1 /*
   2  * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "ci/ciUtilities.inline.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/compileLog.hpp"
  32 #include "gc/shared/barrierSet.hpp"
  33 #include "jfr/support/jfrIntrinsics.hpp"
  34 #include "memory/resourceArea.hpp"
  35 #include "oops/klass.inline.hpp"
  36 #include "oops/objArrayKlass.hpp"
  37 #include "opto/addnode.hpp"
  38 #include "opto/arraycopynode.hpp"
  39 #include "opto/c2compiler.hpp"
  40 #include "opto/castnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/convertnode.hpp"
  43 #include "opto/countbitsnode.hpp"
  44 #include "opto/idealKit.hpp"
  45 #include "opto/library_call.hpp"
  46 #include "opto/mathexactnode.hpp"
  47 #include "opto/mulnode.hpp"
  48 #include "opto/narrowptrnode.hpp"
  49 #include "opto/opaquenode.hpp"
  50 #include "opto/parse.hpp"
  51 #include "opto/runtime.hpp"
  52 #include "opto/rootnode.hpp"
  53 #include "opto/subnode.hpp"
  54 #include "prims/nativeLookup.hpp"
  55 #include "prims/unsafe.hpp"
  56 #include "runtime/objectMonitor.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/powerOfTwo.hpp"
  60 
  61 //---------------------------make_vm_intrinsic----------------------------
  62 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
  63   vmIntrinsics::ID id = m->intrinsic_id();
  64   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
  65 
  66   if (!m->is_loaded()) {
  67     // Do not attempt to inline unloaded methods.
  68     return NULL;
  69   }
  70 
  71   C2Compiler* compiler = (C2Compiler*)CompileBroker::compiler(CompLevel_full_optimization);
  72   bool is_available = false;
  73 
  74   {
  75     // For calling is_intrinsic_supported and is_intrinsic_disabled_by_flag
  76     // the compiler must transition to '_thread_in_vm' state because both
  77     // methods access VM-internal data.
  78     VM_ENTRY_MARK;
  79     methodHandle mh(THREAD, m->get_Method());
  80     is_available = compiler != NULL && compiler->is_intrinsic_supported(mh, is_virtual) &&
  81                    !C->directive()->is_intrinsic_disabled(mh) &&
  82                    !vmIntrinsics::is_disabled_by_flags(mh);
  83 
  84   }
  85 
  86   if (is_available) {
  87     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
  88     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
  89     return new LibraryIntrinsic(m, is_virtual,
  90                                 vmIntrinsics::predicates_needed(id),
  91                                 vmIntrinsics::does_virtual_dispatch(id),
  92                                 (vmIntrinsics::ID) id);
  93   } else {
  94     return NULL;
  95   }
  96 }
  97 
  98 //----------------------register_library_intrinsics-----------------------
  99 // Initialize this file's data structures, for each Compile instance.
 100 void Compile::register_library_intrinsics() {
 101   // Nothing to do here.
 102 }
 103 
 104 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 105   LibraryCallKit kit(jvms, this);
 106   Compile* C = kit.C;
 107   int nodes = C->unique();
 108 #ifndef PRODUCT
 109   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 110     char buf[1000];
 111     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 112     tty->print_cr("Intrinsic %s", str);
 113   }
 114 #endif
 115   ciMethod* callee = kit.callee();
 116   const int bci    = kit.bci();
 117 
 118   // Try to inline the intrinsic.
 119   if ((CheckIntrinsics ? callee->intrinsic_candidate() : true) &&
 120       kit.try_to_inline(_last_predicate)) {
 121     const char *inline_msg = is_virtual() ? "(intrinsic, virtual)"
 122                                           : "(intrinsic)";
 123     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 124     if (C->print_intrinsics() || C->print_inlining()) {
 125       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 126     }
 127     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 128     if (C->log()) {
 129       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 130                      vmIntrinsics::name_at(intrinsic_id()),
 131                      (is_virtual() ? " virtual='1'" : ""),
 132                      C->unique() - nodes);
 133     }
 134     // Push the result from the inlined method onto the stack.
 135     kit.push_result();
 136     C->print_inlining_update(this);
 137     return kit.transfer_exceptions_into_jvms();
 138   }
 139 
 140   // The intrinsic bailed out
 141   if (jvms->has_method()) {
 142     // Not a root compile.
 143     const char* msg;
 144     if (callee->intrinsic_candidate()) {
 145       msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 146     } else {
 147       msg = is_virtual() ? "failed to inline (intrinsic, virtual), method not annotated"
 148                          : "failed to inline (intrinsic), method not annotated";
 149     }
 150     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, msg);
 151     if (C->print_intrinsics() || C->print_inlining()) {
 152       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 153     }
 154   } else {
 155     // Root compile
 156     ResourceMark rm;
 157     stringStream msg_stream;
 158     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 159                      vmIntrinsics::name_at(intrinsic_id()),
 160                      is_virtual() ? " (virtual)" : "", bci);
 161     const char *msg = msg_stream.as_string();
 162     log_debug(jit, inlining)("%s", msg);
 163     if (C->print_intrinsics() || C->print_inlining()) {
 164       tty->print("%s", msg);
 165     }
 166   }
 167   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 168   C->print_inlining_update(this);
 169 
 170   return NULL;
 171 }
 172 
 173 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms, int predicate) {
 174   LibraryCallKit kit(jvms, this);
 175   Compile* C = kit.C;
 176   int nodes = C->unique();
 177   _last_predicate = predicate;
 178 #ifndef PRODUCT
 179   assert(is_predicated() && predicate < predicates_count(), "sanity");
 180   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 181     char buf[1000];
 182     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 183     tty->print_cr("Predicate for intrinsic %s", str);
 184   }
 185 #endif
 186   ciMethod* callee = kit.callee();
 187   const int bci    = kit.bci();
 188 
 189   Node* slow_ctl = kit.try_to_predicate(predicate);
 190   if (!kit.failing()) {
 191     const char *inline_msg = is_virtual() ? "(intrinsic, virtual, predicate)"
 192                                           : "(intrinsic, predicate)";
 193     CompileTask::print_inlining_ul(callee, jvms->depth() - 1, bci, inline_msg);
 194     if (C->print_intrinsics() || C->print_inlining()) {
 195       C->print_inlining(callee, jvms->depth() - 1, bci, inline_msg);
 196     }
 197     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 198     if (C->log()) {
 199       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 200                      vmIntrinsics::name_at(intrinsic_id()),
 201                      (is_virtual() ? " virtual='1'" : ""),
 202                      C->unique() - nodes);
 203     }
 204     return slow_ctl; // Could be NULL if the check folds.
 205   }
 206 
 207   // The intrinsic bailed out
 208   if (jvms->has_method()) {
 209     // Not a root compile.
 210     const char* msg = "failed to generate predicate for intrinsic";
 211     CompileTask::print_inlining_ul(kit.callee(), jvms->depth() - 1, bci, msg);
 212     if (C->print_intrinsics() || C->print_inlining()) {
 213       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 214     }
 215   } else {
 216     // Root compile
 217     ResourceMark rm;
 218     stringStream msg_stream;
 219     msg_stream.print("Did not generate intrinsic %s%s at bci:%d in",
 220                      vmIntrinsics::name_at(intrinsic_id()),
 221                      is_virtual() ? " (virtual)" : "", bci);
 222     const char *msg = msg_stream.as_string();
 223     log_debug(jit, inlining)("%s", msg);
 224     if (C->print_intrinsics() || C->print_inlining()) {
 225       C->print_inlining_stream()->print("%s", msg);
 226     }
 227   }
 228   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 229   return NULL;
 230 }
 231 
 232 bool LibraryCallKit::try_to_inline(int predicate) {
 233   // Handle symbolic names for otherwise undistinguished boolean switches:
 234   const bool is_store       = true;
 235   const bool is_compress    = true;
 236   const bool is_static      = true;
 237   const bool is_volatile    = true;
 238 
 239   if (!jvms()->has_method()) {
 240     // Root JVMState has a null method.
 241     assert(map()->memory()->Opcode() == Op_Parm, "");
 242     // Insert the memory aliasing node
 243     set_all_memory(reset_memory());
 244   }
 245   assert(merged_memory(), "");
 246 
 247   switch (intrinsic_id()) {
 248   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 249   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 250   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 251 
 252   case vmIntrinsics::_ceil:
 253   case vmIntrinsics::_floor:
 254   case vmIntrinsics::_rint:
 255   case vmIntrinsics::_dsin:
 256   case vmIntrinsics::_dcos:
 257   case vmIntrinsics::_dtan:
 258   case vmIntrinsics::_dabs:
 259   case vmIntrinsics::_fabs:
 260   case vmIntrinsics::_iabs:
 261   case vmIntrinsics::_labs:
 262   case vmIntrinsics::_datan2:
 263   case vmIntrinsics::_dsqrt:
 264   case vmIntrinsics::_dexp:
 265   case vmIntrinsics::_dlog:
 266   case vmIntrinsics::_dlog10:
 267   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 268 
 269   case vmIntrinsics::_min:
 270   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 271 
 272   case vmIntrinsics::_notify:
 273   case vmIntrinsics::_notifyAll:
 274     return inline_notify(intrinsic_id());
 275 
 276   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 277   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 278   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 279   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 280   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 281   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 282   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 283   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 284   case vmIntrinsics::_multiplyHigh:             return inline_math_multiplyHigh();
 285   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 286   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 287   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 288   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 289 
 290   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 291 
 292   case vmIntrinsics::_compareToL:               return inline_string_compareTo(StrIntrinsicNode::LL);
 293   case vmIntrinsics::_compareToU:               return inline_string_compareTo(StrIntrinsicNode::UU);
 294   case vmIntrinsics::_compareToLU:              return inline_string_compareTo(StrIntrinsicNode::LU);
 295   case vmIntrinsics::_compareToUL:              return inline_string_compareTo(StrIntrinsicNode::UL);
 296 
 297   case vmIntrinsics::_indexOfL:                 return inline_string_indexOf(StrIntrinsicNode::LL);
 298   case vmIntrinsics::_indexOfU:                 return inline_string_indexOf(StrIntrinsicNode::UU);
 299   case vmIntrinsics::_indexOfUL:                return inline_string_indexOf(StrIntrinsicNode::UL);
 300   case vmIntrinsics::_indexOfIL:                return inline_string_indexOfI(StrIntrinsicNode::LL);
 301   case vmIntrinsics::_indexOfIU:                return inline_string_indexOfI(StrIntrinsicNode::UU);
 302   case vmIntrinsics::_indexOfIUL:               return inline_string_indexOfI(StrIntrinsicNode::UL);
 303   case vmIntrinsics::_indexOfU_char:            return inline_string_indexOfChar();
 304 
 305   case vmIntrinsics::_equalsL:                  return inline_string_equals(StrIntrinsicNode::LL);
 306   case vmIntrinsics::_equalsU:                  return inline_string_equals(StrIntrinsicNode::UU);
 307 
 308   case vmIntrinsics::_toBytesStringU:           return inline_string_toBytesU();
 309   case vmIntrinsics::_getCharsStringU:          return inline_string_getCharsU();
 310   case vmIntrinsics::_getCharStringU:           return inline_string_char_access(!is_store);
 311   case vmIntrinsics::_putCharStringU:           return inline_string_char_access( is_store);
 312 
 313   case vmIntrinsics::_compressStringC:
 314   case vmIntrinsics::_compressStringB:          return inline_string_copy( is_compress);
 315   case vmIntrinsics::_inflateStringC:
 316   case vmIntrinsics::_inflateStringB:           return inline_string_copy(!is_compress);
 317 
 318   case vmIntrinsics::_getReference:             return inline_unsafe_access(!is_store, T_OBJECT,   Relaxed, false);
 319   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_store, T_BOOLEAN,  Relaxed, false);
 320   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_store, T_BYTE,     Relaxed, false);
 321   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, false);
 322   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, false);
 323   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_store, T_INT,      Relaxed, false);
 324   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_store, T_LONG,     Relaxed, false);
 325   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_store, T_FLOAT,    Relaxed, false);
 326   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_store, T_DOUBLE,   Relaxed, false);
 327 
 328   case vmIntrinsics::_putReference:             return inline_unsafe_access( is_store, T_OBJECT,   Relaxed, false);
 329   case vmIntrinsics::_putBoolean:               return inline_unsafe_access( is_store, T_BOOLEAN,  Relaxed, false);
 330   case vmIntrinsics::_putByte:                  return inline_unsafe_access( is_store, T_BYTE,     Relaxed, false);
 331   case vmIntrinsics::_putShort:                 return inline_unsafe_access( is_store, T_SHORT,    Relaxed, false);
 332   case vmIntrinsics::_putChar:                  return inline_unsafe_access( is_store, T_CHAR,     Relaxed, false);
 333   case vmIntrinsics::_putInt:                   return inline_unsafe_access( is_store, T_INT,      Relaxed, false);
 334   case vmIntrinsics::_putLong:                  return inline_unsafe_access( is_store, T_LONG,     Relaxed, false);
 335   case vmIntrinsics::_putFloat:                 return inline_unsafe_access( is_store, T_FLOAT,    Relaxed, false);
 336   case vmIntrinsics::_putDouble:                return inline_unsafe_access( is_store, T_DOUBLE,   Relaxed, false);
 337 
 338   case vmIntrinsics::_getReferenceVolatile:     return inline_unsafe_access(!is_store, T_OBJECT,   Volatile, false);
 339   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_store, T_BOOLEAN,  Volatile, false);
 340   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_store, T_BYTE,     Volatile, false);
 341   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_store, T_SHORT,    Volatile, false);
 342   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_store, T_CHAR,     Volatile, false);
 343   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_store, T_INT,      Volatile, false);
 344   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_store, T_LONG,     Volatile, false);
 345   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_store, T_FLOAT,    Volatile, false);
 346   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_store, T_DOUBLE,   Volatile, false);
 347 
 348   case vmIntrinsics::_putReferenceVolatile:     return inline_unsafe_access( is_store, T_OBJECT,   Volatile, false);
 349   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access( is_store, T_BOOLEAN,  Volatile, false);
 350   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access( is_store, T_BYTE,     Volatile, false);
 351   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access( is_store, T_SHORT,    Volatile, false);
 352   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access( is_store, T_CHAR,     Volatile, false);
 353   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access( is_store, T_INT,      Volatile, false);
 354   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access( is_store, T_LONG,     Volatile, false);
 355   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access( is_store, T_FLOAT,    Volatile, false);
 356   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access( is_store, T_DOUBLE,   Volatile, false);
 357 
 358   case vmIntrinsics::_getShortUnaligned:        return inline_unsafe_access(!is_store, T_SHORT,    Relaxed, true);
 359   case vmIntrinsics::_getCharUnaligned:         return inline_unsafe_access(!is_store, T_CHAR,     Relaxed, true);
 360   case vmIntrinsics::_getIntUnaligned:          return inline_unsafe_access(!is_store, T_INT,      Relaxed, true);
 361   case vmIntrinsics::_getLongUnaligned:         return inline_unsafe_access(!is_store, T_LONG,     Relaxed, true);
 362 
 363   case vmIntrinsics::_putShortUnaligned:        return inline_unsafe_access( is_store, T_SHORT,    Relaxed, true);
 364   case vmIntrinsics::_putCharUnaligned:         return inline_unsafe_access( is_store, T_CHAR,     Relaxed, true);
 365   case vmIntrinsics::_putIntUnaligned:          return inline_unsafe_access( is_store, T_INT,      Relaxed, true);
 366   case vmIntrinsics::_putLongUnaligned:         return inline_unsafe_access( is_store, T_LONG,     Relaxed, true);
 367 
 368   case vmIntrinsics::_getReferenceAcquire:      return inline_unsafe_access(!is_store, T_OBJECT,   Acquire, false);
 369   case vmIntrinsics::_getBooleanAcquire:        return inline_unsafe_access(!is_store, T_BOOLEAN,  Acquire, false);
 370   case vmIntrinsics::_getByteAcquire:           return inline_unsafe_access(!is_store, T_BYTE,     Acquire, false);
 371   case vmIntrinsics::_getShortAcquire:          return inline_unsafe_access(!is_store, T_SHORT,    Acquire, false);
 372   case vmIntrinsics::_getCharAcquire:           return inline_unsafe_access(!is_store, T_CHAR,     Acquire, false);
 373   case vmIntrinsics::_getIntAcquire:            return inline_unsafe_access(!is_store, T_INT,      Acquire, false);
 374   case vmIntrinsics::_getLongAcquire:           return inline_unsafe_access(!is_store, T_LONG,     Acquire, false);
 375   case vmIntrinsics::_getFloatAcquire:          return inline_unsafe_access(!is_store, T_FLOAT,    Acquire, false);
 376   case vmIntrinsics::_getDoubleAcquire:         return inline_unsafe_access(!is_store, T_DOUBLE,   Acquire, false);
 377 
 378   case vmIntrinsics::_putReferenceRelease:      return inline_unsafe_access( is_store, T_OBJECT,   Release, false);
 379   case vmIntrinsics::_putBooleanRelease:        return inline_unsafe_access( is_store, T_BOOLEAN,  Release, false);
 380   case vmIntrinsics::_putByteRelease:           return inline_unsafe_access( is_store, T_BYTE,     Release, false);
 381   case vmIntrinsics::_putShortRelease:          return inline_unsafe_access( is_store, T_SHORT,    Release, false);
 382   case vmIntrinsics::_putCharRelease:           return inline_unsafe_access( is_store, T_CHAR,     Release, false);
 383   case vmIntrinsics::_putIntRelease:            return inline_unsafe_access( is_store, T_INT,      Release, false);
 384   case vmIntrinsics::_putLongRelease:           return inline_unsafe_access( is_store, T_LONG,     Release, false);
 385   case vmIntrinsics::_putFloatRelease:          return inline_unsafe_access( is_store, T_FLOAT,    Release, false);
 386   case vmIntrinsics::_putDoubleRelease:         return inline_unsafe_access( is_store, T_DOUBLE,   Release, false);
 387 
 388   case vmIntrinsics::_getReferenceOpaque:       return inline_unsafe_access(!is_store, T_OBJECT,   Opaque, false);
 389   case vmIntrinsics::_getBooleanOpaque:         return inline_unsafe_access(!is_store, T_BOOLEAN,  Opaque, false);
 390   case vmIntrinsics::_getByteOpaque:            return inline_unsafe_access(!is_store, T_BYTE,     Opaque, false);
 391   case vmIntrinsics::_getShortOpaque:           return inline_unsafe_access(!is_store, T_SHORT,    Opaque, false);
 392   case vmIntrinsics::_getCharOpaque:            return inline_unsafe_access(!is_store, T_CHAR,     Opaque, false);
 393   case vmIntrinsics::_getIntOpaque:             return inline_unsafe_access(!is_store, T_INT,      Opaque, false);
 394   case vmIntrinsics::_getLongOpaque:            return inline_unsafe_access(!is_store, T_LONG,     Opaque, false);
 395   case vmIntrinsics::_getFloatOpaque:           return inline_unsafe_access(!is_store, T_FLOAT,    Opaque, false);
 396   case vmIntrinsics::_getDoubleOpaque:          return inline_unsafe_access(!is_store, T_DOUBLE,   Opaque, false);
 397 
 398   case vmIntrinsics::_putReferenceOpaque:       return inline_unsafe_access( is_store, T_OBJECT,   Opaque, false);
 399   case vmIntrinsics::_putBooleanOpaque:         return inline_unsafe_access( is_store, T_BOOLEAN,  Opaque, false);
 400   case vmIntrinsics::_putByteOpaque:            return inline_unsafe_access( is_store, T_BYTE,     Opaque, false);
 401   case vmIntrinsics::_putShortOpaque:           return inline_unsafe_access( is_store, T_SHORT,    Opaque, false);
