1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 // This file is available under and governed by the GNU General Public
  26 // License version 2 only, as published by the Free Software Foundation.
  27 // However, the following notice accompanied the original version of this
  28 // file:
  29 //
  30 //---------------------------------------------------------------------------------
  31 //
  32 //  Little Color Management System
  33 //  Copyright (c) 1998-2017 Marti Maria Saguer
  34 //
  35 // Permission is hereby granted, free of charge, to any person obtaining
  36 // a copy of this software and associated documentation files (the "Software"),
  37 // to deal in the Software without restriction, including without limitation
  38 // the rights to use, copy, modify, merge, publish, distribute, sublicense,
  39 // and/or sell copies of the Software, and to permit persons to whom the Software
  40 // is furnished to do so, subject to the following conditions:
  41 //
  42 // The above copyright notice and this permission notice shall be included in
  43 // all copies or substantial portions of the Software.
  44 //
  45 // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  46 // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
  47 // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  48 // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
  49 // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
  50 // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
  51 // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  52 //
  53 //---------------------------------------------------------------------------------
  54 //
  55 
  56 #include "lcms2_internal.h"
  57 
  58 //      inter PCS conversions XYZ <-> CIE L* a* b*
  59 /*
  60 
  61 
  62        CIE 15:2004 CIELab is defined as:
  63 
  64        L* = 116*f(Y/Yn) - 16                     0 <= L* <= 100
  65        a* = 500*[f(X/Xn) - f(Y/Yn)]
  66        b* = 200*[f(Y/Yn) - f(Z/Zn)]
  67 
  68        and
  69 
  70               f(t) = t^(1/3)                     1 >= t >  (24/116)^3
  71                      (841/108)*t + (16/116)      0 <= t <= (24/116)^3
  72 
  73 
  74        Reverse transform is:
  75 
  76        X = Xn*[a* / 500 + (L* + 16) / 116] ^ 3   if (X/Xn) > (24/116)
  77          = Xn*(a* / 500 + L* / 116) / 7.787      if (X/Xn) <= (24/116)
  78 
  79 
  80 
  81        PCS in Lab2 is encoded as:
  82 
  83               8 bit Lab PCS:
  84 
  85                      L*      0..100 into a 0..ff byte.
  86                      a*      t + 128 range is -128.0  +127.0
  87                      b*
  88 
  89              16 bit Lab PCS:
  90 
  91                      L*     0..100  into a 0..ff00 word.
  92                      a*     t + 128  range is  -128.0  +127.9961
  93                      b*
  94 
  95 
  96 
  97 Interchange Space   Component     Actual Range        Encoded Range
  98 CIE XYZ             X             0 -> 1.99997        0x0000 -> 0xffff
  99 CIE XYZ             Y             0 -> 1.99997        0x0000 -> 0xffff
 100 CIE XYZ             Z             0 -> 1.99997        0x0000 -> 0xffff
 101 
 102 Version 2,3
 103 -----------
 104 
 105 CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xff00
 106 CIELAB (16 bit)     a*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
 107 CIELAB (16 bit)     b*            -128.0 -> +127.996  0x0000 -> 0x8000 -> 0xffff
 108 
 109 
 110 Version 4
 111 ---------
 112 
 113 CIELAB (16 bit)     L*            0 -> 100.0          0x0000 -> 0xffff
 114 CIELAB (16 bit)     a*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
 115 CIELAB (16 bit)     b*            -128.0 -> +127      0x0000 -> 0x8080 -> 0xffff
 116 
 117 */
 118 
 119 // Conversions
 120 void CMSEXPORT cmsXYZ2xyY(cmsCIExyY* Dest, const cmsCIEXYZ* Source)
 121 {
 122     cmsFloat64Number ISum;
 123 
 124     ISum = 1./(Source -> X + Source -> Y + Source -> Z);
 125 
 126     Dest -> x = (Source -> X) * ISum;
 127     Dest -> y = (Source -> Y) * ISum;
 128     Dest -> Y = Source -> Y;
 129 }
 130 
 131 void CMSEXPORT cmsxyY2XYZ(cmsCIEXYZ* Dest, const cmsCIExyY* Source)
 132 {
 133     Dest -> X = (Source -> x / Source -> y) * Source -> Y;
 134     Dest -> Y = Source -> Y;
 135     Dest -> Z = ((1 - Source -> x - Source -> y) / Source -> y) * Source -> Y;
 136 }
 137 
 138 /*
 139        The break point (24/116)^3 = (6/29)^3 is a very small amount of tristimulus
 140        primary (0.008856).  Generally, this only happens for
 141        nearly ideal blacks and for some orange / amber colors in transmission mode.
 142        For example, the Z value of the orange turn indicator lamp lens on an
 143        automobile will often be below this value.  But the Z does not
 144        contribute to the perceived color directly.
