing.
1609                                         // When true, this flag indicates
1610                                         // that the _freeFinger below
1611                                         // points to a potentially free chunk
1612                                         // that may still be in the free lists
1613   bool                           _lastFreeRangeCoalesced;
1614                                         // free range contains chunks
1615                                         // coalesced
1616   bool                           _yield;
1617                                         // Whether sweeping should be
1618                                         // done with yields. For instance
1619                                         // when done by the foreground
1620                                         // collector we shouldn't yield.
1621   HeapWord*                      _freeFinger;   // When _inFreeRange is set, the
1622                                                 // pointer to the "left hand
1623                                                 // chunk"
1624   size_t                         _freeRangeSize;
1625                                         // When _inFreeRange is set, this
1626                                         // indicates the accumulated size
1627                                         // of the "left hand chunk"
1628   NOT_PRODUCT(
1629     size_t                       _numObjectsFreed;
1630     size_t                       _numWordsFreed;
1631     size_t                       _numObjectsLive;
1632     size_t                       _numWordsLive;
1633     size_t                       _numObjectsAlreadyFree;
1634     size_t                       _numWordsAlreadyFree;
1635     FreeChunk*                   _last_fc;
1636   )
1637  private:
1638   // Code that is common to a free chunk or garbage when
1639   // encountered during sweeping.
1640   void do_post_free_or_garbage_chunk(FreeChunk *fc, size_t chunkSize);
1641   // Process a free chunk during sweeping.
1642   void do_already_free_chunk(FreeChunk *fc);
1643   // Work method called when processing an already free or a
1644   // freshly garbage chunk to do a lookahead and possibly a
1645   // preemptive flush if crossing over _limit.
1646   void lookahead_and_flush(FreeChunk* fc, size_t chunkSize);
1647   // Process a garbage chunk during sweeping.
1648   size_t do_garbage_chunk(FreeChunk *fc);
1649   // Process a live chunk during sweeping.
1650   size_t do_live_chunk(FreeChunk* fc);
1651 
1652   // Accessors.
1653   HeapWord* freeFinger() const          { return _freeFinger; }
1654   void set_freeFinger(HeapWord* v)      { _freeFinger = v; }
1655   bool inFreeRange()    const           { return _inFreeRange; }
1656   void set_inFreeRange(bool v)          { _inFreeRange = v; }
1657   bool lastFreeRangeCoalesced() const    { return _lastFreeRangeCoalesced; }
1658   void set_lastFreeRangeCoalesced(bool v) { _lastFreeRangeCoalesced = v; }
1659   bool freeRangeInFreeLists() const     { return _freeRangeInFreeLists; }
1660   void set_freeRangeInFreeLists(bool v) { _freeRangeInFreeLists = v; }
1661 
1662   // Initialize a free range.
1663   void initialize_free_range(HeapWord* freeFinger, bool freeRangeInFreeLists);
1664   // Return this chunk to the free lists.
1665   void flush_cur_free_chunk(HeapWord* chunk, size_t size);
1666 
1667   // Check if we should yield and do so when necessary.
1668   inline void do_yield_check(HeapWord* addr);
1669 
1670   // Yield
1671   void do_yield_work(HeapWord* addr);
1672 
1673   // Debugging/Printing
1674   void print_free_block_coalesced(FreeChunk* fc) const;
1675 
1676  public:
1677   SweepClosure(CMSCollector* collector, ConcurrentMarkSweepGeneration* g,
1678                CMSBitMap* bitMap, bool should_yield);
1679   ~SweepClosure() PRODUCT_RETURN;
1680 
1681   size_t       do_blk_careful(HeapWord* addr);
1682   void         print() const { print_on(tty); }
1683   void         print_on(outputStream *st) const;
1684 };
1685 
1686 // Closures related to weak references processing
1687 
1688 // During CMS' weak reference processing, this is a
1689 // work-routine/closure used to complete transitive
1690 // marking of objects as live after a certain point
1691 // in which an initial set has been completely accumulated.
