1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package com.sun.tools.javac.comp;
  27 
  28 import java.util.*;
  29 import java.util.function.Supplier;
  30 
  31 import javax.lang.model.element.ElementKind;
  32 import javax.tools.JavaFileManager;
  33 
  34 import com.sun.tools.javac.code.*;
  35 import com.sun.tools.javac.code.Attribute.Compound;
  36 import com.sun.tools.javac.code.Directive.ExportsDirective;
  37 import com.sun.tools.javac.code.Directive.RequiresDirective;
  38 import com.sun.tools.javac.code.Source.Feature;
  39 import com.sun.tools.javac.comp.Annotate.AnnotationTypeMetadata;
  40 import com.sun.tools.javac.jvm.*;
  41 import com.sun.tools.javac.resources.CompilerProperties.Errors;
  42 import com.sun.tools.javac.resources.CompilerProperties.Fragments;
  43 import com.sun.tools.javac.resources.CompilerProperties.Warnings;
  44 import com.sun.tools.javac.tree.*;
  45 import com.sun.tools.javac.util.*;
  46 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticFlag;
  47 import com.sun.tools.javac.util.JCDiagnostic.DiagnosticPosition;
  48 import com.sun.tools.javac.util.JCDiagnostic.Error;
  49 import com.sun.tools.javac.util.JCDiagnostic.Fragment;
  50 import com.sun.tools.javac.util.JCDiagnostic.Warning;
  51 import com.sun.tools.javac.util.List;
  52 
  53 import com.sun.tools.javac.code.Lint;
  54 import com.sun.tools.javac.code.Lint.LintCategory;
  55 import com.sun.tools.javac.code.Scope.WriteableScope;
  56 import com.sun.tools.javac.code.Type.*;
  57 import com.sun.tools.javac.code.Symbol.*;
  58 import com.sun.tools.javac.comp.DeferredAttr.DeferredAttrContext;
  59 import com.sun.tools.javac.tree.JCTree.*;
  60 
  61 import static com.sun.tools.javac.code.Flags.*;
  62 import static com.sun.tools.javac.code.Flags.ANNOTATION;
  63 import static com.sun.tools.javac.code.Flags.SYNCHRONIZED;
  64 import static com.sun.tools.javac.code.Kinds.*;
  65 import static com.sun.tools.javac.code.Kinds.Kind.*;
  66 import static com.sun.tools.javac.code.Scope.LookupKind.NON_RECURSIVE;
  67 import static com.sun.tools.javac.code.TypeTag.*;
  68 import static com.sun.tools.javac.code.TypeTag.WILDCARD;
  69 
  70 import static com.sun.tools.javac.tree.JCTree.Tag.*;
  71 
  72 /** Type checking helper class for the attribution phase.
  73  *
  74  *  <p><b>This is NOT part of any supported API.
  75  *  If you write code that depends on this, you do so at your own risk.
  76  *  This code and its internal interfaces are subject to change or
  77  *  deletion without notice.</b>
  78  */
  79 public class Check {
  80     protected static final Context.Key<Check> checkKey = new Context.Key<>();
  81 
  82     private final Names names;
  83     private final Log log;
  84     private final Resolve rs;
  85     private final Symtab syms;
  86     private final Enter enter;
  87     private final DeferredAttr deferredAttr;
  88     private final Infer infer;
  89     private final Types types;
  90     private final TypeAnnotations typeAnnotations;
  91     private final JCDiagnostic.Factory diags;
  92     private final JavaFileManager fileManager;
  93     private final Source source;
  94     private final Target target;
  95     private final Profile profile;
  96     private final Preview preview;
  97     private final boolean warnOnAnyAccessToMembers;
  98 
  99     // The set of lint options currently in effect. It is initialized
 100     // from the context, and then is set/reset as needed by Attr as it
 101     // visits all the various parts of the trees during attribution.
 102     private Lint lint;
 103 
 104     // The method being analyzed in Attr - it is set/reset as needed by
 105     // Attr as it visits new method declarations.
 106     private MethodSymbol method;
 107 
 108     public static Check instance(Context context) {
 109         Check instance = context.get(checkKey);
 110         if (instance == null)
 111             instance = new Check(context);
 112         return instance;
 113     }
 114 
 115     protected Check(Context context) {
 116         context.put(checkKey, this);
 117 
 118         names = Names.instance(context);
 119         dfltTargetMeta = new Name[] { names.PACKAGE, names.TYPE,
 120             names.FIELD, names.RECORD_COMPONENT, names.METHOD, names.CONSTRUCTOR,
 121             names.ANNOTATION_TYPE, names.LOCAL_VARIABLE, names.PARAMETER};
 122         log = Log.instance(context);
 123         rs = Resolve.instance(context);
 124         syms = Symtab.instance(context);
 125         enter = Enter.instance(context);
 126         deferredAttr = DeferredAttr.instance(context);
 127         infer = Infer.instance(context);
 128         types = Types.instance(context);
 129         typeAnnotations = TypeAnnotations.instance(context);
 130         diags = JCDiagnostic.Factory.instance(context);
 131         Options options = Options.instance(context);
 132         lint = Lint.instance(context);
 133         fileManager = context.get(JavaFileManager.class);
 134 
 135         source = Source.instance(context);
 136         target = Target.instance(context);
 137         warnOnAnyAccessToMembers = options.isSet("warnOnAccessToMembers");
 138 
 139         Target target = Target.instance(context);
 140         syntheticNameChar = target.syntheticNameChar();
 141 
 142         profile = Profile.instance(context);
 143         preview = Preview.instance(context);
 144 
 145         boolean verboseDeprecated = lint.isEnabled(LintCategory.DEPRECATION);
 146         boolean verboseRemoval = lint.isEnabled(LintCategory.REMOVAL);
 147         boolean verboseUnchecked = lint.isEnabled(LintCategory.UNCHECKED);
 148         boolean enforceMandatoryWarnings = true;
 149 
 150         deprecationHandler = new MandatoryWarningHandler(log, verboseDeprecated,
 151                 enforceMandatoryWarnings, "deprecated", LintCategory.DEPRECATION);
 152         removalHandler = new MandatoryWarningHandler(log, verboseRemoval,
 153                 enforceMandatoryWarnings, "removal", LintCategory.REMOVAL);
 154         uncheckedHandler = new MandatoryWarningHandler(log, verboseUnchecked,
 155                 enforceMandatoryWarnings, "unchecked", LintCategory.UNCHECKED);
 156         sunApiHandler = new MandatoryWarningHandler(log, false,
 157                 enforceMandatoryWarnings, "sunapi", null);
 158 
 159         deferredLintHandler = DeferredLintHandler.instance(context);
 160     }
 161 
 162     /** Character for synthetic names
 163      */
 164     char syntheticNameChar;
 165 
 166     /** A table mapping flat names of all compiled classes for each module in this run
 167      *  to their symbols; maintained from outside.
 168      */
 169     private Map<Pair<ModuleSymbol, Name>,ClassSymbol> compiled = new HashMap<>();
 170 
 171     /** A handler for messages about deprecated usage.
 172      */
 173     private MandatoryWarningHandler deprecationHandler;
 174 
 175     /** A handler for messages about deprecated-for-removal usage.
 176      */
 177     private MandatoryWarningHandler removalHandler;
 178 
 179     /** A handler for messages about unchecked or unsafe usage.
 180      */
 181     private MandatoryWarningHandler uncheckedHandler;
 182 
 183     /** A handler for messages about using proprietary API.
 184      */
 185     private MandatoryWarningHandler sunApiHandler;
 186 
 187     /** A handler for deferred lint warnings.
 188      */
 189     private DeferredLintHandler deferredLintHandler;
 190 
 191 /* *************************************************************************
 192  * Errors and Warnings
 193  **************************************************************************/
 194 
 195     Lint setLint(Lint newLint) {
 196         Lint prev = lint;
 197         lint = newLint;
 198         return prev;
 199     }
 200 
 201     MethodSymbol setMethod(MethodSymbol newMethod) {
 202         MethodSymbol prev = method;
 203         method = newMethod;
 204         return prev;
 205     }
 206 
 207     /** Warn about deprecated symbol.
 208      *  @param pos        Position to be used for error reporting.
 209      *  @param sym        The deprecated symbol.
 210      */
 211     void warnDeprecated(DiagnosticPosition pos, Symbol sym) {
 212         if (sym.isDeprecatedForRemoval()) {
 213             if (!lint.isSuppressed(LintCategory.REMOVAL)) {
 214                 if (sym.kind == MDL) {
 215                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemovalModule(sym));
 216                 } else {
 217                     removalHandler.report(pos, Warnings.HasBeenDeprecatedForRemoval(sym, sym.location()));
 218                 }
 219             }
 220         } else if (!lint.isSuppressed(LintCategory.DEPRECATION)) {
 221             if (sym.kind == MDL) {
 222                 deprecationHandler.report(pos, Warnings.HasBeenDeprecatedModule(sym));
 223             } else {
 224                 deprecationHandler.report(pos, Warnings.HasBeenDeprecated(sym, sym.location()));
 225             }
 226         }
 227     }
 228 
 229     /** Warn about deprecated symbol.
 230      *  @param pos        Position to be used for error reporting.
 231      *  @param sym        The deprecated symbol.
 232      */
 233     void warnPreview(DiagnosticPosition pos, Symbol sym) {
 234         warnPreview(pos, Warnings.IsPreview(sym));
 235     }
 236 
 237     /** Log a preview warning.
 238      *  @param pos        Position to be used for error reporting.
 239      *  @param msg        A Warning describing the problem.
 240      */
 241     public void warnPreview(DiagnosticPosition pos, Warning warnKey) {
 242         if (!lint.isSuppressed(LintCategory.PREVIEW))
 243             preview.reportPreviewWarning(pos, warnKey);
 244     }
 245 
 246     /** Warn about unchecked operation.
 247      *  @param pos        Position to be used for error reporting.
 248      *  @param msg        A string describing the problem.
 249      */
 250     public void warnUnchecked(DiagnosticPosition pos, Warning warnKey) {
 251         if (!lint.isSuppressed(LintCategory.UNCHECKED))
 252             uncheckedHandler.report(pos, warnKey);
 253     }
 254 
 255     /** Warn about unsafe vararg method decl.
 256      *  @param pos        Position to be used for error reporting.
 257      */
 258     void warnUnsafeVararg(DiagnosticPosition pos, Warning warnKey) {
 259         if (lint.isEnabled(LintCategory.VARARGS))
 260             log.warning(LintCategory.VARARGS, pos, warnKey);
 261     }
 262 
 263     public void warnStatic(DiagnosticPosition pos, Warning warnKey) {
 264         if (lint.isEnabled(LintCategory.STATIC))
 265             log.warning(LintCategory.STATIC, pos, warnKey);
 266     }
 267 
 268     /** Warn about division by integer constant zero.
 269      *  @param pos        Position to be used for error reporting.
 270      */
 271     void warnDivZero(DiagnosticPosition pos) {
 272         if (lint.isEnabled(LintCategory.DIVZERO))
 273             log.warning(LintCategory.DIVZERO, pos, Warnings.DivZero);
 274     }
 275 
 276     /**
 277      * Report any deferred diagnostics.
 278      */
 279     public void reportDeferredDiagnostics() {
 280         deprecationHandler.reportDeferredDiagnostic();
 281         removalHandler.reportDeferredDiagnostic();
 282         uncheckedHandler.reportDeferredDiagnostic();
 283         sunApiHandler.reportDeferredDiagnostic();
 284     }
 285 
 286 
 287     /** Report a failure to complete a class.
 288      *  @param pos        Position to be used for error reporting.
 289      *  @param ex         The failure to report.
 290      */
 291     public Type completionError(DiagnosticPosition pos, CompletionFailure ex) {
 292         log.error(JCDiagnostic.DiagnosticFlag.NON_DEFERRABLE, pos, Errors.CantAccess(ex.sym, ex.getDetailValue()));
 293         return syms.errType;
 294     }
 295 
 296     /** Report an error that wrong type tag was found.
 297      *  @param pos        Position to be used for error reporting.
 298      *  @param required   An internationalized string describing the type tag
 299      *                    required.
 300      *  @param found      The type that was found.
 301      */
 302     Type typeTagError(DiagnosticPosition pos, JCDiagnostic required, Object found) {
 303         // this error used to be raised by the parser,
 304         // but has been delayed to this point:
 305         if (found instanceof Type && ((Type)found).hasTag(VOID)) {
 306             log.error(pos, Errors.IllegalStartOfType);
 307             return syms.errType;
 308         }
 309         log.error(pos, Errors.TypeFoundReq(found, required));
 310         return types.createErrorType(found instanceof Type ? (Type)found : syms.errType);
 311     }
 312 
 313     /** Report an error that symbol cannot be referenced before super
 314      *  has been called.
 315      *  @param pos        Position to be used for error reporting.
 316      *  @param sym        The referenced symbol.
 317      */
 318     void earlyRefError(DiagnosticPosition pos, Symbol sym) {
 319         log.error(pos, Errors.CantRefBeforeCtorCalled(sym));
 320     }
 321 
 322     /** Report duplicate declaration error.
 323      */
 324     void duplicateError(DiagnosticPosition pos, Symbol sym) {
 325         if (!sym.type.isErroneous()) {
 326             Symbol location = sym.location();
 327             if (location.kind == MTH &&
 328                     ((MethodSymbol)location).isStaticOrInstanceInit()) {
 329                 log.error(pos,
 330                           Errors.AlreadyDefinedInClinit(kindName(sym),
 331                                                         sym,
 332                                                         kindName(sym.location()),
 333                                                         kindName(sym.location().enclClass()),
 334                                                         sym.location().enclClass()));
 335             } else {
 336                 /* dont error if this is a duplicated parameter of a generated canonical constructor
 337                  * as we should have issued an error for the duplicated fields
 338                  */
 339                 if (location.kind != MTH ||
 340                         ((sym.owner.flags_field & GENERATEDCONSTR) == 0) ||
 341                         ((sym.owner.flags_field & RECORD) == 0)) {
 342                     log.error(pos,
 343                             Errors.AlreadyDefined(kindName(sym),
 344                                     sym,
 345                                     kindName(sym.location()),
 346                                     sym.location()));
 347                 }
 348             }
 349         }
 350     }
 351 
 352     /** Report array/varargs duplicate declaration
 353      */
 354     void varargsDuplicateError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
 355         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
 356             log.error(pos, Errors.ArrayAndVarargs(sym1, sym2, sym2.location()));
 357         }
 358     }
 359 
 360 /* ************************************************************************
 361  * duplicate declaration checking
 362  *************************************************************************/
 363 
 364     /** Check that variable does not hide variable with same name in
 365      *  immediately enclosing local scope.
 366      *  @param pos           Position for error reporting.
 367      *  @param v             The symbol.
 368      *  @param s             The scope.
 369      */
 370     void checkTransparentVar(DiagnosticPosition pos, VarSymbol v, Scope s) {
 371         for (Symbol sym : s.getSymbolsByName(v.name)) {
 372             if (sym.owner != v.owner) break;
 373             if (sym.kind == VAR &&
 374                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 375                 v.name != names.error) {
 376                 duplicateError(pos, sym);
 377                 return;
 378             }
 379         }
 380     }
 381 
 382     /** Check that a class or interface does not hide a class or
 383      *  interface with same name in immediately enclosing local scope.
 384      *  @param pos           Position for error reporting.
 385      *  @param c             The symbol.
 386      *  @param s             The scope.
 387      */
 388     void checkTransparentClass(DiagnosticPosition pos, ClassSymbol c, Scope s) {
 389         for (Symbol sym : s.getSymbolsByName(c.name)) {
 390             if (sym.owner != c.owner) break;
 391             if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR) &&
 392                 sym.owner.kind.matches(KindSelector.VAL_MTH) &&
 393                 c.name != names.error) {
 394                 duplicateError(pos, sym);
 395                 return;
 396             }
 397         }
 398     }
 399 
 400     /** Check that class does not have the same name as one of
 401      *  its enclosing classes, or as a class defined in its enclosing scope.
 402      *  return true if class is unique in its enclosing scope.
 403      *  @param pos           Position for error reporting.
 404      *  @param name          The class name.
 405      *  @param s             The enclosing scope.
 406      */
 407     boolean checkUniqueClassName(DiagnosticPosition pos, Name name, Scope s) {
 408         for (Symbol sym : s.getSymbolsByName(name, NON_RECURSIVE)) {
 409             if (sym.kind == TYP && sym.name != names.error) {
 410                 duplicateError(pos, sym);
 411                 return false;
 412             }
 413         }
 414         for (Symbol sym = s.owner; sym != null; sym = sym.owner) {
 415             if (sym.kind == TYP && sym.name == name && sym.name != names.error) {
 416                 duplicateError(pos, sym);
 417                 return true;
 418             }
 419         }
 420         return true;
 421     }
 422 
 423 /* *************************************************************************
 424  * Class name generation
 425  **************************************************************************/
 426 
 427 
 428     private Map<Pair<Name, Name>, Integer> localClassNameIndexes = new HashMap<>();
 429 
 430     /** Return name of local class.
 431      *  This is of the form   {@code <enclClass> $ n <classname> }
 432      *  where
 433      *    enclClass is the flat name of the enclosing class,
 434      *    classname is the simple name of the local class
 435      */
 436     public Name localClassName(ClassSymbol c) {
 437         Name enclFlatname = c.owner.enclClass().flatname;
 438         String enclFlatnameStr = enclFlatname.toString();
 439         Pair<Name, Name> key = new Pair<>(enclFlatname, c.name);
 440         Integer index = localClassNameIndexes.get(key);
 441         for (int i = (index == null) ? 1 : index; ; i++) {
 442             Name flatname = names.fromString(enclFlatnameStr
 443                     + syntheticNameChar + i + c.name);
 444             if (getCompiled(c.packge().modle, flatname) == null) {
 445                 localClassNameIndexes.put(key, i + 1);
 446                 return flatname;
 447             }
 448         }
 449     }
 450 
 451     public void clearLocalClassNameIndexes(ClassSymbol c) {
 452         if (c.owner != null && c.owner.kind != NIL) {
 453             localClassNameIndexes.remove(new Pair<>(
 454                     c.owner.enclClass().flatname, c.name));
 455         }
 456     }
 457 
 458     public void newRound() {
 459         compiled.clear();
 460         localClassNameIndexes.clear();
 461     }
 462 
 463     public void clear() {
 464         deprecationHandler.clear();
 465         removalHandler.clear();
 466         uncheckedHandler.clear();
 467         sunApiHandler.clear();
 468     }
 469 
 470     public void putCompiled(ClassSymbol csym) {
 471         compiled.put(Pair.of(csym.packge().modle, csym.flatname), csym);
 472     }
 473 
 474     public ClassSymbol getCompiled(ClassSymbol csym) {
 475         return compiled.get(Pair.of(csym.packge().modle, csym.flatname));
 476     }
 477 
 478     public ClassSymbol getCompiled(ModuleSymbol msym, Name flatname) {
 479         return compiled.get(Pair.of(msym, flatname));
 480     }
 481 
 482     public void removeCompiled(ClassSymbol csym) {
 483         compiled.remove(Pair.of(csym.packge().modle, csym.flatname));
 484     }
 485 
 486 /* *************************************************************************
 487  * Type Checking
 488  **************************************************************************/
 489 
 490     /**
 491      * A check context is an object that can be used to perform compatibility
 492      * checks - depending on the check context, meaning of 'compatibility' might
 493      * vary significantly.
 494      */
 495     public interface CheckContext {
 496         /**
 497          * Is type 'found' compatible with type 'req' in given context
 498          */
 499         boolean compatible(Type found, Type req, Warner warn);
 500         /**
 501          * Report a check error
 502          */
 503         void report(DiagnosticPosition pos, JCDiagnostic details);
 504         /**
 505          * Obtain a warner for this check context
 506          */
 507         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req);
 508 
 509         public InferenceContext inferenceContext();
 510 
 511         public DeferredAttr.DeferredAttrContext deferredAttrContext();
 512     }
 513 
 514     /**
 515      * This class represent a check context that is nested within another check
 516      * context - useful to check sub-expressions. The default behavior simply
 517      * redirects all method calls to the enclosing check context leveraging
 518      * the forwarding pattern.
 519      */
 520     static class NestedCheckContext implements CheckContext {
 521         CheckContext enclosingContext;
 522 
 523         NestedCheckContext(CheckContext enclosingContext) {
 524             this.enclosingContext = enclosingContext;
 525         }
 526 
 527         public boolean compatible(Type found, Type req, Warner warn) {
 528             return enclosingContext.compatible(found, req, warn);
 529         }
 530 
 531         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 532             enclosingContext.report(pos, details);
 533         }
 534 
 535         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 536             return enclosingContext.checkWarner(pos, found, req);
 537         }
 538 
 539         public InferenceContext inferenceContext() {
 540             return enclosingContext.inferenceContext();
 541         }
 542 
 543         public DeferredAttrContext deferredAttrContext() {
 544             return enclosingContext.deferredAttrContext();
 545         }
 546     }
 547 
 548     /**
 549      * Check context to be used when evaluating assignment/return statements
 550      */
 551     CheckContext basicHandler = new CheckContext() {
 552         public void report(DiagnosticPosition pos, JCDiagnostic details) {
 553             log.error(pos, Errors.ProbFoundReq(details));
 554         }
 555         public boolean compatible(Type found, Type req, Warner warn) {
 556             return types.isAssignable(found, req, warn);
 557         }
 558 
 559         public Warner checkWarner(DiagnosticPosition pos, Type found, Type req) {
 560             return convertWarner(pos, found, req);
 561         }
 562 
 563         public InferenceContext inferenceContext() {
 564             return infer.emptyContext;
 565         }
 566 
 567         public DeferredAttrContext deferredAttrContext() {
 568             return deferredAttr.emptyDeferredAttrContext;
 569         }
 570 
 571         @Override
 572         public String toString() {
 573             return "CheckContext: basicHandler";
 574         }
 575     };
 576 
 577     /** Check that a given type is assignable to a given proto-type.
