1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.BiConsumer;
  30 import java.util.stream.Collectors;
  31 
  32 import javax.lang.model.element.ElementKind;
  33 import javax.tools.JavaFileObject;
  34 
  35 import com.sun.source.tree.CaseTree;
  36 import com.sun.source.tree.IdentifierTree;
  37 import com.sun.source.tree.MemberReferenceTree.ReferenceMode;
  38 import com.sun.source.tree.MemberSelectTree;
  39 import com.sun.source.tree.TreeVisitor;
  40 import com.sun.source.util.SimpleTreeVisitor;
  41 import com.sun.tools.javac.code.*;
  42 import com.sun.tools.javac.code.Lint.LintCategory;
  43 import com.sun.tools.javac.code.Scope.WriteableScope;
  44 import com.sun.tools.javac.code.Source.Feature;
  45 import com.sun.tools.javac.code.Symbol.*;
  46 import com.sun.tools.javac.code.Type.*;
  47 import com.sun.tools.javac.code.TypeMetadata.Annotations;
  48 import com.sun.tools.javac.code.Types.FunctionDescriptorLookupError;
  49 import com.sun.tools.javac.comp.ArgumentAttr.LocalCacheContext;
  50 import com.sun.tools.javac.comp.Check.CheckContext;
  51 import com.sun.tools.javac.comp.DeferredAttr.AttrMode;
  52 import com.sun.tools.javac.comp.MatchBindingsComputer.BindingSymbol;
  53 import com.sun.tools.javac.jvm.*;
  54 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.Diamond;
  55 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArg;
  56 import static com.sun.tools.javac.resources.CompilerProperties.Fragments.DiamondInvalidArgs;
  57 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  58 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  59 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  60 import com.sun.tools.javac.tree.*;
  61 import com.sun.tools.javac.tree.JCTree.*;
  62 import com.sun.tools.javac.tree.JCTree.JCPolyExpression.*;
  63 import com.sun.tools.javac.util.*;
  64 import com.sun.tools.javac.util.DefinedBy.Api;
  65 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  66 import com.sun.tools.javac.util.JCDiagnostic.Error;
  67 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  68 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  69 import com.sun.tools.javac.util.List;
  70 
  71 import static com.sun.tools.javac.code.Flags.*;
  72 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  73 import static com.sun.tools.javac.code.Flags.BLOCK;
  74 import static com.sun.tools.javac.code.Kinds.*;
  75 import static com.sun.tools.javac.code.Kinds.Kind.*;
  76 import static com.sun.tools.javac.code.TypeTag.*;
  77 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  78 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  79 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  80 
  81 /** This is the main context-dependent analysis phase in GJC. It
  82  *  encompasses name resolution, type checking and constant folding as
  83  *  subtasks. Some subtasks involve auxiliary classes.
  84  *  @see Check
  85  *  @see Resolve
  86  *  @see ConstFold
  87  *  @see Infer
  88  *
  89  *  <p><b>This is NOT part of any supported API.
  90  *  If you write code that depends on this, you do so at your own risk.
  91  *  This code and its internal interfaces are subject to change or
  92  *  deletion without notice.</b>
  93  */
  94 public class Attr extends JCTree.Visitor {
  95     protected static final Context.Key<Attr> attrKey = new Context.Key<>();
  96 
  97     final Names names;
  98     final Log log;
  99     final Symtab syms;
 100     final Resolve rs;
 101     final Operators operators;
 102     final Infer infer;
 103     final Analyzer analyzer;
 104     final DeferredAttr deferredAttr;
 105     final Check chk;
 106     final Flow flow;
 107     final MemberEnter memberEnter;
 108     final TypeEnter typeEnter;
 109     final TreeMaker make;
 110     final ConstFold cfolder;
 111     final Enter enter;
 112     final Target target;
 113     final Types types;
 114     final Preview preview;
 115     final JCDiagnostic.Factory diags;
 116     final TypeAnnotations typeAnnotations;
 117     final DeferredLintHandler deferredLintHandler;
 118     final TypeEnvs typeEnvs;
 119     final Dependencies dependencies;
 120     final Annotate annotate;
 121     final ArgumentAttr argumentAttr;
 122     final MatchBindingsComputer matchBindingsComputer;
 123 
 124     public static Attr instance(Context context) {
 125         Attr instance = context.get(attrKey);
 126         if (instance == null)
 127             instance = new Attr(context);
 128         return instance;
 129     }
 130 
 131     protected Attr(Context context) {
 132         context.put(attrKey, this);
 133 
 134         names = Names.instance(context);
 135         log = Log.instance(context);
 136         syms = Symtab.instance(context);
 137         rs = Resolve.instance(context);
 138         operators = Operators.instance(context);
 139         chk = Check.instance(context);
 140         flow = Flow.instance(context);
 141         memberEnter = MemberEnter.instance(context);
 142         typeEnter = TypeEnter.instance(context);
 143         make = TreeMaker.instance(context);
 144         enter = Enter.instance(context);
 145         infer = Infer.instance(context);
 146         analyzer = Analyzer.instance(context);
 147         deferredAttr = DeferredAttr.instance(context);
 148         cfolder = ConstFold.instance(context);
 149         target = Target.instance(context);
 150         types = Types.instance(context);
 151         preview = Preview.instance(context);
 152         diags = JCDiagnostic.Factory.instance(context);
 153         annotate = Annotate.instance(context);
 154         typeAnnotations = TypeAnnotations.instance(context);
 155         deferredLintHandler = DeferredLintHandler.instance(context);
 156         typeEnvs = TypeEnvs.instance(context);
 157         dependencies = Dependencies.instance(context);
 158         argumentAttr = ArgumentAttr.instance(context);
 159         matchBindingsComputer = MatchBindingsComputer.instance(context);
 160 
 161         Options options = Options.instance(context);
 162 
 163         Source source = Source.instance(context);
 164         allowPoly = Feature.POLY.allowedInSource(source);
 165         allowTypeAnnos = Feature.TYPE_ANNOTATIONS.allowedInSource(source);
 166         allowLambda = Feature.LAMBDA.allowedInSource(source);
 167         allowDefaultMethods = Feature.DEFAULT_METHODS.allowedInSource(source);
 168         allowStaticInterfaceMethods = Feature.STATIC_INTERFACE_METHODS.allowedInSource(source);
 169         allowReifiableTypesInInstanceof =
 170                 Feature.REIFIABLE_TYPES_INSTANCEOF.allowedInSource(source) &&
 171                 (!preview.isPreview(Feature.REIFIABLE_TYPES_INSTANCEOF) || preview.isEnabled());
 172         sourceName = source.name;
 173         useBeforeDeclarationWarning = options.isSet("useBeforeDeclarationWarning");
 174 
 175         statInfo = new ResultInfo(KindSelector.NIL, Type.noType);
 176         varAssignmentInfo = new ResultInfo(KindSelector.ASG, Type.noType);
 177         unknownExprInfo = new ResultInfo(KindSelector.VAL, Type.noType);
 178         methodAttrInfo = new MethodAttrInfo();
 179         unknownTypeInfo = new ResultInfo(KindSelector.TYP, Type.noType);
 180         unknownTypeExprInfo = new ResultInfo(KindSelector.VAL_TYP, Type.noType);
 181         recoveryInfo = new RecoveryInfo(deferredAttr.emptyDeferredAttrContext);
 182     }
 183 
 184     /** Switch: support target-typing inference
 185      */
 186     boolean allowPoly;
 187 
 188     /** Switch: support type annotations.
 189      */
 190     boolean allowTypeAnnos;
 191 
 192     /** Switch: support lambda expressions ?
 193      */
 194     boolean allowLambda;
 195 
 196     /** Switch: support default methods ?
 197      */
 198     boolean allowDefaultMethods;
 199 
 200     /** Switch: static interface methods enabled?
 201      */
 202     boolean allowStaticInterfaceMethods;
 203 
 204     /** Switch: reifiable types in instanceof enabled?
 205      */
 206     boolean allowReifiableTypesInInstanceof;
 207 
 208     /**
 209      * Switch: warn about use of variable before declaration?
 210      * RFE: 6425594
 211      */
 212     boolean useBeforeDeclarationWarning;
 213 
 214     /**
 215      * Switch: name of source level; used for error reporting.
 216      */
 217     String sourceName;
 218 
 219     /** Check kind and type of given tree against protokind and prototype.
 220      *  If check succeeds, store type in tree and return it.
 221      *  If check fails, store errType in tree and return it.
 222      *  No checks are performed if the prototype is a method type.
 223      *  It is not necessary in this case since we know that kind and type
 224      *  are correct.
 225      *
 226      *  @param tree     The tree whose kind and type is checked
 227      *  @param found    The computed type of the tree
 228      *  @param ownkind  The computed kind of the tree
 229      *  @param resultInfo  The expected result of the tree
 230      */
 231     Type check(final JCTree tree,
 232                final Type found,
 233                final KindSelector ownkind,
 234                final ResultInfo resultInfo) {
 235         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
 236         Type owntype;
 237         boolean shouldCheck = !found.hasTag(ERROR) &&
 238                 !resultInfo.pt.hasTag(METHOD) &&
 239                 !resultInfo.pt.hasTag(FORALL);
 240         if (shouldCheck && !ownkind.subset(resultInfo.pkind)) {
 241             log.error(tree.pos(),
 242                       Errors.UnexpectedType(resultInfo.pkind.kindNames(),
 243                                             ownkind.kindNames()));
 244             owntype = types.createErrorType(found);
 245         } else if (allowPoly && inferenceContext.free(found)) {
 246             //delay the check if there are inference variables in the found type
 247             //this means we are dealing with a partially inferred poly expression
 248             owntype = shouldCheck ? resultInfo.pt : found;
 249             if (resultInfo.checkMode.installPostInferenceHook()) {
 250                 inferenceContext.addFreeTypeListener(List.of(found),
 251                         instantiatedContext -> {
 252                             ResultInfo pendingResult =
 253                                     resultInfo.dup(inferenceContext.asInstType(resultInfo.pt));
 254                             check(tree, inferenceContext.asInstType(found), ownkind, pendingResult);
 255                         });
 256             }
 257         } else {
 258             owntype = shouldCheck ?
 259             resultInfo.check(tree, found) :
 260             found;
 261         }
 262         if (resultInfo.checkMode.updateTreeType()) {
 263             tree.type = owntype;
 264         }
 265         return owntype;
 266     }
 267 
 268     /** Is given blank final variable assignable, i.e. in a scope where it
 269      *  may be assigned to even though it is final?
 270      *  @param v      The blank final variable.
 271      *  @param env    The current environment.
 272      */
 273     boolean isAssignableAsBlankFinal(VarSymbol v, Env<AttrContext> env) {
 274         Symbol owner = env.info.scope.owner;
 275            // owner refers to the innermost variable, method or
 276            // initializer block declaration at this point.
 277         return
 278             v.owner == owner
 279             ||
 280             ((owner.name == names.init ||    // i.e. we are in a constructor
 281               owner.kind == VAR ||           // i.e. we are in a variable initializer
 282               (owner.flags() & BLOCK) != 0)  // i.e. we are in an initializer block
 283              &&
 284              v.owner == owner.owner
 285              &&
 286              ((v.flags() & STATIC) != 0) == Resolve.isStatic(env));
 287     }
 288 
 289     /** Check that variable can be assigned to.
 290      *  @param pos    The current source code position.
 291      *  @param v      The assigned variable
 292      *  @param base   If the variable is referred to in a Select, the part
 293      *                to the left of the `.', null otherwise.
 294      *  @param env    The current environment.
 295      */
 296     void checkAssignable(DiagnosticPosition pos, VarSymbol v, JCTree base, Env<AttrContext> env) {
 297         if (v.name == names._this) {
 298             log.error(pos, Errors.CantAssignValToThis);
 299         } else if ((v.flags() & FINAL) != 0 &&
 300             ((v.flags() & HASINIT) != 0
 301              ||
 302              !((base == null ||
 303                TreeInfo.isThisQualifier(base)) &&
 304                isAssignableAsBlankFinal(v, env)))) {
 305             if (v.isResourceVariable()) { //TWR resource
 306                 log.error(pos, Errors.TryResourceMayNotBeAssigned(v));
 307             } else if ((v.flags() & MATCH_BINDING) != 0) {
 308                 log.error(pos, Errors.PatternBindingMayNotBeAssigned(v));
 309             } else {
 310                 log.error(pos, Errors.CantAssignValToFinalVar(v));
 311             }
 312         }
 313     }
 314 
 315     /** Does tree represent a static reference to an identifier?
 316      *  It is assumed that tree is either a SELECT or an IDENT.
 317      *  We have to weed out selects from non-type names here.
 318      *  @param tree    The candidate tree.
 319      */
 320     boolean isStaticReference(JCTree tree) {
 321         if (tree.hasTag(SELECT)) {
 322             Symbol lsym = TreeInfo.symbol(((JCFieldAccess) tree).selected);
 323             if (lsym == null || lsym.kind != TYP) {
 324                 return false;
 325             }
 326         }
 327         return true;
 328     }
 329 
 330     /** Is this symbol a type?
 331      */
 332     static boolean isType(Symbol sym) {
 333         return sym != null && sym.kind == TYP;
 334     }
 335 
 336     /** The current `this' symbol.
 337      *  @param env    The current environment.
 338      */
 339     Symbol thisSym(DiagnosticPosition pos, Env<AttrContext> env) {
 340         return rs.resolveSelf(pos, env, env.enclClass.sym, names._this);
 341     }
 342 
 343     /** Attribute a parsed identifier.
 344      * @param tree Parsed identifier name
 345      * @param topLevel The toplevel to use
 346      */
 347     public Symbol attribIdent(JCTree tree, JCCompilationUnit topLevel) {
 348         Env<AttrContext> localEnv = enter.topLevelEnv(topLevel);
 349         localEnv.enclClass = make.ClassDef(make.Modifiers(0),
 350                                            syms.errSymbol.name,
 351                                            null, null, null, null);
 352         localEnv.enclClass.sym = syms.errSymbol;
 353         return attribIdent(tree, localEnv);
 354     }
 355 
 356     /** Attribute a parsed identifier.
 357      * @param tree Parsed identifier name
 358      * @param env The env to use
 359      */
 360     public Symbol attribIdent(JCTree tree, Env<AttrContext> env) {
 361         return tree.accept(identAttributer, env);
 362     }
 363     // where
 364         private TreeVisitor<Symbol,Env<AttrContext>> identAttributer = new IdentAttributer();
 365         private class IdentAttributer extends SimpleTreeVisitor<Symbol,Env<AttrContext>> {
 366             @Override @DefinedBy(Api.COMPILER_TREE)
 367             public Symbol visitMemberSelect(MemberSelectTree node, Env<AttrContext> env) {
 368                 Symbol site = visit(node.getExpression(), env);
 369                 if (site.kind == ERR || site.kind == ABSENT_TYP || site.kind == HIDDEN)
 370                     return site;
 371                 Name name = (Name)node.getIdentifier();
 372                 if (site.kind == PCK) {
 373                     env.toplevel.packge = (PackageSymbol)site;
 374                     return rs.findIdentInPackage(null, env, (TypeSymbol)site, name,
 375                             KindSelector.TYP_PCK);
 376                 } else {
 377                     env.enclClass.sym = (ClassSymbol)site;
 378                     return rs.findMemberType(env, site.asType(), name, (TypeSymbol)site);
 379                 }
 380             }
 381 
 382             @Override @DefinedBy(Api.COMPILER_TREE)
 383             public Symbol visitIdentifier(IdentifierTree node, Env<AttrContext> env) {
 384                 return rs.findIdent(null, env, (Name)node.getName(), KindSelector.TYP_PCK);
 385             }
 386         }
 387 
 388     public Type coerce(Type etype, Type ttype) {
 389         return cfolder.coerce(etype, ttype);
 390     }
 391 
 392     public Type attribType(JCTree node, TypeSymbol sym) {
 393         Env<AttrContext> env = typeEnvs.get(sym);
 394         Env<AttrContext> localEnv = env.dup(node, env.info.dup());
 395         return attribTree(node, localEnv, unknownTypeInfo);
 396     }
 397 
 398     public Type attribImportQualifier(JCImport tree, Env<AttrContext> env) {
 399         // Attribute qualifying package or class.
 400         JCFieldAccess s = (JCFieldAccess)tree.qualid;
 401         return attribTree(s.selected, env,
 402                           new ResultInfo(tree.staticImport ?
 403                                          KindSelector.TYP : KindSelector.TYP_PCK,
 404                        Type.noType));
 405     }
 406 
 407     public Env<AttrContext> attribExprToTree(JCTree expr, Env<AttrContext> env, JCTree tree) {
 408         return attribToTree(expr, env, tree, unknownExprInfo);
 409     }
 410 
 411     public Env<AttrContext> attribStatToTree(JCTree stmt, Env<AttrContext> env, JCTree tree) {
 412         return attribToTree(stmt, env, tree, statInfo);
 413     }
 414 
 415     private Env<AttrContext> attribToTree(JCTree root, Env<AttrContext> env, JCTree tree, ResultInfo resultInfo) {
 416         breakTree = tree;
 417         JavaFileObject prev = log.useSource(env.toplevel.sourcefile);
 418         try {
 419             deferredAttr.attribSpeculative(root, env, resultInfo,
 420                     null, DeferredAttr.AttributionMode.ANALYZER,
 421                     argumentAttr.withLocalCacheContext());
 422         } catch (BreakAttr b) {
 423             return b.env;
 424         } catch (AssertionError ae) {
 425             if (ae.getCause() instanceof BreakAttr) {
 426                 return ((BreakAttr)(ae.getCause())).env;
 427             } else {
 428                 throw ae;
 429             }
 430         } finally {
 431             breakTree = null;
 432             log.useSource(prev);
 433         }
 434         return env;
 435     }
 436 
 437     private JCTree breakTree = null;
 438 
 439     private static class BreakAttr extends RuntimeException {
 440         static final long serialVersionUID = -6924771130405446405L;
 441         private transient Env<AttrContext> env;
 442         private BreakAttr(Env<AttrContext> env) {
 443             this.env = env;
 444         }
 445     }
 446 
 447     /**
 448      * Mode controlling behavior of Attr.Check
 449      */
 450     enum CheckMode {
 451 
 452         NORMAL,
 453 
 454         /**
 455          * Mode signalling 'fake check' - skip tree update. A side-effect of this mode is
 456          * that the captured var cache in {@code InferenceContext} will be used in read-only
 457          * mode when performing inference checks.
 458          */
 459         NO_TREE_UPDATE {
 460             @Override
 461             public boolean updateTreeType() {
 462                 return false;
 463             }
 464         },
 465         /**
 466          * Mode signalling that caller will manage free types in tree decorations.
 467          */
 468         NO_INFERENCE_HOOK {
 469             @Override
 470             public boolean installPostInferenceHook() {
 471                 return false;
 472             }
 473         };
 474 
 475         public boolean updateTreeType() {
 476             return true;
 477         }
 478         public boolean installPostInferenceHook() {
 479             return true;
 480         }
 481     }
 482 
 483 
 484     class ResultInfo {
 485         final KindSelector pkind;
 486         final Type pt;
 487         final CheckContext checkContext;
 488         final CheckMode checkMode;
 489 
 490         ResultInfo(KindSelector pkind, Type pt) {
 491             this(pkind, pt, chk.basicHandler, CheckMode.NORMAL);
 492         }
 493 
 494         ResultInfo(KindSelector pkind, Type pt, CheckMode checkMode) {
 495             this(pkind, pt, chk.basicHandler, checkMode);
 496         }
 497 
 498         protected ResultInfo(KindSelector pkind,
 499                              Type pt, CheckContext checkContext) {
 500             this(pkind, pt, checkContext, CheckMode.NORMAL);
 501         }
 502 
 503         protected ResultInfo(KindSelector pkind,
 504                              Type pt, CheckContext checkContext, CheckMode checkMode) {
 505             this.pkind = pkind;
 506             this.pt = pt;
 507             this.checkContext = checkContext;
 508             this.checkMode = checkMode;
 509         }
 510 
 511         /**
 512          * Should {@link Attr#attribTree} use the {@ArgumentAttr} visitor instead of this one?
 513          * @param tree The tree to be type-checked.
 514          * @return true if {@ArgumentAttr} should be used.
 515          */
 516         protected boolean needsArgumentAttr(JCTree tree) { return false; }
 517 
 518         protected Type check(final DiagnosticPosition pos, final Type found) {
 519             return chk.checkType(pos, found, pt, checkContext);
 520         }
 521 
 522         protected ResultInfo dup(Type newPt) {
 523             return new ResultInfo(pkind, newPt, checkContext, checkMode);
 524         }
 525 
 526         protected ResultInfo dup(CheckContext newContext) {
 527             return new ResultInfo(pkind, pt, newContext, checkMode);
 528         }
 529 
 530         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 531             return new ResultInfo(pkind, newPt, newContext, checkMode);
 532         }
 533 
 534         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 535             return new ResultInfo(pkind, newPt, newContext, newMode);
 536         }
 537 
 538         protected ResultInfo dup(CheckMode newMode) {
 539             return new ResultInfo(pkind, pt, checkContext, newMode);
 540         }
 541 
 542         @Override
 543         public String toString() {
 544             if (pt != null) {
 545                 return pt.toString();
 546             } else {
 547                 return "";
 548             }
 549         }
 550     }
 551 
 552     class MethodAttrInfo extends ResultInfo {
 553         public MethodAttrInfo() {
 554             this(chk.basicHandler);
 555         }
 556 
 557         public MethodAttrInfo(CheckContext checkContext) {
 558             super(KindSelector.VAL, Infer.anyPoly, checkContext);
 559         }
 560 
 561         @Override
 562         protected boolean needsArgumentAttr(JCTree tree) {
 563             return true;
 564         }
 565 
 566         protected ResultInfo dup(Type newPt) {
 567             throw new IllegalStateException();
 568         }
 569 
 570         protected ResultInfo dup(CheckContext newContext) {
 571             return new MethodAttrInfo(newContext);
 572         }
 573 
 574         protected ResultInfo dup(Type newPt, CheckContext newContext) {
 575             throw new IllegalStateException();
 576         }
 577 
 578         protected ResultInfo dup(Type newPt, CheckContext newContext, CheckMode newMode) {
 579             throw new IllegalStateException();
 580         }
 581 
 582         protected ResultInfo dup(CheckMode newMode) {
 583             throw new IllegalStateException();
 584         }
 585     }
 586 
 587     class RecoveryInfo extends ResultInfo {
 588 
 589         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext) {
 590             this(deferredAttrContext, Type.recoveryType);
 591         }
 592 
 593         public RecoveryInfo(final DeferredAttr.DeferredAttrContext deferredAttrContext, Type pt) {
 594             super(KindSelector.VAL, pt, new Check.NestedCheckContext(chk.basicHandler) {
 595                 @Override
 596                 public DeferredAttr.DeferredAttrContext deferredAttrContext() {
 597                     return deferredAttrContext;
 598                 }
 599                 @Override
 600                 public boolean compatible(Type found, Type req, Warner warn) {
 601                     return true;
 602                 }
 603                 @Override
 604                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
 605                     if (pt == Type.recoveryType) {
 606                         chk.basicHandler.report(pos, details);
 607                     }
 608                 }
 609             });
 610         }
 611     }
 612 
 613     final ResultInfo statInfo;
 614     final ResultInfo varAssignmentInfo;
 615     final ResultInfo methodAttrInfo;
 616     final ResultInfo unknownExprInfo;
 617     final ResultInfo unknownTypeInfo;
 618     final ResultInfo unknownTypeExprInfo;
 619     final ResultInfo recoveryInfo;
 620 
 621     Type pt() {
 622         return resultInfo.pt;
 623     }
 624 
 625     KindSelector pkind() {
 626         return resultInfo.pkind;
 627     }
 628 
 629 /* ************************************************************************
 630  * Visitor methods
 631  *************************************************************************/
 632 
 633     /** Visitor argument: the current environment.
 634      */
 635     Env<AttrContext> env;
 636 
 637     /** Visitor argument: the currently expected attribution result.
 638      */
 639     ResultInfo resultInfo;
 640 
 641     /** Visitor result: the computed type.
 642      */
 643     Type result;
 644 
 645     /** Visitor method: attribute a tree, catching any completion failure
 646      *  exceptions. Return the tree's type.
 647      *
 648      *  @param tree    The tree to be visited.
 649      *  @param env     The environment visitor argument.
 650      *  @param resultInfo   The result info visitor argument.
 651      */
 652     Type attribTree(JCTree tree, Env<AttrContext> env, ResultInfo resultInfo) {
 653         Env<AttrContext> prevEnv = this.env;
 654         ResultInfo prevResult = this.resultInfo;
 655         try {
 656             this.env = env;
 657             this.resultInfo = resultInfo;
 658             if (resultInfo.needsArgumentAttr(tree)) {
 659                 result = argumentAttr.attribArg(tree, env);
 660             } else {
 661                 tree.accept(this);
 662             }
 663             if (tree == breakTree &&
 664                     resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
 665                 breakTreeFound(copyEnv(env));
 666             }
 667             return result;
 668         } catch (CompletionFailure ex) {
 669             tree.type = syms.errType;
 670             return chk.completionError(tree.pos(), ex);
 671         } finally {
 672             this.env = prevEnv;
 673             this.resultInfo = prevResult;
 674         }
 675     }
 676 
 677     protected void breakTreeFound(Env<AttrContext> env) {
 678         throw new BreakAttr(env);
 679     }
 680 
 681     Env<AttrContext> copyEnv(Env<AttrContext> env) {
 682         Env<AttrContext> newEnv =
 683                 env.dup(env.tree, env.info.dup(copyScope(env.info.scope)));
 684         if (newEnv.outer != null) {
 685             newEnv.outer = copyEnv(newEnv.outer);
 686         }
 687         return newEnv;
 688     }
 689 
 690     WriteableScope copyScope(WriteableScope sc) {
 691         WriteableScope newScope = WriteableScope.create(sc.owner);
 692         List<Symbol> elemsList = List.nil();
 693         for (Symbol sym : sc.getSymbols()) {
 694             elemsList = elemsList.prepend(sym);
 695         }
 696         for (Symbol s : elemsList) {
 697             newScope.enter(s);
 698         }
 699         return newScope;
 700     }
 701 
 702     /** Derived visitor method: attribute an expression tree.
 703      */
 704     public Type attribExpr(JCTree tree, Env<AttrContext> env, Type pt) {
 705         return attribTree(tree, env, new ResultInfo(KindSelector.VAL, !pt.hasTag(ERROR) ? pt : Type.noType));
 706     }
 707 
 708     /** Derived visitor method: attribute an expression tree with
 709      *  no constraints on the computed type.
 710      */
 711     public Type attribExpr(JCTree tree, Env<AttrContext> env) {
 712         return attribTree(tree, env, unknownExprInfo);
 713     }
 714 
 715     /** Derived visitor method: attribute a type tree.
 716      */
 717     public Type attribType(JCTree tree, Env<AttrContext> env) {
 718         Type result = attribType(tree, env, Type.noType);
 719         return result;
 720     }
 721 
 722     /** Derived visitor method: attribute a type tree.
 723      */
 724     Type attribType(JCTree tree, Env<AttrContext> env, Type pt) {
 725         Type result = attribTree(tree, env, new ResultInfo(KindSelector.TYP, pt));
 726         return result;
 727     }
 728 
 729     /** Derived visitor method: attribute a statement or definition tree.
 730      */
 731     public Type attribStat(JCTree tree, Env<AttrContext> env) {
 732         Env<AttrContext> analyzeEnv = analyzer.copyEnvIfNeeded(tree, env);
 733         Type result = attribTree(tree, env, statInfo);
 734         analyzer.analyzeIfNeeded(tree, analyzeEnv);
 735         return result;
 736     }
 737 
 738     /** Attribute a list of expressions, returning a list of types.
 739      */
 740     List<Type> attribExprs(List<JCExpression> trees, Env<AttrContext> env, Type pt) {
 741         ListBuffer<Type> ts = new ListBuffer<>();
 742         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 743             ts.append(attribExpr(l.head, env, pt));
 744         return ts.toList();
 745     }
 746 
 747     /** Attribute a list of statements, returning nothing.
 748      */
 749     <T extends JCTree> void attribStats(List<T> trees, Env<AttrContext> env) {
 750         for (List<T> l = trees; l.nonEmpty(); l = l.tail)
 751             attribStat(l.head, env);
 752     }
 753 
 754     /** Attribute the arguments in a method call, returning the method kind.
 755      */
 756     KindSelector attribArgs(KindSelector initialKind, List<JCExpression> trees, Env<AttrContext> env, ListBuffer<Type> argtypes) {
 757         KindSelector kind = initialKind;
 758         for (JCExpression arg : trees) {
 759             Type argtype = chk.checkNonVoid(arg, attribTree(arg, env, allowPoly ? methodAttrInfo : unknownExprInfo));
 760             if (argtype.hasTag(DEFERRED)) {
 761                 kind = KindSelector.of(KindSelector.POLY, kind);
 762             }
 763             argtypes.append(argtype);
 764         }
 765         return kind;
 766     }
 767 
 768     /** Attribute a type argument list, returning a list of types.
 769      *  Caller is responsible for calling checkRefTypes.
 770      */
 771     List<Type> attribAnyTypes(List<JCExpression> trees, Env<AttrContext> env) {
 772         ListBuffer<Type> argtypes = new ListBuffer<>();
 773         for (List<JCExpression> l = trees; l.nonEmpty(); l = l.tail)
 774             argtypes.append(attribType(l.head, env));
 775         return argtypes.toList();
 776     }
 777 
 778     /** Attribute a type argument list, returning a list of types.
 779      *  Check that all the types are references.
 780      */
 781     List<Type> attribTypes(List<JCExpression> trees, Env<AttrContext> env) {
 782         List<Type> types = attribAnyTypes(trees, env);
 783         return chk.checkRefTypes(trees, types);
 784     }
 785 
 786     /**
 787      * Attribute type variables (of generic classes or methods).
 788      * Compound types are attributed later in attribBounds.