 402   case vmIntrinsics::_putCharOpaque:            return inline_unsafe_access( is_store, T_CHAR,     Opaque, false);
 403   case vmIntrinsics::_putIntOpaque:             return inline_unsafe_access( is_store, T_INT,      Opaque, false);
 404   case vmIntrinsics::_putLongOpaque:            return inline_unsafe_access( is_store, T_LONG,     Opaque, false);
 405   case vmIntrinsics::_putFloatOpaque:           return inline_unsafe_access( is_store, T_FLOAT,    Opaque, false);
 406   case vmIntrinsics::_putDoubleOpaque:          return inline_unsafe_access( is_store, T_DOUBLE,   Opaque, false);
 407 
 408   case vmIntrinsics::_compareAndSetReference:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap,      Volatile);
 409   case vmIntrinsics::_compareAndSetByte:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap,      Volatile);
 410   case vmIntrinsics::_compareAndSetShort:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap,      Volatile);
 411   case vmIntrinsics::_compareAndSetInt:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap,      Volatile);
 412   case vmIntrinsics::_compareAndSetLong:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap,      Volatile);
 413 
 414   case vmIntrinsics::_weakCompareAndSetReferencePlain:     return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Relaxed);
 415   case vmIntrinsics::_weakCompareAndSetReferenceAcquire:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Acquire);
 416   case vmIntrinsics::_weakCompareAndSetReferenceRelease:   return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Release);
 417   case vmIntrinsics::_weakCompareAndSetReference:          return inline_unsafe_load_store(T_OBJECT, LS_cmp_swap_weak, Volatile);
 418   case vmIntrinsics::_weakCompareAndSetBytePlain:          return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Relaxed);
 419   case vmIntrinsics::_weakCompareAndSetByteAcquire:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Acquire);
 420   case vmIntrinsics::_weakCompareAndSetByteRelease:        return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Release);
 421   case vmIntrinsics::_weakCompareAndSetByte:               return inline_unsafe_load_store(T_BYTE,   LS_cmp_swap_weak, Volatile);
 422   case vmIntrinsics::_weakCompareAndSetShortPlain:         return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Relaxed);
 423   case vmIntrinsics::_weakCompareAndSetShortAcquire:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Acquire);
 424   case vmIntrinsics::_weakCompareAndSetShortRelease:       return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Release);
 425   case vmIntrinsics::_weakCompareAndSetShort:              return inline_unsafe_load_store(T_SHORT,  LS_cmp_swap_weak, Volatile);
 426   case vmIntrinsics::_weakCompareAndSetIntPlain:           return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Relaxed);
 427   case vmIntrinsics::_weakCompareAndSetIntAcquire:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Acquire);
 428   case vmIntrinsics::_weakCompareAndSetIntRelease:         return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Release);
 429   case vmIntrinsics::_weakCompareAndSetInt:                return inline_unsafe_load_store(T_INT,    LS_cmp_swap_weak, Volatile);
 430   case vmIntrinsics::_weakCompareAndSetLongPlain:          return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Relaxed);
 431   case vmIntrinsics::_weakCompareAndSetLongAcquire:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Acquire);
 432   case vmIntrinsics::_weakCompareAndSetLongRelease:        return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Release);
 433   case vmIntrinsics::_weakCompareAndSetLong:               return inline_unsafe_load_store(T_LONG,   LS_cmp_swap_weak, Volatile);
 434 
 435   case vmIntrinsics::_compareAndExchangeReference:         return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Volatile);
 436   case vmIntrinsics::_compareAndExchangeReferenceAcquire:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Acquire);
 437   case vmIntrinsics::_compareAndExchangeReferenceRelease:  return inline_unsafe_load_store(T_OBJECT, LS_cmp_exchange,  Release);
 438   case vmIntrinsics::_compareAndExchangeByte:              return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Volatile);
 439   case vmIntrinsics::_compareAndExchangeByteAcquire:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Acquire);
 440   case vmIntrinsics::_compareAndExchangeByteRelease:       return inline_unsafe_load_store(T_BYTE,   LS_cmp_exchange,  Release);
 441   case vmIntrinsics::_compareAndExchangeShort:             return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Volatile);
 442   case vmIntrinsics::_compareAndExchangeShortAcquire:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Acquire);
 443   case vmIntrinsics::_compareAndExchangeShortRelease:      return inline_unsafe_load_store(T_SHORT,  LS_cmp_exchange,  Release);
 444   case vmIntrinsics::_compareAndExchangeInt:               return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Volatile);
 445   case vmIntrinsics::_compareAndExchangeIntAcquire:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Acquire);
 446   case vmIntrinsics::_compareAndExchangeIntRelease:        return inline_unsafe_load_store(T_INT,    LS_cmp_exchange,  Release);
 447   case vmIntrinsics::_compareAndExchangeLong:              return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Volatile);
 448   case vmIntrinsics::_compareAndExchangeLongAcquire:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Acquire);
 449   case vmIntrinsics::_compareAndExchangeLongRelease:       return inline_unsafe_load_store(T_LONG,   LS_cmp_exchange,  Release);
 450 
 451   case vmIntrinsics::_getAndAddByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_add,       Volatile);
 452   case vmIntrinsics::_getAndAddShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_add,       Volatile);
 453   case vmIntrinsics::_getAndAddInt:                     return inline_unsafe_load_store(T_INT,    LS_get_add,       Volatile);
 454   case vmIntrinsics::_getAndAddLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_add,       Volatile);
 455 
 456   case vmIntrinsics::_getAndSetByte:                    return inline_unsafe_load_store(T_BYTE,   LS_get_set,       Volatile);
 457   case vmIntrinsics::_getAndSetShort:                   return inline_unsafe_load_store(T_SHORT,  LS_get_set,       Volatile);
 458   case vmIntrinsics::_getAndSetInt:                     return inline_unsafe_load_store(T_INT,    LS_get_set,       Volatile);
 459   case vmIntrinsics::_getAndSetLong:                    return inline_unsafe_load_store(T_LONG,   LS_get_set,       Volatile);
 460   case vmIntrinsics::_getAndSetReference:               return inline_unsafe_load_store(T_OBJECT, LS_get_set,       Volatile);
 461 
 462   case vmIntrinsics::_loadFence:
 463   case vmIntrinsics::_storeFence:
 464   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 465 
 466   case vmIntrinsics::_onSpinWait:               return inline_onspinwait();
 467 
 468   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 469 
 470 #ifdef JFR_HAVE_INTRINSICS
 471   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, JFR_TIME_FUNCTION), "counterTime");
 472   case vmIntrinsics::_getClassId:               return inline_native_classID();
 473   case vmIntrinsics::_getEventWriter:           return inline_native_getEventWriter();
 474 #endif
 475   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 476   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 477   case vmIntrinsics::_writeback0:               return inline_unsafe_writeback0();
 478   case vmIntrinsics::_writebackPreSync0:        return inline_unsafe_writebackSync0(true);
 479   case vmIntrinsics::_writebackPostSync0:       return inline_unsafe_writebackSync0(false);
 480   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 481   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 482   case vmIntrinsics::_getLength:                return inline_native_getLength();
 483   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 484   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 485   case vmIntrinsics::_equalsB:                  return inline_array_equals(StrIntrinsicNode::LL);
 486   case vmIntrinsics::_equalsC:                  return inline_array_equals(StrIntrinsicNode::UU);
 487   case vmIntrinsics::_Preconditions_checkIndex: return inline_preconditions_checkIndex();
 488   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 489 
 490   case vmIntrinsics::_allocateUninitializedArray: return inline_unsafe_newArray(true);
 491   case vmIntrinsics::_newArray:                   return inline_unsafe_newArray(false);
 492 
 493   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 494 
 495   case vmIntrinsics::_isInstance:
 496   case vmIntrinsics::_getModifiers:
 497   case vmIntrinsics::_isInterface:
 498   case vmIntrinsics::_isArray:
 499   case vmIntrinsics::_isPrimitive:
 500   case vmIntrinsics::_isHidden:
 501   case vmIntrinsics::_getSuperclass:
 502   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 503 
 504   case vmIntrinsics::_floatToRawIntBits:
 505   case vmIntrinsics::_floatToIntBits:
 506   case vmIntrinsics::_intBitsToFloat:
 507   case vmIntrinsics::_doubleToRawLongBits:
 508   case vmIntrinsics::_doubleToLongBits:
 509   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 510 
 511   case vmIntrinsics::_numberOfLeadingZeros_i:
 512   case vmIntrinsics::_numberOfLeadingZeros_l:
 513   case vmIntrinsics::_numberOfTrailingZeros_i:
 514   case vmIntrinsics::_numberOfTrailingZeros_l:
 515   case vmIntrinsics::_bitCount_i:
 516   case vmIntrinsics::_bitCount_l:
 517   case vmIntrinsics::_reverseBytes_i:
 518   case vmIntrinsics::_reverseBytes_l:
 519   case vmIntrinsics::_reverseBytes_s:
 520   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 521 
 522   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 523 
 524   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 525 
 526   case vmIntrinsics::_Class_cast:               return inline_Class_cast();
 527 
 528   case vmIntrinsics::_aescrypt_encryptBlock:
 529   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 530 
 531   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 532   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 533     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 534 
 535   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 536   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 537     return inline_electronicCodeBook_AESCrypt(intrinsic_id());
 538 
 539   case vmIntrinsics::_counterMode_AESCrypt:
 540     return inline_counterMode_AESCrypt(intrinsic_id());
 541 
 542   case vmIntrinsics::_sha_implCompress:
 543   case vmIntrinsics::_sha2_implCompress:
 544   case vmIntrinsics::_sha5_implCompress:
 545     return inline_sha_implCompress(intrinsic_id());
 546 
 547   case vmIntrinsics::_digestBase_implCompressMB:
 548     return inline_digestBase_implCompressMB(predicate);
 549 
 550   case vmIntrinsics::_multiplyToLen:
 551     return inline_multiplyToLen();
 552 
 553   case vmIntrinsics::_squareToLen:
 554     return inline_squareToLen();
 555 
 556   case vmIntrinsics::_mulAdd:
 557     return inline_mulAdd();
 558 
 559   case vmIntrinsics::_montgomeryMultiply:
 560     return inline_montgomeryMultiply();
 561   case vmIntrinsics::_montgomerySquare:
 562     return inline_montgomerySquare();
 563 
 564   case vmIntrinsics::_bigIntegerRightShiftWorker:
 565     return inline_bigIntegerShift(true);
 566   case vmIntrinsics::_bigIntegerLeftShiftWorker:
 567     return inline_bigIntegerShift(false);
 568 
 569   case vmIntrinsics::_vectorizedMismatch:
 570     return inline_vectorizedMismatch();
 571 
 572   case vmIntrinsics::_ghash_processBlocks:
 573     return inline_ghash_processBlocks();
 574   case vmIntrinsics::_base64_encodeBlock:
 575     return inline_base64_encodeBlock();
 576 
 577   case vmIntrinsics::_encodeISOArray:
 578   case vmIntrinsics::_encodeByteISOArray:
 579     return inline_encodeISOArray();
 580 
 581   case vmIntrinsics::_updateCRC32:
 582     return inline_updateCRC32();
 583   case vmIntrinsics::_updateBytesCRC32:
 584     return inline_updateBytesCRC32();
 585   case vmIntrinsics::_updateByteBufferCRC32:
 586     return inline_updateByteBufferCRC32();
 587 
 588   case vmIntrinsics::_updateBytesCRC32C:
 589     return inline_updateBytesCRC32C();
 590   case vmIntrinsics::_updateDirectByteBufferCRC32C:
 591     return inline_updateDirectByteBufferCRC32C();
 592 
 593   case vmIntrinsics::_updateBytesAdler32:
 594     return inline_updateBytesAdler32();
 595   case vmIntrinsics::_updateByteBufferAdler32:
 596     return inline_updateByteBufferAdler32();
 597 
 598   case vmIntrinsics::_profileBoolean:
 599     return inline_profileBoolean();
 600   case vmIntrinsics::_isCompileConstant:
 601     return inline_isCompileConstant();
 602 
 603   case vmIntrinsics::_hasNegatives:
 604     return inline_hasNegatives();
 605 
 606   case vmIntrinsics::_fmaD:
 607   case vmIntrinsics::_fmaF:
 608     return inline_fma(intrinsic_id());
 609 
 610   case vmIntrinsics::_isDigit:
 611   case vmIntrinsics::_isLowerCase:
 612   case vmIntrinsics::_isUpperCase:
 613   case vmIntrinsics::_isWhitespace:
 614     return inline_character_compare(intrinsic_id());
 615 
 616   case vmIntrinsics::_maxF:
 617   case vmIntrinsics::_minF:
 618   case vmIntrinsics::_maxD:
 619   case vmIntrinsics::_minD:
 620     return inline_fp_min_max(intrinsic_id());
 621 
 622   case vmIntrinsics::_VectorUnaryOp:
 623     return inline_vector_nary_operation(1);
 624   case vmIntrinsics::_VectorBinaryOp:
 625     return inline_vector_nary_operation(2);
 626   case vmIntrinsics::_VectorTernaryOp:
 627     return inline_vector_nary_operation(3);
 628   case vmIntrinsics::_VectorBroadcastCoerced:
 629     return inline_vector_broadcast_coerced();
 630   case vmIntrinsics::_VectorShuffleIota:
 631     return inline_vector_shuffle_iota();
 632   case vmIntrinsics::_VectorShuffleToVector:
 633     return inline_vector_shuffle_to_vector();
 634   case vmIntrinsics::_VectorLoadOp:
 635     return inline_vector_mem_operation(/*is_store=*/false);
 636   case vmIntrinsics::_VectorStoreOp:
 637     return inline_vector_mem_operation(/*is_store=*/true);
 638   case vmIntrinsics::_VectorGatherOp:
 639     return inline_vector_gather_scatter(/*is_scatter*/ false);
 640   case vmIntrinsics::_VectorScatterOp:
 641     return inline_vector_gather_scatter(/*is_scatter*/ true);
 642   case vmIntrinsics::_VectorReductionCoerced:
 643     return inline_vector_reduction();
 644   case vmIntrinsics::_VectorTest:
 645     return inline_vector_test();
 646   case vmIntrinsics::_VectorBlend:
 647     return inline_vector_blend();
 648   case vmIntrinsics::_VectorRearrange:
 649     return inline_vector_rearrange();
 650   case vmIntrinsics::_VectorCompare:
 651     return inline_vector_compare();
 652   case vmIntrinsics::_VectorBroadcastInt:
 653     return inline_vector_broadcast_int();
 654   case vmIntrinsics::_VectorConvert:
 655     return inline_vector_convert();
 656   case vmIntrinsics::_VectorInsert:
 657     return inline_vector_insert();
 658   case vmIntrinsics::_VectorExtract:
 659     return inline_vector_extract();
 660 
 661   default:
 662     // If you get here, it may be that someone has added a new intrinsic
 663     // to the list in vmSymbols.hpp without implementing it here.
 664 #ifndef PRODUCT
 665     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 666       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 667                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 668     }
 669 #endif
 670     return false;
 671   }
 672 }
 673 
 674 Node* LibraryCallKit::try_to_predicate(int predicate) {
 675   if (!jvms()->has_method()) {
 676     // Root JVMState has a null method.
 677     assert(map()->memory()->Opcode() == Op_Parm, "");
 678     // Insert the memory aliasing node
 679     set_all_memory(reset_memory());
 680   }
 681   assert(merged_memory(), "");
 682 
 683   switch (intrinsic_id()) {
 684   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 685     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 686   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 687     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 688   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
 689     return inline_electronicCodeBook_AESCrypt_predicate(false);
 690   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
 691     return inline_electronicCodeBook_AESCrypt_predicate(true);
 692   case vmIntrinsics::_counterMode_AESCrypt:
 693     return inline_counterMode_AESCrypt_predicate();
 694   case vmIntrinsics::_digestBase_implCompressMB:
 695     return inline_digestBase_implCompressMB_predicate(predicate);
 696 
 697   default:
 698     // If you get here, it may be that someone has added a new intrinsic
 699     // to the list in vmSymbols.hpp without implementing it here.
 700 #ifndef PRODUCT
 701     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 702       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 703                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 704     }
 705 #endif
 706     Node* slow_ctl = control();
 707     set_control(top()); // No fast path instrinsic
 708     return slow_ctl;
 709   }
 710 }
 711 
 712 //------------------------------set_result-------------------------------
 713 // Helper function for finishing intrinsics.
 714 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 715   record_for_igvn(region);
 716   set_control(_gvn.transform(region));
 717   set_result( _gvn.transform(value));
 718   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 719 }
 720 
 721 //------------------------------generate_guard---------------------------
 722 // Helper function for generating guarded fast-slow graph structures.
 723 // The given 'test', if true, guards a slow path.  If the test fails
 724 // then a fast path can be taken.  (We generally hope it fails.)
 725 // In all cases, GraphKit::control() is updated to the fast path.
 726 // The returned value represents the control for the slow path.
 727 // The return value is never 'top'; it is either a valid control
 728 // or NULL if it is obvious that the slow path can never be taken.
 729 // Also, if region and the slow control are not NULL, the slow edge
 730 // is appended to the region.
 731 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 732   if (stopped()) {
 733     // Already short circuited.
 734     return NULL;
 735   }
 736 
 737   // Build an if node and its projections.
 738   // If test is true we take the slow path, which we assume is uncommon.
 739   if (_gvn.type(test) == TypeInt::ZERO) {
 740     // The slow branch is never taken.  No need to build this guard.
 741     return NULL;
 742   }
 743 
 744   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 745 
 746   Node* if_slow = _gvn.transform(new IfTrueNode(iff));
 747   if (if_slow == top()) {
 748     // The slow branch is never taken.  No need to build this guard.
 749     return NULL;
 750   }
 751 
 752   if (region != NULL)
 753     region->add_req(if_slow);
 754 
 755   Node* if_fast = _gvn.transform(new IfFalseNode(iff));
 756   set_control(if_fast);
 757 
 758   return if_slow;
 759 }
 760 
 761 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 762   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 763 }
 764 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 765   return generate_guard(test, region, PROB_FAIR);
 766 }
 767 
 768 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 769                                                      Node* *pos_index) {
 770   if (stopped())
 771     return NULL;                // already stopped
 772   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 773     return NULL;                // index is already adequately typed
 774   Node* cmp_lt = _gvn.transform(new CmpINode(index, intcon(0)));
 775   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 776   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 777   if (is_neg != NULL && pos_index != NULL) {
 778     // Emulate effect of Parse::adjust_map_after_if.
 779     Node* ccast = new CastIINode(index, TypeInt::POS);
 780     ccast->set_req(0, control());
 781     (*pos_index) = _gvn.transform(ccast);
 782   }
 783   return is_neg;
 784 }
 785 
 786 // Make sure that 'position' is a valid limit index, in [0..length].
 787 // There are two equivalent plans for checking this:
 788 //   A. (offset + copyLength)  unsigned<=  arrayLength
 789 //   B. offset  <=  (arrayLength - copyLength)
 790 // We require that all of the values above, except for the sum and
 791 // difference, are already known to be non-negative.
 792 // Plan A is robust in the face of overflow, if offset and copyLength
 793 // are both hugely positive.
 794 //
 795 // Plan B is less direct and intuitive, but it does not overflow at
 796 // all, since the difference of two non-negatives is always
 797 // representable.  Whenever Java methods must perform the equivalent
 798 // check they generally use Plan B instead of Plan A.
 799 // For the moment we use Plan A.