 578      *  If it is, return the type, otherwise return errType.
 579      *  @param pos        Position to be used for error reporting.
 580      *  @param found      The type that was found.
 581      *  @param req        The type that was required.
 582      */
 583     public Type checkType(DiagnosticPosition pos, Type found, Type req) {
 584         return checkType(pos, found, req, basicHandler);
 585     }
 586 
 587     Type checkType(final DiagnosticPosition pos, final Type found, final Type req, final CheckContext checkContext) {
 588         final InferenceContext inferenceContext = checkContext.inferenceContext();
 589         if (inferenceContext.free(req) || inferenceContext.free(found)) {
 590             inferenceContext.addFreeTypeListener(List.of(req, found),
 591                     solvedContext -> checkType(pos, solvedContext.asInstType(found), solvedContext.asInstType(req), checkContext));
 592         }
 593         if (req.hasTag(ERROR))
 594             return req;
 595         if (req.hasTag(NONE))
 596             return found;
 597         if (checkContext.compatible(found, req, checkContext.checkWarner(pos, found, req))) {
 598             return found;
 599         } else {
 600             if (found.isNumeric() && req.isNumeric()) {
 601                 checkContext.report(pos, diags.fragment(Fragments.PossibleLossOfPrecision(found, req)));
 602                 return types.createErrorType(found);
 603             }
 604             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 605             return types.createErrorType(found);
 606         }
 607     }
 608 
 609     /** Check that a given type can be cast to a given target type.
 610      *  Return the result of the cast.
 611      *  @param pos        Position to be used for error reporting.
 612      *  @param found      The type that is being cast.
 613      *  @param req        The target type of the cast.
 614      */
 615     Type checkCastable(DiagnosticPosition pos, Type found, Type req) {
 616         return checkCastable(pos, found, req, basicHandler);
 617     }
 618     Type checkCastable(DiagnosticPosition pos, Type found, Type req, CheckContext checkContext) {
 619         if (types.isCastable(found, req, castWarner(pos, found, req))) {
 620             return req;
 621         } else {
 622             checkContext.report(pos, diags.fragment(Fragments.InconvertibleTypes(found, req)));
 623             return types.createErrorType(found);
 624         }
 625     }
 626 
 627     /** Check for redundant casts (i.e. where source type is a subtype of target type)
 628      * The problem should only be reported for non-292 cast
 629      */
 630     public void checkRedundantCast(Env<AttrContext> env, final JCTypeCast tree) {
 631         if (!tree.type.isErroneous()
 632                 && types.isSameType(tree.expr.type, tree.clazz.type)
 633                 && !(ignoreAnnotatedCasts && TreeInfo.containsTypeAnnotation(tree.clazz))
 634                 && !is292targetTypeCast(tree)) {
 635             deferredLintHandler.report(() -> {
 636                 if (lint.isEnabled(LintCategory.CAST))
 637                     log.warning(LintCategory.CAST,
 638                             tree.pos(), Warnings.RedundantCast(tree.clazz.type));
 639             });
 640         }
 641     }
 642     //where
 643         private boolean is292targetTypeCast(JCTypeCast tree) {
 644             boolean is292targetTypeCast = false;
 645             JCExpression expr = TreeInfo.skipParens(tree.expr);
 646             if (expr.hasTag(APPLY)) {
 647                 JCMethodInvocation apply = (JCMethodInvocation)expr;
 648                 Symbol sym = TreeInfo.symbol(apply.meth);
 649                 is292targetTypeCast = sym != null &&
 650                     sym.kind == MTH &&
 651                     (sym.flags() & HYPOTHETICAL) != 0;
 652             }
 653             return is292targetTypeCast;
 654         }
 655 
 656         private static final boolean ignoreAnnotatedCasts = true;
 657 
 658     /** Check that a type is within some bounds.
 659      *
 660      *  Used in TypeApply to verify that, e.g., X in {@code V<X>} is a valid
 661      *  type argument.
 662      *  @param a             The type that should be bounded by bs.
 663      *  @param bound         The bound.
 664      */
 665     private boolean checkExtends(Type a, Type bound) {
 666          if (a.isUnbound()) {
 667              return true;
 668          } else if (!a.hasTag(WILDCARD)) {
 669              a = types.cvarUpperBound(a);
 670              return types.isSubtype(a, bound);
 671          } else if (a.isExtendsBound()) {
 672              return types.isCastable(bound, types.wildUpperBound(a), types.noWarnings);
 673          } else if (a.isSuperBound()) {
 674              return !types.notSoftSubtype(types.wildLowerBound(a), bound);
 675          }
 676          return true;
 677      }
 678 
 679     /** Check that type is different from 'void'.
 680      *  @param pos           Position to be used for error reporting.
 681      *  @param t             The type to be checked.
 682      */
 683     Type checkNonVoid(DiagnosticPosition pos, Type t) {
 684         if (t.hasTag(VOID)) {
 685             log.error(pos, Errors.VoidNotAllowedHere);
 686             return types.createErrorType(t);
 687         } else {
 688             return t;
 689         }
 690     }
 691 
 692     Type checkClassOrArrayType(DiagnosticPosition pos, Type t) {
 693         if (!t.hasTag(CLASS) && !t.hasTag(ARRAY) && !t.hasTag(ERROR)) {
 694             return typeTagError(pos,
 695                                 diags.fragment(Fragments.TypeReqClassArray),
 696                                 asTypeParam(t));
 697         } else {
 698             return t;
 699         }
 700     }
 701 
 702     /** Check that type is a class or interface type.
 703      *  @param pos           Position to be used for error reporting.
 704      *  @param t             The type to be checked.
 705      */
 706     Type checkClassType(DiagnosticPosition pos, Type t) {
 707         if (!t.hasTag(CLASS) && !t.hasTag(ERROR)) {
 708             return typeTagError(pos,
 709                                 diags.fragment(Fragments.TypeReqClass),
 710                                 asTypeParam(t));
 711         } else {
 712             return t;
 713         }
 714     }
 715     //where
 716         private Object asTypeParam(Type t) {
 717             return (t.hasTag(TYPEVAR))
 718                                     ? diags.fragment(Fragments.TypeParameter(t))
 719                                     : t;
 720         }
 721 
 722     /** Check that type is a valid qualifier for a constructor reference expression
 723      */
 724     Type checkConstructorRefType(DiagnosticPosition pos, Type t) {
 725         t = checkClassOrArrayType(pos, t);
 726         if (t.hasTag(CLASS)) {
 727             if ((t.tsym.flags() & (ABSTRACT | INTERFACE)) != 0) {
 728                 log.error(pos, Errors.AbstractCantBeInstantiated(t.tsym));
 729                 t = types.createErrorType(t);
 730             } else if ((t.tsym.flags() & ENUM) != 0) {
 731                 log.error(pos, Errors.EnumCantBeInstantiated);
 732                 t = types.createErrorType(t);
 733             } else {
 734                 t = checkClassType(pos, t, true);
 735             }
 736         } else if (t.hasTag(ARRAY)) {
 737             if (!types.isReifiable(((ArrayType)t).elemtype)) {
 738                 log.error(pos, Errors.GenericArrayCreation);
 739                 t = types.createErrorType(t);
 740             }
 741         }
 742         return t;
 743     }
 744 
 745     /** Check that type is a class or interface type.
 746      *  @param pos           Position to be used for error reporting.
 747      *  @param t             The type to be checked.
 748      *  @param noBounds    True if type bounds are illegal here.
 749      */
 750     Type checkClassType(DiagnosticPosition pos, Type t, boolean noBounds) {
 751         t = checkClassType(pos, t);
 752         if (noBounds && t.isParameterized()) {
 753             List<Type> args = t.getTypeArguments();
 754             while (args.nonEmpty()) {
 755                 if (args.head.hasTag(WILDCARD))
 756                     return typeTagError(pos,
 757                                         diags.fragment(Fragments.TypeReqExact),
 758                                         args.head);
 759                 args = args.tail;
 760             }
 761         }
 762         return t;
 763     }
 764 
 765     /** Check that type is a reference type, i.e. a class, interface or array type
 766      *  or a type variable.
 767      *  @param pos           Position to be used for error reporting.
 768      *  @param t             The type to be checked.
 769      */
 770     Type checkRefType(DiagnosticPosition pos, Type t) {
 771         if (t.isReference())
 772             return t;
 773         else
 774             return typeTagError(pos,
 775                                 diags.fragment(Fragments.TypeReqRef),
 776                                 t);
 777     }
 778 
 779     /** Check that each type is a reference type, i.e. a class, interface or array type
 780      *  or a type variable.
 781      *  @param trees         Original trees, used for error reporting.
 782      *  @param types         The types to be checked.
 783      */
 784     List<Type> checkRefTypes(List<JCExpression> trees, List<Type> types) {
 785         List<JCExpression> tl = trees;
 786         for (List<Type> l = types; l.nonEmpty(); l = l.tail) {
 787             l.head = checkRefType(tl.head.pos(), l.head);
 788             tl = tl.tail;
 789         }
 790         return types;
 791     }
 792 
 793     /** Check that type is a null or reference type.
 794      *  @param pos           Position to be used for error reporting.
 795      *  @param t             The type to be checked.
 796      */
 797     Type checkNullOrRefType(DiagnosticPosition pos, Type t) {
 798         if (t.isReference() || t.hasTag(BOT))
 799             return t;
 800         else
 801             return typeTagError(pos,
 802                                 diags.fragment(Fragments.TypeReqRef),
 803                                 t);
 804     }
 805 
 806     /** Check that flag set does not contain elements of two conflicting sets. s
 807      *  Return true if it doesn't.
 808      *  @param pos           Position to be used for error reporting.
 809      *  @param flags         The set of flags to be checked.
 810      *  @param set1          Conflicting flags set #1.
 811      *  @param set2          Conflicting flags set #2.
 812      */
 813     boolean checkDisjoint(DiagnosticPosition pos, long flags, long set1, long set2) {
 814         if ((flags & set1) != 0 && (flags & set2) != 0) {
 815             log.error(pos,
 816                       Errors.IllegalCombinationOfModifiers(asFlagSet(TreeInfo.firstFlag(flags & set1)),
 817                                                            asFlagSet(TreeInfo.firstFlag(flags & set2))));
 818             return false;
 819         } else
 820             return true;
 821     }
 822 
 823     /** Check that usage of diamond operator is correct (i.e. diamond should not
 824      * be used with non-generic classes or in anonymous class creation expressions)
 825      */
 826     Type checkDiamond(JCNewClass tree, Type t) {
 827         if (!TreeInfo.isDiamond(tree) ||
 828                 t.isErroneous()) {
 829             return checkClassType(tree.clazz.pos(), t, true);
 830         } else {
 831             if (tree.def != null && !Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.allowedInSource(source)) {
 832                 log.error(DiagnosticFlag.SOURCE_LEVEL, tree.clazz.pos(),
 833                         Errors.CantApplyDiamond1(t, Feature.DIAMOND_WITH_ANONYMOUS_CLASS_CREATION.fragment(source.name)));
 834             }
 835             if (t.tsym.type.getTypeArguments().isEmpty()) {
 836                 log.error(tree.clazz.pos(),
 837                           Errors.CantApplyDiamond1(t,
 838                                                    Fragments.DiamondNonGeneric(t)));
 839                 return types.createErrorType(t);
 840             } else if (tree.typeargs != null &&
 841                     tree.typeargs.nonEmpty()) {
 842                 log.error(tree.clazz.pos(),
 843                           Errors.CantApplyDiamond1(t,
 844                                                    Fragments.DiamondAndExplicitParams(t)));
 845                 return types.createErrorType(t);
 846             } else {
 847                 return t;
 848             }
 849         }
 850     }
 851 
 852     /** Check that the type inferred using the diamond operator does not contain
 853      *  non-denotable types such as captured types or intersection types.
 854      *  @param t the type inferred using the diamond operator
 855      *  @return  the (possibly empty) list of non-denotable types.
 856      */
 857     List<Type> checkDiamondDenotable(ClassType t) {
 858         ListBuffer<Type> buf = new ListBuffer<>();
 859         for (Type arg : t.allparams()) {
 860             if (!checkDenotable(arg)) {
 861                 buf.append(arg);
 862             }
 863         }
 864         return buf.toList();
 865     }
 866 
 867     public boolean checkDenotable(Type t) {
 868         return denotableChecker.visit(t, null);
 869     }
 870         // where
 871 
 872         /** diamondTypeChecker: A type visitor that descends down the given type looking for non-denotable
 873          *  types. The visit methods return false as soon as a non-denotable type is encountered and true
 874          *  otherwise.
 875          */
 876         private static final Types.SimpleVisitor<Boolean, Void> denotableChecker = new Types.SimpleVisitor<Boolean, Void>() {
 877             @Override
 878             public Boolean visitType(Type t, Void s) {
 879                 return true;
 880             }
 881             @Override
 882             public Boolean visitClassType(ClassType t, Void s) {
 883                 if (t.isUnion() || t.isIntersection()) {
 884                     return false;
 885                 }
 886                 for (Type targ : t.allparams()) {
 887                     if (!visit(targ, s)) {
 888                         return false;
 889                     }
 890                 }
 891                 return true;
 892             }
 893 
 894             @Override
 895             public Boolean visitTypeVar(TypeVar t, Void s) {
 896                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 897                   (i.e cannot have been produced by inference (18.4))
 898                 */
 899                 return (t.tsym.flags() & SYNTHETIC) == 0;
 900             }
 901 
 902             @Override
 903             public Boolean visitCapturedType(CapturedType t, Void s) {
 904                 /* Any type variable mentioned in the inferred type must have been declared as a type parameter
 905                   (i.e cannot have been produced by capture conversion (5.1.10))
 906                 */
 907                 return false;
 908             }
 909 
 910             @Override
 911             public Boolean visitArrayType(ArrayType t, Void s) {
 912                 return visit(t.elemtype, s);
 913             }
 914 
 915             @Override
 916             public Boolean visitWildcardType(WildcardType t, Void s) {
 917                 return visit(t.type, s);
 918             }
 919         };
 920 
 921     void checkVarargsMethodDecl(Env<AttrContext> env, JCMethodDecl tree) {
 922         MethodSymbol m = tree.sym;
 923         boolean hasTrustMeAnno = m.attribute(syms.trustMeType.tsym) != null;
 924         Type varargElemType = null;
 925         if (m.isVarArgs()) {
 926             varargElemType = types.elemtype(tree.params.last().type);
 927         }
 928         if (hasTrustMeAnno && !isTrustMeAllowedOnMethod(m)) {
 929             if (varargElemType != null) {
 930                 JCDiagnostic msg = Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ?
 931                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargs(m)) :
 932                         diags.fragment(Fragments.VarargsTrustmeOnVirtualVarargsFinalOnly(m));
 933                 log.error(tree,
 934                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 935                                                            msg));
 936             } else {
 937                 log.error(tree,
 938                           Errors.VarargsInvalidTrustmeAnno(syms.trustMeType.tsym,
 939                                                            Fragments.VarargsTrustmeOnNonVarargsMeth(m)));
 940             }
 941         } else if (hasTrustMeAnno && varargElemType != null &&
 942                             types.isReifiable(varargElemType)) {
 943             warnUnsafeVararg(tree, Warnings.VarargsRedundantTrustmeAnno(
 944                                 syms.trustMeType.tsym,
 945                                 diags.fragment(Fragments.VarargsTrustmeOnReifiableVarargs(varargElemType))));
 946         }
 947         else if (!hasTrustMeAnno && varargElemType != null &&
 948                 !types.isReifiable(varargElemType)) {
 949             warnUnchecked(tree.params.head.pos(), Warnings.UncheckedVarargsNonReifiableType(varargElemType));
 950         }
 951     }
 952     //where
 953         private boolean isTrustMeAllowedOnMethod(Symbol s) {
 954             return (s.flags() & VARARGS) != 0 &&
 955                 (s.isConstructor() ||
 956                     (s.flags() & (STATIC | FINAL |
 957                                   (Feature.PRIVATE_SAFE_VARARGS.allowedInSource(source) ? PRIVATE : 0) )) != 0);
 958         }
 959 
 960     Type checkLocalVarType(DiagnosticPosition pos, Type t, Name name) {
 961         //check that resulting type is not the null type
 962         if (t.hasTag(BOT)) {
 963             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferNull));
 964             return types.createErrorType(t);
 965         } else if (t.hasTag(VOID)) {
 966             log.error(pos, Errors.CantInferLocalVarType(name, Fragments.LocalCantInferVoid));
 967             return types.createErrorType(t);
 968         }
 969 
 970         //upward project the initializer type
 971         return types.upward(t, types.captures(t));
 972     }
 973 
 974     Type checkMethod(final Type mtype,
 975             final Symbol sym,
 976             final Env<AttrContext> env,
 977             final List<JCExpression> argtrees,
 978             final List<Type> argtypes,
 979             final boolean useVarargs,
 980             InferenceContext inferenceContext) {
 981         // System.out.println("call   : " + env.tree);
 982         // System.out.println("method : " + owntype);
 983         // System.out.println("actuals: " + argtypes);
 984         if (inferenceContext.free(mtype)) {
 985             inferenceContext.addFreeTypeListener(List.of(mtype),
 986                     solvedContext -> checkMethod(solvedContext.asInstType(mtype), sym, env, argtrees, argtypes, useVarargs, solvedContext));
 987             return mtype;
 988         }
 989         Type owntype = mtype;
 990         List<Type> formals = owntype.getParameterTypes();
 991         List<Type> nonInferred = sym.type.getParameterTypes();
 992         if (nonInferred.length() != formals.length()) nonInferred = formals;
 993         Type last = useVarargs ? formals.last() : null;
 994         if (sym.name == names.init && sym.owner == syms.enumSym) {
 995             formals = formals.tail.tail;
 996             nonInferred = nonInferred.tail.tail;
 997         }
 998         if ((sym.flags() & ANONCONSTR_BASED) != 0) {
 999             formals = formals.tail;
1000             nonInferred = nonInferred.tail;
1001         }
1002         List<JCExpression> args = argtrees;
1003         if (args != null) {
1004             //this is null when type-checking a method reference
1005             while (formals.head != last) {
1006                 JCTree arg = args.head;
1007                 Warner warn = convertWarner(arg.pos(), arg.type, nonInferred.head);
1008                 assertConvertible(arg, arg.type, formals.head, warn);
1009                 args = args.tail;
1010                 formals = formals.tail;
1011                 nonInferred = nonInferred.tail;
1012             }
1013             if (useVarargs) {
1014                 Type varArg = types.elemtype(last);
1015                 while (args.tail != null) {
1016                     JCTree arg = args.head;
1017                     Warner warn = convertWarner(arg.pos(), arg.type, varArg);
1018                     assertConvertible(arg, arg.type, varArg, warn);
1019                     args = args.tail;
1020                 }
1021             } else if ((sym.flags() & (VARARGS | SIGNATURE_POLYMORPHIC)) == VARARGS) {
1022                 // non-varargs call to varargs method
1023                 Type varParam = owntype.getParameterTypes().last();
1024                 Type lastArg = argtypes.last();
1025                 if (types.isSubtypeUnchecked(lastArg, types.elemtype(varParam)) &&
1026                     !types.isSameType(types.erasure(varParam), types.erasure(lastArg)))
1027                     log.warning(argtrees.last().pos(),
1028                                 Warnings.InexactNonVarargsCall(types.elemtype(varParam),varParam));
1029             }
1030         }
1031         if (useVarargs) {
1032             Type argtype = owntype.getParameterTypes().last();
1033             if (!types.isReifiable(argtype) &&
1034                 (sym.baseSymbol().attribute(syms.trustMeType.tsym) == null ||
1035                  !isTrustMeAllowedOnMethod(sym))) {
1036                 warnUnchecked(env.tree.pos(), Warnings.UncheckedGenericArrayCreation(argtype));
1037             }
1038             TreeInfo.setVarargsElement(env.tree, types.elemtype(argtype));
1039          }
1040          return owntype;
1041     }
1042     //where
1043     private void assertConvertible(JCTree tree, Type actual, Type formal, Warner warn) {
1044         if (types.isConvertible(actual, formal, warn))
1045             return;
1046 
1047         if (formal.isCompound()
1048             && types.isSubtype(actual, types.supertype(formal))
1049             && types.isSubtypeUnchecked(actual, types.interfaces(formal), warn))
1050             return;
1051     }
1052 
1053     /**
1054      * Check that type 't' is a valid instantiation of a generic class
1055      * (see JLS 4.5)
1056      *
1057      * @param t class type to be checked
1058      * @return true if 't' is well-formed
1059      */
1060     public boolean checkValidGenericType(Type t) {
1061         return firstIncompatibleTypeArg(t) == null;
1062     }
1063     //WHERE
1064         private Type firstIncompatibleTypeArg(Type type) {
1065             List<Type> formals = type.tsym.type.allparams();
1066             List<Type> actuals = type.allparams();
1067             List<Type> args = type.getTypeArguments();
1068             List<Type> forms = type.tsym.type.getTypeArguments();
1069             ListBuffer<Type> bounds_buf = new ListBuffer<>();
1070 
1071             // For matching pairs of actual argument types `a' and
1072             // formal type parameters with declared bound `b' ...
