1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 // This file is available under and governed by the GNU General Public
  26 // License version 2 only, as published by the Free Software Foundation.
  27 // However, the following notice accompanied the original version of this
  28 // file:
  29 //
  30 //---------------------------------------------------------------------------------
  31 //
  32 //  Little Color Management System
  33 //  Copyright (c) 1998-2020 Marti Maria Saguer
  34 //
  35 // Permission is hereby granted, free of charge, to any person obtaining
  36 // a copy of this software and associated documentation files (the "Software"),
  37 // to deal in the Software without restriction, including without limitation
  38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
  39 // and/or sell copies of the Software, and to permit persons to whom the Software
  40 // is furnished to do so, subject to the following conditions:
  41 //
  42 // The above copyright notice and this permission notice shall be included in
  43 // all copies or substantial portions of the Software.
  44 //
  45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
  47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  52 //
  53 //---------------------------------------------------------------------------------
  54 //
  55 
  56 #include "lcms2_internal.h"
  57 
  58 
  59 // Auxiliary: append a Lab identity after the given sequence of profiles
  60 // and return the transform. Lab profile is closed, rest of profiles are kept open.
  61 cmsHTRANSFORM _cmsChain2Lab(cmsContext            ContextID,
  62                             cmsUInt32Number        nProfiles,
  63                             cmsUInt32Number        InputFormat,
  64                             cmsUInt32Number        OutputFormat,
  65                             const cmsUInt32Number  Intents[],
  66                             const cmsHPROFILE      hProfiles[],
  67                             const cmsBool          BPC[],
  68                             const cmsFloat64Number AdaptationStates[],
  69                             cmsUInt32Number        dwFlags)
  70 {
  71     cmsHTRANSFORM xform;
  72     cmsHPROFILE   hLab;
  73     cmsHPROFILE   ProfileList[256];
  74     cmsBool       BPCList[256];
  75     cmsFloat64Number AdaptationList[256];
  76     cmsUInt32Number IntentList[256];
  77     cmsUInt32Number i;
  78 
  79     // This is a rather big number and there is no need of dynamic memory
  80     // since we are adding a profile, 254 + 1 = 255 and this is the limit
  81     if (nProfiles > 254) return NULL;
  82 
  83     // The output space
  84     hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
  85     if (hLab == NULL) return NULL;
  86 
  87     // Create a copy of parameters
  88     for (i=0; i < nProfiles; i++) {
  89 
  90         ProfileList[i]    = hProfiles[i];
  91         BPCList[i]        = BPC[i];
  92         AdaptationList[i] = AdaptationStates[i];
  93         IntentList[i]     = Intents[i];
  94     }
  95 
  96     // Place Lab identity at chain's end.
  97     ProfileList[nProfiles]    = hLab;
  98     BPCList[nProfiles]        = 0;
  99     AdaptationList[nProfiles] = 1.0;
 100     IntentList[nProfiles]     = INTENT_RELATIVE_COLORIMETRIC;
 101 
 102     // Create the transform
 103     xform = cmsCreateExtendedTransform(ContextID, nProfiles + 1, ProfileList,
 104                                        BPCList,
 105                                        IntentList,
 106                                        AdaptationList,
 107                                        NULL, 0,
 108                                        InputFormat,
 109                                        OutputFormat,
 110                                        dwFlags);
 111 
 112     cmsCloseProfile(hLab);
 113 
 114     return xform;
 115 }
 116 
 117 
 118 // Compute K -> L* relationship. Flags may include black point compensation. In this case,
 119 // the relationship is assumed from the profile with BPC to a black point zero.