 789      * @param typarams the type variables to enter
 790      * @param env      the current environment
 791      */
 792     void attribTypeVariables(List<JCTypeParameter> typarams, Env<AttrContext> env, boolean checkCyclic) {
 793         for (JCTypeParameter tvar : typarams) {
 794             TypeVar a = (TypeVar)tvar.type;
 795             a.tsym.flags_field |= UNATTRIBUTED;
 796             a.setUpperBound(Type.noType);
 797             if (!tvar.bounds.isEmpty()) {
 798                 List<Type> bounds = List.of(attribType(tvar.bounds.head, env));
 799                 for (JCExpression bound : tvar.bounds.tail)
 800                     bounds = bounds.prepend(attribType(bound, env));
 801                 types.setBounds(a, bounds.reverse());
 802             } else {
 803                 // if no bounds are given, assume a single bound of
 804                 // java.lang.Object.
 805                 types.setBounds(a, List.of(syms.objectType));
 806             }
 807             a.tsym.flags_field &= ~UNATTRIBUTED;
 808         }
 809         if (checkCyclic) {
 810             for (JCTypeParameter tvar : typarams) {
 811                 chk.checkNonCyclic(tvar.pos(), (TypeVar)tvar.type);
 812             }
 813         }
 814     }
 815 
 816     /**
 817      * Attribute the type references in a list of annotations.
 818      */
 819     void attribAnnotationTypes(List<JCAnnotation> annotations,
 820                                Env<AttrContext> env) {
 821         for (List<JCAnnotation> al = annotations; al.nonEmpty(); al = al.tail) {
 822             JCAnnotation a = al.head;
 823             attribType(a.annotationType, env);
 824         }
 825     }
 826 
 827     /**
 828      * Attribute a "lazy constant value".
 829      *  @param env         The env for the const value
 830      *  @param variable    The initializer for the const value
 831      *  @param type        The expected type, or null
 832      *  @see VarSymbol#setLazyConstValue
 833      */
 834     public Object attribLazyConstantValue(Env<AttrContext> env,
 835                                       JCVariableDecl variable,
 836                                       Type type) {
 837 
 838         DiagnosticPosition prevLintPos
 839                 = deferredLintHandler.setPos(variable.pos());
 840 
 841         final JavaFileObject prevSource = log.useSource(env.toplevel.sourcefile);
 842         try {
 843             Type itype = attribExpr(variable.init, env, type);
 844             if (variable.isImplicitlyTyped()) {
 845                 //fixup local variable type
 846                 type = variable.type = variable.sym.type = chk.checkLocalVarType(variable, itype.baseType(), variable.name);
 847             }
 848             if (itype.constValue() != null) {
 849                 return coerce(itype, type).constValue();
 850             } else {
 851                 return null;
 852             }
 853         } finally {
 854             log.useSource(prevSource);
 855             deferredLintHandler.setPos(prevLintPos);
 856         }
 857     }
 858 
 859     /** Attribute type reference in an `extends' or `implements' clause.
 860      *  Supertypes of anonymous inner classes are usually already attributed.
 861      *
 862      *  @param tree              The tree making up the type reference.
 863      *  @param env               The environment current at the reference.
 864      *  @param classExpected     true if only a class is expected here.
 865      *  @param interfaceExpected true if only an interface is expected here.
 866      */
 867     Type attribBase(JCTree tree,
 868                     Env<AttrContext> env,
 869                     boolean classExpected,
 870                     boolean interfaceExpected,
 871                     boolean checkExtensible) {
 872         Type t = tree.type != null ?
 873             tree.type :
 874             attribType(tree, env);
 875         return checkBase(t, tree, env, classExpected, interfaceExpected, checkExtensible);
 876     }
 877     Type checkBase(Type t,
 878                    JCTree tree,
 879                    Env<AttrContext> env,
 880                    boolean classExpected,
 881                    boolean interfaceExpected,
 882                    boolean checkExtensible) {
 883         final DiagnosticPosition pos = tree.hasTag(TYPEAPPLY) ?
 884                 (((JCTypeApply) tree).clazz).pos() : tree.pos();
 885         if (t.tsym.isAnonymous()) {
 886             log.error(pos, Errors.CantInheritFromAnon);
 887             return types.createErrorType(t);
 888         }
 889         if (t.isErroneous())
 890             return t;
 891         if (t.hasTag(TYPEVAR) && !classExpected && !interfaceExpected) {
 892             // check that type variable is already visible
 893             if (t.getUpperBound() == null) {
 894                 log.error(pos, Errors.IllegalForwardRef);
 895                 return types.createErrorType(t);
 896             }
 897         } else {
 898             t = chk.checkClassType(pos, t, checkExtensible);
 899         }
 900         if (interfaceExpected && (t.tsym.flags() & INTERFACE) == 0) {
 901             log.error(pos, Errors.IntfExpectedHere);
 902             // return errType is necessary since otherwise there might
 903             // be undetected cycles which cause attribution to loop
 904             return types.createErrorType(t);
 905         } else if (checkExtensible &&
 906                    classExpected &&
 907                    (t.tsym.flags() & INTERFACE) != 0) {
 908             log.error(pos, Errors.NoIntfExpectedHere);
 909             return types.createErrorType(t);
 910         }
 911         if (checkExtensible &&
 912             ((t.tsym.flags() & FINAL) != 0)) {
 913             log.error(pos,
 914                       Errors.CantInheritFromFinal(t.tsym));
 915         }
 916         chk.checkNonCyclic(pos, t);
 917         return t;
 918     }
 919 
 920     Type attribIdentAsEnumType(Env<AttrContext> env, JCIdent id) {
 921         Assert.check((env.enclClass.sym.flags() & ENUM) != 0);
 922         id.type = env.info.scope.owner.enclClass().type;
 923         id.sym = env.info.scope.owner.enclClass();
 924         return id.type;
 925     }
 926 
 927     public void visitClassDef(JCClassDecl tree) {
 928         Optional<ArgumentAttr.LocalCacheContext> localCacheContext =
 929                 Optional.ofNullable(env.info.attributionMode.isSpeculative ?
 930                         argumentAttr.withLocalCacheContext() : null);
 931         try {
 932             // Local and anonymous classes have not been entered yet, so we need to
 933             // do it now.
 934             if (env.info.scope.owner.kind.matches(KindSelector.VAL_MTH)) {
 935                 enter.classEnter(tree, env);
 936             } else {
 937                 // If this class declaration is part of a class level annotation,
 938                 // as in @MyAnno(new Object() {}) class MyClass {}, enter it in
 939                 // order to simplify later steps and allow for sensible error
 940                 // messages.
 941                 if (env.tree.hasTag(NEWCLASS) && TreeInfo.isInAnnotation(env, tree))
 942                     enter.classEnter(tree, env);
 943             }
 944 
 945             ClassSymbol c = tree.sym;
 946             if (c == null) {
 947                 // exit in case something drastic went wrong during enter.
 948                 result = null;
 949             } else {
 950                 // make sure class has been completed:
 951                 c.complete();
 952 
 953                 // If this class appears as an anonymous class
 954                 // in a superclass constructor call
 955                 // disable implicit outer instance from being passed.
 956                 // (This would be an illegal access to "this before super").
 957                 if (env.info.isSelfCall &&
 958                         env.tree.hasTag(NEWCLASS)) {
 959                     c.flags_field |= NOOUTERTHIS;
 960                 }
 961                 attribClass(tree.pos(), c);
 962                 result = tree.type = c.type;
 963             }
 964         } finally {
 965             localCacheContext.ifPresent(LocalCacheContext::leave);
 966         }
 967     }
 968 
 969     public void visitMethodDef(JCMethodDecl tree) {
 970         MethodSymbol m = tree.sym;
 971         boolean isDefaultMethod = (m.flags() & DEFAULT) != 0;
 972 
 973         Lint lint = env.info.lint.augment(m);
 974         Lint prevLint = chk.setLint(lint);
 975         MethodSymbol prevMethod = chk.setMethod(m);
 976         try {
 977             deferredLintHandler.flush(tree.pos());
 978             chk.checkDeprecatedAnnotation(tree.pos(), m);
 979 
 980 
 981             // Create a new environment with local scope
 982             // for attributing the method.
 983             Env<AttrContext> localEnv = memberEnter.methodEnv(tree, env);
 984             localEnv.info.lint = lint;
 985 
 986             attribStats(tree.typarams, localEnv);
 987 
 988             // If we override any other methods, check that we do so properly.
 989             // JLS ???
 990             if (m.isStatic()) {
 991                 chk.checkHideClashes(tree.pos(), env.enclClass.type, m);
 992             } else {
 993                 chk.checkOverrideClashes(tree.pos(), env.enclClass.type, m);
 994             }
 995             chk.checkOverride(env, tree, m);
 996 
 997             if (isDefaultMethod && types.overridesObjectMethod(m.enclClass(), m)) {
 998                 log.error(tree, Errors.DefaultOverridesObjectMember(m.name, Kinds.kindName(m.location()), m.location()));
 999             }
1000 
1001             // Enter all type parameters into the local method scope.
1002             for (List<JCTypeParameter> l = tree.typarams; l.nonEmpty(); l = l.tail)
1003                 localEnv.info.scope.enterIfAbsent(l.head.type.tsym);
1004 
1005             ClassSymbol owner = env.enclClass.sym;
1006             if ((owner.flags() & ANNOTATION) != 0 &&
1007                     (tree.params.nonEmpty() ||
1008                     tree.recvparam != null))
1009                 log.error(tree.params.nonEmpty() ?
1010                         tree.params.head.pos() :
1011                         tree.recvparam.pos(),
1012                         Errors.IntfAnnotationMembersCantHaveParams);
1013 
1014             // Attribute all value parameters.
1015             for (List<JCVariableDecl> l = tree.params; l.nonEmpty(); l = l.tail) {
1016                 attribStat(l.head, localEnv);
1017             }
1018 
1019             chk.checkVarargsMethodDecl(localEnv, tree);
1020 
1021             // Check that type parameters are well-formed.
1022             chk.validate(tree.typarams, localEnv);
1023 
1024             // Check that result type is well-formed.
1025             if (tree.restype != null && !tree.restype.type.hasTag(VOID))
1026                 chk.validate(tree.restype, localEnv);
1027 
1028             // Check that receiver type is well-formed.
1029             if (tree.recvparam != null) {
1030                 // Use a new environment to check the receiver parameter.
1031                 // Otherwise I get "might not have been initialized" errors.
1032                 // Is there a better way?
1033                 Env<AttrContext> newEnv = memberEnter.methodEnv(tree, env);
1034                 attribType(tree.recvparam, newEnv);
1035                 chk.validate(tree.recvparam, newEnv);
1036             }
1037 
1038             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP) {
1039                 // lets find if this method is an accessor
1040                 Optional<? extends RecordComponent> recordComponent = env.enclClass.sym.getRecordComponents().stream()
1041                         .filter(rc -> rc.accessor == tree.sym && (rc.accessor.flags_field & GENERATED_MEMBER) == 0).findFirst();
1042                 if (recordComponent.isPresent()) {
1043                     // the method is a user defined accessor lets check that everything is fine
1044                     if (!tree.sym.isPublic()) {
1045                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.MethodMustBePublic));
1046                     }
1047                     if (!types.isSameType(tree.sym.type.getReturnType(), recordComponent.get().type)) {
1048                         log.error(tree, Errors.InvalidAccessorMethodInRecord(env.enclClass.sym,
1049                                 Fragments.AccessorReturnTypeDoesntMatch(tree.sym, recordComponent.get())));
1050                     }
1051                     if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1052                         log.error(tree,
1053                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodCantThrowException));
1054                     }
1055                     if (!tree.typarams.isEmpty()) {
1056                         log.error(tree,
1057                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeGeneric));
1058                     }
1059                     if (tree.sym.isStatic()) {
1060                         log.error(tree,
1061                                 Errors.InvalidAccessorMethodInRecord(env.enclClass.sym, Fragments.AccessorMethodMustNotBeStatic));
1062                     }
1063                 }
1064 
1065                 if (tree.name == names.init) {
1066                     // if this a constructor other than the canonical one
1067                     if ((tree.sym.flags_field & RECORD) == 0) {
1068                         JCMethodInvocation app = TreeInfo.firstConstructorCall(tree);
1069                         if (app == null ||
1070                                 TreeInfo.name(app.meth) != names._this ||
1071                                 !checkFirstConstructorStat(app, tree, false)) {
1072                             log.error(tree, Errors.FirstStatementMustBeCallToAnotherConstructor);
1073                         }
1074                     } else {
1075                         // but if it is the canonical:
1076 
1077                         // if user generated, then it shouldn't explicitly invoke any other constructor
1078                         if ((tree.sym.flags_field & GENERATEDCONSTR) == 0) {
1079                             JCMethodInvocation app = TreeInfo.firstConstructorCall(tree);
1080                             if (app != null &&
1081                                     (TreeInfo.name(app.meth) == names._this ||
1082                                             TreeInfo.name(app.meth) == names._super) &&
1083                                     checkFirstConstructorStat(app, tree, false)) {
1084                                 log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1085                                         Fragments.Canonical, tree.sym,
1086                                         Fragments.CanonicalMustNotContainExplicitConstructorInvocation));
1087                             }
1088                         }
1089 
1090                         // also we want to check that no type variables have been defined
1091                         if (!tree.typarams.isEmpty()) {
1092                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1093                                     Fragments.Canonical, tree.sym, Fragments.CanonicalMustNotDeclareTypeVariables));
1094                         }
1095 
1096                         /* and now we need to check that the constructor's arguments are exactly the same as those of the
1097                          * record components
1098                          */
1099                         List<Type> recordComponentTypes = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.type);
1100                         for (JCVariableDecl param: tree.params) {
1101                             if (!types.isSameType(param.type, recordComponentTypes.head)) {
1102                                 log.error(param, Errors.InvalidCanonicalConstructorInRecord(
1103                                         Fragments.Canonical, tree.sym, Fragments.TypeMustBeIdenticalToCorrespondingRecordComponentType));
1104                             }
1105                             recordComponentTypes = recordComponentTypes.tail;
1106                         }
1107                     }
1108                 }
1109             }
1110 
1111             // annotation method checks
1112             if ((owner.flags() & ANNOTATION) != 0) {
1113                 // annotation method cannot have throws clause
1114                 if (tree.thrown.nonEmpty()) {
1115                     log.error(tree.thrown.head.pos(),
1116                               Errors.ThrowsNotAllowedInIntfAnnotation);
1117                 }
1118                 // annotation method cannot declare type-parameters
1119                 if (tree.typarams.nonEmpty()) {
1120                     log.error(tree.typarams.head.pos(),
1121                               Errors.IntfAnnotationMembersCantHaveTypeParams);
1122                 }
1123                 // validate annotation method's return type (could be an annotation type)
1124                 chk.validateAnnotationType(tree.restype);
1125                 // ensure that annotation method does not clash with members of Object/Annotation
1126                 chk.validateAnnotationMethod(tree.pos(), m);
1127             }
1128 
1129             for (List<JCExpression> l = tree.thrown; l.nonEmpty(); l = l.tail)
1130                 chk.checkType(l.head.pos(), l.head.type, syms.throwableType);
1131 
1132             if (tree.body == null) {
1133                 // Empty bodies are only allowed for
1134                 // abstract, native, or interface methods, or for methods
1135                 // in a retrofit signature class.
1136                 if (tree.defaultValue != null) {
1137                     if ((owner.flags() & ANNOTATION) == 0)
1138                         log.error(tree.pos(),
1139                                   Errors.DefaultAllowedInIntfAnnotationMember);
1140                 }
1141                 if (isDefaultMethod || (tree.sym.flags() & (ABSTRACT | NATIVE)) == 0)
1142                     log.error(tree.pos(), Errors.MissingMethBodyOrDeclAbstract);
1143             } else if ((tree.sym.flags() & (ABSTRACT|DEFAULT|PRIVATE)) == ABSTRACT) {
1144                 if ((owner.flags() & INTERFACE) != 0) {
1145                     log.error(tree.body.pos(), Errors.IntfMethCantHaveBody);
1146                 } else {
1147                     log.error(tree.pos(), Errors.AbstractMethCantHaveBody);
1148                 }
1149             } else if ((tree.mods.flags & NATIVE) != 0) {
1150                 log.error(tree.pos(), Errors.NativeMethCantHaveBody);
1151             } else {
1152                 // Add an implicit super() call unless an explicit call to
1153                 // super(...) or this(...) is given
1154                 // or we are compiling class java.lang.Object.
1155                 if (tree.name == names.init && owner.type != syms.objectType) {
1156                     JCBlock body = tree.body;
1157                     if (body.stats.isEmpty() ||
1158                             TreeInfo.getConstructorInvocationName(body.stats, names) == names.empty) {
1159                         JCStatement supCall = make.at(body.pos).Exec(make.Apply(List.nil(),
1160                                 make.Ident(names._super), make.Idents(List.nil())));
1161                         body.stats = body.stats.prepend(supCall);
1162                     } else if ((env.enclClass.sym.flags() & ENUM) != 0 &&
1163                             (tree.mods.flags & GENERATEDCONSTR) == 0 &&
1164                             TreeInfo.isSuperCall(body.stats.head)) {
1165                         // enum constructors are not allowed to call super
1166                         // directly, so make sure there aren't any super calls
1167                         // in enum constructors, except in the compiler
1168                         // generated one.
1169                         log.error(tree.body.stats.head.pos(),
1170                                   Errors.CallToSuperNotAllowedInEnumCtor(env.enclClass.sym));
1171                     }
1172                     if (env.enclClass.sym.isRecord() && (tree.sym.flags_field & RECORD) != 0) { // we are seeing the canonical constructor
1173                         List<Name> recordComponentNames = TreeInfo.recordFields(env.enclClass).map(vd -> vd.sym.name);
1174                         List<Name> initParamNames = tree.sym.params.map(p -> p.name);
1175                         if (!initParamNames.equals(recordComponentNames)) {
1176                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1177                                     Fragments.Canonical, env.enclClass.sym, Fragments.CanonicalWithNameMismatch));
1178                         }
1179                         if (!tree.sym.isPublic()) {
1180                             log.error(tree, Errors.InvalidCanonicalConstructorInRecord(
1181                                     TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1182                                     env.enclClass.sym, Fragments.CanonicalConstructorMustBePublic));
1183                         }
1184                         if (tree.sym.type.asMethodType().thrown != null && !tree.sym.type.asMethodType().thrown.isEmpty()) {
1185                             log.error(tree,
1186                                     Errors.InvalidCanonicalConstructorInRecord(
1187                                             TreeInfo.isCompactConstructor(tree) ? Fragments.Compact : Fragments.Canonical,
1188                                             env.enclClass.sym, Fragments.ThrowsClauseNotAllowedForCanonicalConstructor));
1189                         }
1190                     }
1191                 }
1192 
1193                 // Attribute all type annotations in the body
1194                 annotate.queueScanTreeAndTypeAnnotate(tree.body, localEnv, m, null);
1195                 annotate.flush();
1196 
1197                 // Attribute method body.
1198                 attribStat(tree.body, localEnv);
1199             }
1200 
1201             localEnv.info.scope.leave();
1202             result = tree.type = m.type;
1203         } finally {
1204             chk.setLint(prevLint);
1205             chk.setMethod(prevMethod);
1206         }
1207     }
1208 
1209     public void visitVarDef(JCVariableDecl tree) {
1210         // Local variables have not been entered yet, so we need to do it now:
1211         if (env.info.scope.owner.kind == MTH || env.info.scope.owner.kind == VAR) {
1212             if (tree.sym != null) {
1213                 // parameters have already been entered
1214                 env.info.scope.enter(tree.sym);
1215             } else {
1216                 if (tree.isImplicitlyTyped() && (tree.getModifiers().flags & PARAMETER) == 0) {
1217                     if (tree.init == null) {
1218                         //cannot use 'var' without initializer
1219                         log.error(tree, Errors.CantInferLocalVarType(tree.name, Fragments.LocalMissingInit));
1220                         tree.vartype = make.Erroneous();
1221                     } else {
1222                         Fragment msg = canInferLocalVarType(tree);
1223                         if (msg != null) {
1224                             //cannot use 'var' with initializer which require an explicit target
1225                             //(e.g. lambda, method reference, array initializer).
1226                             log.error(tree, Errors.CantInferLocalVarType(tree.name, msg));
1227                             tree.vartype = make.Erroneous();
1228                         }
1229                     }
1230                 }
1231                 try {
1232                     annotate.blockAnnotations();
1233                     memberEnter.memberEnter(tree, env);
1234                 } finally {
1235                     annotate.unblockAnnotations();
1236                 }
1237             }
1238         } else {
1239             if (tree.init != null) {
1240                 // Field initializer expression need to be entered.
1241                 annotate.queueScanTreeAndTypeAnnotate(tree.init, env, tree.sym, tree.pos());
1242                 annotate.flush();
1243             }
1244         }
1245 
1246         VarSymbol v = tree.sym;
1247         Lint lint = env.info.lint.augment(v);
1248         Lint prevLint = chk.setLint(lint);
1249 
1250         // Check that the variable's declared type is well-formed.
1251         boolean isImplicitLambdaParameter = env.tree.hasTag(LAMBDA) &&
1252                 ((JCLambda)env.tree).paramKind == JCLambda.ParameterKind.IMPLICIT &&
1253                 (tree.sym.flags() & PARAMETER) != 0;
1254         chk.validate(tree.vartype, env, !isImplicitLambdaParameter && !tree.isImplicitlyTyped());
1255 
1256         try {
1257             v.getConstValue(); // ensure compile-time constant initializer is evaluated
1258             deferredLintHandler.flush(tree.pos());
1259             chk.checkDeprecatedAnnotation(tree.pos(), v);
1260 
1261             if (tree.init != null) {
1262                 if ((v.flags_field & FINAL) == 0 ||
1263                     !memberEnter.needsLazyConstValue(tree.init)) {
1264                     // Not a compile-time constant
1265                     // Attribute initializer in a new environment
1266                     // with the declared variable as owner.
1267                     // Check that initializer conforms to variable's declared type.
1268                     Env<AttrContext> initEnv = memberEnter.initEnv(tree, env);
1269                     initEnv.info.lint = lint;
1270                     // In order to catch self-references, we set the variable's
1271                     // declaration position to maximal possible value, effectively
1272                     // marking the variable as undefined.
1273                     initEnv.info.enclVar = v;
1274                     attribExpr(tree.init, initEnv, v.type);
1275                     if (tree.isImplicitlyTyped()) {
1276                         //fixup local variable type
1277                         v.type = chk.checkLocalVarType(tree, tree.init.type.baseType(), tree.name);
1278                     }
1279                 }
1280                 if (tree.isImplicitlyTyped()) {
1281                     setSyntheticVariableType(tree, v.type);
1282                 }
1283             }
1284             result = tree.type = v.type;
1285             if (env.enclClass.sym.isRecord() && tree.sym.owner.kind == TYP && !v.isStatic()) {
1286                 if (isNonArgsMethodInObject(v.name)) {
1287                     log.error(tree, Errors.IllegalRecordComponentName(v));
1288                 }
1289             }
1290         }
1291         finally {
1292             chk.setLint(prevLint);
1293         }
1294     }
1295 
1296     private boolean isNonArgsMethodInObject(Name name) {
1297         for (Symbol s : syms.objectType.tsym.members().getSymbolsByName(name, s -> s.kind == MTH)) {
1298             if (s.type.getParameterTypes().isEmpty()) {
1299                 return true;
1300             }
1301         }
1302         return false;
1303     }
1304 
1305     Fragment canInferLocalVarType(JCVariableDecl tree) {
1306         LocalInitScanner lis = new LocalInitScanner();
1307         lis.scan(tree.init);
1308         return lis.badInferenceMsg;
1309     }
1310 
1311     static class LocalInitScanner extends TreeScanner {
1312         Fragment badInferenceMsg = null;
1313         boolean needsTarget = true;
1314 
1315         @Override
1316         public void visitNewArray(JCNewArray tree) {
1317             if (tree.elemtype == null && needsTarget) {
1318                 badInferenceMsg = Fragments.LocalArrayMissingTarget;
1319             }
1320         }
1321 
1322         @Override
1323         public void visitLambda(JCLambda tree) {
1324             if (needsTarget) {
1325                 badInferenceMsg = Fragments.LocalLambdaMissingTarget;
1326             }
1327         }
1328 
1329         @Override
1330         public void visitTypeCast(JCTypeCast tree) {
1331             boolean prevNeedsTarget = needsTarget;
1332             try {
1333                 needsTarget = false;
1334                 super.visitTypeCast(tree);
1335             } finally {
1336                 needsTarget = prevNeedsTarget;
1337             }
1338         }
1339 
1340         @Override
1341         public void visitReference(JCMemberReference tree) {
1342             if (needsTarget) {
1343                 badInferenceMsg = Fragments.LocalMrefMissingTarget;
1344             }
1345         }
1346 
1347         @Override
1348         public void visitNewClass(JCNewClass tree) {
1349             boolean prevNeedsTarget = needsTarget;
1350             try {
1351                 needsTarget = false;
1352                 super.visitNewClass(tree);
1353             } finally {
1354                 needsTarget = prevNeedsTarget;
1355             }
1356         }
1357 
1358         @Override
1359         public void visitApply(JCMethodInvocation tree) {
1360             boolean prevNeedsTarget = needsTarget;
1361             try {
1362                 needsTarget = false;
1363                 super.visitApply(tree);
1364             } finally {
1365                 needsTarget = prevNeedsTarget;
1366             }
1367         }
1368     }
1369 
1370     public void visitSkip(JCSkip tree) {
1371         result = null;
1372     }
1373 
1374     public void visitBlock(JCBlock tree) {
1375         if (env.info.scope.owner.kind == TYP || env.info.scope.owner.kind == ERR) {
1376             // Block is a static or instance initializer;
1377             // let the owner of the environment be a freshly
1378             // created BLOCK-method.
1379             Symbol fakeOwner =
1380                 new MethodSymbol(tree.flags | BLOCK |
1381                     env.info.scope.owner.flags() & STRICTFP, names.empty, null,
1382                     env.info.scope.owner);
1383             final Env<AttrContext> localEnv =
1384                 env.dup(tree, env.info.dup(env.info.scope.dupUnshared(fakeOwner)));
1385 
1386             if ((tree.flags & STATIC) != 0) localEnv.info.staticLevel++;
1387             // Attribute all type annotations in the block
1388             annotate.queueScanTreeAndTypeAnnotate(tree, localEnv, localEnv.info.scope.owner, null);
1389             annotate.flush();
1390             attribStats(tree.stats, localEnv);
1391 
1392             {
1393                 // Store init and clinit type annotations with the ClassSymbol
1394                 // to allow output in Gen.normalizeDefs.
1395                 ClassSymbol cs = (ClassSymbol)env.info.scope.owner;
1396                 List<Attribute.TypeCompound> tas = localEnv.info.scope.owner.getRawTypeAttributes();
1397                 if ((tree.flags & STATIC) != 0) {
1398                     cs.appendClassInitTypeAttributes(tas);
1399                 } else {
1400                     cs.appendInitTypeAttributes(tas);
1401                 }
1402             }
1403         } else {
1404             // Create a new local environment with a local scope.
1405             Env<AttrContext> localEnv =
1406                 env.dup(tree, env.info.dup(env.info.scope.dup()));
1407             try {
1408                 attribStats(tree.stats, localEnv);
1409             } finally {
1410                 localEnv.info.scope.leave();
1411             }
1412         }
1413         result = null;
1414     }
1415 
1416     public void visitDoLoop(JCDoWhileLoop tree) {
1417         attribStat(tree.body, env.dup(tree));
1418         attribExpr(tree.cond, env, syms.booleanType);
1419         if (!breaksOutOf(tree, tree.body)) {
1420             //include condition's body when false after the while, if cannot get out of the loop
1421             List<BindingSymbol> bindings = matchBindingsComputer.getMatchBindings(tree.cond, false);
1422 
1423             bindings.forEach(env.info.scope::enter);
1424             bindings.forEach(BindingSymbol::preserveBinding);
1425         }
1426         result = null;
1427     }
1428 
1429     public void visitWhileLoop(JCWhileLoop tree) {
1430         attribExpr(tree.cond, env, syms.booleanType);
1431         // include condition's bindings when true in the body:
1432         Env<AttrContext> whileEnv = bindingEnv(env, matchBindingsComputer.getMatchBindings(tree.cond, true));
1433         try {
1434             attribStat(tree.body, whileEnv.dup(tree));
1435         } finally {
1436             whileEnv.info.scope.leave();
1437         }
1438         if (!breaksOutOf(tree, tree.body)) {
1439             //include condition's bindings when false after the while, if cannot get out of the loop
1440             List<BindingSymbol> bindings =
1441                     matchBindingsComputer.getMatchBindings(tree.cond, false);
1442 
1443             bindings.forEach(env.info.scope::enter);
1444             bindings.forEach(BindingSymbol::preserveBinding);
1445         }
1446         result = null;
1447     }
1448 
1449     private boolean breaksOutOf(JCTree loop, JCTree body) {
1450         preFlow(body);
1451         return flow.breaksOutOf(env, loop, body, make);
1452     }
1453 
1454     public void visitForLoop(JCForLoop tree) {
1455         Env<AttrContext> loopEnv =
1456             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1457         try {
1458             attribStats(tree.init, loopEnv);
1459             List<BindingSymbol> matchBindings = List.nil();
1460             if (tree.cond != null) {
1461                 attribExpr(tree.cond, loopEnv, syms.booleanType);
1462                 // include condition's bindings when true in the body and step:
1463                 matchBindings = matchBindingsComputer.getMatchBindings(tree.cond, true);
1464             }
1465             Env<AttrContext> bodyEnv = bindingEnv(loopEnv, matchBindings);
1466             try {
1467                 bodyEnv.tree = tree; // before, we were not in loop!
1468                 attribStats(tree.step, bodyEnv);
1469                 attribStat(tree.body, bodyEnv);
1470             } finally {
1471                 bodyEnv.info.scope.leave();
1472             }
1473             result = null;
1474         }
1475         finally {
1476             loopEnv.info.scope.leave();
1477         }
1478         if (!breaksOutOf(tree, tree.body)) {
1479             //include condition's body when false after the while, if cannot get out of the loop
1480             List<BindingSymbol> bindings =
1481                     matchBindingsComputer.getMatchBindings(tree.cond, false);
1482 
1483             bindings.forEach(env.info.scope::enter);
1484             bindings.forEach(BindingSymbol::preserveBinding);
1485         }
1486     }
1487 
1488     public void visitForeachLoop(JCEnhancedForLoop tree) {
1489         Env<AttrContext> loopEnv =
1490             env.dup(env.tree, env.info.dup(env.info.scope.dup()));
1491         try {
1492             //the Formal Parameter of a for-each loop is not in the scope when
1493             //attributing the for-each expression; we mimick this by attributing
1494             //the for-each expression first (against original scope).