1073             while (args.nonEmpty() && forms.nonEmpty()) {
1074                 // exact type arguments needs to know their
1075                 // bounds (for upper and lower bound
1076                 // calculations).  So we create new bounds where
1077                 // type-parameters are replaced with actuals argument types.
1078                 bounds_buf.append(types.subst(forms.head.getUpperBound(), formals, actuals));
1079                 args = args.tail;
1080                 forms = forms.tail;
1081             }
1082 
1083             args = type.getTypeArguments();
1084             List<Type> tvars_cap = types.substBounds(formals,
1085                                       formals,
1086                                       types.capture(type).allparams());
1087             while (args.nonEmpty() && tvars_cap.nonEmpty()) {
1088                 // Let the actual arguments know their bound
1089                 args.head.withTypeVar((TypeVar)tvars_cap.head);
1090                 args = args.tail;
1091                 tvars_cap = tvars_cap.tail;
1092             }
1093 
1094             args = type.getTypeArguments();
1095             List<Type> bounds = bounds_buf.toList();
1096 
1097             while (args.nonEmpty() && bounds.nonEmpty()) {
1098                 Type actual = args.head;
1099                 if (!isTypeArgErroneous(actual) &&
1100                         !bounds.head.isErroneous() &&
1101                         !checkExtends(actual, bounds.head)) {
1102                     return args.head;
1103                 }
1104                 args = args.tail;
1105                 bounds = bounds.tail;
1106             }
1107 
1108             args = type.getTypeArguments();
1109             bounds = bounds_buf.toList();
1110 
1111             for (Type arg : types.capture(type).getTypeArguments()) {
1112                 if (arg.hasTag(TYPEVAR) &&
1113                         arg.getUpperBound().isErroneous() &&
1114                         !bounds.head.isErroneous() &&
1115                         !isTypeArgErroneous(args.head)) {
1116                     return args.head;
1117                 }
1118                 bounds = bounds.tail;
1119                 args = args.tail;
1120             }
1121 
1122             return null;
1123         }
1124         //where
1125         boolean isTypeArgErroneous(Type t) {
1126             return isTypeArgErroneous.visit(t);
1127         }
1128 
1129         Types.UnaryVisitor<Boolean> isTypeArgErroneous = new Types.UnaryVisitor<Boolean>() {
1130             public Boolean visitType(Type t, Void s) {
1131                 return t.isErroneous();
1132             }
1133             @Override
1134             public Boolean visitTypeVar(TypeVar t, Void s) {
1135                 return visit(t.getUpperBound());
1136             }
1137             @Override
1138             public Boolean visitCapturedType(CapturedType t, Void s) {
1139                 return visit(t.getUpperBound()) ||
1140                         visit(t.getLowerBound());
1141             }
1142             @Override
1143             public Boolean visitWildcardType(WildcardType t, Void s) {
1144                 return visit(t.type);
1145             }
1146         };
1147 
1148     /** Check that given modifiers are legal for given symbol and
1149      *  return modifiers together with any implicit modifiers for that symbol.
1150      *  Warning: we can't use flags() here since this method
1151      *  is called during class enter, when flags() would cause a premature
1152      *  completion.
1153      *  @param pos           Position to be used for error reporting.
1154      *  @param flags         The set of modifiers given in a definition.
1155      *  @param sym           The defined symbol.
1156      */
1157     long checkFlags(DiagnosticPosition pos, long flags, Symbol sym, JCTree tree) {
1158         long mask;
1159         long implicit = 0;
1160 
1161         switch (sym.kind) {
1162         case VAR:
1163             if (TreeInfo.isReceiverParam(tree))
1164                 mask = ReceiverParamFlags;
1165             else if (sym.owner.kind != TYP)
1166                 mask = LocalVarFlags;
1167             else if ((sym.owner.flags_field & INTERFACE) != 0)
1168                 mask = implicit = InterfaceVarFlags;
1169             else
1170                 mask = VarFlags;
1171             break;
1172         case MTH:
1173             if (sym.name == names.init) {
1174                 if ((sym.owner.flags_field & ENUM) != 0) {
1175                     // enum constructors cannot be declared public or
1176                     // protected and must be implicitly or explicitly
1177                     // private
1178                     implicit = PRIVATE;
1179                     mask = PRIVATE;
1180                 } else
1181                     mask = ConstructorFlags;
1182             }  else if ((sym.owner.flags_field & INTERFACE) != 0) {
1183                 if ((sym.owner.flags_field & ANNOTATION) != 0) {
1184                     mask = AnnotationTypeElementMask;
1185                     implicit = PUBLIC | ABSTRACT;
1186                 } else if ((flags & (DEFAULT | STATIC | PRIVATE)) != 0) {
1187                     mask = InterfaceMethodMask;
1188                     implicit = (flags & PRIVATE) != 0 ? 0 : PUBLIC;
1189                     if ((flags & DEFAULT) != 0) {
1190                         implicit |= ABSTRACT;
1191                     }
1192                 } else {
1193                     mask = implicit = InterfaceMethodFlags;
1194                 }
1195             } else if ((sym.owner.flags_field & RECORD) != 0) {
1196                 mask = RecordMethodFlags;
1197             } else {
1198                 mask = MethodFlags;
1199             }
1200             // Imply STRICTFP if owner has STRICTFP set.
1201             if (((flags|implicit) & Flags.ABSTRACT) == 0 ||
1202                 ((flags) & Flags.DEFAULT) != 0)
1203                 implicit |= sym.owner.flags_field & STRICTFP;
1204             break;
1205         case TYP:
1206             if (sym.isLocal()) {
1207                 mask = (flags & RECORD) != 0 ? LocalRecordFlags : LocalClassFlags;
1208                 if ((flags & RECORD) != 0) {
1209                     implicit = STATIC;
1210                     if (sym.owner.kind == TYP) {
1211                         log.error(pos, Errors.RecordDeclarationNotAllowedInInnerClasses);
1212                     }
1213                 }
1214                 if ((sym.owner.flags_field & STATIC) == 0 &&
1215                     (flags & ENUM) != 0) {
1216                     log.error(pos, Errors.EnumsMustBeStatic);
1217                 }
1218             } else if (sym.owner.kind == TYP) {
1219                 mask = (flags & RECORD) != 0 ? MemberRecordFlags : MemberClassFlags;
1220                 if (sym.owner.owner.kind == PCK ||
1221                     (sym.owner.flags_field & STATIC) != 0)
1222                     mask |= STATIC;
1223                 else if ((flags & ENUM) != 0) {
1224                     log.error(pos, Errors.EnumsMustBeStatic);
1225                 } else if ((flags & RECORD) != 0) {
1226                     log.error(pos, Errors.RecordDeclarationNotAllowedInInnerClasses);
1227                 }
1228                 // Nested interfaces and enums are always STATIC (Spec ???)
1229                 if ((flags & (INTERFACE | ENUM | RECORD)) != 0 ) implicit = STATIC;
1230             } else {
1231                 mask = ClassFlags;
1232             }
1233             // Interfaces are always ABSTRACT
1234             if ((flags & INTERFACE) != 0) implicit |= ABSTRACT;
1235 
1236             if ((flags & ENUM) != 0) {
1237                 // enums can't be declared abstract or final
1238                 mask &= ~(ABSTRACT | FINAL);
1239                 implicit |= implicitEnumFinalFlag(tree);
1240             }
1241             if ((flags & RECORD) != 0) {
1242                 // records can't be declared abstract
1243                 mask &= ~ABSTRACT;
1244                 implicit |= FINAL;
1245             }
1246             // Imply STRICTFP if owner has STRICTFP set.
1247             implicit |= sym.owner.flags_field & STRICTFP;
1248             break;
1249         default:
1250             throw new AssertionError();
1251         }
1252         long illegal = flags & ExtendedStandardFlags & ~mask;
1253         if (illegal != 0) {
1254             if ((illegal & INTERFACE) != 0) {
1255                 log.error(pos, ((flags & ANNOTATION) != 0) ? Errors.AnnotationDeclNotAllowedHere : Errors.IntfNotAllowedHere);
1256                 mask |= INTERFACE;
1257             }
1258             else {
1259                 log.error(pos,
1260                           Errors.ModNotAllowedHere(asFlagSet(illegal)));
1261             }
1262         }
1263         else if ((sym.kind == TYP ||
1264                   // ISSUE: Disallowing abstract&private is no longer appropriate
1265                   // in the presence of inner classes. Should it be deleted here?
1266                   checkDisjoint(pos, flags,
1267                                 ABSTRACT,
1268                                 PRIVATE | STATIC | DEFAULT))
1269                  &&
1270                  checkDisjoint(pos, flags,
1271                                 STATIC | PRIVATE,
1272                                 DEFAULT)
1273                  &&
1274                  checkDisjoint(pos, flags,
1275                                ABSTRACT | INTERFACE,
1276                                FINAL | NATIVE | SYNCHRONIZED)
1277                  &&
1278                  checkDisjoint(pos, flags,
1279                                PUBLIC,
1280                                PRIVATE | PROTECTED)
1281                  &&
1282                  checkDisjoint(pos, flags,
1283                                PRIVATE,
1284                                PUBLIC | PROTECTED)
1285                  &&
1286                  checkDisjoint(pos, flags,
1287                                FINAL,
1288                                VOLATILE)
1289                  &&
1290                  (sym.kind == TYP ||
1291                   checkDisjoint(pos, flags,
1292                                 ABSTRACT | NATIVE,
1293                                 STRICTFP))) {
1294             // skip
1295         }
1296         return flags & (mask | ~ExtendedStandardFlags) | implicit;
1297     }
1298 
1299 
1300     /** Determine if this enum should be implicitly final.
1301      *
1302      *  If the enum has no specialized enum constants, it is final.
1303      *
1304      *  If the enum does have specialized enum constants, it is
1305      *  <i>not</i> final.
1306      */
1307     private long implicitEnumFinalFlag(JCTree tree) {
1308         if (!tree.hasTag(CLASSDEF)) return 0;
1309         class SpecialTreeVisitor extends JCTree.Visitor {
1310             boolean specialized;
1311             SpecialTreeVisitor() {
1312                 this.specialized = false;
1313             }
1314 
1315             @Override
1316             public void visitTree(JCTree tree) { /* no-op */ }
1317 
1318             @Override
1319             public void visitVarDef(JCVariableDecl tree) {
1320                 if ((tree.mods.flags & ENUM) != 0) {
1321                     if (tree.init instanceof JCNewClass &&
1322                         ((JCNewClass) tree.init).def != null) {
1323                         specialized = true;
1324                     }
1325                 }
1326             }
1327         }
1328 
1329         SpecialTreeVisitor sts = new SpecialTreeVisitor();
1330         JCClassDecl cdef = (JCClassDecl) tree;
1331         for (JCTree defs: cdef.defs) {
1332             defs.accept(sts);
1333             if (sts.specialized) return 0;
1334         }
1335         return FINAL;
1336     }
1337 
1338 /* *************************************************************************
1339  * Type Validation
1340  **************************************************************************/
1341 
1342     /** Validate a type expression. That is,
1343      *  check that all type arguments of a parametric type are within
1344      *  their bounds. This must be done in a second phase after type attribution
1345      *  since a class might have a subclass as type parameter bound. E.g:
1346      *
1347      *  <pre>{@code
1348      *  class B<A extends C> { ... }
1349      *  class C extends B<C> { ... }
1350      *  }</pre>
1351      *
1352      *  and we can't make sure that the bound is already attributed because
1353      *  of possible cycles.
1354      *
1355      * Visitor method: Validate a type expression, if it is not null, catching
1356      *  and reporting any completion failures.
1357      */
1358     void validate(JCTree tree, Env<AttrContext> env) {
1359         validate(tree, env, true);
1360     }
1361     void validate(JCTree tree, Env<AttrContext> env, boolean checkRaw) {
1362         new Validator(env).validateTree(tree, checkRaw, true);
1363     }
1364 
1365     /** Visitor method: Validate a list of type expressions.
1366      */
1367     void validate(List<? extends JCTree> trees, Env<AttrContext> env) {
1368         for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1369             validate(l.head, env);
1370     }
1371 
1372     /** A visitor class for type validation.
1373      */
1374     class Validator extends JCTree.Visitor {
1375 
1376         boolean checkRaw;
1377         boolean isOuter;
1378         Env<AttrContext> env;
1379 
1380         Validator(Env<AttrContext> env) {
1381             this.env = env;
1382         }
1383 
1384         @Override
1385         public void visitTypeArray(JCArrayTypeTree tree) {
1386             validateTree(tree.elemtype, checkRaw, isOuter);
1387         }
1388 
1389         @Override
1390         public void visitTypeApply(JCTypeApply tree) {
1391             if (tree.type.hasTag(CLASS)) {
1392                 List<JCExpression> args = tree.arguments;
1393                 List<Type> forms = tree.type.tsym.type.getTypeArguments();
1394 
1395                 Type incompatibleArg = firstIncompatibleTypeArg(tree.type);
1396                 if (incompatibleArg != null) {
1397                     for (JCTree arg : tree.arguments) {
1398                         if (arg.type == incompatibleArg) {
1399                             log.error(arg, Errors.NotWithinBounds(incompatibleArg, forms.head));
1400                         }
1401                         forms = forms.tail;
1402                      }
1403                  }
1404 
1405                 forms = tree.type.tsym.type.getTypeArguments();
1406 
1407                 boolean is_java_lang_Class = tree.type.tsym.flatName() == names.java_lang_Class;
1408 
1409                 // For matching pairs of actual argument types `a' and
1410                 // formal type parameters with declared bound `b' ...
1411                 while (args.nonEmpty() && forms.nonEmpty()) {
1412                     validateTree(args.head,
1413                             !(isOuter && is_java_lang_Class),
1414                             false);
1415                     args = args.tail;
1416                     forms = forms.tail;
1417                 }
1418 
1419                 // Check that this type is either fully parameterized, or
1420                 // not parameterized at all.
1421                 if (tree.type.getEnclosingType().isRaw())
1422                     log.error(tree.pos(), Errors.ImproperlyFormedTypeInnerRawParam);
1423                 if (tree.clazz.hasTag(SELECT))
1424                     visitSelectInternal((JCFieldAccess)tree.clazz);
1425             }
1426         }
1427 
1428         @Override
1429         public void visitTypeParameter(JCTypeParameter tree) {
1430             validateTrees(tree.bounds, true, isOuter);
1431             checkClassBounds(tree.pos(), tree.type);
1432         }
1433 
1434         @Override
1435         public void visitWildcard(JCWildcard tree) {
1436             if (tree.inner != null)
1437                 validateTree(tree.inner, true, isOuter);
1438         }
1439 
1440         @Override
1441         public void visitSelect(JCFieldAccess tree) {
1442             if (tree.type.hasTag(CLASS)) {
1443                 visitSelectInternal(tree);
1444 
1445                 // Check that this type is either fully parameterized, or
1446                 // not parameterized at all.
1447                 if (tree.selected.type.isParameterized() && tree.type.tsym.type.getTypeArguments().nonEmpty())
1448                     log.error(tree.pos(), Errors.ImproperlyFormedTypeParamMissing);
1449             }
1450         }
1451 
1452         public void visitSelectInternal(JCFieldAccess tree) {
1453             if (tree.type.tsym.isStatic() &&
1454                 tree.selected.type.isParameterized()) {
1455                 // The enclosing type is not a class, so we are
1456                 // looking at a static member type.  However, the
1457                 // qualifying expression is parameterized.
1458                 log.error(tree.pos(), Errors.CantSelectStaticClassFromParamType);
1459             } else {
1460                 // otherwise validate the rest of the expression
1461                 tree.selected.accept(this);
1462             }
1463         }
1464 
1465         @Override
1466         public void visitAnnotatedType(JCAnnotatedType tree) {
1467             tree.underlyingType.accept(this);
1468         }
1469 
1470         @Override
1471         public void visitTypeIdent(JCPrimitiveTypeTree that) {
1472             if (that.type.hasTag(TypeTag.VOID)) {
1473                 log.error(that.pos(), Errors.VoidNotAllowedHere);
1474             }
1475             super.visitTypeIdent(that);
1476         }
1477 
1478         /** Default visitor method: do nothing.
1479          */
1480         @Override
1481         public void visitTree(JCTree tree) {
1482         }
1483 
1484         public void validateTree(JCTree tree, boolean checkRaw, boolean isOuter) {
1485             if (tree != null) {
1486                 boolean prevCheckRaw = this.checkRaw;
1487                 this.checkRaw = checkRaw;
1488                 this.isOuter = isOuter;
1489 
1490                 try {
1491                     tree.accept(this);
1492                     if (checkRaw)
1493                         checkRaw(tree, env);
1494                 } catch (CompletionFailure ex) {
1495                     completionError(tree.pos(), ex);
1496                 } finally {
1497                     this.checkRaw = prevCheckRaw;
1498                 }
1499             }
1500         }
1501 
1502         public void validateTrees(List<? extends JCTree> trees, boolean checkRaw, boolean isOuter) {
1503             for (List<? extends JCTree> l = trees; l.nonEmpty(); l = l.tail)
1504                 validateTree(l.head, checkRaw, isOuter);
1505         }
1506     }
1507 
1508     void checkRaw(JCTree tree, Env<AttrContext> env) {
1509         if (lint.isEnabled(LintCategory.RAW) &&
1510             tree.type.hasTag(CLASS) &&
1511             !TreeInfo.isDiamond(tree) &&
1512             !withinAnonConstr(env) &&
1513             tree.type.isRaw()) {
1514             log.warning(LintCategory.RAW,
1515                     tree.pos(), Warnings.RawClassUse(tree.type, tree.type.tsym.type));
1516         }
1517     }
1518     //where
1519         private boolean withinAnonConstr(Env<AttrContext> env) {
1520             return env.enclClass.name.isEmpty() &&
1521                     env.enclMethod != null && env.enclMethod.name == names.init;
1522         }
1523 
1524 /* *************************************************************************
1525  * Exception checking
1526  **************************************************************************/
1527 
1528     /* The following methods treat classes as sets that contain
1529      * the class itself and all their subclasses
1530      */
1531 
1532     /** Is given type a subtype of some of the types in given list?
1533      */
1534     boolean subset(Type t, List<Type> ts) {
1535         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1536             if (types.isSubtype(t, l.head)) return true;
1537         return false;
1538     }
1539 
1540     /** Is given type a subtype or supertype of
1541      *  some of the types in given list?
1542      */
1543     boolean intersects(Type t, List<Type> ts) {
1544         for (List<Type> l = ts; l.nonEmpty(); l = l.tail)
1545             if (types.isSubtype(t, l.head) || types.isSubtype(l.head, t)) return true;
1546         return false;
1547     }
1548 
1549     /** Add type set to given type list, unless it is a subclass of some class
1550      *  in the list.
1551      */
1552     List<Type> incl(Type t, List<Type> ts) {
1553         return subset(t, ts) ? ts : excl(t, ts).prepend(t);
1554     }
1555 
1556     /** Remove type set from type set list.
1557      */
1558     List<Type> excl(Type t, List<Type> ts) {
1559         if (ts.isEmpty()) {
1560             return ts;
1561         } else {
1562             List<Type> ts1 = excl(t, ts.tail);
1563             if (types.isSubtype(ts.head, t)) return ts1;
1564             else if (ts1 == ts.tail) return ts;
1565             else return ts1.prepend(ts.head);
1566         }
1567     }
1568 
1569     /** Form the union of two type set lists.
1570      */
1571     List<Type> union(List<Type> ts1, List<Type> ts2) {
1572         List<Type> ts = ts1;
1573         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1574             ts = incl(l.head, ts);
1575         return ts;
1576     }
1577 
1578     /** Form the difference of two type lists.
1579      */
1580     List<Type> diff(List<Type> ts1, List<Type> ts2) {
1581         List<Type> ts = ts1;
1582         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1583             ts = excl(l.head, ts);
1584         return ts;
1585     }
1586 
1587     /** Form the intersection of two type lists.
1588      */
1589     public List<Type> intersect(List<Type> ts1, List<Type> ts2) {
1590         List<Type> ts = List.nil();
1591         for (List<Type> l = ts1; l.nonEmpty(); l = l.tail)
1592             if (subset(l.head, ts2)) ts = incl(l.head, ts);
1593         for (List<Type> l = ts2; l.nonEmpty(); l = l.tail)
1594             if (subset(l.head, ts1)) ts = incl(l.head, ts);
1595         return ts;
1596     }
1597 
1598     /** Is exc an exception symbol that need not be declared?
1599      */
1600     boolean isUnchecked(ClassSymbol exc) {
1601         return
1602             exc.kind == ERR ||
1603             exc.isSubClass(syms.errorType.tsym, types) ||
1604             exc.isSubClass(syms.runtimeExceptionType.tsym, types);
1605     }
1606 
1607     /** Is exc an exception type that need not be declared?