 120 static
 121 cmsToneCurve* ComputeKToLstar(cmsContext            ContextID,
 122                                cmsUInt32Number       nPoints,
 123                                cmsUInt32Number       nProfiles,
 124                                const cmsUInt32Number Intents[],
 125                                const cmsHPROFILE     hProfiles[],
 126                                const cmsBool         BPC[],
 127                                const cmsFloat64Number AdaptationStates[],
 128                                cmsUInt32Number dwFlags)
 129 {
 130     cmsToneCurve* out = NULL;
 131     cmsUInt32Number i;
 132     cmsHTRANSFORM xform;
 133     cmsCIELab Lab;
 134     cmsFloat32Number cmyk[4];
 135     cmsFloat32Number* SampledPoints;
 136 
 137     xform = _cmsChain2Lab(ContextID, nProfiles, TYPE_CMYK_FLT, TYPE_Lab_DBL, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
 138     if (xform == NULL) return NULL;
 139 
 140     SampledPoints = (cmsFloat32Number*) _cmsCalloc(ContextID, nPoints, sizeof(cmsFloat32Number));
 141     if (SampledPoints  == NULL) goto Error;
 142 
 143     for (i=0; i < nPoints; i++) {
 144 
 145         cmyk[0] = 0;
 146         cmyk[1] = 0;
 147         cmyk[2] = 0;
 148         cmyk[3] = (cmsFloat32Number) ((i * 100.0) / (nPoints-1));
 149 
 150         cmsDoTransform(xform, cmyk, &Lab, 1);
 151         SampledPoints[i]= (cmsFloat32Number) (1.0 - Lab.L / 100.0); // Negate K for easier operation
 152     }
 153 
 154     out = cmsBuildTabulatedToneCurveFloat(ContextID, nPoints, SampledPoints);
 155 
 156 Error:
 157 
 158     cmsDeleteTransform(xform);
 159     if (SampledPoints) _cmsFree(ContextID, SampledPoints);
 160 
 161     return out;
 162 }
 163 
 164 
 165 // Compute Black tone curve on a CMYK -> CMYK transform. This is done by
 166 // using the proof direction on both profiles to find K->L* relationship
 167 // then joining both curves. dwFlags may include black point compensation.
 168 cmsToneCurve* _cmsBuildKToneCurve(cmsContext        ContextID,
 169                                    cmsUInt32Number   nPoints,
 170                                    cmsUInt32Number   nProfiles,
 171                                    const cmsUInt32Number Intents[],
 172                                    const cmsHPROFILE hProfiles[],
 173                                    const cmsBool     BPC[],
 174                                    const cmsFloat64Number AdaptationStates[],
 175                                    cmsUInt32Number   dwFlags)
 176 {
 177     cmsToneCurve *in, *out, *KTone;
 178 
 179     // Make sure CMYK -> CMYK
 180     if (cmsGetColorSpace(hProfiles[0]) != cmsSigCmykData ||
 181         cmsGetColorSpace(hProfiles[nProfiles-1])!= cmsSigCmykData) return NULL;
 182 
 183 
 184     // Make sure last is an output profile
 185     if (cmsGetDeviceClass(hProfiles[nProfiles - 1]) != cmsSigOutputClass) return NULL;
 186 
 187     // Create individual curves. BPC works also as each K to L* is
 188     // computed as a BPC to zero black point in case of L*
 189     in  = ComputeKToLstar(ContextID, nPoints, nProfiles - 1, Intents, hProfiles, BPC, AdaptationStates, dwFlags);
 190     if (in == NULL) return NULL;
 191 
 192     out = ComputeKToLstar(ContextID, nPoints, 1,
 193                             Intents + (nProfiles - 1),
 194                             &hProfiles [nProfiles - 1],
 195                             BPC + (nProfiles - 1),
 196                             AdaptationStates + (nProfiles - 1),
 197                             dwFlags);
 198     if (out == NULL) {
 199         cmsFreeToneCurve(in);
 200         return NULL;
 201     }
 202 
 203     // Build the relationship. This effectively limits the maximum accuracy to 16 bits, but
 204     // since this is used on black-preserving LUTs, we are not losing  accuracy in any case
 205     KTone = cmsJoinToneCurve(ContextID, in, out, nPoints);
 206 
 207     // Get rid of components
 208     cmsFreeToneCurve(in); cmsFreeToneCurve(out);
 209 
 210     // Something went wrong...