 800 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 801                                                   Node* subseq_length,
 802                                                   Node* array_length,
 803                                                   RegionNode* region) {
 804   if (stopped())
 805     return NULL;                // already stopped
 806   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 807   if (zero_offset && subseq_length->eqv_uncast(array_length))
 808     return NULL;                // common case of whole-array copy
 809   Node* last = subseq_length;
 810   if (!zero_offset)             // last += offset
 811     last = _gvn.transform(new AddINode(last, offset));
 812   Node* cmp_lt = _gvn.transform(new CmpUNode(array_length, last));
 813   Node* bol_lt = _gvn.transform(new BoolNode(cmp_lt, BoolTest::lt));
 814   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 815   return is_over;
 816 }
 817 
 818 // Emit range checks for the given String.value byte array
 819 void LibraryCallKit::generate_string_range_check(Node* array, Node* offset, Node* count, bool char_count) {
 820   if (stopped()) {
 821     return; // already stopped
 822   }
 823   RegionNode* bailout = new RegionNode(1);
 824   record_for_igvn(bailout);
 825   if (char_count) {
 826     // Convert char count to byte count
 827     count = _gvn.transform(new LShiftINode(count, intcon(1)));
 828   }
 829 
 830   // Offset and count must not be negative
 831   generate_negative_guard(offset, bailout);
 832   generate_negative_guard(count, bailout);
 833   // Offset + count must not exceed length of array
 834   generate_limit_guard(offset, count, load_array_length(array), bailout);
 835 
 836   if (bailout->req() > 1) {
 837     PreserveJVMState pjvms(this);
 838     set_control(_gvn.transform(bailout));
 839     uncommon_trap(Deoptimization::Reason_intrinsic,
 840                   Deoptimization::Action_maybe_recompile);
 841   }
 842 }
 843 
 844 //--------------------------generate_current_thread--------------------
 845 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 846   ciKlass*    thread_klass = env()->Thread_klass();
 847   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 848   Node* thread = _gvn.transform(new ThreadLocalNode());
 849   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 850   Node* threadObj = _gvn.transform(LoadNode::make(_gvn, NULL, immutable_memory(), p, p->bottom_type()->is_ptr(), thread_type, T_OBJECT, MemNode::unordered));
 851   tls_output = thread;
 852   return threadObj;
 853 }
 854 
 855 
 856 //------------------------------make_string_method_node------------------------
 857 // Helper method for String intrinsic functions. This version is called with
 858 // str1 and str2 pointing to byte[] nodes containing Latin1 or UTF16 encoded
 859 // characters (depending on 'is_byte'). cnt1 and cnt2 are pointing to Int nodes
 860 // containing the lengths of str1 and str2.
 861 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2, StrIntrinsicNode::ArgEnc ae) {
 862   Node* result = NULL;
 863   switch (opcode) {
 864   case Op_StrIndexOf:
 865     result = new StrIndexOfNode(control(), memory(TypeAryPtr::BYTES),
 866                                 str1_start, cnt1, str2_start, cnt2, ae);
 867     break;
 868   case Op_StrComp:
 869     result = new StrCompNode(control(), memory(TypeAryPtr::BYTES),
 870                              str1_start, cnt1, str2_start, cnt2, ae);
 871     break;
 872   case Op_StrEquals:
 873     // We already know that cnt1 == cnt2 here (checked in 'inline_string_equals').
 874     // Use the constant length if there is one because optimized match rule may exist.
 875     result = new StrEqualsNode(control(), memory(TypeAryPtr::BYTES),
 876                                str1_start, str2_start, cnt2->is_Con() ? cnt2 : cnt1, ae);
 877     break;
 878   default:
 879     ShouldNotReachHere();
 880     return NULL;
 881   }
 882 
 883   // All these intrinsics have checks.
 884   C->set_has_split_ifs(true); // Has chance for split-if optimization
 885   clear_upper_avx();
 886 
 887   return _gvn.transform(result);
 888 }
 889 
 890 //------------------------------inline_string_compareTo------------------------
 891 bool LibraryCallKit::inline_string_compareTo(StrIntrinsicNode::ArgEnc ae) {
 892   Node* arg1 = argument(0);
 893   Node* arg2 = argument(1);
 894 
 895   arg1 = must_be_not_null(arg1, true);
 896   arg2 = must_be_not_null(arg2, true);
 897 
 898   // Get start addr and length of first argument
 899   Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 900   Node* arg1_cnt    = load_array_length(arg1);
 901 
 902   // Get start addr and length of second argument
 903   Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 904   Node* arg2_cnt    = load_array_length(arg2);
 905 
 906   Node* result = make_string_method_node(Op_StrComp, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 907   set_result(result);
 908   return true;
 909 }
 910 
 911 //------------------------------inline_string_equals------------------------
 912 bool LibraryCallKit::inline_string_equals(StrIntrinsicNode::ArgEnc ae) {
 913   Node* arg1 = argument(0);
 914   Node* arg2 = argument(1);
 915 
 916   // paths (plus control) merge
 917   RegionNode* region = new RegionNode(3);
 918   Node* phi = new PhiNode(region, TypeInt::BOOL);
 919 
 920   if (!stopped()) {
 921 
 922     arg1 = must_be_not_null(arg1, true);
 923     arg2 = must_be_not_null(arg2, true);
 924 
 925     // Get start addr and length of first argument
 926     Node* arg1_start  = array_element_address(arg1, intcon(0), T_BYTE);
 927     Node* arg1_cnt    = load_array_length(arg1);
 928 
 929     // Get start addr and length of second argument
 930     Node* arg2_start  = array_element_address(arg2, intcon(0), T_BYTE);
 931     Node* arg2_cnt    = load_array_length(arg2);
 932 
 933     // Check for arg1_cnt != arg2_cnt
 934     Node* cmp = _gvn.transform(new CmpINode(arg1_cnt, arg2_cnt));
 935     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
 936     Node* if_ne = generate_slow_guard(bol, NULL);
 937     if (if_ne != NULL) {
 938       phi->init_req(2, intcon(0));
 939       region->init_req(2, if_ne);
 940     }
 941 
 942     // Check for count == 0 is done by assembler code for StrEquals.
 943 
 944     if (!stopped()) {
 945       Node* equals = make_string_method_node(Op_StrEquals, arg1_start, arg1_cnt, arg2_start, arg2_cnt, ae);
 946       phi->init_req(1, equals);
 947       region->init_req(1, control());
 948     }
 949   }
 950 
 951   // post merge
 952   set_control(_gvn.transform(region));
 953   record_for_igvn(region);
 954 
 955   set_result(_gvn.transform(phi));
 956   return true;
 957 }
 958 
 959 //------------------------------inline_array_equals----------------------------
 960 bool LibraryCallKit::inline_array_equals(StrIntrinsicNode::ArgEnc ae) {
 961   assert(ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::LL, "unsupported array types");
 962   Node* arg1 = argument(0);
 963   Node* arg2 = argument(1);
 964 
 965   const TypeAryPtr* mtype = (ae == StrIntrinsicNode::UU) ? TypeAryPtr::CHARS : TypeAryPtr::BYTES;
 966   set_result(_gvn.transform(new AryEqNode(control(), memory(mtype), arg1, arg2, ae)));
 967   clear_upper_avx();
 968 
 969   return true;
 970 }
 971 
 972 //------------------------------inline_hasNegatives------------------------------
 973 bool LibraryCallKit::inline_hasNegatives() {
 974   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
 975     return false;
 976   }
 977 
 978   assert(callee()->signature()->size() == 3, "hasNegatives has 3 parameters");
 979   // no receiver since it is static method
 980   Node* ba         = argument(0);
 981   Node* offset     = argument(1);
 982   Node* len        = argument(2);
 983 
 984   ba = must_be_not_null(ba, true);
 985 
 986   // Range checks
 987   generate_string_range_check(ba, offset, len, false);
 988   if (stopped()) {
 989     return true;
 990   }
 991   Node* ba_start = array_element_address(ba, offset, T_BYTE);
 992   Node* result = new HasNegativesNode(control(), memory(TypeAryPtr::BYTES), ba_start, len);
 993   set_result(_gvn.transform(result));
 994   return true;
 995 }
 996 
 997 bool LibraryCallKit::inline_preconditions_checkIndex() {
 998   Node* index = argument(0);
 999   Node* length = argument(1);
1000   if (too_many_traps(Deoptimization::Reason_intrinsic) || too_many_traps(Deoptimization::Reason_range_check)) {
1001     return false;
1002   }
1003 
1004   Node* len_pos_cmp = _gvn.transform(new CmpINode(length, intcon(0)));
1005   Node* len_pos_bol = _gvn.transform(new BoolNode(len_pos_cmp, BoolTest::ge));
1006 
1007   {
1008     BuildCutout unless(this, len_pos_bol, PROB_MAX);
1009     uncommon_trap(Deoptimization::Reason_intrinsic,
1010                   Deoptimization::Action_make_not_entrant);
1011   }
1012 
1013   if (stopped()) {
1014     return false;
1015   }
1016 
1017   Node* rc_cmp = _gvn.transform(new CmpUNode(index, length));
1018   BoolTest::mask btest = BoolTest::lt;
1019   Node* rc_bool = _gvn.transform(new BoolNode(rc_cmp, btest));
1020   RangeCheckNode* rc = new RangeCheckNode(control(), rc_bool, PROB_MAX, COUNT_UNKNOWN);
1021   _gvn.set_type(rc, rc->Value(&_gvn));
1022   if (!rc_bool->is_Con()) {
1023     record_for_igvn(rc);
1024   }
1025   set_control(_gvn.transform(new IfTrueNode(rc)));
1026   {
1027     PreserveJVMState pjvms(this);
1028     set_control(_gvn.transform(new IfFalseNode(rc)));
1029     uncommon_trap(Deoptimization::Reason_range_check,
1030                   Deoptimization::Action_make_not_entrant);
1031   }
1032 
1033   if (stopped()) {
1034     return false;
1035   }
1036 
1037   Node* result = new CastIINode(index, TypeInt::make(0, _gvn.type(length)->is_int()->_hi, Type::WidenMax));
1038   result->set_req(0, control());
1039   result = _gvn.transform(result);
1040   set_result(result);
1041   replace_in_map(index, result);
1042   clear_upper_avx();
1043   return true;
1044 }
1045 
1046 //------------------------------inline_string_indexOf------------------------
1047 bool LibraryCallKit::inline_string_indexOf(StrIntrinsicNode::ArgEnc ae) {
1048   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1049     return false;
1050   }
1051   Node* src = argument(0);
1052   Node* tgt = argument(1);
1053 
1054   // Make the merge point
1055   RegionNode* result_rgn = new RegionNode(4);
1056   Node*       result_phi = new PhiNode(result_rgn, TypeInt::INT);
1057 
1058   src = must_be_not_null(src, true);
1059   tgt = must_be_not_null(tgt, true);
1060 
1061   // Get start addr and length of source string
1062   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
1063   Node* src_count = load_array_length(src);
1064 
1065   // Get start addr and length of substring
1066   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1067   Node* tgt_count = load_array_length(tgt);
1068 
1069   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
1070     // Divide src size by 2 if String is UTF16 encoded
1071     src_count = _gvn.transform(new RShiftINode(src_count, intcon(1)));
1072   }
1073   if (ae == StrIntrinsicNode::UU) {
1074     // Divide substring size by 2 if String is UTF16 encoded
1075     tgt_count = _gvn.transform(new RShiftINode(tgt_count, intcon(1)));
1076   }
1077 
1078   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, result_rgn, result_phi, ae);
1079   if (result != NULL) {
1080     result_phi->init_req(3, result);
1081     result_rgn->init_req(3, control());
1082   }
1083   set_control(_gvn.transform(result_rgn));
1084   record_for_igvn(result_rgn);
1085   set_result(_gvn.transform(result_phi));
1086 
1087   return true;
1088 }
1089 
1090 //-----------------------------inline_string_indexOf-----------------------
1091 bool LibraryCallKit::inline_string_indexOfI(StrIntrinsicNode::ArgEnc ae) {
1092   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1093     return false;
1094   }
1095   if (!Matcher::match_rule_supported(Op_StrIndexOf)) {
1096     return false;
1097   }
1098   assert(callee()->signature()->size() == 5, "String.indexOf() has 5 arguments");
1099   Node* src         = argument(0); // byte[]
1100   Node* src_count   = argument(1); // char count
1101   Node* tgt         = argument(2); // byte[]
1102   Node* tgt_count   = argument(3); // char count
1103   Node* from_index  = argument(4); // char index
1104 
1105   src = must_be_not_null(src, true);
1106   tgt = must_be_not_null(tgt, true);
1107 
1108   // Multiply byte array index by 2 if String is UTF16 encoded
1109   Node* src_offset = (ae == StrIntrinsicNode::LL) ? from_index : _gvn.transform(new LShiftINode(from_index, intcon(1)));
1110   src_count = _gvn.transform(new SubINode(src_count, from_index));
1111   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1112   Node* tgt_start = array_element_address(tgt, intcon(0), T_BYTE);
1113 
1114   // Range checks
1115   generate_string_range_check(src, src_offset, src_count, ae != StrIntrinsicNode::LL);
1116   generate_string_range_check(tgt, intcon(0), tgt_count, ae == StrIntrinsicNode::UU);
1117   if (stopped()) {
1118     return true;
1119   }
1120 
1121   RegionNode* region = new RegionNode(5);
1122   Node* phi = new PhiNode(region, TypeInt::INT);
1123 
1124   Node* result = make_indexOf_node(src_start, src_count, tgt_start, tgt_count, region, phi, ae);
1125   if (result != NULL) {
1126     // The result is index relative to from_index if substring was found, -1 otherwise.
1127     // Generate code which will fold into cmove.
1128     Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1129     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1130 
1131     Node* if_lt = generate_slow_guard(bol, NULL);
1132     if (if_lt != NULL) {
1133       // result == -1
1134       phi->init_req(3, result);
1135       region->init_req(3, if_lt);
1136     }
1137     if (!stopped()) {
1138       result = _gvn.transform(new AddINode(result, from_index));
1139       phi->init_req(4, result);
1140       region->init_req(4, control());
1141     }
1142   }
1143 
1144   set_control(_gvn.transform(region));
1145   record_for_igvn(region);
1146   set_result(_gvn.transform(phi));
1147   clear_upper_avx();
1148 
1149   return true;
1150 }
1151 
1152 // Create StrIndexOfNode with fast path checks
1153 Node* LibraryCallKit::make_indexOf_node(Node* src_start, Node* src_count, Node* tgt_start, Node* tgt_count,
1154                                         RegionNode* region, Node* phi, StrIntrinsicNode::ArgEnc ae) {
1155   // Check for substr count > string count
1156   Node* cmp = _gvn.transform(new CmpINode(tgt_count, src_count));
1157   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::gt));
1158   Node* if_gt = generate_slow_guard(bol, NULL);
1159   if (if_gt != NULL) {
1160     phi->init_req(1, intcon(-1));
1161     region->init_req(1, if_gt);
1162   }
1163   if (!stopped()) {
1164     // Check for substr count == 0
1165     cmp = _gvn.transform(new CmpINode(tgt_count, intcon(0)));
1166     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
1167     Node* if_zero = generate_slow_guard(bol, NULL);
1168     if (if_zero != NULL) {
1169       phi->init_req(2, intcon(0));
1170       region->init_req(2, if_zero);
1171     }
1172   }
1173   if (!stopped()) {
1174     return make_string_method_node(Op_StrIndexOf, src_start, src_count, tgt_start, tgt_count, ae);
1175   }
1176   return NULL;
1177 }
1178 
1179 //-----------------------------inline_string_indexOfChar-----------------------
1180 bool LibraryCallKit::inline_string_indexOfChar() {
1181   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1182     return false;
1183   }
1184   if (!Matcher::match_rule_supported(Op_StrIndexOfChar)) {
1185     return false;
1186   }
1187   assert(callee()->signature()->size() == 4, "String.indexOfChar() has 4 arguments");
1188   Node* src         = argument(0); // byte[]
1189   Node* tgt         = argument(1); // tgt is int ch
1190   Node* from_index  = argument(2);
1191   Node* max         = argument(3);
1192 
1193   src = must_be_not_null(src, true);
1194 
1195   Node* src_offset = _gvn.transform(new LShiftINode(from_index, intcon(1)));
1196   Node* src_start = array_element_address(src, src_offset, T_BYTE);
1197   Node* src_count = _gvn.transform(new SubINode(max, from_index));
1198 
1199   // Range checks
1200   generate_string_range_check(src, src_offset, src_count, true);
1201   if (stopped()) {
1202     return true;
1203   }
1204 
1205   RegionNode* region = new RegionNode(3);
1206   Node* phi = new PhiNode(region, TypeInt::INT);
1207 
1208   Node* result = new StrIndexOfCharNode(control(), memory(TypeAryPtr::BYTES), src_start, src_count, tgt, StrIntrinsicNode::none);
1209   C->set_has_split_ifs(true); // Has chance for split-if optimization
1210   _gvn.transform(result);
1211 
1212   Node* cmp = _gvn.transform(new CmpINode(result, intcon(0)));
1213   Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::lt));
1214 
1215   Node* if_lt = generate_slow_guard(bol, NULL);
1216   if (if_lt != NULL) {
1217     // result == -1
1218     phi->init_req(2, result);
1219     region->init_req(2, if_lt);
1220   }
1221   if (!stopped()) {
1222     result = _gvn.transform(new AddINode(result, from_index));
1223     phi->init_req(1, result);
1224     region->init_req(1, control());
1225   }
1226   set_control(_gvn.transform(region));
1227   record_for_igvn(region);
1228   set_result(_gvn.transform(phi));
1229 
1230   return true;
1231 }
1232 //---------------------------inline_string_copy---------------------
1233 // compressIt == true --> generate a compressed copy operation (compress char[]/byte[] to byte[])
1234 //   int StringUTF16.compress(char[] src, int srcOff, byte[] dst, int dstOff, int len)
1235 //   int StringUTF16.compress(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1236 // compressIt == false --> generate an inflated copy operation (inflate byte[] to char[]/byte[])
1237 //   void StringLatin1.inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len)
1238 //   void StringLatin1.inflate(byte[] src, int srcOff, byte[] dst, int dstOff, int len)
1239 bool LibraryCallKit::inline_string_copy(bool compress) {
1240   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1241     return false;
1242   }
1243   int nargs = 5;  // 2 oops, 3 ints
1244   assert(callee()->signature()->size() == nargs, "string copy has 5 arguments");
1245 
1246   Node* src         = argument(0);
1247   Node* src_offset  = argument(1);
1248   Node* dst         = argument(2);
1249   Node* dst_offset  = argument(3);
1250   Node* length      = argument(4);
1251 
1252   // Check for allocation before we add nodes that would confuse
1253   // tightly_coupled_allocation()
1254   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1255 
1256   // Figure out the size and type of the elements we will be copying.
