1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 // This file is available under and governed by the GNU General Public
  26 // License version 2 only, as published by the Free Software Foundation.
  27 // However, the following notice accompanied the original version of this
  28 // file:
  29 //
  30 //---------------------------------------------------------------------------------
  31 //
  32 //  Little Color Management System
  33 //  Copyright (c) 1998-2020 Marti Maria Saguer
  34 //
  35 // Permission is hereby granted, free of charge, to any person obtaining
  36 // a copy of this software and associated documentation files (the "Software"),
  37 // to deal in the Software without restriction, including without limitation
  38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
  39 // and/or sell copies of the Software, and to permit persons to whom the Software
  40 // is furnished to do so, subject to the following conditions:
  41 //
  42 // The above copyright notice and this permission notice shall be included in
  43 // all copies or substantial portions of the Software.
  44 //
  45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
  47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  52 //
  53 //---------------------------------------------------------------------------------
  54 //
  55 
  56 #include "lcms2_internal.h"
  57 
  58 
  59 //----------------------------------------------------------------------------------
  60 
  61 // Optimization for 8 bits, Shaper-CLUT (3 inputs only)
  62 typedef struct {
  63 
  64     cmsContext ContextID;
  65 
  66     const cmsInterpParams* p;   // Tetrahedrical interpolation parameters. This is a not-owned pointer.
  67 
  68     cmsUInt16Number rx[256], ry[256], rz[256];
  69     cmsUInt32Number X0[256], Y0[256], Z0[256];  // Precomputed nodes and offsets for 8-bit input data
  70 
  71 
  72 } Prelin8Data;
  73 
  74 
  75 // Generic optimization for 16 bits Shaper-CLUT-Shaper (any inputs)
  76 typedef struct {
  77 
  78     cmsContext ContextID;
  79 
  80     // Number of channels
  81     cmsUInt32Number nInputs;
  82     cmsUInt32Number nOutputs;
  83 
  84     _cmsInterpFn16 EvalCurveIn16[MAX_INPUT_DIMENSIONS];       // The maximum number of input channels is known in advance
  85     cmsInterpParams*  ParamsCurveIn16[MAX_INPUT_DIMENSIONS];
  86 
  87     _cmsInterpFn16 EvalCLUT;            // The evaluator for 3D grid
  88     const cmsInterpParams* CLUTparams;  // (not-owned pointer)
  89 
  90 
  91     _cmsInterpFn16* EvalCurveOut16;       // Points to an array of curve evaluators in 16 bits (not-owned pointer)
  92     cmsInterpParams**  ParamsCurveOut16;  // Points to an array of references to interpolation params (not-owned pointer)
  93 
  94 
  95 } Prelin16Data;
  96 
  97 
  98 // Optimization for matrix-shaper in 8 bits. Numbers are operated in n.14 signed, tables are stored in 1.14 fixed
  99 
 100 typedef cmsInt32Number cmsS1Fixed14Number;   // Note that this may hold more than 16 bits!
 101 
 102 #define DOUBLE_TO_1FIXED14(x) ((cmsS1Fixed14Number) floor((x) * 16384.0 + 0.5))
 103 
 104 typedef struct {
 105 
 106     cmsContext ContextID;
 107 
 108     cmsS1Fixed14Number Shaper1R[256];  // from 0..255 to 1.14  (0.0...1.0)
 109     cmsS1Fixed14Number Shaper1G[256];
 110     cmsS1Fixed14Number Shaper1B[256];
 111 
 112     cmsS1Fixed14Number Mat[3][3];     // n.14 to n.14 (needs a saturation after that)
 113     cmsS1Fixed14Number Off[3];
 114 
 115     cmsUInt16Number Shaper2R[16385];    // 1.14 to 0..255
 116     cmsUInt16Number Shaper2G[16385];
 117     cmsUInt16Number Shaper2B[16385];
 118 
 119 } MatShaper8Data;
 120 
 121 // Curves, optimization is shared between 8 and 16 bits
 122 typedef struct {
 123 
 124     cmsContext ContextID;
 125 
 126     cmsUInt32Number nCurves;      // Number of curves
 127     cmsUInt32Number nElements;    // Elements in curves
 128     cmsUInt16Number** Curves;     // Points to a dynamically  allocated array
 129 
 130 } Curves16Data;
 131 
 132 
 133 // Simple optimizations ----------------------------------------------------------------------------------------------------------
 134 
 135 
 136 // Remove an element in linked chain
 137 static
 138 void _RemoveElement(cmsStage** head)
 139 {
 140     cmsStage* mpe = *head;
 141     cmsStage* next = mpe ->Next;
 142     *head = next;
 143     cmsStageFree(mpe);
 144 }
 145 
 146 // Remove all identities in chain. Note that pt actually is a double pointer to the element that holds the pointer.
 147 static
 148 cmsBool _Remove1Op(cmsPipeline* Lut, cmsStageSignature UnaryOp)
 149 {
 150     cmsStage** pt = &Lut ->Elements;
 151     cmsBool AnyOpt = FALSE;
 152 
 153     while (*pt != NULL) {
 154 
 155         if ((*pt) ->Implements == UnaryOp) {
 156             _RemoveElement(pt);
 157             AnyOpt = TRUE;
 158         }
 159         else
 160             pt = &((*pt) -> Next);
 161     }
 162 
 163     return AnyOpt;
 164 }
 165 
 166 // Same, but only if two adjacent elements are found
 167 static
 168 cmsBool _Remove2Op(cmsPipeline* Lut, cmsStageSignature Op1, cmsStageSignature Op2)
 169 {
 170     cmsStage** pt1;
 171     cmsStage** pt2;
 172     cmsBool AnyOpt = FALSE;
 173 
 174     pt1 = &Lut ->Elements;
 175     if (*pt1 == NULL) return AnyOpt;
 176 
 177     while (*pt1 != NULL) {
 178 
 179         pt2 = &((*pt1) -> Next);
 180         if (*pt2 == NULL) return AnyOpt;
 181 
 182         if ((*pt1) ->Implements == Op1 && (*pt2) ->Implements == Op2) {
 183             _RemoveElement(pt2);
 184             _RemoveElement(pt1);
 185             AnyOpt = TRUE;
 186         }
 187         else
 188             pt1 = &((*pt1) -> Next);
 189     }
 190 
 191     return AnyOpt;
 192 }
 193 
 194 
 195 static
 196 cmsBool CloseEnoughFloat(cmsFloat64Number a, cmsFloat64Number b)
 197 {
 198        return fabs(b - a) < 0.00001f;
 199 }
 200 
 201 static
 202 cmsBool  isFloatMatrixIdentity(const cmsMAT3* a)
 203 {
 204        cmsMAT3 Identity;
 205        int i, j;
 206 
 207        _cmsMAT3identity(&Identity);
 208 
 209        for (i = 0; i < 3; i++)
 210               for (j = 0; j < 3; j++)
 211                      if (!CloseEnoughFloat(a->v[i].n[j], Identity.v[i].n[j])) return FALSE;
 212 
 213        return TRUE;
 214 }
 215 // if two adjacent matrices are found, multiply them.
 216 static
 217 cmsBool _MultiplyMatrix(cmsPipeline* Lut)
 218 {
 219        cmsStage** pt1;
 220        cmsStage** pt2;
 221        cmsStage*  chain;
 222        cmsBool AnyOpt = FALSE;
 223 
 224        pt1 = &Lut->Elements;
 225        if (*pt1 == NULL) return AnyOpt;
 226 
 227        while (*pt1 != NULL) {
 228 
 229               pt2 = &((*pt1)->Next);
 230               if (*pt2 == NULL) return AnyOpt;
 231 
 232               if ((*pt1)->Implements == cmsSigMatrixElemType && (*pt2)->Implements == cmsSigMatrixElemType) {
 233 
 234                      // Get both matrices
 235                      _cmsStageMatrixData* m1 = (_cmsStageMatrixData*) cmsStageData(*pt1);
 236                      _cmsStageMatrixData* m2 = (_cmsStageMatrixData*) cmsStageData(*pt2);
 237                      cmsMAT3 res;
 238 
 239                      // Input offset and output offset should be zero to use this optimization
 240                      if (m1->Offset != NULL || m2 ->Offset != NULL ||
 241                             cmsStageInputChannels(*pt1) != 3 || cmsStageOutputChannels(*pt1) != 3 ||
 242                             cmsStageInputChannels(*pt2) != 3 || cmsStageOutputChannels(*pt2) != 3)
 243                             return FALSE;
 244 
 245                      // Multiply both matrices to get the result
 246                      _cmsMAT3per(&res, (cmsMAT3*)m2->Double, (cmsMAT3*)m1->Double);
 247 
 248                      // Get the next in chain after the matrices
 249                      chain = (*pt2)->Next;
 250 
 251                      // Remove both matrices
 252                      _RemoveElement(pt2);
 253                      _RemoveElement(pt1);
 254 
 255                      // Now what if the result is a plain identity?
 256                      if (!isFloatMatrixIdentity(&res)) {
 257 
 258                             // We can not get rid of full matrix
 259                             cmsStage* Multmat = cmsStageAllocMatrix(Lut->ContextID, 3, 3, (const cmsFloat64Number*) &res, NULL);
 260                             if (Multmat == NULL) return FALSE;  // Should never happen
 261 
 262                             // Recover the chain
 263                             Multmat->Next = chain;
 264                             *pt1 = Multmat;
 265                      }
 266 
 267                      AnyOpt = TRUE;
 268               }
 269               else
 270                      pt1 = &((*pt1)->Next);
 271        }
 272 
 273        return AnyOpt;
 274 }
 275 
 276 
 277 // Preoptimize just gets rif of no-ops coming paired. Conversion from v2 to v4 followed
 278 // by a v4 to v2 and vice-versa. The elements are then discarded.