1495             Type exprType = types.cvarUpperBound(attribExpr(tree.expr, loopEnv));
1496             chk.checkNonVoid(tree.pos(), exprType);
1497             Type elemtype = types.elemtype(exprType); // perhaps expr is an array?
1498             if (elemtype == null) {
1499                 // or perhaps expr implements Iterable<T>?
1500                 Type base = types.asSuper(exprType, syms.iterableType.tsym);
1501                 if (base == null) {
1502                     log.error(tree.expr.pos(),
1503                               Errors.ForeachNotApplicableToType(exprType,
1504                                                                 Fragments.TypeReqArrayOrIterable));
1505                     elemtype = types.createErrorType(exprType);
1506                 } else {
1507                     List<Type> iterableParams = base.allparams();
1508                     elemtype = iterableParams.isEmpty()
1509                         ? syms.objectType
1510                         : types.wildUpperBound(iterableParams.head);
1511                 }
1512             }
1513             if (tree.var.isImplicitlyTyped()) {
1514                 Type inferredType = chk.checkLocalVarType(tree.var, elemtype, tree.var.name);
1515                 setSyntheticVariableType(tree.var, inferredType);
1516             }
1517             attribStat(tree.var, loopEnv);
1518             chk.checkType(tree.expr.pos(), elemtype, tree.var.sym.type);
1519             loopEnv.tree = tree; // before, we were not in loop!
1520             attribStat(tree.body, loopEnv);
1521             result = null;
1522         }
1523         finally {
1524             loopEnv.info.scope.leave();
1525         }
1526     }
1527 
1528     public void visitLabelled(JCLabeledStatement tree) {
1529         // Check that label is not used in an enclosing statement
1530         Env<AttrContext> env1 = env;
1531         while (env1 != null && !env1.tree.hasTag(CLASSDEF)) {
1532             if (env1.tree.hasTag(LABELLED) &&
1533                 ((JCLabeledStatement) env1.tree).label == tree.label) {
1534                 log.error(tree.pos(),
1535                           Errors.LabelAlreadyInUse(tree.label));
1536                 break;
1537             }
1538             env1 = env1.next;
1539         }
1540 
1541         attribStat(tree.body, env.dup(tree));
1542         result = null;
1543     }
1544 
1545     public void visitSwitch(JCSwitch tree) {
1546         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1547             attribStats(c.stats, caseEnv);
1548         });
1549         result = null;
1550     }
1551 
1552     public void visitSwitchExpression(JCSwitchExpression tree) {
1553         tree.polyKind = (pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly) ?
1554                 PolyKind.STANDALONE : PolyKind.POLY;
1555 
1556         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1557             //this means we are returning a poly conditional from void-compatible lambda expression
1558             resultInfo.checkContext.report(tree, diags.fragment(Fragments.SwitchExpressionTargetCantBeVoid));
1559             result = tree.type = types.createErrorType(resultInfo.pt);
1560             return;
1561         }
1562 
1563         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1564                 unknownExprInfo :
1565                 resultInfo.dup(switchExpressionContext(resultInfo.checkContext));
1566 
1567         ListBuffer<DiagnosticPosition> caseTypePositions = new ListBuffer<>();
1568         ListBuffer<Type> caseTypes = new ListBuffer<>();
1569 
1570         handleSwitch(tree, tree.selector, tree.cases, (c, caseEnv) -> {
1571             caseEnv.info.yieldResult = condInfo;
1572             attribStats(c.stats, caseEnv);
1573             new TreeScanner() {
1574                 @Override
1575                 public void visitYield(JCYield brk) {
1576                     if (brk.target == tree) {
1577                         caseTypePositions.append(brk.value != null ? brk.value.pos() : brk.pos());
1578                         caseTypes.append(brk.value != null ? brk.value.type : syms.errType);
1579                     }
1580                     super.visitYield(brk);
1581                 }
1582 
1583                 @Override public void visitClassDef(JCClassDecl tree) {}
1584                 @Override public void visitLambda(JCLambda tree) {}
1585             }.scan(c.stats);
1586         });
1587 
1588         if (tree.cases.isEmpty()) {
1589             log.error(tree.pos(),
1590                       Errors.SwitchExpressionEmpty);
1591         } else if (caseTypes.isEmpty()) {
1592             log.error(tree.pos(),
1593                       Errors.SwitchExpressionNoResultExpressions);
1594         }
1595 
1596         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ? condType(caseTypePositions.toList(), caseTypes.toList()) : pt();
1597 
1598         result = tree.type = check(tree, owntype, KindSelector.VAL, resultInfo);
1599     }
1600     //where:
1601         CheckContext switchExpressionContext(CheckContext checkContext) {
1602             return new Check.NestedCheckContext(checkContext) {
1603                 //this will use enclosing check context to check compatibility of
1604                 //subexpression against target type; if we are in a method check context,
1605                 //depending on whether boxing is allowed, we could have incompatibilities
1606                 @Override
1607                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1608                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInSwitchExpression(details)));
1609                 }
1610             };
1611         }
1612 
1613     private void handleSwitch(JCTree switchTree,
1614                               JCExpression selector,
1615                               List<JCCase> cases,
1616                               BiConsumer<JCCase, Env<AttrContext>> attribCase) {
1617         Type seltype = attribExpr(selector, env);
1618 
1619         Env<AttrContext> switchEnv =
1620             env.dup(switchTree, env.info.dup(env.info.scope.dup()));
1621 
1622         try {
1623             boolean enumSwitch = (seltype.tsym.flags() & Flags.ENUM) != 0;
1624             boolean stringSwitch = types.isSameType(seltype, syms.stringType);
1625             if (!enumSwitch && !stringSwitch)
1626                 seltype = chk.checkType(selector.pos(), seltype, syms.intType);
1627 
1628             // Attribute all cases and
1629             // check that there are no duplicate case labels or default clauses.
1630             Set<Object> labels = new HashSet<>(); // The set of case labels.
1631             boolean hasDefault = false;      // Is there a default label?
1632             CaseTree.CaseKind caseKind = null;
1633             boolean wasError = false;
1634             for (List<JCCase> l = cases; l.nonEmpty(); l = l.tail) {
1635                 JCCase c = l.head;
1636                 if (caseKind == null) {
1637                     caseKind = c.caseKind;
1638                 } else if (caseKind != c.caseKind && !wasError) {
1639                     log.error(c.pos(),
1640                               Errors.SwitchMixingCaseTypes);
1641                     wasError = true;
1642                 }
1643                 if (c.getExpressions().nonEmpty()) {
1644                     for (JCExpression pat : c.getExpressions()) {
1645                         if (TreeInfo.isNull(pat)) {
1646                             log.error(pat.pos(),
1647                                       Errors.SwitchNullNotAllowed);
1648                         } else if (enumSwitch) {
1649                             Symbol sym = enumConstant(pat, seltype);
1650                             if (sym == null) {
1651                                 log.error(pat.pos(), Errors.EnumLabelMustBeUnqualifiedEnum);
1652                             } else if (!labels.add(sym)) {
1653                                 log.error(c.pos(), Errors.DuplicateCaseLabel);
1654                             }
1655                         } else {
1656                             Type pattype = attribExpr(pat, switchEnv, seltype);
1657                             if (!pattype.hasTag(ERROR)) {
1658                                 if (pattype.constValue() == null) {
1659                                     log.error(pat.pos(),
1660                                               (stringSwitch ? Errors.StringConstReq : Errors.ConstExprReq));
1661                                 } else if (!labels.add(pattype.constValue())) {
1662                                     log.error(c.pos(), Errors.DuplicateCaseLabel);
1663                                 }
1664                             }
1665                         }
1666                     }
1667                 } else if (hasDefault) {
1668                     log.error(c.pos(), Errors.DuplicateDefaultLabel);
1669                 } else {
1670                     hasDefault = true;
1671                 }
1672                 Env<AttrContext> caseEnv =
1673                     switchEnv.dup(c, env.info.dup(switchEnv.info.scope.dup()));
1674                 try {
1675                     attribCase.accept(c, caseEnv);
1676                 } finally {
1677                     caseEnv.info.scope.leave();
1678                 }
1679                 addVars(c.stats, switchEnv.info.scope);
1680             }
1681         } finally {
1682             switchEnv.info.scope.leave();
1683         }
1684     }
1685     // where
1686         /** Add any variables defined in stats to the switch scope. */
1687         private static void addVars(List<JCStatement> stats, WriteableScope switchScope) {
1688             for (;stats.nonEmpty(); stats = stats.tail) {
1689                 JCTree stat = stats.head;
1690                 if (stat.hasTag(VARDEF))
1691                     switchScope.enter(((JCVariableDecl) stat).sym);
1692             }
1693         }
1694     // where
1695     /** Return the selected enumeration constant symbol, or null. */
1696     private Symbol enumConstant(JCTree tree, Type enumType) {
1697         if (tree.hasTag(IDENT)) {
1698             JCIdent ident = (JCIdent)tree;
1699             Name name = ident.name;
1700             for (Symbol sym : enumType.tsym.members().getSymbolsByName(name)) {
1701                 if (sym.kind == VAR) {
1702                     Symbol s = ident.sym = sym;
1703                     ((VarSymbol)s).getConstValue(); // ensure initializer is evaluated
1704                     ident.type = s.type;
1705                     return ((s.flags_field & Flags.ENUM) == 0)
1706                         ? null : s;
1707                 }
1708             }
1709         }
1710         return null;
1711     }
1712 
1713     public void visitSynchronized(JCSynchronized tree) {
1714         chk.checkRefType(tree.pos(), attribExpr(tree.lock, env));
1715         attribStat(tree.body, env);
1716         result = null;
1717     }
1718 
1719     public void visitTry(JCTry tree) {
1720         // Create a new local environment with a local
1721         Env<AttrContext> localEnv = env.dup(tree, env.info.dup(env.info.scope.dup()));
1722         try {
1723             boolean isTryWithResource = tree.resources.nonEmpty();
1724             // Create a nested environment for attributing the try block if needed
1725             Env<AttrContext> tryEnv = isTryWithResource ?
1726                 env.dup(tree, localEnv.info.dup(localEnv.info.scope.dup())) :
1727                 localEnv;
1728             try {
1729                 // Attribute resource declarations
1730                 for (JCTree resource : tree.resources) {
1731                     CheckContext twrContext = new Check.NestedCheckContext(resultInfo.checkContext) {
1732                         @Override
1733                         public void report(DiagnosticPosition pos, JCDiagnostic details) {
1734                             chk.basicHandler.report(pos, diags.fragment(Fragments.TryNotApplicableToType(details)));
1735                         }
1736                     };
1737                     ResultInfo twrResult =
1738                         new ResultInfo(KindSelector.VAR,
1739                                        syms.autoCloseableType,
1740                                        twrContext);
1741                     if (resource.hasTag(VARDEF)) {
1742                         attribStat(resource, tryEnv);
1743                         twrResult.check(resource, resource.type);
1744 
1745                         //check that resource type cannot throw InterruptedException
1746                         checkAutoCloseable(resource.pos(), localEnv, resource.type);
1747 
1748                         VarSymbol var = ((JCVariableDecl) resource).sym;
1749                         var.setData(ElementKind.RESOURCE_VARIABLE);
1750                     } else {
1751                         attribTree(resource, tryEnv, twrResult);
1752                     }
1753                 }
1754                 // Attribute body
1755                 attribStat(tree.body, tryEnv);
1756             } finally {
1757                 if (isTryWithResource)
1758                     tryEnv.info.scope.leave();
1759             }
1760 
1761             // Attribute catch clauses
1762             for (List<JCCatch> l = tree.catchers; l.nonEmpty(); l = l.tail) {
1763                 JCCatch c = l.head;
1764                 Env<AttrContext> catchEnv =
1765                     localEnv.dup(c, localEnv.info.dup(localEnv.info.scope.dup()));
1766                 try {
1767                     Type ctype = attribStat(c.param, catchEnv);
1768                     if (TreeInfo.isMultiCatch(c)) {
1769                         //multi-catch parameter is implicitly marked as final
1770                         c.param.sym.flags_field |= FINAL | UNION;
1771                     }
1772                     if (c.param.sym.kind == VAR) {
1773                         c.param.sym.setData(ElementKind.EXCEPTION_PARAMETER);
1774                     }
1775                     chk.checkType(c.param.vartype.pos(),
1776                                   chk.checkClassType(c.param.vartype.pos(), ctype),
1777                                   syms.throwableType);
1778                     attribStat(c.body, catchEnv);
1779                 } finally {
1780                     catchEnv.info.scope.leave();
1781                 }
1782             }
1783 
1784             // Attribute finalizer
1785             if (tree.finalizer != null) attribStat(tree.finalizer, localEnv);
1786             result = null;
1787         }
1788         finally {
1789             localEnv.info.scope.leave();
1790         }
1791     }
1792 
1793     void checkAutoCloseable(DiagnosticPosition pos, Env<AttrContext> env, Type resource) {
1794         if (!resource.isErroneous() &&
1795             types.asSuper(resource, syms.autoCloseableType.tsym) != null &&
1796             !types.isSameType(resource, syms.autoCloseableType)) { // Don't emit warning for AutoCloseable itself
1797             Symbol close = syms.noSymbol;
1798             Log.DiagnosticHandler discardHandler = new Log.DiscardDiagnosticHandler(log);
1799             try {
1800                 close = rs.resolveQualifiedMethod(pos,
1801                         env,
1802                         types.skipTypeVars(resource, false),
1803                         names.close,
1804                         List.nil(),
1805                         List.nil());
1806             }
1807             finally {
1808                 log.popDiagnosticHandler(discardHandler);
1809             }
1810             if (close.kind == MTH &&
1811                     close.overrides(syms.autoCloseableClose, resource.tsym, types, true) &&
1812                     chk.isHandled(syms.interruptedExceptionType, types.memberType(resource, close).getThrownTypes()) &&
1813                     env.info.lint.isEnabled(LintCategory.TRY)) {
1814                 log.warning(LintCategory.TRY, pos, Warnings.TryResourceThrowsInterruptedExc(resource));
1815             }
1816         }
1817     }
1818 
1819     public void visitConditional(JCConditional tree) {
1820         Type condtype = attribExpr(tree.cond, env, syms.booleanType);
1821 
1822         tree.polyKind = (!allowPoly ||
1823                 pt().hasTag(NONE) && pt() != Type.recoveryType && pt() != Infer.anyPoly ||
1824                 isBooleanOrNumeric(env, tree)) ?
1825                 PolyKind.STANDALONE : PolyKind.POLY;
1826 
1827         if (tree.polyKind == PolyKind.POLY && resultInfo.pt.hasTag(VOID)) {
1828             //this means we are returning a poly conditional from void-compatible lambda expression
1829             resultInfo.checkContext.report(tree, diags.fragment(Fragments.ConditionalTargetCantBeVoid));
1830             result = tree.type = types.createErrorType(resultInfo.pt);
1831             return;
1832         }
1833 
1834         ResultInfo condInfo = tree.polyKind == PolyKind.STANDALONE ?
1835                 unknownExprInfo :
1836                 resultInfo.dup(conditionalContext(resultInfo.checkContext));
1837 
1838 
1839         // x ? y : z
1840         // include x's bindings when true in y
1841         // include x's bindings when false in z
1842 
1843         Type truetype;
1844         Env<AttrContext> trueEnv = bindingEnv(env, matchBindingsComputer.getMatchBindings(tree.cond, true));
1845         try {
1846             truetype = attribTree(tree.truepart, trueEnv, condInfo);
1847         } finally {
1848             trueEnv.info.scope.leave();
1849         }
1850 
1851         Type falsetype;
1852         Env<AttrContext> falseEnv = bindingEnv(env, matchBindingsComputer.getMatchBindings(tree.cond, false));
1853         try {
1854             falsetype = attribTree(tree.falsepart, falseEnv, condInfo);
1855         } finally {
1856             falseEnv.info.scope.leave();
1857         }
1858 
1859         Type owntype = (tree.polyKind == PolyKind.STANDALONE) ?
1860                 condType(List.of(tree.truepart.pos(), tree.falsepart.pos()),
1861                          List.of(truetype, falsetype)) : pt();
1862         if (condtype.constValue() != null &&
1863                 truetype.constValue() != null &&
1864                 falsetype.constValue() != null &&
1865                 !owntype.hasTag(NONE)) {
1866             //constant folding
1867             owntype = cfolder.coerce(condtype.isTrue() ? truetype : falsetype, owntype);
1868         }
1869         result = check(tree, owntype, KindSelector.VAL, resultInfo);
1870     }
1871     //where
1872         private boolean isBooleanOrNumeric(Env<AttrContext> env, JCExpression tree) {
1873             switch (tree.getTag()) {
1874                 case LITERAL: return ((JCLiteral)tree).typetag.isSubRangeOf(DOUBLE) ||
1875                               ((JCLiteral)tree).typetag == BOOLEAN ||
1876                               ((JCLiteral)tree).typetag == BOT;
1877                 case LAMBDA: case REFERENCE: return false;
1878                 case PARENS: return isBooleanOrNumeric(env, ((JCParens)tree).expr);
1879                 case CONDEXPR:
1880                     JCConditional condTree = (JCConditional)tree;
1881                     return isBooleanOrNumeric(env, condTree.truepart) &&
1882                             isBooleanOrNumeric(env, condTree.falsepart);
1883                 case APPLY:
1884                     JCMethodInvocation speculativeMethodTree =
1885                             (JCMethodInvocation)deferredAttr.attribSpeculative(
1886                                     tree, env, unknownExprInfo,
1887                                     argumentAttr.withLocalCacheContext());
1888                     Symbol msym = TreeInfo.symbol(speculativeMethodTree.meth);
1889                     Type receiverType = speculativeMethodTree.meth.hasTag(IDENT) ?
1890                             env.enclClass.type :
1891                             ((JCFieldAccess)speculativeMethodTree.meth).selected.type;
1892                     Type owntype = types.memberType(receiverType, msym).getReturnType();
1893                     return primitiveOrBoxed(owntype);
1894                 case NEWCLASS:
1895                     JCExpression className =
1896                             removeClassParams.translate(((JCNewClass)tree).clazz);
1897                     JCExpression speculativeNewClassTree =
1898                             (JCExpression)deferredAttr.attribSpeculative(
1899                                     className, env, unknownTypeInfo,
1900                                     argumentAttr.withLocalCacheContext());
1901                     return primitiveOrBoxed(speculativeNewClassTree.type);
1902                 default:
1903                     Type speculativeType = deferredAttr.attribSpeculative(tree, env, unknownExprInfo,
1904                             argumentAttr.withLocalCacheContext()).type;
1905                     return primitiveOrBoxed(speculativeType);
1906             }
1907         }
1908         //where
1909             boolean primitiveOrBoxed(Type t) {
1910                 return (!t.hasTag(TYPEVAR) && types.unboxedTypeOrType(t).isPrimitive());
1911             }
1912 
1913             TreeTranslator removeClassParams = new TreeTranslator() {
1914                 @Override
1915                 public void visitTypeApply(JCTypeApply tree) {
1916                     result = translate(tree.clazz);
1917                 }
1918             };
1919 
1920         CheckContext conditionalContext(CheckContext checkContext) {
1921             return new Check.NestedCheckContext(checkContext) {
1922                 //this will use enclosing check context to check compatibility of
1923                 //subexpression against target type; if we are in a method check context,
1924                 //depending on whether boxing is allowed, we could have incompatibilities
1925                 @Override
1926                 public void report(DiagnosticPosition pos, JCDiagnostic details) {
1927                     enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleTypeInConditional(details)));
1928                 }
1929             };
1930         }
1931 
1932         /** Compute the type of a conditional expression, after
1933          *  checking that it exists.  See JLS 15.25. Does not take into
1934          *  account the special case where condition and both arms
1935          *  are constants.
1936          *
1937          *  @param pos      The source position to be used for error
1938          *                  diagnostics.
1939          *  @param thentype The type of the expression's then-part.
1940          *  @param elsetype The type of the expression's else-part.
1941          */
1942         Type condType(List<DiagnosticPosition> positions, List<Type> condTypes) {
1943             if (condTypes.isEmpty()) {
1944                 return syms.objectType; //TODO: how to handle?
1945             }
1946             Type first = condTypes.head;
1947             // If same type, that is the result
1948             if (condTypes.tail.stream().allMatch(t -> types.isSameType(first, t)))
1949                 return first.baseType();
1950 
1951             List<Type> unboxedTypes = condTypes.stream()
1952                                                .map(t -> t.isPrimitive() ? t : types.unboxedType(t))
1953                                                .collect(List.collector());
1954 
1955             // Otherwise, if both arms can be converted to a numeric
1956             // type, return the least numeric type that fits both arms
1957             // (i.e. return larger of the two, or return int if one
1958             // arm is short, the other is char).
1959             if (unboxedTypes.stream().allMatch(t -> t.isPrimitive())) {
1960                 // If one arm has an integer subrange type (i.e., byte,
1961                 // short, or char), and the other is an integer constant
1962                 // that fits into the subrange, return the subrange type.
1963                 for (Type type : unboxedTypes) {
1964                     if (!type.getTag().isStrictSubRangeOf(INT)) {
1965                         continue;
1966                     }
1967                     if (unboxedTypes.stream().filter(t -> t != type).allMatch(t -> t.hasTag(INT) && types.isAssignable(t, type)))
1968                         return type.baseType();
1969                 }
1970 
1971                 for (TypeTag tag : primitiveTags) {
1972                     Type candidate = syms.typeOfTag[tag.ordinal()];
1973                     if (unboxedTypes.stream().allMatch(t -> types.isSubtype(t, candidate))) {
1974                         return candidate;
1975                     }
1976                 }
1977             }
1978 
1979             // Those were all the cases that could result in a primitive
1980             condTypes = condTypes.stream()
1981                                  .map(t -> t.isPrimitive() ? types.boxedClass(t).type : t)
1982                                  .collect(List.collector());
1983 
1984             for (Type type : condTypes) {
1985                 if (condTypes.stream().filter(t -> t != type).allMatch(t -> types.isAssignable(t, type)))
1986                     return type.baseType();
1987             }
1988 
1989             Iterator<DiagnosticPosition> posIt = positions.iterator();
1990 
1991             condTypes = condTypes.stream()
1992                                  .map(t -> chk.checkNonVoid(posIt.next(), t))
1993                                  .collect(List.collector());
1994 
1995             // both are known to be reference types.  The result is
1996             // lub(thentype,elsetype). This cannot fail, as it will
1997             // always be possible to infer "Object" if nothing better.
1998             return types.lub(condTypes.stream().map(t -> t.baseType()).collect(List.collector()));
1999         }
2000 
2001     final static TypeTag[] primitiveTags = new TypeTag[]{
2002         BYTE,
2003         CHAR,
2004         SHORT,
2005         INT,
2006         LONG,
2007         FLOAT,
2008         DOUBLE,
2009         BOOLEAN,
2010     };
2011 
2012     Env<AttrContext> bindingEnv(Env<AttrContext> env, List<BindingSymbol> bindings) {
2013         Env<AttrContext> env1 = env.dup(env.tree, env.info.dup(env.info.scope.dup()));
2014         bindings.forEach(env1.info.scope::enter);
2015         return env1;
2016     }
2017 
2018     public void visitIf(JCIf tree) {
2019         attribExpr(tree.cond, env, syms.booleanType);
2020 
2021         // if (x) { y } [ else z ]
2022         // include x's bindings when true in y
2023         // include x's bindings when false in z
2024 
2025         List<BindingSymbol> thenBindings = matchBindingsComputer.getMatchBindings(tree.cond, true);
2026         Env<AttrContext> thenEnv = bindingEnv(env, thenBindings);
2027 
2028         try {
2029             attribStat(tree.thenpart, thenEnv);
2030         } finally {
2031             thenEnv.info.scope.leave();
2032         }
2033 
2034         preFlow(tree.thenpart);
2035         boolean aliveAfterThen = flow.aliveAfter(env, tree.thenpart, make);
2036         boolean aliveAfterElse;
2037         List<BindingSymbol> elseBindings = matchBindingsComputer.getMatchBindings(tree.cond, false);
2038 
2039         if (tree.elsepart != null) {
2040             Env<AttrContext> elseEnv = bindingEnv(env, elseBindings);
2041             try {
2042                 attribStat(tree.elsepart, elseEnv);
2043             } finally {
2044                 elseEnv.info.scope.leave();
2045             }
2046             preFlow(tree.elsepart);
2047             aliveAfterElse = flow.aliveAfter(env, tree.elsepart, make);
2048         } else {
2049             aliveAfterElse = true;
2050         }
2051 
2052         chk.checkEmptyIf(tree);
2053 
2054         List<BindingSymbol> afterIfBindings = List.nil();
2055 
2056         if (aliveAfterThen && !aliveAfterElse) {
2057             afterIfBindings = thenBindings;
2058         } else if (aliveAfterElse && !aliveAfterThen) {
2059             afterIfBindings = elseBindings;
2060         }
2061 
2062         afterIfBindings.forEach(env.info.scope::enter);
2063         afterIfBindings.forEach(BindingSymbol::preserveBinding);
2064 
2065         result = null;
2066     }
2067 
2068         void preFlow(JCTree tree) {
2069             new PostAttrAnalyzer() {
2070                 @Override
2071                 public void scan(JCTree tree) {
2072                     if (tree == null ||
2073                             (tree.type != null &&
2074                             tree.type == Type.stuckType)) {
2075                         //don't touch stuck expressions!
2076                         return;
2077                     }
2078                     super.scan(tree);
2079                 }
2080             }.scan(tree);
2081         }
2082 
2083     public void visitExec(JCExpressionStatement tree) {
2084         //a fresh environment is required for 292 inference to work properly ---
2085         //see Infer.instantiatePolymorphicSignatureInstance()
2086         Env<AttrContext> localEnv = env.dup(tree);
2087         attribExpr(tree.expr, localEnv);
2088         result = null;
2089     }
2090 
2091     public void visitBreak(JCBreak tree) {
2092         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2093         result = null;
2094     }
2095 
2096     public void visitYield(JCYield tree) {
2097         if (env.info.yieldResult != null) {
2098             attribTree(tree.value, env, env.info.yieldResult);
2099             tree.target = findJumpTarget(tree.pos(), tree.getTag(), names.empty, env);
2100         } else {
2101             log.error(tree.pos(), tree.value.hasTag(PARENS)
2102                     ? Errors.NoSwitchExpressionQualify
2103                     : Errors.NoSwitchExpression);
2104             attribTree(tree.value, env, unknownExprInfo);
2105         }
2106         result = null;
2107     }
2108 
2109     public void visitContinue(JCContinue tree) {
2110         tree.target = findJumpTarget(tree.pos(), tree.getTag(), tree.label, env);
2111         result = null;
2112     }
2113     //where
2114         /** Return the target of a break, continue or yield statement,
2115          *  if it exists, report an error if not.
2116          *  Note: The target of a labelled break or continue is the
2117          *  (non-labelled) statement tree referred to by the label,
2118          *  not the tree representing the labelled statement itself.
2119          *
2120          *  @param pos     The position to be used for error diagnostics
2121          *  @param tag     The tag of the jump statement. This is either
2122          *                 Tree.BREAK or Tree.CONTINUE.
2123          *  @param label   The label of the jump statement, or null if no
2124          *                 label is given.
2125          *  @param env     The environment current at the jump statement.
2126          */
2127         private JCTree findJumpTarget(DiagnosticPosition pos,
2128                                                    JCTree.Tag tag,
2129                                                    Name label,
2130                                                    Env<AttrContext> env) {
2131             Pair<JCTree, Error> jumpTarget = findJumpTargetNoError(tag, label, env);
2132 
2133             if (jumpTarget.snd != null) {
2134                 log.error(pos, jumpTarget.snd);
2135             }
2136 
2137             return jumpTarget.fst;
2138         }
2139         /** Return the target of a break or continue statement, if it exists,
2140          *  report an error if not.
2141          *  Note: The target of a labelled break or continue is the
2142          *  (non-labelled) statement tree referred to by the label,
2143          *  not the tree representing the labelled statement itself.
2144          *
2145          *  @param tag     The tag of the jump statement. This is either
2146          *                 Tree.BREAK or Tree.CONTINUE.
2147          *  @param label   The label of the jump statement, or null if no
2148          *                 label is given.
2149          *  @param env     The environment current at the jump statement.
2150          */
2151         private Pair<JCTree, JCDiagnostic.Error> findJumpTargetNoError(JCTree.Tag tag,
2152                                                                        Name label,
2153                                                                        Env<AttrContext> env) {
2154             // Search environments outwards from the point of jump.
2155             Env<AttrContext> env1 = env;
2156             JCDiagnostic.Error pendingError = null;
2157             LOOP:
2158             while (env1 != null) {
2159                 switch (env1.tree.getTag()) {
2160                     case LABELLED:
2161                         JCLabeledStatement labelled = (JCLabeledStatement)env1.tree;
2162                         if (label == labelled.label) {
2163                             // If jump is a continue, check that target is a loop.
2164                             if (tag == CONTINUE) {
2165                                 if (!labelled.body.hasTag(DOLOOP) &&
2166                                         !labelled.body.hasTag(WHILELOOP) &&
2167                                         !labelled.body.hasTag(FORLOOP) &&
2168                                         !labelled.body.hasTag(FOREACHLOOP)) {
2169                                     pendingError = Errors.NotLoopLabel(label);
2170                                 }
2171                                 // Found labelled statement target, now go inwards
2172                                 // to next non-labelled tree.