1608      */
1609     boolean isUnchecked(Type exc) {
1610         return
1611             (exc.hasTag(TYPEVAR)) ? isUnchecked(types.supertype(exc)) :
1612             (exc.hasTag(CLASS)) ? isUnchecked((ClassSymbol)exc.tsym) :
1613             exc.hasTag(BOT);
1614     }
1615 
1616     boolean isChecked(Type exc) {
1617         return !isUnchecked(exc);
1618     }
1619 
1620     /** Same, but handling completion failures.
1621      */
1622     boolean isUnchecked(DiagnosticPosition pos, Type exc) {
1623         try {
1624             return isUnchecked(exc);
1625         } catch (CompletionFailure ex) {
1626             completionError(pos, ex);
1627             return true;
1628         }
1629     }
1630 
1631     /** Is exc handled by given exception list?
1632      */
1633     boolean isHandled(Type exc, List<Type> handled) {
1634         return isUnchecked(exc) || subset(exc, handled);
1635     }
1636 
1637     /** Return all exceptions in thrown list that are not in handled list.
1638      *  @param thrown     The list of thrown exceptions.
1639      *  @param handled    The list of handled exceptions.
1640      */
1641     List<Type> unhandled(List<Type> thrown, List<Type> handled) {
1642         List<Type> unhandled = List.nil();
1643         for (List<Type> l = thrown; l.nonEmpty(); l = l.tail)
1644             if (!isHandled(l.head, handled)) unhandled = unhandled.prepend(l.head);
1645         return unhandled;
1646     }
1647 
1648 /* *************************************************************************
1649  * Overriding/Implementation checking
1650  **************************************************************************/
1651 
1652     /** The level of access protection given by a flag set,
1653      *  where PRIVATE is highest and PUBLIC is lowest.
1654      */
1655     static int protection(long flags) {
1656         switch ((short)(flags & AccessFlags)) {
1657         case PRIVATE: return 3;
1658         case PROTECTED: return 1;
1659         default:
1660         case PUBLIC: return 0;
1661         case 0: return 2;
1662         }
1663     }
1664 
1665     /** A customized "cannot override" error message.
1666      *  @param m      The overriding method.
1667      *  @param other  The overridden method.
1668      *  @return       An internationalized string.
1669      */
1670     Fragment cannotOverride(MethodSymbol m, MethodSymbol other) {
1671         Symbol mloc = m.location();
1672         Symbol oloc = other.location();
1673 
1674         if ((other.owner.flags() & INTERFACE) == 0)
1675             return Fragments.CantOverride(m, mloc, other, oloc);
1676         else if ((m.owner.flags() & INTERFACE) == 0)
1677             return Fragments.CantImplement(m, mloc, other, oloc);
1678         else
1679             return Fragments.ClashesWith(m, mloc, other, oloc);
1680     }
1681 
1682     /** A customized "override" warning message.
1683      *  @param m      The overriding method.
1684      *  @param other  The overridden method.
1685      *  @return       An internationalized string.
1686      */
1687     Fragment uncheckedOverrides(MethodSymbol m, MethodSymbol other) {
1688         Symbol mloc = m.location();
1689         Symbol oloc = other.location();
1690 
1691         if ((other.owner.flags() & INTERFACE) == 0)
1692             return Fragments.UncheckedOverride(m, mloc, other, oloc);
1693         else if ((m.owner.flags() & INTERFACE) == 0)
1694             return Fragments.UncheckedImplement(m, mloc, other, oloc);
1695         else
1696             return Fragments.UncheckedClashWith(m, mloc, other, oloc);
1697     }
1698 
1699     /** A customized "override" warning message.
1700      *  @param m      The overriding method.
1701      *  @param other  The overridden method.
1702      *  @return       An internationalized string.
1703      */
1704     Fragment varargsOverrides(MethodSymbol m, MethodSymbol other) {
1705         Symbol mloc = m.location();
1706         Symbol oloc = other.location();
1707 
1708         if ((other.owner.flags() & INTERFACE) == 0)
1709             return Fragments.VarargsOverride(m, mloc, other, oloc);
1710         else  if ((m.owner.flags() & INTERFACE) == 0)
1711             return Fragments.VarargsImplement(m, mloc, other, oloc);
1712         else
1713             return Fragments.VarargsClashWith(m, mloc, other, oloc);
1714     }
1715 
1716     /** Check that this method conforms with overridden method 'other'.
1717      *  where `origin' is the class where checking started.
1718      *  Complications:
1719      *  (1) Do not check overriding of synthetic methods
1720      *      (reason: they might be final).
1721      *      todo: check whether this is still necessary.
1722      *  (2) Admit the case where an interface proxy throws fewer exceptions
1723      *      than the method it implements. Augment the proxy methods with the
1724      *      undeclared exceptions in this case.
1725      *  (3) When generics are enabled, admit the case where an interface proxy
1726      *      has a result type
1727      *      extended by the result type of the method it implements.
1728      *      Change the proxies result type to the smaller type in this case.
1729      *
1730      *  @param tree         The tree from which positions
1731      *                      are extracted for errors.
1732      *  @param m            The overriding method.
1733      *  @param other        The overridden method.
1734      *  @param origin       The class of which the overriding method
1735      *                      is a member.
1736      */
1737     void checkOverride(JCTree tree,
1738                        MethodSymbol m,
1739                        MethodSymbol other,
1740                        ClassSymbol origin) {
1741         // Don't check overriding of synthetic methods or by bridge methods.
1742         if ((m.flags() & (SYNTHETIC|BRIDGE)) != 0 || (other.flags() & SYNTHETIC) != 0) {
1743             return;
1744         }
1745 
1746         // Error if static method overrides instance method (JLS 8.4.6.2).
1747         if ((m.flags() & STATIC) != 0 &&
1748                    (other.flags() & STATIC) == 0) {
1749             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1750                       Errors.OverrideStatic(cannotOverride(m, other)));
1751             m.flags_field |= BAD_OVERRIDE;
1752             return;
1753         }
1754 
1755         // Error if instance method overrides static or final
1756         // method (JLS 8.4.6.1).
1757         if ((other.flags() & FINAL) != 0 ||
1758                  (m.flags() & STATIC) == 0 &&
1759                  (other.flags() & STATIC) != 0) {
1760             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1761                       Errors.OverrideMeth(cannotOverride(m, other),
1762                                           asFlagSet(other.flags() & (FINAL | STATIC))));
1763             m.flags_field |= BAD_OVERRIDE;
1764             return;
1765         }
1766 
1767         if ((m.owner.flags() & ANNOTATION) != 0) {
1768             // handled in validateAnnotationMethod
1769             return;
1770         }
1771 
1772         // Error if overriding method has weaker access (JLS 8.4.6.3).
1773         if (protection(m.flags()) > protection(other.flags())) {
1774             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1775                       (other.flags() & AccessFlags) == 0 ?
1776                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1777                                                           "package") :
1778                               Errors.OverrideWeakerAccess(cannotOverride(m, other),
1779                                                           asFlagSet(other.flags() & AccessFlags)));
1780             m.flags_field |= BAD_OVERRIDE;
1781             return;
1782         }
1783 
1784         Type mt = types.memberType(origin.type, m);
1785         Type ot = types.memberType(origin.type, other);
1786         // Error if overriding result type is different
1787         // (or, in the case of generics mode, not a subtype) of
1788         // overridden result type. We have to rename any type parameters
1789         // before comparing types.
1790         List<Type> mtvars = mt.getTypeArguments();
1791         List<Type> otvars = ot.getTypeArguments();
1792         Type mtres = mt.getReturnType();
1793         Type otres = types.subst(ot.getReturnType(), otvars, mtvars);
1794 
1795         overrideWarner.clear();
1796         boolean resultTypesOK =
1797             types.returnTypeSubstitutable(mt, ot, otres, overrideWarner);
1798         if (!resultTypesOK) {
1799             if ((m.flags() & STATIC) != 0 && (other.flags() & STATIC) != 0) {
1800                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1801                           Errors.OverrideIncompatibleRet(Fragments.CantHide(m, m.location(), other,
1802                                         other.location()), mtres, otres));
1803                 m.flags_field |= BAD_OVERRIDE;
1804             } else {
1805                 log.error(TreeInfo.diagnosticPositionFor(m, tree),
1806                           Errors.OverrideIncompatibleRet(cannotOverride(m, other), mtres, otres));
1807                 m.flags_field |= BAD_OVERRIDE;
1808             }
1809             return;
1810         } else if (overrideWarner.hasNonSilentLint(LintCategory.UNCHECKED)) {
1811             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1812                     Warnings.OverrideUncheckedRet(uncheckedOverrides(m, other), mtres, otres));
1813         }
1814 
1815         // Error if overriding method throws an exception not reported
1816         // by overridden method.
1817         List<Type> otthrown = types.subst(ot.getThrownTypes(), otvars, mtvars);
1818         List<Type> unhandledErased = unhandled(mt.getThrownTypes(), types.erasure(otthrown));
1819         List<Type> unhandledUnerased = unhandled(mt.getThrownTypes(), otthrown);
1820         if (unhandledErased.nonEmpty()) {
1821             log.error(TreeInfo.diagnosticPositionFor(m, tree),
1822                       Errors.OverrideMethDoesntThrow(cannotOverride(m, other), unhandledUnerased.head));
1823             m.flags_field |= BAD_OVERRIDE;
1824             return;
1825         }
1826         else if (unhandledUnerased.nonEmpty()) {
1827             warnUnchecked(TreeInfo.diagnosticPositionFor(m, tree),
1828                           Warnings.OverrideUncheckedThrown(cannotOverride(m, other), unhandledUnerased.head));
1829             return;
1830         }
1831 
1832         // Optional warning if varargs don't agree
1833         if ((((m.flags() ^ other.flags()) & Flags.VARARGS) != 0)
1834             && lint.isEnabled(LintCategory.OVERRIDES)) {
1835             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1836                         ((m.flags() & Flags.VARARGS) != 0)
1837                         ? Warnings.OverrideVarargsMissing(varargsOverrides(m, other))
1838                         : Warnings.OverrideVarargsExtra(varargsOverrides(m, other)));
1839         }
1840 
1841         // Warn if instance method overrides bridge method (compiler spec ??)
1842         if ((other.flags() & BRIDGE) != 0) {
1843             log.warning(TreeInfo.diagnosticPositionFor(m, tree),
1844                         Warnings.OverrideBridge(uncheckedOverrides(m, other)));
1845         }
1846 
1847         // Warn if a deprecated method overridden by a non-deprecated one.
1848         if (!isDeprecatedOverrideIgnorable(other, origin)) {
1849             Lint prevLint = setLint(lint.augment(m));
1850             try {
1851                 checkDeprecated(() -> TreeInfo.diagnosticPositionFor(m, tree), m, other);
1852             } finally {
1853                 setLint(prevLint);
1854             }
1855         }
1856     }
1857     // where
1858         private boolean isDeprecatedOverrideIgnorable(MethodSymbol m, ClassSymbol origin) {
1859             // If the method, m, is defined in an interface, then ignore the issue if the method
1860             // is only inherited via a supertype and also implemented in the supertype,
1861             // because in that case, we will rediscover the issue when examining the method
1862             // in the supertype.
1863             // If the method, m, is not defined in an interface, then the only time we need to
1864             // address the issue is when the method is the supertype implementation: any other
1865             // case, we will have dealt with when examining the supertype classes
1866             ClassSymbol mc = m.enclClass();
1867             Type st = types.supertype(origin.type);
1868             if (!st.hasTag(CLASS))
1869                 return true;
1870             MethodSymbol stimpl = m.implementation((ClassSymbol)st.tsym, types, false);
1871 
1872             if (mc != null && ((mc.flags() & INTERFACE) != 0)) {
1873                 List<Type> intfs = types.interfaces(origin.type);
1874                 return (intfs.contains(mc.type) ? false : (stimpl != null));
1875             }
1876             else
1877                 return (stimpl != m);
1878         }
1879 
1880 
1881     // used to check if there were any unchecked conversions
1882     Warner overrideWarner = new Warner();
1883 
1884     /** Check that a class does not inherit two concrete methods
1885      *  with the same signature.
1886      *  @param pos          Position to be used for error reporting.
1887      *  @param site         The class type to be checked.
1888      */
1889     public void checkCompatibleConcretes(DiagnosticPosition pos, Type site) {
1890         Type sup = types.supertype(site);
1891         if (!sup.hasTag(CLASS)) return;
1892 
1893         for (Type t1 = sup;
1894              t1.hasTag(CLASS) && t1.tsym.type.isParameterized();
1895              t1 = types.supertype(t1)) {
1896             for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1897                 if (s1.kind != MTH ||
1898                     (s1.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1899                     !s1.isInheritedIn(site.tsym, types) ||
1900                     ((MethodSymbol)s1).implementation(site.tsym,
1901                                                       types,
1902                                                       true) != s1)
1903                     continue;
1904                 Type st1 = types.memberType(t1, s1);
1905                 int s1ArgsLength = st1.getParameterTypes().length();
1906                 if (st1 == s1.type) continue;
1907 
1908                 for (Type t2 = sup;
1909                      t2.hasTag(CLASS);
1910                      t2 = types.supertype(t2)) {
1911                     for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
1912                         if (s2 == s1 ||
1913                             s2.kind != MTH ||
1914                             (s2.flags() & (STATIC|SYNTHETIC|BRIDGE)) != 0 ||
1915                             s2.type.getParameterTypes().length() != s1ArgsLength ||
1916                             !s2.isInheritedIn(site.tsym, types) ||
1917                             ((MethodSymbol)s2).implementation(site.tsym,
1918                                                               types,
1919                                                               true) != s2)
1920                             continue;
1921                         Type st2 = types.memberType(t2, s2);
1922                         if (types.overrideEquivalent(st1, st2))
1923                             log.error(pos,
1924                                       Errors.ConcreteInheritanceConflict(s1, t1, s2, t2, sup));
1925                     }
1926                 }
1927             }
1928         }
1929     }
1930 
1931     /** Check that classes (or interfaces) do not each define an abstract
1932      *  method with same name and arguments but incompatible return types.
1933      *  @param pos          Position to be used for error reporting.
1934      *  @param t1           The first argument type.
1935      *  @param t2           The second argument type.
1936      */
1937     public boolean checkCompatibleAbstracts(DiagnosticPosition pos,
1938                                             Type t1,
1939                                             Type t2,
1940                                             Type site) {
1941         if ((site.tsym.flags() & COMPOUND) != 0) {
1942             // special case for intersections: need to eliminate wildcards in supertypes
1943             t1 = types.capture(t1);
1944             t2 = types.capture(t2);
1945         }
1946         return firstIncompatibility(pos, t1, t2, site) == null;
1947     }
1948 
1949     /** Return the first method which is defined with same args
1950      *  but different return types in two given interfaces, or null if none
1951      *  exists.
1952      *  @param t1     The first type.
1953      *  @param t2     The second type.
1954      *  @param site   The most derived type.
1955      *  @returns symbol from t2 that conflicts with one in t1.
1956      */
1957     private Symbol firstIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1958         Map<TypeSymbol,Type> interfaces1 = new HashMap<>();
1959         closure(t1, interfaces1);
1960         Map<TypeSymbol,Type> interfaces2;
1961         if (t1 == t2)
1962             interfaces2 = interfaces1;
1963         else
1964             closure(t2, interfaces1, interfaces2 = new HashMap<>());
1965 
1966         for (Type t3 : interfaces1.values()) {
1967             for (Type t4 : interfaces2.values()) {
1968                 Symbol s = firstDirectIncompatibility(pos, t3, t4, site);
1969                 if (s != null) return s;
1970             }
1971         }
1972         return null;
1973     }
1974 
1975     /** Compute all the supertypes of t, indexed by type symbol. */
1976     private void closure(Type t, Map<TypeSymbol,Type> typeMap) {
1977         if (!t.hasTag(CLASS)) return;
1978         if (typeMap.put(t.tsym, t) == null) {
1979             closure(types.supertype(t), typeMap);
1980             for (Type i : types.interfaces(t))
1981                 closure(i, typeMap);
1982         }
1983     }
1984 
1985     /** Compute all the supertypes of t, indexed by type symbol (except this in typesSkip). */
1986     private void closure(Type t, Map<TypeSymbol,Type> typesSkip, Map<TypeSymbol,Type> typeMap) {
1987         if (!t.hasTag(CLASS)) return;
1988         if (typesSkip.get(t.tsym) != null) return;
1989         if (typeMap.put(t.tsym, t) == null) {
1990             closure(types.supertype(t), typesSkip, typeMap);
1991             for (Type i : types.interfaces(t))
1992                 closure(i, typesSkip, typeMap);
1993         }
1994     }
1995 
1996     /** Return the first method in t2 that conflicts with a method from t1. */
1997     private Symbol firstDirectIncompatibility(DiagnosticPosition pos, Type t1, Type t2, Type site) {
1998         for (Symbol s1 : t1.tsym.members().getSymbols(NON_RECURSIVE)) {
1999             Type st1 = null;
2000             if (s1.kind != MTH || !s1.isInheritedIn(site.tsym, types) ||
2001                     (s1.flags() & SYNTHETIC) != 0) continue;
2002             Symbol impl = ((MethodSymbol)s1).implementation(site.tsym, types, false);
2003             if (impl != null && (impl.flags() & ABSTRACT) == 0) continue;
2004             for (Symbol s2 : t2.tsym.members().getSymbolsByName(s1.name)) {
2005                 if (s1 == s2) continue;
2006                 if (s2.kind != MTH || !s2.isInheritedIn(site.tsym, types) ||
2007                         (s2.flags() & SYNTHETIC) != 0) continue;
2008                 if (st1 == null) st1 = types.memberType(t1, s1);
2009                 Type st2 = types.memberType(t2, s2);
2010                 if (types.overrideEquivalent(st1, st2)) {
2011                     List<Type> tvars1 = st1.getTypeArguments();
2012                     List<Type> tvars2 = st2.getTypeArguments();
2013                     Type rt1 = st1.getReturnType();
2014                     Type rt2 = types.subst(st2.getReturnType(), tvars2, tvars1);
2015                     boolean compat =
2016                         types.isSameType(rt1, rt2) ||
2017                         !rt1.isPrimitiveOrVoid() &&
2018                         !rt2.isPrimitiveOrVoid() &&
2019                         (types.covariantReturnType(rt1, rt2, types.noWarnings) ||
2020                          types.covariantReturnType(rt2, rt1, types.noWarnings)) ||
2021                          checkCommonOverriderIn(s1,s2,site);
2022                     if (!compat) {
2023                         log.error(pos, Errors.TypesIncompatible(t1, t2,
2024                                 Fragments.IncompatibleDiffRet(s2.name, types.memberType(t2, s2).getParameterTypes())));
2025                         return s2;
2026                     }
2027                 } else if (checkNameClash((ClassSymbol)site.tsym, s1, s2) &&
2028                         !checkCommonOverriderIn(s1, s2, site)) {
2029                     log.error(pos, Errors.NameClashSameErasureNoOverride(
2030                             s1.name, types.memberType(site, s1).asMethodType().getParameterTypes(), s1.location(),
2031                             s2.name, types.memberType(site, s2).asMethodType().getParameterTypes(), s2.location()));
2032                     return s2;
2033                 }
2034             }
2035         }
2036         return null;
2037     }
2038     //WHERE
2039     boolean checkCommonOverriderIn(Symbol s1, Symbol s2, Type site) {
2040         Map<TypeSymbol,Type> supertypes = new HashMap<>();
2041         Type st1 = types.memberType(site, s1);
2042         Type st2 = types.memberType(site, s2);
2043         closure(site, supertypes);
2044         for (Type t : supertypes.values()) {
2045             for (Symbol s3 : t.tsym.members().getSymbolsByName(s1.name)) {
2046                 if (s3 == s1 || s3 == s2 || s3.kind != MTH || (s3.flags() & (BRIDGE|SYNTHETIC)) != 0) continue;
2047                 Type st3 = types.memberType(site,s3);
2048                 if (types.overrideEquivalent(st3, st1) &&
2049                         types.overrideEquivalent(st3, st2) &&
2050                         types.returnTypeSubstitutable(st3, st1) &&
2051                         types.returnTypeSubstitutable(st3, st2)) {
2052                     return true;
2053                 }
2054             }
2055         }
2056         return false;
2057     }
2058 
2059     /** Check that a given method conforms with any method it overrides.
2060      *  @param tree         The tree from which positions are extracted
2061      *                      for errors.
2062      *  @param m            The overriding method.
2063      */
2064     void checkOverride(Env<AttrContext> env, JCMethodDecl tree, MethodSymbol m) {
2065         ClassSymbol origin = (ClassSymbol)m.owner;
2066         if ((origin.flags() & ENUM) != 0 && names.finalize.equals(m.name))
2067             if (m.overrides(syms.enumFinalFinalize, origin, types, false)) {
2068                 log.error(tree.pos(), Errors.EnumNoFinalize);
2069                 return;
2070             }
2071         for (Type t = origin.type; t.hasTag(CLASS);
2072              t = types.supertype(t)) {
2073             if (t != origin.type) {
2074                 checkOverride(tree, t, origin, m);
2075             }
2076             for (Type t2 : types.interfaces(t)) {
2077                 checkOverride(tree, t2, origin, m);
2078             }
2079         }
2080 
2081         final boolean explicitOverride = m.attribute(syms.overrideType.tsym) != null;
2082         // Check if this method must override a super method due to being annotated with @Override
2083         // or by virtue of being a member of a diamond inferred anonymous class. Latter case is to
2084         // be treated "as if as they were annotated" with @Override.