 279 static
 280 cmsBool PreOptimize(cmsPipeline* Lut)
 281 {
 282     cmsBool AnyOpt = FALSE, Opt;
 283 
 284     do {
 285 
 286         Opt = FALSE;
 287 
 288         // Remove all identities
 289         Opt |= _Remove1Op(Lut, cmsSigIdentityElemType);
 290 
 291         // Remove XYZ2Lab followed by Lab2XYZ
 292         Opt |= _Remove2Op(Lut, cmsSigXYZ2LabElemType, cmsSigLab2XYZElemType);
 293 
 294         // Remove Lab2XYZ followed by XYZ2Lab
 295         Opt |= _Remove2Op(Lut, cmsSigLab2XYZElemType, cmsSigXYZ2LabElemType);
 296 
 297         // Remove V4 to V2 followed by V2 to V4
 298         Opt |= _Remove2Op(Lut, cmsSigLabV4toV2, cmsSigLabV2toV4);
 299 
 300         // Remove V2 to V4 followed by V4 to V2
 301         Opt |= _Remove2Op(Lut, cmsSigLabV2toV4, cmsSigLabV4toV2);
 302 
 303         // Remove float pcs Lab conversions
 304         Opt |= _Remove2Op(Lut, cmsSigLab2FloatPCS, cmsSigFloatPCS2Lab);
 305 
 306         // Remove float pcs Lab conversions
 307         Opt |= _Remove2Op(Lut, cmsSigXYZ2FloatPCS, cmsSigFloatPCS2XYZ);
 308 
 309         // Simplify matrix.
 310         Opt |= _MultiplyMatrix(Lut);
 311 
 312         if (Opt) AnyOpt = TRUE;
 313 
 314     } while (Opt);
 315 
 316     return AnyOpt;
 317 }
 318 
 319 static
 320 void Eval16nop1D(CMSREGISTER const cmsUInt16Number Input[],
 321                  CMSREGISTER cmsUInt16Number Output[],
 322                  CMSREGISTER const struct _cms_interp_struc* p)
 323 {
 324     Output[0] = Input[0];
 325 
 326     cmsUNUSED_PARAMETER(p);
 327 }
 328 
 329 static
 330 void PrelinEval16(CMSREGISTER const cmsUInt16Number Input[],
 331                   CMSREGISTER cmsUInt16Number Output[],
 332                   CMSREGISTER const void* D)
 333 {
 334     Prelin16Data* p16 = (Prelin16Data*) D;
 335     cmsUInt16Number  StageABC[MAX_INPUT_DIMENSIONS];
 336     cmsUInt16Number  StageDEF[cmsMAXCHANNELS];
 337     cmsUInt32Number i;
 338 
 339     for (i=0; i < p16 ->nInputs; i++) {
 340 
 341         p16 ->EvalCurveIn16[i](&Input[i], &StageABC[i], p16 ->ParamsCurveIn16[i]);
 342     }
 343 
 344     p16 ->EvalCLUT(StageABC, StageDEF, p16 ->CLUTparams);
 345 
 346     for (i=0; i < p16 ->nOutputs; i++) {
 347 
 348         p16 ->EvalCurveOut16[i](&StageDEF[i], &Output[i], p16 ->ParamsCurveOut16[i]);
 349     }
 350 }
 351 
 352 
 353 static
 354 void PrelinOpt16free(cmsContext ContextID, void* ptr)
 355 {
 356     Prelin16Data* p16 = (Prelin16Data*) ptr;
 357 
 358     _cmsFree(ContextID, p16 ->EvalCurveOut16);
 359     _cmsFree(ContextID, p16 ->ParamsCurveOut16);
 360 
 361     _cmsFree(ContextID, p16);
 362 }
 363 
 364 static
 365 void* Prelin16dup(cmsContext ContextID, const void* ptr)
 366 {
 367     Prelin16Data* p16 = (Prelin16Data*) ptr;
 368     Prelin16Data* Duped = (Prelin16Data*) _cmsDupMem(ContextID, p16, sizeof(Prelin16Data));
 369 
 370     if (Duped == NULL) return NULL;
 371 
 372     Duped->EvalCurveOut16 = (_cmsInterpFn16*) _cmsDupMem(ContextID, p16->EvalCurveOut16, p16->nOutputs * sizeof(_cmsInterpFn16));
 373     Duped->ParamsCurveOut16 = (cmsInterpParams**)_cmsDupMem(ContextID, p16->ParamsCurveOut16, p16->nOutputs * sizeof(cmsInterpParams*));
 374 
 375     return Duped;
 376 }
 377 
 378 
 379 static
 380 Prelin16Data* PrelinOpt16alloc(cmsContext ContextID,
 381                                const cmsInterpParams* ColorMap,
 382                                cmsUInt32Number nInputs, cmsToneCurve** In,
 383                                cmsUInt32Number nOutputs, cmsToneCurve** Out )
 384 {
 385     cmsUInt32Number i;
 386     Prelin16Data* p16 = (Prelin16Data*)_cmsMallocZero(ContextID, sizeof(Prelin16Data));
 387     if (p16 == NULL) return NULL;
 388 
 389     p16 ->nInputs = nInputs;
 390     p16 ->nOutputs = nOutputs;
 391 
 392 
 393     for (i=0; i < nInputs; i++) {
 394 
 395         if (In == NULL) {
 396             p16 -> ParamsCurveIn16[i] = NULL;
 397             p16 -> EvalCurveIn16[i] = Eval16nop1D;
 398 
 399         }
 400         else {
 401             p16 -> ParamsCurveIn16[i] = In[i] ->InterpParams;
 402             p16 -> EvalCurveIn16[i] = p16 ->ParamsCurveIn16[i]->Interpolation.Lerp16;
 403         }
 404     }
 405 
 406     p16 ->CLUTparams = ColorMap;
 407     p16 ->EvalCLUT   = ColorMap ->Interpolation.Lerp16;
 408 
 409 
 410     p16 -> EvalCurveOut16 = (_cmsInterpFn16*) _cmsCalloc(ContextID, nOutputs, sizeof(_cmsInterpFn16));
 411     p16 -> ParamsCurveOut16 = (cmsInterpParams**) _cmsCalloc(ContextID, nOutputs, sizeof(cmsInterpParams* ));
 412 
 413     for (i=0; i < nOutputs; i++) {
 414 
 415         if (Out == NULL) {
 416             p16 ->ParamsCurveOut16[i] = NULL;
 417             p16 -> EvalCurveOut16[i] = Eval16nop1D;
 418         }
 419         else {
 420 
 421             p16 ->ParamsCurveOut16[i] = Out[i] ->InterpParams;
 422             p16 -> EvalCurveOut16[i] = p16 ->ParamsCurveOut16[i]->Interpolation.Lerp16;
 423         }
 424     }
 425 
 426     return p16;
 427 }
 428 
 429 
 430 
 431 // Resampling ---------------------------------------------------------------------------------
 432 
 433 #define PRELINEARIZATION_POINTS 4096
 434 
 435 // Sampler implemented by another LUT. This is a clean way to precalculate the devicelink 3D CLUT for
 436 // almost any transform. We use floating point precision and then convert from floating point to 16 bits.
 437 static
 438 cmsInt32Number XFormSampler16(CMSREGISTER const cmsUInt16Number In[], CMSREGISTER cmsUInt16Number Out[], CMSREGISTER void* Cargo)
 439 {
 440     cmsPipeline* Lut = (cmsPipeline*) Cargo;
 441     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
 442     cmsUInt32Number i;
 443 
 444     _cmsAssert(Lut -> InputChannels < cmsMAXCHANNELS);
 445     _cmsAssert(Lut -> OutputChannels < cmsMAXCHANNELS);
 446 
 447     // From 16 bit to floating point
 448     for (i=0; i < Lut ->InputChannels; i++)
 449         InFloat[i] = (cmsFloat32Number) (In[i] / 65535.0);
 450 
 451     // Evaluate in floating point
 452     cmsPipelineEvalFloat(InFloat, OutFloat, Lut);
 453 
 454     // Back to 16 bits representation
 455     for (i=0; i < Lut ->OutputChannels; i++)
 456         Out[i] = _cmsQuickSaturateWord(OutFloat[i] * 65535.0);
 457 
 458     // Always succeed
 459     return TRUE;
 460 }
 461 
 462 // Try to see if the curves of a given MPE are linear
 463 static
 464 cmsBool AllCurvesAreLinear(cmsStage* mpe)
 465 {
 466     cmsToneCurve** Curves;
 467     cmsUInt32Number i, n;
 468 
 469     Curves = _cmsStageGetPtrToCurveSet(mpe);
 470     if (Curves == NULL) return FALSE;
 471 
 472     n = cmsStageOutputChannels(mpe);
 473 
 474     for (i=0; i < n; i++) {
 475         if (!cmsIsToneCurveLinear(Curves[i])) return FALSE;
 476     }
 477 
 478     return TRUE;
 479 }
 480 
 481 // This function replaces a specific node placed in "At" by the "Value" numbers. Its purpose
 482 // is to fix scum dot on broken profiles/transforms. Works on 1, 3 and 4 channels
 483 static
 484 cmsBool  PatchLUT(cmsStage* CLUT, cmsUInt16Number At[], cmsUInt16Number Value[],
 485                   cmsUInt32Number nChannelsOut, cmsUInt32Number nChannelsIn)
 486 {
 487     _cmsStageCLutData* Grid = (_cmsStageCLutData*) CLUT ->Data;
 488     cmsInterpParams* p16  = Grid ->Params;
 489     cmsFloat64Number px, py, pz, pw;
 490     int        x0, y0, z0, w0;
 491     int        i, index;
 492 
 493     if (CLUT -> Type != cmsSigCLutElemType) {
 494         cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) Attempt to PatchLUT on non-lut stage");
 495         return FALSE;
 496     }
 497 
 498     if (nChannelsIn == 4) {
 499 
 500         px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
 501         py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
 502         pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
 503         pw = ((cmsFloat64Number) At[3] * (p16->Domain[3])) / 65535.0;
 504 
 505         x0 = (int) floor(px);
 506         y0 = (int) floor(py);
 507         z0 = (int) floor(pz);
 508         w0 = (int) floor(pw);
 509 
 510         if (((px - x0) != 0) ||
 511             ((py - y0) != 0) ||
 512             ((pz - z0) != 0) ||
 513             ((pw - w0) != 0)) return FALSE; // Not on exact node
 514 
 515         index = (int) p16 -> opta[3] * x0 +
 516                 (int) p16 -> opta[2] * y0 +
 517                 (int) p16 -> opta[1] * z0 +
 518                 (int) p16 -> opta[0] * w0;
 519     }
 520     else
 521         if (nChannelsIn == 3) {
 522 
 523             px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
 524             py = ((cmsFloat64Number) At[1] * (p16->Domain[1])) / 65535.0;
 525             pz = ((cmsFloat64Number) At[2] * (p16->Domain[2])) / 65535.0;
 526 
 527             x0 = (int) floor(px);
 528             y0 = (int) floor(py);
 529             z0 = (int) floor(pz);
 530 
 531             if (((px - x0) != 0) ||
 532                 ((py - y0) != 0) ||
 533                 ((pz - z0) != 0)) return FALSE;  // Not on exact node
 534 
 535             index = (int) p16 -> opta[2] * x0 +
 536                     (int) p16 -> opta[1] * y0 +
 537                     (int) p16 -> opta[0] * z0;
 538         }
 539         else
 540             if (nChannelsIn == 1) {
 541 
 542                 px = ((cmsFloat64Number) At[0] * (p16->Domain[0])) / 65535.0;
 543 
 544                 x0 = (int) floor(px);
 545 
 546                 if (((px - x0) != 0)) return FALSE; // Not on exact node
 547 
 548                 index = (int) p16 -> opta[0] * x0;
 549             }
 550             else {
 551                 cmsSignalError(CLUT->ContextID, cmsERROR_INTERNAL, "(internal) %d Channels are not supported on PatchLUT", nChannelsIn);
 552                 return FALSE;
 553             }
 554 
 555     for (i = 0; i < (int) nChannelsOut; i++)
 556         Grid->Tab.T[index + i] = Value[i];
 557 
 558     return TRUE;
 559 }
 560 
 561 // Auxiliary, to see if two values are equal or very different
 562 static
 563 cmsBool WhitesAreEqual(cmsUInt32Number n, cmsUInt16Number White1[], cmsUInt16Number White2[] )
 564 {
 565     cmsUInt32Number i;
 566 
 567     for (i=0; i < n; i++) {
 568 
 569         if (abs(White1[i] - White2[i]) > 0xf000) return TRUE;  // Values are so extremely different that the fixup should be avoided
 570         if (White1[i] != White2[i]) return FALSE;
 571     }
 572     return TRUE;
 573 }
 574 
 575 
 576 // Locate the node for the white point and fix it to pure white in order to avoid scum dot.