 211     if (KTone == NULL) return NULL;
 212 
 213     // Make sure it is monotonic
 214     if (!cmsIsToneCurveMonotonic(KTone)) {
 215         cmsFreeToneCurve(KTone);
 216         return NULL;
 217     }
 218 
 219     return KTone;
 220 }
 221 
 222 
 223 // Gamut LUT Creation -----------------------------------------------------------------------------------------
 224 
 225 // Used by gamut & softproofing
 226 
 227 typedef struct {
 228 
 229     cmsHTRANSFORM hInput;               // From whatever input color space. 16 bits to DBL
 230     cmsHTRANSFORM hForward, hReverse;   // Transforms going from Lab to colorant and back
 231     cmsFloat64Number Thereshold;        // The thereshold after which is considered out of gamut
 232 
 233     } GAMUTCHAIN;
 234 
 235 // This sampler does compute gamut boundaries by comparing original
 236 // values with a transform going back and forth. Values above ERR_THERESHOLD
 237 // of maximum are considered out of gamut.
 238 
 239 #define ERR_THERESHOLD      5
 240 
 241 
 242 static
 243 int GamutSampler(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void* Cargo)
 244 {
 245     GAMUTCHAIN*  t = (GAMUTCHAIN* ) Cargo;
 246     cmsCIELab LabIn1, LabOut1;
 247     cmsCIELab LabIn2, LabOut2;
 248     cmsUInt16Number Proof[cmsMAXCHANNELS], Proof2[cmsMAXCHANNELS];
 249     cmsFloat64Number dE1, dE2, ErrorRatio;
 250 
 251     // Assume in-gamut by default.
 252     ErrorRatio = 1.0;
 253 
 254     // Convert input to Lab
 255     cmsDoTransform(t -> hInput, In, &LabIn1, 1);
 256 
 257     // converts from PCS to colorant. This always
 258     // does return in-gamut values,
 259     cmsDoTransform(t -> hForward, &LabIn1, Proof, 1);
 260 
 261     // Now, do the inverse, from colorant to PCS.
 262     cmsDoTransform(t -> hReverse, Proof, &LabOut1, 1);
 263 
 264     memmove(&LabIn2, &LabOut1, sizeof(cmsCIELab));
 265 
 266     // Try again, but this time taking Check as input
 267     cmsDoTransform(t -> hForward, &LabOut1, Proof2, 1);
 268     cmsDoTransform(t -> hReverse, Proof2, &LabOut2, 1);
 269 
 270     // Take difference of direct value
 271     dE1 = cmsDeltaE(&LabIn1, &LabOut1);
 272 
 273     // Take difference of converted value
 274     dE2 = cmsDeltaE(&LabIn2, &LabOut2);
 275 
 276 
 277     // if dE1 is small and dE2 is small, value is likely to be in gamut
 278     if (dE1 < t->Thereshold && dE2 < t->Thereshold)
 279         Out[0] = 0;
 280     else {
 281 
 282         // if dE1 is small and dE2 is big, undefined. Assume in gamut
 283         if (dE1 < t->Thereshold && dE2 > t->Thereshold)
 284             Out[0] = 0;
 285         else
 286             // dE1 is big and dE2 is small, clearly out of gamut
 287             if (dE1 > t->Thereshold && dE2 < t->Thereshold)
 288                 Out[0] = (cmsUInt16Number) _cmsQuickFloor((dE1 - t->Thereshold) + .5);
 289             else  {
 290 
 291                 // dE1 is big and dE2 is also big, could be due to perceptual mapping
 292                 // so take error ratio
 293                 if (dE2 == 0.0)
 294                     ErrorRatio = dE1;
 295                 else
 296                     ErrorRatio = dE1 / dE2;
 297 
 298                 if (ErrorRatio > t->Thereshold)
 299                     Out[0] = (cmsUInt16Number)  _cmsQuickFloor((ErrorRatio - t->Thereshold) + .5);
 300                 else
 301                     Out[0] = 0;
 302             }
 303     }
 304 
 305 
 306     return TRUE;
 307 }
 308 
 309 // Does compute a gamut LUT going back and forth across pcs -> relativ. colorimetric intent -> pcs
 310 // the dE obtained is then annotated on the LUT. Values truly out of gamut are clipped to dE = 0xFFFE
 311 // and values changed are supposed to be handled by any gamut remapping, so, are out of gamut as well.