 145 */
 146 
 147 static
 148 cmsFloat64Number f(cmsFloat64Number t)
 149 {
 150     const cmsFloat64Number Limit = (24.0/116.0) * (24.0/116.0) * (24.0/116.0);
 151 
 152     if (t <= Limit)
 153         return (841.0/108.0) * t + (16.0/116.0);
 154     else
 155         return pow(t, 1.0/3.0);
 156 }
 157 
 158 static
 159 cmsFloat64Number f_1(cmsFloat64Number t)
 160 {
 161     const cmsFloat64Number Limit = (24.0/116.0);
 162 
 163     if (t <= Limit) {
 164         return (108.0/841.0) * (t - (16.0/116.0));
 165     }
 166 
 167     return t * t * t;
 168 }
 169 
 170 
 171 // Standard XYZ to Lab. it can handle negative XZY numbers in some cases
 172 void CMSEXPORT cmsXYZ2Lab(const cmsCIEXYZ* WhitePoint, cmsCIELab* Lab, const cmsCIEXYZ* xyz)
 173 {
 174     cmsFloat64Number fx, fy, fz;
 175 
 176     if (WhitePoint == NULL)
 177         WhitePoint = cmsD50_XYZ();
 178 
 179     fx = f(xyz->X / WhitePoint->X);
 180     fy = f(xyz->Y / WhitePoint->Y);
 181     fz = f(xyz->Z / WhitePoint->Z);
 182 
 183     Lab->L = 116.0*fy - 16.0;
 184     Lab->a = 500.0*(fx - fy);
 185     Lab->b = 200.0*(fy - fz);
 186 }
 187 
 188 
 189 // Standard XYZ to Lab. It can return negative XYZ in some cases
 190 void CMSEXPORT cmsLab2XYZ(const cmsCIEXYZ* WhitePoint, cmsCIEXYZ* xyz,  const cmsCIELab* Lab)
 191 {
 192     cmsFloat64Number x, y, z;
 193 
 194     if (WhitePoint == NULL)
 195         WhitePoint = cmsD50_XYZ();
 196 
 197     y = (Lab-> L + 16.0) / 116.0;
 198     x = y + 0.002 * Lab -> a;
 199     z = y - 0.005 * Lab -> b;
 200 
 201     xyz -> X = f_1(x) * WhitePoint -> X;
 202     xyz -> Y = f_1(y) * WhitePoint -> Y;
 203     xyz -> Z = f_1(z) * WhitePoint -> Z;
 204 
 205 }
 206 
 207 static
 208 cmsFloat64Number L2float2(cmsUInt16Number v)
 209 {
 210     return (cmsFloat64Number) v / 652.800;
 211 }
 212 
 213 // the a/b part
 214 static
 215 cmsFloat64Number ab2float2(cmsUInt16Number v)
 216 {
 217     return ((cmsFloat64Number) v / 256.0) - 128.0;
 218 }
 219 
 220 static
 221 cmsUInt16Number L2Fix2(cmsFloat64Number L)
 222 {
 223     return _cmsQuickSaturateWord(L *  652.8);
 224 }
 225 
 226 static
 227 cmsUInt16Number ab2Fix2(cmsFloat64Number ab)
 228 {
 229     return _cmsQuickSaturateWord((ab + 128.0) * 256.0);
 230 }
 231 
 232 
 233 static
 234 cmsFloat64Number L2float4(cmsUInt16Number v)
 235 {
 236     return (cmsFloat64Number) v / 655.35;
 237 }
 238 
 239 // the a/b part
 240 static
 241 cmsFloat64Number ab2float4(cmsUInt16Number v)
 242 {
 243     return ((cmsFloat64Number) v / 257.0) - 128.0;
 244 }
 245 
 246 
 247 void CMSEXPORT cmsLabEncoded2FloatV2(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
 248 {
 249         Lab->L = L2float2(wLab[0]);
 250         Lab->a = ab2float2(wLab[1]);
 251         Lab->b = ab2float2(wLab[2]);
 252 }
 253 
 254 
 255 void CMSEXPORT cmsLabEncoded2Float(cmsCIELab* Lab, const cmsUInt16Number wLab[3])
 256 {
 257         Lab->L = L2float4(wLab[0]);
 258         Lab->a = ab2float4(wLab[1]);
 259         Lab->b = ab2float4(wLab[2]);
 260 }
 261 
 262 static
 263 cmsFloat64Number Clamp_L_doubleV2(cmsFloat64Number L)
 264 {
 265     const cmsFloat64Number L_max = (cmsFloat64Number) (0xFFFF * 100.0) / 0xFF00;
 266 
 267     if (L < 0) L = 0;
 268     if (L > L_max) L = L_max;
 269 
 270     return L;
 271 }
 272 
 273 
 274 static
 275 cmsFloat64Number Clamp_ab_doubleV2(cmsFloat64Number ab)
 276 {
 277     if (ab < MIN_ENCODEABLE_ab2) ab = MIN_ENCODEABLE_ab2;