 577 static
 578 cmsBool FixWhiteMisalignment(cmsPipeline* Lut, cmsColorSpaceSignature EntryColorSpace, cmsColorSpaceSignature ExitColorSpace)
 579 {
 580     cmsUInt16Number *WhitePointIn, *WhitePointOut;
 581     cmsUInt16Number  WhiteIn[cmsMAXCHANNELS], WhiteOut[cmsMAXCHANNELS], ObtainedOut[cmsMAXCHANNELS];
 582     cmsUInt32Number i, nOuts, nIns;
 583     cmsStage *PreLin = NULL, *CLUT = NULL, *PostLin = NULL;
 584 
 585     if (!_cmsEndPointsBySpace(EntryColorSpace,
 586         &WhitePointIn, NULL, &nIns)) return FALSE;
 587 
 588     if (!_cmsEndPointsBySpace(ExitColorSpace,
 589         &WhitePointOut, NULL, &nOuts)) return FALSE;
 590 
 591     // It needs to be fixed?
 592     if (Lut ->InputChannels != nIns) return FALSE;
 593     if (Lut ->OutputChannels != nOuts) return FALSE;
 594 
 595     cmsPipelineEval16(WhitePointIn, ObtainedOut, Lut);
 596 
 597     if (WhitesAreEqual(nOuts, WhitePointOut, ObtainedOut)) return TRUE; // whites already match
 598 
 599     // Check if the LUT comes as Prelin, CLUT or Postlin. We allow all combinations
 600     if (!cmsPipelineCheckAndRetreiveStages(Lut, 3, cmsSigCurveSetElemType, cmsSigCLutElemType, cmsSigCurveSetElemType, &PreLin, &CLUT, &PostLin))
 601         if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCurveSetElemType, cmsSigCLutElemType, &PreLin, &CLUT))
 602             if (!cmsPipelineCheckAndRetreiveStages(Lut, 2, cmsSigCLutElemType, cmsSigCurveSetElemType, &CLUT, &PostLin))
 603                 if (!cmsPipelineCheckAndRetreiveStages(Lut, 1, cmsSigCLutElemType, &CLUT))
 604                     return FALSE;
 605 
 606     // We need to interpolate white points of both, pre and post curves
 607     if (PreLin) {
 608 
 609         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PreLin);
 610 
 611         for (i=0; i < nIns; i++) {
 612             WhiteIn[i] = cmsEvalToneCurve16(Curves[i], WhitePointIn[i]);
 613         }
 614     }
 615     else {
 616         for (i=0; i < nIns; i++)
 617             WhiteIn[i] = WhitePointIn[i];
 618     }
 619 
 620     // If any post-linearization, we need to find how is represented white before the curve, do
 621     // a reverse interpolation in this case.
 622     if (PostLin) {
 623 
 624         cmsToneCurve** Curves = _cmsStageGetPtrToCurveSet(PostLin);
 625 
 626         for (i=0; i < nOuts; i++) {
 627 
 628             cmsToneCurve* InversePostLin = cmsReverseToneCurve(Curves[i]);
 629             if (InversePostLin == NULL) {
 630                 WhiteOut[i] = WhitePointOut[i];
 631 
 632             } else {
 633 
 634                 WhiteOut[i] = cmsEvalToneCurve16(InversePostLin, WhitePointOut[i]);
 635                 cmsFreeToneCurve(InversePostLin);
 636             }
 637         }
 638     }
 639     else {
 640         for (i=0; i < nOuts; i++)
 641             WhiteOut[i] = WhitePointOut[i];
 642     }
 643 
 644     // Ok, proceed with patching. May fail and we don't care if it fails
 645     PatchLUT(CLUT, WhiteIn, WhiteOut, nOuts, nIns);
 646 
 647     return TRUE;
 648 }
 649 
 650 // -----------------------------------------------------------------------------------------------------------------------------------------------
 651 // This function creates simple LUT from complex ones. The generated LUT has an optional set of
 652 // prelinearization curves, a CLUT of nGridPoints and optional postlinearization tables.
 653 // These curves have to exist in the original LUT in order to be used in the simplified output.
 654 // Caller may also use the flags to allow this feature.
 655 // LUTS with all curves will be simplified to a single curve. Parametric curves are lost.
 656 // This function should be used on 16-bits LUTS only, as floating point losses precision when simplified
 657 // -----------------------------------------------------------------------------------------------------------------------------------------------
 658 
 659 static
 660 cmsBool OptimizeByResampling(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
 661 {
 662     cmsPipeline* Src = NULL;
 663     cmsPipeline* Dest = NULL;
 664     cmsStage* mpe;
 665     cmsStage* CLUT;
 666     cmsStage *KeepPreLin = NULL, *KeepPostLin = NULL;
 667     cmsUInt32Number nGridPoints;
 668     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
 669     cmsStage *NewPreLin = NULL;
 670     cmsStage *NewPostLin = NULL;
 671     _cmsStageCLutData* DataCLUT;
 672     cmsToneCurve** DataSetIn;
 673     cmsToneCurve** DataSetOut;
 674     Prelin16Data* p16;
 675 
 676     // This is a lossy optimization! does not apply in floating-point cases
 677     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
 678 
 679     ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
 680     OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
 681 
 682     // Color space must be specified
 683     if (ColorSpace == (cmsColorSpaceSignature)0 ||
 684         OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
 685 
 686     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
 687 
 688     // For empty LUTs, 2 points are enough
 689     if (cmsPipelineStageCount(*Lut) == 0)
 690         nGridPoints = 2;
 691 
 692     Src = *Lut;
 693 
 694     // Named color pipelines cannot be optimized either
 695     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
 696         mpe != NULL;
 697         mpe = cmsStageNext(mpe)) {
 698             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
 699     }
 700 
 701     // Allocate an empty LUT
 702     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
 703     if (!Dest) return FALSE;
 704 
 705     // Prelinearization tables are kept unless indicated by flags
 706     if (*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION) {
 707 
 708         // Get a pointer to the prelinearization element
 709         cmsStage* PreLin = cmsPipelineGetPtrToFirstStage(Src);
 710 
 711         // Check if suitable
 712         if (PreLin && PreLin ->Type == cmsSigCurveSetElemType) {
 713 
 714             // Maybe this is a linear tram, so we can avoid the whole stuff
 715             if (!AllCurvesAreLinear(PreLin)) {
 716 
 717                 // All seems ok, proceed.
 718                 NewPreLin = cmsStageDup(PreLin);
 719                 if(!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, NewPreLin))
 720                     goto Error;
 721 
 722                 // Remove prelinearization. Since we have duplicated the curve
 723                 // in destination LUT, the sampling should be applied after this stage.
 724                 cmsPipelineUnlinkStage(Src, cmsAT_BEGIN, &KeepPreLin);
 725             }
 726         }
 727     }
 728 
 729     // Allocate the CLUT
 730     CLUT = cmsStageAllocCLut16bit(Src ->ContextID, nGridPoints, Src ->InputChannels, Src->OutputChannels, NULL);
 731     if (CLUT == NULL) goto Error;
 732 
 733     // Add the CLUT to the destination LUT
 734     if (!cmsPipelineInsertStage(Dest, cmsAT_END, CLUT)) {
 735         goto Error;
 736     }
 737 
 738     // Postlinearization tables are kept unless indicated by flags
 739     if (*dwFlags & cmsFLAGS_CLUT_POST_LINEARIZATION) {
 740 
 741         // Get a pointer to the postlinearization if present
 742         cmsStage* PostLin = cmsPipelineGetPtrToLastStage(Src);
 743 
 744         // Check if suitable
 745         if (PostLin && cmsStageType(PostLin) == cmsSigCurveSetElemType) {
 746 
 747             // Maybe this is a linear tram, so we can avoid the whole stuff
 748             if (!AllCurvesAreLinear(PostLin)) {
 749 
 750                 // All seems ok, proceed.
 751                 NewPostLin = cmsStageDup(PostLin);
 752                 if (!cmsPipelineInsertStage(Dest, cmsAT_END, NewPostLin))
 753                     goto Error;
 754 
 755                 // In destination LUT, the sampling should be applied after this stage.
 756                 cmsPipelineUnlinkStage(Src, cmsAT_END, &KeepPostLin);
 757             }
 758         }
 759     }
 760 
 761     // Now its time to do the sampling. We have to ignore pre/post linearization
 762     // The source LUT without pre/post curves is passed as parameter.
 763     if (!cmsStageSampleCLut16bit(CLUT, XFormSampler16, (void*) Src, 0)) {
 764 Error:
 765         // Ops, something went wrong, Restore stages
 766         if (KeepPreLin != NULL) {
 767             if (!cmsPipelineInsertStage(Src, cmsAT_BEGIN, KeepPreLin)) {
 768                 _cmsAssert(0); // This never happens
 769             }
 770         }
 771         if (KeepPostLin != NULL) {
 772             if (!cmsPipelineInsertStage(Src, cmsAT_END,   KeepPostLin)) {
 773                 _cmsAssert(0); // This never happens
 774             }
 775         }
 776         cmsPipelineFree(Dest);
 777         return FALSE;
 778     }
 779 
 780     // Done.