1257   const Type* src_type = src->Value(&_gvn);
1258   const Type* dst_type = dst->Value(&_gvn);
1259   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1260   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
1261   assert((compress && dst_elem == T_BYTE && (src_elem == T_BYTE || src_elem == T_CHAR)) ||
1262          (!compress && src_elem == T_BYTE && (dst_elem == T_BYTE || dst_elem == T_CHAR)),
1263          "Unsupported array types for inline_string_copy");
1264 
1265   src = must_be_not_null(src, true);
1266   dst = must_be_not_null(dst, true);
1267 
1268   // Convert char[] offsets to byte[] offsets
1269   bool convert_src = (compress && src_elem == T_BYTE);
1270   bool convert_dst = (!compress && dst_elem == T_BYTE);
1271   if (convert_src) {
1272     src_offset = _gvn.transform(new LShiftINode(src_offset, intcon(1)));
1273   } else if (convert_dst) {
1274     dst_offset = _gvn.transform(new LShiftINode(dst_offset, intcon(1)));
1275   }
1276 
1277   // Range checks
1278   generate_string_range_check(src, src_offset, length, convert_src);
1279   generate_string_range_check(dst, dst_offset, length, convert_dst);
1280   if (stopped()) {
1281     return true;
1282   }
1283 
1284   Node* src_start = array_element_address(src, src_offset, src_elem);
1285   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
1286   // 'src_start' points to src array + scaled offset
1287   // 'dst_start' points to dst array + scaled offset
1288   Node* count = NULL;
1289   if (compress) {
1290     count = compress_string(src_start, TypeAryPtr::get_array_body_type(src_elem), dst_start, length);
1291   } else {
1292     inflate_string(src_start, dst_start, TypeAryPtr::get_array_body_type(dst_elem), length);
1293   }
1294 
1295   if (alloc != NULL) {
1296     if (alloc->maybe_set_complete(&_gvn)) {
1297       // "You break it, you buy it."
1298       InitializeNode* init = alloc->initialization();
1299       assert(init->is_complete(), "we just did this");
1300       init->set_complete_with_arraycopy();
1301       assert(dst->is_CheckCastPP(), "sanity");
1302       assert(dst->in(0)->in(0) == init, "dest pinned");
1303     }
1304     // Do not let stores that initialize this object be reordered with
1305     // a subsequent store that would make this object accessible by
1306     // other threads.
1307     // Record what AllocateNode this StoreStore protects so that
1308     // escape analysis can go from the MemBarStoreStoreNode to the
1309     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1310     // based on the escape status of the AllocateNode.
1311     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1312   }
1313   if (compress) {
1314     set_result(_gvn.transform(count));
1315   }
1316   clear_upper_avx();
1317 
1318   return true;
1319 }
1320 
1321 #ifdef _LP64
1322 #define XTOP ,top() /*additional argument*/
1323 #else  //_LP64
1324 #define XTOP        /*no additional argument*/
1325 #endif //_LP64
1326 
1327 //------------------------inline_string_toBytesU--------------------------
1328 // public static byte[] StringUTF16.toBytes(char[] value, int off, int len)
1329 bool LibraryCallKit::inline_string_toBytesU() {
1330   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1331     return false;
1332   }
1333   // Get the arguments.
1334   Node* value     = argument(0);
1335   Node* offset    = argument(1);
1336   Node* length    = argument(2);
1337 
1338   Node* newcopy = NULL;
1339 
1340   // Set the original stack and the reexecute bit for the interpreter to reexecute
1341   // the bytecode that invokes StringUTF16.toBytes() if deoptimization happens.
1342   { PreserveReexecuteState preexecs(this);
1343     jvms()->set_should_reexecute(true);
1344 
1345     // Check if a null path was taken unconditionally.
1346     value = null_check(value);
1347 
1348     RegionNode* bailout = new RegionNode(1);
1349     record_for_igvn(bailout);
1350 
1351     // Range checks
1352     generate_negative_guard(offset, bailout);
1353     generate_negative_guard(length, bailout);
1354     generate_limit_guard(offset, length, load_array_length(value), bailout);
1355     // Make sure that resulting byte[] length does not overflow Integer.MAX_VALUE
1356     generate_limit_guard(length, intcon(0), intcon(max_jint/2), bailout);
1357 
1358     if (bailout->req() > 1) {
1359       PreserveJVMState pjvms(this);
1360       set_control(_gvn.transform(bailout));
1361       uncommon_trap(Deoptimization::Reason_intrinsic,
1362                     Deoptimization::Action_maybe_recompile);
1363     }
1364     if (stopped()) {
1365       return true;
1366     }
1367 
1368     Node* size = _gvn.transform(new LShiftINode(length, intcon(1)));
1369     Node* klass_node = makecon(TypeKlassPtr::make(ciTypeArrayKlass::make(T_BYTE)));
1370     newcopy = new_array(klass_node, size, 0);  // no arguments to push
1371     AllocateArrayNode* alloc = tightly_coupled_allocation(newcopy, NULL);
1372 
1373     // Calculate starting addresses.
1374     Node* src_start = array_element_address(value, offset, T_CHAR);
1375     Node* dst_start = basic_plus_adr(newcopy, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1376 
1377     // Check if src array address is aligned to HeapWordSize (dst is always aligned)
1378     const TypeInt* toffset = gvn().type(offset)->is_int();
1379     bool aligned = toffset->is_con() && ((toffset->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1380 
1381     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1382     const char* copyfunc_name = "arraycopy";
1383     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1384     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1385                       OptoRuntime::fast_arraycopy_Type(),
1386                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1387                       src_start, dst_start, ConvI2X(length) XTOP);
1388     // Do not let reads from the cloned object float above the arraycopy.
1389     if (alloc != NULL) {
1390       if (alloc->maybe_set_complete(&_gvn)) {
1391         // "You break it, you buy it."
1392         InitializeNode* init = alloc->initialization();
1393         assert(init->is_complete(), "we just did this");
1394         init->set_complete_with_arraycopy();
1395         assert(newcopy->is_CheckCastPP(), "sanity");
1396         assert(newcopy->in(0)->in(0) == init, "dest pinned");
1397       }
1398       // Do not let stores that initialize this object be reordered with
1399       // a subsequent store that would make this object accessible by
1400       // other threads.
1401       // Record what AllocateNode this StoreStore protects so that
1402       // escape analysis can go from the MemBarStoreStoreNode to the
1403       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1404       // based on the escape status of the AllocateNode.
1405       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1406     } else {
1407       insert_mem_bar(Op_MemBarCPUOrder);
1408     }
1409   } // original reexecute is set back here
1410 
1411   C->set_has_split_ifs(true); // Has chance for split-if optimization
1412   if (!stopped()) {
1413     set_result(newcopy);
1414   }
1415   clear_upper_avx();
1416 
1417   return true;
1418 }
1419 
1420 //------------------------inline_string_getCharsU--------------------------
1421 // public void StringUTF16.getChars(byte[] src, int srcBegin, int srcEnd, char dst[], int dstBegin)
1422 bool LibraryCallKit::inline_string_getCharsU() {
1423   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
1424     return false;
1425   }
1426 
1427   // Get the arguments.
1428   Node* src       = argument(0);
1429   Node* src_begin = argument(1);
1430   Node* src_end   = argument(2); // exclusive offset (i < src_end)
1431   Node* dst       = argument(3);
1432   Node* dst_begin = argument(4);
1433 
1434   // Check for allocation before we add nodes that would confuse
1435   // tightly_coupled_allocation()
1436   AllocateArrayNode* alloc = tightly_coupled_allocation(dst, NULL);
1437 
1438   // Check if a null path was taken unconditionally.
1439   src = null_check(src);
1440   dst = null_check(dst);
1441   if (stopped()) {
1442     return true;
1443   }
1444 
1445   // Get length and convert char[] offset to byte[] offset
1446   Node* length = _gvn.transform(new SubINode(src_end, src_begin));
1447   src_begin = _gvn.transform(new LShiftINode(src_begin, intcon(1)));
1448 
1449   // Range checks
1450   generate_string_range_check(src, src_begin, length, true);
1451   generate_string_range_check(dst, dst_begin, length, false);
1452   if (stopped()) {
1453     return true;
1454   }
1455 
1456   if (!stopped()) {
1457     // Calculate starting addresses.
1458     Node* src_start = array_element_address(src, src_begin, T_BYTE);
1459     Node* dst_start = array_element_address(dst, dst_begin, T_CHAR);
1460 
1461     // Check if array addresses are aligned to HeapWordSize
1462     const TypeInt* tsrc = gvn().type(src_begin)->is_int();
1463     const TypeInt* tdst = gvn().type(dst_begin)->is_int();
1464     bool aligned = tsrc->is_con() && ((tsrc->get_con() * type2aelembytes(T_BYTE)) % HeapWordSize == 0) &&
1465                    tdst->is_con() && ((tdst->get_con() * type2aelembytes(T_CHAR)) % HeapWordSize == 0);
1466 
1467     // Figure out which arraycopy runtime method to call (disjoint, uninitialized).
1468     const char* copyfunc_name = "arraycopy";
1469     address     copyfunc_addr = StubRoutines::select_arraycopy_function(T_CHAR, aligned, true, copyfunc_name, true);
1470     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
1471                       OptoRuntime::fast_arraycopy_Type(),
1472                       copyfunc_addr, copyfunc_name, TypeRawPtr::BOTTOM,
1473                       src_start, dst_start, ConvI2X(length) XTOP);
1474     // Do not let reads from the cloned object float above the arraycopy.
1475     if (alloc != NULL) {
1476       if (alloc->maybe_set_complete(&_gvn)) {
1477         // "You break it, you buy it."
1478         InitializeNode* init = alloc->initialization();
1479         assert(init->is_complete(), "we just did this");
1480         init->set_complete_with_arraycopy();
1481         assert(dst->is_CheckCastPP(), "sanity");
1482         assert(dst->in(0)->in(0) == init, "dest pinned");
1483       }
1484       // Do not let stores that initialize this object be reordered with
1485       // a subsequent store that would make this object accessible by
1486       // other threads.
1487       // Record what AllocateNode this StoreStore protects so that
1488       // escape analysis can go from the MemBarStoreStoreNode to the
1489       // AllocateNode and eliminate the MemBarStoreStoreNode if possible
1490       // based on the escape status of the AllocateNode.
1491       insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
1492     } else {
1493       insert_mem_bar(Op_MemBarCPUOrder);
1494     }
1495   }
1496 
1497   C->set_has_split_ifs(true); // Has chance for split-if optimization
1498   return true;
1499 }
1500 
1501 //----------------------inline_string_char_access----------------------------
1502 // Store/Load char to/from byte[] array.
1503 // static void StringUTF16.putChar(byte[] val, int index, int c)
1504 // static char StringUTF16.getChar(byte[] val, int index)
1505 bool LibraryCallKit::inline_string_char_access(bool is_store) {
1506   Node* value  = argument(0);
1507   Node* index  = argument(1);
1508   Node* ch = is_store ? argument(2) : NULL;
1509 
1510   // This intrinsic accesses byte[] array as char[] array. Computing the offsets
1511   // correctly requires matched array shapes.
1512   assert (arrayOopDesc::base_offset_in_bytes(T_CHAR) == arrayOopDesc::base_offset_in_bytes(T_BYTE),
1513           "sanity: byte[] and char[] bases agree");
1514   assert (type2aelembytes(T_CHAR) == type2aelembytes(T_BYTE)*2,
1515           "sanity: byte[] and char[] scales agree");
1516 
1517   // Bail when getChar over constants is requested: constant folding would
1518   // reject folding mismatched char access over byte[]. A normal inlining for getChar
1519   // Java method would constant fold nicely instead.
1520   if (!is_store && value->is_Con() && index->is_Con()) {
1521     return false;
1522   }
1523 
1524   value = must_be_not_null(value, true);
1525 
1526   Node* adr = array_element_address(value, index, T_CHAR);
1527   if (adr->is_top()) {
1528     return false;
1529   }
1530   if (is_store) {
1531     access_store_at(value, adr, TypeAryPtr::BYTES, ch, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED);
1532   } else {
1533     ch = access_load_at(value, adr, TypeAryPtr::BYTES, TypeInt::CHAR, T_CHAR, IN_HEAP | MO_UNORDERED | C2_MISMATCHED | C2_CONTROL_DEPENDENT_LOAD);
1534     set_result(ch);
1535   }
1536   return true;
1537 }
1538 
1539 //--------------------------round_double_node--------------------------------
1540 // Round a double node if necessary.
1541 Node* LibraryCallKit::round_double_node(Node* n) {
1542   if (Matcher::strict_fp_requires_explicit_rounding) {
1543 #ifdef IA32
1544     if (UseSSE < 2) {
1545       n = _gvn.transform(new RoundDoubleNode(NULL, n));
1546     }
1547 #else
1548     Unimplemented();
1549 #endif // IA32
1550   }
1551   return n;
1552 }
1553 
1554 //------------------------------inline_math-----------------------------------
1555 // public static double Math.abs(double)
1556 // public static double Math.sqrt(double)
1557 // public static double Math.log(double)
1558 // public static double Math.log10(double)
1559 bool LibraryCallKit::inline_double_math(vmIntrinsics::ID id) {
1560   Node* arg = round_double_node(argument(0));
1561   Node* n = NULL;
1562   switch (id) {
1563   case vmIntrinsics::_dabs:   n = new AbsDNode(                arg);  break;
1564   case vmIntrinsics::_dsqrt:  n = new SqrtDNode(C, control(),  arg);  break;
1565   case vmIntrinsics::_ceil:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_ceil); break;
1566   case vmIntrinsics::_floor:  n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_floor); break;
1567   case vmIntrinsics::_rint:   n = RoundDoubleModeNode::make(_gvn, arg, RoundDoubleModeNode::rmode_rint); break;
1568   default:  fatal_unexpected_iid(id);  break;
1569   }
1570   set_result(_gvn.transform(n));
1571   return true;
1572 }
1573 
1574 //------------------------------inline_math-----------------------------------
1575 // public static float Math.abs(float)
1576 // public static int Math.abs(int)
1577 // public static long Math.abs(long)
1578 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1579   Node* arg = argument(0);
1580   Node* n = NULL;
1581   switch (id) {
1582   case vmIntrinsics::_fabs:   n = new AbsFNode(                arg);  break;
1583   case vmIntrinsics::_iabs:   n = new AbsINode(                arg);  break;
1584   case vmIntrinsics::_labs:   n = new AbsLNode(                arg);  break;
1585   default:  fatal_unexpected_iid(id);  break;
1586   }
1587   set_result(_gvn.transform(n));
1588   return true;
1589 }
1590 
1591 //------------------------------runtime_math-----------------------------
1592 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1593   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1594          "must be (DD)D or (D)D type");
1595 
1596   // Inputs
1597   Node* a = round_double_node(argument(0));
1598   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1599 
1600   const TypePtr* no_memory_effects = NULL;
1601   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1602                                  no_memory_effects,
1603                                  a, top(), b, b ? top() : NULL);
1604   Node* value = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+0));
1605 #ifdef ASSERT
1606   Node* value_top = _gvn.transform(new ProjNode(trig, TypeFunc::Parms+1));
1607   assert(value_top == top(), "second value must be top");
1608 #endif
1609 
1610   set_result(value);
1611   return true;
1612 }
1613 
1614 //------------------------------inline_math_native-----------------------------
1615 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1616 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1617   switch (id) {
1618     // These intrinsics are not properly supported on all hardware
1619   case vmIntrinsics::_dsin:
1620     return StubRoutines::dsin() != NULL ?
1621       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dsin(), "dsin") :
1622       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1623   case vmIntrinsics::_dcos:
1624     return StubRoutines::dcos() != NULL ?
1625       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dcos(), "dcos") :
1626       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1627   case vmIntrinsics::_dtan:
1628     return StubRoutines::dtan() != NULL ?
1629       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dtan(), "dtan") :
1630       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan), "TAN");
1631   case vmIntrinsics::_dlog:
1632     return StubRoutines::dlog() != NULL ?
1633       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog(), "dlog") :
1634       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1635   case vmIntrinsics::_dlog10:
1636     return StubRoutines::dlog10() != NULL ?
1637       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dlog10(), "dlog10") :
1638       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1639 
1640     // These intrinsics are supported on all hardware
1641   case vmIntrinsics::_ceil:
1642   case vmIntrinsics::_floor:
1643   case vmIntrinsics::_rint:   return Matcher::match_rule_supported(Op_RoundDoubleMode) ? inline_double_math(id) : false;
1644   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_double_math(id) : false;
1645   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_double_math(id) : false;
1646   case vmIntrinsics::_fabs:   return Matcher::match_rule_supported(Op_AbsF)   ? inline_math(id) : false;
1647   case vmIntrinsics::_iabs:   return Matcher::match_rule_supported(Op_AbsI)   ? inline_math(id) : false;
1648   case vmIntrinsics::_labs:   return Matcher::match_rule_supported(Op_AbsL)   ? inline_math(id) : false;
1649 
1650   case vmIntrinsics::_dexp:
1651     return StubRoutines::dexp() != NULL ?
1652       runtime_math(OptoRuntime::Math_D_D_Type(), StubRoutines::dexp(),  "dexp") :
1653       runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dexp),  "EXP");
1654   case vmIntrinsics::_dpow: {
1655     Node* exp = round_double_node(argument(2));
1656     const TypeD* d = _gvn.type(exp)->isa_double_constant();
1657     if (d != NULL && d->getd() == 2.0) {
1658       // Special case: pow(x, 2.0) => x * x
1659       Node* base = round_double_node(argument(0));
1660       set_result(_gvn.transform(new MulDNode(base, base)));
1661       return true;
1662     }
1663     return StubRoutines::dpow() != NULL ?
1664       runtime_math(OptoRuntime::Math_DD_D_Type(), StubRoutines::dpow(),  "dpow") :
1665       runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1666   }
1667 #undef FN_PTR
1668 
1669    // These intrinsics are not yet correctly implemented
1670   case vmIntrinsics::_datan2:
1671     return false;
1672 
1673   default:
1674     fatal_unexpected_iid(id);
1675     return false;
1676   }
1677 }
1678 
1679 static bool is_simple_name(Node* n) {
1680   return (n->req() == 1         // constant
1681           || (n->is_Type() && n->as_Type()->type()->singleton())
1682           || n->is_Proj()       // parameter or return value
1683           || n->is_Phi()        // local of some sort
1684           );
1685 }
1686 
1687 //----------------------------inline_notify-----------------------------------*
1688 bool LibraryCallKit::inline_notify(vmIntrinsics::ID id) {
1689   const TypeFunc* ftype = OptoRuntime::monitor_notify_Type();
1690   address func;
1691   if (id == vmIntrinsics::_notify) {
1692     func = OptoRuntime::monitor_notify_Java();
1693   } else {
1694     func = OptoRuntime::monitor_notifyAll_Java();
1695   }
1696   Node* call = make_runtime_call(RC_NO_LEAF, ftype, func, NULL, TypeRawPtr::BOTTOM, argument(0));
1697   make_slow_call_ex(call, env()->Throwable_klass(), false);
1698   return true;
1699 }
1700 
1701 
1702 //----------------------------inline_min_max-----------------------------------
1703 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1704   set_result(generate_min_max(id, argument(0), argument(1)));
1705   return true;
1706 }
1707 
1708 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
1709   Node* bol = _gvn.transform( new BoolNode(test, BoolTest::overflow) );
1710   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
1711   Node* fast_path = _gvn.transform( new IfFalseNode(check));
1712   Node* slow_path = _gvn.transform( new IfTrueNode(check) );
1713 
1714   {
1715     PreserveJVMState pjvms(this);
1716     PreserveReexecuteState preexecs(this);
1717     jvms()->set_should_reexecute(true);
1718 
1719     set_control(slow_path);
1720     set_i_o(i_o());
1721 
1722     uncommon_trap(Deoptimization::Reason_intrinsic,
1723                   Deoptimization::Action_none);
1724   }
1725 
1726   set_control(fast_path);
1727   set_result(math);
1728 }
1729 
1730 template <typename OverflowOp>
1731 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
1732   typedef typename OverflowOp::MathOp MathOp;
1733 
1734   MathOp* mathOp = new MathOp(arg1, arg2);
1735   Node* operation = _gvn.transform( mathOp );
1736   Node* ofcheck = _gvn.transform( new OverflowOp(arg1, arg2) );
1737   inline_math_mathExact(operation, ofcheck);
1738   return true;
1739 }
1740 
1741 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
1742   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
1743 }
1744 
1745 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
1746   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
1747 }
1748 
1749 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
1750   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
1751 }
1752 
1753 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
1754   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
1755 }
1756 
1757 bool LibraryCallKit::inline_math_negateExactI() {
1758   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
1759 }
1760 
1761 bool LibraryCallKit::inline_math_negateExactL() {
1762   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
1763 }
1764 
1765 bool LibraryCallKit::inline_math_multiplyExactI() {
1766   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
1767 }
1768 
1769 bool LibraryCallKit::inline_math_multiplyExactL() {
1770   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
1771 }
1772 
1773 bool LibraryCallKit::inline_math_multiplyHigh() {
1774   set_result(_gvn.transform(new MulHiLNode(argument(0), argument(2))));
1775   return true;
1776 }
1777 
1778 Node*
1779 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1780   // These are the candidate return value:
1781   Node* xvalue = x0;
1782   Node* yvalue = y0;
1783 
1784   if (xvalue == yvalue) {
1785     return xvalue;
1786   }
1787 
1788   bool want_max = (id == vmIntrinsics::_max);
1789 
1790   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1791   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1792   if (txvalue == NULL || tyvalue == NULL)  return top();
1793   // This is not really necessary, but it is consistent with a
1794   // hypothetical MaxINode::Value method:
1795   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1796 
1797   // %%% This folding logic should (ideally) be in a different place.