 278     if (ab > MAX_ENCODEABLE_ab2) ab = MAX_ENCODEABLE_ab2;
 279 
 280     return ab;
 281 }
 282 
 283 void CMSEXPORT cmsFloat2LabEncodedV2(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
 284 {
 285     cmsCIELab Lab;
 286 
 287     Lab.L = Clamp_L_doubleV2(fLab ->L);
 288     Lab.a = Clamp_ab_doubleV2(fLab ->a);
 289     Lab.b = Clamp_ab_doubleV2(fLab ->b);
 290 
 291     wLab[0] = L2Fix2(Lab.L);
 292     wLab[1] = ab2Fix2(Lab.a);
 293     wLab[2] = ab2Fix2(Lab.b);
 294 }
 295 
 296 
 297 static
 298 cmsFloat64Number Clamp_L_doubleV4(cmsFloat64Number L)
 299 {
 300     if (L < 0) L = 0;
 301     if (L > 100.0) L = 100.0;
 302 
 303     return L;
 304 }
 305 
 306 static
 307 cmsFloat64Number Clamp_ab_doubleV4(cmsFloat64Number ab)
 308 {
 309     if (ab < MIN_ENCODEABLE_ab4) ab = MIN_ENCODEABLE_ab4;
 310     if (ab > MAX_ENCODEABLE_ab4) ab = MAX_ENCODEABLE_ab4;
 311 
 312     return ab;
 313 }
 314 
 315 static
 316 cmsUInt16Number L2Fix4(cmsFloat64Number L)
 317 {
 318     return _cmsQuickSaturateWord(L *  655.35);
 319 }
 320 
 321 static
 322 cmsUInt16Number ab2Fix4(cmsFloat64Number ab)
 323 {
 324     return _cmsQuickSaturateWord((ab + 128.0) * 257.0);
 325 }
 326 
 327 void CMSEXPORT cmsFloat2LabEncoded(cmsUInt16Number wLab[3], const cmsCIELab* fLab)
 328 {
 329     cmsCIELab Lab;
 330 
 331     Lab.L = Clamp_L_doubleV4(fLab ->L);
 332     Lab.a = Clamp_ab_doubleV4(fLab ->a);
 333     Lab.b = Clamp_ab_doubleV4(fLab ->b);
 334 
 335     wLab[0] = L2Fix4(Lab.L);
 336     wLab[1] = ab2Fix4(Lab.a);
 337     wLab[2] = ab2Fix4(Lab.b);
 338 }
 339 
 340 // Auxiliary: convert to Radians
 341 static
 342 cmsFloat64Number RADIANS(cmsFloat64Number deg)
 343 {
 344     return (deg * M_PI) / 180.;
 345 }
 346 
 347 
 348 // Auxiliary: atan2 but operating in degrees and returning 0 if a==b==0
 349 static
 350 cmsFloat64Number atan2deg(cmsFloat64Number a, cmsFloat64Number b)
 351 {
 352    cmsFloat64Number h;
 353 
 354    if (a == 0 && b == 0)
 355             h   = 0;
 356     else
 357             h = atan2(a, b);
 358 
 359     h *= (180. / M_PI);
 360 
 361     while (h > 360.)
 362         h -= 360.;
 363 
 364     while ( h < 0)
 365         h += 360.;
 366 
 367     return h;
 368 }
 369 
 370 
 371 // Auxiliary: Square
 372 static
 373 cmsFloat64Number Sqr(cmsFloat64Number v)
 374 {
 375     return v *  v;
 376 }
 377 // From cylindrical coordinates. No check is performed, then negative values are allowed
 378 void CMSEXPORT cmsLab2LCh(cmsCIELCh* LCh, const cmsCIELab* Lab)
 379 {
 380     LCh -> L = Lab -> L;
 381     LCh -> C = pow(Sqr(Lab ->a) + Sqr(Lab ->b), 0.5);
 382     LCh -> h = atan2deg(Lab ->b, Lab ->a);
 383 }
 384 
 385 
 386 // To cylindrical coordinates. No check is performed, then negative values are allowed
 387 void CMSEXPORT cmsLCh2Lab(cmsCIELab* Lab, const cmsCIELCh* LCh)
 388 {
 389     cmsFloat64Number h = (LCh -> h * M_PI) / 180.0;
 390 
 391     Lab -> L = LCh -> L;
 392     Lab -> a = LCh -> C * cos(h);
 393     Lab -> b = LCh -> C * sin(h);
 394 }
 395 
 396 // In XYZ All 3 components are encoded using 1.15 fixed point
 397 static
 398 cmsUInt16Number XYZ2Fix(cmsFloat64Number d)
 399 {
 400     return _cmsQuickSaturateWord(d * 32768.0);
 401 }
 402 
 403 void CMSEXPORT cmsFloat2XYZEncoded(cmsUInt16Number XYZ[3], const cmsCIEXYZ* fXYZ)
 404 {
 405     cmsCIEXYZ xyz;
 406 
 407     xyz.X = fXYZ -> X;
 408     xyz.Y = fXYZ -> Y;
 409     xyz.Z = fXYZ -> Z;
 410 
 411     // Clamp to encodeable values.