 781 
 782     if (KeepPreLin != NULL) cmsStageFree(KeepPreLin);
 783     if (KeepPostLin != NULL) cmsStageFree(KeepPostLin);
 784     cmsPipelineFree(Src);
 785 
 786     DataCLUT = (_cmsStageCLutData*) CLUT ->Data;
 787 
 788     if (NewPreLin == NULL) DataSetIn = NULL;
 789     else DataSetIn = ((_cmsStageToneCurvesData*) NewPreLin ->Data) ->TheCurves;
 790 
 791     if (NewPostLin == NULL) DataSetOut = NULL;
 792     else  DataSetOut = ((_cmsStageToneCurvesData*) NewPostLin ->Data) ->TheCurves;
 793 
 794 
 795     if (DataSetIn == NULL && DataSetOut == NULL) {
 796 
 797         _cmsPipelineSetOptimizationParameters(Dest, (_cmsOPTeval16Fn) DataCLUT->Params->Interpolation.Lerp16, DataCLUT->Params, NULL, NULL);
 798     }
 799     else {
 800 
 801         p16 = PrelinOpt16alloc(Dest ->ContextID,
 802             DataCLUT ->Params,
 803             Dest ->InputChannels,
 804             DataSetIn,
 805             Dest ->OutputChannels,
 806             DataSetOut);
 807 
 808         _cmsPipelineSetOptimizationParameters(Dest, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
 809     }
 810 
 811 
 812     // Don't fix white on absolute colorimetric
 813     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
 814         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
 815 
 816     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
 817 
 818         FixWhiteMisalignment(Dest, ColorSpace, OutputColorSpace);
 819     }
 820 
 821     *Lut = Dest;
 822     return TRUE;
 823 
 824     cmsUNUSED_PARAMETER(Intent);
 825 }
 826 
 827 
 828 // -----------------------------------------------------------------------------------------------------------------------------------------------
 829 // Fixes the gamma balancing of transform. This is described in my paper "Prelinearization Stages on
 830 // Color-Management Application-Specific Integrated Circuits (ASICs)" presented at NIP24. It only works
 831 // for RGB transforms. See the paper for more details
 832 // -----------------------------------------------------------------------------------------------------------------------------------------------
 833 
 834 
 835 // Normalize endpoints by slope limiting max and min. This assures endpoints as well.
 836 // Descending curves are handled as well.
 837 static
 838 void SlopeLimiting(cmsToneCurve* g)
 839 {
 840     int BeginVal, EndVal;
 841     int AtBegin = (int) floor((cmsFloat64Number) g ->nEntries * 0.02 + 0.5);   // Cutoff at 2%
 842     int AtEnd   = (int) g ->nEntries - AtBegin - 1;                                  // And 98%
 843     cmsFloat64Number Val, Slope, beta;
 844     int i;
 845 
 846     if (cmsIsToneCurveDescending(g)) {
 847         BeginVal = 0xffff; EndVal = 0;
 848     }
 849     else {
 850         BeginVal = 0; EndVal = 0xffff;
 851     }
 852 
 853     // Compute slope and offset for begin of curve
 854     Val   = g ->Table16[AtBegin];
 855     Slope = (Val - BeginVal) / AtBegin;
 856     beta  = Val - Slope * AtBegin;
 857 
 858     for (i=0; i < AtBegin; i++)
 859         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
 860 
 861     // Compute slope and offset for the end
 862     Val   = g ->Table16[AtEnd];
 863     Slope = (EndVal - Val) / AtBegin;   // AtBegin holds the X interval, which is same in both cases
 864     beta  = Val - Slope * AtEnd;
 865 
 866     for (i = AtEnd; i < (int) g ->nEntries; i++)
 867         g ->Table16[i] = _cmsQuickSaturateWord(i * Slope + beta);
 868 }
 869 
 870 
 871 // Precomputes tables for 8-bit on input devicelink.
 872 static
 873 Prelin8Data* PrelinOpt8alloc(cmsContext ContextID, const cmsInterpParams* p, cmsToneCurve* G[3])
 874 {
 875     int i;
 876     cmsUInt16Number Input[3];
 877     cmsS15Fixed16Number v1, v2, v3;
 878     Prelin8Data* p8;
 879 
 880     p8 = (Prelin8Data*)_cmsMallocZero(ContextID, sizeof(Prelin8Data));
 881     if (p8 == NULL) return NULL;
 882 
 883     // Since this only works for 8 bit input, values comes always as x * 257,
 884     // we can safely take msb byte (x << 8 + x)
 885 
 886     for (i=0; i < 256; i++) {
 887 
 888         if (G != NULL) {
 889 
 890             // Get 16-bit representation
 891             Input[0] = cmsEvalToneCurve16(G[0], FROM_8_TO_16(i));
 892             Input[1] = cmsEvalToneCurve16(G[1], FROM_8_TO_16(i));
 893             Input[2] = cmsEvalToneCurve16(G[2], FROM_8_TO_16(i));
 894         }
 895         else {
 896             Input[0] = FROM_8_TO_16(i);
 897             Input[1] = FROM_8_TO_16(i);
 898             Input[2] = FROM_8_TO_16(i);
 899         }
 900 
 901 
 902         // Move to 0..1.0 in fixed domain
 903         v1 = _cmsToFixedDomain((int) (Input[0] * p -> Domain[0]));
 904         v2 = _cmsToFixedDomain((int) (Input[1] * p -> Domain[1]));
 905         v3 = _cmsToFixedDomain((int) (Input[2] * p -> Domain[2]));
 906 
 907         // Store the precalculated table of nodes
 908         p8 ->X0[i] = (p->opta[2] * FIXED_TO_INT(v1));
 909         p8 ->Y0[i] = (p->opta[1] * FIXED_TO_INT(v2));
 910         p8 ->Z0[i] = (p->opta[0] * FIXED_TO_INT(v3));
 911 
 912         // Store the precalculated table of offsets
 913         p8 ->rx[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v1);
 914         p8 ->ry[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v2);
 915         p8 ->rz[i] = (cmsUInt16Number) FIXED_REST_TO_INT(v3);
 916     }
 917 
 918     p8 ->ContextID = ContextID;
 919     p8 ->p = p;
 920 
 921     return p8;
 922 }
 923 
 924 static
 925 void Prelin8free(cmsContext ContextID, void* ptr)
 926 {
 927     _cmsFree(ContextID, ptr);
 928 }
 929 
 930 static
 931 void* Prelin8dup(cmsContext ContextID, const void* ptr)
 932 {
 933     return _cmsDupMem(ContextID, ptr, sizeof(Prelin8Data));
 934 }
 935 
 936 
 937 
 938 // A optimized interpolation for 8-bit input.
 939 #define DENS(i,j,k) (LutTable[(i)+(j)+(k)+OutChan])
 940 static CMS_NO_SANITIZE
 941 void PrelinEval8(CMSREGISTER const cmsUInt16Number Input[],
 942                   CMSREGISTER cmsUInt16Number Output[],
 943                   CMSREGISTER const void* D)
 944 {
 945 
 946     cmsUInt8Number         r, g, b;
 947     cmsS15Fixed16Number    rx, ry, rz;
 948     cmsS15Fixed16Number    c0, c1, c2, c3, Rest;
 949     int                    OutChan;
 950     CMSREGISTER cmsS15Fixed16Number X0, X1, Y0, Y1, Z0, Z1;
 951     Prelin8Data* p8 = (Prelin8Data*) D;
 952     CMSREGISTER const cmsInterpParams* p = p8 ->p;
 953     int                    TotalOut = (int) p -> nOutputs;
 954     const cmsUInt16Number* LutTable = (const cmsUInt16Number*) p->Table;
 955 
 956     r = (cmsUInt8Number) (Input[0] >> 8);
 957     g = (cmsUInt8Number) (Input[1] >> 8);
 958     b = (cmsUInt8Number) (Input[2] >> 8);
 959 
 960     X0 = X1 = (cmsS15Fixed16Number) p8->X0[r];
 961     Y0 = Y1 = (cmsS15Fixed16Number) p8->Y0[g];
 962     Z0 = Z1 = (cmsS15Fixed16Number) p8->Z0[b];
 963 
 964     rx = p8 ->rx[r];
 965     ry = p8 ->ry[g];
 966     rz = p8 ->rz[b];
 967 
 968     X1 = X0 + (cmsS15Fixed16Number)((rx == 0) ? 0 :  p ->opta[2]);
 969     Y1 = Y0 + (cmsS15Fixed16Number)((ry == 0) ? 0 :  p ->opta[1]);
 970     Z1 = Z0 + (cmsS15Fixed16Number)((rz == 0) ? 0 :  p ->opta[0]);
 971 
 972 
 973     // These are the 6 Tetrahedral
 974     for (OutChan=0; OutChan < TotalOut; OutChan++) {
 975 
 976         c0 = DENS(X0, Y0, Z0);
 977 
 978         if (rx >= ry && ry >= rz)
 979         {
 980             c1 = DENS(X1, Y0, Z0) - c0;
 981             c2 = DENS(X1, Y1, Z0) - DENS(X1, Y0, Z0);
 982             c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
 983         }
 984         else
 985             if (rx >= rz && rz >= ry)
 986             {
 987                 c1 = DENS(X1, Y0, Z0) - c0;
 988                 c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
 989                 c3 = DENS(X1, Y0, Z1) - DENS(X1, Y0, Z0);
 990             }
 991             else
 992                 if (rz >= rx && rx >= ry)
 993                 {
 994                     c1 = DENS(X1, Y0, Z1) - DENS(X0, Y0, Z1);
 995                     c2 = DENS(X1, Y1, Z1) - DENS(X1, Y0, Z1);
 996                     c3 = DENS(X0, Y0, Z1) - c0;
 997                 }
 998                 else
 999                     if (ry >= rx && rx >= rz)
1000                     {
1001                         c1 = DENS(X1, Y1, Z0) - DENS(X0, Y1, Z0);
1002                         c2 = DENS(X0, Y1, Z0) - c0;
1003                         c3 = DENS(X1, Y1, Z1) - DENS(X1, Y1, Z0);
1004                     }
1005                     else
1006                         if (ry >= rz && rz >= rx)
1007                         {
1008                             c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1009                             c2 = DENS(X0, Y1, Z0) - c0;
1010                             c3 = DENS(X0, Y1, Z1) - DENS(X0, Y1, Z0);
1011                         }
1012                         else
1013                             if (rz >= ry && ry >= rx)
1014                             {
1015                                 c1 = DENS(X1, Y1, Z1) - DENS(X0, Y1, Z1);
1016                                 c2 = DENS(X0, Y1, Z1) - DENS(X0, Y0, Z1);
1017                                 c3 = DENS(X0, Y0, Z1) - c0;
1018                             }
1019                             else  {
1020                                 c1 = c2 = c3 = 0;
1021                             }
1022 
1023         Rest = c1 * rx + c2 * ry + c3 * rz + 0x8001;
1024         Output[OutChan] = (cmsUInt16Number) (c0 + ((Rest + (Rest >> 16)) >> 16));
1025 
1026     }
1027 }
1028 
1029 #undef DENS
1030 
1031 
1032 // Curves that contain wide empty areas are not optimizeable
1033 static
1034 cmsBool IsDegenerated(const cmsToneCurve* g)
1035 {
1036     cmsUInt32Number i, Zeros = 0, Poles = 0;
1037     cmsUInt32Number nEntries = g ->nEntries;
1038 
1039     for (i=0; i < nEntries; i++) {
1040 
1041         if (g ->Table16[i] == 0x0000) Zeros++;
1042         if (g ->Table16[i] == 0xffff) Poles++;
1043     }
1044 
1045     if (Zeros == 1 && Poles == 1) return FALSE;  // For linear tables
1046     if (Zeros > (nEntries / 20)) return TRUE;  // Degenerated, many zeros