2085         boolean mustOverride = explicitOverride ||
2086                 (env.info.isAnonymousDiamond && !m.isConstructor() && !m.isPrivate());
2087         if (mustOverride && !isOverrider(m)) {
2088             DiagnosticPosition pos = tree.pos();
2089             for (JCAnnotation a : tree.getModifiers().annotations) {
2090                 if (a.annotationType.type.tsym == syms.overrideType.tsym) {
2091                     pos = a.pos();
2092                     break;
2093                 }
2094             }
2095             log.error(pos,
2096                       explicitOverride ? (m.isStatic() ? Errors.StaticMethodsCannotBeAnnotatedWithOverride : Errors.MethodDoesNotOverrideSuperclass) :
2097                                 Errors.AnonymousDiamondMethodDoesNotOverrideSuperclass(Fragments.DiamondAnonymousMethodsImplicitlyOverride));
2098         }
2099     }
2100 
2101     void checkOverride(JCTree tree, Type site, ClassSymbol origin, MethodSymbol m) {
2102         TypeSymbol c = site.tsym;
2103         for (Symbol sym : c.members().getSymbolsByName(m.name)) {
2104             if (m.overrides(sym, origin, types, false)) {
2105                 if ((sym.flags() & ABSTRACT) == 0) {
2106                     checkOverride(tree, m, (MethodSymbol)sym, origin);
2107                 }
2108             }
2109         }
2110     }
2111 
2112     private Filter<Symbol> equalsHasCodeFilter = s -> MethodSymbol.implementation_filter.accepts(s) &&
2113             (s.flags() & BAD_OVERRIDE) == 0;
2114 
2115     public void checkClassOverrideEqualsAndHashIfNeeded(DiagnosticPosition pos,
2116             ClassSymbol someClass) {
2117         /* At present, annotations cannot possibly have a method that is override
2118          * equivalent with Object.equals(Object) but in any case the condition is
2119          * fine for completeness.
2120          */
2121         if (someClass == (ClassSymbol)syms.objectType.tsym ||
2122             someClass.isInterface() || someClass.isEnum() ||
2123             (someClass.flags() & ANNOTATION) != 0 ||
2124             (someClass.flags() & ABSTRACT) != 0) return;
2125         //anonymous inner classes implementing interfaces need especial treatment
2126         if (someClass.isAnonymous()) {
2127             List<Type> interfaces =  types.interfaces(someClass.type);
2128             if (interfaces != null && !interfaces.isEmpty() &&
2129                 interfaces.head.tsym == syms.comparatorType.tsym) return;
2130         }
2131         checkClassOverrideEqualsAndHash(pos, someClass);
2132     }
2133 
2134     private void checkClassOverrideEqualsAndHash(DiagnosticPosition pos,
2135             ClassSymbol someClass) {
2136         if (lint.isEnabled(LintCategory.OVERRIDES)) {
2137             MethodSymbol equalsAtObject = (MethodSymbol)syms.objectType
2138                     .tsym.members().findFirst(names.equals);
2139             MethodSymbol hashCodeAtObject = (MethodSymbol)syms.objectType
2140                     .tsym.members().findFirst(names.hashCode);
2141             boolean overridesEquals = types.implementation(equalsAtObject,
2142                 someClass, false, equalsHasCodeFilter).owner == someClass;
2143             boolean overridesHashCode = types.implementation(hashCodeAtObject,
2144                 someClass, false, equalsHasCodeFilter) != hashCodeAtObject;
2145 
2146             if (overridesEquals && !overridesHashCode) {
2147                 log.warning(LintCategory.OVERRIDES, pos,
2148                             Warnings.OverrideEqualsButNotHashcode(someClass));
2149             }
2150         }
2151     }
2152 
2153     public void checkModuleName (JCModuleDecl tree) {
2154         Name moduleName = tree.sym.name;
2155         Assert.checkNonNull(moduleName);
2156         if (lint.isEnabled(LintCategory.MODULE)) {
2157             JCExpression qualId = tree.qualId;
2158             while (qualId != null) {
2159                 Name componentName;
2160                 DiagnosticPosition pos;
2161                 switch (qualId.getTag()) {
2162                     case SELECT:
2163                         JCFieldAccess selectNode = ((JCFieldAccess) qualId);
2164                         componentName = selectNode.name;
2165                         pos = selectNode.pos();
2166                         qualId = selectNode.selected;
2167                         break;
2168                     case IDENT:
2169                         componentName = ((JCIdent) qualId).name;
2170                         pos = qualId.pos();
2171                         qualId = null;
2172                         break;
2173                     default:
2174                         throw new AssertionError("Unexpected qualified identifier: " + qualId.toString());
2175                 }
2176                 if (componentName != null) {
2177                     String moduleNameComponentString = componentName.toString();
2178                     int nameLength = moduleNameComponentString.length();
2179                     if (nameLength > 0 && Character.isDigit(moduleNameComponentString.charAt(nameLength - 1))) {
2180                         log.warning(Lint.LintCategory.MODULE, pos, Warnings.PoorChoiceForModuleName(componentName));
2181                     }
2182                 }
2183             }
2184         }
2185     }
2186 
2187     private boolean checkNameClash(ClassSymbol origin, Symbol s1, Symbol s2) {
2188         ClashFilter cf = new ClashFilter(origin.type);
2189         return (cf.accepts(s1) &&
2190                 cf.accepts(s2) &&
2191                 types.hasSameArgs(s1.erasure(types), s2.erasure(types)));
2192     }
2193 
2194 
2195     /** Check that all abstract members of given class have definitions.
2196      *  @param pos          Position to be used for error reporting.
2197      *  @param c            The class.
2198      */
2199     void checkAllDefined(DiagnosticPosition pos, ClassSymbol c) {
2200         MethodSymbol undef = types.firstUnimplementedAbstract(c);
2201         if (undef != null) {
2202             MethodSymbol undef1 =
2203                 new MethodSymbol(undef.flags(), undef.name,
2204                                  types.memberType(c.type, undef), undef.owner);
2205             log.error(pos,
2206                       Errors.DoesNotOverrideAbstract(c, undef1, undef1.location()));
2207         }
2208     }
2209 
2210     void checkNonCyclicDecl(JCClassDecl tree) {
2211         CycleChecker cc = new CycleChecker();
2212         cc.scan(tree);
2213         if (!cc.errorFound && !cc.partialCheck) {
2214             tree.sym.flags_field |= ACYCLIC;
2215         }
2216     }
2217 
2218     class CycleChecker extends TreeScanner {
2219 
2220         List<Symbol> seenClasses = List.nil();
2221         boolean errorFound = false;
2222         boolean partialCheck = false;
2223 
2224         private void checkSymbol(DiagnosticPosition pos, Symbol sym) {
2225             if (sym != null && sym.kind == TYP) {
2226                 Env<AttrContext> classEnv = enter.getEnv((TypeSymbol)sym);
2227                 if (classEnv != null) {
2228                     DiagnosticSource prevSource = log.currentSource();
2229                     try {
2230                         log.useSource(classEnv.toplevel.sourcefile);
2231                         scan(classEnv.tree);
2232                     }
2233                     finally {
2234                         log.useSource(prevSource.getFile());
2235                     }
2236                 } else if (sym.kind == TYP) {
2237                     checkClass(pos, sym, List.nil());
2238                 }
2239             } else {
2240                 //not completed yet
2241                 partialCheck = true;
2242             }
2243         }
2244 
2245         @Override
2246         public void visitSelect(JCFieldAccess tree) {
2247             super.visitSelect(tree);
2248             checkSymbol(tree.pos(), tree.sym);
2249         }
2250 
2251         @Override
2252         public void visitIdent(JCIdent tree) {
2253             checkSymbol(tree.pos(), tree.sym);
2254         }
2255 
2256         @Override
2257         public void visitTypeApply(JCTypeApply tree) {
2258             scan(tree.clazz);
2259         }
2260 
2261         @Override
2262         public void visitTypeArray(JCArrayTypeTree tree) {
2263             scan(tree.elemtype);
2264         }
2265 
2266         @Override
2267         public void visitClassDef(JCClassDecl tree) {
2268             List<JCTree> supertypes = List.nil();
2269             if (tree.getExtendsClause() != null) {
2270                 supertypes = supertypes.prepend(tree.getExtendsClause());
2271             }
2272             if (tree.getImplementsClause() != null) {
2273                 for (JCTree intf : tree.getImplementsClause()) {
2274                     supertypes = supertypes.prepend(intf);
2275                 }
2276             }
2277             checkClass(tree.pos(), tree.sym, supertypes);
2278         }
2279 
2280         void checkClass(DiagnosticPosition pos, Symbol c, List<JCTree> supertypes) {
2281             if ((c.flags_field & ACYCLIC) != 0)
2282                 return;
2283             if (seenClasses.contains(c)) {
2284                 errorFound = true;
2285                 noteCyclic(pos, (ClassSymbol)c);
2286             } else if (!c.type.isErroneous()) {
2287                 try {
2288                     seenClasses = seenClasses.prepend(c);
2289                     if (c.type.hasTag(CLASS)) {
2290                         if (supertypes.nonEmpty()) {
2291                             scan(supertypes);
2292                         }
2293                         else {
2294                             ClassType ct = (ClassType)c.type;
2295                             if (ct.supertype_field == null ||
2296                                     ct.interfaces_field == null) {
2297                                 //not completed yet
2298                                 partialCheck = true;
2299                                 return;
2300                             }
2301                             checkSymbol(pos, ct.supertype_field.tsym);
2302                             for (Type intf : ct.interfaces_field) {
2303                                 checkSymbol(pos, intf.tsym);
2304                             }
2305                         }
2306                         if (c.owner.kind == TYP) {
2307                             checkSymbol(pos, c.owner);
2308                         }
2309                     }
2310                 } finally {
2311                     seenClasses = seenClasses.tail;
2312                 }
2313             }
2314         }
2315     }
2316 
2317     /** Check for cyclic references. Issue an error if the
2318      *  symbol of the type referred to has a LOCKED flag set.
2319      *
2320      *  @param pos      Position to be used for error reporting.
2321      *  @param t        The type referred to.
2322      */
2323     void checkNonCyclic(DiagnosticPosition pos, Type t) {
2324         checkNonCyclicInternal(pos, t);
2325     }
2326 
2327 
2328     void checkNonCyclic(DiagnosticPosition pos, TypeVar t) {
2329         checkNonCyclic1(pos, t, List.nil());
2330     }
2331 
2332     private void checkNonCyclic1(DiagnosticPosition pos, Type t, List<TypeVar> seen) {
2333         final TypeVar tv;
2334         if  (t.hasTag(TYPEVAR) && (t.tsym.flags() & UNATTRIBUTED) != 0)
2335             return;
2336         if (seen.contains(t)) {
2337             tv = (TypeVar)t;
2338             tv.setUpperBound(types.createErrorType(t));
2339             log.error(pos, Errors.CyclicInheritance(t));
2340         } else if (t.hasTag(TYPEVAR)) {
2341             tv = (TypeVar)t;
2342             seen = seen.prepend(tv);
2343             for (Type b : types.getBounds(tv))
2344                 checkNonCyclic1(pos, b, seen);
2345         }
2346     }
2347 
2348     /** Check for cyclic references. Issue an error if the
2349      *  symbol of the type referred to has a LOCKED flag set.
2350      *
2351      *  @param pos      Position to be used for error reporting.
2352      *  @param t        The type referred to.
2353      *  @returns        True if the check completed on all attributed classes
2354      */
2355     private boolean checkNonCyclicInternal(DiagnosticPosition pos, Type t) {
2356         boolean complete = true; // was the check complete?
2357         //- System.err.println("checkNonCyclicInternal("+t+");");//DEBUG
2358         Symbol c = t.tsym;
2359         if ((c.flags_field & ACYCLIC) != 0) return true;
2360 
2361         if ((c.flags_field & LOCKED) != 0) {
2362             noteCyclic(pos, (ClassSymbol)c);
2363         } else if (!c.type.isErroneous()) {
2364             try {
2365                 c.flags_field |= LOCKED;
2366                 if (c.type.hasTag(CLASS)) {
2367                     ClassType clazz = (ClassType)c.type;
2368                     if (clazz.interfaces_field != null)
2369                         for (List<Type> l=clazz.interfaces_field; l.nonEmpty(); l=l.tail)
2370                             complete &= checkNonCyclicInternal(pos, l.head);
2371                     if (clazz.supertype_field != null) {
2372                         Type st = clazz.supertype_field;
2373                         if (st != null && st.hasTag(CLASS))
2374                             complete &= checkNonCyclicInternal(pos, st);
2375                     }
2376                     if (c.owner.kind == TYP)
2377                         complete &= checkNonCyclicInternal(pos, c.owner.type);
2378                 }
2379             } finally {
2380                 c.flags_field &= ~LOCKED;
2381             }
2382         }
2383         if (complete)
2384             complete = ((c.flags_field & UNATTRIBUTED) == 0) && c.isCompleted();
2385         if (complete) c.flags_field |= ACYCLIC;
2386         return complete;
2387     }
2388 
2389     /** Note that we found an inheritance cycle. */
2390     private void noteCyclic(DiagnosticPosition pos, ClassSymbol c) {
2391         log.error(pos, Errors.CyclicInheritance(c));
2392         for (List<Type> l=types.interfaces(c.type); l.nonEmpty(); l=l.tail)
2393             l.head = types.createErrorType((ClassSymbol)l.head.tsym, Type.noType);
2394         Type st = types.supertype(c.type);
2395         if (st.hasTag(CLASS))
2396             ((ClassType)c.type).supertype_field = types.createErrorType((ClassSymbol)st.tsym, Type.noType);
2397         c.type = types.createErrorType(c, c.type);
2398         c.flags_field |= ACYCLIC;
2399     }
2400 
2401     /** Check that all methods which implement some
2402      *  method conform to the method they implement.
2403      *  @param tree         The class definition whose members are checked.
2404      */
2405     void checkImplementations(JCClassDecl tree) {
2406         checkImplementations(tree, tree.sym, tree.sym);
2407     }
2408     //where
2409         /** Check that all methods which implement some
2410          *  method in `ic' conform to the method they implement.
2411          */
2412         void checkImplementations(JCTree tree, ClassSymbol origin, ClassSymbol ic) {
2413             for (List<Type> l = types.closure(ic.type); l.nonEmpty(); l = l.tail) {
2414                 ClassSymbol lc = (ClassSymbol)l.head.tsym;
2415                 if ((lc.flags() & ABSTRACT) != 0) {
2416                     for (Symbol sym : lc.members().getSymbols(NON_RECURSIVE)) {
2417                         if (sym.kind == MTH &&
2418                             (sym.flags() & (STATIC|ABSTRACT)) == ABSTRACT) {
2419                             MethodSymbol absmeth = (MethodSymbol)sym;
2420                             MethodSymbol implmeth = absmeth.implementation(origin, types, false);
2421                             if (implmeth != null && implmeth != absmeth &&
2422                                 (implmeth.owner.flags() & INTERFACE) ==
2423                                 (origin.flags() & INTERFACE)) {
2424                                 // don't check if implmeth is in a class, yet
2425                                 // origin is an interface. This case arises only
2426                                 // if implmeth is declared in Object. The reason is
2427                                 // that interfaces really don't inherit from
2428                                 // Object it's just that the compiler represents
2429                                 // things that way.
2430                                 checkOverride(tree, implmeth, absmeth, origin);
2431                             }
2432                         }
2433                     }
2434                 }
2435             }
2436         }
2437 
2438     /** Check that all abstract methods implemented by a class are
2439      *  mutually compatible.
2440      *  @param pos          Position to be used for error reporting.
2441      *  @param c            The class whose interfaces are checked.
2442      */
2443     void checkCompatibleSupertypes(DiagnosticPosition pos, Type c) {
2444         List<Type> supertypes = types.interfaces(c);
2445         Type supertype = types.supertype(c);
2446         if (supertype.hasTag(CLASS) &&
2447             (supertype.tsym.flags() & ABSTRACT) != 0)
2448             supertypes = supertypes.prepend(supertype);
2449         for (List<Type> l = supertypes; l.nonEmpty(); l = l.tail) {
2450             if (!l.head.getTypeArguments().isEmpty() &&
2451                 !checkCompatibleAbstracts(pos, l.head, l.head, c))
2452                 return;
2453             for (List<Type> m = supertypes; m != l; m = m.tail)
2454                 if (!checkCompatibleAbstracts(pos, l.head, m.head, c))
2455                     return;
2456         }
2457         checkCompatibleConcretes(pos, c);
2458     }
2459 
2460     /** Check that all non-override equivalent methods accessible from 'site'
2461      *  are mutually compatible (JLS 8.4.8/9.4.1).
2462      *
2463      *  @param pos  Position to be used for error reporting.
2464      *  @param site The class whose methods are checked.
2465      *  @param sym  The method symbol to be checked.
2466      */
2467     void checkOverrideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2468          ClashFilter cf = new ClashFilter(site);
2469         //for each method m1 that is overridden (directly or indirectly)
2470         //by method 'sym' in 'site'...
2471 
2472         List<MethodSymbol> potentiallyAmbiguousList = List.nil();
2473         boolean overridesAny = false;
2474         ArrayList<Symbol> symbolsByName = new ArrayList<>();
2475         types.membersClosure(site, false).getSymbolsByName(sym.name, cf).forEach(symbolsByName::add);
2476         for (Symbol m1 : symbolsByName) {
2477             if (!sym.overrides(m1, site.tsym, types, false)) {
2478                 if (m1 == sym) {
2479                     continue;
2480                 }
2481 
2482                 if (!overridesAny) {
2483                     potentiallyAmbiguousList = potentiallyAmbiguousList.prepend((MethodSymbol)m1);
2484                 }
2485                 continue;
2486             }
2487 
2488             if (m1 != sym) {
2489                 overridesAny = true;
2490                 potentiallyAmbiguousList = List.nil();
2491             }
2492 
2493             //...check each method m2 that is a member of 'site'
2494             for (Symbol m2 : symbolsByName) {
2495                 if (m2 == m1) continue;
2496                 //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2497                 //a member of 'site') and (ii) m1 has the same erasure as m2, issue an error
2498                 if (!types.isSubSignature(sym.type, types.memberType(site, m2), Feature.STRICT_METHOD_CLASH_CHECK.allowedInSource(source)) &&
2499                         types.hasSameArgs(m2.erasure(types), m1.erasure(types))) {
2500                     sym.flags_field |= CLASH;
2501                     if (m1 == sym) {
2502                         log.error(pos, Errors.NameClashSameErasureNoOverride(
2503                             m1.name, types.memberType(site, m1).asMethodType().getParameterTypes(), m1.location(),
2504                             m2.name, types.memberType(site, m2).asMethodType().getParameterTypes(), m2.location()));
2505                     } else {
2506                         ClassType ct = (ClassType)site;
2507                         String kind = ct.isInterface() ? "interface" : "class";
2508                         log.error(pos, Errors.NameClashSameErasureNoOverride1(
2509                             kind,
2510                             ct.tsym.name,
2511                             m1.name,
2512                             types.memberType(site, m1).asMethodType().getParameterTypes(),
2513                             m1.location(),
2514                             m2.name,
2515                             types.memberType(site, m2).asMethodType().getParameterTypes(),
2516                             m2.location()));
2517                     }
2518                     return;
2519                 }
2520             }
2521         }
2522 
2523         if (!overridesAny) {
2524             for (MethodSymbol m: potentiallyAmbiguousList) {
2525                 checkPotentiallyAmbiguousOverloads(pos, site, sym, m);
2526             }
2527         }
2528     }
2529 
2530     /** Check that all static methods accessible from 'site' are
2531      *  mutually compatible (JLS 8.4.8).
2532      *
2533      *  @param pos  Position to be used for error reporting.
2534      *  @param site The class whose methods are checked.
2535      *  @param sym  The method symbol to be checked.
2536      */
2537     void checkHideClashes(DiagnosticPosition pos, Type site, MethodSymbol sym) {
2538         ClashFilter cf = new ClashFilter(site);
2539         //for each method m1 that is a member of 'site'...