1798   // Some should be inside IfNode, and there to be a more reliable
1799   // transformation of ?: style patterns into cmoves.  We also want
1800   // more powerful optimizations around cmove and min/max.
1801 
1802   // Try to find a dominating comparison of these guys.
1803   // It can simplify the index computation for Arrays.copyOf
1804   // and similar uses of System.arraycopy.
1805   // First, compute the normalized version of CmpI(x, y).
1806   int   cmp_op = Op_CmpI;
1807   Node* xkey = xvalue;
1808   Node* ykey = yvalue;
1809   Node* ideal_cmpxy = _gvn.transform(new CmpINode(xkey, ykey));
1810   if (ideal_cmpxy->is_Cmp()) {
1811     // E.g., if we have CmpI(length - offset, count),
1812     // it might idealize to CmpI(length, count + offset)
1813     cmp_op = ideal_cmpxy->Opcode();
1814     xkey = ideal_cmpxy->in(1);
1815     ykey = ideal_cmpxy->in(2);
1816   }
1817 
1818   // Start by locating any relevant comparisons.
1819   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1820   Node* cmpxy = NULL;
1821   Node* cmpyx = NULL;
1822   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1823     Node* cmp = start_from->fast_out(k);
1824     if (cmp->outcnt() > 0 &&            // must have prior uses
1825         cmp->in(0) == NULL &&           // must be context-independent
1826         cmp->Opcode() == cmp_op) {      // right kind of compare
1827       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1828       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1829     }
1830   }
1831 
1832   const int NCMPS = 2;
1833   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1834   int cmpn;
1835   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1836     if (cmps[cmpn] != NULL)  break;     // find a result
1837   }
1838   if (cmpn < NCMPS) {
1839     // Look for a dominating test that tells us the min and max.
1840     int depth = 0;                // Limit search depth for speed
1841     Node* dom = control();
1842     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1843       if (++depth >= 100)  break;
1844       Node* ifproj = dom;
1845       if (!ifproj->is_Proj())  continue;
1846       Node* iff = ifproj->in(0);
1847       if (!iff->is_If())  continue;
1848       Node* bol = iff->in(1);
1849       if (!bol->is_Bool())  continue;
1850       Node* cmp = bol->in(1);
1851       if (cmp == NULL)  continue;
1852       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1853         if (cmps[cmpn] == cmp)  break;
1854       if (cmpn == NCMPS)  continue;
1855       BoolTest::mask btest = bol->as_Bool()->_test._test;
1856       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1857       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1858       // At this point, we know that 'x btest y' is true.
1859       switch (btest) {
1860       case BoolTest::eq:
1861         // They are proven equal, so we can collapse the min/max.
1862         // Either value is the answer.  Choose the simpler.
1863         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1864           return yvalue;
1865         return xvalue;
1866       case BoolTest::lt:          // x < y
1867       case BoolTest::le:          // x <= y
1868         return (want_max ? yvalue : xvalue);
1869       case BoolTest::gt:          // x > y
1870       case BoolTest::ge:          // x >= y
1871         return (want_max ? xvalue : yvalue);
1872       default:
1873         break;
1874       }
1875     }
1876   }
1877 
1878   // We failed to find a dominating test.
1879   // Let's pick a test that might GVN with prior tests.
1880   Node*          best_bol   = NULL;
1881   BoolTest::mask best_btest = BoolTest::illegal;
1882   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1883     Node* cmp = cmps[cmpn];
1884     if (cmp == NULL)  continue;
1885     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
1886       Node* bol = cmp->fast_out(j);
1887       if (!bol->is_Bool())  continue;
1888       BoolTest::mask btest = bol->as_Bool()->_test._test;
1889       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
1890       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
1891       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
1892         best_bol   = bol->as_Bool();
1893         best_btest = btest;
1894       }
1895     }
1896   }
1897 
1898   Node* answer_if_true  = NULL;
1899   Node* answer_if_false = NULL;
1900   switch (best_btest) {
1901   default:
1902     if (cmpxy == NULL)
1903       cmpxy = ideal_cmpxy;
1904     best_bol = _gvn.transform(new BoolNode(cmpxy, BoolTest::lt));
1905     // and fall through:
1906   case BoolTest::lt:          // x < y
1907   case BoolTest::le:          // x <= y
1908     answer_if_true  = (want_max ? yvalue : xvalue);
1909     answer_if_false = (want_max ? xvalue : yvalue);
1910     break;
1911   case BoolTest::gt:          // x > y
1912   case BoolTest::ge:          // x >= y
1913     answer_if_true  = (want_max ? xvalue : yvalue);
1914     answer_if_false = (want_max ? yvalue : xvalue);
1915     break;
1916   }
1917 
1918   jint hi, lo;
1919   if (want_max) {
1920     // We can sharpen the minimum.
1921     hi = MAX2(txvalue->_hi, tyvalue->_hi);
1922     lo = MAX2(txvalue->_lo, tyvalue->_lo);
1923   } else {
1924     // We can sharpen the maximum.
1925     hi = MIN2(txvalue->_hi, tyvalue->_hi);
1926     lo = MIN2(txvalue->_lo, tyvalue->_lo);
1927   }
1928 
1929   // Use a flow-free graph structure, to avoid creating excess control edges
1930   // which could hinder other optimizations.
1931   // Since Math.min/max is often used with arraycopy, we want
1932   // tightly_coupled_allocation to be able to see beyond min/max expressions.
1933   Node* cmov = CMoveNode::make(NULL, best_bol,
1934                                answer_if_false, answer_if_true,
1935                                TypeInt::make(lo, hi, widen));
1936 
1937   return _gvn.transform(cmov);
1938 
1939   /*
1940   // This is not as desirable as it may seem, since Min and Max
1941   // nodes do not have a full set of optimizations.
1942   // And they would interfere, anyway, with 'if' optimizations
1943   // and with CMoveI canonical forms.
1944   switch (id) {
1945   case vmIntrinsics::_min:
1946     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
1947   case vmIntrinsics::_max:
1948     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
1949   default:
1950     ShouldNotReachHere();
1951   }
1952   */
1953 }
1954 
1955 int LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset, BasicType type) {
1956   const TypePtr* base_type = TypePtr::NULL_PTR;
1957   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
1958   if (base_type == NULL) {
1959     // Unknown type.
1960     return Type::AnyPtr;
1961   } else if (base_type == TypePtr::NULL_PTR) {
1962     // Since this is a NULL+long form, we have to switch to a rawptr.
1963     base   = _gvn.transform(new CastX2PNode(offset));
1964     offset = MakeConX(0);
1965     return Type::RawPtr;
1966   } else if (base_type->base() == Type::RawPtr) {
1967     return Type::RawPtr;
1968   } else if (base_type->isa_oopptr()) {
1969     // Base is never null => always a heap address.
1970     if (!TypePtr::NULL_PTR->higher_equal(base_type)) {
1971       return Type::OopPtr;
1972     }
1973     // Offset is small => always a heap address.
1974     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
1975     if (offset_type != NULL &&
1976         base_type->offset() == 0 &&     // (should always be?)
1977         offset_type->_lo >= 0 &&
1978         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
1979       return Type::OopPtr;
1980     } else if (type == T_OBJECT) {
1981       // off heap access to an oop doesn't make any sense. Has to be on
1982       // heap.
1983       return Type::OopPtr;
1984     }
1985     // Otherwise, it might either be oop+off or NULL+addr.
1986     return Type::AnyPtr;
1987   } else {
1988     // No information:
1989     return Type::AnyPtr;
1990   }
1991 }
1992 
1993 Node* LibraryCallKit::make_unsafe_address(Node*& base, Node* offset, DecoratorSet decorators, BasicType type, bool can_cast) {
1994   Node* uncasted_base = base;
1995   int kind = classify_unsafe_addr(uncasted_base, offset, type);
1996   if (kind == Type::RawPtr) {
1997     return basic_plus_adr(top(), uncasted_base, offset);
1998   } else if (kind == Type::AnyPtr) {
1999     assert(base == uncasted_base, "unexpected base change");
2000     if (can_cast) {
2001       if (!_gvn.type(base)->speculative_maybe_null() &&
2002           !too_many_traps(Deoptimization::Reason_speculate_null_check)) {
2003         // According to profiling, this access is always on
2004         // heap. Casting the base to not null and thus avoiding membars
2005         // around the access should allow better optimizations
2006         Node* null_ctl = top();
2007         base = null_check_oop(base, &null_ctl, true, true, true);
2008         assert(null_ctl->is_top(), "no null control here");
2009         return basic_plus_adr(base, offset);
2010       } else if (_gvn.type(base)->speculative_always_null() &&
2011                  !too_many_traps(Deoptimization::Reason_speculate_null_assert)) {
2012         // According to profiling, this access is always off
2013         // heap.
2014         base = null_assert(base);
2015         Node* raw_base = _gvn.transform(new CastX2PNode(offset));
2016         offset = MakeConX(0);
2017         return basic_plus_adr(top(), raw_base, offset);
2018       }
2019     }
2020     // We don't know if it's an on heap or off heap access. Fall back
2021     // to raw memory access.
2022     Node* raw = _gvn.transform(new CheckCastPPNode(control(), base, TypeRawPtr::BOTTOM));
2023     return basic_plus_adr(top(), raw, offset);
2024   } else {
2025     assert(base == uncasted_base, "unexpected base change");
2026     // We know it's an on heap access so base can't be null
2027     if (TypePtr::NULL_PTR->higher_equal(_gvn.type(base))) {
2028       base = must_be_not_null(base, true);
2029     }
2030     return basic_plus_adr(base, offset);
2031   }
2032 }
2033 
2034 //--------------------------inline_number_methods-----------------------------
2035 // inline int     Integer.numberOfLeadingZeros(int)
2036 // inline int        Long.numberOfLeadingZeros(long)
2037 //
2038 // inline int     Integer.numberOfTrailingZeros(int)
2039 // inline int        Long.numberOfTrailingZeros(long)
2040 //
2041 // inline int     Integer.bitCount(int)
2042 // inline int        Long.bitCount(long)
2043 //
2044 // inline char  Character.reverseBytes(char)
2045 // inline short     Short.reverseBytes(short)
2046 // inline int     Integer.reverseBytes(int)
2047 // inline long       Long.reverseBytes(long)
2048 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2049   Node* arg = argument(0);
2050   Node* n = NULL;
2051   switch (id) {
2052   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new CountLeadingZerosINode( arg);  break;
2053   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new CountLeadingZerosLNode( arg);  break;
2054   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new CountTrailingZerosINode(arg);  break;
2055   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new CountTrailingZerosLNode(arg);  break;
2056   case vmIntrinsics::_bitCount_i:               n = new PopCountINode(          arg);  break;
2057   case vmIntrinsics::_bitCount_l:               n = new PopCountLNode(          arg);  break;
2058   case vmIntrinsics::_reverseBytes_c:           n = new ReverseBytesUSNode(0,   arg);  break;
2059   case vmIntrinsics::_reverseBytes_s:           n = new ReverseBytesSNode( 0,   arg);  break;
2060   case vmIntrinsics::_reverseBytes_i:           n = new ReverseBytesINode( 0,   arg);  break;
2061   case vmIntrinsics::_reverseBytes_l:           n = new ReverseBytesLNode( 0,   arg);  break;
2062   default:  fatal_unexpected_iid(id);  break;
2063   }
2064   set_result(_gvn.transform(n));
2065   return true;
2066 }
2067 
2068 //----------------------------inline_unsafe_access----------------------------
2069 
2070 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type) {
2071   // Attempt to infer a sharper value type from the offset and base type.
2072   ciKlass* sharpened_klass = NULL;
2073 
2074   // See if it is an instance field, with an object type.
2075   if (alias_type->field() != NULL) {
2076     if (alias_type->field()->type()->is_klass()) {
2077       sharpened_klass = alias_type->field()->type()->as_klass();
2078     }
2079   }
2080 
2081   // See if it is a narrow oop array.
2082   if (adr_type->isa_aryptr()) {
2083     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2084       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2085       if (elem_type != NULL) {
2086         sharpened_klass = elem_type->klass();
2087       }
2088     }
2089   }
2090 
2091   // The sharpened class might be unloaded if there is no class loader
2092   // contraint in place.
2093   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2094     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2095 
2096 #ifndef PRODUCT
2097     if (C->print_intrinsics() || C->print_inlining()) {
2098       tty->print("  from base type:  ");  adr_type->dump(); tty->cr();
2099       tty->print("  sharpened value: ");  tjp->dump();      tty->cr();
2100     }
2101 #endif
2102     // Sharpen the value type.
2103     return tjp;
2104   }
2105   return NULL;
2106 }
2107 
2108 DecoratorSet LibraryCallKit::mo_decorator_for_access_kind(AccessKind kind) {
2109   switch (kind) {
2110       case Relaxed:
2111         return MO_UNORDERED;
2112       case Opaque:
2113         return MO_RELAXED;
2114       case Acquire:
2115         return MO_ACQUIRE;
2116       case Release:
2117         return MO_RELEASE;
2118       case Volatile:
2119         return MO_SEQ_CST;
2120       default:
2121         ShouldNotReachHere();
2122         return 0;
2123   }
2124 }
2125 
2126 bool LibraryCallKit::inline_unsafe_access(bool is_store, const BasicType type, const AccessKind kind, const bool unaligned) {
2127   if (callee()->is_static())  return false;  // caller must have the capability!
2128   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2129   guarantee(!is_store || kind != Acquire, "Acquire accesses can be produced only for loads");
2130   guarantee( is_store || kind != Release, "Release accesses can be produced only for stores");
2131   assert(type != T_OBJECT || !unaligned, "unaligned access not supported with object type");
2132 
2133   if (is_reference_type(type)) {
2134     decorators |= ON_UNKNOWN_OOP_REF;
2135   }
2136 
2137   if (unaligned) {
2138     decorators |= C2_UNALIGNED;
2139   }
2140 
2141 #ifndef PRODUCT
2142   {
2143     ResourceMark rm;
2144     // Check the signatures.
2145     ciSignature* sig = callee()->signature();
2146 #ifdef ASSERT
2147     if (!is_store) {
2148       // Object getReference(Object base, int/long offset), etc.
2149       BasicType rtype = sig->return_type()->basic_type();
2150       assert(rtype == type, "getter must return the expected value");
2151       assert(sig->count() == 2, "oop getter has 2 arguments");
2152       assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2153       assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2154     } else {
2155       // void putReference(Object base, int/long offset, Object x), etc.
2156       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2157       assert(sig->count() == 3, "oop putter has 3 arguments");
2158       assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2159       assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2160       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2161       assert(vtype == type, "putter must accept the expected value");
2162     }
2163 #endif // ASSERT
2164  }
2165 #endif //PRODUCT
2166 
2167   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2168 
2169   Node* receiver = argument(0);  // type: oop
2170 
2171   // Build address expression.
2172   Node* adr;
2173   Node* heap_base_oop = top();
2174   Node* offset = top();
2175   Node* val;
2176 
2177   // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2178   Node* base = argument(1);  // type: oop
2179   // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2180   offset = argument(2);  // type: long
2181   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2182   // to be plain byte offsets, which are also the same as those accepted
2183   // by oopDesc::field_addr.
2184   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2185          "fieldOffset must be byte-scaled");
2186   // 32-bit machines ignore the high half!
2187   offset = ConvL2X(offset);
2188   adr = make_unsafe_address(base, offset, is_store ? ACCESS_WRITE : ACCESS_READ, type, kind == Relaxed);
2189 
2190   if (_gvn.type(base)->isa_ptr() == TypePtr::NULL_PTR) {
2191     if (type != T_OBJECT) {
2192       decorators |= IN_NATIVE; // off-heap primitive access
2193     } else {
2194       return false; // off-heap oop accesses are not supported
2195     }
2196   } else {
2197     heap_base_oop = base; // on-heap or mixed access
2198   }
2199 
2200   // Can base be NULL? Otherwise, always on-heap access.
2201   bool can_access_non_heap = TypePtr::NULL_PTR->higher_equal(_gvn.type(base));
2202 
2203   if (!can_access_non_heap) {
2204     decorators |= IN_HEAP;
2205   }
2206 
2207   val = is_store ? argument(4) : NULL;
2208 
2209   const TypePtr* adr_type = _gvn.type(adr)->isa_ptr();
2210   if (adr_type == TypePtr::NULL_PTR) {
2211     return false; // off-heap access with zero address
2212   }
2213 
2214   // Try to categorize the address.
2215   Compile::AliasType* alias_type = C->alias_type(adr_type);
2216   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2217 
2218   if (alias_type->adr_type() == TypeInstPtr::KLASS ||
2219       alias_type->adr_type() == TypeAryPtr::RANGE) {
2220     return false; // not supported
2221   }
2222 
2223   bool mismatched = false;
2224   BasicType bt = alias_type->basic_type();
2225   if (bt != T_ILLEGAL) {
2226     assert(alias_type->adr_type()->is_oopptr(), "should be on-heap access");
2227     if (bt == T_BYTE && adr_type->isa_aryptr()) {
2228       // Alias type doesn't differentiate between byte[] and boolean[]).
2229       // Use address type to get the element type.
2230       bt = adr_type->is_aryptr()->elem()->array_element_basic_type();
2231     }
2232     if (bt == T_ARRAY || bt == T_NARROWOOP) {
2233       // accessing an array field with getReference is not a mismatch
2234       bt = T_OBJECT;
2235     }
2236     if ((bt == T_OBJECT) != (type == T_OBJECT)) {
2237       // Don't intrinsify mismatched object accesses
2238       return false;
2239     }
2240     mismatched = (bt != type);
2241   } else if (alias_type->adr_type()->isa_oopptr()) {
2242     mismatched = true; // conservatively mark all "wide" on-heap accesses as mismatched
2243   }
2244 
2245   assert(!mismatched || alias_type->adr_type()->is_oopptr(), "off-heap access can't be mismatched");
2246 
2247   if (mismatched) {
2248     decorators |= C2_MISMATCHED;
2249   }
2250 
2251   // First guess at the value type.
2252   const Type *value_type = Type::get_const_basic_type(type);
2253 
2254   // Figure out the memory ordering.