1047     if (Poles > (nEntries / 20)) return TRUE;  // Degenerated, many poles
1048 
1049     return FALSE;
1050 }
1051 
1052 // --------------------------------------------------------------------------------------------------------------
1053 // We need xput over here
1054 
1055 static
1056 cmsBool OptimizeByComputingLinearization(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1057 {
1058     cmsPipeline* OriginalLut;
1059     cmsUInt32Number nGridPoints;
1060     cmsToneCurve *Trans[cmsMAXCHANNELS], *TransReverse[cmsMAXCHANNELS];
1061     cmsUInt32Number t, i;
1062     cmsFloat32Number v, In[cmsMAXCHANNELS], Out[cmsMAXCHANNELS];
1063     cmsBool lIsSuitable, lIsLinear;
1064     cmsPipeline* OptimizedLUT = NULL, *LutPlusCurves = NULL;
1065     cmsStage* OptimizedCLUTmpe;
1066     cmsColorSpaceSignature ColorSpace, OutputColorSpace;
1067     cmsStage* OptimizedPrelinMpe;
1068     cmsStage* mpe;
1069     cmsToneCurve** OptimizedPrelinCurves;
1070     _cmsStageCLutData* OptimizedPrelinCLUT;
1071 
1072 
1073     // This is a lossy optimization! does not apply in floating-point cases
1074     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1075 
1076     // Only on chunky RGB
1077     if (T_COLORSPACE(*InputFormat)  != PT_RGB) return FALSE;
1078     if (T_PLANAR(*InputFormat)) return FALSE;
1079 
1080     if (T_COLORSPACE(*OutputFormat) != PT_RGB) return FALSE;
1081     if (T_PLANAR(*OutputFormat)) return FALSE;
1082 
1083     // On 16 bits, user has to specify the feature
1084     if (!_cmsFormatterIs8bit(*InputFormat)) {
1085         if (!(*dwFlags & cmsFLAGS_CLUT_PRE_LINEARIZATION)) return FALSE;
1086     }
1087 
1088     OriginalLut = *Lut;
1089 
1090    // Named color pipelines cannot be optimized either
1091    for (mpe = cmsPipelineGetPtrToFirstStage(OriginalLut);
1092          mpe != NULL;
1093          mpe = cmsStageNext(mpe)) {
1094             if (cmsStageType(mpe) == cmsSigNamedColorElemType) return FALSE;
1095     }
1096 
1097     ColorSpace       = _cmsICCcolorSpace((int) T_COLORSPACE(*InputFormat));
1098     OutputColorSpace = _cmsICCcolorSpace((int) T_COLORSPACE(*OutputFormat));
1099 
1100     // Color space must be specified
1101     if (ColorSpace == (cmsColorSpaceSignature)0 ||
1102         OutputColorSpace == (cmsColorSpaceSignature)0) return FALSE;
1103 
1104     nGridPoints      = _cmsReasonableGridpointsByColorspace(ColorSpace, *dwFlags);
1105 
1106     // Empty gamma containers
1107     memset(Trans, 0, sizeof(Trans));
1108     memset(TransReverse, 0, sizeof(TransReverse));
1109 
1110     // If the last stage of the original lut are curves, and those curves are
1111     // degenerated, it is likely the transform is squeezing and clipping
1112     // the output from previous CLUT. We cannot optimize this case
1113     {
1114         cmsStage* last = cmsPipelineGetPtrToLastStage(OriginalLut);
1115 
1116         if (last == NULL) goto Error;
1117         if (cmsStageType(last) == cmsSigCurveSetElemType) {
1118 
1119             _cmsStageToneCurvesData* Data = (_cmsStageToneCurvesData*)cmsStageData(last);
1120             for (i = 0; i < Data->nCurves; i++) {
1121                 if (IsDegenerated(Data->TheCurves[i]))
1122                     goto Error;
1123             }
1124         }
1125     }
1126 
1127     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1128         Trans[t] = cmsBuildTabulatedToneCurve16(OriginalLut ->ContextID, PRELINEARIZATION_POINTS, NULL);
1129         if (Trans[t] == NULL) goto Error;
1130     }
1131 
1132     // Populate the curves
1133     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1134 
1135         v = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1136 
1137         // Feed input with a gray ramp
1138         for (t=0; t < OriginalLut ->InputChannels; t++)
1139             In[t] = v;
1140 
1141         // Evaluate the gray value
1142         cmsPipelineEvalFloat(In, Out, OriginalLut);
1143 
1144         // Store result in curve
1145         for (t=0; t < OriginalLut ->InputChannels; t++)
1146             Trans[t] ->Table16[i] = _cmsQuickSaturateWord(Out[t] * 65535.0);
1147     }
1148 
1149     // Slope-limit the obtained curves
1150     for (t = 0; t < OriginalLut ->InputChannels; t++)
1151         SlopeLimiting(Trans[t]);
1152 
1153     // Check for validity
1154     lIsSuitable = TRUE;
1155     lIsLinear   = TRUE;
1156     for (t=0; (lIsSuitable && (t < OriginalLut ->InputChannels)); t++) {
1157 
1158         // Exclude if already linear
1159         if (!cmsIsToneCurveLinear(Trans[t]))
1160             lIsLinear = FALSE;
1161 
1162         // Exclude if non-monotonic
1163         if (!cmsIsToneCurveMonotonic(Trans[t]))
1164             lIsSuitable = FALSE;
1165 
1166         if (IsDegenerated(Trans[t]))
1167             lIsSuitable = FALSE;
1168     }
1169 
1170     // If it is not suitable, just quit
1171     if (!lIsSuitable) goto Error;
1172 
1173     // Invert curves if possible
1174     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1175         TransReverse[t] = cmsReverseToneCurveEx(PRELINEARIZATION_POINTS, Trans[t]);
1176         if (TransReverse[t] == NULL) goto Error;
1177     }
1178 
1179     // Now inset the reversed curves at the begin of transform
1180     LutPlusCurves = cmsPipelineDup(OriginalLut);
1181     if (LutPlusCurves == NULL) goto Error;
1182 
1183     if (!cmsPipelineInsertStage(LutPlusCurves, cmsAT_BEGIN, cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, TransReverse)))
1184         goto Error;
1185 
1186     // Create the result LUT
1187     OptimizedLUT = cmsPipelineAlloc(OriginalLut ->ContextID, OriginalLut ->InputChannels, OriginalLut ->OutputChannels);
1188     if (OptimizedLUT == NULL) goto Error;
1189 
1190     OptimizedPrelinMpe = cmsStageAllocToneCurves(OriginalLut ->ContextID, OriginalLut ->InputChannels, Trans);
1191 
1192     // Create and insert the curves at the beginning
1193     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_BEGIN, OptimizedPrelinMpe))
1194         goto Error;
1195 
1196     // Allocate the CLUT for result
1197     OptimizedCLUTmpe = cmsStageAllocCLut16bit(OriginalLut ->ContextID, nGridPoints, OriginalLut ->InputChannels, OriginalLut ->OutputChannels, NULL);
1198 
1199     // Add the CLUT to the destination LUT
1200     if (!cmsPipelineInsertStage(OptimizedLUT, cmsAT_END, OptimizedCLUTmpe))
1201         goto Error;
1202 
1203     // Resample the LUT
1204     if (!cmsStageSampleCLut16bit(OptimizedCLUTmpe, XFormSampler16, (void*) LutPlusCurves, 0)) goto Error;
1205 
1206     // Free resources
1207     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1208 
1209         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1210         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1211     }
1212 
1213     cmsPipelineFree(LutPlusCurves);
1214 
1215 
1216     OptimizedPrelinCurves = _cmsStageGetPtrToCurveSet(OptimizedPrelinMpe);
1217     OptimizedPrelinCLUT   = (_cmsStageCLutData*) OptimizedCLUTmpe ->Data;
1218 
1219     // Set the evaluator if 8-bit
1220     if (_cmsFormatterIs8bit(*InputFormat)) {
1221 
1222         Prelin8Data* p8 = PrelinOpt8alloc(OptimizedLUT ->ContextID,
1223                                                 OptimizedPrelinCLUT ->Params,
1224                                                 OptimizedPrelinCurves);
1225         if (p8 == NULL) return FALSE;
1226 
1227         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval8, (void*) p8, Prelin8free, Prelin8dup);
1228 
1229     }
1230     else
1231     {
1232         Prelin16Data* p16 = PrelinOpt16alloc(OptimizedLUT ->ContextID,
1233             OptimizedPrelinCLUT ->Params,
1234             3, OptimizedPrelinCurves, 3, NULL);
1235         if (p16 == NULL) return FALSE;
1236 
1237         _cmsPipelineSetOptimizationParameters(OptimizedLUT, PrelinEval16, (void*) p16, PrelinOpt16free, Prelin16dup);
1238 
1239     }
1240 
1241     // Don't fix white on absolute colorimetric
1242     if (Intent == INTENT_ABSOLUTE_COLORIMETRIC)
1243         *dwFlags |= cmsFLAGS_NOWHITEONWHITEFIXUP;
1244 
1245     if (!(*dwFlags & cmsFLAGS_NOWHITEONWHITEFIXUP)) {
1246 
1247         if (!FixWhiteMisalignment(OptimizedLUT, ColorSpace, OutputColorSpace)) {
1248 
1249             return FALSE;
1250         }
1251     }
1252 
1253     // And return the obtained LUT
1254 
1255     cmsPipelineFree(OriginalLut);
1256     *Lut = OptimizedLUT;
1257     return TRUE;
1258 
1259 Error:
1260 
1261     for (t = 0; t < OriginalLut ->InputChannels; t++) {
1262 
1263         if (Trans[t]) cmsFreeToneCurve(Trans[t]);
1264         if (TransReverse[t]) cmsFreeToneCurve(TransReverse[t]);
1265     }
1266 
1267     if (LutPlusCurves != NULL) cmsPipelineFree(LutPlusCurves);
1268     if (OptimizedLUT != NULL) cmsPipelineFree(OptimizedLUT);
1269 
1270     return FALSE;
1271 
1272     cmsUNUSED_PARAMETER(Intent);
1273     cmsUNUSED_PARAMETER(lIsLinear);
1274 }
1275 
1276 
1277 // Curves optimizer ------------------------------------------------------------------------------------------------------------------
1278 
1279 static
1280 void CurvesFree(cmsContext ContextID, void* ptr)
1281 {
1282      Curves16Data* Data = (Curves16Data*) ptr;
1283      cmsUInt32Number i;
1284 
1285      for (i=0; i < Data -> nCurves; i++) {
1286 
1287          _cmsFree(ContextID, Data ->Curves[i]);
1288      }
1289 
1290      _cmsFree(ContextID, Data ->Curves);
1291      _cmsFree(ContextID, ptr);
1292 }
1293 
1294 static
1295 void* CurvesDup(cmsContext ContextID, const void* ptr)
1296 {
1297     Curves16Data* Data = (Curves16Data*)_cmsDupMem(ContextID, ptr, sizeof(Curves16Data));
1298     cmsUInt32Number i;
1299 
1300     if (Data == NULL) return NULL;
1301 
1302     Data->Curves = (cmsUInt16Number**) _cmsDupMem(ContextID, Data->Curves, Data->nCurves * sizeof(cmsUInt16Number*));
1303 
1304     for (i=0; i < Data -> nCurves; i++) {
1305         Data->Curves[i] = (cmsUInt16Number*) _cmsDupMem(ContextID, Data->Curves[i], Data->nElements * sizeof(cmsUInt16Number));
1306     }
1307 
1308     return (void*) Data;
1309 }
1310 
1311 // Precomputes tables for 8-bit on input devicelink.