2540         for (Symbol s : types.membersClosure(site, true).getSymbolsByName(sym.name, cf)) {
2541             //if (i) the signature of 'sym' is not a subsignature of m1 (seen as
2542             //a member of 'site') and (ii) 'sym' has the same erasure as m1, issue an error
2543             if (!types.isSubSignature(sym.type, types.memberType(site, s), Feature.STRICT_METHOD_CLASH_CHECK.allowedInSource(source))) {
2544                 if (types.hasSameArgs(s.erasure(types), sym.erasure(types))) {
2545                     log.error(pos,
2546                               Errors.NameClashSameErasureNoHide(sym, sym.location(), s, s.location()));
2547                     return;
2548                 } else {
2549                     checkPotentiallyAmbiguousOverloads(pos, site, sym, (MethodSymbol)s);
2550                 }
2551             }
2552          }
2553      }
2554 
2555      //where
2556      private class ClashFilter implements Filter<Symbol> {
2557 
2558          Type site;
2559 
2560          ClashFilter(Type site) {
2561              this.site = site;
2562          }
2563 
2564          boolean shouldSkip(Symbol s) {
2565              return (s.flags() & CLASH) != 0 &&
2566                 s.owner == site.tsym;
2567          }
2568 
2569          public boolean accepts(Symbol s) {
2570              return s.kind == MTH &&
2571                      (s.flags() & SYNTHETIC) == 0 &&
2572                      !shouldSkip(s) &&
2573                      s.isInheritedIn(site.tsym, types) &&
2574                      !s.isConstructor();
2575          }
2576      }
2577 
2578     void checkDefaultMethodClashes(DiagnosticPosition pos, Type site) {
2579         DefaultMethodClashFilter dcf = new DefaultMethodClashFilter(site);
2580         for (Symbol m : types.membersClosure(site, false).getSymbols(dcf)) {
2581             Assert.check(m.kind == MTH);
2582             List<MethodSymbol> prov = types.interfaceCandidates(site, (MethodSymbol)m);
2583             if (prov.size() > 1) {
2584                 ListBuffer<Symbol> abstracts = new ListBuffer<>();
2585                 ListBuffer<Symbol> defaults = new ListBuffer<>();
2586                 for (MethodSymbol provSym : prov) {
2587                     if ((provSym.flags() & DEFAULT) != 0) {
2588                         defaults = defaults.append(provSym);
2589                     } else if ((provSym.flags() & ABSTRACT) != 0) {
2590                         abstracts = abstracts.append(provSym);
2591                     }
2592                     if (defaults.nonEmpty() && defaults.size() + abstracts.size() >= 2) {
2593                         //strong semantics - issue an error if two sibling interfaces
2594                         //have two override-equivalent defaults - or if one is abstract
2595                         //and the other is default
2596                         Fragment diagKey;
2597                         Symbol s1 = defaults.first();
2598                         Symbol s2;
2599                         if (defaults.size() > 1) {
2600                             s2 = defaults.toList().tail.head;
2601                             diagKey = Fragments.IncompatibleUnrelatedDefaults(Kinds.kindName(site.tsym), site,
2602                                     m.name, types.memberType(site, m).getParameterTypes(),
2603                                     s1.location(), s2.location());
2604 
2605                         } else {
2606                             s2 = abstracts.first();
2607                             diagKey = Fragments.IncompatibleAbstractDefault(Kinds.kindName(site.tsym), site,
2608                                     m.name, types.memberType(site, m).getParameterTypes(),
2609                                     s1.location(), s2.location());
2610                         }
2611                         log.error(pos, Errors.TypesIncompatible(s1.location().type, s2.location().type, diagKey));
2612                         break;
2613                     }
2614                 }
2615             }
2616         }
2617     }
2618 
2619     //where
2620      private class DefaultMethodClashFilter implements Filter<Symbol> {
2621 
2622          Type site;
2623 
2624          DefaultMethodClashFilter(Type site) {
2625              this.site = site;
2626          }
2627 
2628          public boolean accepts(Symbol s) {
2629              return s.kind == MTH &&
2630                      (s.flags() & DEFAULT) != 0 &&
2631                      s.isInheritedIn(site.tsym, types) &&
2632                      !s.isConstructor();
2633          }
2634      }
2635 
2636     /**
2637       * Report warnings for potentially ambiguous method declarations. Two declarations
2638       * are potentially ambiguous if they feature two unrelated functional interface
2639       * in same argument position (in which case, a call site passing an implicit
2640       * lambda would be ambiguous).
2641       */
2642     void checkPotentiallyAmbiguousOverloads(DiagnosticPosition pos, Type site,
2643             MethodSymbol msym1, MethodSymbol msym2) {
2644         if (msym1 != msym2 &&
2645                 Feature.DEFAULT_METHODS.allowedInSource(source) &&
2646                 lint.isEnabled(LintCategory.OVERLOADS) &&
2647                 (msym1.flags() & POTENTIALLY_AMBIGUOUS) == 0 &&
2648                 (msym2.flags() & POTENTIALLY_AMBIGUOUS) == 0) {
2649             Type mt1 = types.memberType(site, msym1);
2650             Type mt2 = types.memberType(site, msym2);
2651             //if both generic methods, adjust type variables
2652             if (mt1.hasTag(FORALL) && mt2.hasTag(FORALL) &&
2653                     types.hasSameBounds((ForAll)mt1, (ForAll)mt2)) {
2654                 mt2 = types.subst(mt2, ((ForAll)mt2).tvars, ((ForAll)mt1).tvars);
2655             }
2656             //expand varargs methods if needed
2657             int maxLength = Math.max(mt1.getParameterTypes().length(), mt2.getParameterTypes().length());
2658             List<Type> args1 = rs.adjustArgs(mt1.getParameterTypes(), msym1, maxLength, true);
2659             List<Type> args2 = rs.adjustArgs(mt2.getParameterTypes(), msym2, maxLength, true);
2660             //if arities don't match, exit
2661             if (args1.length() != args2.length()) return;
2662             boolean potentiallyAmbiguous = false;
2663             while (args1.nonEmpty() && args2.nonEmpty()) {
2664                 Type s = args1.head;
2665                 Type t = args2.head;
2666                 if (!types.isSubtype(t, s) && !types.isSubtype(s, t)) {
2667                     if (types.isFunctionalInterface(s) && types.isFunctionalInterface(t) &&
2668                             types.findDescriptorType(s).getParameterTypes().length() > 0 &&
2669                             types.findDescriptorType(s).getParameterTypes().length() ==
2670                             types.findDescriptorType(t).getParameterTypes().length()) {
2671                         potentiallyAmbiguous = true;
2672                     } else {
2673                         break;
2674                     }
2675                 }
2676                 args1 = args1.tail;
2677                 args2 = args2.tail;
2678             }
2679             if (potentiallyAmbiguous) {
2680                 //we found two incompatible functional interfaces with same arity
2681                 //this means a call site passing an implicit lambda would be ambiguous
2682                 msym1.flags_field |= POTENTIALLY_AMBIGUOUS;
2683                 msym2.flags_field |= POTENTIALLY_AMBIGUOUS;
2684                 log.warning(LintCategory.OVERLOADS, pos,
2685                             Warnings.PotentiallyAmbiguousOverload(msym1, msym1.location(),
2686                                                                   msym2, msym2.location()));
2687                 return;
2688             }
2689         }
2690     }
2691 
2692     void checkAccessFromSerializableElement(final JCTree tree, boolean isLambda) {
2693         if (warnOnAnyAccessToMembers ||
2694             (lint.isEnabled(LintCategory.SERIAL) &&
2695             !lint.isSuppressed(LintCategory.SERIAL) &&
2696             isLambda)) {
2697             Symbol sym = TreeInfo.symbol(tree);
2698             if (!sym.kind.matches(KindSelector.VAL_MTH)) {
2699                 return;
2700             }
2701 
2702             if (sym.kind == VAR) {
2703                 if ((sym.flags() & PARAMETER) != 0 ||
2704                     sym.isLocal() ||
2705                     sym.name == names._this ||
2706                     sym.name == names._super) {
2707                     return;
2708                 }
2709             }
2710 
2711             if (!types.isSubtype(sym.owner.type, syms.serializableType) &&
2712                 isEffectivelyNonPublic(sym)) {
2713                 if (isLambda) {
2714                     if (belongsToRestrictedPackage(sym)) {
2715                         log.warning(LintCategory.SERIAL, tree.pos(),
2716                                     Warnings.AccessToMemberFromSerializableLambda(sym));
2717                     }
2718                 } else {
2719                     log.warning(tree.pos(),
2720                                 Warnings.AccessToMemberFromSerializableElement(sym));
2721                 }
2722             }
2723         }
2724     }
2725 
2726     private boolean isEffectivelyNonPublic(Symbol sym) {
2727         if (sym.packge() == syms.rootPackage) {
2728             return false;
2729         }
2730 
2731         while (sym.kind != PCK) {
2732             if ((sym.flags() & PUBLIC) == 0) {
2733                 return true;
2734             }
2735             sym = sym.owner;
2736         }
2737         return false;
2738     }
2739 
2740     private boolean belongsToRestrictedPackage(Symbol sym) {
2741         String fullName = sym.packge().fullname.toString();
2742         return fullName.startsWith("java.") ||
2743                 fullName.startsWith("javax.") ||
2744                 fullName.startsWith("sun.") ||
2745                 fullName.contains(".internal.");
2746     }
2747 
2748     /** Check that class c does not implement directly or indirectly
2749      *  the same parameterized interface with two different argument lists.
2750      *  @param pos          Position to be used for error reporting.
2751      *  @param type         The type whose interfaces are checked.
2752      */
2753     void checkClassBounds(DiagnosticPosition pos, Type type) {
2754         checkClassBounds(pos, new HashMap<TypeSymbol,Type>(), type);
2755     }
2756 //where
2757         /** Enter all interfaces of type `type' into the hash table `seensofar'
2758          *  with their class symbol as key and their type as value. Make
2759          *  sure no class is entered with two different types.
2760          */
2761         void checkClassBounds(DiagnosticPosition pos,
2762                               Map<TypeSymbol,Type> seensofar,
2763                               Type type) {
2764             if (type.isErroneous()) return;
2765             for (List<Type> l = types.interfaces(type); l.nonEmpty(); l = l.tail) {
2766                 Type it = l.head;
2767                 if (type.hasTag(CLASS) && !it.hasTag(CLASS)) continue; // JLS 8.1.5
2768 
2769                 Type oldit = seensofar.put(it.tsym, it);
2770                 if (oldit != null) {
2771                     List<Type> oldparams = oldit.allparams();
2772                     List<Type> newparams = it.allparams();
2773                     if (!types.containsTypeEquivalent(oldparams, newparams))
2774                         log.error(pos,
2775                                   Errors.CantInheritDiffArg(it.tsym,
2776                                                             Type.toString(oldparams),
2777                                                             Type.toString(newparams)));
2778                 }
2779                 checkClassBounds(pos, seensofar, it);
2780             }
2781             Type st = types.supertype(type);
2782             if (type.hasTag(CLASS) && !st.hasTag(CLASS)) return; // JLS 8.1.4
2783             if (st != Type.noType) checkClassBounds(pos, seensofar, st);
2784         }
2785 
2786     /** Enter interface into into set.
2787      *  If it existed already, issue a "repeated interface" error.
2788      */
2789     void checkNotRepeated(DiagnosticPosition pos, Type it, Set<Type> its) {
2790         if (its.contains(it))
2791             log.error(pos, Errors.RepeatedInterface);
2792         else {
2793             its.add(it);
2794         }
2795     }
2796 
2797 /* *************************************************************************
2798  * Check annotations
2799  **************************************************************************/
2800 
2801     /**
2802      * Recursively validate annotations values
2803      */
2804     void validateAnnotationTree(JCTree tree) {
2805         class AnnotationValidator extends TreeScanner {
2806             @Override
2807             public void visitAnnotation(JCAnnotation tree) {
2808                 if (!tree.type.isErroneous() && tree.type.tsym.isAnnotationType()) {
2809                     super.visitAnnotation(tree);
2810                     validateAnnotation(tree);
2811                 }
2812             }
2813         }
2814         tree.accept(new AnnotationValidator());
2815     }
2816 
2817     /**
2818      *  {@literal
2819      *  Annotation types are restricted to primitives, String, an
2820      *  enum, an annotation, Class, Class<?>, Class<? extends
2821      *  Anything>, arrays of the preceding.
2822      *  }
2823      */
2824     void validateAnnotationType(JCTree restype) {
2825         // restype may be null if an error occurred, so don't bother validating it
2826         if (restype != null) {
2827             validateAnnotationType(restype.pos(), restype.type);
2828         }
2829     }
2830 
2831     void validateAnnotationType(DiagnosticPosition pos, Type type) {
2832         if (type.isPrimitive()) return;
2833         if (types.isSameType(type, syms.stringType)) return;
2834         if ((type.tsym.flags() & Flags.ENUM) != 0) return;
2835         if ((type.tsym.flags() & Flags.ANNOTATION) != 0) return;
2836         if (types.cvarLowerBound(type).tsym == syms.classType.tsym) return;
2837         if (types.isArray(type) && !types.isArray(types.elemtype(type))) {
2838             validateAnnotationType(pos, types.elemtype(type));
2839             return;
2840         }
2841         log.error(pos, Errors.InvalidAnnotationMemberType);
2842     }
2843 
2844     /**
2845      * "It is also a compile-time error if any method declared in an
2846      * annotation type has a signature that is override-equivalent to
2847      * that of any public or protected method declared in class Object
2848      * or in the interface annotation.Annotation."
2849      *
2850      * @jls 9.6 Annotation Types
2851      */
2852     void validateAnnotationMethod(DiagnosticPosition pos, MethodSymbol m) {
2853         for (Type sup = syms.annotationType; sup.hasTag(CLASS); sup = types.supertype(sup)) {
2854             Scope s = sup.tsym.members();
2855             for (Symbol sym : s.getSymbolsByName(m.name)) {
2856                 if (sym.kind == MTH &&
2857                     (sym.flags() & (PUBLIC | PROTECTED)) != 0 &&
2858                     types.overrideEquivalent(m.type, sym.type))
2859                     log.error(pos, Errors.IntfAnnotationMemberClash(sym, sup));
2860             }
2861         }
2862     }
2863 
2864     /** Check the annotations of a symbol.
2865      */
2866     public void validateAnnotations(List<JCAnnotation> annotations, JCTree declarationTree, Symbol s) {
2867         for (JCAnnotation a : annotations)
2868             validateAnnotation(a, declarationTree, s);
2869     }
2870 
2871     /** Check the type annotations.
2872      */
2873     public void validateTypeAnnotations(List<JCAnnotation> annotations, boolean isTypeParameter) {
2874         for (JCAnnotation a : annotations)
2875             validateTypeAnnotation(a, isTypeParameter);
2876     }
2877 
2878     /** Check an annotation of a symbol.
2879      */
2880     private void validateAnnotation(JCAnnotation a, JCTree declarationTree, Symbol s) {
2881         validateAnnotationTree(a);
2882         boolean isRecordMember = (s.flags_field & RECORD) != 0 || s.enclClass() != null && s.enclClass().isRecord();
2883 
2884         boolean isRecordField = isRecordMember &&
2885                 (s.flags_field & (Flags.PRIVATE | Flags.FINAL | Flags.GENERATED_MEMBER | Flags.RECORD)) != 0 &&
2886                 declarationTree.hasTag(VARDEF) &&
2887                 s.owner.kind == TYP;
2888 
2889         if (isRecordField) {
2890             // first we need to check if the annotation is applicable to records
2891             Name[] targets = getTargetNames(a);
2892             boolean appliesToRecords = false;
2893             for (Name target : targets) {
2894                 appliesToRecords =
2895                                 target == names.FIELD ||
2896                                 target == names.PARAMETER ||
2897                                 target == names.METHOD ||
2898                                 target == names.TYPE_USE ||
2899                                 target == names.RECORD_COMPONENT;
2900                 if (appliesToRecords) {
2901                     break;
2902                 }
2903             }
2904             if (!appliesToRecords) {
2905                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
2906             } else {
2907                 /* lets now find the annotations in the field that are targeted to record components and append them to
2908                  * the corresponding record component
2909                  */
2910                 ClassSymbol recordClass = (ClassSymbol) s.owner;
2911                 RecordComponent rc = recordClass.getRecordComponent((VarSymbol)s, false);
2912                 SymbolMetadata metadata = rc.getMetadata();
2913                 if (metadata == null || metadata.isEmpty()) {
2914                     /* if not is empty then we have already been here, which is the case if multiple annotations are applied
2915                      * to the record component declaration
2916                      */
2917                     rc.appendAttributes(s.getRawAttributes().stream().filter(anno ->
2918                             Arrays.stream(getTargetNames(anno.type.tsym)).anyMatch(name -> name == names.RECORD_COMPONENT)
2919                     ).collect(List.collector()));
2920                     rc.appendUniqueTypeAttributes(s.getRawTypeAttributes());
2921                     // to get all the type annotations applied to the type
2922                     rc.type = s.type;
2923                 }
2924             }
2925         }
2926 
2927         if (a.type.tsym.isAnnotationType() && !annotationApplicable(a, s)) {
2928             if (isRecordMember && (s.flags_field & Flags.GENERATED_MEMBER) != 0) {
2929                 /* so we have found an annotation that is not applicable to a record member that was generated by the
2930                  * compiler. This was intentionally done at TypeEnter, now is the moment strip away the annotations
2931                  * that are not applicable to the given record member
2932                  */
2933                 JCModifiers modifiers = TreeInfo.getModifiers(declarationTree);
2934                 // lets first remove the annotation from the modifier
2935                 if (modifiers != null) {
2936                     ListBuffer<JCAnnotation> newAnnotations = new ListBuffer<>();
2937                     for (JCAnnotation anno : modifiers.annotations) {
2938                         if (anno != a) {
2939                             newAnnotations.add(anno);
2940                         }
2941                     }
2942                     modifiers.annotations = newAnnotations.toList();
2943                 }
2944                 // now lets remove it from the symbol
2945                 s.getMetadata().remove(a.attribute);
2946             } else {
2947                 log.error(a.pos(), Errors.AnnotationTypeNotApplicable);
2948             }
2949         }
2950 
2951         if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
2952             if (s.kind != TYP) {
2953                 log.error(a.pos(), Errors.BadFunctionalIntfAnno);
2954             } else if (!s.isInterface() || (s.flags() & ANNOTATION) != 0) {
2955                 log.error(a.pos(), Errors.BadFunctionalIntfAnno1(Fragments.NotAFunctionalIntf(s)));
2956             }
2957         }
2958     }
2959 
2960     public void validateTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
2961         Assert.checkNonNull(a.type);
2962         validateAnnotationTree(a);
2963 
2964         if (a.hasTag(TYPE_ANNOTATION) &&
2965                 !a.annotationType.type.isErroneous() &&
2966                 !isTypeAnnotation(a, isTypeParameter)) {
2967             log.error(a.pos(), Errors.AnnotationTypeNotApplicableToType(a.type));
2968         }
2969     }
2970 
2971     /**
2972      * Validate the proposed container 'repeatable' on the
2973      * annotation type symbol 's'. Report errors at position
2974      * 'pos'.
2975      *
2976      * @param s The (annotation)type declaration annotated with a @Repeatable
2977      * @param repeatable the @Repeatable on 's'
2978      * @param pos where to report errors
2979      */
2980     public void validateRepeatable(TypeSymbol s, Attribute.Compound repeatable, DiagnosticPosition pos) {
2981         Assert.check(types.isSameType(repeatable.type, syms.repeatableType));
2982 
2983         Type t = null;
2984         List<Pair<MethodSymbol,Attribute>> l = repeatable.values;
2985         if (!l.isEmpty()) {
2986             Assert.check(l.head.fst.name == names.value);
2987             t = ((Attribute.Class)l.head.snd).getValue();
2988         }
2989 
2990         if (t == null) {
2991             // errors should already have been reported during Annotate
2992             return;
2993         }
2994 
2995         validateValue(t.tsym, s, pos);
2996         validateRetention(t.tsym, s, pos);
2997         validateDocumented(t.tsym, s, pos);
2998         validateInherited(t.tsym, s, pos);
2999         validateTarget(t.tsym, s, pos);
3000         validateDefault(t.tsym, pos);
3001     }
3002 
3003     private void validateValue(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3004         Symbol sym = container.members().findFirst(names.value);
3005         if (sym != null && sym.kind == MTH) {
3006             MethodSymbol m = (MethodSymbol) sym;
3007             Type ret = m.getReturnType();
3008             if (!(ret.hasTag(ARRAY) && types.isSameType(((ArrayType)ret).elemtype, contained.type))) {
3009                 log.error(pos,
3010                           Errors.InvalidRepeatableAnnotationValueReturn(container,
3011                                                                         ret,
3012                                                                         types.makeArrayType(contained.type)));
3013             }
3014         } else {
3015             log.error(pos, Errors.InvalidRepeatableAnnotationNoValue(container));
3016         }
3017     }
3018 
3019     private void validateRetention(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3020         Attribute.RetentionPolicy containerRetention = types.getRetention(container);
3021         Attribute.RetentionPolicy containedRetention = types.getRetention(contained);
3022 
3023         boolean error = false;
3024         switch (containedRetention) {
3025         case RUNTIME:
3026             if (containerRetention != Attribute.RetentionPolicy.RUNTIME) {
3027                 error = true;
3028             }
3029             break;
3030         case CLASS:
3031             if (containerRetention == Attribute.RetentionPolicy.SOURCE)  {
3032                 error = true;
3033             }
3034         }
3035         if (error ) {
3036             log.error(pos,
3037                       Errors.InvalidRepeatableAnnotationRetention(container,
3038                                                                   containerRetention.name(),
3039                                                                   contained,
3040                                                                   containedRetention.name()));
3041         }
3042     }
3043 
3044     private void validateDocumented(Symbol container, Symbol contained, DiagnosticPosition pos) {
3045         if (contained.attribute(syms.documentedType.tsym) != null) {
3046             if (container.attribute(syms.documentedType.tsym) == null) {
3047                 log.error(pos, Errors.InvalidRepeatableAnnotationNotDocumented(container, contained));
3048             }
3049         }
3050     }
3051 
3052     private void validateInherited(Symbol container, Symbol contained, DiagnosticPosition pos) {
3053         if (contained.attribute(syms.inheritedType.tsym) != null) {
3054             if (container.attribute(syms.inheritedType.tsym) == null) {
3055                 log.error(pos, Errors.InvalidRepeatableAnnotationNotInherited(container, contained));
3056             }
3057         }
3058     }
3059 
3060     private void validateTarget(TypeSymbol container, TypeSymbol contained, DiagnosticPosition pos) {
3061         // The set of targets the container is applicable to must be a subset
3062         // (with respect to annotation target semantics) of the set of targets
3063         // the contained is applicable to. The target sets may be implicit or
3064         // explicit.