2173                                 return Pair.of(TreeInfo.referencedStatement(labelled), pendingError);
2174                             } else {
2175                                 return Pair.of(labelled, pendingError);
2176                             }
2177                         }
2178                         break;
2179                     case DOLOOP:
2180                     case WHILELOOP:
2181                     case FORLOOP:
2182                     case FOREACHLOOP:
2183                         if (label == null) return Pair.of(env1.tree, pendingError);
2184                         break;
2185                     case SWITCH:
2186                         if (label == null && tag == BREAK) return Pair.of(env1.tree, null);
2187                         break;
2188                     case SWITCH_EXPRESSION:
2189                         if (tag == YIELD) {
2190                             return Pair.of(env1.tree, null);
2191                         } else if (tag == BREAK) {
2192                             pendingError = Errors.BreakOutsideSwitchExpression;
2193                         } else {
2194                             pendingError = Errors.ContinueOutsideSwitchExpression;
2195                         }
2196                         break;
2197                     case LAMBDA:
2198                     case METHODDEF:
2199                     case CLASSDEF:
2200                         break LOOP;
2201                     default:
2202                 }
2203                 env1 = env1.next;
2204             }
2205             if (label != null)
2206                 return Pair.of(null, Errors.UndefLabel(label));
2207             else if (pendingError != null)
2208                 return Pair.of(null, pendingError);
2209             else if (tag == CONTINUE)
2210                 return Pair.of(null, Errors.ContOutsideLoop);
2211             else
2212                 return Pair.of(null, Errors.BreakOutsideSwitchLoop);
2213         }
2214 
2215     public void visitReturn(JCReturn tree) {
2216         // Check that there is an enclosing method which is
2217         // nested within than the enclosing class.
2218         if (env.info.returnResult == null) {
2219             log.error(tree.pos(), Errors.RetOutsideMeth);
2220         } else if (env.info.yieldResult != null) {
2221             log.error(tree.pos(), Errors.ReturnOutsideSwitchExpression);
2222         } else if (!env.info.isLambda &&
2223                 !env.info.isNewClass &&
2224                 env.enclMethod != null &&
2225                 TreeInfo.isCompactConstructor(env.enclMethod)) {
2226             log.error(env.enclMethod,
2227                     Errors.InvalidCanonicalConstructorInRecord(Fragments.Compact, env.enclMethod.sym, Fragments.CanonicalCantHaveReturnStatement));
2228         } else {
2229             // Attribute return expression, if it exists, and check that
2230             // it conforms to result type of enclosing method.
2231             if (tree.expr != null) {
2232                 if (env.info.returnResult.pt.hasTag(VOID)) {
2233                     env.info.returnResult.checkContext.report(tree.expr.pos(),
2234                               diags.fragment(Fragments.UnexpectedRetVal));
2235                 }
2236                 attribTree(tree.expr, env, env.info.returnResult);
2237             } else if (!env.info.returnResult.pt.hasTag(VOID) &&
2238                     !env.info.returnResult.pt.hasTag(NONE)) {
2239                 env.info.returnResult.checkContext.report(tree.pos(),
2240                               diags.fragment(Fragments.MissingRetVal(env.info.returnResult.pt)));
2241             }
2242         }
2243         result = null;
2244     }
2245 
2246     public void visitThrow(JCThrow tree) {
2247         Type owntype = attribExpr(tree.expr, env, allowPoly ? Type.noType : syms.throwableType);
2248         if (allowPoly) {
2249             chk.checkType(tree, owntype, syms.throwableType);
2250         }
2251         result = null;
2252     }
2253 
2254     public void visitAssert(JCAssert tree) {
2255         attribExpr(tree.cond, env, syms.booleanType);
2256         if (tree.detail != null) {
2257             chk.checkNonVoid(tree.detail.pos(), attribExpr(tree.detail, env));
2258         }
2259         result = null;
2260     }
2261 
2262      /** Visitor method for method invocations.
2263      *  NOTE: The method part of an application will have in its type field
2264      *        the return type of the method, not the method's type itself!
2265      */
2266     public void visitApply(JCMethodInvocation tree) {
2267         // The local environment of a method application is
2268         // a new environment nested in the current one.
2269         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2270 
2271         // The types of the actual method arguments.
2272         List<Type> argtypes;
2273 
2274         // The types of the actual method type arguments.
2275         List<Type> typeargtypes = null;
2276 
2277         Name methName = TreeInfo.name(tree.meth);
2278 
2279         boolean isConstructorCall =
2280             methName == names._this || methName == names._super;
2281 
2282         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2283         if (isConstructorCall) {
2284             // We are seeing a ...this(...) or ...super(...) call.
2285             // Check that this is the first statement in a constructor.
2286             if (checkFirstConstructorStat(tree, env.enclMethod, true)) {
2287 
2288                 // Record the fact
2289                 // that this is a constructor call (using isSelfCall).
2290                 localEnv.info.isSelfCall = true;
2291 
2292                 // Attribute arguments, yielding list of argument types.
2293                 KindSelector kind = attribArgs(KindSelector.MTH, tree.args, localEnv, argtypesBuf);
2294                 argtypes = argtypesBuf.toList();
2295                 typeargtypes = attribTypes(tree.typeargs, localEnv);
2296 
2297                 // Variable `site' points to the class in which the called
2298                 // constructor is defined.
2299                 Type site = env.enclClass.sym.type;
2300                 if (methName == names._super) {
2301                     if (site == syms.objectType) {
2302                         log.error(tree.meth.pos(), Errors.NoSuperclass(site));
2303                         site = types.createErrorType(syms.objectType);
2304                     } else {
2305                         site = types.supertype(site);
2306                     }
2307                 }
2308 
2309                 if (site.hasTag(CLASS)) {
2310                     Type encl = site.getEnclosingType();
2311                     while (encl != null && encl.hasTag(TYPEVAR))
2312                         encl = encl.getUpperBound();
2313                     if (encl.hasTag(CLASS)) {
2314                         // we are calling a nested class
2315 
2316                         if (tree.meth.hasTag(SELECT)) {
2317                             JCTree qualifier = ((JCFieldAccess) tree.meth).selected;
2318 
2319                             // We are seeing a prefixed call, of the form
2320                             //     <expr>.super(...).
2321                             // Check that the prefix expression conforms
2322                             // to the outer instance type of the class.
2323                             chk.checkRefType(qualifier.pos(),
2324                                              attribExpr(qualifier, localEnv,
2325                                                         encl));
2326                         } else if (methName == names._super) {
2327                             // qualifier omitted; check for existence
2328                             // of an appropriate implicit qualifier.
2329                             rs.resolveImplicitThis(tree.meth.pos(),
2330                                                    localEnv, site, true);
2331                         }
2332                     } else if (tree.meth.hasTag(SELECT)) {
2333                         log.error(tree.meth.pos(),
2334                                   Errors.IllegalQualNotIcls(site.tsym));
2335                     }
2336 
2337                     // if we're calling a java.lang.Enum constructor,
2338                     // prefix the implicit String and int parameters
2339                     if (site.tsym == syms.enumSym)
2340                         argtypes = argtypes.prepend(syms.intType).prepend(syms.stringType);
2341 
2342                     // Resolve the called constructor under the assumption
2343                     // that we are referring to a superclass instance of the
2344                     // current instance (JLS ???).
2345                     boolean selectSuperPrev = localEnv.info.selectSuper;
2346                     localEnv.info.selectSuper = true;
2347                     localEnv.info.pendingResolutionPhase = null;
2348                     Symbol sym = rs.resolveConstructor(
2349                         tree.meth.pos(), localEnv, site, argtypes, typeargtypes);
2350                     localEnv.info.selectSuper = selectSuperPrev;
2351 
2352                     // Set method symbol to resolved constructor...
2353                     TreeInfo.setSymbol(tree.meth, sym);
2354 
2355                     // ...and check that it is legal in the current context.
2356                     // (this will also set the tree's type)
2357                     Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2358                     checkId(tree.meth, site, sym, localEnv,
2359                             new ResultInfo(kind, mpt));
2360                 }
2361                 // Otherwise, `site' is an error type and we do nothing
2362             }
2363             result = tree.type = syms.voidType;
2364         } else {
2365             // Otherwise, we are seeing a regular method call.
2366             // Attribute the arguments, yielding list of argument types, ...
2367             KindSelector kind = attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2368             argtypes = argtypesBuf.toList();
2369             typeargtypes = attribAnyTypes(tree.typeargs, localEnv);
2370 
2371             // ... and attribute the method using as a prototype a methodtype
2372             // whose formal argument types is exactly the list of actual
2373             // arguments (this will also set the method symbol).
2374             Type mpt = newMethodTemplate(resultInfo.pt, argtypes, typeargtypes);
2375             localEnv.info.pendingResolutionPhase = null;
2376             Type mtype = attribTree(tree.meth, localEnv, new ResultInfo(kind, mpt, resultInfo.checkContext));
2377 
2378             // Compute the result type.
2379             Type restype = mtype.getReturnType();
2380             if (restype.hasTag(WILDCARD))
2381                 throw new AssertionError(mtype);
2382 
2383             Type qualifier = (tree.meth.hasTag(SELECT))
2384                     ? ((JCFieldAccess) tree.meth).selected.type
2385                     : env.enclClass.sym.type;
2386             Symbol msym = TreeInfo.symbol(tree.meth);
2387             restype = adjustMethodReturnType(msym, qualifier, methName, argtypes, restype);
2388 
2389             chk.checkRefTypes(tree.typeargs, typeargtypes);
2390 
2391             // Check that value of resulting type is admissible in the
2392             // current context.  Also, capture the return type
2393             Type capturedRes = resultInfo.checkContext.inferenceContext().cachedCapture(tree, restype, true);
2394             result = check(tree, capturedRes, KindSelector.VAL, resultInfo);
2395         }
2396         chk.validate(tree.typeargs, localEnv);
2397     }
2398     //where
2399         Type adjustMethodReturnType(Symbol msym, Type qualifierType, Name methodName, List<Type> argtypes, Type restype) {
2400             if (msym != null &&
2401                     msym.owner == syms.objectType.tsym &&
2402                     methodName == names.getClass &&
2403                     argtypes.isEmpty()) {
2404                 // as a special case, x.getClass() has type Class<? extends |X|>
2405                 return new ClassType(restype.getEnclosingType(),
2406                         List.of(new WildcardType(types.erasure(qualifierType),
2407                                 BoundKind.EXTENDS,
2408                                 syms.boundClass)),
2409                         restype.tsym,
2410                         restype.getMetadata());
2411             } else if (msym != null &&
2412                     msym.owner == syms.arrayClass &&
2413                     methodName == names.clone &&
2414                     types.isArray(qualifierType)) {
2415                 // as a special case, array.clone() has a result that is
2416                 // the same as static type of the array being cloned
2417                 return qualifierType;
2418             } else {
2419                 return restype;
2420             }
2421         }
2422 
2423         /** Check that given application node appears as first statement
2424          *  in a constructor call.
2425          *  @param tree          The application node
2426          *  @param enclMethod    The enclosing method of the application.
2427          *  @param error         Should an error be issued?
2428          */
2429         boolean checkFirstConstructorStat(JCMethodInvocation tree, JCMethodDecl enclMethod, boolean error) {
2430             if (enclMethod != null && enclMethod.name == names.init) {
2431                 JCBlock body = enclMethod.body;
2432                 if (body.stats.head.hasTag(EXEC) &&
2433                     ((JCExpressionStatement) body.stats.head).expr == tree)
2434                     return true;
2435             }
2436             if (error) {
2437                 log.error(tree.pos(),
2438                         Errors.CallMustBeFirstStmtInCtor(TreeInfo.name(tree.meth)));
2439             }
2440             return false;
2441         }
2442 
2443         /** Obtain a method type with given argument types.
2444          */
2445         Type newMethodTemplate(Type restype, List<Type> argtypes, List<Type> typeargtypes) {
2446             MethodType mt = new MethodType(argtypes, restype, List.nil(), syms.methodClass);
2447             return (typeargtypes == null) ? mt : (Type)new ForAll(typeargtypes, mt);
2448         }
2449 
2450     public void visitNewClass(final JCNewClass tree) {
2451         Type owntype = types.createErrorType(tree.type);
2452 
2453         // The local environment of a class creation is
2454         // a new environment nested in the current one.
2455         Env<AttrContext> localEnv = env.dup(tree, env.info.dup());
2456 
2457         // The anonymous inner class definition of the new expression,
2458         // if one is defined by it.
2459         JCClassDecl cdef = tree.def;
2460 
2461         // If enclosing class is given, attribute it, and
2462         // complete class name to be fully qualified
2463         JCExpression clazz = tree.clazz; // Class field following new
2464         JCExpression clazzid;            // Identifier in class field
2465         JCAnnotatedType annoclazzid;     // Annotated type enclosing clazzid
2466         annoclazzid = null;
2467 
2468         if (clazz.hasTag(TYPEAPPLY)) {
2469             clazzid = ((JCTypeApply) clazz).clazz;
2470             if (clazzid.hasTag(ANNOTATED_TYPE)) {
2471                 annoclazzid = (JCAnnotatedType) clazzid;
2472                 clazzid = annoclazzid.underlyingType;
2473             }
2474         } else {
2475             if (clazz.hasTag(ANNOTATED_TYPE)) {
2476                 annoclazzid = (JCAnnotatedType) clazz;
2477                 clazzid = annoclazzid.underlyingType;
2478             } else {
2479                 clazzid = clazz;
2480             }
2481         }
2482 
2483         JCExpression clazzid1 = clazzid; // The same in fully qualified form
2484 
2485         if (tree.encl != null) {
2486             // We are seeing a qualified new, of the form
2487             //    <expr>.new C <...> (...) ...
2488             // In this case, we let clazz stand for the name of the
2489             // allocated class C prefixed with the type of the qualifier
2490             // expression, so that we can
2491             // resolve it with standard techniques later. I.e., if
2492             // <expr> has type T, then <expr>.new C <...> (...)
2493             // yields a clazz T.C.
2494             Type encltype = chk.checkRefType(tree.encl.pos(),
2495                                              attribExpr(tree.encl, env));
2496             // TODO 308: in <expr>.new C, do we also want to add the type annotations
2497             // from expr to the combined type, or not? Yes, do this.
2498             clazzid1 = make.at(clazz.pos).Select(make.Type(encltype),
2499                                                  ((JCIdent) clazzid).name);
2500 
2501             EndPosTable endPosTable = this.env.toplevel.endPositions;
2502             endPosTable.storeEnd(clazzid1, tree.getEndPosition(endPosTable));
2503             if (clazz.hasTag(ANNOTATED_TYPE)) {
2504                 JCAnnotatedType annoType = (JCAnnotatedType) clazz;
2505                 List<JCAnnotation> annos = annoType.annotations;
2506 
2507                 if (annoType.underlyingType.hasTag(TYPEAPPLY)) {
2508                     clazzid1 = make.at(tree.pos).
2509                         TypeApply(clazzid1,
2510                                   ((JCTypeApply) clazz).arguments);
2511                 }
2512 
2513                 clazzid1 = make.at(tree.pos).
2514                     AnnotatedType(annos, clazzid1);
2515             } else if (clazz.hasTag(TYPEAPPLY)) {
2516                 clazzid1 = make.at(tree.pos).
2517                     TypeApply(clazzid1,
2518                               ((JCTypeApply) clazz).arguments);
2519             }
2520 
2521             clazz = clazzid1;
2522         }
2523 
2524         // Attribute clazz expression and store
2525         // symbol + type back into the attributed tree.
2526         Type clazztype;
2527 
2528         try {
2529             env.info.isNewClass = true;
2530             clazztype = TreeInfo.isEnumInit(env.tree) ?
2531                 attribIdentAsEnumType(env, (JCIdent)clazz) :
2532                 attribType(clazz, env);
2533         } finally {
2534             env.info.isNewClass = false;
2535         }
2536 
2537         clazztype = chk.checkDiamond(tree, clazztype);
2538         chk.validate(clazz, localEnv);
2539         if (tree.encl != null) {
2540             // We have to work in this case to store
2541             // symbol + type back into the attributed tree.
2542             tree.clazz.type = clazztype;
2543             TreeInfo.setSymbol(clazzid, TreeInfo.symbol(clazzid1));
2544             clazzid.type = ((JCIdent) clazzid).sym.type;
2545             if (annoclazzid != null) {
2546                 annoclazzid.type = clazzid.type;
2547             }
2548             if (!clazztype.isErroneous()) {
2549                 if (cdef != null && clazztype.tsym.isInterface()) {
2550                     log.error(tree.encl.pos(), Errors.AnonClassImplIntfNoQualForNew);
2551                 } else if (clazztype.tsym.isStatic()) {
2552                     log.error(tree.encl.pos(), Errors.QualifiedNewOfStaticClass(clazztype.tsym));
2553                 }
2554             }
2555         } else if (!clazztype.tsym.isInterface() &&
2556                    clazztype.getEnclosingType().hasTag(CLASS)) {
2557             // Check for the existence of an apropos outer instance
2558             rs.resolveImplicitThis(tree.pos(), env, clazztype);
2559         }
2560 
2561         // Attribute constructor arguments.
2562         ListBuffer<Type> argtypesBuf = new ListBuffer<>();
2563         final KindSelector pkind =
2564             attribArgs(KindSelector.VAL, tree.args, localEnv, argtypesBuf);
2565         List<Type> argtypes = argtypesBuf.toList();
2566         List<Type> typeargtypes = attribTypes(tree.typeargs, localEnv);
2567 
2568         if (clazztype.hasTag(CLASS) || clazztype.hasTag(ERROR)) {
2569             // Enums may not be instantiated except implicitly
2570             if ((clazztype.tsym.flags_field & Flags.ENUM) != 0 &&
2571                 (!env.tree.hasTag(VARDEF) ||
2572                  (((JCVariableDecl) env.tree).mods.flags & Flags.ENUM) == 0 ||
2573                  ((JCVariableDecl) env.tree).init != tree))
2574                 log.error(tree.pos(), Errors.EnumCantBeInstantiated);
2575 
2576             boolean isSpeculativeDiamondInferenceRound = TreeInfo.isDiamond(tree) &&
2577                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2578             boolean skipNonDiamondPath = false;
2579             // Check that class is not abstract
2580             if (cdef == null && !isSpeculativeDiamondInferenceRound && // class body may be nulled out in speculative tree copy
2581                 (clazztype.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
2582                 log.error(tree.pos(),
2583                           Errors.AbstractCantBeInstantiated(clazztype.tsym));
2584                 skipNonDiamondPath = true;
2585             } else if (cdef != null && clazztype.tsym.isInterface()) {
2586                 // Check that no constructor arguments are given to
2587                 // anonymous classes implementing an interface
2588                 if (!argtypes.isEmpty())
2589                     log.error(tree.args.head.pos(), Errors.AnonClassImplIntfNoArgs);
2590 
2591                 if (!typeargtypes.isEmpty())
2592                     log.error(tree.typeargs.head.pos(), Errors.AnonClassImplIntfNoTypeargs);
2593 
2594                 // Error recovery: pretend no arguments were supplied.
2595                 argtypes = List.nil();
2596                 typeargtypes = List.nil();
2597                 skipNonDiamondPath = true;
2598             }
2599             if (TreeInfo.isDiamond(tree)) {
2600                 ClassType site = new ClassType(clazztype.getEnclosingType(),
2601                             clazztype.tsym.type.getTypeArguments(),
2602                                                clazztype.tsym,
2603                                                clazztype.getMetadata());
2604 
2605                 Env<AttrContext> diamondEnv = localEnv.dup(tree);
2606                 diamondEnv.info.selectSuper = cdef != null || tree.classDeclRemoved();
2607                 diamondEnv.info.pendingResolutionPhase = null;
2608 
2609                 //if the type of the instance creation expression is a class type
2610                 //apply method resolution inference (JLS 15.12.2.7). The return type
2611                 //of the resolved constructor will be a partially instantiated type
2612                 Symbol constructor = rs.resolveDiamond(tree.pos(),
2613                             diamondEnv,
2614                             site,
2615                             argtypes,
2616                             typeargtypes);
2617                 tree.constructor = constructor.baseSymbol();
2618 
2619                 final TypeSymbol csym = clazztype.tsym;
2620                 ResultInfo diamondResult = new ResultInfo(pkind, newMethodTemplate(resultInfo.pt, argtypes, typeargtypes),
2621                         diamondContext(tree, csym, resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
2622                 Type constructorType = tree.constructorType = types.createErrorType(clazztype);
2623                 constructorType = checkId(tree, site,
2624                         constructor,
2625                         diamondEnv,
2626                         diamondResult);
2627 
2628                 tree.clazz.type = types.createErrorType(clazztype);
2629                 if (!constructorType.isErroneous()) {
2630                     tree.clazz.type = clazz.type = constructorType.getReturnType();
2631                     tree.constructorType = types.createMethodTypeWithReturn(constructorType, syms.voidType);
2632                 }
2633                 clazztype = chk.checkClassType(tree.clazz, tree.clazz.type, true);
2634             }
2635 
2636             // Resolve the called constructor under the assumption
2637             // that we are referring to a superclass instance of the
2638             // current instance (JLS ???).
2639             else if (!skipNonDiamondPath) {
2640                 //the following code alters some of the fields in the current
2641                 //AttrContext - hence, the current context must be dup'ed in
2642                 //order to avoid downstream failures
2643                 Env<AttrContext> rsEnv = localEnv.dup(tree);
2644                 rsEnv.info.selectSuper = cdef != null;
2645                 rsEnv.info.pendingResolutionPhase = null;
2646                 tree.constructor = rs.resolveConstructor(
2647                     tree.pos(), rsEnv, clazztype, argtypes, typeargtypes);
2648                 if (cdef == null) { //do not check twice!
2649                     tree.constructorType = checkId(tree,
2650                             clazztype,
2651                             tree.constructor,
2652                             rsEnv,
2653                             new ResultInfo(pkind, newMethodTemplate(syms.voidType, argtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2654                     if (rsEnv.info.lastResolveVarargs())
2655                         Assert.check(tree.constructorType.isErroneous() || tree.varargsElement != null);
2656                 }
2657             }
2658 
2659             if (cdef != null) {
2660                 visitAnonymousClassDefinition(tree, clazz, clazztype, cdef, localEnv, argtypes, typeargtypes, pkind);
2661                 return;
2662             }
2663 
2664             if (tree.constructor != null && tree.constructor.kind == MTH)
2665                 owntype = clazztype;
2666         }
2667         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2668         InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2669         if (tree.constructorType != null && inferenceContext.free(tree.constructorType)) {
2670             //we need to wait for inference to finish and then replace inference vars in the constructor type
2671             inferenceContext.addFreeTypeListener(List.of(tree.constructorType),
2672                     instantiatedContext -> {
2673                         tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2674                     });
2675         }
2676         chk.validate(tree.typeargs, localEnv);
2677     }
2678 
2679         // where
2680         private void visitAnonymousClassDefinition(JCNewClass tree, JCExpression clazz, Type clazztype,
2681                                                    JCClassDecl cdef, Env<AttrContext> localEnv,
2682                                                    List<Type> argtypes, List<Type> typeargtypes,
2683                                                    KindSelector pkind) {
2684             // We are seeing an anonymous class instance creation.
2685             // In this case, the class instance creation
2686             // expression
2687             //
2688             //    E.new <typeargs1>C<typargs2>(args) { ... }
2689             //
2690             // is represented internally as
2691             //
2692             //    E . new <typeargs1>C<typargs2>(args) ( class <empty-name> { ... } )  .
2693             //
2694             // This expression is then *transformed* as follows:
2695             //
2696             // (1) add an extends or implements clause
2697             // (2) add a constructor.
2698             //
2699             // For instance, if C is a class, and ET is the type of E,
2700             // the expression
2701             //
2702             //    E.new <typeargs1>C<typargs2>(args) { ... }
2703             //
2704             // is translated to (where X is a fresh name and typarams is the
2705             // parameter list of the super constructor):
2706             //
2707             //   new <typeargs1>X(<*nullchk*>E, args) where
2708             //     X extends C<typargs2> {
2709             //       <typarams> X(ET e, args) {
2710             //         e.<typeargs1>super(args)
2711             //       }
2712             //       ...
2713             //     }
2714             InferenceContext inferenceContext = resultInfo.checkContext.inferenceContext();
2715             final boolean isDiamond = TreeInfo.isDiamond(tree);
2716             if (isDiamond
2717                     && ((tree.constructorType != null && inferenceContext.free(tree.constructorType))
2718                     || (tree.clazz.type != null && inferenceContext.free(tree.clazz.type)))) {
2719                 final ResultInfo resultInfoForClassDefinition = this.resultInfo;
2720                 inferenceContext.addFreeTypeListener(List.of(tree.constructorType, tree.clazz.type),
2721                         instantiatedContext -> {
2722                             tree.constructorType = instantiatedContext.asInstType(tree.constructorType);
2723                             tree.clazz.type = clazz.type = instantiatedContext.asInstType(clazz.type);
2724                             ResultInfo prevResult = this.resultInfo;
2725                             try {
2726                                 this.resultInfo = resultInfoForClassDefinition;
2727                                 visitAnonymousClassDefinition(tree, clazz, clazz.type, cdef,
2728                                                             localEnv, argtypes, typeargtypes, pkind);
2729                             } finally {
2730                                 this.resultInfo = prevResult;
2731                             }
2732                         });
2733             } else {
2734                 if (isDiamond && clazztype.hasTag(CLASS)) {
2735                     List<Type> invalidDiamondArgs = chk.checkDiamondDenotable((ClassType)clazztype);
2736                     if (!clazztype.isErroneous() && invalidDiamondArgs.nonEmpty()) {
2737                         // One or more types inferred in the previous steps is non-denotable.
2738                         Fragment fragment = Diamond(clazztype.tsym);
2739                         log.error(tree.clazz.pos(),
2740                                 Errors.CantApplyDiamond1(
2741                                         fragment,
2742                                         invalidDiamondArgs.size() > 1 ?
2743                                                 DiamondInvalidArgs(invalidDiamondArgs, fragment) :
2744                                                 DiamondInvalidArg(invalidDiamondArgs, fragment)));
2745                     }
2746                     // For <>(){}, inferred types must also be accessible.
2747                     for (Type t : clazztype.getTypeArguments()) {
2748                         rs.checkAccessibleType(env, t);
2749                     }
2750                 }
2751 
2752                 // If we already errored, be careful to avoid a further avalanche. ErrorType answers
2753                 // false for isInterface call even when the original type is an interface.
2754                 boolean implementing = clazztype.tsym.isInterface() ||
2755                         clazztype.isErroneous() && !clazztype.getOriginalType().hasTag(NONE) &&
2756                         clazztype.getOriginalType().tsym.isInterface();
2757 
2758                 if (implementing) {
2759                     cdef.implementing = List.of(clazz);
2760                 } else {
2761                     cdef.extending = clazz;
2762                 }
2763 
2764                 if (resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
2765                     isSerializable(clazztype)) {
2766                     localEnv.info.isSerializable = true;
2767                 }
2768 
2769                 attribStat(cdef, localEnv);
2770 
2771                 List<Type> finalargtypes;
2772                 // If an outer instance is given,
2773                 // prefix it to the constructor arguments
2774                 // and delete it from the new expression
2775                 if (tree.encl != null && !clazztype.tsym.isInterface()) {
2776                     finalargtypes = argtypes.prepend(tree.encl.type);
2777                 } else {
2778                     finalargtypes = argtypes;
2779                 }
2780 
2781                 // Reassign clazztype and recompute constructor. As this necessarily involves
2782                 // another attribution pass for deferred types in the case of <>, replicate
2783                 // them. Original arguments have right decorations already.
2784                 if (isDiamond && pkind.contains(KindSelector.POLY)) {
2785                     finalargtypes = finalargtypes.map(deferredAttr.deferredCopier);
2786                 }
2787 
2788                 clazztype = clazztype.hasTag(ERROR) ? types.createErrorType(cdef.sym.type)
2789                                                     : cdef.sym.type;
2790                 Symbol sym = tree.constructor = rs.resolveConstructor(
2791                         tree.pos(), localEnv, clazztype, finalargtypes, typeargtypes);
2792                 Assert.check(!sym.kind.isResolutionError());
2793                 tree.constructor = sym;
2794                 tree.constructorType = checkId(tree,
2795                         clazztype,
2796                         tree.constructor,
2797                         localEnv,
2798                         new ResultInfo(pkind, newMethodTemplate(syms.voidType, finalargtypes, typeargtypes), CheckMode.NO_TREE_UPDATE));
2799             }
2800             Type owntype = (tree.constructor != null && tree.constructor.kind == MTH) ?
2801                                 clazztype : types.createErrorType(tree.type);
2802             result = check(tree, owntype, KindSelector.VAL, resultInfo.dup(CheckMode.NO_INFERENCE_HOOK));
2803             chk.validate(tree.typeargs, localEnv);
2804         }
2805 
2806         CheckContext diamondContext(JCNewClass clazz, TypeSymbol tsym, CheckContext checkContext) {
2807             return new Check.NestedCheckContext(checkContext) {
2808                 @Override
2809                 public void report(DiagnosticPosition _unused, JCDiagnostic details) {
2810                     enclosingContext.report(clazz.clazz,
2811                             diags.fragment(Fragments.CantApplyDiamond1(Fragments.Diamond(tsym), details)));
2812                 }
2813             };
2814         }
2815 
2816     /** Make an attributed null check tree.
2817      */
2818     public JCExpression makeNullCheck(JCExpression arg) {
2819         // optimization: new Outer() can never be null; skip null check
2820         if (arg.getTag() == NEWCLASS)
2821             return arg;
2822         // optimization: X.this is never null; skip null check
2823         Name name = TreeInfo.name(arg);
2824         if (name == names._this || name == names._super) return arg;
2825 
2826         JCTree.Tag optag = NULLCHK;
2827         JCUnary tree = make.at(arg.pos).Unary(optag, arg);
2828         tree.operator = operators.resolveUnary(arg, optag, arg.type);
2829         tree.type = arg.type;
2830         return tree;
2831     }
2832 
2833     public void visitNewArray(JCNewArray tree) {
2834         Type owntype = types.createErrorType(tree.type);
2835         Env<AttrContext> localEnv = env.dup(tree);
2836         Type elemtype;
2837         if (tree.elemtype != null) {
2838             elemtype = attribType(tree.elemtype, localEnv);
2839             chk.validate(tree.elemtype, localEnv);
2840             owntype = elemtype;
2841             for (List<JCExpression> l = tree.dims; l.nonEmpty(); l = l.tail) {
2842                 attribExpr(l.head, localEnv, syms.intType);
2843                 owntype = new ArrayType(owntype, syms.arrayClass);
2844             }
2845         } else {
2846             // we are seeing an untyped aggregate { ... }
2847             // this is allowed only if the prototype is an array
2848             if (pt().hasTag(ARRAY)) {
2849                 elemtype = types.elemtype(pt());
2850             } else {
2851                 if (!pt().hasTag(ERROR) &&
2852                         (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2853                     log.error(tree.pos(),
2854                               Errors.IllegalInitializerForType(pt()));
2855                 }
2856                 elemtype = types.createErrorType(pt());
2857             }
2858         }
2859         if (tree.elems != null) {
2860             attribExprs(tree.elems, localEnv, elemtype);
2861             owntype = new ArrayType(elemtype, syms.arrayClass);
2862         }
2863         if (!types.isReifiable(elemtype))
2864             log.error(tree.pos(), Errors.GenericArrayCreation);
2865         result = check(tree, owntype, KindSelector.VAL, resultInfo);
2866     }
2867 
2868     /*
2869      * A lambda expression can only be attributed when a target-type is available.