1312 static
1313 Curves16Data* CurvesAlloc(cmsContext ContextID, cmsUInt32Number nCurves, cmsUInt32Number nElements, cmsToneCurve** G)
1314 {
1315     cmsUInt32Number i, j;
1316     Curves16Data* c16;
1317 
1318     c16 = (Curves16Data*)_cmsMallocZero(ContextID, sizeof(Curves16Data));
1319     if (c16 == NULL) return NULL;
1320 
1321     c16 ->nCurves = nCurves;
1322     c16 ->nElements = nElements;
1323 
1324     c16->Curves = (cmsUInt16Number**) _cmsCalloc(ContextID, nCurves, sizeof(cmsUInt16Number*));
1325     if (c16->Curves == NULL) {
1326         _cmsFree(ContextID, c16);
1327         return NULL;
1328     }
1329 
1330     for (i=0; i < nCurves; i++) {
1331 
1332         c16->Curves[i] = (cmsUInt16Number*) _cmsCalloc(ContextID, nElements, sizeof(cmsUInt16Number));
1333 
1334         if (c16->Curves[i] == NULL) {
1335 
1336             for (j=0; j < i; j++) {
1337                 _cmsFree(ContextID, c16->Curves[j]);
1338             }
1339             _cmsFree(ContextID, c16->Curves);
1340             _cmsFree(ContextID, c16);
1341             return NULL;
1342         }
1343 
1344         if (nElements == 256U) {
1345 
1346             for (j=0; j < nElements; j++) {
1347 
1348                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], FROM_8_TO_16(j));
1349             }
1350         }
1351         else {
1352 
1353             for (j=0; j < nElements; j++) {
1354                 c16 ->Curves[i][j] = cmsEvalToneCurve16(G[i], (cmsUInt16Number) j);
1355             }
1356         }
1357     }
1358 
1359     return c16;
1360 }
1361 
1362 static
1363 void FastEvaluateCurves8(CMSREGISTER const cmsUInt16Number In[],
1364                           CMSREGISTER cmsUInt16Number Out[],
1365                           CMSREGISTER const void* D)
1366 {
1367     Curves16Data* Data = (Curves16Data*) D;
1368     int x;
1369     cmsUInt32Number i;
1370 
1371     for (i=0; i < Data ->nCurves; i++) {
1372 
1373          x = (In[i] >> 8);
1374          Out[i] = Data -> Curves[i][x];
1375     }
1376 }
1377 
1378 
1379 static
1380 void FastEvaluateCurves16(CMSREGISTER const cmsUInt16Number In[],
1381                           CMSREGISTER cmsUInt16Number Out[],
1382                           CMSREGISTER const void* D)
1383 {
1384     Curves16Data* Data = (Curves16Data*) D;
1385     cmsUInt32Number i;
1386 
1387     for (i=0; i < Data ->nCurves; i++) {
1388          Out[i] = Data -> Curves[i][In[i]];
1389     }
1390 }
1391 
1392 
1393 static
1394 void FastIdentity16(CMSREGISTER const cmsUInt16Number In[],
1395                     CMSREGISTER cmsUInt16Number Out[],
1396                     CMSREGISTER const void* D)
1397 {
1398     cmsPipeline* Lut = (cmsPipeline*) D;
1399     cmsUInt32Number i;
1400 
1401     for (i=0; i < Lut ->InputChannels; i++) {
1402          Out[i] = In[i];
1403     }
1404 }
1405 
1406 
1407 // If the target LUT holds only curves, the optimization procedure is to join all those
1408 // curves together. That only works on curves and does not work on matrices.
1409 static
1410 cmsBool OptimizeByJoiningCurves(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1411 {
1412     cmsToneCurve** GammaTables = NULL;
1413     cmsFloat32Number InFloat[cmsMAXCHANNELS], OutFloat[cmsMAXCHANNELS];
1414     cmsUInt32Number i, j;
1415     cmsPipeline* Src = *Lut;
1416     cmsPipeline* Dest = NULL;
1417     cmsStage* mpe;
1418     cmsStage* ObtainedCurves = NULL;
1419 
1420 
1421     // This is a lossy optimization! does not apply in floating-point cases
1422     if (_cmsFormatterIsFloat(*InputFormat) || _cmsFormatterIsFloat(*OutputFormat)) return FALSE;
1423 
1424     //  Only curves in this LUT?
1425     for (mpe = cmsPipelineGetPtrToFirstStage(Src);
1426          mpe != NULL;
1427          mpe = cmsStageNext(mpe)) {
1428             if (cmsStageType(mpe) != cmsSigCurveSetElemType) return FALSE;
1429     }
1430 
1431     // Allocate an empty LUT
1432     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1433     if (Dest == NULL) return FALSE;
1434 
1435     // Create target curves
1436     GammaTables = (cmsToneCurve**) _cmsCalloc(Src ->ContextID, Src ->InputChannels, sizeof(cmsToneCurve*));
1437     if (GammaTables == NULL) goto Error;
1438 
1439     for (i=0; i < Src ->InputChannels; i++) {
1440         GammaTables[i] = cmsBuildTabulatedToneCurve16(Src ->ContextID, PRELINEARIZATION_POINTS, NULL);
1441         if (GammaTables[i] == NULL) goto Error;
1442     }
1443 
1444     // Compute 16 bit result by using floating point
1445     for (i=0; i < PRELINEARIZATION_POINTS; i++) {
1446 
1447         for (j=0; j < Src ->InputChannels; j++)
1448             InFloat[j] = (cmsFloat32Number) ((cmsFloat64Number) i / (PRELINEARIZATION_POINTS - 1));
1449 
1450         cmsPipelineEvalFloat(InFloat, OutFloat, Src);
1451 
1452         for (j=0; j < Src ->InputChannels; j++)
1453             GammaTables[j] -> Table16[i] = _cmsQuickSaturateWord(OutFloat[j] * 65535.0);
1454     }
1455 
1456     ObtainedCurves = cmsStageAllocToneCurves(Src ->ContextID, Src ->InputChannels, GammaTables);
1457     if (ObtainedCurves == NULL) goto Error;
1458 
1459     for (i=0; i < Src ->InputChannels; i++) {
1460         cmsFreeToneCurve(GammaTables[i]);
1461         GammaTables[i] = NULL;
1462     }
1463 
1464     if (GammaTables != NULL) {
1465         _cmsFree(Src->ContextID, GammaTables);
1466         GammaTables = NULL;
1467     }
1468 
1469     // Maybe the curves are linear at the end
1470     if (!AllCurvesAreLinear(ObtainedCurves)) {
1471        _cmsStageToneCurvesData* Data;
1472 
1473         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, ObtainedCurves))
1474             goto Error;
1475         Data = (_cmsStageToneCurvesData*) cmsStageData(ObtainedCurves);
1476         ObtainedCurves = NULL;
1477 
1478         // If the curves are to be applied in 8 bits, we can save memory
1479         if (_cmsFormatterIs8bit(*InputFormat)) {
1480              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 256, Data ->TheCurves);
1481 
1482              if (c16 == NULL) goto Error;
1483              *dwFlags |= cmsFLAGS_NOCACHE;
1484             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves8, c16, CurvesFree, CurvesDup);
1485 
1486         }
1487         else {
1488              Curves16Data* c16 = CurvesAlloc(Dest ->ContextID, Data ->nCurves, 65536, Data ->TheCurves);
1489 
1490              if (c16 == NULL) goto Error;
1491              *dwFlags |= cmsFLAGS_NOCACHE;
1492             _cmsPipelineSetOptimizationParameters(Dest, FastEvaluateCurves16, c16, CurvesFree, CurvesDup);
1493         }
1494     }
1495     else {
1496 
1497         // LUT optimizes to nothing. Set the identity LUT
1498         cmsStageFree(ObtainedCurves);
1499         ObtainedCurves = NULL;
1500 
1501         if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageAllocIdentity(Dest ->ContextID, Src ->InputChannels)))
1502             goto Error;
1503 
1504         *dwFlags |= cmsFLAGS_NOCACHE;
1505         _cmsPipelineSetOptimizationParameters(Dest, FastIdentity16, (void*) Dest, NULL, NULL);
1506     }
1507 
1508     // We are done.