 412     if (xyz.Y <= 0) {
 413 
 414         xyz.X = 0;
 415         xyz.Y = 0;
 416         xyz.Z = 0;
 417     }
 418 
 419     if (xyz.X > MAX_ENCODEABLE_XYZ)
 420         xyz.X = MAX_ENCODEABLE_XYZ;
 421 
 422     if (xyz.X < 0)
 423         xyz.X = 0;
 424 
 425     if (xyz.Y > MAX_ENCODEABLE_XYZ)
 426         xyz.Y = MAX_ENCODEABLE_XYZ;
 427 
 428     if (xyz.Y < 0)
 429         xyz.Y = 0;
 430 
 431     if (xyz.Z > MAX_ENCODEABLE_XYZ)
 432         xyz.Z = MAX_ENCODEABLE_XYZ;
 433 
 434     if (xyz.Z < 0)
 435         xyz.Z = 0;
 436 
 437 
 438     XYZ[0] = XYZ2Fix(xyz.X);
 439     XYZ[1] = XYZ2Fix(xyz.Y);
 440     XYZ[2] = XYZ2Fix(xyz.Z);
 441 }
 442 
 443 
 444 //  To convert from Fixed 1.15 point to cmsFloat64Number
 445 static
 446 cmsFloat64Number XYZ2float(cmsUInt16Number v)
 447 {
 448     cmsS15Fixed16Number fix32;
 449 
 450     // From 1.15 to 15.16
 451     fix32 = v << 1;
 452 
 453     // From fixed 15.16 to cmsFloat64Number
 454     return _cms15Fixed16toDouble(fix32);
 455 }
 456 
 457 
 458 void CMSEXPORT cmsXYZEncoded2Float(cmsCIEXYZ* fXYZ, const cmsUInt16Number XYZ[3])
 459 {
 460     fXYZ -> X = XYZ2float(XYZ[0]);
 461     fXYZ -> Y = XYZ2float(XYZ[1]);
 462     fXYZ -> Z = XYZ2float(XYZ[2]);
 463 }
 464 
 465 
 466 // Returns dE on two Lab values
 467 cmsFloat64Number CMSEXPORT cmsDeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
 468 {
 469     cmsFloat64Number dL, da, db;
 470 
 471     dL = fabs(Lab1 -> L - Lab2 -> L);
 472     da = fabs(Lab1 -> a - Lab2 -> a);
 473     db = fabs(Lab1 -> b - Lab2 -> b);
 474 
 475     return pow(Sqr(dL) + Sqr(da) + Sqr(db), 0.5);
 476 }
 477 
 478 
 479 // Return the CIE94 Delta E
 480 cmsFloat64Number CMSEXPORT cmsCIE94DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
 481 {
 482     cmsCIELCh LCh1, LCh2;
 483     cmsFloat64Number dE, dL, dC, dh, dhsq;
 484     cmsFloat64Number c12, sc, sh;
 485 
 486     dL = fabs(Lab1 ->L - Lab2 ->L);
 487 
 488     cmsLab2LCh(&LCh1, Lab1);
 489     cmsLab2LCh(&LCh2, Lab2);
 490 
 491     dC  = fabs(LCh1.C - LCh2.C);
 492     dE  = cmsDeltaE(Lab1, Lab2);
 493 
 494     dhsq = Sqr(dE) - Sqr(dL) - Sqr(dC);
 495     if (dhsq < 0)
 496         dh = 0;
 497     else
 498         dh = pow(dhsq, 0.5);
 499 
 500     c12 = sqrt(LCh1.C * LCh2.C);
 501 
 502     sc = 1.0 + (0.048 * c12);
 503     sh = 1.0 + (0.014 * c12);
 504 
 505     return sqrt(Sqr(dL)  + Sqr(dC) / Sqr(sc) + Sqr(dh) / Sqr(sh));
 506 }
 507 
 508 
 509 // Auxiliary
 510 static
 511 cmsFloat64Number ComputeLBFD(const cmsCIELab* Lab)
 512 {
 513   cmsFloat64Number yt;
 514 
 515   if (Lab->L > 7.996969)
 516         yt = (Sqr((Lab->L+16)/116)*((Lab->L+16)/116))*100;
 517   else
 518         yt = 100 * (Lab->L / 903.3);
 519 
 520   return (54.6 * (M_LOG10E * (log(yt + 1.5))) - 9.6);
 521 }
 522 
 523 
 524 
 525 // bfd - gets BFD(1:1) difference between Lab1, Lab2
 526 cmsFloat64Number CMSEXPORT cmsBFDdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2)
 527 {
 528     cmsFloat64Number lbfd1,lbfd2,AveC,Aveh,dE,deltaL,
 529         deltaC,deltah,dc,t,g,dh,rh,rc,rt,bfd;
 530     cmsCIELCh LCh1, LCh2;
 531 
 532 