 312 //
 313 // **WARNING: This algorithm does assume that gamut remapping algorithms does NOT move in-gamut colors,
 314 // of course, many perceptual and saturation intents does not work in such way, but relativ. ones should.
 315 
 316 cmsPipeline* _cmsCreateGamutCheckPipeline(cmsContext ContextID,
 317                                           cmsHPROFILE hProfiles[],
 318                                           cmsBool  BPC[],
 319                                           cmsUInt32Number Intents[],
 320                                           cmsFloat64Number AdaptationStates[],
 321                                           cmsUInt32Number nGamutPCSposition,
 322                                           cmsHPROFILE hGamut)
 323 {
 324     cmsHPROFILE hLab;
 325     cmsPipeline* Gamut;
 326     cmsStage* CLUT;
 327     cmsUInt32Number dwFormat;
 328     GAMUTCHAIN Chain;
 329     cmsUInt32Number nChannels, nGridpoints;
 330     cmsColorSpaceSignature ColorSpace;
 331     cmsUInt32Number i;
 332     cmsHPROFILE ProfileList[256];
 333     cmsBool     BPCList[256];
 334     cmsFloat64Number AdaptationList[256];
 335     cmsUInt32Number IntentList[256];
 336 
 337     memset(&Chain, 0, sizeof(GAMUTCHAIN));
 338 
 339 
 340     if (nGamutPCSposition <= 0 || nGamutPCSposition > 255) {
 341         cmsSignalError(ContextID, cmsERROR_RANGE, "Wrong position of PCS. 1..255 expected, %d found.", nGamutPCSposition);
 342         return NULL;
 343     }
 344 
 345     hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
 346     if (hLab == NULL) return NULL;
 347 
 348 
 349     // The figure of merit. On matrix-shaper profiles, should be almost zero as
 350     // the conversion is pretty exact. On LUT based profiles, different resolutions
 351     // of input and output CLUT may result in differences.
 352 
 353     if (cmsIsMatrixShaper(hGamut)) {
 354 
 355         Chain.Thereshold = 1.0;
 356     }
 357     else {
 358         Chain.Thereshold = ERR_THERESHOLD;
 359     }
 360 
 361 
 362     // Create a copy of parameters
 363     for (i=0; i < nGamutPCSposition; i++) {
 364         ProfileList[i]    = hProfiles[i];
 365         BPCList[i]        = BPC[i];
 366         AdaptationList[i] = AdaptationStates[i];
 367         IntentList[i]     = Intents[i];
 368     }
 369 
 370     // Fill Lab identity
 371     ProfileList[nGamutPCSposition] = hLab;
 372     BPCList[nGamutPCSposition] = 0;
 373     AdaptationList[nGamutPCSposition] = 1.0;
 374     IntentList[nGamutPCSposition] = INTENT_RELATIVE_COLORIMETRIC;
 375 
 376 
 377     ColorSpace  = cmsGetColorSpace(hGamut);
 378 
 379     nChannels   = cmsChannelsOf(ColorSpace);
 380     nGridpoints = _cmsReasonableGridpointsByColorspace(ColorSpace, cmsFLAGS_HIGHRESPRECALC);
 381     dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));
 382 
 383     // 16 bits to Lab double
 384     Chain.hInput = cmsCreateExtendedTransform(ContextID,
 385         nGamutPCSposition + 1,
 386         ProfileList,
 387         BPCList,
 388         IntentList,
 389         AdaptationList,
 390         NULL, 0,
 391         dwFormat, TYPE_Lab_DBL,
 392         cmsFLAGS_NOCACHE);
 393 
 394 
 395     // Does create the forward step. Lab double to device
 396     dwFormat    = (CHANNELS_SH(nChannels)|BYTES_SH(2));
 397     Chain.hForward = cmsCreateTransformTHR(ContextID,
 398         hLab, TYPE_Lab_DBL,
 399         hGamut, dwFormat,
 400         INTENT_RELATIVE_COLORIMETRIC,
 401         cmsFLAGS_NOCACHE);
 402 
 403     // Does create the backwards step
 404     Chain.hReverse = cmsCreateTransformTHR(ContextID, hGamut, dwFormat,
 405         hLab, TYPE_Lab_DBL,
 406         INTENT_RELATIVE_COLORIMETRIC,
 407         cmsFLAGS_NOCACHE);
 408 
 409 
 410     // All ok?