2870      * In addition, if the target-type is that of a functional interface whose
2871      * descriptor contains inference variables in argument position the lambda expression
2872      * is 'stuck' (see DeferredAttr).
2873      */
2874     @Override
2875     public void visitLambda(final JCLambda that) {
2876         boolean wrongContext = false;
2877         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
2878             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
2879                 //lambda only allowed in assignment or method invocation/cast context
2880                 log.error(that.pos(), Errors.UnexpectedLambda);
2881             }
2882             resultInfo = recoveryInfo;
2883             wrongContext = true;
2884         }
2885         //create an environment for attribution of the lambda expression
2886         final Env<AttrContext> localEnv = lambdaEnv(that, env);
2887         boolean needsRecovery =
2888                 resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK;
2889         try {
2890             if (needsRecovery && isSerializable(pt())) {
2891                 localEnv.info.isSerializable = true;
2892                 localEnv.info.isSerializableLambda = true;
2893             }
2894             localEnv.info.isLambda = true;
2895             List<Type> explicitParamTypes = null;
2896             if (that.paramKind == JCLambda.ParameterKind.EXPLICIT) {
2897                 //attribute lambda parameters
2898                 attribStats(that.params, localEnv);
2899                 explicitParamTypes = TreeInfo.types(that.params);
2900             }
2901 
2902             TargetInfo targetInfo = getTargetInfo(that, resultInfo, explicitParamTypes);
2903             Type currentTarget = targetInfo.target;
2904             Type lambdaType = targetInfo.descriptor;
2905 
2906             if (currentTarget.isErroneous()) {
2907                 result = that.type = currentTarget;
2908                 return;
2909             }
2910 
2911             setFunctionalInfo(localEnv, that, pt(), lambdaType, currentTarget, resultInfo.checkContext);
2912 
2913             if (lambdaType.hasTag(FORALL)) {
2914                 //lambda expression target desc cannot be a generic method
2915                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
2916                                                                     kindName(currentTarget.tsym),
2917                                                                     currentTarget.tsym);
2918                 resultInfo.checkContext.report(that, diags.fragment(msg));
2919                 result = that.type = types.createErrorType(pt());
2920                 return;
2921             }
2922 
2923             if (that.paramKind == JCLambda.ParameterKind.IMPLICIT) {
2924                 //add param type info in the AST
2925                 List<Type> actuals = lambdaType.getParameterTypes();
2926                 List<JCVariableDecl> params = that.params;
2927 
2928                 boolean arityMismatch = false;
2929 
2930                 while (params.nonEmpty()) {
2931                     if (actuals.isEmpty()) {
2932                         //not enough actuals to perform lambda parameter inference
2933                         arityMismatch = true;
2934                     }
2935                     //reset previously set info
2936                     Type argType = arityMismatch ?
2937                             syms.errType :
2938                             actuals.head;
2939                     if (params.head.isImplicitlyTyped()) {
2940                         setSyntheticVariableType(params.head, argType);
2941                     }
2942                     params.head.sym = null;
2943                     actuals = actuals.isEmpty() ?
2944                             actuals :
2945                             actuals.tail;
2946                     params = params.tail;
2947                 }
2948 
2949                 //attribute lambda parameters
2950                 attribStats(that.params, localEnv);
2951 
2952                 if (arityMismatch) {
2953                     resultInfo.checkContext.report(that, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
2954                         result = that.type = types.createErrorType(currentTarget);
2955                         return;
2956                 }
2957             }
2958 
2959             //from this point on, no recovery is needed; if we are in assignment context
2960             //we will be able to attribute the whole lambda body, regardless of errors;
2961             //if we are in a 'check' method context, and the lambda is not compatible
2962             //with the target-type, it will be recovered anyway in Attr.checkId
2963             needsRecovery = false;
2964 
2965             ResultInfo bodyResultInfo = localEnv.info.returnResult =
2966                     lambdaBodyResult(that, lambdaType, resultInfo);
2967 
2968             if (that.getBodyKind() == JCLambda.BodyKind.EXPRESSION) {
2969                 attribTree(that.getBody(), localEnv, bodyResultInfo);
2970             } else {
2971                 JCBlock body = (JCBlock)that.body;
2972                 if (body == breakTree &&
2973                         resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
2974                     breakTreeFound(copyEnv(localEnv));
2975                 }
2976                 attribStats(body.stats, localEnv);
2977             }
2978 
2979             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
2980 
2981             boolean isSpeculativeRound =
2982                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
2983 
2984             preFlow(that);
2985             flow.analyzeLambda(env, that, make, isSpeculativeRound);
2986 
2987             that.type = currentTarget; //avoids recovery at this stage
2988             checkLambdaCompatible(that, lambdaType, resultInfo.checkContext);
2989 
2990             if (!isSpeculativeRound) {
2991                 //add thrown types as bounds to the thrown types free variables if needed:
2992                 if (resultInfo.checkContext.inferenceContext().free(lambdaType.getThrownTypes())) {
2993                     List<Type> inferredThrownTypes = flow.analyzeLambdaThrownTypes(env, that, make);
2994                     if(!checkExConstraints(inferredThrownTypes, lambdaType.getThrownTypes(), resultInfo.checkContext.inferenceContext())) {
2995                         log.error(that, Errors.IncompatibleThrownTypesInMref(lambdaType.getThrownTypes()));
2996                     }
2997                 }
2998 
2999                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), lambdaType, currentTarget);
3000             }
3001             result = wrongContext ? that.type = types.createErrorType(pt())
3002                                   : check(that, currentTarget, KindSelector.VAL, resultInfo);
3003         } catch (Types.FunctionDescriptorLookupError ex) {
3004             JCDiagnostic cause = ex.getDiagnostic();
3005             resultInfo.checkContext.report(that, cause);
3006             result = that.type = types.createErrorType(pt());
3007             return;
3008         } catch (CompletionFailure cf) {
3009             chk.completionError(that.pos(), cf);
3010         } catch (Throwable t) {
3011             //when an unexpected exception happens, avoid attempts to attribute the same tree again
3012             //as that would likely cause the same exception again.
3013             needsRecovery = false;
3014             throw t;
3015         } finally {
3016             localEnv.info.scope.leave();
3017             if (needsRecovery) {
3018                 attribTree(that, env, recoveryInfo);
3019             }
3020         }
3021     }
3022     //where
3023         class TargetInfo {
3024             Type target;
3025             Type descriptor;
3026 
3027             public TargetInfo(Type target, Type descriptor) {
3028                 this.target = target;
3029                 this.descriptor = descriptor;
3030             }
3031         }
3032 
3033         TargetInfo getTargetInfo(JCPolyExpression that, ResultInfo resultInfo, List<Type> explicitParamTypes) {
3034             Type lambdaType;
3035             Type currentTarget = resultInfo.pt;
3036             if (resultInfo.pt != Type.recoveryType) {
3037                 /* We need to adjust the target. If the target is an
3038                  * intersection type, for example: SAM & I1 & I2 ...
3039                  * the target will be updated to SAM
3040                  */
3041                 currentTarget = targetChecker.visit(currentTarget, that);
3042                 if (!currentTarget.isIntersection()) {
3043                     if (explicitParamTypes != null) {
3044                         currentTarget = infer.instantiateFunctionalInterface(that,
3045                                 currentTarget, explicitParamTypes, resultInfo.checkContext);
3046                     }
3047                     currentTarget = types.removeWildcards(currentTarget);
3048                     lambdaType = types.findDescriptorType(currentTarget);
3049                 } else {
3050                     IntersectionClassType ict = (IntersectionClassType)currentTarget;
3051                     ListBuffer<Type> components = new ListBuffer<>();
3052                     for (Type bound : ict.getExplicitComponents()) {
3053                         if (explicitParamTypes != null) {
3054                             try {
3055                                 bound = infer.instantiateFunctionalInterface(that,
3056                                         bound, explicitParamTypes, resultInfo.checkContext);
3057                             } catch (FunctionDescriptorLookupError t) {
3058                                 // do nothing
3059                             }
3060                         }
3061                         bound = types.removeWildcards(bound);
3062                         components.add(bound);
3063                     }
3064                     currentTarget = types.makeIntersectionType(components.toList());
3065                     currentTarget.tsym.flags_field |= INTERFACE;
3066                     lambdaType = types.findDescriptorType(currentTarget);
3067                 }
3068 
3069             } else {
3070                 currentTarget = Type.recoveryType;
3071                 lambdaType = fallbackDescriptorType(that);
3072             }
3073             if (that.hasTag(LAMBDA) && lambdaType.hasTag(FORALL)) {
3074                 //lambda expression target desc cannot be a generic method
3075                 Fragment msg = Fragments.InvalidGenericLambdaTarget(lambdaType,
3076                                                                     kindName(currentTarget.tsym),
3077                                                                     currentTarget.tsym);
3078                 resultInfo.checkContext.report(that, diags.fragment(msg));
3079                 currentTarget = types.createErrorType(pt());
3080             }
3081             return new TargetInfo(currentTarget, lambdaType);
3082         }
3083 
3084         void preFlow(JCLambda tree) {
3085             new PostAttrAnalyzer() {
3086                 @Override
3087                 public void scan(JCTree tree) {
3088                     if (tree == null ||
3089                             (tree.type != null &&
3090                             tree.type == Type.stuckType)) {
3091                         //don't touch stuck expressions!
3092                         return;
3093                     }
3094                     super.scan(tree);
3095                 }
3096 
3097                 @Override
3098                 public void visitClassDef(JCClassDecl that) {
3099                     // or class declaration trees!
3100                 }
3101 
3102                 public void visitLambda(JCLambda that) {
3103                     // or lambda expressions!
3104                 }
3105             }.scan(tree.body);
3106         }
3107 
3108         Types.MapVisitor<DiagnosticPosition> targetChecker = new Types.MapVisitor<DiagnosticPosition>() {
3109 
3110             @Override
3111             public Type visitClassType(ClassType t, DiagnosticPosition pos) {
3112                 return t.isIntersection() ?
3113                         visitIntersectionClassType((IntersectionClassType)t, pos) : t;
3114             }
3115 
3116             public Type visitIntersectionClassType(IntersectionClassType ict, DiagnosticPosition pos) {
3117                 types.findDescriptorSymbol(makeNotionalInterface(ict, pos));
3118                 return ict;
3119             }
3120 
3121             private TypeSymbol makeNotionalInterface(IntersectionClassType ict, DiagnosticPosition pos) {
3122                 ListBuffer<Type> targs = new ListBuffer<>();
3123                 ListBuffer<Type> supertypes = new ListBuffer<>();
3124                 for (Type i : ict.interfaces_field) {
3125                     if (i.isParameterized()) {
3126                         targs.appendList(i.tsym.type.allparams());
3127                     }
3128                     supertypes.append(i.tsym.type);
3129                 }
3130                 IntersectionClassType notionalIntf = types.makeIntersectionType(supertypes.toList());
3131                 notionalIntf.allparams_field = targs.toList();
3132                 notionalIntf.tsym.flags_field |= INTERFACE;
3133                 return notionalIntf.tsym;
3134             }
3135         };
3136 
3137         private Type fallbackDescriptorType(JCExpression tree) {
3138             switch (tree.getTag()) {
3139                 case LAMBDA:
3140                     JCLambda lambda = (JCLambda)tree;
3141                     List<Type> argtypes = List.nil();
3142                     for (JCVariableDecl param : lambda.params) {
3143                         argtypes = param.vartype != null && param.vartype.type != null ?
3144                                 argtypes.append(param.vartype.type) :
3145                                 argtypes.append(syms.errType);
3146                     }
3147                     return new MethodType(argtypes, Type.recoveryType,
3148                             List.of(syms.throwableType), syms.methodClass);
3149                 case REFERENCE:
3150                     return new MethodType(List.nil(), Type.recoveryType,
3151                             List.of(syms.throwableType), syms.methodClass);
3152                 default:
3153                     Assert.error("Cannot get here!");
3154             }
3155             return null;
3156         }
3157 
3158         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3159                 final InferenceContext inferenceContext, final Type... ts) {
3160             checkAccessibleTypes(pos, env, inferenceContext, List.from(ts));
3161         }
3162 
3163         private void checkAccessibleTypes(final DiagnosticPosition pos, final Env<AttrContext> env,
3164                 final InferenceContext inferenceContext, final List<Type> ts) {
3165             if (inferenceContext.free(ts)) {
3166                 inferenceContext.addFreeTypeListener(ts,
3167                         solvedContext -> checkAccessibleTypes(pos, env, solvedContext, solvedContext.asInstTypes(ts)));
3168             } else {
3169                 for (Type t : ts) {
3170                     rs.checkAccessibleType(env, t);
3171                 }
3172             }
3173         }
3174 
3175         /**
3176          * Lambda/method reference have a special check context that ensures
3177          * that i.e. a lambda return type is compatible with the expected
3178          * type according to both the inherited context and the assignment
3179          * context.
3180          */
3181         class FunctionalReturnContext extends Check.NestedCheckContext {
3182 
3183             FunctionalReturnContext(CheckContext enclosingContext) {
3184                 super(enclosingContext);
3185             }
3186 
3187             @Override
3188             public boolean compatible(Type found, Type req, Warner warn) {
3189                 //return type must be compatible in both current context and assignment context
3190                 return chk.basicHandler.compatible(inferenceContext().asUndetVar(found), inferenceContext().asUndetVar(req), warn);
3191             }
3192 
3193             @Override
3194             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3195                 enclosingContext.report(pos, diags.fragment(Fragments.IncompatibleRetTypeInLambda(details)));
3196             }
3197         }
3198 
3199         class ExpressionLambdaReturnContext extends FunctionalReturnContext {
3200 
3201             JCExpression expr;
3202             boolean expStmtExpected;
3203 
3204             ExpressionLambdaReturnContext(JCExpression expr, CheckContext enclosingContext) {
3205                 super(enclosingContext);
3206                 this.expr = expr;
3207             }
3208 
3209             @Override
3210             public void report(DiagnosticPosition pos, JCDiagnostic details) {
3211                 if (expStmtExpected) {
3212                     enclosingContext.report(pos, diags.fragment(Fragments.StatExprExpected));
3213                 } else {
3214                     super.report(pos, details);
3215                 }
3216             }
3217 
3218             @Override
3219             public boolean compatible(Type found, Type req, Warner warn) {
3220                 //a void return is compatible with an expression statement lambda
3221                 if (req.hasTag(VOID)) {
3222                     expStmtExpected = true;
3223                     return TreeInfo.isExpressionStatement(expr);
3224                 } else {
3225                     return super.compatible(found, req, warn);
3226                 }
3227             }
3228         }
3229 
3230         ResultInfo lambdaBodyResult(JCLambda that, Type descriptor, ResultInfo resultInfo) {
3231             FunctionalReturnContext funcContext = that.getBodyKind() == JCLambda.BodyKind.EXPRESSION ?
3232                     new ExpressionLambdaReturnContext((JCExpression)that.getBody(), resultInfo.checkContext) :
3233                     new FunctionalReturnContext(resultInfo.checkContext);
3234 
3235             return descriptor.getReturnType() == Type.recoveryType ?
3236                     recoveryInfo :
3237                     new ResultInfo(KindSelector.VAL,
3238                             descriptor.getReturnType(), funcContext);
3239         }
3240 
3241         /**
3242         * Lambda compatibility. Check that given return types, thrown types, parameter types
3243         * are compatible with the expected functional interface descriptor. This means that:
3244         * (i) parameter types must be identical to those of the target descriptor; (ii) return
3245         * types must be compatible with the return type of the expected descriptor.
3246         */
3247         void checkLambdaCompatible(JCLambda tree, Type descriptor, CheckContext checkContext) {
3248             Type returnType = checkContext.inferenceContext().asUndetVar(descriptor.getReturnType());
3249 
3250             //return values have already been checked - but if lambda has no return
3251             //values, we must ensure that void/value compatibility is correct;
3252             //this amounts at checking that, if a lambda body can complete normally,
3253             //the descriptor's return type must be void
3254             if (tree.getBodyKind() == JCLambda.BodyKind.STATEMENT && tree.canCompleteNormally &&
3255                     !returnType.hasTag(VOID) && returnType != Type.recoveryType) {
3256                 Fragment msg =
3257                         Fragments.IncompatibleRetTypeInLambda(Fragments.MissingRetVal(returnType));
3258                 checkContext.report(tree,
3259                                     diags.fragment(msg));
3260             }
3261 
3262             List<Type> argTypes = checkContext.inferenceContext().asUndetVars(descriptor.getParameterTypes());
3263             if (!types.isSameTypes(argTypes, TreeInfo.types(tree.params))) {
3264                 checkContext.report(tree, diags.fragment(Fragments.IncompatibleArgTypesInLambda));
3265             }
3266         }
3267 
3268         /* Map to hold 'fake' clinit methods. If a lambda is used to initialize a
3269          * static field and that lambda has type annotations, these annotations will
3270          * also be stored at these fake clinit methods.
3271          *
3272          * LambdaToMethod also use fake clinit methods so they can be reused.
3273          * Also as LTM is a phase subsequent to attribution, the methods from
3274          * clinits can be safely removed by LTM to save memory.
3275          */
3276         private Map<ClassSymbol, MethodSymbol> clinits = new HashMap<>();
3277 
3278         public MethodSymbol removeClinit(ClassSymbol sym) {
3279             return clinits.remove(sym);
3280         }
3281 
3282         /* This method returns an environment to be used to attribute a lambda
3283          * expression.
3284          *
3285          * The owner of this environment is a method symbol. If the current owner
3286          * is not a method, for example if the lambda is used to initialize
3287          * a field, then if the field is:
3288          *
3289          * - an instance field, we use the first constructor.
3290          * - a static field, we create a fake clinit method.
3291          */
3292         public Env<AttrContext> lambdaEnv(JCLambda that, Env<AttrContext> env) {
3293             Env<AttrContext> lambdaEnv;
3294             Symbol owner = env.info.scope.owner;
3295             if (owner.kind == VAR && owner.owner.kind == TYP) {
3296                 //field initializer
3297                 ClassSymbol enclClass = owner.enclClass();
3298                 Symbol newScopeOwner = env.info.scope.owner;
3299                 /* if the field isn't static, then we can get the first constructor
3300                  * and use it as the owner of the environment. This is what
3301                  * LTM code is doing to look for type annotations so we are fine.
3302                  */
3303                 if ((owner.flags() & STATIC) == 0) {
3304                     for (Symbol s : enclClass.members_field.getSymbolsByName(names.init)) {
3305                         newScopeOwner = s;
3306                         break;
3307                     }
3308                 } else {
3309                     /* if the field is static then we need to create a fake clinit
3310                      * method, this method can later be reused by LTM.
3311                      */
3312                     MethodSymbol clinit = clinits.get(enclClass);
3313                     if (clinit == null) {
3314                         Type clinitType = new MethodType(List.nil(),
3315                                 syms.voidType, List.nil(), syms.methodClass);
3316                         clinit = new MethodSymbol(STATIC | SYNTHETIC | PRIVATE,
3317                                 names.clinit, clinitType, enclClass);
3318                         clinit.params = List.nil();
3319                         clinits.put(enclClass, clinit);
3320                     }
3321                     newScopeOwner = clinit;
3322                 }
3323                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dupUnshared(newScopeOwner)));
3324             } else {
3325                 lambdaEnv = env.dup(that, env.info.dup(env.info.scope.dup()));
3326             }
3327             lambdaEnv.info.yieldResult = null;
3328             return lambdaEnv;
3329         }
3330 
3331     @Override
3332     public void visitReference(final JCMemberReference that) {
3333         if (pt().isErroneous() || (pt().hasTag(NONE) && pt() != Type.recoveryType)) {
3334             if (pt().hasTag(NONE) && (env.info.enclVar == null || !env.info.enclVar.type.isErroneous())) {
3335                 //method reference only allowed in assignment or method invocation/cast context
3336                 log.error(that.pos(), Errors.UnexpectedMref);
3337             }
3338             result = that.type = types.createErrorType(pt());
3339             return;
3340         }
3341         final Env<AttrContext> localEnv = env.dup(that);
3342         try {
3343             //attribute member reference qualifier - if this is a constructor
3344             //reference, the expected kind must be a type
3345             Type exprType = attribTree(that.expr, env, memberReferenceQualifierResult(that));
3346 
3347             if (that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3348                 exprType = chk.checkConstructorRefType(that.expr, exprType);
3349                 if (!exprType.isErroneous() &&
3350                     exprType.isRaw() &&
3351                     that.typeargs != null) {
3352                     log.error(that.expr.pos(),
3353                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3354                                                  Fragments.MrefInferAndExplicitParams));
3355                     exprType = types.createErrorType(exprType);
3356                 }
3357             }
3358 
3359             if (exprType.isErroneous()) {
3360                 //if the qualifier expression contains problems,
3361                 //give up attribution of method reference
3362                 result = that.type = exprType;
3363                 return;
3364             }
3365 
3366             if (TreeInfo.isStaticSelector(that.expr, names)) {
3367                 //if the qualifier is a type, validate it; raw warning check is
3368                 //omitted as we don't know at this stage as to whether this is a
3369                 //raw selector (because of inference)
3370                 chk.validate(that.expr, env, false);
3371             } else {
3372                 Symbol lhsSym = TreeInfo.symbol(that.expr);
3373                 localEnv.info.selectSuper = lhsSym != null && lhsSym.name == names._super;
3374             }
3375             //attrib type-arguments
3376             List<Type> typeargtypes = List.nil();
3377             if (that.typeargs != null) {
3378                 typeargtypes = attribTypes(that.typeargs, localEnv);
3379             }
3380 
3381             boolean isTargetSerializable =
3382                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3383                     isSerializable(pt());
3384             TargetInfo targetInfo = getTargetInfo(that, resultInfo, null);
3385             Type currentTarget = targetInfo.target;
3386             Type desc = targetInfo.descriptor;
3387 
3388             setFunctionalInfo(localEnv, that, pt(), desc, currentTarget, resultInfo.checkContext);
3389             List<Type> argtypes = desc.getParameterTypes();
3390             Resolve.MethodCheck referenceCheck = rs.resolveMethodCheck;
3391 
3392             if (resultInfo.checkContext.inferenceContext().free(argtypes)) {
3393                 referenceCheck = rs.new MethodReferenceCheck(resultInfo.checkContext.inferenceContext());
3394             }
3395 
3396             Pair<Symbol, Resolve.ReferenceLookupHelper> refResult = null;
3397             List<Type> saved_undet = resultInfo.checkContext.inferenceContext().save();
3398             try {
3399                 refResult = rs.resolveMemberReference(localEnv, that, that.expr.type,
3400                         that.name, argtypes, typeargtypes, targetInfo.descriptor, referenceCheck,
3401                         resultInfo.checkContext.inferenceContext(), rs.basicReferenceChooser);
3402             } finally {
3403                 resultInfo.checkContext.inferenceContext().rollback(saved_undet);
3404             }
3405 
3406             Symbol refSym = refResult.fst;
3407             Resolve.ReferenceLookupHelper lookupHelper = refResult.snd;
3408 
3409             /** this switch will need to go away and be replaced by the new RESOLUTION_TARGET testing
3410              *  JDK-8075541
3411              */
3412             if (refSym.kind != MTH) {
3413                 boolean targetError;
3414                 switch (refSym.kind) {
3415                     case ABSENT_MTH:
3416                     case MISSING_ENCL:
3417                         targetError = false;
3418                         break;
3419                     case WRONG_MTH:
3420                     case WRONG_MTHS:
3421                     case AMBIGUOUS:
3422                     case HIDDEN:
3423                     case STATICERR:
3424                         targetError = true;
3425                         break;
3426                     default:
3427                         Assert.error("unexpected result kind " + refSym.kind);
3428                         targetError = false;
3429                 }
3430 
3431                 JCDiagnostic detailsDiag = ((Resolve.ResolveError)refSym.baseSymbol())
3432                         .getDiagnostic(JCDiagnostic.DiagnosticType.FRAGMENT,
3433                                 that, exprType.tsym, exprType, that.name, argtypes, typeargtypes);
3434 
3435                 JCDiagnostic diag = diags.create(log.currentSource(), that,
3436                         targetError ?
3437                             Fragments.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag) :
3438                             Errors.InvalidMref(Kinds.kindName(that.getMode()), detailsDiag));
3439 
3440                 if (targetError && currentTarget == Type.recoveryType) {
3441                     //a target error doesn't make sense during recovery stage
3442                     //as we don't know what actual parameter types are
3443                     result = that.type = currentTarget;
3444                     return;
3445                 } else {
3446                     if (targetError) {
3447                         resultInfo.checkContext.report(that, diag);
3448                     } else {
3449                         log.report(diag);
3450                     }
3451                     result = that.type = types.createErrorType(currentTarget);
3452                     return;
3453                 }
3454             }
3455 
3456             that.sym = refSym.isConstructor() ? refSym.baseSymbol() : refSym;
3457             that.kind = lookupHelper.referenceKind(that.sym);
3458             that.ownerAccessible = rs.isAccessible(localEnv, that.sym.enclClass());
3459 
3460             if (desc.getReturnType() == Type.recoveryType) {
3461                 // stop here
3462                 result = that.type = currentTarget;
3463                 return;
3464             }
3465 
3466             if (!env.info.attributionMode.isSpeculative && that.getMode() == JCMemberReference.ReferenceMode.NEW) {
3467                 Type enclosingType = exprType.getEnclosingType();
3468                 if (enclosingType != null && enclosingType.hasTag(CLASS)) {
3469                     // Check for the existence of an apropriate outer instance
3470                     rs.resolveImplicitThis(that.pos(), env, exprType);
3471                 }
3472             }
3473 
3474             if (resultInfo.checkContext.deferredAttrContext().mode == AttrMode.CHECK) {
3475 
3476                 if (that.getMode() == ReferenceMode.INVOKE &&
3477                         TreeInfo.isStaticSelector(that.expr, names) &&
3478                         that.kind.isUnbound() &&
3479                         lookupHelper.site.isRaw()) {
3480                     chk.checkRaw(that.expr, localEnv);
3481                 }
3482 
3483                 if (that.sym.isStatic() && TreeInfo.isStaticSelector(that.expr, names) &&
3484                         exprType.getTypeArguments().nonEmpty()) {
3485                     //static ref with class type-args
3486                     log.error(that.expr.pos(),
3487                               Errors.InvalidMref(Kinds.kindName(that.getMode()),
3488                                                  Fragments.StaticMrefWithTargs));
3489                     result = that.type = types.createErrorType(currentTarget);
3490                     return;
3491                 }
3492 
3493                 if (!refSym.isStatic() && that.kind == JCMemberReference.ReferenceKind.SUPER) {
3494                     // Check that super-qualified symbols are not abstract (JLS)
3495                     rs.checkNonAbstract(that.pos(), that.sym);
3496                 }
3497 
3498                 if (isTargetSerializable) {
3499                     chk.checkAccessFromSerializableElement(that, true);
3500                 }
3501             }
3502 
3503             ResultInfo checkInfo =
3504                     resultInfo.dup(newMethodTemplate(
3505                         desc.getReturnType().hasTag(VOID) ? Type.noType : desc.getReturnType(),
3506                         that.kind.isUnbound() ? argtypes.tail : argtypes, typeargtypes),
3507                         new FunctionalReturnContext(resultInfo.checkContext), CheckMode.NO_TREE_UPDATE);
3508 
3509             Type refType = checkId(that, lookupHelper.site, refSym, localEnv, checkInfo);
3510 
3511             if (that.kind.isUnbound() &&
3512                     resultInfo.checkContext.inferenceContext().free(argtypes.head)) {
3513                 //re-generate inference constraints for unbound receiver
3514                 if (!types.isSubtype(resultInfo.checkContext.inferenceContext().asUndetVar(argtypes.head), exprType)) {
3515                     //cannot happen as this has already been checked - we just need
3516                     //to regenerate the inference constraints, as that has been lost
3517                     //as a result of the call to inferenceContext.save()
3518                     Assert.error("Can't get here");
3519                 }
3520             }
3521 
3522             if (!refType.isErroneous()) {
3523                 refType = types.createMethodTypeWithReturn(refType,
3524                         adjustMethodReturnType(refSym, lookupHelper.site, that.name, checkInfo.pt.getParameterTypes(), refType.getReturnType()));
3525             }
3526 
3527             //go ahead with standard method reference compatibility check - note that param check
3528             //is a no-op (as this has been taken care during method applicability)
3529             boolean isSpeculativeRound =
3530                     resultInfo.checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.SPECULATIVE;
3531 
3532             that.type = currentTarget; //avoids recovery at this stage
3533             checkReferenceCompatible(that, desc, refType, resultInfo.checkContext, isSpeculativeRound);
3534             if (!isSpeculativeRound) {
3535                 checkAccessibleTypes(that, localEnv, resultInfo.checkContext.inferenceContext(), desc, currentTarget);
3536             }
3537             result = check(that, currentTarget, KindSelector.VAL, resultInfo);
3538         } catch (Types.FunctionDescriptorLookupError ex) {
3539             JCDiagnostic cause = ex.getDiagnostic();
3540             resultInfo.checkContext.report(that, cause);
3541             result = that.type = types.createErrorType(pt());
3542             return;
3543         }
3544     }
3545     //where
3546         ResultInfo memberReferenceQualifierResult(JCMemberReference tree) {
3547             //if this is a constructor reference, the expected kind must be a type
3548             return new ResultInfo(tree.getMode() == ReferenceMode.INVOKE ?