2255   decorators |= mo_decorator_for_access_kind(kind);
2256 
2257   if (!is_store && type == T_OBJECT) {
2258     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2259     if (tjp != NULL) {
2260       value_type = tjp;
2261     }
2262   }
2263 
2264   receiver = null_check(receiver);
2265   if (stopped()) {
2266     return true;
2267   }
2268   // Heap pointers get a null-check from the interpreter,
2269   // as a courtesy.  However, this is not guaranteed by Unsafe,
2270   // and it is not possible to fully distinguish unintended nulls
2271   // from intended ones in this API.
2272 
2273   if (!is_store) {
2274     Node* p = NULL;
2275     // Try to constant fold a load from a constant field
2276     ciField* field = alias_type->field();
2277     if (heap_base_oop != top() && field != NULL && field->is_constant() && !mismatched) {
2278       // final or stable field
2279       p = make_constant_from_field(field, heap_base_oop);
2280     }
2281 
2282     if (p == NULL) { // Could not constant fold the load
2283       p = access_load_at(heap_base_oop, adr, adr_type, value_type, type, decorators);
2284       // Normalize the value returned by getBoolean in the following cases
2285       if (type == T_BOOLEAN &&
2286           (mismatched ||
2287            heap_base_oop == top() ||                  // - heap_base_oop is NULL or
2288            (can_access_non_heap && field == NULL))    // - heap_base_oop is potentially NULL
2289                                                       //   and the unsafe access is made to large offset
2290                                                       //   (i.e., larger than the maximum offset necessary for any
2291                                                       //   field access)
2292             ) {
2293           IdealKit ideal = IdealKit(this);
2294 #define __ ideal.
2295           IdealVariable normalized_result(ideal);
2296           __ declarations_done();
2297           __ set(normalized_result, p);
2298           __ if_then(p, BoolTest::ne, ideal.ConI(0));
2299           __ set(normalized_result, ideal.ConI(1));
2300           ideal.end_if();
2301           final_sync(ideal);
2302           p = __ value(normalized_result);
2303 #undef __
2304       }
2305     }
2306     if (type == T_ADDRESS) {
2307       p = gvn().transform(new CastP2XNode(NULL, p));
2308       p = ConvX2UL(p);
2309     }
2310     // The load node has the control of the preceding MemBarCPUOrder.  All
2311     // following nodes will have the control of the MemBarCPUOrder inserted at
2312     // the end of this method.  So, pushing the load onto the stack at a later
2313     // point is fine.
2314     set_result(p);
2315   } else {
2316     if (bt == T_ADDRESS) {
2317       // Repackage the long as a pointer.
2318       val = ConvL2X(val);
2319       val = gvn().transform(new CastX2PNode(val));
2320     }
2321     access_store_at(heap_base_oop, adr, adr_type, val, value_type, type, decorators);
2322   }
2323 
2324   return true;
2325 }
2326 
2327 //----------------------------inline_unsafe_load_store----------------------------
2328 // This method serves a couple of different customers (depending on LoadStoreKind):
2329 //
2330 // LS_cmp_swap:
2331 //
2332 //   boolean compareAndSetReference(Object o, long offset, Object expected, Object x);
2333 //   boolean compareAndSetInt(   Object o, long offset, int    expected, int    x);
2334 //   boolean compareAndSetLong(  Object o, long offset, long   expected, long   x);
2335 //
2336 // LS_cmp_swap_weak:
2337 //
2338 //   boolean weakCompareAndSetReference(       Object o, long offset, Object expected, Object x);
2339 //   boolean weakCompareAndSetReferencePlain(  Object o, long offset, Object expected, Object x);
2340 //   boolean weakCompareAndSetReferenceAcquire(Object o, long offset, Object expected, Object x);
2341 //   boolean weakCompareAndSetReferenceRelease(Object o, long offset, Object expected, Object x);
2342 //
2343 //   boolean weakCompareAndSetInt(          Object o, long offset, int    expected, int    x);
2344 //   boolean weakCompareAndSetIntPlain(     Object o, long offset, int    expected, int    x);
2345 //   boolean weakCompareAndSetIntAcquire(   Object o, long offset, int    expected, int    x);
2346 //   boolean weakCompareAndSetIntRelease(   Object o, long offset, int    expected, int    x);
2347 //
2348 //   boolean weakCompareAndSetLong(         Object o, long offset, long   expected, long   x);
2349 //   boolean weakCompareAndSetLongPlain(    Object o, long offset, long   expected, long   x);
2350 //   boolean weakCompareAndSetLongAcquire(  Object o, long offset, long   expected, long   x);
2351 //   boolean weakCompareAndSetLongRelease(  Object o, long offset, long   expected, long   x);
2352 //
2353 // LS_cmp_exchange:
2354 //
2355 //   Object compareAndExchangeReferenceVolatile(Object o, long offset, Object expected, Object x);
2356 //   Object compareAndExchangeReferenceAcquire( Object o, long offset, Object expected, Object x);
2357 //   Object compareAndExchangeReferenceRelease( Object o, long offset, Object expected, Object x);
2358 //
2359 //   Object compareAndExchangeIntVolatile(   Object o, long offset, Object expected, Object x);
2360 //   Object compareAndExchangeIntAcquire(    Object o, long offset, Object expected, Object x);
2361 //   Object compareAndExchangeIntRelease(    Object o, long offset, Object expected, Object x);
2362 //
2363 //   Object compareAndExchangeLongVolatile(  Object o, long offset, Object expected, Object x);
2364 //   Object compareAndExchangeLongAcquire(   Object o, long offset, Object expected, Object x);
2365 //   Object compareAndExchangeLongRelease(   Object o, long offset, Object expected, Object x);
2366 //
2367 // LS_get_add:
2368 //
2369 //   int  getAndAddInt( Object o, long offset, int  delta)
2370 //   long getAndAddLong(Object o, long offset, long delta)
2371 //
2372 // LS_get_set:
2373 //
2374 //   int    getAndSet(Object o, long offset, int    newValue)
2375 //   long   getAndSet(Object o, long offset, long   newValue)
2376 //   Object getAndSet(Object o, long offset, Object newValue)
2377 //
2378 bool LibraryCallKit::inline_unsafe_load_store(const BasicType type, const LoadStoreKind kind, const AccessKind access_kind) {
2379   // This basic scheme here is the same as inline_unsafe_access, but
2380   // differs in enough details that combining them would make the code
2381   // overly confusing.  (This is a true fact! I originally combined
2382   // them, but even I was confused by it!) As much code/comments as
2383   // possible are retained from inline_unsafe_access though to make
2384   // the correspondences clearer. - dl
2385 
2386   if (callee()->is_static())  return false;  // caller must have the capability!
2387 
2388   DecoratorSet decorators = C2_UNSAFE_ACCESS;
2389   decorators |= mo_decorator_for_access_kind(access_kind);
2390 
2391 #ifndef PRODUCT
2392   BasicType rtype;
2393   {
2394     ResourceMark rm;
2395     // Check the signatures.
2396     ciSignature* sig = callee()->signature();
2397     rtype = sig->return_type()->basic_type();
2398     switch(kind) {
2399       case LS_get_add:
2400       case LS_get_set: {
2401       // Check the signatures.
2402 #ifdef ASSERT
2403       assert(rtype == type, "get and set must return the expected type");
2404       assert(sig->count() == 3, "get and set has 3 arguments");
2405       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2406       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2407       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2408       assert(access_kind == Volatile, "mo is not passed to intrinsic nodes in current implementation");
2409 #endif // ASSERT
2410         break;
2411       }
2412       case LS_cmp_swap:
2413       case LS_cmp_swap_weak: {
2414       // Check the signatures.
2415 #ifdef ASSERT
2416       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2417       assert(sig->count() == 4, "CAS has 4 arguments");
2418       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2419       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2420 #endif // ASSERT
2421         break;
2422       }
2423       case LS_cmp_exchange: {
2424       // Check the signatures.
2425 #ifdef ASSERT
2426       assert(rtype == type, "CAS must return the expected type");
2427       assert(sig->count() == 4, "CAS has 4 arguments");
2428       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2429       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2430 #endif // ASSERT
2431         break;
2432       }
2433       default:
2434         ShouldNotReachHere();
2435     }
2436   }
2437 #endif //PRODUCT
2438 
2439   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2440 
2441   // Get arguments:
2442   Node* receiver = NULL;
2443   Node* base     = NULL;
2444   Node* offset   = NULL;
2445   Node* oldval   = NULL;
2446   Node* newval   = NULL;
2447   switch(kind) {
2448     case LS_cmp_swap:
2449     case LS_cmp_swap_weak:
2450     case LS_cmp_exchange: {
2451       const bool two_slot_type = type2size[type] == 2;
2452       receiver = argument(0);  // type: oop
2453       base     = argument(1);  // type: oop
2454       offset   = argument(2);  // type: long
2455       oldval   = argument(4);  // type: oop, int, or long
2456       newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2457       break;
2458     }
2459     case LS_get_add:
2460     case LS_get_set: {
2461       receiver = argument(0);  // type: oop
2462       base     = argument(1);  // type: oop
2463       offset   = argument(2);  // type: long
2464       oldval   = NULL;
2465       newval   = argument(4);  // type: oop, int, or long
2466       break;
2467     }
2468     default:
2469       ShouldNotReachHere();
2470   }
2471 
2472   // Build field offset expression.
2473   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2474   // to be plain byte offsets, which are also the same as those accepted
2475   // by oopDesc::field_addr.
2476   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2477   // 32-bit machines ignore the high half of long offsets
2478   offset = ConvL2X(offset);
2479   Node* adr = make_unsafe_address(base, offset, ACCESS_WRITE | ACCESS_READ, type, false);
2480   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2481 
2482   Compile::AliasType* alias_type = C->alias_type(adr_type);
2483   BasicType bt = alias_type->basic_type();
2484   if (bt != T_ILLEGAL &&
2485       (is_reference_type(bt) != (type == T_OBJECT))) {
2486     // Don't intrinsify mismatched object accesses.
2487     return false;
2488   }
2489 
2490   // For CAS, unlike inline_unsafe_access, there seems no point in
2491   // trying to refine types. Just use the coarse types here.
2492   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2493   const Type *value_type = Type::get_const_basic_type(type);
2494 
2495   switch (kind) {
2496     case LS_get_set:
2497     case LS_cmp_exchange: {
2498       if (type == T_OBJECT) {
2499         const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2500         if (tjp != NULL) {
2501           value_type = tjp;
2502         }
2503       }
2504       break;
2505     }
2506     case LS_cmp_swap:
2507     case LS_cmp_swap_weak:
2508     case LS_get_add:
2509       break;
2510     default:
2511       ShouldNotReachHere();
2512   }
2513 
2514   // Null check receiver.
2515   receiver = null_check(receiver);
2516   if (stopped()) {
2517     return true;
2518   }
2519 
2520   int alias_idx = C->get_alias_index(adr_type);
2521 
2522   if (is_reference_type(type)) {
2523     decorators |= IN_HEAP | ON_UNKNOWN_OOP_REF;
2524 
2525     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2526     // could be delayed during Parse (for example, in adjust_map_after_if()).
2527     // Execute transformation here to avoid barrier generation in such case.
2528     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2529       newval = _gvn.makecon(TypePtr::NULL_PTR);
2530 
2531     if (oldval != NULL && _gvn.type(oldval) == TypePtr::NULL_PTR) {
2532       // Refine the value to a null constant, when it is known to be null
2533       oldval = _gvn.makecon(TypePtr::NULL_PTR);
2534     }
2535   }
2536 
2537   Node* result = NULL;
2538   switch (kind) {
2539     case LS_cmp_exchange: {
2540       result = access_atomic_cmpxchg_val_at(base, adr, adr_type, alias_idx,
2541                                             oldval, newval, value_type, type, decorators);
2542       break;
2543     }
2544     case LS_cmp_swap_weak:
2545       decorators |= C2_WEAK_CMPXCHG;
2546     case LS_cmp_swap: {
2547       result = access_atomic_cmpxchg_bool_at(base, adr, adr_type, alias_idx,
2548                                              oldval, newval, value_type, type, decorators);
2549       break;
2550     }
2551     case LS_get_set: {
2552       result = access_atomic_xchg_at(base, adr, adr_type, alias_idx,
2553                                      newval, value_type, type, decorators);
2554       break;
2555     }
2556     case LS_get_add: {
2557       result = access_atomic_add_at(base, adr, adr_type, alias_idx,
2558                                     newval, value_type, type, decorators);
2559       break;
2560     }
2561     default:
2562       ShouldNotReachHere();
2563   }
2564 
2565   assert(type2size[result->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2566   set_result(result);
2567   return true;
2568 }
2569 
2570 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
2571   // Regardless of form, don't allow previous ld/st to move down,
2572   // then issue acquire, release, or volatile mem_bar.
2573   insert_mem_bar(Op_MemBarCPUOrder);
2574   switch(id) {
2575     case vmIntrinsics::_loadFence:
2576       insert_mem_bar(Op_LoadFence);
2577       return true;
2578     case vmIntrinsics::_storeFence:
2579       insert_mem_bar(Op_StoreFence);
2580       return true;
2581     case vmIntrinsics::_fullFence:
2582       insert_mem_bar(Op_MemBarVolatile);
2583       return true;
2584     default:
2585       fatal_unexpected_iid(id);
2586       return false;
2587   }
2588 }
2589 
2590 bool LibraryCallKit::inline_onspinwait() {
2591   insert_mem_bar(Op_OnSpinWait);
2592   return true;
2593 }
2594 
2595 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
2596   if (!kls->is_Con()) {
2597     return true;
2598   }
2599   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
2600   if (klsptr == NULL) {
2601     return true;
2602   }
2603   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
2604   // don't need a guard for a klass that is already initialized
2605   return !ik->is_initialized();
2606 }
2607 
2608 //----------------------------inline_unsafe_writeback0-------------------------
2609 // public native void Unsafe.writeback0(long address)
2610 bool LibraryCallKit::inline_unsafe_writeback0() {
2611   if (!Matcher::has_match_rule(Op_CacheWB)) {
2612     return false;
2613   }
2614 #ifndef PRODUCT
2615   assert(Matcher::has_match_rule(Op_CacheWBPreSync), "found match rule for CacheWB but not CacheWBPreSync");
2616   assert(Matcher::has_match_rule(Op_CacheWBPostSync), "found match rule for CacheWB but not CacheWBPostSync");
2617   ciSignature* sig = callee()->signature();
2618   assert(sig->type_at(0)->basic_type() == T_LONG, "Unsafe_writeback0 address is long!");
2619 #endif
2620   null_check_receiver();  // null-check, then ignore
2621   Node *addr = argument(1);
2622   addr = new CastX2PNode(addr);
2623   addr = _gvn.transform(addr);
2624   Node *flush = new CacheWBNode(control(), memory(TypeRawPtr::BOTTOM), addr);
2625   flush = _gvn.transform(flush);
2626   set_memory(flush, TypeRawPtr::BOTTOM);
2627   return true;
2628 }
2629 
2630 //----------------------------inline_unsafe_writeback0-------------------------
2631 // public native void Unsafe.writeback0(long address)
2632 bool LibraryCallKit::inline_unsafe_writebackSync0(bool is_pre) {
2633   if (is_pre && !Matcher::has_match_rule(Op_CacheWBPreSync)) {
2634     return false;
2635   }
2636   if (!is_pre && !Matcher::has_match_rule(Op_CacheWBPostSync)) {
2637     return false;
2638   }
2639 #ifndef PRODUCT
2640   assert(Matcher::has_match_rule(Op_CacheWB),
2641          (is_pre ? "found match rule for CacheWBPreSync but not CacheWB"
2642                 : "found match rule for CacheWBPostSync but not CacheWB"));
2643 
2644 #endif
2645   null_check_receiver();  // null-check, then ignore
2646   Node *sync;
2647   if (is_pre) {
2648     sync = new CacheWBPreSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2649   } else {
2650     sync = new CacheWBPostSyncNode(control(), memory(TypeRawPtr::BOTTOM));
2651   }
2652   sync = _gvn.transform(sync);
2653   set_memory(sync, TypeRawPtr::BOTTOM);
2654   return true;
2655 }
2656 
2657 //----------------------------inline_unsafe_allocate---------------------------
2658 // public native Object Unsafe.allocateInstance(Class<?> cls);
2659 bool LibraryCallKit::inline_unsafe_allocate() {
2660   if (callee()->is_static())  return false;  // caller must have the capability!
2661 
2662   null_check_receiver();  // null-check, then ignore
2663   Node* cls = null_check(argument(1));
2664   if (stopped())  return true;
2665 
2666   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2667   kls = null_check(kls);
2668   if (stopped())  return true;  // argument was like int.class
2669 
2670   Node* test = NULL;
2671   if (LibraryCallKit::klass_needs_init_guard(kls)) {
2672     // Note:  The argument might still be an illegal value like
2673     // Serializable.class or Object[].class.   The runtime will handle it.
2674     // But we must make an explicit check for initialization.
2675     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
2676     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
2677     // can generate code to load it as unsigned byte.
2678     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
2679     Node* bits = intcon(InstanceKlass::fully_initialized);
2680     test = _gvn.transform(new SubINode(inst, bits));
2681     // The 'test' is non-zero if we need to take a slow path.
2682   }
2683 
2684   Node* obj = new_instance(kls, test);
2685   set_result(obj);
2686   return true;
2687 }
2688 
2689 //------------------------inline_native_time_funcs--------------
2690 // inline code for System.currentTimeMillis() and System.nanoTime()
2691 // these have the same type and signature
2692 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2693   const TypeFunc* tf = OptoRuntime::void_long_Type();
2694   const TypePtr* no_memory_effects = NULL;
2695   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2696   Node* value = _gvn.transform(new ProjNode(time, TypeFunc::Parms+0));
2697 #ifdef ASSERT
2698   Node* value_top = _gvn.transform(new ProjNode(time, TypeFunc::Parms+1));
2699   assert(value_top == top(), "second value must be top");
2700 #endif
2701   set_result(value);
2702   return true;
2703 }
2704 
2705 #ifdef JFR_HAVE_INTRINSICS
2706 
2707 /*
2708 * oop -> myklass
2709 * myklass->trace_id |= USED
2710 * return myklass->trace_id & ~0x3
2711 */
2712 bool LibraryCallKit::inline_native_classID() {
2713   Node* cls = null_check(argument(0), T_OBJECT);
2714   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2715   kls = null_check(kls, T_OBJECT);
2716 
2717   ByteSize offset = KLASS_TRACE_ID_OFFSET;
2718   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2719   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
2720 
2721   Node* clsused = longcon(0x01l); // set the class bit
2722   Node* orl = _gvn.transform(new OrLNode(tvalue, clsused));
2723   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2724   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
2725 
2726 #ifdef TRACE_ID_META_BITS
2727   Node* mbits = longcon(~TRACE_ID_META_BITS);
2728   tvalue = _gvn.transform(new AndLNode(tvalue, mbits));
2729 #endif
2730 #ifdef TRACE_ID_SHIFT
2731   Node* cbits = intcon(TRACE_ID_SHIFT);
2732   tvalue = _gvn.transform(new URShiftLNode(tvalue, cbits));
2733 #endif
2734 
2735   set_result(tvalue);
2736   return true;
2737 
2738 }
2739 
2740 bool LibraryCallKit::inline_native_getEventWriter() {
2741   Node* tls_ptr = _gvn.transform(new ThreadLocalNode());
2742 
2743   Node* jobj_ptr = basic_plus_adr(top(), tls_ptr,
2744                                   in_bytes(THREAD_LOCAL_WRITER_OFFSET_JFR));
2745 
2746   Node* jobj = make_load(control(), jobj_ptr, TypeRawPtr::BOTTOM, T_ADDRESS, MemNode::unordered);
2747 
2748   Node* jobj_cmp_null = _gvn.transform( new CmpPNode(jobj, null()) );
2749   Node* test_jobj_eq_null  = _gvn.transform( new BoolNode(jobj_cmp_null, BoolTest::eq) );
2750 
2751   IfNode* iff_jobj_null =
2752     create_and_map_if(control(), test_jobj_eq_null, PROB_MIN, COUNT_UNKNOWN);
2753 
2754   enum { _normal_path = 1,
2755          _null_path = 2,
2756          PATH_LIMIT };
2757 
2758   RegionNode* result_rgn = new RegionNode(PATH_LIMIT);
2759   PhiNode*    result_val = new PhiNode(result_rgn, TypeInstPtr::BOTTOM);
2760 
2761   Node* jobj_is_null = _gvn.transform(new IfTrueNode(iff_jobj_null));
2762   result_rgn->init_req(_null_path, jobj_is_null);
2763   result_val->init_req(_null_path, null());
2764 
2765   Node* jobj_is_not_null = _gvn.transform(new IfFalseNode(iff_jobj_null));
2766   set_control(jobj_is_not_null);
2767   Node* res = access_load(jobj, TypeInstPtr::NOTNULL, T_OBJECT,
2768                           IN_NATIVE | C2_CONTROL_DEPENDENT_LOAD);
2769   result_rgn->init_req(_normal_path, control());
2770   result_val->init_req(_normal_path, res);
2771 
2772   set_result(result_rgn, result_val);
2773 
2774   return true;
2775 }
2776 
2777 #endif // JFR_HAVE_INTRINSICS
2778 
2779 //------------------------inline_native_currentThread------------------
2780 bool LibraryCallKit::inline_native_currentThread() {
2781   Node* junk = NULL;
2782   set_result(generate_current_thread(junk));
2783   return true;
2784 }
2785 
2786 //---------------------------load_mirror_from_klass----------------------------
2787 // Given a klass oop, load its java mirror (a java.lang.Class oop).