3065 
3066         Set<Name> containerTargets;
3067         Attribute.Array containerTarget = getAttributeTargetAttribute(container);
3068         if (containerTarget == null) {
3069             containerTargets = getDefaultTargetSet();
3070         } else {
3071             containerTargets = new HashSet<>();
3072             for (Attribute app : containerTarget.values) {
3073                 if (!(app instanceof Attribute.Enum)) {
3074                     continue; // recovery
3075                 }
3076                 Attribute.Enum e = (Attribute.Enum)app;
3077                 containerTargets.add(e.value.name);
3078             }
3079         }
3080 
3081         Set<Name> containedTargets;
3082         Attribute.Array containedTarget = getAttributeTargetAttribute(contained);
3083         if (containedTarget == null) {
3084             containedTargets = getDefaultTargetSet();
3085         } else {
3086             containedTargets = new HashSet<>();
3087             for (Attribute app : containedTarget.values) {
3088                 if (!(app instanceof Attribute.Enum)) {
3089                     continue; // recovery
3090                 }
3091                 Attribute.Enum e = (Attribute.Enum)app;
3092                 containedTargets.add(e.value.name);
3093             }
3094         }
3095 
3096         if (!isTargetSubsetOf(containerTargets, containedTargets)) {
3097             log.error(pos, Errors.InvalidRepeatableAnnotationIncompatibleTarget(container, contained));
3098         }
3099     }
3100 
3101     /* get a set of names for the default target */
3102     private Set<Name> getDefaultTargetSet() {
3103         if (defaultTargets == null) {
3104             Set<Name> targets = new HashSet<>();
3105             targets.add(names.ANNOTATION_TYPE);
3106             targets.add(names.CONSTRUCTOR);
3107             targets.add(names.FIELD);
3108             targets.add(names.RECORD_COMPONENT);
3109             targets.add(names.LOCAL_VARIABLE);
3110             targets.add(names.METHOD);
3111             targets.add(names.PACKAGE);
3112             targets.add(names.PARAMETER);
3113             targets.add(names.TYPE);
3114 
3115             defaultTargets = java.util.Collections.unmodifiableSet(targets);
3116         }
3117 
3118         return defaultTargets;
3119     }
3120     private Set<Name> defaultTargets;
3121 
3122 
3123     /** Checks that s is a subset of t, with respect to ElementType
3124      * semantics, specifically {ANNOTATION_TYPE} is a subset of {TYPE},
3125      * and {TYPE_USE} covers the set {ANNOTATION_TYPE, TYPE, TYPE_USE,
3126      * TYPE_PARAMETER}.
3127      */
3128     private boolean isTargetSubsetOf(Set<Name> s, Set<Name> t) {
3129         // Check that all elements in s are present in t
3130         for (Name n2 : s) {
3131             boolean currentElementOk = false;
3132             for (Name n1 : t) {
3133                 if (n1 == n2) {
3134                     currentElementOk = true;
3135                     break;
3136                 } else if (n1 == names.TYPE && n2 == names.ANNOTATION_TYPE) {
3137                     currentElementOk = true;
3138                     break;
3139                 } else if (n1 == names.TYPE_USE &&
3140                         (n2 == names.TYPE ||
3141                          n2 == names.ANNOTATION_TYPE ||
3142                          n2 == names.TYPE_PARAMETER)) {
3143                     currentElementOk = true;
3144                     break;
3145                 }
3146             }
3147             if (!currentElementOk)
3148                 return false;
3149         }
3150         return true;
3151     }
3152 
3153     private void validateDefault(Symbol container, DiagnosticPosition pos) {
3154         // validate that all other elements of containing type has defaults
3155         Scope scope = container.members();
3156         for(Symbol elm : scope.getSymbols()) {
3157             if (elm.name != names.value &&
3158                 elm.kind == MTH &&
3159                 ((MethodSymbol)elm).defaultValue == null) {
3160                 log.error(pos,
3161                           Errors.InvalidRepeatableAnnotationElemNondefault(container, elm));
3162             }
3163         }
3164     }
3165 
3166     /** Is s a method symbol that overrides a method in a superclass? */
3167     boolean isOverrider(Symbol s) {
3168         if (s.kind != MTH || s.isStatic())
3169             return false;
3170         MethodSymbol m = (MethodSymbol)s;
3171         TypeSymbol owner = (TypeSymbol)m.owner;
3172         for (Type sup : types.closure(owner.type)) {
3173             if (sup == owner.type)
3174                 continue; // skip "this"
3175             Scope scope = sup.tsym.members();
3176             for (Symbol sym : scope.getSymbolsByName(m.name)) {
3177                 if (!sym.isStatic() && m.overrides(sym, owner, types, true))
3178                     return true;
3179             }
3180         }
3181         return false;
3182     }
3183 
3184     /** Is the annotation applicable to types? */
3185     protected boolean isTypeAnnotation(JCAnnotation a, boolean isTypeParameter) {
3186         List<Attribute> targets = typeAnnotations.annotationTargets(a.annotationType.type.tsym);
3187         return (targets == null) ?
3188                 false :
3189                 targets.stream()
3190                         .anyMatch(attr -> isTypeAnnotation(attr, isTypeParameter));
3191     }
3192     //where
3193         boolean isTypeAnnotation(Attribute a, boolean isTypeParameter) {
3194             Attribute.Enum e = (Attribute.Enum)a;
3195             return (e.value.name == names.TYPE_USE ||
3196                     (isTypeParameter && e.value.name == names.TYPE_PARAMETER));
3197         }
3198 
3199     /** Is the annotation applicable to the symbol? */
3200     Name[] getTargetNames(JCAnnotation a) {
3201         return getTargetNames(a.annotationType.type.tsym);
3202     }
3203 
3204     public Name[] getTargetNames(TypeSymbol annoSym) {
3205         Attribute.Array arr = getAttributeTargetAttribute(annoSym);
3206         Name[] targets;
3207         if (arr == null) {
3208             targets = defaultTargetMetaInfo();
3209         } else {
3210             // TODO: can we optimize this?
3211             targets = new Name[arr.values.length];
3212             for (int i=0; i<arr.values.length; ++i) {
3213                 Attribute app = arr.values[i];
3214                 if (!(app instanceof Attribute.Enum)) {
3215                     return new Name[0];
3216                 }
3217                 Attribute.Enum e = (Attribute.Enum) app;
3218                 targets[i] = e.value.name;
3219             }
3220         }
3221         return targets;
3222     }
3223 
3224     @SuppressWarnings("preview")
3225     boolean annotationApplicable(JCAnnotation a, Symbol s) {
3226         Attribute.Array arr = getAttributeTargetAttribute(a.annotationType.type.tsym);
3227         Name[] targets;
3228 
3229         if (arr == null) {
3230             targets = defaultTargetMetaInfo();
3231         } else {
3232             // TODO: can we optimize this?
3233             targets = new Name[arr.values.length];
3234             for (int i=0; i<arr.values.length; ++i) {
3235                 Attribute app = arr.values[i];
3236                 if (!(app instanceof Attribute.Enum)) {
3237                     return true; // recovery
3238                 }
3239                 Attribute.Enum e = (Attribute.Enum) app;
3240                 targets[i] = e.value.name;
3241             }
3242         }
3243         for (Name target : targets) {
3244             if (target == names.TYPE) {
3245                 if (s.kind == TYP)
3246                     return true;
3247             } else if (target == names.FIELD) {
3248                 if (s.kind == VAR && s.owner.kind != MTH)
3249                     return true;
3250             } else if (target == names.RECORD_COMPONENT) {
3251                 if (s.getKind() == ElementKind.RECORD_COMPONENT) {
3252                     return true;
3253                 }
3254             } else if (target == names.METHOD) {
3255                 if (s.kind == MTH && !s.isConstructor())
3256                     return true;
3257             } else if (target == names.PARAMETER) {
3258                 if (s.kind == VAR &&
3259                     (s.owner.kind == MTH && (s.flags() & PARAMETER) != 0)) {
3260                     return true;
3261                 }
3262             } else if (target == names.CONSTRUCTOR) {
3263                 if (s.kind == MTH && s.isConstructor())
3264                     return true;
3265             } else if (target == names.LOCAL_VARIABLE) {
3266                 if (s.kind == VAR && s.owner.kind == MTH &&
3267                       (s.flags() & PARAMETER) == 0) {
3268                     return true;
3269                 }
3270             } else if (target == names.ANNOTATION_TYPE) {
3271                 if (s.kind == TYP && (s.flags() & ANNOTATION) != 0) {
3272                     return true;
3273                 }
3274             } else if (target == names.PACKAGE) {
3275                 if (s.kind == PCK)
3276                     return true;
3277             } else if (target == names.TYPE_USE) {
3278                 if (s.kind == VAR && s.owner.kind == MTH && s.type.hasTag(NONE)) {
3279                     //cannot type annotate implicitly typed locals
3280                     return false;
3281                 } else if (s.kind == TYP || s.kind == VAR ||
3282                         (s.kind == MTH && !s.isConstructor() &&
3283                                 !s.type.getReturnType().hasTag(VOID)) ||
3284                         (s.kind == MTH && s.isConstructor())) {
3285                     return true;
3286                 }
3287             } else if (target == names.TYPE_PARAMETER) {
3288                 if (s.kind == TYP && s.type.hasTag(TYPEVAR))
3289                     return true;
3290             } else
3291                 return true; // Unknown ElementType. This should be an error at declaration site,
3292                              // assume applicable.
3293         }
3294         return false;
3295     }
3296 
3297     Attribute.Array getAttributeTargetAttribute(TypeSymbol s) {
3298         Attribute.Compound atTarget = s.getAnnotationTypeMetadata().getTarget();
3299         if (atTarget == null) return null; // ok, is applicable
3300         Attribute atValue = atTarget.member(names.value);
3301         if (!(atValue instanceof Attribute.Array)) return null; // error recovery
3302         return (Attribute.Array) atValue;
3303     }
3304 
3305     public final Name[] dfltTargetMeta;
3306     private Name[] defaultTargetMetaInfo() {
3307         return dfltTargetMeta;
3308     }
3309 
3310     /** Check an annotation value.
3311      *
3312      * @param a The annotation tree to check
3313      * @return true if this annotation tree is valid, otherwise false
3314      */
3315     public boolean validateAnnotationDeferErrors(JCAnnotation a) {
3316         boolean res = false;
3317         final Log.DiagnosticHandler diagHandler = new Log.DiscardDiagnosticHandler(log);
3318         try {
3319             res = validateAnnotation(a);
3320         } finally {
3321             log.popDiagnosticHandler(diagHandler);
3322         }
3323         return res;
3324     }
3325 
3326     private boolean validateAnnotation(JCAnnotation a) {
3327         boolean isValid = true;
3328         AnnotationTypeMetadata metadata = a.annotationType.type.tsym.getAnnotationTypeMetadata();
3329 
3330         // collect an inventory of the annotation elements
3331         Set<MethodSymbol> elements = metadata.getAnnotationElements();
3332 
3333         // remove the ones that are assigned values
3334         for (JCTree arg : a.args) {
3335             if (!arg.hasTag(ASSIGN)) continue; // recovery
3336             JCAssign assign = (JCAssign)arg;
3337             Symbol m = TreeInfo.symbol(assign.lhs);
3338             if (m == null || m.type.isErroneous()) continue;
3339             if (!elements.remove(m)) {
3340                 isValid = false;
3341                 log.error(assign.lhs.pos(),
3342                           Errors.DuplicateAnnotationMemberValue(m.name, a.type));
3343             }
3344         }
3345 
3346         // all the remaining ones better have default values
3347         List<Name> missingDefaults = List.nil();
3348         Set<MethodSymbol> membersWithDefault = metadata.getAnnotationElementsWithDefault();
3349         for (MethodSymbol m : elements) {
3350             if (m.type.isErroneous())
3351                 continue;
3352 
3353             if (!membersWithDefault.contains(m))
3354                 missingDefaults = missingDefaults.append(m.name);
3355         }
3356         missingDefaults = missingDefaults.reverse();
3357         if (missingDefaults.nonEmpty()) {
3358             isValid = false;
3359             Error errorKey = (missingDefaults.size() > 1)
3360                     ? Errors.AnnotationMissingDefaultValue1(a.type, missingDefaults)
3361                     : Errors.AnnotationMissingDefaultValue(a.type, missingDefaults);
3362             log.error(a.pos(), errorKey);
3363         }
3364 
3365         return isValid && validateTargetAnnotationValue(a);
3366     }
3367 
3368     /* Validate the special java.lang.annotation.Target annotation */
3369     boolean validateTargetAnnotationValue(JCAnnotation a) {
3370         // special case: java.lang.annotation.Target must not have
3371         // repeated values in its value member
3372         if (a.annotationType.type.tsym != syms.annotationTargetType.tsym ||
3373                 a.args.tail == null)
3374             return true;
3375 
3376         boolean isValid = true;
3377         if (!a.args.head.hasTag(ASSIGN)) return false; // error recovery
3378         JCAssign assign = (JCAssign) a.args.head;
3379         Symbol m = TreeInfo.symbol(assign.lhs);
3380         if (m.name != names.value) return false;
3381         JCTree rhs = assign.rhs;
3382         if (!rhs.hasTag(NEWARRAY)) return false;
3383         JCNewArray na = (JCNewArray) rhs;
3384         Set<Symbol> targets = new HashSet<>();
3385         for (JCTree elem : na.elems) {
3386             if (!targets.add(TreeInfo.symbol(elem))) {
3387                 isValid = false;
3388                 log.error(elem.pos(), Errors.RepeatedAnnotationTarget);
3389             }
3390         }
3391         return isValid;
3392     }
3393 
3394     void checkDeprecatedAnnotation(DiagnosticPosition pos, Symbol s) {
3395         if (lint.isEnabled(LintCategory.DEP_ANN) && s.isDeprecatableViaAnnotation() &&
3396             (s.flags() & DEPRECATED) != 0 &&
3397             !syms.deprecatedType.isErroneous() &&
3398             s.attribute(syms.deprecatedType.tsym) == null) {
3399             log.warning(LintCategory.DEP_ANN,
3400                     pos, Warnings.MissingDeprecatedAnnotation);
3401         }
3402         // Note: @Deprecated has no effect on local variables, parameters and package decls.
3403         if (lint.isEnabled(LintCategory.DEPRECATION) && !s.isDeprecatableViaAnnotation()) {
3404             if (!syms.deprecatedType.isErroneous() && s.attribute(syms.deprecatedType.tsym) != null) {
3405                 log.warning(LintCategory.DEPRECATION, pos,
3406                             Warnings.DeprecatedAnnotationHasNoEffect(Kinds.kindName(s)));
3407             }
3408         }
3409     }
3410 
3411     void checkDeprecated(final DiagnosticPosition pos, final Symbol other, final Symbol s) {
3412         checkDeprecated(() -> pos, other, s);
3413     }
3414 
3415     void checkDeprecated(Supplier<DiagnosticPosition> pos, final Symbol other, final Symbol s) {
3416         if ( (s.isDeprecatedForRemoval()
3417                 || s.isDeprecated() && !other.isDeprecated())
3418                 && (s.outermostClass() != other.outermostClass() || s.outermostClass() == null)) {
3419             deferredLintHandler.report(() -> warnDeprecated(pos.get(), s));
3420         }
3421     }
3422 
3423     void checkSunAPI(final DiagnosticPosition pos, final Symbol s) {
3424         if ((s.flags() & PROPRIETARY) != 0) {
3425             deferredLintHandler.report(() -> {
3426                 log.mandatoryWarning(pos, Warnings.SunProprietary(s));
3427             });
3428         }
3429     }
3430 
3431     void checkProfile(final DiagnosticPosition pos, final Symbol s) {
3432         if (profile != Profile.DEFAULT && (s.flags() & NOT_IN_PROFILE) != 0) {
3433             log.error(pos, Errors.NotInProfile(s, profile));
3434         }
3435     }
3436 
3437     void checkPreview(DiagnosticPosition pos, Symbol s) {
3438         if ((s.flags() & PREVIEW_API) != 0) {
3439             if ((s.flags() & PREVIEW_ESSENTIAL_API) != 0 && !preview.isEnabled()) {
3440                 log.error(pos, Errors.IsPreview(s));
3441             } else {
3442                 deferredLintHandler.report(() -> warnPreview(pos, s));
3443             }
3444         }
3445     }
3446 
3447 /* *************************************************************************
3448  * Check for recursive annotation elements.
3449  **************************************************************************/
3450 
3451     /** Check for cycles in the graph of annotation elements.
3452      */
3453     void checkNonCyclicElements(JCClassDecl tree) {
3454         if ((tree.sym.flags_field & ANNOTATION) == 0) return;
3455         Assert.check((tree.sym.flags_field & LOCKED) == 0);
3456         try {
3457             tree.sym.flags_field |= LOCKED;
3458             for (JCTree def : tree.defs) {
3459                 if (!def.hasTag(METHODDEF)) continue;
3460                 JCMethodDecl meth = (JCMethodDecl)def;
3461                 checkAnnotationResType(meth.pos(), meth.restype.type);
3462             }
3463         } finally {
3464             tree.sym.flags_field &= ~LOCKED;
3465             tree.sym.flags_field |= ACYCLIC_ANN;
3466         }
3467     }
3468 
3469     void checkNonCyclicElementsInternal(DiagnosticPosition pos, TypeSymbol tsym) {
3470         if ((tsym.flags_field & ACYCLIC_ANN) != 0)
3471             return;
3472         if ((tsym.flags_field & LOCKED) != 0) {
3473             log.error(pos, Errors.CyclicAnnotationElement(tsym));
3474             return;
3475         }
3476         try {
3477             tsym.flags_field |= LOCKED;
3478             for (Symbol s : tsym.members().getSymbols(NON_RECURSIVE)) {
3479                 if (s.kind != MTH)
3480                     continue;
3481                 checkAnnotationResType(pos, ((MethodSymbol)s).type.getReturnType());
3482             }
3483         } finally {
3484             tsym.flags_field &= ~LOCKED;
3485             tsym.flags_field |= ACYCLIC_ANN;
3486         }
3487     }
3488 
3489     void checkAnnotationResType(DiagnosticPosition pos, Type type) {
3490         switch (type.getTag()) {
3491         case CLASS:
3492             if ((type.tsym.flags() & ANNOTATION) != 0)
3493                 checkNonCyclicElementsInternal(pos, type.tsym);
3494             break;
3495         case ARRAY:
3496             checkAnnotationResType(pos, types.elemtype(type));
3497             break;
3498         default:
3499             break; // int etc
3500         }
3501     }
3502 
3503 /* *************************************************************************
3504  * Check for cycles in the constructor call graph.
3505  **************************************************************************/
3506 
3507     /** Check for cycles in the graph of constructors calling other
3508      *  constructors.
3509      */
3510     void checkCyclicConstructors(JCClassDecl tree) {
3511         Map<Symbol,Symbol> callMap = new HashMap<>();
3512 
3513         // enter each constructor this-call into the map
3514         for (List<JCTree> l = tree.defs; l.nonEmpty(); l = l.tail) {
3515             JCMethodInvocation app = TreeInfo.firstConstructorCall(l.head);
3516             if (app == null) continue;
3517             JCMethodDecl meth = (JCMethodDecl) l.head;
3518             if (TreeInfo.name(app.meth) == names._this) {
3519                 callMap.put(meth.sym, TreeInfo.symbol(app.meth));
3520             } else {
3521                 meth.sym.flags_field |= ACYCLIC;
3522             }
3523         }
3524 
3525         // Check for cycles in the map
3526         Symbol[] ctors = new Symbol[0];
3527         ctors = callMap.keySet().toArray(ctors);
3528         for (Symbol caller : ctors) {
3529             checkCyclicConstructor(tree, caller, callMap);
3530         }
3531     }
3532 
3533     /** Look in the map to see if the given constructor is part of a
3534      *  call cycle.
3535      */
3536     private void checkCyclicConstructor(JCClassDecl tree, Symbol ctor,
3537                                         Map<Symbol,Symbol> callMap) {
3538         if (ctor != null && (ctor.flags_field & ACYCLIC) == 0) {
3539             if ((ctor.flags_field & LOCKED) != 0) {
3540                 log.error(TreeInfo.diagnosticPositionFor(ctor, tree),
3541                           Errors.RecursiveCtorInvocation);
3542             } else {
3543                 ctor.flags_field |= LOCKED;
3544                 checkCyclicConstructor(tree, callMap.remove(ctor), callMap);
3545                 ctor.flags_field &= ~LOCKED;
3546             }
3547             ctor.flags_field |= ACYCLIC;
3548         }
3549     }
3550 
3551 /* *************************************************************************
3552  * Miscellaneous
3553  **************************************************************************/
3554 
3555     /**
3556      *  Check for division by integer constant zero
3557      *  @param pos           Position for error reporting.