 533     lbfd1 = ComputeLBFD(Lab1);
 534     lbfd2 = ComputeLBFD(Lab2);
 535     deltaL = lbfd2 - lbfd1;
 536 
 537     cmsLab2LCh(&LCh1, Lab1);
 538     cmsLab2LCh(&LCh2, Lab2);
 539 
 540     deltaC = LCh2.C - LCh1.C;
 541     AveC = (LCh1.C+LCh2.C)/2;
 542     Aveh = (LCh1.h+LCh2.h)/2;
 543 
 544     dE = cmsDeltaE(Lab1, Lab2);
 545 
 546     if (Sqr(dE)>(Sqr(Lab2->L-Lab1->L)+Sqr(deltaC)))
 547         deltah = sqrt(Sqr(dE)-Sqr(Lab2->L-Lab1->L)-Sqr(deltaC));
 548     else
 549         deltah =0;
 550 
 551 
 552     dc   = 0.035 * AveC / (1 + 0.00365 * AveC)+0.521;
 553     g    = sqrt(Sqr(Sqr(AveC))/(Sqr(Sqr(AveC))+14000));
 554     t    = 0.627+(0.055*cos((Aveh-254)/(180/M_PI))-
 555            0.040*cos((2*Aveh-136)/(180/M_PI))+
 556            0.070*cos((3*Aveh-31)/(180/M_PI))+
 557            0.049*cos((4*Aveh+114)/(180/M_PI))-
 558            0.015*cos((5*Aveh-103)/(180/M_PI)));
 559 
 560     dh    = dc*(g*t+1-g);
 561     rh    = -0.260*cos((Aveh-308)/(180/M_PI))-
 562            0.379*cos((2*Aveh-160)/(180/M_PI))-
 563            0.636*cos((3*Aveh+254)/(180/M_PI))+
 564            0.226*cos((4*Aveh+140)/(180/M_PI))-
 565            0.194*cos((5*Aveh+280)/(180/M_PI));
 566 
 567     rc = sqrt((AveC*AveC*AveC*AveC*AveC*AveC)/((AveC*AveC*AveC*AveC*AveC*AveC)+70000000));
 568     rt = rh*rc;
 569 
 570     bfd = sqrt(Sqr(deltaL)+Sqr(deltaC/dc)+Sqr(deltah/dh)+(rt*(deltaC/dc)*(deltah/dh)));
 571 
 572     return bfd;
 573 }
 574 
 575 
 576 //  cmc - CMC(l:c) difference between Lab1, Lab2
 577 cmsFloat64Number CMSEXPORT cmsCMCdeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2, cmsFloat64Number l, cmsFloat64Number c)
 578 {
 579   cmsFloat64Number dE,dL,dC,dh,sl,sc,sh,t,f,cmc;
 580   cmsCIELCh LCh1, LCh2;
 581 
 582   if (Lab1 ->L == 0 && Lab2 ->L == 0) return 0;
 583 
 584   cmsLab2LCh(&LCh1, Lab1);
 585   cmsLab2LCh(&LCh2, Lab2);
 586 
 587 
 588   dL = Lab2->L-Lab1->L;
 589   dC = LCh2.C-LCh1.C;
 590 
 591   dE = cmsDeltaE(Lab1, Lab2);
 592 
 593   if (Sqr(dE)>(Sqr(dL)+Sqr(dC)))
 594             dh = sqrt(Sqr(dE)-Sqr(dL)-Sqr(dC));
 595   else
 596             dh =0;
 597 
 598   if ((LCh1.h > 164) && (LCh1.h < 345))
 599       t = 0.56 + fabs(0.2 * cos(((LCh1.h + 168)/(180/M_PI))));
 600   else
 601       t = 0.36 + fabs(0.4 * cos(((LCh1.h + 35 )/(180/M_PI))));
 602 
 603    sc  = 0.0638   * LCh1.C / (1 + 0.0131  * LCh1.C) + 0.638;
 604    sl  = 0.040975 * Lab1->L /(1 + 0.01765 * Lab1->L);
 605 
 606    if (Lab1->L<16)
 607          sl = 0.511;
 608 
 609    f   = sqrt((LCh1.C * LCh1.C * LCh1.C * LCh1.C)/((LCh1.C * LCh1.C * LCh1.C * LCh1.C)+1900));
 610    sh  = sc*(t*f+1-f);
 611    cmc = sqrt(Sqr(dL/(l*sl))+Sqr(dC/(c*sc))+Sqr(dh/sh));
 612 
 613    return cmc;
 614 }
 615 
 616 // dE2000 The weightings KL, KC and KH can be modified to reflect the relative
 617 // importance of lightness, chroma and hue in different industrial applications
 618 cmsFloat64Number CMSEXPORT cmsCIE2000DeltaE(const cmsCIELab* Lab1, const cmsCIELab* Lab2,
 619                                   cmsFloat64Number Kl, cmsFloat64Number Kc, cmsFloat64Number Kh)
 620 {
 621     cmsFloat64Number L1  = Lab1->L;