1509     cmsPipelineFree(Src);
1510     *Lut = Dest;
1511     return TRUE;
1512 
1513 Error:
1514 
1515     if (ObtainedCurves != NULL) cmsStageFree(ObtainedCurves);
1516     if (GammaTables != NULL) {
1517         for (i=0; i < Src ->InputChannels; i++) {
1518             if (GammaTables[i] != NULL) cmsFreeToneCurve(GammaTables[i]);
1519         }
1520 
1521         _cmsFree(Src ->ContextID, GammaTables);
1522     }
1523 
1524     if (Dest != NULL) cmsPipelineFree(Dest);
1525     return FALSE;
1526 
1527     cmsUNUSED_PARAMETER(Intent);
1528     cmsUNUSED_PARAMETER(InputFormat);
1529     cmsUNUSED_PARAMETER(OutputFormat);
1530     cmsUNUSED_PARAMETER(dwFlags);
1531 }
1532 
1533 // -------------------------------------------------------------------------------------------------------------------------------------
1534 // LUT is Shaper - Matrix - Matrix - Shaper, which is very frequent when combining two matrix-shaper profiles
1535 
1536 
1537 static
1538 void  FreeMatShaper(cmsContext ContextID, void* Data)
1539 {
1540     if (Data != NULL) _cmsFree(ContextID, Data);
1541 }
1542 
1543 static
1544 void* DupMatShaper(cmsContext ContextID, const void* Data)
1545 {
1546     return _cmsDupMem(ContextID, Data, sizeof(MatShaper8Data));
1547 }
1548 
1549 
1550 // A fast matrix-shaper evaluator for 8 bits. This is a bit ticky since I'm using 1.14 signed fixed point
1551 // to accomplish some performance. Actually it takes 256x3 16 bits tables and 16385 x 3 tables of 8 bits,
1552 // in total about 50K, and the performance boost is huge!
1553 static
1554 void MatShaperEval16(CMSREGISTER const cmsUInt16Number In[],
1555                      CMSREGISTER cmsUInt16Number Out[],
1556                      CMSREGISTER const void* D)
1557 {
1558     MatShaper8Data* p = (MatShaper8Data*) D;
1559     cmsS1Fixed14Number l1, l2, l3, r, g, b;
1560     cmsUInt32Number ri, gi, bi;
1561 
1562     // In this case (and only in this case!) we can use this simplification since
1563     // In[] is assured to come from a 8 bit number. (a << 8 | a)
1564     ri = In[0] & 0xFFU;
1565     gi = In[1] & 0xFFU;
1566     bi = In[2] & 0xFFU;
1567 
1568     // Across first shaper, which also converts to 1.14 fixed point
1569     r = p->Shaper1R[ri];
1570     g = p->Shaper1G[gi];
1571     b = p->Shaper1B[bi];
1572 
1573     // Evaluate the matrix in 1.14 fixed point
1574     l1 =  (p->Mat[0][0] * r + p->Mat[0][1] * g + p->Mat[0][2] * b + p->Off[0] + 0x2000) >> 14;
1575     l2 =  (p->Mat[1][0] * r + p->Mat[1][1] * g + p->Mat[1][2] * b + p->Off[1] + 0x2000) >> 14;
1576     l3 =  (p->Mat[2][0] * r + p->Mat[2][1] * g + p->Mat[2][2] * b + p->Off[2] + 0x2000) >> 14;
1577 
1578     // Now we have to clip to 0..1.0 range
1579     ri = (l1 < 0) ? 0 : ((l1 > 16384) ? 16384U : (cmsUInt32Number) l1);
1580     gi = (l2 < 0) ? 0 : ((l2 > 16384) ? 16384U : (cmsUInt32Number) l2);
1581     bi = (l3 < 0) ? 0 : ((l3 > 16384) ? 16384U : (cmsUInt32Number) l3);
1582 
1583     // And across second shaper,
1584     Out[0] = p->Shaper2R[ri];
1585     Out[1] = p->Shaper2G[gi];
1586     Out[2] = p->Shaper2B[bi];
1587 
1588 }
1589 
1590 // This table converts from 8 bits to 1.14 after applying the curve
1591 static
1592 void FillFirstShaper(cmsS1Fixed14Number* Table, cmsToneCurve* Curve)
1593 {
1594     int i;
1595     cmsFloat32Number R, y;
1596 
1597     for (i=0; i < 256; i++) {
1598 
1599         R   = (cmsFloat32Number) (i / 255.0);
1600         y   = cmsEvalToneCurveFloat(Curve, R);
1601 
1602         if (y < 131072.0)
1603             Table[i] = DOUBLE_TO_1FIXED14(y);
1604         else
1605             Table[i] = 0x7fffffff;
1606     }
1607 }
1608 
1609 // This table converts form 1.14 (being 0x4000 the last entry) to 8 bits after applying the curve
1610 static
1611 void FillSecondShaper(cmsUInt16Number* Table, cmsToneCurve* Curve, cmsBool Is8BitsOutput)
1612 {
1613     int i;
1614     cmsFloat32Number R, Val;
1615 
1616     for (i=0; i < 16385; i++) {
1617 
1618         R   = (cmsFloat32Number) (i / 16384.0);
1619         Val = cmsEvalToneCurveFloat(Curve, R);    // Val comes 0..1.0
1620 
1621         if (Val < 0)
1622             Val = 0;
1623 
1624         if (Val > 1.0)
1625             Val = 1.0;
1626 
1627         if (Is8BitsOutput) {
1628 
1629             // If 8 bits output, we can optimize further by computing the / 257 part.
1630             // first we compute the resulting byte and then we store the byte times
1631             // 257. This quantization allows to round very quick by doing a >> 8, but
1632             // since the low byte is always equal to msb, we can do a & 0xff and this works!
1633             cmsUInt16Number w = _cmsQuickSaturateWord(Val * 65535.0);
1634             cmsUInt8Number  b = FROM_16_TO_8(w);
1635 
1636             Table[i] = FROM_8_TO_16(b);
1637         }
1638         else Table[i]  = _cmsQuickSaturateWord(Val * 65535.0);
1639     }
1640 }
1641 
1642 // Compute the matrix-shaper structure
1643 static
1644 cmsBool SetMatShaper(cmsPipeline* Dest, cmsToneCurve* Curve1[3], cmsMAT3* Mat, cmsVEC3* Off, cmsToneCurve* Curve2[3], cmsUInt32Number* OutputFormat)
1645 {
1646     MatShaper8Data* p;
1647     int i, j;
1648     cmsBool Is8Bits = _cmsFormatterIs8bit(*OutputFormat);
1649 
1650     // Allocate a big chuck of memory to store precomputed tables
1651     p = (MatShaper8Data*) _cmsMalloc(Dest ->ContextID, sizeof(MatShaper8Data));
1652     if (p == NULL) return FALSE;
1653 
1654     p -> ContextID = Dest -> ContextID;
1655 
1656     // Precompute tables
1657     FillFirstShaper(p ->Shaper1R, Curve1[0]);
1658     FillFirstShaper(p ->Shaper1G, Curve1[1]);
1659     FillFirstShaper(p ->Shaper1B, Curve1[2]);
1660 
1661     FillSecondShaper(p ->Shaper2R, Curve2[0], Is8Bits);
1662     FillSecondShaper(p ->Shaper2G, Curve2[1], Is8Bits);
1663     FillSecondShaper(p ->Shaper2B, Curve2[2], Is8Bits);
1664 
1665     // Convert matrix to nFixed14. Note that those values may take more than 16 bits
1666     for (i=0; i < 3; i++) {
1667         for (j=0; j < 3; j++) {
1668             p ->Mat[i][j] = DOUBLE_TO_1FIXED14(Mat->v[i].n[j]);
1669         }
1670     }
1671 
1672     for (i=0; i < 3; i++) {
1673 
1674         if (Off == NULL) {
1675             p ->Off[i] = 0;
1676         }
1677         else {
1678             p ->Off[i] = DOUBLE_TO_1FIXED14(Off->n[i]);
1679         }
1680     }
1681 
1682     // Mark as optimized for faster formatter
1683     if (Is8Bits)
1684         *OutputFormat |= OPTIMIZED_SH(1);
1685 
1686     // Fill function pointers
1687     _cmsPipelineSetOptimizationParameters(Dest, MatShaperEval16, (void*) p, FreeMatShaper, DupMatShaper);
1688     return TRUE;
1689 }
1690 
1691 //  8 bits on input allows matrix-shaper boot up to 25 Mpixels per second on RGB. That's fast!
1692 static
1693 cmsBool OptimizeMatrixShaper(cmsPipeline** Lut, cmsUInt32Number Intent, cmsUInt32Number* InputFormat, cmsUInt32Number* OutputFormat, cmsUInt32Number* dwFlags)
1694 {
1695        cmsStage* Curve1, *Curve2;
1696        cmsStage* Matrix1, *Matrix2;
1697        cmsMAT3 res;
1698        cmsBool IdentityMat;
1699        cmsPipeline* Dest, *Src;
1700        cmsFloat64Number* Offset;
1701 
1702        // Only works on RGB to RGB
1703        if (T_CHANNELS(*InputFormat) != 3 || T_CHANNELS(*OutputFormat) != 3) return FALSE;
1704 
1705        // Only works on 8 bit input
1706        if (!_cmsFormatterIs8bit(*InputFormat)) return FALSE;
1707 
1708        // Seems suitable, proceed
1709        Src = *Lut;
1710 
1711        // Check for:
1712        //
1713        //    shaper-matrix-matrix-shaper
1714        //    shaper-matrix-shaper
1715        //
1716        // Both of those constructs are possible (first because abs. colorimetric).
1717        // additionally, In the first case, the input matrix offset should be zero.