 411     if (Chain.hInput && Chain.hForward && Chain.hReverse) {
 412 
 413         // Go on, try to compute gamut LUT from PCS. This consist on a single channel containing
 414         // dE when doing a transform back and forth on the colorimetric intent.
 415 
 416         Gamut = cmsPipelineAlloc(ContextID, 3, 1);
 417         if (Gamut != NULL) {
 418 
 419             CLUT = cmsStageAllocCLut16bit(ContextID, nGridpoints, nChannels, 1, NULL);
 420             if (!cmsPipelineInsertStage(Gamut, cmsAT_BEGIN, CLUT)) {
 421                 cmsPipelineFree(Gamut);
 422                 Gamut = NULL;
 423             }
 424             else {
 425                 cmsStageSampleCLut16bit(CLUT, GamutSampler, (void*) &Chain, 0);
 426             }
 427         }
 428     }
 429     else
 430         Gamut = NULL;   // Didn't work...
 431 
 432     // Free all needed stuff.
 433     if (Chain.hInput)   cmsDeleteTransform(Chain.hInput);
 434     if (Chain.hForward) cmsDeleteTransform(Chain.hForward);
 435     if (Chain.hReverse) cmsDeleteTransform(Chain.hReverse);
 436     if (hLab) cmsCloseProfile(hLab);
 437 
 438     // And return computed hull
 439     return Gamut;
 440 }
 441 
 442 // Total Area Coverage estimation ----------------------------------------------------------------
 443 
 444 typedef struct {
 445     cmsUInt32Number  nOutputChans;
 446     cmsHTRANSFORM    hRoundTrip;
 447     cmsFloat32Number MaxTAC;
 448     cmsFloat32Number MaxInput[cmsMAXCHANNELS];
 449 
 450 } cmsTACestimator;
 451 
 452 
 453 // This callback just accounts the maximum ink dropped in the given node. It does not populate any
 454 // memory, as the destination table is NULL. Its only purpose it to know the global maximum.
 455 static
 456 int EstimateTAC(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void * Cargo)
 457 {
 458     cmsTACestimator* bp = (cmsTACestimator*) Cargo;
 459     cmsFloat32Number RoundTrip[cmsMAXCHANNELS];
 460     cmsUInt32Number i;
 461     cmsFloat32Number Sum;
 462 
 463 
 464     // Evaluate the xform
 465     cmsDoTransform(bp->hRoundTrip, In, RoundTrip, 1);
 466 
 467     // All all amounts of ink
 468     for (Sum=0, i=0; i < bp ->nOutputChans; i++)
 469             Sum += RoundTrip[i];
 470 
 471     // If above maximum, keep track of input values
 472     if (Sum > bp ->MaxTAC) {
 473 
 474             bp ->MaxTAC = Sum;
 475 
 476             for (i=0; i < bp ->nOutputChans; i++) {
 477                 bp ->MaxInput[i] = In[i];
 478             }
 479     }
 480 
 481     return TRUE;
 482 
 483     cmsUNUSED_PARAMETER(Out);
 484 }
 485 
 486 
 487 // Detect Total area coverage of the profile
 488 cmsFloat64Number CMSEXPORT cmsDetectTAC(cmsHPROFILE hProfile)
 489 {
 490     cmsTACestimator bp;
 491     cmsUInt32Number dwFormatter;
 492     cmsUInt32Number GridPoints[MAX_INPUT_DIMENSIONS];
 493     cmsHPROFILE hLab;
 494     cmsContext ContextID = cmsGetProfileContextID(hProfile);
 495 
 496     // TAC only works on output profiles
 497     if (cmsGetDeviceClass(hProfile) != cmsSigOutputClass) {
 498         return 0;
 499     }
 500 
 501     // Create a fake formatter for result
 502     dwFormatter = cmsFormatterForColorspaceOfProfile(hProfile, 4, TRUE);
 503 
 504     bp.nOutputChans = T_CHANNELS(dwFormatter);
 505     bp.MaxTAC = 0;    // Initial TAC is 0
 506 
 507     //  for safety
 508     if (bp.nOutputChans >= cmsMAXCHANNELS) return 0;
 509 
 510     hLab = cmsCreateLab4ProfileTHR(ContextID, NULL);
 511     if (hLab == NULL) return 0;