 622     cmsFloat64Number a1  = Lab1->a;
 623     cmsFloat64Number b1  = Lab1->b;
 624     cmsFloat64Number C   = sqrt( Sqr(a1) + Sqr(b1) );
 625 
 626     cmsFloat64Number Ls = Lab2 ->L;
 627     cmsFloat64Number as = Lab2 ->a;
 628     cmsFloat64Number bs = Lab2 ->b;
 629     cmsFloat64Number Cs = sqrt( Sqr(as) + Sqr(bs) );
 630 
 631     cmsFloat64Number G = 0.5 * ( 1 - sqrt(pow((C + Cs) / 2 , 7.0) / (pow((C + Cs) / 2, 7.0) + pow(25.0, 7.0) ) ));
 632 
 633     cmsFloat64Number a_p = (1 + G ) * a1;
 634     cmsFloat64Number b_p = b1;
 635     cmsFloat64Number C_p = sqrt( Sqr(a_p) + Sqr(b_p));
 636     cmsFloat64Number h_p = atan2deg(b_p, a_p);
 637 
 638 
 639     cmsFloat64Number a_ps = (1 + G) * as;
 640     cmsFloat64Number b_ps = bs;
 641     cmsFloat64Number C_ps = sqrt(Sqr(a_ps) + Sqr(b_ps));
 642     cmsFloat64Number h_ps = atan2deg(b_ps, a_ps);
 643 
 644     cmsFloat64Number meanC_p =(C_p + C_ps) / 2;
 645 
 646     cmsFloat64Number hps_plus_hp  = h_ps + h_p;
 647     cmsFloat64Number hps_minus_hp = h_ps - h_p;
 648 
 649     cmsFloat64Number meanh_p = fabs(hps_minus_hp) <= 180.000001 ? (hps_plus_hp)/2 :
 650                             (hps_plus_hp) < 360 ? (hps_plus_hp + 360)/2 :
 651                                                  (hps_plus_hp - 360)/2;
 652 
 653     cmsFloat64Number delta_h = (hps_minus_hp) <= -180.000001 ?  (hps_minus_hp + 360) :
 654                             (hps_minus_hp) > 180 ? (hps_minus_hp - 360) :
 655                                                     (hps_minus_hp);
 656     cmsFloat64Number delta_L = (Ls - L1);
 657     cmsFloat64Number delta_C = (C_ps - C_p );
 658 
 659 
 660     cmsFloat64Number delta_H =2 * sqrt(C_ps*C_p) * sin(RADIANS(delta_h) / 2);
 661 
 662     cmsFloat64Number T = 1 - 0.17 * cos(RADIANS(meanh_p-30))
 663                  + 0.24 * cos(RADIANS(2*meanh_p))
 664                  + 0.32 * cos(RADIANS(3*meanh_p + 6))
 665                  - 0.2  * cos(RADIANS(4*meanh_p - 63));
 666 
 667     cmsFloat64Number Sl = 1 + (0.015 * Sqr((Ls + L1) /2- 50) )/ sqrt(20 + Sqr( (Ls+L1)/2 - 50) );
 668 
 669     cmsFloat64Number Sc = 1 + 0.045 * (C_p + C_ps)/2;
 670     cmsFloat64Number Sh = 1 + 0.015 * ((C_ps + C_p)/2) * T;
 671 
 672     cmsFloat64Number delta_ro = 30 * exp( -Sqr(((meanh_p - 275 ) / 25)));
 673 
 674     cmsFloat64Number Rc = 2 * sqrt(( pow(meanC_p, 7.0) )/( pow(meanC_p, 7.0) + pow(25.0, 7.0)));
 675 
 676     cmsFloat64Number Rt = -sin(2 * RADIANS(delta_ro)) * Rc;
 677 
 678     cmsFloat64Number deltaE00 = sqrt( Sqr(delta_L /(Sl * Kl)) +
 679                             Sqr(delta_C/(Sc * Kc))  +
 680                             Sqr(delta_H/(Sh * Kh))  +
 681                             Rt*(delta_C/(Sc * Kc)) * (delta_H / (Sh * Kh)));
 682 
 683     return deltaE00;
 684 }
 685 
 686 // This function returns a number of gridpoints to be used as LUT table. It assumes same number
 687 // of gripdpoints in all dimensions. Flags may override the choice.
 688 cmsUInt32Number _cmsReasonableGridpointsByColorspace(cmsColorSpaceSignature Colorspace, cmsUInt32Number dwFlags)
 689 {
 690     cmsUInt32Number nChannels;
 691 
 692     // Already specified?