1718 
1719        IdentityMat = FALSE;
1720        if (cmsPipelineCheckAndRetreiveStages(Src, 4,
1721               cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1722               &Curve1, &Matrix1, &Matrix2, &Curve2)) {
1723 
1724               // Get both matrices
1725               _cmsStageMatrixData* Data1 = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1726               _cmsStageMatrixData* Data2 = (_cmsStageMatrixData*)cmsStageData(Matrix2);
1727 
1728               // Input offset should be zero
1729               if (Data1->Offset != NULL) return FALSE;
1730 
1731               // Multiply both matrices to get the result
1732               _cmsMAT3per(&res, (cmsMAT3*)Data2->Double, (cmsMAT3*)Data1->Double);
1733 
1734               // Only 2nd matrix has offset, or it is zero
1735               Offset = Data2->Offset;
1736 
1737               // Now the result is in res + Data2 -> Offset. Maybe is a plain identity?
1738               if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1739 
1740                      // We can get rid of full matrix
1741                      IdentityMat = TRUE;
1742               }
1743 
1744        }
1745        else {
1746 
1747               if (cmsPipelineCheckAndRetreiveStages(Src, 3,
1748                      cmsSigCurveSetElemType, cmsSigMatrixElemType, cmsSigCurveSetElemType,
1749                      &Curve1, &Matrix1, &Curve2)) {
1750 
1751                      _cmsStageMatrixData* Data = (_cmsStageMatrixData*)cmsStageData(Matrix1);
1752 
1753                      // Copy the matrix to our result
1754                      memcpy(&res, Data->Double, sizeof(res));
1755 
1756                      // Preserve the Odffset (may be NULL as a zero offset)
1757                      Offset = Data->Offset;
1758 
1759                      if (_cmsMAT3isIdentity(&res) && Offset == NULL) {
1760 
1761                             // We can get rid of full matrix
1762                             IdentityMat = TRUE;
1763                      }
1764               }
1765               else
1766                      return FALSE; // Not optimizeable this time
1767 
1768        }
1769 
1770       // Allocate an empty LUT
1771     Dest =  cmsPipelineAlloc(Src ->ContextID, Src ->InputChannels, Src ->OutputChannels);
1772     if (!Dest) return FALSE;
1773 
1774     // Assamble the new LUT
1775     if (!cmsPipelineInsertStage(Dest, cmsAT_BEGIN, cmsStageDup(Curve1)))
1776         goto Error;
1777 
1778     if (!IdentityMat) {
1779 
1780            if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageAllocMatrix(Dest->ContextID, 3, 3, (const cmsFloat64Number*)&res, Offset)))
1781                   goto Error;
1782     }
1783 
1784     if (!cmsPipelineInsertStage(Dest, cmsAT_END, cmsStageDup(Curve2)))
1785         goto Error;
1786 
1787     // If identity on matrix, we can further optimize the curves, so call the join curves routine
1788     if (IdentityMat) {
1789 
1790         OptimizeByJoiningCurves(&Dest, Intent, InputFormat, OutputFormat, dwFlags);
1791     }
1792     else {
1793         _cmsStageToneCurvesData* mpeC1 = (_cmsStageToneCurvesData*) cmsStageData(Curve1);
1794         _cmsStageToneCurvesData* mpeC2 = (_cmsStageToneCurvesData*) cmsStageData(Curve2);
1795 
1796         // In this particular optimization, cache does not help as it takes more time to deal with
1797         // the cache that with the pixel handling
1798         *dwFlags |= cmsFLAGS_NOCACHE;
1799 
1800         // Setup the optimizarion routines
1801         SetMatShaper(Dest, mpeC1 ->TheCurves, &res, (cmsVEC3*) Offset, mpeC2->TheCurves, OutputFormat);
1802     }
1803 
1804     cmsPipelineFree(Src);
1805     *Lut = Dest;
1806     return TRUE;
1807 Error:
1808     // Leave Src unchanged
1809     cmsPipelineFree(Dest);
1810     return FALSE;
1811 }
1812 
1813 
1814 // -------------------------------------------------------------------------------------------------------------------------------------
1815 // Optimization plug-ins
1816 
1817 // List of optimizations
1818 typedef struct _cmsOptimizationCollection_st {
1819 
1820     _cmsOPToptimizeFn  OptimizePtr;
1821 
1822     struct _cmsOptimizationCollection_st *Next;
1823 
1824 } _cmsOptimizationCollection;
1825 
1826 
1827 // The built-in list. We currently implement 4 types of optimizations. Joining of curves, matrix-shaper, linearization and resampling
1828 static _cmsOptimizationCollection DefaultOptimization[] = {
1829 
1830     { OptimizeByJoiningCurves,            &DefaultOptimization[1] },
1831     { OptimizeMatrixShaper,               &DefaultOptimization[2] },
1832     { OptimizeByComputingLinearization,   &DefaultOptimization[3] },
1833     { OptimizeByResampling,               NULL }
1834 };
1835 
1836 // The linked list head
1837 _cmsOptimizationPluginChunkType _cmsOptimizationPluginChunk = { NULL };
1838 
1839 
1840 // Duplicates the zone of memory used by the plug-in in the new context
1841 static
1842 void DupPluginOptimizationList(struct _cmsContext_struct* ctx,
1843                                const struct _cmsContext_struct* src)
1844 {
1845    _cmsOptimizationPluginChunkType newHead = { NULL };
1846    _cmsOptimizationCollection*  entry;
1847    _cmsOptimizationCollection*  Anterior = NULL;
1848    _cmsOptimizationPluginChunkType* head = (_cmsOptimizationPluginChunkType*) src->chunks[OptimizationPlugin];
1849 
1850     _cmsAssert(ctx != NULL);
1851     _cmsAssert(head != NULL);
1852 
1853     // Walk the list copying all nodes
1854    for (entry = head->OptimizationCollection;
1855         entry != NULL;
1856         entry = entry ->Next) {
1857 
1858             _cmsOptimizationCollection *newEntry = ( _cmsOptimizationCollection *) _cmsSubAllocDup(ctx ->MemPool, entry, sizeof(_cmsOptimizationCollection));
1859 
1860             if (newEntry == NULL)
1861                 return;
1862 
1863             // We want to keep the linked list order, so this is a little bit tricky
1864             newEntry -> Next = NULL;
1865             if (Anterior)
1866                 Anterior -> Next = newEntry;
1867 
1868             Anterior = newEntry;
1869 
1870             if (newHead.OptimizationCollection == NULL)
1871                 newHead.OptimizationCollection = newEntry;
1872     }
1873 
1874   ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx->MemPool, &newHead, sizeof(_cmsOptimizationPluginChunkType));
1875 }
1876 
1877 void  _cmsAllocOptimizationPluginChunk(struct _cmsContext_struct* ctx,
1878                                          const struct _cmsContext_struct* src)
1879 {
1880   if (src != NULL) {
1881 
1882         // Copy all linked list
1883        DupPluginOptimizationList(ctx, src);
1884     }
1885     else {
1886         static _cmsOptimizationPluginChunkType OptimizationPluginChunkType = { NULL };
1887         ctx ->chunks[OptimizationPlugin] = _cmsSubAllocDup(ctx ->MemPool, &OptimizationPluginChunkType, sizeof(_cmsOptimizationPluginChunkType));
1888     }
1889 }
1890 
1891 
1892 // Register new ways to optimize
1893 cmsBool  _cmsRegisterOptimizationPlugin(cmsContext ContextID, cmsPluginBase* Data)
1894 {
1895     cmsPluginOptimization* Plugin = (cmsPluginOptimization*) Data;
1896     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1897     _cmsOptimizationCollection* fl;
1898 
1899     if (Data == NULL) {
1900 
1901         ctx->OptimizationCollection = NULL;
1902         return TRUE;
1903     }
1904 
1905     // Optimizer callback is required
1906     if (Plugin ->OptimizePtr == NULL) return FALSE;
1907 
1908     fl = (_cmsOptimizationCollection*) _cmsPluginMalloc(ContextID, sizeof(_cmsOptimizationCollection));
1909     if (fl == NULL) return FALSE;
1910 
1911     // Copy the parameters
1912     fl ->OptimizePtr = Plugin ->OptimizePtr;
1913 
1914     // Keep linked list
1915     fl ->Next = ctx->OptimizationCollection;
1916 
1917     // Set the head
1918     ctx ->OptimizationCollection = fl;
1919 
1920     // All is ok
1921     return TRUE;
1922 }
1923 
1924 // The entry point for LUT optimization
1925 cmsBool _cmsOptimizePipeline(cmsContext ContextID,
1926                              cmsPipeline**    PtrLut,
1927                              cmsUInt32Number  Intent,
1928                              cmsUInt32Number* InputFormat,
1929                              cmsUInt32Number* OutputFormat,
1930                              cmsUInt32Number* dwFlags)
1931 {
1932     _cmsOptimizationPluginChunkType* ctx = ( _cmsOptimizationPluginChunkType*) _cmsContextGetClientChunk(ContextID, OptimizationPlugin);
1933     _cmsOptimizationCollection* Opts;
1934     cmsBool AnySuccess = FALSE;
1935 
1936     // A CLUT is being asked, so force this specific optimization
1937     if (*dwFlags & cmsFLAGS_FORCE_CLUT) {
1938 
1939         PreOptimize(*PtrLut);
1940         return OptimizeByResampling(PtrLut, Intent, InputFormat, OutputFormat, dwFlags);
1941     }
1942 
1943     // Anything to optimize?
1944     if ((*PtrLut) ->Elements == NULL) {
1945         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1946         return TRUE;
1947     }
1948 
1949     // Try to get rid of identities and trivial conversions.
1950     AnySuccess = PreOptimize(*PtrLut);
1951 
1952     // After removal do we end with an identity?
1953     if ((*PtrLut) ->Elements == NULL) {
1954         _cmsPipelineSetOptimizationParameters(*PtrLut, FastIdentity16, (void*) *PtrLut, NULL, NULL);
1955         return TRUE;
1956     }
1957 
1958     // Do not optimize, keep all precision
1959     if (*dwFlags & cmsFLAGS_NOOPTIMIZE)
1960         return FALSE;
1961 
1962     // Try plug-in optimizations
1963     for (Opts = ctx->OptimizationCollection;
1964          Opts != NULL;
1965          Opts = Opts ->Next) {
1966 
1967             // If one schema succeeded, we are done
1968             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1969 
1970                 return TRUE;    // Optimized!
1971             }
1972     }
1973 
1974    // Try built-in optimizations
1975     for (Opts = DefaultOptimization;
1976          Opts != NULL;
1977          Opts = Opts ->Next) {
1978 
1979             if (Opts ->OptimizePtr(PtrLut, Intent, InputFormat, OutputFormat, dwFlags)) {
1980 
1981                 return TRUE;
1982             }
1983     }
1984 
1985     // Only simple optimizations succeeded
1986     return AnySuccess;
1987 }
1988 
1989 
1990