2788 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
2789   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
2790   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
2791   // mirror = ((OopHandle)mirror)->resolve();
2792   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
2793 }
2794 
2795 //-----------------------load_klass_from_mirror_common-------------------------
2796 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
2797 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
2798 // and branch to the given path on the region.
2799 // If never_see_null, take an uncommon trap on null, so we can optimistically
2800 // compile for the non-null case.
2801 // If the region is NULL, force never_see_null = true.
2802 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
2803                                                     bool never_see_null,
2804                                                     RegionNode* region,
2805                                                     int null_path,
2806                                                     int offset) {
2807   if (region == NULL)  never_see_null = true;
2808   Node* p = basic_plus_adr(mirror, offset);
2809   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
2810   Node* kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
2811   Node* null_ctl = top();
2812   kls = null_check_oop(kls, &null_ctl, never_see_null);
2813   if (region != NULL) {
2814     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
2815     region->init_req(null_path, null_ctl);
2816   } else {
2817     assert(null_ctl == top(), "no loose ends");
2818   }
2819   return kls;
2820 }
2821 
2822 //--------------------(inline_native_Class_query helpers)---------------------
2823 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE_FAST, JVM_ACC_HAS_FINALIZER.
2824 // Fall through if (mods & mask) == bits, take the guard otherwise.
2825 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
2826   // Branch around if the given klass has the given modifier bit set.
2827   // Like generate_guard, adds a new path onto the region.
2828   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
2829   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
2830   Node* mask = intcon(modifier_mask);
2831   Node* bits = intcon(modifier_bits);
2832   Node* mbit = _gvn.transform(new AndINode(mods, mask));
2833   Node* cmp  = _gvn.transform(new CmpINode(mbit, bits));
2834   Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
2835   return generate_fair_guard(bol, region);
2836 }
2837 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
2838   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
2839 }
2840 Node* LibraryCallKit::generate_hidden_class_guard(Node* kls, RegionNode* region) {
2841   return generate_access_flags_guard(kls, JVM_ACC_IS_HIDDEN_CLASS, 0, region);
2842 }
2843 
2844 //-------------------------inline_native_Class_query-------------------
2845 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
2846   const Type* return_type = TypeInt::BOOL;
2847   Node* prim_return_value = top();  // what happens if it's a primitive class?
2848   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
2849   bool expect_prim = false;     // most of these guys expect to work on refs
2850 
2851   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
2852 
2853   Node* mirror = argument(0);
2854   Node* obj    = top();
2855 
2856   switch (id) {
2857   case vmIntrinsics::_isInstance:
2858     // nothing is an instance of a primitive type
2859     prim_return_value = intcon(0);
2860     obj = argument(1);
2861     break;
2862   case vmIntrinsics::_getModifiers:
2863     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2864     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
2865     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
2866     break;
2867   case vmIntrinsics::_isInterface:
2868     prim_return_value = intcon(0);
2869     break;
2870   case vmIntrinsics::_isArray:
2871     prim_return_value = intcon(0);
2872     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
2873     break;
2874   case vmIntrinsics::_isPrimitive:
2875     prim_return_value = intcon(1);
2876     expect_prim = true;  // obviously
2877     break;
2878   case vmIntrinsics::_isHidden:
2879     prim_return_value = intcon(0);
2880     break;
2881   case vmIntrinsics::_getSuperclass:
2882     prim_return_value = null();
2883     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
2884     break;
2885   case vmIntrinsics::_getClassAccessFlags:
2886     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
2887     return_type = TypeInt::INT;  // not bool!  6297094
2888     break;
2889   default:
2890     fatal_unexpected_iid(id);
2891     break;
2892   }
2893 
2894   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
2895   if (mirror_con == NULL)  return false;  // cannot happen?
2896 
2897 #ifndef PRODUCT
2898   if (C->print_intrinsics() || C->print_inlining()) {
2899     ciType* k = mirror_con->java_mirror_type();
2900     if (k) {
2901       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
2902       k->print_name();
2903       tty->cr();
2904     }
2905   }
2906 #endif
2907 
2908   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
2909   RegionNode* region = new RegionNode(PATH_LIMIT);
2910   record_for_igvn(region);
2911   PhiNode* phi = new PhiNode(region, return_type);
2912 
2913   // The mirror will never be null of Reflection.getClassAccessFlags, however
2914   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
2915   // if it is. See bug 4774291.
2916 
2917   // For Reflection.getClassAccessFlags(), the null check occurs in
2918   // the wrong place; see inline_unsafe_access(), above, for a similar
2919   // situation.
2920   mirror = null_check(mirror);
2921   // If mirror or obj is dead, only null-path is taken.
2922   if (stopped())  return true;
2923 
2924   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
2925 
2926   // Now load the mirror's klass metaobject, and null-check it.
2927   // Side-effects region with the control path if the klass is null.
2928   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
2929   // If kls is null, we have a primitive mirror.
2930   phi->init_req(_prim_path, prim_return_value);
2931   if (stopped()) { set_result(region, phi); return true; }
2932   bool safe_for_replace = (region->in(_prim_path) == top());
2933 
2934   Node* p;  // handy temp
2935   Node* null_ctl;
2936 
2937   // Now that we have the non-null klass, we can perform the real query.
2938   // For constant classes, the query will constant-fold in LoadNode::Value.
2939   Node* query_value = top();
2940   switch (id) {
2941   case vmIntrinsics::_isInstance:
2942     // nothing is an instance of a primitive type
2943     query_value = gen_instanceof(obj, kls, safe_for_replace);
2944     break;
2945 
2946   case vmIntrinsics::_getModifiers:
2947     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
2948     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
2949     break;
2950 
2951   case vmIntrinsics::_isInterface:
2952     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2953     if (generate_interface_guard(kls, region) != NULL)
2954       // A guard was added.  If the guard is taken, it was an interface.
2955       phi->add_req(intcon(1));
2956     // If we fall through, it's a plain class.
2957     query_value = intcon(0);
2958     break;
2959 
2960   case vmIntrinsics::_isArray:
2961     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
2962     if (generate_array_guard(kls, region) != NULL)
2963       // A guard was added.  If the guard is taken, it was an array.
2964       phi->add_req(intcon(1));
2965     // If we fall through, it's a plain class.
2966     query_value = intcon(0);
2967     break;
2968 
2969   case vmIntrinsics::_isPrimitive:
2970     query_value = intcon(0); // "normal" path produces false
2971     break;
2972 
2973   case vmIntrinsics::_isHidden:
2974     // (To verify this code sequence, check the asserts in JVM_IsHiddenClass.)
2975     if (generate_hidden_class_guard(kls, region) != NULL)
2976       // A guard was added.  If the guard is taken, it was an hidden class.
2977       phi->add_req(intcon(1));
2978     // If we fall through, it's a plain class.
2979     query_value = intcon(0);
2980     break;
2981 
2982 
2983   case vmIntrinsics::_getSuperclass:
2984     // The rules here are somewhat unfortunate, but we can still do better
2985     // with random logic than with a JNI call.
2986     // Interfaces store null or Object as _super, but must report null.
2987     // Arrays store an intermediate super as _super, but must report Object.
2988     // Other types can report the actual _super.
2989     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
2990     if (generate_interface_guard(kls, region) != NULL)
2991       // A guard was added.  If the guard is taken, it was an interface.
2992       phi->add_req(null());
2993     if (generate_array_guard(kls, region) != NULL)
2994       // A guard was added.  If the guard is taken, it was an array.
2995       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
2996     // If we fall through, it's a plain class.  Get its _super.
2997     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
2998     kls = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
2999     null_ctl = top();
3000     kls = null_check_oop(kls, &null_ctl);
3001     if (null_ctl != top()) {
3002       // If the guard is taken, Object.superClass is null (both klass and mirror).
3003       region->add_req(null_ctl);
3004       phi   ->add_req(null());
3005     }
3006     if (!stopped()) {
3007       query_value = load_mirror_from_klass(kls);
3008     }
3009     break;
3010 
3011   case vmIntrinsics::_getClassAccessFlags:
3012     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3013     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3014     break;
3015 
3016   default:
3017     fatal_unexpected_iid(id);
3018     break;
3019   }
3020 
3021   // Fall-through is the normal case of a query to a real class.
3022   phi->init_req(1, query_value);
3023   region->init_req(1, control());
3024 
3025   C->set_has_split_ifs(true); // Has chance for split-if optimization
3026   set_result(region, phi);
3027   return true;
3028 }
3029 
3030 //-------------------------inline_Class_cast-------------------
3031 bool LibraryCallKit::inline_Class_cast() {
3032   Node* mirror = argument(0); // Class
3033   Node* obj    = argument(1);
3034   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3035   if (mirror_con == NULL) {
3036     return false;  // dead path (mirror->is_top()).
3037   }
3038   if (obj == NULL || obj->is_top()) {
3039     return false;  // dead path
3040   }
3041   const TypeOopPtr* tp = _gvn.type(obj)->isa_oopptr();
3042 
3043   // First, see if Class.cast() can be folded statically.
3044   // java_mirror_type() returns non-null for compile-time Class constants.
3045   ciType* tm = mirror_con->java_mirror_type();
3046   if (tm != NULL && tm->is_klass() &&
3047       tp != NULL && tp->klass() != NULL) {
3048     if (!tp->klass()->is_loaded()) {
3049       // Don't use intrinsic when class is not loaded.
3050       return false;
3051     } else {
3052       int static_res = C->static_subtype_check(tm->as_klass(), tp->klass());
3053       if (static_res == Compile::SSC_always_true) {
3054         // isInstance() is true - fold the code.
3055         set_result(obj);
3056         return true;
3057       } else if (static_res == Compile::SSC_always_false) {
3058         // Don't use intrinsic, have to throw ClassCastException.
3059         // If the reference is null, the non-intrinsic bytecode will
3060         // be optimized appropriately.
3061         return false;
3062       }
3063     }
3064   }
3065 
3066   // Bailout intrinsic and do normal inlining if exception path is frequent.
3067   if (too_many_traps(Deoptimization::Reason_intrinsic)) {
3068     return false;
3069   }
3070 
3071   // Generate dynamic checks.
3072   // Class.cast() is java implementation of _checkcast bytecode.
3073   // Do checkcast (Parse::do_checkcast()) optimizations here.
3074 
3075   mirror = null_check(mirror);
3076   // If mirror is dead, only null-path is taken.
3077   if (stopped()) {
3078     return true;
3079   }
3080 
3081   // Not-subtype or the mirror's klass ptr is NULL (in case it is a primitive).
3082   enum { _bad_type_path = 1, _prim_path = 2, PATH_LIMIT };
3083   RegionNode* region = new RegionNode(PATH_LIMIT);
3084   record_for_igvn(region);
3085 
3086   // Now load the mirror's klass metaobject, and null-check it.
3087   // If kls is null, we have a primitive mirror and
3088   // nothing is an instance of a primitive type.
3089   Node* kls = load_klass_from_mirror(mirror, false, region, _prim_path);
3090 
3091   Node* res = top();
3092   if (!stopped()) {
3093     Node* bad_type_ctrl = top();
3094     // Do checkcast optimizations.
3095     res = gen_checkcast(obj, kls, &bad_type_ctrl);
3096     region->init_req(_bad_type_path, bad_type_ctrl);
3097   }
3098   if (region->in(_prim_path) != top() ||
3099       region->in(_bad_type_path) != top()) {
3100     // Let Interpreter throw ClassCastException.
3101     PreserveJVMState pjvms(this);
3102     set_control(_gvn.transform(region));
3103     uncommon_trap(Deoptimization::Reason_intrinsic,
3104                   Deoptimization::Action_maybe_recompile);
3105   }
3106   if (!stopped()) {
3107     set_result(res);
3108   }
3109   return true;
3110 }
3111 
3112 
3113 //--------------------------inline_native_subtype_check------------------------
3114 // This intrinsic takes the JNI calls out of the heart of
3115 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3116 bool LibraryCallKit::inline_native_subtype_check() {
3117   // Pull both arguments off the stack.
3118   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3119   args[0] = argument(0);
3120   args[1] = argument(1);
3121   Node* klasses[2];             // corresponding Klasses: superk, subk
3122   klasses[0] = klasses[1] = top();
3123 
3124   enum {
3125     // A full decision tree on {superc is prim, subc is prim}:
3126     _prim_0_path = 1,           // {P,N} => false
3127                                 // {P,P} & superc!=subc => false
3128     _prim_same_path,            // {P,P} & superc==subc => true
3129     _prim_1_path,               // {N,P} => false
3130     _ref_subtype_path,          // {N,N} & subtype check wins => true
3131     _both_ref_path,             // {N,N} & subtype check loses => false
3132     PATH_LIMIT
3133   };
3134 
3135   RegionNode* region = new RegionNode(PATH_LIMIT);
3136   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3137   record_for_igvn(region);
3138 
3139   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3140   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3141   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3142 
3143   // First null-check both mirrors and load each mirror's klass metaobject.
3144   int which_arg;
3145   for (which_arg = 0; which_arg <= 1; which_arg++) {
3146     Node* arg = args[which_arg];
3147     arg = null_check(arg);
3148     if (stopped())  break;
3149     args[which_arg] = arg;
3150 
3151     Node* p = basic_plus_adr(arg, class_klass_offset);
3152     Node* kls = LoadKlassNode::make(_gvn, NULL, immutable_memory(), p, adr_type, kls_type);
3153     klasses[which_arg] = _gvn.transform(kls);
3154   }
3155 
3156   // Having loaded both klasses, test each for null.
3157   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3158   for (which_arg = 0; which_arg <= 1; which_arg++) {
3159     Node* kls = klasses[which_arg];
3160     Node* null_ctl = top();
3161     kls = null_check_oop(kls, &null_ctl, never_see_null);
3162     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3163     region->init_req(prim_path, null_ctl);
3164     if (stopped())  break;
3165     klasses[which_arg] = kls;
3166   }
3167 
3168   if (!stopped()) {
3169     // now we have two reference types, in klasses[0..1]
3170     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3171     Node* superk = klasses[0];  // the receiver
3172     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3173     // now we have a successful reference subtype check
3174     region->set_req(_ref_subtype_path, control());
3175   }
3176 
3177   // If both operands are primitive (both klasses null), then
3178   // we must return true when they are identical primitives.
3179   // It is convenient to test this after the first null klass check.
3180   set_control(region->in(_prim_0_path)); // go back to first null check
3181   if (!stopped()) {
3182     // Since superc is primitive, make a guard for the superc==subc case.
3183     Node* cmp_eq = _gvn.transform(new CmpPNode(args[0], args[1]));
3184     Node* bol_eq = _gvn.transform(new BoolNode(cmp_eq, BoolTest::eq));
3185     generate_guard(bol_eq, region, PROB_FAIR);
3186     if (region->req() == PATH_LIMIT+1) {
3187       // A guard was added.  If the added guard is taken, superc==subc.
3188       region->swap_edges(PATH_LIMIT, _prim_same_path);
3189       region->del_req(PATH_LIMIT);
3190     }
3191     region->set_req(_prim_0_path, control()); // Not equal after all.
3192   }
3193 
3194   // these are the only paths that produce 'true':
3195   phi->set_req(_prim_same_path,   intcon(1));
3196   phi->set_req(_ref_subtype_path, intcon(1));
3197 
3198   // pull together the cases:
3199   assert(region->req() == PATH_LIMIT, "sane region");
3200   for (uint i = 1; i < region->req(); i++) {
3201     Node* ctl = region->in(i);
3202     if (ctl == NULL || ctl == top()) {
3203       region->set_req(i, top());
3204       phi   ->set_req(i, top());
3205     } else if (phi->in(i) == NULL) {
3206       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3207     }
3208   }
3209 
3210   set_control(_gvn.transform(region));
3211   set_result(_gvn.transform(phi));
3212   return true;
3213 }
3214 
3215 //---------------------generate_array_guard_common------------------------
3216 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3217                                                   bool obj_array, bool not_array) {
3218 
3219   if (stopped()) {
3220     return NULL;
3221   }
3222 
3223   // If obj_array/non_array==false/false:
3224   // Branch around if the given klass is in fact an array (either obj or prim).
3225   // If obj_array/non_array==false/true:
3226   // Branch around if the given klass is not an array klass of any kind.
3227   // If obj_array/non_array==true/true:
3228   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3229   // If obj_array/non_array==true/false:
3230   // Branch around if the kls is an oop array (Object[] or subtype)
3231   //
3232   // Like generate_guard, adds a new path onto the region.
3233   jint  layout_con = 0;
3234   Node* layout_val = get_layout_helper(kls, layout_con);
3235   if (layout_val == NULL) {
3236     bool query = (obj_array
3237                   ? Klass::layout_helper_is_objArray(layout_con)
3238                   : Klass::layout_helper_is_array(layout_con));
3239     if (query == not_array) {
3240       return NULL;                       // never a branch
3241     } else {                             // always a branch
3242       Node* always_branch = control();
3243       if (region != NULL)
3244         region->add_req(always_branch);
3245       set_control(top());
3246       return always_branch;
3247     }
3248   }
3249   // Now test the correct condition.
3250   jint  nval = (obj_array
3251                 ? (jint)(Klass::_lh_array_tag_type_value
3252                    <<    Klass::_lh_array_tag_shift)
3253                 : Klass::_lh_neutral_value);
3254   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(nval)));
3255   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3256   // invert the test if we are looking for a non-array
3257   if (not_array)  btest = BoolTest(btest).negate();
3258   Node* bol = _gvn.transform(new BoolNode(cmp, btest));
3259   return generate_fair_guard(bol, region);
3260 }
3261 
3262 
3263 //-----------------------inline_native_newArray--------------------------
3264 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3265 // private        native Object Unsafe.allocateUninitializedArray0(Class<?> cls, int size);
3266 bool LibraryCallKit::inline_unsafe_newArray(bool uninitialized) {
3267   Node* mirror;
3268   Node* count_val;
3269   if (uninitialized) {
3270     mirror    = argument(1);
3271     count_val = argument(2);
3272   } else {
3273     mirror    = argument(0);
3274     count_val = argument(1);
3275   }
3276 
3277   mirror = null_check(mirror);
3278   // If mirror or obj is dead, only null-path is taken.