 693     if (dwFlags & 0x00FF0000) {
 694             // Yes, grab'em
 695             return (dwFlags >> 16) & 0xFF;
 696     }
 697 
 698     nChannels = cmsChannelsOf(Colorspace);
 699 
 700     // HighResPrecalc is maximum resolution
 701     if (dwFlags & cmsFLAGS_HIGHRESPRECALC) {
 702 
 703         if (nChannels > 4)
 704                 return 7;       // 7 for Hifi
 705 
 706         if (nChannels == 4)     // 23 for CMYK
 707                 return 23;
 708 
 709         return 49;      // 49 for RGB and others
 710     }
 711 
 712 
 713     // LowResPrecal is lower resolution
 714     if (dwFlags & cmsFLAGS_LOWRESPRECALC) {
 715 
 716         if (nChannels > 4)
 717                 return 6;       // 6 for more than 4 channels
 718 
 719         if (nChannels == 1)
 720                 return 33;      // For monochrome
 721 
 722         return 17;              // 17 for remaining
 723     }
 724 
 725     // Default values
 726     if (nChannels > 4)
 727                 return 7;       // 7 for Hifi
 728 
 729     if (nChannels == 4)
 730                 return 17;      // 17 for CMYK
 731 
 732     return 33;                  // 33 for RGB
 733 }
 734 
 735 
 736 cmsBool  _cmsEndPointsBySpace(cmsColorSpaceSignature Space,
 737                              cmsUInt16Number **White,
 738                              cmsUInt16Number **Black,
 739                              cmsUInt32Number *nOutputs)
 740 {
 741        // Only most common spaces
 742 
 743        static cmsUInt16Number RGBblack[4]  = { 0, 0, 0 };
 744        static cmsUInt16Number RGBwhite[4]  = { 0xffff, 0xffff, 0xffff };
 745        static cmsUInt16Number CMYKblack[4] = { 0xffff, 0xffff, 0xffff, 0xffff };   // 400% of ink
 746        static cmsUInt16Number CMYKwhite[4] = { 0, 0, 0, 0 };
 747        static cmsUInt16Number LABblack[4]  = { 0, 0x8080, 0x8080 };               // V4 Lab encoding
 748        static cmsUInt16Number LABwhite[4]  = { 0xFFFF, 0x8080, 0x8080 };
 749        static cmsUInt16Number CMYblack[4]  = { 0xffff, 0xffff, 0xffff };
 750        static cmsUInt16Number CMYwhite[4]  = { 0, 0, 0 };
 751        static cmsUInt16Number Grayblack[4] = { 0 };
 752        static cmsUInt16Number GrayWhite[4] = { 0xffff };
 753 
 754        switch (Space) {
 755 
 756        case cmsSigGrayData: if (White)    *White = GrayWhite;
 757                            if (Black)    *Black = Grayblack;
 758                            if (nOutputs) *nOutputs = 1;
 759                            return TRUE;
 760 
 761        case cmsSigRgbData:  if (White)    *White = RGBwhite;
 762                            if (Black)    *Black = RGBblack;
 763                            if (nOutputs) *nOutputs = 3;
 764                            return TRUE;
 765 
 766        case cmsSigLabData:  if (White)    *White = LABwhite;
 767                            if (Black)    *Black = LABblack;
 768                            if (nOutputs) *nOutputs = 3;
 769                            return TRUE;
 770 
 771        case cmsSigCmykData: if (White)    *White = CMYKwhite;
 772                            if (Black)    *Black = CMYKblack;
 773                            if (nOutputs) *nOutputs = 4;
 774                            return TRUE;
 775 
 776        case cmsSigCmyData:  if (White)    *White = CMYwhite;
 777                            if (Black)    *Black = CMYblack;
 778                            if (nOutputs) *nOutputs = 3;
 779                            return TRUE;
 780 
 781        default:;
 782        }
 783 
 784   return FALSE;
 785 }
 786 
 787 
 788 
 789 // Several utilities -------------------------------------------------------
 790 
 791 // Translate from our colorspace to ICC representation
 792 
 793 cmsColorSpaceSignature CMSEXPORT _cmsICCcolorSpace(int OurNotation)
 794 {
 795        switch (OurNotation) {
 796 
 797        case 1:
 798        case PT_GRAY: return cmsSigGrayData;
 799 
 800        case 2:
 801        case PT_RGB:  return cmsSigRgbData;
 802 
 803        case PT_CMY:  return cmsSigCmyData;
 804        case PT_CMYK: return cmsSigCmykData;
 805        case PT_YCbCr:return cmsSigYCbCrData;
 806        case PT_YUV:  return cmsSigLuvData;
 807        case PT_XYZ:  return cmsSigXYZData;
 808 
 809        case PT_LabV2:
 810        case PT_Lab:  return cmsSigLabData;
 811 
 812        case PT_YUVK: return cmsSigLuvKData;
 813        case PT_HSV:  return cmsSigHsvData;
 814        case PT_HLS:  return cmsSigHlsData;
 815        case PT_Yxy:  return cmsSigYxyData;
 816 