3558      *  @param operator      The operator for the expression
3559      *  @param operand       The right hand operand for the expression
3560      */
3561     void checkDivZero(final DiagnosticPosition pos, Symbol operator, Type operand) {
3562         if (operand.constValue() != null
3563             && operand.getTag().isSubRangeOf(LONG)
3564             && ((Number) (operand.constValue())).longValue() == 0) {
3565             int opc = ((OperatorSymbol)operator).opcode;
3566             if (opc == ByteCodes.idiv || opc == ByteCodes.imod
3567                 || opc == ByteCodes.ldiv || opc == ByteCodes.lmod) {
3568                 deferredLintHandler.report(() -> warnDivZero(pos));
3569             }
3570         }
3571     }
3572 
3573     /**
3574      * Check for empty statements after if
3575      */
3576     void checkEmptyIf(JCIf tree) {
3577         if (tree.thenpart.hasTag(SKIP) && tree.elsepart == null &&
3578                 lint.isEnabled(LintCategory.EMPTY))
3579             log.warning(LintCategory.EMPTY, tree.thenpart.pos(), Warnings.EmptyIf);
3580     }
3581 
3582     /** Check that symbol is unique in given scope.
3583      *  @param pos           Position for error reporting.
3584      *  @param sym           The symbol.
3585      *  @param s             The scope.
3586      */
3587     boolean checkUnique(DiagnosticPosition pos, Symbol sym, Scope s) {
3588         if (sym.type.isErroneous())
3589             return true;
3590         if (sym.owner.name == names.any) return false;
3591         for (Symbol byName : s.getSymbolsByName(sym.name, NON_RECURSIVE)) {
3592             if (sym != byName &&
3593                     (byName.flags() & CLASH) == 0 &&
3594                     sym.kind == byName.kind &&
3595                     sym.name != names.error &&
3596                     (sym.kind != MTH ||
3597                      types.hasSameArgs(sym.type, byName.type) ||
3598                      types.hasSameArgs(types.erasure(sym.type), types.erasure(byName.type)))) {
3599                 if ((sym.flags() & VARARGS) != (byName.flags() & VARARGS)) {
3600                     sym.flags_field |= CLASH;
3601                     varargsDuplicateError(pos, sym, byName);
3602                     return true;
3603                 } else if (sym.kind == MTH && !types.hasSameArgs(sym.type, byName.type, false)) {
3604                     duplicateErasureError(pos, sym, byName);
3605                     sym.flags_field |= CLASH;
3606                     return true;
3607                 } else if ((sym.flags() & MATCH_BINDING) != 0 &&
3608                            (byName.flags() & MATCH_BINDING) != 0 &&
3609                            (byName.flags() & MATCH_BINDING_TO_OUTER) == 0) {
3610                     //this error will be reported separately in MatchBindingsComputer
3611                     return false;
3612                 } else {
3613                     duplicateError(pos, byName);
3614                     return false;
3615                 }
3616             }
3617         }
3618         return true;
3619     }
3620 
3621     /** Report duplicate declaration error.
3622      */
3623     void duplicateErasureError(DiagnosticPosition pos, Symbol sym1, Symbol sym2) {
3624         if (!sym1.type.isErroneous() && !sym2.type.isErroneous()) {
3625             log.error(pos, Errors.NameClashSameErasure(sym1, sym2));
3626         }
3627     }
3628 
3629     /**Check that types imported through the ordinary imports don't clash with types imported
3630      * by other (static or ordinary) imports. Note that two static imports may import two clashing
3631      * types without an error on the imports.
3632      * @param toplevel       The toplevel tree for which the test should be performed.
3633      */
3634     void checkImportsUnique(JCCompilationUnit toplevel) {
3635         WriteableScope ordinallyImportedSoFar = WriteableScope.create(toplevel.packge);
3636         WriteableScope staticallyImportedSoFar = WriteableScope.create(toplevel.packge);
3637         WriteableScope topLevelScope = toplevel.toplevelScope;
3638 
3639         for (JCTree def : toplevel.defs) {
3640             if (!def.hasTag(IMPORT))
3641                 continue;
3642 
3643             JCImport imp = (JCImport) def;
3644 
3645             if (imp.importScope == null)
3646                 continue;
3647 
3648             for (Symbol sym : imp.importScope.getSymbols(sym -> sym.kind == TYP)) {
3649                 if (imp.isStatic()) {
3650                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, true);
3651                     staticallyImportedSoFar.enter(sym);
3652                 } else {
3653                     checkUniqueImport(imp.pos(), ordinallyImportedSoFar, staticallyImportedSoFar, topLevelScope, sym, false);
3654                     ordinallyImportedSoFar.enter(sym);
3655                 }
3656             }
3657 
3658             imp.importScope = null;
3659         }
3660     }
3661 
3662     /** Check that single-type import is not already imported or top-level defined,
3663      *  but make an exception for two single-type imports which denote the same type.
3664      *  @param pos                     Position for error reporting.
3665      *  @param ordinallyImportedSoFar  A Scope containing types imported so far through
3666      *                                 ordinary imports.
3667      *  @param staticallyImportedSoFar A Scope containing types imported so far through
3668      *                                 static imports.
3669      *  @param topLevelScope           The current file's top-level Scope
3670      *  @param sym                     The symbol.
3671      *  @param staticImport            Whether or not this was a static import
3672      */
3673     private boolean checkUniqueImport(DiagnosticPosition pos, Scope ordinallyImportedSoFar,
3674                                       Scope staticallyImportedSoFar, Scope topLevelScope,
3675                                       Symbol sym, boolean staticImport) {
3676         Filter<Symbol> duplicates = candidate -> candidate != sym && !candidate.type.isErroneous();
3677         Symbol ordinaryClashing = ordinallyImportedSoFar.findFirst(sym.name, duplicates);
3678         Symbol staticClashing = null;
3679         if (ordinaryClashing == null && !staticImport) {
3680             staticClashing = staticallyImportedSoFar.findFirst(sym.name, duplicates);
3681         }
3682         if (ordinaryClashing != null || staticClashing != null) {
3683             if (ordinaryClashing != null)
3684                 log.error(pos, Errors.AlreadyDefinedSingleImport(ordinaryClashing));
3685             else
3686                 log.error(pos, Errors.AlreadyDefinedStaticSingleImport(staticClashing));
3687             return false;
3688         }
3689         Symbol clashing = topLevelScope.findFirst(sym.name, duplicates);
3690         if (clashing != null) {
3691             log.error(pos, Errors.AlreadyDefinedThisUnit(clashing));
3692             return false;
3693         }
3694         return true;
3695     }
3696 
3697     /** Check that a qualified name is in canonical form (for import decls).
3698      */
3699     public void checkCanonical(JCTree tree) {
3700         if (!isCanonical(tree))
3701             log.error(tree.pos(),
3702                       Errors.ImportRequiresCanonical(TreeInfo.symbol(tree)));
3703     }
3704         // where
3705         private boolean isCanonical(JCTree tree) {
3706             while (tree.hasTag(SELECT)) {
3707                 JCFieldAccess s = (JCFieldAccess) tree;
3708                 if (s.sym.owner.getQualifiedName() != TreeInfo.symbol(s.selected).getQualifiedName())
3709                     return false;
3710                 tree = s.selected;
3711             }
3712             return true;
3713         }
3714 
3715     /** Check that an auxiliary class is not accessed from any other file than its own.
3716      */
3717     void checkForBadAuxiliaryClassAccess(DiagnosticPosition pos, Env<AttrContext> env, ClassSymbol c) {
3718         if (lint.isEnabled(Lint.LintCategory.AUXILIARYCLASS) &&
3719             (c.flags() & AUXILIARY) != 0 &&
3720             rs.isAccessible(env, c) &&
3721             !fileManager.isSameFile(c.sourcefile, env.toplevel.sourcefile))
3722         {
3723             log.warning(pos,
3724                         Warnings.AuxiliaryClassAccessedFromOutsideOfItsSourceFile(c, c.sourcefile));
3725         }
3726     }
3727 
3728     private class ConversionWarner extends Warner {
3729         final String uncheckedKey;
3730         final Type found;
3731         final Type expected;
3732         public ConversionWarner(DiagnosticPosition pos, String uncheckedKey, Type found, Type expected) {
3733             super(pos);
3734             this.uncheckedKey = uncheckedKey;
3735             this.found = found;
3736             this.expected = expected;
3737         }
3738 
3739         @Override
3740         public void warn(LintCategory lint) {
3741             boolean warned = this.warned;
3742             super.warn(lint);
3743             if (warned) return; // suppress redundant diagnostics
3744             switch (lint) {
3745                 case UNCHECKED:
3746                     Check.this.warnUnchecked(pos(), Warnings.ProbFoundReq(diags.fragment(uncheckedKey), found, expected));
3747                     break;
3748                 case VARARGS:
3749                     if (method != null &&
3750                             method.attribute(syms.trustMeType.tsym) != null &&
3751                             isTrustMeAllowedOnMethod(method) &&
3752                             !types.isReifiable(method.type.getParameterTypes().last())) {
3753                         Check.this.warnUnsafeVararg(pos(), Warnings.VarargsUnsafeUseVarargsParam(method.params.last()));
3754                     }
3755                     break;
3756                 default:
3757                     throw new AssertionError("Unexpected lint: " + lint);
3758             }
3759         }
3760     }
3761 
3762     public Warner castWarner(DiagnosticPosition pos, Type found, Type expected) {
3763         return new ConversionWarner(pos, "unchecked.cast.to.type", found, expected);
3764     }
3765 
3766     public Warner convertWarner(DiagnosticPosition pos, Type found, Type expected) {
3767         return new ConversionWarner(pos, "unchecked.assign", found, expected);
3768     }
3769 
3770     public void checkFunctionalInterface(JCClassDecl tree, ClassSymbol cs) {
3771         Compound functionalType = cs.attribute(syms.functionalInterfaceType.tsym);
3772 
3773         if (functionalType != null) {
3774             try {
3775                 types.findDescriptorSymbol((TypeSymbol)cs);
3776             } catch (Types.FunctionDescriptorLookupError ex) {
3777                 DiagnosticPosition pos = tree.pos();
3778                 for (JCAnnotation a : tree.getModifiers().annotations) {
3779                     if (a.annotationType.type.tsym == syms.functionalInterfaceType.tsym) {
3780                         pos = a.pos();
3781                         break;
3782                     }
3783                 }
3784                 log.error(pos, Errors.BadFunctionalIntfAnno1(ex.getDiagnostic()));
3785             }
3786         }
3787     }
3788 
3789     public void checkImportsResolvable(final JCCompilationUnit toplevel) {
3790         for (final JCImport imp : toplevel.getImports()) {
3791             if (!imp.staticImport || !imp.qualid.hasTag(SELECT))
3792                 continue;
3793             final JCFieldAccess select = (JCFieldAccess) imp.qualid;
3794             final Symbol origin;
3795             if (select.name == names.asterisk || (origin = TreeInfo.symbol(select.selected)) == null || origin.kind != TYP)
3796                 continue;
3797 
3798             TypeSymbol site = (TypeSymbol) TreeInfo.symbol(select.selected);
3799             if (!checkTypeContainsImportableElement(site, site, toplevel.packge, select.name, new HashSet<Symbol>())) {
3800                 log.error(imp.pos(),
3801                           Errors.CantResolveLocation(KindName.STATIC,
3802                                                      select.name,
3803                                                      null,
3804                                                      null,
3805                                                      Fragments.Location(kindName(site),
3806                                                                         site,
3807                                                                         null)));
3808             }
3809         }
3810     }
3811 
3812     // Check that packages imported are in scope (JLS 7.4.3, 6.3, 6.5.3.1, 6.5.3.2)
3813     public void checkImportedPackagesObservable(final JCCompilationUnit toplevel) {
3814         OUTER: for (JCImport imp : toplevel.getImports()) {
3815             if (!imp.staticImport && TreeInfo.name(imp.qualid) == names.asterisk) {
3816                 TypeSymbol tsym = ((JCFieldAccess)imp.qualid).selected.type.tsym;
3817                 if (tsym.kind == PCK && tsym.members().isEmpty() &&
3818                     !(Feature.IMPORT_ON_DEMAND_OBSERVABLE_PACKAGES.allowedInSource(source) && tsym.exists())) {
3819                     log.error(DiagnosticFlag.RESOLVE_ERROR, imp.pos, Errors.DoesntExist(tsym));
3820                 }
3821             }
3822         }
3823     }
3824 
3825     private boolean checkTypeContainsImportableElement(TypeSymbol tsym, TypeSymbol origin, PackageSymbol packge, Name name, Set<Symbol> processed) {
3826         if (tsym == null || !processed.add(tsym))
3827             return false;
3828 
3829             // also search through inherited names
3830         if (checkTypeContainsImportableElement(types.supertype(tsym.type).tsym, origin, packge, name, processed))
3831             return true;
3832 
3833         for (Type t : types.interfaces(tsym.type))
3834             if (checkTypeContainsImportableElement(t.tsym, origin, packge, name, processed))
3835                 return true;
3836 
3837         for (Symbol sym : tsym.members().getSymbolsByName(name)) {
3838             if (sym.isStatic() &&
3839                 importAccessible(sym, packge) &&
3840                 sym.isMemberOf(origin, types)) {
3841                 return true;
3842             }
3843         }
3844 
3845         return false;
3846     }
3847 
3848     // is the sym accessible everywhere in packge?
3849     public boolean importAccessible(Symbol sym, PackageSymbol packge) {
3850         try {
3851             int flags = (int)(sym.flags() & AccessFlags);
3852             switch (flags) {
3853             default:
3854             case PUBLIC:
3855                 return true;
3856             case PRIVATE:
3857                 return false;
3858             case 0:
3859             case PROTECTED:
3860                 return sym.packge() == packge;
3861             }
3862         } catch (ClassFinder.BadClassFile err) {
3863             throw err;
3864         } catch (CompletionFailure ex) {
3865             return false;
3866         }
3867     }
3868 
3869     public void checkLeaksNotAccessible(Env<AttrContext> env, JCClassDecl check) {
3870         JCCompilationUnit toplevel = env.toplevel;
3871 
3872         if (   toplevel.modle == syms.unnamedModule
3873             || toplevel.modle == syms.noModule
3874             || (check.sym.flags() & COMPOUND) != 0) {
3875             return ;
3876         }
3877 
3878         ExportsDirective currentExport = findExport(toplevel.packge);
3879 
3880         if (   currentExport == null //not exported
3881             || currentExport.modules != null) //don't check classes in qualified export
3882             return ;
3883 
3884         new TreeScanner() {
3885             Lint lint = env.info.lint;
3886             boolean inSuperType;
3887 
3888             @Override
3889             public void visitBlock(JCBlock tree) {
3890             }
3891             @Override
3892             public void visitMethodDef(JCMethodDecl tree) {
3893                 if (!isAPISymbol(tree.sym))
3894                     return;
3895                 Lint prevLint = lint;
3896                 try {
3897                     lint = lint.augment(tree.sym);
3898                     if (lint.isEnabled(LintCategory.EXPORTS)) {
3899                         super.visitMethodDef(tree);
3900                     }
3901                 } finally {
3902                     lint = prevLint;
3903                 }
3904             }
3905             @Override
3906             public void visitVarDef(JCVariableDecl tree) {
3907                 if (!isAPISymbol(tree.sym) && tree.sym.owner.kind != MTH)
3908                     return;
3909                 Lint prevLint = lint;
3910                 try {
3911                     lint = lint.augment(tree.sym);
3912                     if (lint.isEnabled(LintCategory.EXPORTS)) {
3913                         scan(tree.mods);
3914                         scan(tree.vartype);
3915                     }
3916                 } finally {
3917                     lint = prevLint;
3918                 }
3919             }
3920             @Override
3921             public void visitClassDef(JCClassDecl tree) {
3922                 if (tree != check)
3923                     return ;
3924 
3925                 if (!isAPISymbol(tree.sym))
3926                     return ;
3927 
3928                 Lint prevLint = lint;
3929                 try {
3930                     lint = lint.augment(tree.sym);
3931                     if (lint.isEnabled(LintCategory.EXPORTS)) {
3932                         scan(tree.mods);
3933                         scan(tree.typarams);
3934                         try {
3935                             inSuperType = true;
3936                             scan(tree.extending);
3937                             scan(tree.implementing);
3938                         } finally {
3939                             inSuperType = false;
3940                         }
3941                         scan(tree.defs);
3942                     }
3943                 } finally {
3944                     lint = prevLint;
3945                 }
3946             }
3947             @Override
3948             public void visitTypeApply(JCTypeApply tree) {
3949                 scan(tree.clazz);
3950                 boolean oldInSuperType = inSuperType;
3951                 try {
3952                     inSuperType = false;
3953                     scan(tree.arguments);
3954                 } finally {
3955                     inSuperType = oldInSuperType;
3956                 }
3957             }
3958             @Override
3959             public void visitIdent(JCIdent tree) {
3960                 Symbol sym = TreeInfo.symbol(tree);
3961                 if (sym.kind == TYP && !sym.type.hasTag(TYPEVAR)) {
3962                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
3963                 }
3964             }
3965 
3966             @Override
3967             public void visitSelect(JCFieldAccess tree) {
3968                 Symbol sym = TreeInfo.symbol(tree);
3969                 Symbol sitesym = TreeInfo.symbol(tree.selected);
3970                 if (sym.kind == TYP && sitesym.kind == PCK) {
3971                     checkVisible(tree.pos(), sym, toplevel.packge, inSuperType);
3972                 } else {
3973                     super.visitSelect(tree);
3974                 }
3975             }
3976 
3977             @Override
3978             public void visitAnnotation(JCAnnotation tree) {
3979                 if (tree.attribute.type.tsym.getAnnotation(java.lang.annotation.Documented.class) != null)
3980                     super.visitAnnotation(tree);
3981             }
3982 
3983         }.scan(check);
3984     }
3985         //where:
3986         private ExportsDirective findExport(PackageSymbol pack) {
3987             for (ExportsDirective d : pack.modle.exports) {
3988                 if (d.packge == pack)
3989                     return d;
3990             }
3991 
3992             return null;
3993         }
3994         private boolean isAPISymbol(Symbol sym) {
3995             while (sym.kind != PCK) {
3996                 if ((sym.flags() & Flags.PUBLIC) == 0 && (sym.flags() & Flags.PROTECTED) == 0) {
3997                     return false;
3998                 }
3999                 sym = sym.owner;
4000             }
4001             return true;
4002         }
4003         private void checkVisible(DiagnosticPosition pos, Symbol what, PackageSymbol inPackage, boolean inSuperType) {
4004             if (!isAPISymbol(what) && !inSuperType) { //package private/private element
4005                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessible(kindName(what), what, what.packge().modle));
4006                 return ;
4007             }
4008 
4009             PackageSymbol whatPackage = what.packge();
4010             ExportsDirective whatExport = findExport(whatPackage);
4011             ExportsDirective inExport = findExport(inPackage);
4012 
4013             if (whatExport == null) { //package not exported:
4014                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexported(kindName(what), what, what.packge().modle));
4015                 return ;
4016             }
4017 
4018             if (whatExport.modules != null) {
4019                 if (inExport.modules == null || !whatExport.modules.containsAll(inExport.modules)) {
4020                     log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleUnexportedQualified(kindName(what), what, what.packge().modle));
4021                 }
4022             }
4023 
4024             if (whatPackage.modle != inPackage.modle && whatPackage.modle != syms.java_base) {
4025                 //check that relativeTo.modle requires transitive what.modle, somehow:
4026                 List<ModuleSymbol> todo = List.of(inPackage.modle);
4027 
4028                 while (todo.nonEmpty()) {
4029                     ModuleSymbol current = todo.head;
4030                     todo = todo.tail;
4031                     if (current == whatPackage.modle)
4032                         return ; //OK
4033                     if ((current.flags() & Flags.AUTOMATIC_MODULE) != 0)
4034                         continue; //for automatic modules, don't look into their dependencies
4035                     for (RequiresDirective req : current.requires) {
4036                         if (req.isTransitive()) {
4037                             todo = todo.prepend(req.module);
4038                         }
4039                     }
4040                 }
4041 
4042                 log.warning(LintCategory.EXPORTS, pos, Warnings.LeaksNotAccessibleNotRequiredTransitive(kindName(what), what, what.packge().modle));
4043             }
4044         }
4045 
4046     void checkModuleExists(final DiagnosticPosition pos, ModuleSymbol msym) {
4047         if (msym.kind != MDL) {
4048             deferredLintHandler.report(() -> {
4049                 if (lint.isEnabled(LintCategory.MODULE))
4050                     log.warning(LintCategory.MODULE, pos, Warnings.ModuleNotFound(msym));
4051             });
4052         }
4053     }
4054 
4055     void checkPackageExistsForOpens(final DiagnosticPosition pos, PackageSymbol packge) {
4056         if (packge.members().isEmpty() &&
4057             ((packge.flags() & Flags.HAS_RESOURCE) == 0)) {
4058             deferredLintHandler.report(() -> {
4059                 if (lint.isEnabled(LintCategory.OPENS))
4060                     log.warning(pos, Warnings.PackageEmptyOrNotFound(packge));
4061             });
4062         }
4063     }
4064 
4065     void checkModuleRequires(final DiagnosticPosition pos, final RequiresDirective rd) {
4066         if ((rd.module.flags() & Flags.AUTOMATIC_MODULE) != 0) {
4067             deferredLintHandler.report(() -> {
4068                 if (rd.isTransitive() && lint.isEnabled(LintCategory.REQUIRES_TRANSITIVE_AUTOMATIC)) {
4069                     log.warning(pos, Warnings.RequiresTransitiveAutomatic);
4070                 } else if (lint.isEnabled(LintCategory.REQUIRES_AUTOMATIC)) {
4071                     log.warning(pos, Warnings.RequiresAutomatic);
4072                 }
4073             });
4074         }
4075     }
4076 
4077 }