 512     // Setup a roundtrip on perceptual intent in output profile for TAC estimation
 513     bp.hRoundTrip = cmsCreateTransformTHR(ContextID, hLab, TYPE_Lab_16,
 514                                           hProfile, dwFormatter, INTENT_PERCEPTUAL, cmsFLAGS_NOOPTIMIZE|cmsFLAGS_NOCACHE);
 515 
 516     cmsCloseProfile(hLab);
 517     if (bp.hRoundTrip == NULL) return 0;
 518 
 519     // For L* we only need black and white. For C* we need many points
 520     GridPoints[0] = 6;
 521     GridPoints[1] = 74;
 522     GridPoints[2] = 74;
 523 
 524 
 525     if (!cmsSliceSpace16(3, GridPoints, EstimateTAC, &bp)) {
 526         bp.MaxTAC = 0;
 527     }
 528 
 529     cmsDeleteTransform(bp.hRoundTrip);
 530 
 531     // Results in %
 532     return bp.MaxTAC;
 533 }
 534 
 535 
 536 // Carefully,  clamp on CIELab space.
 537 
 538 cmsBool CMSEXPORT cmsDesaturateLab(cmsCIELab* Lab,
 539                                    double amax, double amin,
 540                                    double bmax, double bmin)
 541 {
 542 
 543     // Whole Luma surface to zero
 544 
 545     if (Lab -> L < 0) {
 546 
 547         Lab-> L = Lab->a = Lab-> b = 0.0;
 548         return FALSE;
 549     }
 550 
 551     // Clamp white, DISCARD HIGHLIGHTS. This is done
 552     // in such way because icc spec doesn't allow the
 553     // use of L>100 as a highlight means.
 554 
 555     if (Lab->L > 100)
 556         Lab -> L = 100;
 557 
 558     // Check out gamut prism, on a, b faces
 559 
 560     if (Lab -> a < amin || Lab->a > amax||
 561         Lab -> b < bmin || Lab->b > bmax) {
 562 
 563             cmsCIELCh LCh;
 564             double h, slope;
 565 
 566             // Falls outside a, b limits. Transports to LCh space,
 567             // and then do the clipping
 568 
 569 
 570             if (Lab -> a == 0.0) { // Is hue exactly 90?
 571 
 572                 // atan will not work, so clamp here
 573                 Lab -> b = Lab->b < 0 ? bmin : bmax;
 574                 return TRUE;
 575             }
 576 
 577             cmsLab2LCh(&LCh, Lab);
 578 
 579             slope = Lab -> b / Lab -> a;
 580             h = LCh.h;
 581 
 582             // There are 4 zones
 583 
 584             if ((h >= 0. && h < 45.) ||
 585                 (h >= 315 && h <= 360.)) {
 586 
 587                     // clip by amax
 588                     Lab -> a = amax;
 589                     Lab -> b = amax * slope;
 590             }
 591             else
 592                 if (h >= 45. && h < 135.)
 593                 {
 594                     // clip by bmax
 595                     Lab -> b = bmax;
 596                     Lab -> a = bmax / slope;
 597                 }
 598                 else
 599                     if (h >= 135. && h < 225.) {
 600                         // clip by amin
 601                         Lab -> a = amin;
 602                         Lab -> b = amin * slope;
 603 
 604                     }
 605                     else
 606                         if (h >= 225. && h < 315.) {
 607                             // clip by bmin
 608                             Lab -> b = bmin;
 609                             Lab -> a = bmin / slope;
 610                         }
 611                         else  {
 612                             cmsSignalError(0, cmsERROR_RANGE, "Invalid angle");
 613                             return FALSE;
 614                         }
 615 
 616     }
 617 
 618     return TRUE;
 619 }