 817        case PT_MCH1: return cmsSigMCH1Data;
 818        case PT_MCH2: return cmsSigMCH2Data;
 819        case PT_MCH3: return cmsSigMCH3Data;
 820        case PT_MCH4: return cmsSigMCH4Data;
 821        case PT_MCH5: return cmsSigMCH5Data;
 822        case PT_MCH6: return cmsSigMCH6Data;
 823        case PT_MCH7: return cmsSigMCH7Data;
 824        case PT_MCH8: return cmsSigMCH8Data;
 825 
 826        case PT_MCH9:  return cmsSigMCH9Data;
 827        case PT_MCH10: return cmsSigMCHAData;
 828        case PT_MCH11: return cmsSigMCHBData;
 829        case PT_MCH12: return cmsSigMCHCData;
 830        case PT_MCH13: return cmsSigMCHDData;
 831        case PT_MCH14: return cmsSigMCHEData;
 832        case PT_MCH15: return cmsSigMCHFData;
 833 
 834        default:  return (cmsColorSpaceSignature) 0;
 835        }
 836 }
 837 
 838 
 839 int CMSEXPORT _cmsLCMScolorSpace(cmsColorSpaceSignature ProfileSpace)
 840 {
 841     switch (ProfileSpace) {
 842 
 843     case cmsSigGrayData: return  PT_GRAY;
 844     case cmsSigRgbData:  return  PT_RGB;
 845     case cmsSigCmyData:  return  PT_CMY;
 846     case cmsSigCmykData: return  PT_CMYK;
 847     case cmsSigYCbCrData:return  PT_YCbCr;
 848     case cmsSigLuvData:  return  PT_YUV;
 849     case cmsSigXYZData:  return  PT_XYZ;
 850     case cmsSigLabData:  return  PT_Lab;
 851     case cmsSigLuvKData: return  PT_YUVK;
 852     case cmsSigHsvData:  return  PT_HSV;
 853     case cmsSigHlsData:  return  PT_HLS;
 854     case cmsSigYxyData:  return  PT_Yxy;
 855 
 856     case cmsSig1colorData:
 857     case cmsSigMCH1Data: return PT_MCH1;
 858 
 859     case cmsSig2colorData:
 860     case cmsSigMCH2Data: return PT_MCH2;
 861 
 862     case cmsSig3colorData:
 863     case cmsSigMCH3Data: return PT_MCH3;
 864 
 865     case cmsSig4colorData:
 866     case cmsSigMCH4Data: return PT_MCH4;
 867 
 868     case cmsSig5colorData:
 869     case cmsSigMCH5Data: return PT_MCH5;
 870 
 871     case cmsSig6colorData:
 872     case cmsSigMCH6Data: return PT_MCH6;
 873 
 874     case cmsSigMCH7Data:
 875     case cmsSig7colorData:return PT_MCH7;
 876 
 877     case cmsSigMCH8Data:
 878     case cmsSig8colorData:return PT_MCH8;
 879 
 880     case cmsSigMCH9Data:
 881     case cmsSig9colorData:return PT_MCH9;
 882 
 883     case cmsSigMCHAData:
 884     case cmsSig10colorData:return PT_MCH10;
 885 
 886     case cmsSigMCHBData:
 887     case cmsSig11colorData:return PT_MCH11;
 888 
 889     case cmsSigMCHCData:
 890     case cmsSig12colorData:return PT_MCH12;
 891 
 892     case cmsSigMCHDData:
 893     case cmsSig13colorData:return PT_MCH13;
 894 
 895     case cmsSigMCHEData:
 896     case cmsSig14colorData:return PT_MCH14;
 897 
 898     case cmsSigMCHFData:
 899     case cmsSig15colorData:return PT_MCH15;
 900 
 901     default:  return (cmsColorSpaceSignature) 0;
 902     }
 903 }
 904 
 905 
 906 cmsUInt32Number CMSEXPORT cmsChannelsOf(cmsColorSpaceSignature ColorSpace)
 907 {
 908     switch (ColorSpace) {
 909 
 910     case cmsSigMCH1Data:
 911     case cmsSig1colorData:
 912     case cmsSigGrayData: return 1;
 913 
 914     case cmsSigMCH2Data:
 915     case cmsSig2colorData:  return 2;
 916 
 917     case cmsSigXYZData:
 918     case cmsSigLabData:
 919     case cmsSigLuvData:
 920     case cmsSigYCbCrData:
 921     case cmsSigYxyData:
 922     case cmsSigRgbData:
 923     case cmsSigHsvData:
 924     case cmsSigHlsData:
 925     case cmsSigCmyData:
 926     case cmsSigMCH3Data:
 927     case cmsSig3colorData:  return 3;
 928 
 929     case cmsSigLuvKData:
 930     case cmsSigCmykData:
 931     case cmsSigMCH4Data:
 932     case cmsSig4colorData:  return 4;
 933 
 934     case cmsSigMCH5Data:
 935     case cmsSig5colorData:  return 5;
 936 
 937     case cmsSigMCH6Data:
 938     case cmsSig6colorData:  return 6;
 939 
 940     case cmsSigMCH7Data:
 941     case cmsSig7colorData:  return  7;
 942 
 943     case cmsSigMCH8Data:
 944     case cmsSig8colorData:  return  8;
 945 
 946     case cmsSigMCH9Data:
 947     case cmsSig9colorData:  return  9;
 948 
 949     case cmsSigMCHAData:
 950     case cmsSig10colorData: return 10;
 951 
 952     case cmsSigMCHBData:
 953     case cmsSig11colorData: return 11;
 954 
 955     case cmsSigMCHCData:
 956     case cmsSig12colorData: return 12;
 957 
 958     case cmsSigMCHDData:
 959     case cmsSig13colorData: return 13;
 960 
 961     case cmsSigMCHEData:
 962     case cmsSig14colorData: return 14;
 963 
 964     case cmsSigMCHFData:
 965     case cmsSig15colorData: return 15;
 966 
 967     default: return 3;
 968     }
 969 }