/* * Copyright (c) 2000, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package javax.imageio.spi; import java.util.AbstractSet; import java.util.HashMap; import java.util.Iterator; import java.util.LinkedList; import java.util.Map; import java.util.Set; /** * A set of Objects with pairwise orderings between them. * The iterator method provides the elements in * topologically sorted order. Elements participating in a cycle * are not returned. * * Unlike the SortedSet and SortedMap * interfaces, which require their elements to implement the * Comparable interface, this class receives ordering * information via its setOrdering and * unsetPreference methods. This difference is due to * the fact that the relevant ordering between elements is unlikely to * be inherent in the elements themselves; rather, it is set * dynamically accoring to application policy. For example, in a * service provider registry situation, an application might allow the * user to set a preference order for service provider objects * supplied by a trusted vendor over those supplied by another. * */ class PartiallyOrderedSet extends AbstractSet { // The topological sort (roughly) follows the algorithm described in // Horowitz and Sahni, _Fundamentals of Data Structures_ (1976), // p. 315. // Maps Objects to DigraphNodes that contain them private Map> poNodes = new HashMap<>(); // The set of Objects private Set nodes = poNodes.keySet(); /** * Constructs a PartiallyOrderedSet. */ public PartiallyOrderedSet() {} public int size() { return nodes.size(); } public boolean contains(Object o) { return nodes.contains(o); } /** * Returns an iterator over the elements contained in this * collection, with an ordering that respects the orderings set * by the setOrdering method. */ public Iterator iterator() { return new PartialOrderIterator<>(poNodes.values().iterator()); } /** * Adds an Object to this * PartiallyOrderedSet. */ public boolean add(E o) { if (nodes.contains(o)) { return false; } DigraphNode node = new DigraphNode<>(o); poNodes.put(o, node); return true; } /** * Removes an Object from this * PartiallyOrderedSet. */ public boolean remove(Object o) { DigraphNode node = poNodes.get(o); if (node == null) { return false; } poNodes.remove(o); node.dispose(); return true; } public void clear() { poNodes.clear(); } /** * Sets an ordering between two nodes. When an iterator is * requested, the first node will appear earlier in the * sequence than the second node. If a prior ordering existed * between the nodes in the opposite order, it is removed. * * @return true if no prior ordering existed * between the nodes, falseotherwise. */ public boolean setOrdering(E first, E second) { DigraphNode firstPONode = poNodes.get(first); DigraphNode secondPONode = poNodes.get(second); secondPONode.removeEdge(firstPONode); return firstPONode.addEdge(secondPONode); } /** * Removes any ordering between two nodes. * * @return true if a prior prefence existed between the nodes. */ public boolean unsetOrdering(E first, E second) { DigraphNode firstPONode = poNodes.get(first); DigraphNode secondPONode = poNodes.get(second); return firstPONode.removeEdge(secondPONode) || secondPONode.removeEdge(firstPONode); } /** * Returns true if an ordering exists between two * nodes. */ public boolean hasOrdering(E preferred, E other) { DigraphNode preferredPONode = poNodes.get(preferred); DigraphNode otherPONode = poNodes.get(other); return preferredPONode.hasEdge(otherPONode); } } class PartialOrderIterator implements Iterator { LinkedList> zeroList = new LinkedList<>(); Map, Integer> inDegrees = new HashMap<>(); public PartialOrderIterator(Iterator> iter) { // Initialize scratch in-degree values, zero list while (iter.hasNext()) { DigraphNode node = iter.next(); int inDegree = node.getInDegree(); inDegrees.put(node, inDegree); // Add nodes with zero in-degree to the zero list if (inDegree == 0) { zeroList.add(node); } } } public boolean hasNext() { return !zeroList.isEmpty(); } public E next() { DigraphNode first = zeroList.removeFirst(); // For each out node of the output node, decrement its in-degree Iterator> outNodes = first.getOutNodes(); while (outNodes.hasNext()) { DigraphNode node = outNodes.next(); int inDegree = inDegrees.get(node).intValue() - 1; inDegrees.put(node, inDegree); // If the in-degree has fallen to 0, place the node on the list if (inDegree == 0) { zeroList.add(node); } } return first.getData(); } public void remove() { throw new UnsupportedOperationException(); } }