3549                                   KindSelector.VAL_TYP : KindSelector.TYP,
3550                                   Type.noType);
3551         }
3552 
3553 
3554     @SuppressWarnings("fallthrough")
3555     void checkReferenceCompatible(JCMemberReference tree, Type descriptor, Type refType, CheckContext checkContext, boolean speculativeAttr) {
3556         InferenceContext inferenceContext = checkContext.inferenceContext();
3557         Type returnType = inferenceContext.asUndetVar(descriptor.getReturnType());
3558 
3559         Type resType;
3560         switch (tree.getMode()) {
3561             case NEW:
3562                 if (!tree.expr.type.isRaw()) {
3563                     resType = tree.expr.type;
3564                     break;
3565                 }
3566             default:
3567                 resType = refType.getReturnType();
3568         }
3569 
3570         Type incompatibleReturnType = resType;
3571 
3572         if (returnType.hasTag(VOID)) {
3573             incompatibleReturnType = null;
3574         }
3575 
3576         if (!returnType.hasTag(VOID) && !resType.hasTag(VOID)) {
3577             if (resType.isErroneous() ||
3578                     new FunctionalReturnContext(checkContext).compatible(resType, returnType,
3579                             checkContext.checkWarner(tree, resType, returnType))) {
3580                 incompatibleReturnType = null;
3581             }
3582         }
3583 
3584         if (incompatibleReturnType != null) {
3585             Fragment msg =
3586                     Fragments.IncompatibleRetTypeInMref(Fragments.InconvertibleTypes(resType, descriptor.getReturnType()));
3587             checkContext.report(tree, diags.fragment(msg));
3588         } else {
3589             if (inferenceContext.free(refType)) {
3590                 // we need to wait for inference to finish and then replace inference vars in the referent type
3591                 inferenceContext.addFreeTypeListener(List.of(refType),
3592                         instantiatedContext -> {
3593                             tree.referentType = instantiatedContext.asInstType(refType);
3594                         });
3595             } else {
3596                 tree.referentType = refType;
3597             }
3598         }
3599 
3600         if (!speculativeAttr) {
3601             if (!checkExConstraints(refType.getThrownTypes(), descriptor.getThrownTypes(), inferenceContext)) {
3602                 log.error(tree, Errors.IncompatibleThrownTypesInMref(refType.getThrownTypes()));
3603             }
3604         }
3605     }
3606 
3607     boolean checkExConstraints(
3608             List<Type> thrownByFuncExpr,
3609             List<Type> thrownAtFuncType,
3610             InferenceContext inferenceContext) {
3611         /** 18.2.5: Otherwise, let E1, ..., En be the types in the function type's throws clause that
3612          *  are not proper types
3613          */
3614         List<Type> nonProperList = thrownAtFuncType.stream()
3615                 .filter(e -> inferenceContext.free(e)).collect(List.collector());
3616         List<Type> properList = thrownAtFuncType.diff(nonProperList);
3617 
3618         /** Let X1,...,Xm be the checked exception types that the lambda body can throw or
3619          *  in the throws clause of the invocation type of the method reference's compile-time
3620          *  declaration
3621          */
3622         List<Type> checkedList = thrownByFuncExpr.stream()
3623                 .filter(e -> chk.isChecked(e)).collect(List.collector());
3624 
3625         /** If n = 0 (the function type's throws clause consists only of proper types), then
3626          *  if there exists some i (1 <= i <= m) such that Xi is not a subtype of any proper type
3627          *  in the throws clause, the constraint reduces to false; otherwise, the constraint
3628          *  reduces to true
3629          */
3630         ListBuffer<Type> uncaughtByProperTypes = new ListBuffer<>();
3631         for (Type checked : checkedList) {
3632             boolean isSubtype = false;
3633             for (Type proper : properList) {
3634                 if (types.isSubtype(checked, proper)) {
3635                     isSubtype = true;
3636                     break;
3637                 }
3638             }
3639             if (!isSubtype) {
3640                 uncaughtByProperTypes.add(checked);
3641             }
3642         }
3643 
3644         if (nonProperList.isEmpty() && !uncaughtByProperTypes.isEmpty()) {
3645             return false;
3646         }
3647 
3648         /** If n > 0, the constraint reduces to a set of subtyping constraints:
3649          *  for all i (1 <= i <= m), if Xi is not a subtype of any proper type in the
3650          *  throws clause, then the constraints include, for all j (1 <= j <= n), <Xi <: Ej>
3651          */
3652         List<Type> nonProperAsUndet = inferenceContext.asUndetVars(nonProperList);
3653         uncaughtByProperTypes.forEach(checkedEx -> {
3654             nonProperAsUndet.forEach(nonProper -> {
3655                 types.isSubtype(checkedEx, nonProper);
3656             });
3657         });
3658 
3659         /** In addition, for all j (1 <= j <= n), the constraint reduces to the bound throws Ej
3660          */
3661         nonProperAsUndet.stream()
3662                 .filter(t -> t.hasTag(UNDETVAR))
3663                 .forEach(t -> ((UndetVar)t).setThrow());
3664         return true;
3665     }
3666 
3667     /**
3668      * Set functional type info on the underlying AST. Note: as the target descriptor
3669      * might contain inference variables, we might need to register an hook in the
3670      * current inference context.
3671      */
3672     private void setFunctionalInfo(final Env<AttrContext> env, final JCFunctionalExpression fExpr,
3673             final Type pt, final Type descriptorType, final Type primaryTarget, final CheckContext checkContext) {
3674         if (checkContext.inferenceContext().free(descriptorType)) {
3675             checkContext.inferenceContext().addFreeTypeListener(List.of(pt, descriptorType),
3676                     inferenceContext -> setFunctionalInfo(env, fExpr, pt, inferenceContext.asInstType(descriptorType),
3677                     inferenceContext.asInstType(primaryTarget), checkContext));
3678         } else {
3679             if (pt.hasTag(CLASS)) {
3680                 fExpr.target = primaryTarget;
3681             }
3682             if (checkContext.deferredAttrContext().mode == DeferredAttr.AttrMode.CHECK &&
3683                     pt != Type.recoveryType) {
3684                 //check that functional interface class is well-formed
3685                 try {
3686                     /* Types.makeFunctionalInterfaceClass() may throw an exception
3687                      * when it's executed post-inference. See the listener code
3688                      * above.
3689                      */
3690                     ClassSymbol csym = types.makeFunctionalInterfaceClass(env,
3691                             names.empty, fExpr.target, ABSTRACT);
3692                     if (csym != null) {
3693                         chk.checkImplementations(env.tree, csym, csym);
3694                         try {
3695                             //perform an additional functional interface check on the synthetic class,
3696                             //as there may be spurious errors for raw targets - because of existing issues
3697                             //with membership and inheritance (see JDK-8074570).
3698                             csym.flags_field |= INTERFACE;
3699                             types.findDescriptorType(csym.type);
3700                         } catch (FunctionDescriptorLookupError err) {
3701                             resultInfo.checkContext.report(fExpr,
3702                                     diags.fragment(Fragments.NoSuitableFunctionalIntfInst(fExpr.target)));
3703                         }
3704                     }
3705                 } catch (Types.FunctionDescriptorLookupError ex) {
3706                     JCDiagnostic cause = ex.getDiagnostic();
3707                     resultInfo.checkContext.report(env.tree, cause);
3708                 }
3709             }
3710         }
3711     }
3712 
3713     public void visitParens(JCParens tree) {
3714         Type owntype = attribTree(tree.expr, env, resultInfo);
3715         result = check(tree, owntype, pkind(), resultInfo);
3716         Symbol sym = TreeInfo.symbol(tree);
3717         if (sym != null && sym.kind.matches(KindSelector.TYP_PCK))
3718             log.error(tree.pos(), Errors.IllegalParenthesizedExpression);
3719     }
3720 
3721     public void visitAssign(JCAssign tree) {
3722         Type owntype = attribTree(tree.lhs, env.dup(tree), varAssignmentInfo);
3723         Type capturedType = capture(owntype);
3724         attribExpr(tree.rhs, env, owntype);
3725         result = check(tree, capturedType, KindSelector.VAL, resultInfo);
3726     }
3727 
3728     public void visitAssignop(JCAssignOp tree) {
3729         // Attribute arguments.
3730         Type owntype = attribTree(tree.lhs, env, varAssignmentInfo);
3731         Type operand = attribExpr(tree.rhs, env);
3732         // Find operator.
3733         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag().noAssignOp(), owntype, operand);
3734         if (operator != operators.noOpSymbol &&
3735                 !owntype.isErroneous() &&
3736                 !operand.isErroneous()) {
3737             chk.checkDivZero(tree.rhs.pos(), operator, operand);
3738             chk.checkCastable(tree.rhs.pos(),
3739                               operator.type.getReturnType(),
3740                               owntype);
3741         }
3742         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3743     }
3744 
3745     public void visitUnary(JCUnary tree) {
3746         // Attribute arguments.
3747         Type argtype = (tree.getTag().isIncOrDecUnaryOp())
3748             ? attribTree(tree.arg, env, varAssignmentInfo)
3749             : chk.checkNonVoid(tree.arg.pos(), attribExpr(tree.arg, env));
3750 
3751         // Find operator.
3752         Symbol operator = tree.operator = operators.resolveUnary(tree, tree.getTag(), argtype);
3753         Type owntype = types.createErrorType(tree.type);
3754         if (operator != operators.noOpSymbol &&
3755                 !argtype.isErroneous()) {
3756             owntype = (tree.getTag().isIncOrDecUnaryOp())
3757                 ? tree.arg.type
3758                 : operator.type.getReturnType();
3759             int opc = ((OperatorSymbol)operator).opcode;
3760 
3761             // If the argument is constant, fold it.
3762             if (argtype.constValue() != null) {
3763                 Type ctype = cfolder.fold1(opc, argtype);
3764                 if (ctype != null) {
3765                     owntype = cfolder.coerce(ctype, owntype);
3766                 }
3767             }
3768         }
3769         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3770     }
3771 
3772     public void visitBinary(JCBinary tree) {
3773         // Attribute arguments.
3774         Type left = chk.checkNonVoid(tree.lhs.pos(), attribExpr(tree.lhs, env));
3775         // x && y
3776         // include x's bindings when true in y
3777 
3778         // x || y
3779         // include x's bindings when false in y
3780 
3781         List<BindingSymbol> matchBindings;
3782         switch (tree.getTag()) {
3783             case AND:
3784                 matchBindings = matchBindingsComputer.getMatchBindings(tree.lhs, true);
3785                 break;
3786             case OR:
3787                 matchBindings = matchBindingsComputer.getMatchBindings(tree.lhs, false);
3788                 break;
3789             default:
3790                 matchBindings = List.nil();
3791                 break;
3792         }
3793         Env<AttrContext> rhsEnv = bindingEnv(env, matchBindings);
3794         Type right;
3795         try {
3796             right = chk.checkNonVoid(tree.rhs.pos(), attribExpr(tree.rhs, rhsEnv));
3797         } finally {
3798             rhsEnv.info.scope.leave();
3799         }
3800 
3801         // Find operator.
3802         Symbol operator = tree.operator = operators.resolveBinary(tree, tree.getTag(), left, right);
3803         Type owntype = types.createErrorType(tree.type);
3804         if (operator != operators.noOpSymbol &&
3805                 !left.isErroneous() &&
3806                 !right.isErroneous()) {
3807             owntype = operator.type.getReturnType();
3808             int opc = ((OperatorSymbol)operator).opcode;
3809             // If both arguments are constants, fold them.
3810             if (left.constValue() != null && right.constValue() != null) {
3811                 Type ctype = cfolder.fold2(opc, left, right);
3812                 if (ctype != null) {
3813                     owntype = cfolder.coerce(ctype, owntype);
3814                 }
3815             }
3816 
3817             // Check that argument types of a reference ==, != are
3818             // castable to each other, (JLS 15.21).  Note: unboxing
3819             // comparisons will not have an acmp* opc at this point.
3820             if ((opc == ByteCodes.if_acmpeq || opc == ByteCodes.if_acmpne)) {
3821                 if (!types.isCastable(left, right, new Warner(tree.pos()))) {
3822                     log.error(tree.pos(), Errors.IncomparableTypes(left, right));
3823                 }
3824             }
3825 
3826             chk.checkDivZero(tree.rhs.pos(), operator, right);
3827         }
3828         result = check(tree, owntype, KindSelector.VAL, resultInfo);
3829     }
3830 
3831     public void visitTypeCast(final JCTypeCast tree) {
3832         Type clazztype = attribType(tree.clazz, env);
3833         chk.validate(tree.clazz, env, false);
3834         //a fresh environment is required for 292 inference to work properly ---
3835         //see Infer.instantiatePolymorphicSignatureInstance()
3836         Env<AttrContext> localEnv = env.dup(tree);
3837         //should we propagate the target type?
3838         final ResultInfo castInfo;
3839         JCExpression expr = TreeInfo.skipParens(tree.expr);
3840         boolean isPoly = allowPoly && (expr.hasTag(LAMBDA) || expr.hasTag(REFERENCE));
3841         if (isPoly) {
3842             //expression is a poly - we need to propagate target type info
3843             castInfo = new ResultInfo(KindSelector.VAL, clazztype,
3844                                       new Check.NestedCheckContext(resultInfo.checkContext) {
3845                 @Override
3846                 public boolean compatible(Type found, Type req, Warner warn) {
3847                     return types.isCastable(found, req, warn);
3848                 }
3849             });
3850         } else {
3851             //standalone cast - target-type info is not propagated
3852             castInfo = unknownExprInfo;
3853         }
3854         Type exprtype = attribTree(tree.expr, localEnv, castInfo);
3855         Type owntype = isPoly ? clazztype : chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3856         if (exprtype.constValue() != null)
3857             owntype = cfolder.coerce(exprtype, owntype);
3858         result = check(tree, capture(owntype), KindSelector.VAL, resultInfo);
3859         if (!isPoly)
3860             chk.checkRedundantCast(localEnv, tree);
3861     }
3862 
3863     public void visitTypeTest(JCInstanceOf tree) {
3864         Type exprtype = chk.checkNullOrRefType(
3865                 tree.expr.pos(), attribExpr(tree.expr, env));
3866         Type clazztype;
3867         JCTree typeTree;
3868         if (tree.pattern.getTag() == BINDINGPATTERN) {
3869             attribTree(tree.pattern, env, unknownExprInfo);
3870             clazztype = tree.pattern.type;
3871             JCBindingPattern pattern = (JCBindingPattern) tree.pattern;
3872             typeTree = pattern.vartype;
3873             if (!clazztype.hasTag(TYPEVAR)) {
3874                 clazztype = chk.checkClassOrArrayType(pattern.vartype.pos(), clazztype);
3875             }
3876         } else {
3877             clazztype = attribType(tree.pattern, env);
3878             typeTree = tree.pattern;
3879         }
3880         if (!clazztype.hasTag(TYPEVAR)) {
3881             clazztype = chk.checkClassOrArrayType(typeTree.pos(), clazztype);
3882         }
3883         if (!clazztype.isErroneous() && !types.isReifiable(clazztype)) {
3884             boolean valid = false;
3885             if (allowReifiableTypesInInstanceof) {
3886                 if (preview.isPreview(Feature.REIFIABLE_TYPES_INSTANCEOF)) {
3887                     preview.warnPreview(tree.expr.pos(), Feature.REIFIABLE_TYPES_INSTANCEOF);
3888                 }
3889                 Warner warner = new Warner();
3890                 if (!types.isCastable(exprtype, clazztype, warner)) {
3891                     chk.basicHandler.report(tree.expr.pos(),
3892                                             diags.fragment(Fragments.InconvertibleTypes(exprtype, clazztype)));
3893                 } else if (warner.hasLint(LintCategory.UNCHECKED)) {
3894                     log.error(tree.expr.pos(),
3895                               Errors.InstanceofReifiableNotSafe(exprtype, clazztype));
3896                 } else {
3897                     valid = true;
3898                 }
3899             } else {
3900                 log.error(typeTree.pos(), Errors.IllegalGenericTypeForInstof);
3901             }
3902             if (!valid) {
3903                 clazztype = types.createErrorType(clazztype);
3904             }
3905         }
3906         chk.validate(typeTree, env, false);
3907         chk.checkCastable(tree.expr.pos(), exprtype, clazztype);
3908         result = check(tree, syms.booleanType, KindSelector.VAL, resultInfo);
3909     }
3910 
3911     public void visitBindingPattern(JCBindingPattern tree) {
3912         ResultInfo varInfo = new ResultInfo(KindSelector.TYP, resultInfo.pt, resultInfo.checkContext);
3913         tree.type = attribTree(tree.vartype, env, varInfo);
3914         VarSymbol v = tree.symbol = new BindingSymbol(tree.name, tree.vartype.type, env.info.scope.owner);
3915         if (chk.checkUnique(tree.pos(), v, env.info.scope)) {
3916             chk.checkTransparentVar(tree.pos(), v, env.info.scope);
3917         }
3918         annotate.queueScanTreeAndTypeAnnotate(tree.vartype, env, v, tree.pos());
3919         annotate.flush();
3920         result = tree.type;
3921     }
3922 
3923     public void visitIndexed(JCArrayAccess tree) {
3924         Type owntype = types.createErrorType(tree.type);
3925         Type atype = attribExpr(tree.indexed, env);
3926         attribExpr(tree.index, env, syms.intType);
3927         if (types.isArray(atype))
3928             owntype = types.elemtype(atype);
3929         else if (!atype.hasTag(ERROR))
3930             log.error(tree.pos(), Errors.ArrayReqButFound(atype));
3931         if (!pkind().contains(KindSelector.VAL))
3932             owntype = capture(owntype);
3933         result = check(tree, owntype, KindSelector.VAR, resultInfo);
3934     }
3935 
3936     public void visitIdent(JCIdent tree) {
3937         Symbol sym;
3938 
3939         // Find symbol
3940         if (pt().hasTag(METHOD) || pt().hasTag(FORALL)) {
3941             // If we are looking for a method, the prototype `pt' will be a
3942             // method type with the type of the call's arguments as parameters.
3943             env.info.pendingResolutionPhase = null;
3944             sym = rs.resolveMethod(tree.pos(), env, tree.name, pt().getParameterTypes(), pt().getTypeArguments());
3945         } else if (tree.sym != null && tree.sym.kind != VAR) {
3946             sym = tree.sym;
3947         } else {
3948             sym = rs.resolveIdent(tree.pos(), env, tree.name, pkind());
3949         }
3950         tree.sym = sym;
3951 
3952         // (1) Also find the environment current for the class where
3953         //     sym is defined (`symEnv').
3954         // Only for pre-tiger versions (1.4 and earlier):
3955         // (2) Also determine whether we access symbol out of an anonymous
3956         //     class in a this or super call.  This is illegal for instance
3957         //     members since such classes don't carry a this$n link.
3958         //     (`noOuterThisPath').
3959         Env<AttrContext> symEnv = env;
3960         boolean noOuterThisPath = false;
3961         if (env.enclClass.sym.owner.kind != PCK && // we are in an inner class
3962             sym.kind.matches(KindSelector.VAL_MTH) &&
3963             sym.owner.kind == TYP &&
3964             tree.name != names._this && tree.name != names._super) {
3965 
3966             // Find environment in which identifier is defined.
3967             while (symEnv.outer != null &&
3968                    !sym.isMemberOf(symEnv.enclClass.sym, types)) {
3969                 if ((symEnv.enclClass.sym.flags() & NOOUTERTHIS) != 0)
3970                     noOuterThisPath = false;
3971                 symEnv = symEnv.outer;
3972             }
3973         }
3974 
3975         // If symbol is a variable, ...
3976         if (sym.kind == VAR) {
3977             VarSymbol v = (VarSymbol)sym;
3978 
3979             // ..., evaluate its initializer, if it has one, and check for
3980             // illegal forward reference.
3981             checkInit(tree, env, v, false);
3982 
3983             // If we are expecting a variable (as opposed to a value), check
3984             // that the variable is assignable in the current environment.
3985             if (KindSelector.ASG.subset(pkind()))
3986                 checkAssignable(tree.pos(), v, null, env);
3987         }
3988 
3989         // In a constructor body,
3990         // if symbol is a field or instance method, check that it is
3991         // not accessed before the supertype constructor is called.
3992         if ((symEnv.info.isSelfCall || noOuterThisPath) &&
3993             sym.kind.matches(KindSelector.VAL_MTH) &&
3994             sym.owner.kind == TYP &&
3995             (sym.flags() & STATIC) == 0) {
3996             chk.earlyRefError(tree.pos(), sym.kind == VAR ?
3997                                           sym : thisSym(tree.pos(), env));
3998         }
3999         Env<AttrContext> env1 = env;
4000         if (sym.kind != ERR && sym.kind != TYP &&
4001             sym.owner != null && sym.owner != env1.enclClass.sym) {
4002             // If the found symbol is inaccessible, then it is
4003             // accessed through an enclosing instance.  Locate this
4004             // enclosing instance:
4005             while (env1.outer != null && !rs.isAccessible(env, env1.enclClass.sym.type, sym))
4006                 env1 = env1.outer;
4007         }
4008 
4009         if (env.info.isSerializable) {
4010             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4011         }
4012 
4013         result = checkId(tree, env1.enclClass.sym.type, sym, env, resultInfo);
4014     }
4015 
4016     public void visitSelect(JCFieldAccess tree) {
4017         // Determine the expected kind of the qualifier expression.
4018         KindSelector skind = KindSelector.NIL;
4019         if (tree.name == names._this || tree.name == names._super ||
4020                 tree.name == names._class)
4021         {
4022             skind = KindSelector.TYP;
4023         } else {
4024             if (pkind().contains(KindSelector.PCK))
4025                 skind = KindSelector.of(skind, KindSelector.PCK);
4026             if (pkind().contains(KindSelector.TYP))
4027                 skind = KindSelector.of(skind, KindSelector.TYP, KindSelector.PCK);
4028             if (pkind().contains(KindSelector.VAL_MTH))
4029                 skind = KindSelector.of(skind, KindSelector.VAL, KindSelector.TYP);
4030         }
4031 
4032         // Attribute the qualifier expression, and determine its symbol (if any).
4033         Type site = attribTree(tree.selected, env, new ResultInfo(skind, Type.noType));
4034         if (!pkind().contains(KindSelector.TYP_PCK))
4035             site = capture(site); // Capture field access
4036 
4037         // don't allow T.class T[].class, etc
4038         if (skind == KindSelector.TYP) {
4039             Type elt = site;
4040             while (elt.hasTag(ARRAY))
4041                 elt = ((ArrayType)elt).elemtype;
4042             if (elt.hasTag(TYPEVAR)) {
4043                 log.error(tree.pos(), Errors.TypeVarCantBeDeref);
4044                 result = tree.type = types.createErrorType(tree.name, site.tsym, site);
4045                 tree.sym = tree.type.tsym;
4046                 return ;
4047             }
4048         }
4049 
4050         // If qualifier symbol is a type or `super', assert `selectSuper'
4051         // for the selection. This is relevant for determining whether
4052         // protected symbols are accessible.
4053         Symbol sitesym = TreeInfo.symbol(tree.selected);
4054         boolean selectSuperPrev = env.info.selectSuper;
4055         env.info.selectSuper =
4056             sitesym != null &&
4057             sitesym.name == names._super;
4058 
4059         // Determine the symbol represented by the selection.
4060         env.info.pendingResolutionPhase = null;
4061         Symbol sym = selectSym(tree, sitesym, site, env, resultInfo);
4062         if (sym.kind == VAR && sym.name != names._super && env.info.defaultSuperCallSite != null) {
4063             log.error(tree.selected.pos(), Errors.NotEnclClass(site.tsym));
4064             sym = syms.errSymbol;
4065         }
4066         if (sym.exists() && !isType(sym) && pkind().contains(KindSelector.TYP_PCK)) {
4067             site = capture(site);
4068             sym = selectSym(tree, sitesym, site, env, resultInfo);
4069         }
4070         boolean varArgs = env.info.lastResolveVarargs();
4071         tree.sym = sym;
4072 
4073         if (site.hasTag(TYPEVAR) && !isType(sym) && sym.kind != ERR) {
4074             site = types.skipTypeVars(site, true);
4075         }
4076 
4077         // If that symbol is a variable, ...
4078         if (sym.kind == VAR) {
4079             VarSymbol v = (VarSymbol)sym;
4080 
4081             // ..., evaluate its initializer, if it has one, and check for
4082             // illegal forward reference.
4083             checkInit(tree, env, v, true);
4084 
4085             // If we are expecting a variable (as opposed to a value), check
4086             // that the variable is assignable in the current environment.
4087             if (KindSelector.ASG.subset(pkind()))
4088                 checkAssignable(tree.pos(), v, tree.selected, env);
4089         }
4090 
4091         if (sitesym != null &&
4092                 sitesym.kind == VAR &&
4093                 ((VarSymbol)sitesym).isResourceVariable() &&
4094                 sym.kind == MTH &&
4095                 sym.name.equals(names.close) &&
4096                 sym.overrides(syms.autoCloseableClose, sitesym.type.tsym, types, true) &&
4097                 env.info.lint.isEnabled(LintCategory.TRY)) {
4098             log.warning(LintCategory.TRY, tree, Warnings.TryExplicitCloseCall);
4099         }
4100 
4101         // Disallow selecting a type from an expression
4102         if (isType(sym) && (sitesym == null || !sitesym.kind.matches(KindSelector.TYP_PCK))) {
4103             tree.type = check(tree.selected, pt(),
4104                               sitesym == null ?
4105                                       KindSelector.VAL : sitesym.kind.toSelector(),
4106                               new ResultInfo(KindSelector.TYP_PCK, pt()));
4107         }
4108 
4109         if (isType(sitesym)) {
4110             if (sym.name == names._this) {
4111                 // If `C' is the currently compiled class, check that
4112                 // C.this' does not appear in a call to a super(...)
4113                 if (env.info.isSelfCall &&
4114                     site.tsym == env.enclClass.sym) {
4115                     chk.earlyRefError(tree.pos(), sym);
4116                 }
4117             } else {
4118                 // Check if type-qualified fields or methods are static (JLS)
4119                 if ((sym.flags() & STATIC) == 0 &&
4120                     sym.name != names._super &&
4121                     (sym.kind == VAR || sym.kind == MTH)) {
4122                     rs.accessBase(rs.new StaticError(sym),
4123                               tree.pos(), site, sym.name, true);
4124                 }
4125             }
4126             if (!allowStaticInterfaceMethods && sitesym.isInterface() &&
4127                     sym.isStatic() && sym.kind == MTH) {
4128                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.pos(), Feature.STATIC_INTERFACE_METHODS_INVOKE.error(sourceName));
4129             }
4130         } else if (sym.kind != ERR &&
4131                    (sym.flags() & STATIC) != 0 &&
4132                    sym.name != names._class) {
4133             // If the qualified item is not a type and the selected item is static, report
4134             // a warning. Make allowance for the class of an array type e.g. Object[].class)
4135             chk.warnStatic(tree, Warnings.StaticNotQualifiedByType(sym.kind.kindName(), sym.owner));
4136         }
4137 
4138         // If we are selecting an instance member via a `super', ...
4139         if (env.info.selectSuper && (sym.flags() & STATIC) == 0) {
4140 
4141             // Check that super-qualified symbols are not abstract (JLS)
4142             rs.checkNonAbstract(tree.pos(), sym);
4143 
4144             if (site.isRaw()) {
4145                 // Determine argument types for site.
4146                 Type site1 = types.asSuper(env.enclClass.sym.type, site.tsym);
4147                 if (site1 != null) site = site1;
4148             }
4149         }
4150 
4151         if (env.info.isSerializable) {
4152             chk.checkAccessFromSerializableElement(tree, env.info.isSerializableLambda);
4153         }
4154 
4155         env.info.selectSuper = selectSuperPrev;
4156         result = checkId(tree, site, sym, env, resultInfo);
4157     }
4158     //where
4159         /** Determine symbol referenced by a Select expression,
4160          *
4161          *  @param tree   The select tree.
4162          *  @param site   The type of the selected expression,
4163          *  @param env    The current environment.
4164          *  @param resultInfo The current result.
4165          */
4166         private Symbol selectSym(JCFieldAccess tree,
4167                                  Symbol location,
4168                                  Type site,
4169                                  Env<AttrContext> env,
4170                                  ResultInfo resultInfo) {
4171             DiagnosticPosition pos = tree.pos();
4172             Name name = tree.name;
4173             switch (site.getTag()) {
4174             case PACKAGE:
4175                 return rs.accessBase(
4176                     rs.findIdentInPackage(pos, env, site.tsym, name, resultInfo.pkind),
4177                     pos, location, site, name, true);
4178             case ARRAY:
4179             case CLASS:
4180                 if (resultInfo.pt.hasTag(METHOD) || resultInfo.pt.hasTag(FORALL)) {
4181                     return rs.resolveQualifiedMethod(
4182                         pos, env, location, site, name, resultInfo.pt.getParameterTypes(), resultInfo.pt.getTypeArguments());
4183                 } else if (name == names._this || name == names._super) {
4184                     return rs.resolveSelf(pos, env, site.tsym, name);
4185                 } else if (name == names._class) {
4186                     // In this case, we have already made sure in
4187                     // visitSelect that qualifier expression is a type.
4188                     return syms.getClassField(site, types);
4189                 } else {
4190                     // We are seeing a plain identifier as selector.
4191                     Symbol sym = rs.findIdentInType(pos, env, site, name, resultInfo.pkind);
4192                         sym = rs.accessBase(sym, pos, location, site, name, true);
4193                     return sym;
4194                 }
4195             case WILDCARD:
4196                 throw new AssertionError(tree);
4197             case TYPEVAR:
4198                 // Normally, site.getUpperBound() shouldn't be null.