1692 // This closure is currently used both during the final
1693 // remark stop-world phase, as well as during the concurrent
1694 // precleaning of the discovered reference lists.
1695 class CMSDrainMarkingStackClosure: public VoidClosure {
1696   CMSCollector*        _collector;
1697   MemRegion            _span;
1698   CMSMarkStack*        _mark_stack;
1699   CMSBitMap*           _bit_map;
1700   CMSKeepAliveClosure* _keep_alive;
1701   bool                 _concurrent_precleaning;
1702  public:
1703   CMSDrainMarkingStackClosure(CMSCollector* collector, MemRegion span,
1704                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
1705                       CMSKeepAliveClosure* keep_alive,
1706                       bool cpc):
1707     _collector(collector),
1708     _span(span),
1709     _mark_stack(mark_stack),
1710     _bit_map(bit_map),
1711     _keep_alive(keep_alive),
1712     _concurrent_precleaning(cpc) {
1713     assert(_concurrent_precleaning == _keep_alive->concurrent_precleaning(),
1714            "Mismatch");
1715   }
1716 
1717   void do_void();
1718 };
1719 
1720 // A parallel version of CMSDrainMarkingStackClosure above.
1721 class CMSParDrainMarkingStackClosure: public VoidClosure {
1722   CMSCollector*           _collector;
1723   MemRegion               _span;
1724   OopTaskQueue*           _work_queue;
1725   CMSBitMap*              _bit_map;
1726   CMSInnerParMarkAndPushClosure _mark_and_push;
1727 
1728  public:
1729   CMSParDrainMarkingStackClosure(CMSCollector* collector,
1730                                  MemRegion span, CMSBitMap* bit_map,
1731                                  OopTaskQueue* work_queue):
1732     _collector(collector),
1733     _span(span),
1734     _work_queue(work_queue),
1735     _bit_map(bit_map),
1736     _mark_and_push(collector, span, bit_map, work_queue) { }
1737 
1738  public:
1739   void trim_queue(uint max);
1740   void do_void();
1741 };
1742 
1743 // Allow yielding or short-circuiting of reference list
1744 // precleaning work.
1745 class CMSPrecleanRefsYieldClosure: public YieldClosure {
1746   CMSCollector* _collector;
1747   void do_yield_work();
1748  public:
1749   CMSPrecleanRefsYieldClosure(CMSCollector* collector):
1750     _collector(collector) {}
1751   virtual bool should_return();
1752 };
1753 
1754 
1755 // Convenience class that locks free list locks for given CMS collector
1756 class FreelistLocker: public StackObj {
1757  private:
1758   CMSCollector* _collector;
1759  public:
1760   FreelistLocker(CMSCollector* collector):
1761     _collector(collector) {
1762     _collector->getFreelistLocks();
1763   }
1764 
1765   ~FreelistLocker() {
1766     _collector->releaseFreelistLocks();
1767   }
1768 };
1769 
1770 // Mark all dead objects in a given space.
1771 class MarkDeadObjectsClosure: public BlkClosure {
1772   const CMSCollector*             _collector;
1773   const CompactibleFreeListSpace* _sp;
1774   CMSBitMap*                      _live_bit_map;
1775   CMSBitMap*                      _dead_bit_map;
1776 public:
1777   MarkDeadObjectsClosure(const CMSCollector* collector,
1778                          const CompactibleFreeListSpace* sp,
1779                          CMSBitMap *live_bit_map,
1780                          CMSBitMap *dead_bit_map) :
1781     _collector(collector),
1782     _sp(sp),
1783     _live_bit_map(live_bit_map),
1784     _dead_bit_map(dead_bit_map) {}
1785   size_t do_blk(HeapWord* addr);
1786 };
1787 
1788 class TraceCMSMemoryManagerStats : public TraceMemoryManagerStats {
1789 
1790  public:
1791   TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause);
1792 };
1793 
1794 
1795 #endif // SHARE_GC_CMS_CONCURRENTMARKSWEEPGENERATION_HPP