4199                 // It should only happen during memberEnter/attribBase
4200                 // when determining the super type which *must* beac
4201                 // done before attributing the type variables.  In
4202                 // other words, we are seeing this illegal program:
4203                 // class B<T> extends A<T.foo> {}
4204                 Symbol sym = (site.getUpperBound() != null)
4205                     ? selectSym(tree, location, capture(site.getUpperBound()), env, resultInfo)
4206                     : null;
4207                 if (sym == null) {
4208                     log.error(pos, Errors.TypeVarCantBeDeref);
4209                     return syms.errSymbol;
4210                 } else {
4211                     Symbol sym2 = (sym.flags() & Flags.PRIVATE) != 0 ?
4212                         rs.new AccessError(env, site, sym) :
4213                                 sym;
4214                     rs.accessBase(sym2, pos, location, site, name, true);
4215                     return sym;
4216                 }
4217             case ERROR:
4218                 // preserve identifier names through errors
4219                 return types.createErrorType(name, site.tsym, site).tsym;
4220             default:
4221                 // The qualifier expression is of a primitive type -- only
4222                 // .class is allowed for these.
4223                 if (name == names._class) {
4224                     // In this case, we have already made sure in Select that
4225                     // qualifier expression is a type.
4226                     return syms.getClassField(site, types);
4227                 } else {
4228                     log.error(pos, Errors.CantDeref(site));
4229                     return syms.errSymbol;
4230                 }
4231             }
4232         }
4233 
4234         /** Determine type of identifier or select expression and check that
4235          *  (1) the referenced symbol is not deprecated
4236          *  (2) the symbol's type is safe (@see checkSafe)
4237          *  (3) if symbol is a variable, check that its type and kind are
4238          *      compatible with the prototype and protokind.
4239          *  (4) if symbol is an instance field of a raw type,
4240          *      which is being assigned to, issue an unchecked warning if its
4241          *      type changes under erasure.
4242          *  (5) if symbol is an instance method of a raw type, issue an
4243          *      unchecked warning if its argument types change under erasure.
4244          *  If checks succeed:
4245          *    If symbol is a constant, return its constant type
4246          *    else if symbol is a method, return its result type
4247          *    otherwise return its type.
4248          *  Otherwise return errType.
4249          *
4250          *  @param tree       The syntax tree representing the identifier
4251          *  @param site       If this is a select, the type of the selected
4252          *                    expression, otherwise the type of the current class.
4253          *  @param sym        The symbol representing the identifier.
4254          *  @param env        The current environment.
4255          *  @param resultInfo    The expected result
4256          */
4257         Type checkId(JCTree tree,
4258                      Type site,
4259                      Symbol sym,
4260                      Env<AttrContext> env,
4261                      ResultInfo resultInfo) {
4262             return (resultInfo.pt.hasTag(FORALL) || resultInfo.pt.hasTag(METHOD)) ?
4263                     checkMethodIdInternal(tree, site, sym, env, resultInfo) :
4264                     checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4265         }
4266 
4267         Type checkMethodIdInternal(JCTree tree,
4268                      Type site,
4269                      Symbol sym,
4270                      Env<AttrContext> env,
4271                      ResultInfo resultInfo) {
4272             if (resultInfo.pkind.contains(KindSelector.POLY)) {
4273                 Type pt = resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.SPECULATIVE, sym, env.info.pendingResolutionPhase));
4274                 Type owntype = checkIdInternal(tree, site, sym, pt, env, resultInfo);
4275                 resultInfo.pt.map(deferredAttr.new RecoveryDeferredTypeMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4276                 return owntype;
4277             } else {
4278                 return checkIdInternal(tree, site, sym, resultInfo.pt, env, resultInfo);
4279             }
4280         }
4281 
4282         Type checkIdInternal(JCTree tree,
4283                      Type site,
4284                      Symbol sym,
4285                      Type pt,
4286                      Env<AttrContext> env,
4287                      ResultInfo resultInfo) {
4288             if (pt.isErroneous()) {
4289                 return types.createErrorType(site);
4290             }
4291             Type owntype; // The computed type of this identifier occurrence.
4292             switch (sym.kind) {
4293             case TYP:
4294                 // For types, the computed type equals the symbol's type,
4295                 // except for two situations:
4296                 owntype = sym.type;
4297                 if (owntype.hasTag(CLASS)) {
4298                     chk.checkForBadAuxiliaryClassAccess(tree.pos(), env, (ClassSymbol)sym);
4299                     Type ownOuter = owntype.getEnclosingType();
4300 
4301                     // (a) If the symbol's type is parameterized, erase it
4302                     // because no type parameters were given.
4303                     // We recover generic outer type later in visitTypeApply.
4304                     if (owntype.tsym.type.getTypeArguments().nonEmpty()) {
4305                         owntype = types.erasure(owntype);
4306                     }
4307 
4308                     // (b) If the symbol's type is an inner class, then
4309                     // we have to interpret its outer type as a superclass
4310                     // of the site type. Example:
4311                     //
4312                     // class Tree<A> { class Visitor { ... } }
4313                     // class PointTree extends Tree<Point> { ... }
4314                     // ...PointTree.Visitor...
4315                     //
4316                     // Then the type of the last expression above is
4317                     // Tree<Point>.Visitor.
4318                     else if (ownOuter.hasTag(CLASS) && site != ownOuter) {
4319                         Type normOuter = site;
4320                         if (normOuter.hasTag(CLASS)) {
4321                             normOuter = types.asEnclosingSuper(site, ownOuter.tsym);
4322                         }
4323                         if (normOuter == null) // perhaps from an import
4324                             normOuter = types.erasure(ownOuter);
4325                         if (normOuter != ownOuter)
4326                             owntype = new ClassType(
4327                                 normOuter, List.nil(), owntype.tsym,
4328                                 owntype.getMetadata());
4329                     }
4330                 }
4331                 break;
4332             case VAR:
4333                 VarSymbol v = (VarSymbol)sym;
4334 
4335                 if (env.info.enclVar != null
4336                         && v.type.hasTag(NONE)) {
4337                     //self reference to implicitly typed variable declaration
4338                     log.error(TreeInfo.positionFor(v, env.enclClass), Errors.CantInferLocalVarType(v.name, Fragments.LocalSelfRef));
4339                     return v.type = types.createErrorType(v.type);
4340                 }
4341 
4342                 // Test (4): if symbol is an instance field of a raw type,
4343                 // which is being assigned to, issue an unchecked warning if
4344                 // its type changes under erasure.
4345                 if (KindSelector.ASG.subset(pkind()) &&
4346                     v.owner.kind == TYP &&
4347                     (v.flags() & STATIC) == 0 &&
4348                     (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4349                     Type s = types.asOuterSuper(site, v.owner);
4350                     if (s != null &&
4351                         s.isRaw() &&
4352                         !types.isSameType(v.type, v.erasure(types))) {
4353                         chk.warnUnchecked(tree.pos(), Warnings.UncheckedAssignToVar(v, s));
4354                     }
4355                 }
4356                 // The computed type of a variable is the type of the
4357                 // variable symbol, taken as a member of the site type.
4358                 owntype = (sym.owner.kind == TYP &&
4359                            sym.name != names._this && sym.name != names._super)
4360                     ? types.memberType(site, sym)
4361                     : sym.type;
4362 
4363                 // If the variable is a constant, record constant value in
4364                 // computed type.
4365                 if (v.getConstValue() != null && isStaticReference(tree))
4366                     owntype = owntype.constType(v.getConstValue());
4367 
4368                 if (resultInfo.pkind == KindSelector.VAL) {
4369                     owntype = capture(owntype); // capture "names as expressions"
4370                 }
4371                 break;
4372             case MTH: {
4373                 owntype = checkMethod(site, sym,
4374                         new ResultInfo(resultInfo.pkind, resultInfo.pt.getReturnType(), resultInfo.checkContext, resultInfo.checkMode),
4375                         env, TreeInfo.args(env.tree), resultInfo.pt.getParameterTypes(),
4376                         resultInfo.pt.getTypeArguments());
4377                 break;
4378             }
4379             case PCK: case ERR:
4380                 owntype = sym.type;
4381                 break;
4382             default:
4383                 throw new AssertionError("unexpected kind: " + sym.kind +
4384                                          " in tree " + tree);
4385             }
4386 
4387             // Emit a `deprecation' warning if symbol is deprecated.
4388             // (for constructors (but not for constructor references), the error
4389             // was given when the constructor was resolved)
4390 
4391             if (sym.name != names.init || tree.hasTag(REFERENCE)) {
4392                 chk.checkDeprecated(tree.pos(), env.info.scope.owner, sym);
4393                 chk.checkSunAPI(tree.pos(), sym);
4394                 chk.checkProfile(tree.pos(), sym);
4395                 chk.checkPreview(tree.pos(), sym);
4396             }
4397 
4398             // If symbol is a variable, check that its type and
4399             // kind are compatible with the prototype and protokind.
4400             return check(tree, owntype, sym.kind.toSelector(), resultInfo);
4401         }
4402 
4403         /** Check that variable is initialized and evaluate the variable's
4404          *  initializer, if not yet done. Also check that variable is not
4405          *  referenced before it is defined.
4406          *  @param tree    The tree making up the variable reference.
4407          *  @param env     The current environment.
4408          *  @param v       The variable's symbol.
4409          */
4410         private void checkInit(JCTree tree,
4411                                Env<AttrContext> env,
4412                                VarSymbol v,
4413                                boolean onlyWarning) {
4414             // A forward reference is diagnosed if the declaration position
4415             // of the variable is greater than the current tree position
4416             // and the tree and variable definition occur in the same class
4417             // definition.  Note that writes don't count as references.
4418             // This check applies only to class and instance
4419             // variables.  Local variables follow different scope rules,
4420             // and are subject to definite assignment checking.
4421             Env<AttrContext> initEnv = enclosingInitEnv(env);
4422             if (initEnv != null &&
4423                 (initEnv.info.enclVar == v || v.pos > tree.pos) &&
4424                 v.owner.kind == TYP &&
4425                 v.owner == env.info.scope.owner.enclClass() &&
4426                 ((v.flags() & STATIC) != 0) == Resolve.isStatic(env) &&
4427                 (!env.tree.hasTag(ASSIGN) ||
4428                  TreeInfo.skipParens(((JCAssign) env.tree).lhs) != tree)) {
4429                 if (!onlyWarning || isStaticEnumField(v)) {
4430                     Error errkey = (initEnv.info.enclVar == v) ?
4431                                 Errors.IllegalSelfRef : Errors.IllegalForwardRef;
4432                     log.error(tree.pos(), errkey);
4433                 } else if (useBeforeDeclarationWarning) {
4434                     Warning warnkey = (initEnv.info.enclVar == v) ?
4435                                 Warnings.SelfRef(v) : Warnings.ForwardRef(v);
4436                     log.warning(tree.pos(), warnkey);
4437                 }
4438             }
4439 
4440             v.getConstValue(); // ensure initializer is evaluated
4441 
4442             checkEnumInitializer(tree, env, v);
4443         }
4444 
4445         /**
4446          * Returns the enclosing init environment associated with this env (if any). An init env
4447          * can be either a field declaration env or a static/instance initializer env.
4448          */
4449         Env<AttrContext> enclosingInitEnv(Env<AttrContext> env) {
4450             while (true) {
4451                 switch (env.tree.getTag()) {
4452                     case VARDEF:
4453                         JCVariableDecl vdecl = (JCVariableDecl)env.tree;
4454                         if (vdecl.sym.owner.kind == TYP) {
4455                             //field
4456                             return env;
4457                         }
4458                         break;
4459                     case BLOCK:
4460                         if (env.next.tree.hasTag(CLASSDEF)) {
4461                             //instance/static initializer
4462                             return env;
4463                         }
4464                         break;
4465                     case METHODDEF:
4466                     case CLASSDEF:
4467                     case TOPLEVEL:
4468                         return null;
4469                 }
4470                 Assert.checkNonNull(env.next);
4471                 env = env.next;
4472             }
4473         }
4474 
4475         /**
4476          * Check for illegal references to static members of enum.  In
4477          * an enum type, constructors and initializers may not
4478          * reference its static members unless they are constant.
4479          *
4480          * @param tree    The tree making up the variable reference.
4481          * @param env     The current environment.
4482          * @param v       The variable's symbol.
4483          * @jls 8.9 Enum Types
4484          */
4485         private void checkEnumInitializer(JCTree tree, Env<AttrContext> env, VarSymbol v) {
4486             // JLS:
4487             //
4488             // "It is a compile-time error to reference a static field
4489             // of an enum type that is not a compile-time constant
4490             // (15.28) from constructors, instance initializer blocks,
4491             // or instance variable initializer expressions of that
4492             // type. It is a compile-time error for the constructors,
4493             // instance initializer blocks, or instance variable
4494             // initializer expressions of an enum constant e to refer
4495             // to itself or to an enum constant of the same type that
4496             // is declared to the right of e."
4497             if (isStaticEnumField(v)) {
4498                 ClassSymbol enclClass = env.info.scope.owner.enclClass();
4499 
4500                 if (enclClass == null || enclClass.owner == null)
4501                     return;
4502 
4503                 // See if the enclosing class is the enum (or a
4504                 // subclass thereof) declaring v.  If not, this
4505                 // reference is OK.
4506                 if (v.owner != enclClass && !types.isSubtype(enclClass.type, v.owner.type))
4507                     return;
4508 
4509                 // If the reference isn't from an initializer, then
4510                 // the reference is OK.
4511                 if (!Resolve.isInitializer(env))
4512                     return;
4513 
4514                 log.error(tree.pos(), Errors.IllegalEnumStaticRef);
4515             }
4516         }
4517 
4518         /** Is the given symbol a static, non-constant field of an Enum?
4519          *  Note: enum literals should not be regarded as such
4520          */
4521         private boolean isStaticEnumField(VarSymbol v) {
4522             return Flags.isEnum(v.owner) &&
4523                    Flags.isStatic(v) &&
4524                    !Flags.isConstant(v) &&
4525                    v.name != names._class;
4526         }
4527 
4528     /**
4529      * Check that method arguments conform to its instantiation.
4530      **/
4531     public Type checkMethod(Type site,
4532                             final Symbol sym,
4533                             ResultInfo resultInfo,
4534                             Env<AttrContext> env,
4535                             final List<JCExpression> argtrees,
4536                             List<Type> argtypes,
4537                             List<Type> typeargtypes) {
4538         // Test (5): if symbol is an instance method of a raw type, issue
4539         // an unchecked warning if its argument types change under erasure.
4540         if ((sym.flags() & STATIC) == 0 &&
4541             (site.hasTag(CLASS) || site.hasTag(TYPEVAR))) {
4542             Type s = types.asOuterSuper(site, sym.owner);
4543             if (s != null && s.isRaw() &&
4544                 !types.isSameTypes(sym.type.getParameterTypes(),
4545                                    sym.erasure(types).getParameterTypes())) {
4546                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedCallMbrOfRawType(sym, s));
4547             }
4548         }
4549 
4550         if (env.info.defaultSuperCallSite != null) {
4551             for (Type sup : types.interfaces(env.enclClass.type).prepend(types.supertype((env.enclClass.type)))) {
4552                 if (!sup.tsym.isSubClass(sym.enclClass(), types) ||
4553                         types.isSameType(sup, env.info.defaultSuperCallSite)) continue;
4554                 List<MethodSymbol> icand_sup =
4555                         types.interfaceCandidates(sup, (MethodSymbol)sym);
4556                 if (icand_sup.nonEmpty() &&
4557                         icand_sup.head != sym &&
4558                         icand_sup.head.overrides(sym, icand_sup.head.enclClass(), types, true)) {
4559                     log.error(env.tree.pos(),
4560                               Errors.IllegalDefaultSuperCall(env.info.defaultSuperCallSite, Fragments.OverriddenDefault(sym, sup)));
4561                     break;
4562                 }
4563             }
4564             env.info.defaultSuperCallSite = null;
4565         }
4566 
4567         if (sym.isStatic() && site.isInterface() && env.tree.hasTag(APPLY)) {
4568             JCMethodInvocation app = (JCMethodInvocation)env.tree;
4569             if (app.meth.hasTag(SELECT) &&
4570                     !TreeInfo.isStaticSelector(((JCFieldAccess)app.meth).selected, names)) {
4571                 log.error(env.tree.pos(), Errors.IllegalStaticIntfMethCall(site));
4572             }
4573         }
4574 
4575         // Compute the identifier's instantiated type.
4576         // For methods, we need to compute the instance type by
4577         // Resolve.instantiate from the symbol's type as well as
4578         // any type arguments and value arguments.
4579         Warner noteWarner = new Warner();
4580         try {
4581             Type owntype = rs.checkMethod(
4582                     env,
4583                     site,
4584                     sym,
4585                     resultInfo,
4586                     argtypes,
4587                     typeargtypes,
4588                     noteWarner);
4589 
4590             DeferredAttr.DeferredTypeMap<Void> checkDeferredMap =
4591                 deferredAttr.new DeferredTypeMap<>(DeferredAttr.AttrMode.CHECK, sym, env.info.pendingResolutionPhase);
4592 
4593             argtypes = argtypes.map(checkDeferredMap);
4594 
4595             if (noteWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
4596                 chk.warnUnchecked(env.tree.pos(), Warnings.UncheckedMethInvocationApplied(kindName(sym),
4597                         sym.name,
4598                         rs.methodArguments(sym.type.getParameterTypes()),
4599                         rs.methodArguments(argtypes.map(checkDeferredMap)),
4600                         kindName(sym.location()),
4601                         sym.location()));
4602                 if (resultInfo.pt != Infer.anyPoly ||
4603                         !owntype.hasTag(METHOD) ||
4604                         !owntype.isPartial()) {
4605                     //if this is not a partially inferred method type, erase return type. Otherwise,
4606                     //erasure is carried out in PartiallyInferredMethodType.check().
4607                     owntype = new MethodType(owntype.getParameterTypes(),
4608                             types.erasure(owntype.getReturnType()),
4609                             types.erasure(owntype.getThrownTypes()),
4610                             syms.methodClass);
4611                 }
4612             }
4613 
4614             PolyKind pkind = (sym.type.hasTag(FORALL) &&
4615                  sym.type.getReturnType().containsAny(((ForAll)sym.type).tvars)) ?
4616                  PolyKind.POLY : PolyKind.STANDALONE;
4617             TreeInfo.setPolyKind(env.tree, pkind);
4618 
4619             return (resultInfo.pt == Infer.anyPoly) ?
4620                     owntype :
4621                     chk.checkMethod(owntype, sym, env, argtrees, argtypes, env.info.lastResolveVarargs(),
4622                             resultInfo.checkContext.inferenceContext());
4623         } catch (Infer.InferenceException ex) {
4624             //invalid target type - propagate exception outwards or report error
4625             //depending on the current check context
4626             resultInfo.checkContext.report(env.tree.pos(), ex.getDiagnostic());
4627             return types.createErrorType(site);
4628         } catch (Resolve.InapplicableMethodException ex) {
4629             final JCDiagnostic diag = ex.getDiagnostic();
4630             Resolve.InapplicableSymbolError errSym = rs.new InapplicableSymbolError(null) {
4631                 @Override
4632                 protected Pair<Symbol, JCDiagnostic> errCandidate() {
4633                     return new Pair<>(sym, diag);
4634                 }
4635             };
4636             List<Type> argtypes2 = argtypes.map(
4637                     rs.new ResolveDeferredRecoveryMap(AttrMode.CHECK, sym, env.info.pendingResolutionPhase));
4638             JCDiagnostic errDiag = errSym.getDiagnostic(JCDiagnostic.DiagnosticType.ERROR,
4639                     env.tree, sym, site, sym.name, argtypes2, typeargtypes);
4640             log.report(errDiag);
4641             return types.createErrorType(site);
4642         }
4643     }
4644 
4645     public void visitLiteral(JCLiteral tree) {
4646         result = check(tree, litType(tree.typetag).constType(tree.value),
4647                 KindSelector.VAL, resultInfo);
4648     }
4649     //where
4650     /** Return the type of a literal with given type tag.
4651      */
4652     Type litType(TypeTag tag) {
4653         return (tag == CLASS) ? syms.stringType : syms.typeOfTag[tag.ordinal()];
4654     }
4655 
4656     public void visitTypeIdent(JCPrimitiveTypeTree tree) {
4657         result = check(tree, syms.typeOfTag[tree.typetag.ordinal()], KindSelector.TYP, resultInfo);
4658     }
4659 
4660     public void visitTypeArray(JCArrayTypeTree tree) {
4661         Type etype = attribType(tree.elemtype, env);
4662         Type type = new ArrayType(etype, syms.arrayClass);
4663         result = check(tree, type, KindSelector.TYP, resultInfo);
4664     }
4665 
4666     /** Visitor method for parameterized types.
4667      *  Bound checking is left until later, since types are attributed
4668      *  before supertype structure is completely known
4669      */
4670     public void visitTypeApply(JCTypeApply tree) {
4671         Type owntype = types.createErrorType(tree.type);
4672 
4673         // Attribute functor part of application and make sure it's a class.
4674         Type clazztype = chk.checkClassType(tree.clazz.pos(), attribType(tree.clazz, env));
4675 
4676         // Attribute type parameters
4677         List<Type> actuals = attribTypes(tree.arguments, env);
4678 
4679         if (clazztype.hasTag(CLASS)) {
4680             List<Type> formals = clazztype.tsym.type.getTypeArguments();
4681             if (actuals.isEmpty()) //diamond
4682                 actuals = formals;
4683 
4684             if (actuals.length() == formals.length()) {
4685                 List<Type> a = actuals;
4686                 List<Type> f = formals;
4687                 while (a.nonEmpty()) {
4688                     a.head = a.head.withTypeVar(f.head);
4689                     a = a.tail;
4690                     f = f.tail;
4691                 }
4692                 // Compute the proper generic outer
4693                 Type clazzOuter = clazztype.getEnclosingType();
4694                 if (clazzOuter.hasTag(CLASS)) {
4695                     Type site;
4696                     JCExpression clazz = TreeInfo.typeIn(tree.clazz);
4697                     if (clazz.hasTag(IDENT)) {
4698                         site = env.enclClass.sym.type;
4699                     } else if (clazz.hasTag(SELECT)) {
4700                         site = ((JCFieldAccess) clazz).selected.type;
4701                     } else throw new AssertionError(""+tree);
4702                     if (clazzOuter.hasTag(CLASS) && site != clazzOuter) {
4703                         if (site.hasTag(CLASS))
4704                             site = types.asOuterSuper(site, clazzOuter.tsym);
4705                         if (site == null)
4706                             site = types.erasure(clazzOuter);
4707                         clazzOuter = site;
4708                     }
4709                 }
4710                 owntype = new ClassType(clazzOuter, actuals, clazztype.tsym,
4711                                         clazztype.getMetadata());
4712             } else {
4713                 if (formals.length() != 0) {
4714                     log.error(tree.pos(),
4715                               Errors.WrongNumberTypeArgs(Integer.toString(formals.length())));
4716                 } else {
4717                     log.error(tree.pos(), Errors.TypeDoesntTakeParams(clazztype.tsym));
4718                 }
4719                 owntype = types.createErrorType(tree.type);
4720             }
4721         }
4722         result = check(tree, owntype, KindSelector.TYP, resultInfo);
4723     }
4724 
4725     public void visitTypeUnion(JCTypeUnion tree) {
4726         ListBuffer<Type> multicatchTypes = new ListBuffer<>();
4727         ListBuffer<Type> all_multicatchTypes = null; // lazy, only if needed
4728         for (JCExpression typeTree : tree.alternatives) {
4729             Type ctype = attribType(typeTree, env);
4730             ctype = chk.checkType(typeTree.pos(),
4731                           chk.checkClassType(typeTree.pos(), ctype),
4732                           syms.throwableType);
4733             if (!ctype.isErroneous()) {
4734                 //check that alternatives of a union type are pairwise
4735                 //unrelated w.r.t. subtyping
4736                 if (chk.intersects(ctype,  multicatchTypes.toList())) {
4737                     for (Type t : multicatchTypes) {
4738                         boolean sub = types.isSubtype(ctype, t);
4739                         boolean sup = types.isSubtype(t, ctype);
4740                         if (sub || sup) {
4741                             //assume 'a' <: 'b'
4742                             Type a = sub ? ctype : t;
4743                             Type b = sub ? t : ctype;
4744                             log.error(typeTree.pos(), Errors.MulticatchTypesMustBeDisjoint(a, b));
4745                         }
4746                     }
4747                 }
4748                 multicatchTypes.append(ctype);
4749                 if (all_multicatchTypes != null)
4750                     all_multicatchTypes.append(ctype);
4751             } else {
4752                 if (all_multicatchTypes == null) {
4753                     all_multicatchTypes = new ListBuffer<>();
4754                     all_multicatchTypes.appendList(multicatchTypes);
4755                 }
4756                 all_multicatchTypes.append(ctype);
4757             }
4758         }
4759         Type t = check(tree, types.lub(multicatchTypes.toList()),
4760                 KindSelector.TYP, resultInfo.dup(CheckMode.NO_TREE_UPDATE));
4761         if (t.hasTag(CLASS)) {
4762             List<Type> alternatives =
4763                 ((all_multicatchTypes == null) ? multicatchTypes : all_multicatchTypes).toList();
4764             t = new UnionClassType((ClassType) t, alternatives);
4765         }
4766         tree.type = result = t;
4767     }
4768 
4769     public void visitTypeIntersection(JCTypeIntersection tree) {
4770         attribTypes(tree.bounds, env);
4771         tree.type = result = checkIntersection(tree, tree.bounds);
4772     }
4773 
4774     public void visitTypeParameter(JCTypeParameter tree) {
4775         TypeVar typeVar = (TypeVar) tree.type;
4776 
4777         if (tree.annotations != null && tree.annotations.nonEmpty()) {
4778             annotate.annotateTypeParameterSecondStage(tree, tree.annotations);
4779         }
4780 
4781         if (!typeVar.getUpperBound().isErroneous()) {
4782             //fixup type-parameter bound computed in 'attribTypeVariables'
4783             typeVar.setUpperBound(checkIntersection(tree, tree.bounds));
4784         }
4785     }
4786 
4787     Type checkIntersection(JCTree tree, List<JCExpression> bounds) {
4788         Set<Type> boundSet = new HashSet<>();
4789         if (bounds.nonEmpty()) {
4790             // accept class or interface or typevar as first bound.
4791             bounds.head.type = checkBase(bounds.head.type, bounds.head, env, false, false, false);
4792             boundSet.add(types.erasure(bounds.head.type));
4793             if (bounds.head.type.isErroneous()) {
4794                 return bounds.head.type;
4795             }
4796             else if (bounds.head.type.hasTag(TYPEVAR)) {
4797                 // if first bound was a typevar, do not accept further bounds.
4798                 if (bounds.tail.nonEmpty()) {
4799                     log.error(bounds.tail.head.pos(),
4800                               Errors.TypeVarMayNotBeFollowedByOtherBounds);
4801                     return bounds.head.type;
4802                 }
4803             } else {
4804                 // if first bound was a class or interface, accept only interfaces
4805                 // as further bounds.
4806                 for (JCExpression bound : bounds.tail) {
4807                     bound.type = checkBase(bound.type, bound, env, false, true, false);
4808                     if (bound.type.isErroneous()) {
4809                         bounds = List.of(bound);
4810                     }
4811                     else if (bound.type.hasTag(CLASS)) {
4812                         chk.checkNotRepeated(bound.pos(), types.erasure(bound.type), boundSet);
4813                     }
4814                 }
4815             }
4816         }
4817 
4818         if (bounds.length() == 0) {
4819             return syms.objectType;
4820         } else if (bounds.length() == 1) {
4821             return bounds.head.type;
4822         } else {
4823             Type owntype = types.makeIntersectionType(TreeInfo.types(bounds));
4824             // ... the variable's bound is a class type flagged COMPOUND
4825             // (see comment for TypeVar.bound).
4826             // In this case, generate a class tree that represents the
4827             // bound class, ...
4828             JCExpression extending;
4829             List<JCExpression> implementing;
4830             if (!bounds.head.type.isInterface()) {
4831                 extending = bounds.head;
4832                 implementing = bounds.tail;
4833             } else {
4834                 extending = null;
4835                 implementing = bounds;
4836             }
4837             JCClassDecl cd = make.at(tree).ClassDef(
4838                 make.Modifiers(PUBLIC | ABSTRACT),
4839                 names.empty, List.nil(),
4840                 extending, implementing, List.nil());
4841 
4842             ClassSymbol c = (ClassSymbol)owntype.tsym;
4843             Assert.check((c.flags() & COMPOUND) != 0);
4844             cd.sym = c;
4845             c.sourcefile = env.toplevel.sourcefile;
4846 
4847             // ... and attribute the bound class
4848             c.flags_field |= UNATTRIBUTED;
4849             Env<AttrContext> cenv = enter.classEnv(cd, env);
4850             typeEnvs.put(c, cenv);
4851             attribClass(c);
4852             return owntype;
4853         }
4854     }
4855 
4856     public void visitWildcard(JCWildcard tree) {
4857         //- System.err.println("visitWildcard("+tree+");");//DEBUG
4858         Type type = (tree.kind.kind == BoundKind.UNBOUND)
4859             ? syms.objectType
4860             : attribType(tree.inner, env);
4861         result = check(tree, new WildcardType(chk.checkRefType(tree.pos(), type),
4862                                               tree.kind.kind,
4863                                               syms.boundClass),
4864                 KindSelector.TYP, resultInfo);
4865     }
4866 
4867     public void visitAnnotation(JCAnnotation tree) {
4868         Assert.error("should be handled in annotate");
4869     }
4870 
4871     public void visitAnnotatedType(JCAnnotatedType tree) {
4872         attribAnnotationTypes(tree.annotations, env);
4873         Type underlyingType = attribType(tree.underlyingType, env);
4874         Type annotatedType = underlyingType.annotatedType(Annotations.TO_BE_SET);
4875 
4876         if (!env.info.isNewClass)
4877             annotate.annotateTypeSecondStage(tree, tree.annotations, annotatedType);
4878         result = tree.type = annotatedType;
4879     }
4880 
4881     public void visitErroneous(JCErroneous tree) {
4882         if (tree.errs != null)
4883             for (JCTree err : tree.errs)
4884                 attribTree(err, env, new ResultInfo(KindSelector.ERR, pt()));
4885         result = tree.type = syms.errType;
4886     }
4887 
4888     /** Default visitor method for all other trees.
4889      */
4890     public void visitTree(JCTree tree) {
4891         throw new AssertionError();
4892     }
4893 
4894     /**
4895      * Attribute an env for either a top level tree or class or module declaration.
4896      */
4897     public void attrib(Env<AttrContext> env) {
4898         switch (env.tree.getTag()) {
4899             case MODULEDEF:
4900                 attribModule(env.tree.pos(), ((JCModuleDecl)env.tree).sym);
4901                 break;
4902             case TOPLEVEL:
4903                 attribTopLevel(env);
4904                 break;
4905             case PACKAGEDEF:
4906                 attribPackage(env.tree.pos(), ((JCPackageDecl) env.tree).packge);
4907                 break;
4908             default:
4909                 attribClass(env.tree.pos(), env.enclClass.sym);
4910         }
4911     }
4912 
4913     /**
4914      * Attribute a top level tree. These trees are encountered when the
4915      * package declaration has annotations.
4916      */
4917     public void attribTopLevel(Env<AttrContext> env) {
4918         JCCompilationUnit toplevel = env.toplevel;
4919         try {
4920             annotate.flush();
4921         } catch (CompletionFailure ex) {
4922             chk.completionError(toplevel.pos(), ex);
4923         }
4924     }
4925 
4926     public void attribPackage(DiagnosticPosition pos, PackageSymbol p) {
4927         try {
4928             annotate.flush();
4929             attribPackage(p);
4930         } catch (CompletionFailure ex) {
4931             chk.completionError(pos, ex);
4932         }
4933     }
4934 
4935     void attribPackage(PackageSymbol p) {
4936         Env<AttrContext> env = typeEnvs.get(p);
4937         chk.checkDeprecatedAnnotation(((JCPackageDecl) env.tree).pid.pos(), p);
4938     }
4939 
4940     public void attribModule(DiagnosticPosition pos, ModuleSymbol m) {
4941         try {
4942             annotate.flush();
4943             attribModule(m);
4944         } catch (CompletionFailure ex) {
4945             chk.completionError(pos, ex);
4946         }
4947     }
4948 
4949     void attribModule(ModuleSymbol m) {
4950         // Get environment current at the point of module definition.
4951         Env<AttrContext> env = enter.typeEnvs.get(m);
4952         attribStat(env.tree, env);
4953     }
4954 
4955     /** Main method: attribute class definition associated with given class symbol.
4956      *  reporting completion failures at the given position.
4957      *  @param pos The source position at which completion errors are to be
4958      *             reported.
4959      *  @param c   The class symbol whose definition will be attributed.
4960      */
4961     public void attribClass(DiagnosticPosition pos, ClassSymbol c) {
4962         try {
4963             annotate.flush();
4964             attribClass(c);
4965         } catch (CompletionFailure ex) {
4966             chk.completionError(pos, ex);
4967         }
4968     }
4969 
4970     /** Attribute class definition associated with given class symbol.
4971      *  @param c   The class symbol whose definition will be attributed.
4972      */
4973     void attribClass(ClassSymbol c) throws CompletionFailure {
4974         if (c.type.hasTag(ERROR)) return;
4975 
4976         // Check for cycles in the inheritance graph, which can arise from
4977         // ill-formed class files.
4978         chk.checkNonCyclic(null, c.type);
4979 
4980         Type st = types.supertype(c.type);
4981         if ((c.flags_field & Flags.COMPOUND) == 0) {
4982             // First, attribute superclass.
4983             if (st.hasTag(CLASS))
4984                 attribClass((ClassSymbol)st.tsym);
4985 
4986             // Next attribute owner, if it is a class.
4987             if (c.owner.kind == TYP && c.owner.type.hasTag(CLASS))
4988                 attribClass((ClassSymbol)c.owner);
4989         }
4990 
4991         // The previous operations might have attributed the current class
4992         // if there was a cycle. So we test first whether the class is still
4993         // UNATTRIBUTED.
4994         if ((c.flags_field & UNATTRIBUTED) != 0) {
4995             c.flags_field &= ~UNATTRIBUTED;
4996 
4997             // Get environment current at the point of class definition.
4998             Env<AttrContext> env = typeEnvs.get(c);
4999 
5000             // The info.lint field in the envs stored in typeEnvs is deliberately uninitialized,
5001             // because the annotations were not available at the time the env was created. Therefore,
5002             // we look up the environment chain for the first enclosing environment for which the
5003             // lint value is set. Typically, this is the parent env, but might be further if there
5004             // are any envs created as a result of TypeParameter nodes.
5005             Env<AttrContext> lintEnv = env;
5006             while (lintEnv.info.lint == null)
5007                 lintEnv = lintEnv.next;
5008 
5009             // Having found the enclosing lint value, we can initialize the lint value for this class
5010             env.info.lint = lintEnv.info.lint.augment(c);
5011 
5012             Lint prevLint = chk.setLint(env.info.lint);
5013             JavaFileObject prev = log.useSource(c.sourcefile);
5014             ResultInfo prevReturnRes = env.info.returnResult;
5015 
5016             try {
5017                 deferredLintHandler.flush(env.tree);
5018                 env.info.returnResult = null;
5019                 // java.lang.Enum may not be subclassed by a non-enum
5020                 if (st.tsym == syms.enumSym &&
5021                     ((c.flags_field & (Flags.ENUM|Flags.COMPOUND)) == 0))
5022                     log.error(env.tree.pos(), Errors.EnumNoSubclassing);
5023 
5024                 // Enums may not be extended by source-level classes
5025                 if (st.tsym != null &&
5026                     ((st.tsym.flags_field & Flags.ENUM) != 0) &&
5027                     ((c.flags_field & (Flags.ENUM | Flags.COMPOUND)) == 0)) {
5028                     log.error(env.tree.pos(), Errors.EnumTypesNotExtensible);
5029                 }
5030 
5031                 if (isSerializable(c.type)) {
5032                     env.info.isSerializable = true;
5033                 }
5034 
5035                 attribClassBody(env, c);
5036 
5037                 chk.checkDeprecatedAnnotation(env.tree.pos(), c);
5038                 chk.checkClassOverrideEqualsAndHashIfNeeded(env.tree.pos(), c);
5039                 chk.checkFunctionalInterface((JCClassDecl) env.tree, c);
5040                 chk.checkLeaksNotAccessible(env, (JCClassDecl) env.tree);
5041             } finally {
5042                 env.info.returnResult = prevReturnRes;
5043                 log.useSource(prev);
5044                 chk.setLint(prevLint);
5045             }
5046 
5047         }
5048     }
5049 
5050     public void visitImport(JCImport tree) {
5051         // nothing to do
5052     }
5053 
5054     public void visitModuleDef(JCModuleDecl tree) {
5055         tree.sym.completeUsesProvides();
5056         ModuleSymbol msym = tree.sym;
5057         Lint lint = env.outer.info.lint = env.outer.info.lint.augment(msym);
5058         Lint prevLint = chk.setLint(lint);
5059         chk.checkModuleName(tree);
5060         chk.checkDeprecatedAnnotation(tree, msym);
5061 
5062         try {
5063             deferredLintHandler.flush(tree.pos());
5064         } finally {
5065             chk.setLint(prevLint);
5066         }
5067     }
5068 
5069     /** Finish the attribution of a class. */
5070     private void attribClassBody(Env<AttrContext> env, ClassSymbol c) {
5071         JCClassDecl tree = (JCClassDecl)env.tree;
5072         Assert.check(c == tree.sym);
5073 
5074         // Validate type parameters, supertype and interfaces.
5075         attribStats(tree.typarams, env);
5076         if (!c.isAnonymous()) {
5077             //already checked if anonymous
5078             chk.validate(tree.typarams, env);
5079             chk.validate(tree.extending, env);
5080             chk.validate(tree.implementing, env);
5081         }
5082 
5083         c.markAbstractIfNeeded(types);
5084 
5085         // If this is a non-abstract class, check that it has no abstract
5086         // methods or unimplemented methods of an implemented interface.
5087         if ((c.flags() & (ABSTRACT | INTERFACE)) == 0) {
5088             chk.checkAllDefined(tree.pos(), c);
5089         }
5090 
5091         if ((c.flags() & ANNOTATION) != 0) {
5092             if (tree.implementing.nonEmpty())
5093                 log.error(tree.implementing.head.pos(),
5094                           Errors.CantExtendIntfAnnotation);
5095             if (tree.typarams.nonEmpty()) {
5096                 log.error(tree.typarams.head.pos(),
5097                           Errors.IntfAnnotationCantHaveTypeParams(c));
5098             }
5099 
5100             // If this annotation type has a @Repeatable, validate
5101             Attribute.Compound repeatable = c.getAnnotationTypeMetadata().getRepeatable();
5102             // If this annotation type has a @Repeatable, validate
5103             if (repeatable != null) {
5104                 // get diagnostic position for error reporting
5105                 DiagnosticPosition cbPos = getDiagnosticPosition(tree, repeatable.type);
5106                 Assert.checkNonNull(cbPos);
5107 
5108                 chk.validateRepeatable(c, repeatable, cbPos);
5109             }
5110         } else {
5111             // Check that all extended classes and interfaces
5112             // are compatible (i.e. no two define methods with same arguments
5113             // yet different return types).  (JLS 8.4.6.3)
5114             chk.checkCompatibleSupertypes(tree.pos(), c.type);
5115             if (allowDefaultMethods) {
5116                 chk.checkDefaultMethodClashes(tree.pos(), c.type);
5117             }
5118         }
5119 
5120         // Check that class does not import the same parameterized interface
5121         // with two different argument lists.
5122         chk.checkClassBounds(tree.pos(), c.type);
5123 
5124         tree.type = c.type;
5125 
5126         for (List<JCTypeParameter> l = tree.typarams;
5127              l.nonEmpty(); l = l.tail) {
5128              Assert.checkNonNull(env.info.scope.findFirst(l.head.name));
5129         }
5130 
5131         // Check that a generic class doesn't extend Throwable
5132         if (!c.type.allparams().isEmpty() && types.isSubtype(c.type, syms.throwableType))
5133             log.error(tree.extending.pos(), Errors.GenericThrowable);
5134 
5135         // Check that all methods which implement some
5136         // method conform to the method they implement.
5137         chk.checkImplementations(tree);
5138 
5139         //check that a resource implementing AutoCloseable cannot throw InterruptedException
5140         checkAutoCloseable(tree.pos(), env, c.type);
5141 
5142         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
5143             // Attribute declaration
5144             attribStat(l.head, env);
5145             // Check that declarations in inner classes are not static (JLS 8.1.2)
5146             // Make an exception for static constants.
5147             if (c.owner.kind != PCK &&
5148                 ((c.flags() & STATIC) == 0 || c.name == names.empty) &&
5149                 (TreeInfo.flags(l.head) & (STATIC | INTERFACE)) != 0) {
5150                 Symbol sym = null;
5151                 if (l.head.hasTag(VARDEF)) sym = ((JCVariableDecl) l.head).sym;
5152                 if (sym == null ||
5153                     sym.kind != VAR ||
5154                     ((VarSymbol) sym).getConstValue() == null)
5155                     log.error(l.head.pos(), Errors.IclsCantHaveStaticDecl(c));
5156             }
5157         }
5158 
5159         // Check for cycles among non-initial constructors.
5160         chk.checkCyclicConstructors(tree);
5161 
5162         // Check for cycles among annotation elements.
5163         chk.checkNonCyclicElements(tree);
5164 
5165         // Check for proper use of serialVersionUID
5166         if (env.info.lint.isEnabled(LintCategory.SERIAL)
5167                 && isSerializable(c.type)
5168                 && (c.flags() & (Flags.ENUM | Flags.INTERFACE)) == 0
5169                 && !c.isAnonymous()) {
5170             checkSerialVersionUID(tree, c);
5171         }
5172         if (allowTypeAnnos) {
5173             // Correctly organize the postions of the type annotations
5174             typeAnnotations.organizeTypeAnnotationsBodies(tree);
5175 
5176             // Check type annotations applicability rules
5177             validateTypeAnnotations(tree, false);
5178         }
5179     }
5180         // where
5181         /** get a diagnostic position for an attribute of Type t, or null if attribute missing */
5182         private DiagnosticPosition getDiagnosticPosition(JCClassDecl tree, Type t) {
5183             for(List<JCAnnotation> al = tree.mods.annotations; !al.isEmpty(); al = al.tail) {
5184                 if (types.isSameType(al.head.annotationType.type, t))
5185                     return al.head.pos();
5186             }
5187 
5188             return null;
5189         }
5190 
5191         /** check if a type is a subtype of Serializable, if that is available. */
5192         boolean isSerializable(Type t) {
5193             try {
5194                 syms.serializableType.complete();
5195             }
5196             catch (CompletionFailure e) {
5197                 return false;
5198             }
5199             return types.isSubtype(t, syms.serializableType);
5200         }
5201 
5202         /** Check that an appropriate serialVersionUID member is defined. */
5203         private void checkSerialVersionUID(JCClassDecl tree, ClassSymbol c) {
5204 
5205             // check for presence of serialVersionUID
5206             VarSymbol svuid = null;
5207             for (Symbol sym : c.members().getSymbolsByName(names.serialVersionUID)) {
5208                 if (sym.kind == VAR) {
5209                     svuid = (VarSymbol)sym;
5210                     break;
5211                 }
5212             }
5213 
5214             if (svuid == null) {
5215                 log.warning(LintCategory.SERIAL,
5216                         tree.pos(), Warnings.MissingSVUID(c));
5217                 return;
5218             }
5219 
5220             // check that it is static final
5221             if ((svuid.flags() & (STATIC | FINAL)) !=
5222                 (STATIC | FINAL))
5223                 log.warning(LintCategory.SERIAL,
5224                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ImproperSVUID(c));
5225 
5226             // check that it is long
5227             else if (!svuid.type.hasTag(LONG))
5228                 log.warning(LintCategory.SERIAL,
5229                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.LongSVUID(c));
5230 
5231             // check constant
5232             else if (svuid.getConstValue() == null)
5233                 log.warning(LintCategory.SERIAL,
5234                         TreeInfo.diagnosticPositionFor(svuid, tree), Warnings.ConstantSVUID(c));
5235         }
5236 
5237     private Type capture(Type type) {
5238         return types.capture(type);
5239     }
5240 
5241     private void setSyntheticVariableType(JCVariableDecl tree, Type type) {
5242         if (type.isErroneous()) {
5243             tree.vartype = make.at(Position.NOPOS).Erroneous();
5244         } else {
5245             tree.vartype = make.at(Position.NOPOS).Type(type);
5246         }
5247     }
5248 
5249     public void validateTypeAnnotations(JCTree tree, boolean sigOnly) {
5250         tree.accept(new TypeAnnotationsValidator(sigOnly));
5251     }
5252     //where
5253     private final class TypeAnnotationsValidator extends TreeScanner {
5254 
5255         private final boolean sigOnly;
5256         public TypeAnnotationsValidator(boolean sigOnly) {
5257             this.sigOnly = sigOnly;
5258         }
5259 
5260         public void visitAnnotation(JCAnnotation tree) {
5261             chk.validateTypeAnnotation(tree, false);
5262             super.visitAnnotation(tree);
5263         }
5264         public void visitAnnotatedType(JCAnnotatedType tree) {
5265             if (!tree.underlyingType.type.isErroneous()) {
5266                 super.visitAnnotatedType(tree);
5267             }
5268         }
5269         public void visitTypeParameter(JCTypeParameter tree) {
5270             chk.validateTypeAnnotations(tree.annotations, true);
5271             scan(tree.bounds);
5272             // Don't call super.
5273             // This is needed because above we call validateTypeAnnotation with
5274             // false, which would forbid annotations on type parameters.
5275             // super.visitTypeParameter(tree);
5276         }
5277         public void visitMethodDef(JCMethodDecl tree) {
5278             if (tree.recvparam != null &&
5279                     !tree.recvparam.vartype.type.isErroneous()) {
5280                 checkForDeclarationAnnotations(tree.recvparam.mods.annotations,
5281                         tree.recvparam.vartype.type.tsym);
5282             }
5283             if (tree.restype != null && tree.restype.type != null) {
5284                 validateAnnotatedType(tree.restype, tree.restype.type);
5285             }
5286             if (sigOnly) {
5287                 scan(tree.mods);
5288                 scan(tree.restype);
5289                 scan(tree.typarams);
5290                 scan(tree.recvparam);
5291                 scan(tree.params);
5292                 scan(tree.thrown);
5293             } else {
5294                 scan(tree.defaultValue);
5295                 scan(tree.body);
5296             }
5297         }
5298         public void visitVarDef(final JCVariableDecl tree) {
5299             //System.err.println("validateTypeAnnotations.visitVarDef " + tree);
5300             if (tree.sym != null && tree.sym.type != null && !tree.isImplicitlyTyped())
5301                 validateAnnotatedType(tree.vartype, tree.sym.type);
5302             scan(tree.mods);
5303             scan(tree.vartype);
5304             if (!sigOnly) {
5305                 scan(tree.init);
5306             }
5307         }
5308         public void visitTypeCast(JCTypeCast tree) {
5309             if (tree.clazz != null && tree.clazz.type != null)
5310                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5311             super.visitTypeCast(tree);
5312         }
5313         public void visitTypeTest(JCInstanceOf tree) {
5314             if (tree.pattern != null && !(tree.pattern instanceof JCPattern) && tree.pattern.type != null)
5315                 validateAnnotatedType(tree.pattern, tree.pattern.type);
5316             super.visitTypeTest(tree);
5317         }
5318         public void visitNewClass(JCNewClass tree) {
5319             if (tree.clazz != null && tree.clazz.type != null) {
5320                 if (tree.clazz.hasTag(ANNOTATED_TYPE)) {
5321                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.clazz).annotations,
5322                             tree.clazz.type.tsym);
5323                 }
5324                 if (tree.def != null) {
5325                     checkForDeclarationAnnotations(tree.def.mods.annotations, tree.clazz.type.tsym);
5326                 }
5327 
5328                 validateAnnotatedType(tree.clazz, tree.clazz.type);
5329             }
5330             super.visitNewClass(tree);
5331         }
5332         public void visitNewArray(JCNewArray tree) {
5333             if (tree.elemtype != null && tree.elemtype.type != null) {
5334                 if (tree.elemtype.hasTag(ANNOTATED_TYPE)) {
5335                     checkForDeclarationAnnotations(((JCAnnotatedType) tree.elemtype).annotations,
5336                             tree.elemtype.type.tsym);
5337                 }
5338                 validateAnnotatedType(tree.elemtype, tree.elemtype.type);
5339             }
5340             super.visitNewArray(tree);
5341         }
5342         public void visitClassDef(JCClassDecl tree) {
5343             //System.err.println("validateTypeAnnotations.visitClassDef " + tree);
5344             if (sigOnly) {
5345                 scan(tree.mods);
5346                 scan(tree.typarams);
5347                 scan(tree.extending);
5348                 scan(tree.implementing);
5349             }
5350             for (JCTree member : tree.defs) {
5351                 if (member.hasTag(Tag.CLASSDEF)) {
5352                     continue;
5353                 }
5354                 scan(member);
5355             }
5356         }
5357         public void visitBlock(JCBlock tree) {
5358             if (!sigOnly) {
5359                 scan(tree.stats);
5360             }
5361         }
5362 
5363         /* I would want to model this after
5364          * com.sun.tools.javac.comp.Check.Validator.visitSelectInternal(JCFieldAccess)
5365          * and override visitSelect and visitTypeApply.
5366          * However, we only set the annotated type in the top-level type
5367          * of the symbol.
5368          * Therefore, we need to override each individual location where a type
5369          * can occur.
5370          */
5371         private void validateAnnotatedType(final JCTree errtree, final Type type) {
5372             //System.err.println("Attr.validateAnnotatedType: " + errtree + " type: " + type);
5373 
5374             if (type.isPrimitiveOrVoid()) {
5375                 return;
5376             }
5377 
5378             JCTree enclTr = errtree;
5379             Type enclTy = type;
5380 
5381             boolean repeat = true;
5382             while (repeat) {
5383                 if (enclTr.hasTag(TYPEAPPLY)) {
5384                     List<Type> tyargs = enclTy.getTypeArguments();
5385                     List<JCExpression> trargs = ((JCTypeApply)enclTr).getTypeArguments();
5386                     if (trargs.length() > 0) {
5387                         // Nothing to do for diamonds
5388                         if (tyargs.length() == trargs.length()) {
5389                             for (int i = 0; i < tyargs.length(); ++i) {
5390                                 validateAnnotatedType(trargs.get(i), tyargs.get(i));
5391                             }
5392                         }
5393                         // If the lengths don't match, it's either a diamond
5394                         // or some nested type that redundantly provides
5395                         // type arguments in the tree.
5396                     }
5397 
5398                     // Look at the clazz part of a generic type
5399                     enclTr = ((JCTree.JCTypeApply)enclTr).clazz;
5400                 }
5401 
5402                 if (enclTr.hasTag(SELECT)) {
5403                     enclTr = ((JCTree.JCFieldAccess)enclTr).getExpression();
5404                     if (enclTy != null &&
5405                             !enclTy.hasTag(NONE)) {
5406                         enclTy = enclTy.getEnclosingType();
5407                     }
5408                 } else if (enclTr.hasTag(ANNOTATED_TYPE)) {
5409                     JCAnnotatedType at = (JCTree.JCAnnotatedType) enclTr;
5410                     if (enclTy == null || enclTy.hasTag(NONE)) {
5411                         if (at.getAnnotations().size() == 1) {
5412                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping1(at.getAnnotations().head.attribute));
5413                         } else {
5414                             ListBuffer<Attribute.Compound> comps = new ListBuffer<>();
5415                             for (JCAnnotation an : at.getAnnotations()) {
5416                                 comps.add(an.attribute);
5417                             }
5418                             log.error(at.underlyingType.pos(), Errors.CantTypeAnnotateScoping(comps.toList()));
5419                         }
5420                         repeat = false;
5421                     }
5422                     enclTr = at.underlyingType;
5423                     // enclTy doesn't need to be changed
5424                 } else if (enclTr.hasTag(IDENT)) {
5425                     repeat = false;
5426                 } else if (enclTr.hasTag(JCTree.Tag.WILDCARD)) {
5427                     JCWildcard wc = (JCWildcard) enclTr;
5428                     if (wc.getKind() == JCTree.Kind.EXTENDS_WILDCARD ||
5429                             wc.getKind() == JCTree.Kind.SUPER_WILDCARD) {
5430                         validateAnnotatedType(wc.getBound(), wc.getBound().type);
5431                     } else {
5432                         // Nothing to do for UNBOUND
5433                     }
5434                     repeat = false;
5435                 } else if (enclTr.hasTag(TYPEARRAY)) {
5436                     JCArrayTypeTree art = (JCArrayTypeTree) enclTr;
5437                     validateAnnotatedType(art.getType(), art.elemtype.type);
5438                     repeat = false;
5439                 } else if (enclTr.hasTag(TYPEUNION)) {
5440                     JCTypeUnion ut = (JCTypeUnion) enclTr;
5441                     for (JCTree t : ut.getTypeAlternatives()) {
5442                         validateAnnotatedType(t, t.type);
5443                     }
5444                     repeat = false;
5445                 } else if (enclTr.hasTag(TYPEINTERSECTION)) {
5446                     JCTypeIntersection it = (JCTypeIntersection) enclTr;
5447                     for (JCTree t : it.getBounds()) {
5448                         validateAnnotatedType(t, t.type);
5449                     }
5450                     repeat = false;
5451                 } else if (enclTr.getKind() == JCTree.Kind.PRIMITIVE_TYPE ||
5452                            enclTr.getKind() == JCTree.Kind.ERRONEOUS) {
5453                     repeat = false;
5454                 } else {
5455                     Assert.error("Unexpected tree: " + enclTr + " with kind: " + enclTr.getKind() +
5456                             " within: "+ errtree + " with kind: " + errtree.getKind());
5457                 }
5458             }
5459         }
5460 
5461         private void checkForDeclarationAnnotations(List<? extends JCAnnotation> annotations,
5462                 Symbol sym) {
5463             // Ensure that no declaration annotations are present.
5464             // Note that a tree type might be an AnnotatedType with
5465             // empty annotations, if only declaration annotations were given.
5466             // This method will raise an error for such a type.
5467             for (JCAnnotation ai : annotations) {
5468                 if (!ai.type.isErroneous() &&
5469                         typeAnnotations.annotationTargetType(ai.attribute, sym) == TypeAnnotations.AnnotationType.DECLARATION) {
5470                     log.error(ai.pos(), Errors.AnnotationTypeNotApplicableToType(ai.type));
5471                 }
5472             }
5473         }
5474     }
5475 
5476     // <editor-fold desc="post-attribution visitor">
5477 
5478     /**
5479      * Handle missing types/symbols in an AST. This routine is useful when
5480      * the compiler has encountered some errors (which might have ended up
5481      * terminating attribution abruptly); if the compiler is used in fail-over
5482      * mode (e.g. by an IDE) and the AST contains semantic errors, this routine
5483      * prevents NPE to be progagated during subsequent compilation steps.
5484      */
5485     public void postAttr(JCTree tree) {
5486         new PostAttrAnalyzer().scan(tree);
5487     }
5488 
5489     class PostAttrAnalyzer extends TreeScanner {
5490 
5491         private void initTypeIfNeeded(JCTree that) {
5492             if (that.type == null) {
5493                 if (that.hasTag(METHODDEF)) {
5494                     that.type = dummyMethodType((JCMethodDecl)that);
5495                 } else {
5496                     that.type = syms.unknownType;
5497                 }
5498             }
5499         }
5500 
5501         /* Construct a dummy method type. If we have a method declaration,
5502          * and the declared return type is void, then use that return type
5503          * instead of UNKNOWN to avoid spurious error messages in lambda
5504          * bodies (see:JDK-8041704).
5505          */
5506         private Type dummyMethodType(JCMethodDecl md) {
5507             Type restype = syms.unknownType;
5508             if (md != null && md.restype != null && md.restype.hasTag(TYPEIDENT)) {
5509                 JCPrimitiveTypeTree prim = (JCPrimitiveTypeTree)md.restype;
5510                 if (prim.typetag == VOID)
5511                     restype = syms.voidType;
5512             }
5513             return new MethodType(List.nil(), restype,
5514                                   List.nil(), syms.methodClass);
5515         }
5516         private Type dummyMethodType() {
5517             return dummyMethodType(null);
5518         }
5519 
5520         @Override
5521         public void scan(JCTree tree) {
5522             if (tree == null) return;
5523             if (tree instanceof JCExpression) {
5524                 initTypeIfNeeded(tree);
5525             }
5526             super.scan(tree);
5527         }
5528 
5529         @Override
5530         public void visitIdent(JCIdent that) {
5531             if (that.sym == null) {
5532                 that.sym = syms.unknownSymbol;
5533             }
5534         }
5535 
5536         @Override
5537         public void visitSelect(JCFieldAccess that) {
5538             if (that.sym == null) {
5539                 that.sym = syms.unknownSymbol;
5540             }
5541             super.visitSelect(that);
5542         }
5543 
5544         @Override
5545         public void visitClassDef(JCClassDecl that) {
5546             initTypeIfNeeded(that);
5547             if (that.sym == null) {
5548                 that.sym = new ClassSymbol(0, that.name, that.type, syms.noSymbol);
5549             }
5550             super.visitClassDef(that);
5551         }
5552 
5553         @Override
5554         public void visitMethodDef(JCMethodDecl that) {
5555             initTypeIfNeeded(that);
5556             if (that.sym == null) {
5557                 that.sym = new MethodSymbol(0, that.name, that.type, syms.noSymbol);
5558             }
5559             super.visitMethodDef(that);
5560         }
5561 
5562         @Override
5563         public void visitVarDef(JCVariableDecl that) {
5564             initTypeIfNeeded(that);
5565             if (that.sym == null) {
5566                 that.sym = new VarSymbol(0, that.name, that.type, syms.noSymbol);
5567                 that.sym.adr = 0;
5568             }
5569             if (that.vartype == null) {
5570                 that.vartype = make.at(Position.NOPOS).Erroneous();
5571             }
5572             super.visitVarDef(that);
5573         }
5574 
5575         @Override
5576         public void visitBindingPattern(JCBindingPattern that) {
5577             if (that.symbol == null) {
5578                 that.symbol = new BindingSymbol(that.name, that.type, syms.noSymbol);
5579                 that.symbol.adr = 0;
5580             }
5581             super.visitBindingPattern(that);
5582         }
5583 
5584         @Override
5585         public void visitNewClass(JCNewClass that) {
5586             if (that.constructor == null) {
5587                 that.constructor = new MethodSymbol(0, names.init,
5588                         dummyMethodType(), syms.noSymbol);
5589             }
5590             if (that.constructorType == null) {
5591                 that.constructorType = syms.unknownType;
5592             }
5593             super.visitNewClass(that);
5594         }
5595 
5596         @Override
5597         public void visitAssignop(JCAssignOp that) {
5598             if (that.operator == null) {
5599                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5600                         -1, syms.noSymbol);
5601             }
5602             super.visitAssignop(that);
5603         }
5604 
5605         @Override
5606         public void visitBinary(JCBinary that) {
5607             if (that.operator == null) {
5608                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5609                         -1, syms.noSymbol);
5610             }
5611             super.visitBinary(that);
5612         }
5613 
5614         @Override
5615         public void visitUnary(JCUnary that) {
5616             if (that.operator == null) {
5617                 that.operator = new OperatorSymbol(names.empty, dummyMethodType(),
5618                         -1, syms.noSymbol);
5619             }
5620             super.visitUnary(that);
5621         }
5622 
5623         @Override
5624         public void visitReference(JCMemberReference that) {
5625             super.visitReference(that);
5626             if (that.sym == null) {
5627                 that.sym = new MethodSymbol(0, names.empty, dummyMethodType(),
5628                         syms.noSymbol);
5629             }
5630         }
5631     }
5632     // </editor-fold>
5633 
5634     public void setPackageSymbols(JCExpression pid, Symbol pkg) {
5635         new TreeScanner() {
5636             Symbol packge = pkg;
5637             @Override
5638             public void visitIdent(JCIdent that) {
5639                 that.sym = packge;
5640             }
5641 
5642             @Override
5643             public void visitSelect(JCFieldAccess that) {
5644                 that.sym = packge;
5645                 packge = packge.owner;
5646                 super.visitSelect(that);
5647             }
5648         }.scan(pid);
5649     }
5650 
5651 }