3279   if (stopped())  return true;
3280 
3281   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3282   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3283   PhiNode*    result_val = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
3284   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3285   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3286 
3287   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3288   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3289                                                   result_reg, _slow_path);
3290   Node* normal_ctl   = control();
3291   Node* no_array_ctl = result_reg->in(_slow_path);
3292 
3293   // Generate code for the slow case.  We make a call to newArray().
3294   set_control(no_array_ctl);
3295   if (!stopped()) {
3296     // Either the input type is void.class, or else the
3297     // array klass has not yet been cached.  Either the
3298     // ensuing call will throw an exception, or else it
3299     // will cache the array klass for next time.
3300     PreserveJVMState pjvms(this);
3301     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3302     Node* slow_result = set_results_for_java_call(slow_call);
3303     // this->control() comes from set_results_for_java_call
3304     result_reg->set_req(_slow_path, control());
3305     result_val->set_req(_slow_path, slow_result);
3306     result_io ->set_req(_slow_path, i_o());
3307     result_mem->set_req(_slow_path, reset_memory());
3308   }
3309 
3310   set_control(normal_ctl);
3311   if (!stopped()) {
3312     // Normal case:  The array type has been cached in the java.lang.Class.
3313     // The following call works fine even if the array type is polymorphic.
3314     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3315     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3316     result_reg->init_req(_normal_path, control());
3317     result_val->init_req(_normal_path, obj);
3318     result_io ->init_req(_normal_path, i_o());
3319     result_mem->init_req(_normal_path, reset_memory());
3320 
3321     if (uninitialized) {
3322       // Mark the allocation so that zeroing is skipped
3323       AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(obj, &_gvn);
3324       alloc->maybe_set_complete(&_gvn);
3325     }
3326   }
3327 
3328   // Return the combined state.
3329   set_i_o(        _gvn.transform(result_io)  );
3330   set_all_memory( _gvn.transform(result_mem));
3331 
3332   C->set_has_split_ifs(true); // Has chance for split-if optimization
3333   set_result(result_reg, result_val);
3334   return true;
3335 }
3336 
3337 //----------------------inline_native_getLength--------------------------
3338 // public static native int java.lang.reflect.Array.getLength(Object array);
3339 bool LibraryCallKit::inline_native_getLength() {
3340   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3341 
3342   Node* array = null_check(argument(0));
3343   // If array is dead, only null-path is taken.
3344   if (stopped())  return true;
3345 
3346   // Deoptimize if it is a non-array.
3347   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3348 
3349   if (non_array != NULL) {
3350     PreserveJVMState pjvms(this);
3351     set_control(non_array);
3352     uncommon_trap(Deoptimization::Reason_intrinsic,
3353                   Deoptimization::Action_maybe_recompile);
3354   }
3355 
3356   // If control is dead, only non-array-path is taken.
3357   if (stopped())  return true;
3358 
3359   // The works fine even if the array type is polymorphic.
3360   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3361   Node* result = load_array_length(array);
3362 
3363   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3364   set_result(result);
3365   return true;
3366 }
3367 
3368 //------------------------inline_array_copyOf----------------------------
3369 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3370 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3371 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3372   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3373 
3374   // Get the arguments.
3375   Node* original          = argument(0);
3376   Node* start             = is_copyOfRange? argument(1): intcon(0);
3377   Node* end               = is_copyOfRange? argument(2): argument(1);
3378   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3379 
3380   Node* newcopy = NULL;
3381 
3382   // Set the original stack and the reexecute bit for the interpreter to reexecute
3383   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3384   { PreserveReexecuteState preexecs(this);
3385     jvms()->set_should_reexecute(true);
3386 
3387     array_type_mirror = null_check(array_type_mirror);
3388     original          = null_check(original);
3389 
3390     // Check if a null path was taken unconditionally.
3391     if (stopped())  return true;
3392 
3393     Node* orig_length = load_array_length(original);
3394 
3395     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3396     klass_node = null_check(klass_node);
3397 
3398     RegionNode* bailout = new RegionNode(1);
3399     record_for_igvn(bailout);
3400 
3401     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3402     // Bail out if that is so.
3403     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3404     if (not_objArray != NULL) {
3405       // Improve the klass node's type from the new optimistic assumption:
3406       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3407       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3408       Node* cast = new CastPPNode(klass_node, akls);
3409       cast->init_req(0, control());
3410       klass_node = _gvn.transform(cast);
3411     }
3412 
3413     // Bail out if either start or end is negative.
3414     generate_negative_guard(start, bailout, &start);
3415     generate_negative_guard(end,   bailout, &end);
3416 
3417     Node* length = end;
3418     if (_gvn.type(start) != TypeInt::ZERO) {
3419       length = _gvn.transform(new SubINode(end, start));
3420     }
3421 
3422     // Bail out if length is negative.
3423     // Without this the new_array would throw
3424     // NegativeArraySizeException but IllegalArgumentException is what
3425     // should be thrown
3426     generate_negative_guard(length, bailout, &length);
3427 
3428     if (bailout->req() > 1) {
3429       PreserveJVMState pjvms(this);
3430       set_control(_gvn.transform(bailout));
3431       uncommon_trap(Deoptimization::Reason_intrinsic,
3432                     Deoptimization::Action_maybe_recompile);
3433     }
3434 
3435     if (!stopped()) {
3436       // How many elements will we copy from the original?
3437       // The answer is MinI(orig_length - start, length).
3438       Node* orig_tail = _gvn.transform(new SubINode(orig_length, start));
3439       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3440 
3441       // Generate a direct call to the right arraycopy function(s).
3442       // We know the copy is disjoint but we might not know if the
3443       // oop stores need checking.
3444       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3445       // This will fail a store-check if x contains any non-nulls.
3446 
3447       // ArrayCopyNode:Ideal may transform the ArrayCopyNode to
3448       // loads/stores but it is legal only if we're sure the
3449       // Arrays.copyOf would succeed. So we need all input arguments
3450       // to the copyOf to be validated, including that the copy to the
3451       // new array won't trigger an ArrayStoreException. That subtype
3452       // check can be optimized if we know something on the type of
3453       // the input array from type speculation.
3454       if (_gvn.type(klass_node)->singleton()) {
3455         ciKlass* subk   = _gvn.type(load_object_klass(original))->is_klassptr()->klass();
3456         ciKlass* superk = _gvn.type(klass_node)->is_klassptr()->klass();
3457 
3458         int test = C->static_subtype_check(superk, subk);
3459         if (test != Compile::SSC_always_true && test != Compile::SSC_always_false) {
3460           const TypeOopPtr* t_original = _gvn.type(original)->is_oopptr();
3461           if (t_original->speculative_type() != NULL) {
3462             original = maybe_cast_profiled_obj(original, t_original->speculative_type(), true);
3463           }
3464         }
3465       }
3466 
3467       bool validated = false;
3468       // Reason_class_check rather than Reason_intrinsic because we
3469       // want to intrinsify even if this traps.
3470       if (!too_many_traps(Deoptimization::Reason_class_check)) {
3471         Node* not_subtype_ctrl = gen_subtype_check(original, klass_node);
3472 
3473         if (not_subtype_ctrl != top()) {
3474           PreserveJVMState pjvms(this);
3475           set_control(not_subtype_ctrl);
3476           uncommon_trap(Deoptimization::Reason_class_check,
3477                         Deoptimization::Action_make_not_entrant);
3478           assert(stopped(), "Should be stopped");
3479         }
3480         validated = true;
3481       }
3482 
3483       if (!stopped()) {
3484         newcopy = new_array(klass_node, length, 0);  // no arguments to push
3485 
3486         ArrayCopyNode* ac = ArrayCopyNode::make(this, true, original, start, newcopy, intcon(0), moved, true, false,
3487                                                 load_object_klass(original), klass_node);
3488         if (!is_copyOfRange) {
3489           ac->set_copyof(validated);
3490         } else {
3491           ac->set_copyofrange(validated);
3492         }
3493         Node* n = _gvn.transform(ac);
3494         if (n == ac) {
3495           ac->connect_outputs(this);
3496         } else {
3497           assert(validated, "shouldn't transform if all arguments not validated");
3498           set_all_memory(n);
3499         }
3500       }
3501     }
3502   } // original reexecute is set back here
3503 
3504   C->set_has_split_ifs(true); // Has chance for split-if optimization
3505   if (!stopped()) {
3506     set_result(newcopy);
3507   }
3508   return true;
3509 }
3510 
3511 
3512 //----------------------generate_virtual_guard---------------------------
3513 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3514 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3515                                              RegionNode* slow_region) {
3516   ciMethod* method = callee();
3517   int vtable_index = method->vtable_index();
3518   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3519          "bad index %d", vtable_index);
3520   // Get the Method* out of the appropriate vtable entry.
3521   int entry_offset  = in_bytes(Klass::vtable_start_offset()) +
3522                      vtable_index*vtableEntry::size_in_bytes() +
3523                      vtableEntry::method_offset_in_bytes();
3524   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3525   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3526 
3527   // Compare the target method with the expected method (e.g., Object.hashCode).
3528   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3529 
3530   Node* native_call = makecon(native_call_addr);
3531   Node* chk_native  = _gvn.transform(new CmpPNode(target_call, native_call));
3532   Node* test_native = _gvn.transform(new BoolNode(chk_native, BoolTest::ne));
3533 
3534   return generate_slow_guard(test_native, slow_region);
3535 }
3536 
3537 //-----------------------generate_method_call----------------------------
3538 // Use generate_method_call to make a slow-call to the real
3539 // method if the fast path fails.  An alternative would be to
3540 // use a stub like OptoRuntime::slow_arraycopy_Java.
3541 // This only works for expanding the current library call,
3542 // not another intrinsic.  (E.g., don't use this for making an
3543 // arraycopy call inside of the copyOf intrinsic.)
3544 CallJavaNode*
3545 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3546   // When compiling the intrinsic method itself, do not use this technique.
3547   guarantee(callee() != C->method(), "cannot make slow-call to self");
3548 
3549   ciMethod* method = callee();
3550   // ensure the JVMS we have will be correct for this call
3551   guarantee(method_id == method->intrinsic_id(), "must match");
3552 
3553   const TypeFunc* tf = TypeFunc::make(method);
3554   CallJavaNode* slow_call;
3555   if (is_static) {
3556     assert(!is_virtual, "");
3557     slow_call = new CallStaticJavaNode(C, tf,
3558                            SharedRuntime::get_resolve_static_call_stub(),
3559                            method, bci());
3560   } else if (is_virtual) {
3561     null_check_receiver();
3562     int vtable_index = Method::invalid_vtable_index;
3563     if (UseInlineCaches) {
3564       // Suppress the vtable call
3565     } else {
3566       // hashCode and clone are not a miranda methods,
3567       // so the vtable index is fixed.
3568       // No need to use the linkResolver to get it.
3569        vtable_index = method->vtable_index();
3570        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3571               "bad index %d", vtable_index);
3572     }
3573     slow_call = new CallDynamicJavaNode(tf,
3574                           SharedRuntime::get_resolve_virtual_call_stub(),
3575                           method, vtable_index, bci());
3576   } else {  // neither virtual nor static:  opt_virtual
3577     null_check_receiver();
3578     slow_call = new CallStaticJavaNode(C, tf,
3579                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3580                                 method, bci());
3581     slow_call->set_optimized_virtual(true);
3582   }
3583   if (CallGenerator::is_inlined_method_handle_intrinsic(this->method(), bci(), callee())) {
3584     // To be able to issue a direct call (optimized virtual or virtual)
3585     // and skip a call to MH.linkTo*/invokeBasic adapter, additional information
3586     // about the method being invoked should be attached to the call site to
3587     // make resolution logic work (see SharedRuntime::resolve_{virtual,opt_virtual}_call_C).
3588     slow_call->set_override_symbolic_info(true);
3589   }
3590   set_arguments_for_java_call(slow_call);
3591   set_edges_for_java_call(slow_call);
3592   return slow_call;
3593 }
3594 
3595 
3596 /**
3597  * Build special case code for calls to hashCode on an object. This call may
3598  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3599  * slightly different code.
3600  */
3601 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3602   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3603   assert(!(is_virtual && is_static), "either virtual, special, or static");
3604 
3605   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3606 
3607   RegionNode* result_reg = new RegionNode(PATH_LIMIT);
3608   PhiNode*    result_val = new PhiNode(result_reg, TypeInt::INT);
3609   PhiNode*    result_io  = new PhiNode(result_reg, Type::ABIO);
3610   PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3611   Node* obj = NULL;
3612   if (!is_static) {
3613     // Check for hashing null object
3614     obj = null_check_receiver();
3615     if (stopped())  return true;        // unconditionally null
3616     result_reg->init_req(_null_path, top());
3617     result_val->init_req(_null_path, top());
3618   } else {
3619     // Do a null check, and return zero if null.
3620     // System.identityHashCode(null) == 0
3621     obj = argument(0);
3622     Node* null_ctl = top();
3623     obj = null_check_oop(obj, &null_ctl);
3624     result_reg->init_req(_null_path, null_ctl);
3625     result_val->init_req(_null_path, _gvn.intcon(0));
3626   }
3627 
3628   // Unconditionally null?  Then return right away.
3629   if (stopped()) {
3630     set_control( result_reg->in(_null_path));
3631     if (!stopped())
3632       set_result(result_val->in(_null_path));
3633     return true;
3634   }
3635 
3636   // We only go to the fast case code if we pass a number of guards.  The
3637   // paths which do not pass are accumulated in the slow_region.
3638   RegionNode* slow_region = new RegionNode(1);
3639   record_for_igvn(slow_region);
3640 
3641   // If this is a virtual call, we generate a funny guard.  We pull out
3642   // the vtable entry corresponding to hashCode() from the target object.
3643   // If the target method which we are calling happens to be the native
3644   // Object hashCode() method, we pass the guard.  We do not need this
3645   // guard for non-virtual calls -- the caller is known to be the native
3646   // Object hashCode().
3647   if (is_virtual) {
3648     // After null check, get the object's klass.
3649     Node* obj_klass = load_object_klass(obj);
3650     generate_virtual_guard(obj_klass, slow_region);
3651   }
3652 
3653   // Get the header out of the object, use LoadMarkNode when available
3654   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3655   // The control of the load must be NULL. Otherwise, the load can move before
3656   // the null check after castPP removal.
3657   Node* no_ctrl = NULL;
3658   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3659 
3660   // Test the header to see if it is unlocked.
3661   Node *lock_mask      = _gvn.MakeConX(markWord::biased_lock_mask_in_place);
3662   Node *lmasked_header = _gvn.transform(new AndXNode(header, lock_mask));
3663   Node *unlocked_val   = _gvn.MakeConX(markWord::unlocked_value);
3664   Node *chk_unlocked   = _gvn.transform(new CmpXNode( lmasked_header, unlocked_val));
3665   Node *test_unlocked  = _gvn.transform(new BoolNode( chk_unlocked, BoolTest::ne));
3666 
3667   generate_slow_guard(test_unlocked, slow_region);
3668 
3669   // Get the hash value and check to see that it has been properly assigned.
3670   // We depend on hash_mask being at most 32 bits and avoid the use of
3671   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3672   // vm: see markWord.hpp.
3673   Node *hash_mask      = _gvn.intcon(markWord::hash_mask);
3674   Node *hash_shift     = _gvn.intcon(markWord::hash_shift);
3675   Node *hshifted_header= _gvn.transform(new URShiftXNode(header, hash_shift));
3676   // This hack lets the hash bits live anywhere in the mark object now, as long
3677   // as the shift drops the relevant bits into the low 32 bits.  Note that
3678   // Java spec says that HashCode is an int so there's no point in capturing
3679   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3680   hshifted_header      = ConvX2I(hshifted_header);
3681   Node *hash_val       = _gvn.transform(new AndINode(hshifted_header, hash_mask));
3682 
3683   Node *no_hash_val    = _gvn.intcon(markWord::no_hash);
3684   Node *chk_assigned   = _gvn.transform(new CmpINode( hash_val, no_hash_val));
3685   Node *test_assigned  = _gvn.transform(new BoolNode( chk_assigned, BoolTest::eq));
3686 
3687   generate_slow_guard(test_assigned, slow_region);
3688 
3689   Node* init_mem = reset_memory();
3690   // fill in the rest of the null path:
3691   result_io ->init_req(_null_path, i_o());
3692   result_mem->init_req(_null_path, init_mem);
3693 
3694   result_val->init_req(_fast_path, hash_val);
3695   result_reg->init_req(_fast_path, control());
3696   result_io ->init_req(_fast_path, i_o());
3697   result_mem->init_req(_fast_path, init_mem);
3698 
3699   // Generate code for the slow case.  We make a call to hashCode().
3700   set_control(_gvn.transform(slow_region));
3701   if (!stopped()) {
3702     // No need for PreserveJVMState, because we're using up the present state.
3703     set_all_memory(init_mem);
3704     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3705     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3706     Node* slow_result = set_results_for_java_call(slow_call);
3707     // this->control() comes from set_results_for_java_call
3708     result_reg->init_req(_slow_path, control());
3709     result_val->init_req(_slow_path, slow_result);
3710     result_io  ->set_req(_slow_path, i_o());
3711     result_mem ->set_req(_slow_path, reset_memory());
3712   }
3713 
3714   // Return the combined state.
3715   set_i_o(        _gvn.transform(result_io)  );
3716   set_all_memory( _gvn.transform(result_mem));
3717 
3718   set_result(result_reg, result_val);
3719   return true;
3720 }
3721 
3722 //---------------------------inline_native_getClass----------------------------
3723 // public final native Class<?> java.lang.Object.getClass();
3724 //
3725 // Build special case code for calls to getClass on an object.
3726 bool LibraryCallKit::inline_native_getClass() {
3727   Node* obj = null_check_receiver();
3728   if (stopped())  return true;
3729   set_result(load_mirror_from_klass(load_object_klass(obj)));
3730   return true;
3731 }
3732 
3733 //-----------------inline_native_Reflection_getCallerClass---------------------
3734 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
3735 //
3736 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3737 //
3738 // NOTE: This code must perform the same logic as JVM_GetCallerClass
3739 // in that it must skip particular security frames and checks for
3740 // caller sensitive methods.
3741 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3742 #ifndef PRODUCT
3743   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3744     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3745   }
3746 #endif
3747 
3748   if (!jvms()->has_method()) {
3749 #ifndef PRODUCT
3750     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3751       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3752     }
3753 #endif
3754     return false;
3755   }
3756 
3757   // Walk back up the JVM state to find the caller at the required
3758   // depth.
3759   JVMState* caller_jvms = jvms();
3760 
3761   // Cf. JVM_GetCallerClass
3762   // NOTE: Start the loop at depth 1 because the current JVM state does
3763   // not include the Reflection.getCallerClass() frame.
3764   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
3765     ciMethod* m = caller_jvms->method();
3766     switch (n) {
3767     case 0:
3768       fatal("current JVM state does not include the Reflection.getCallerClass frame");
3769       break;
3770     case 1:
3771       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
3772       if (!m->caller_sensitive()) {
3773 #ifndef PRODUCT
3774         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3775           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
3776         }
3777 #endif
3778         return false;  // bail-out; let JVM_GetCallerClass do the work
3779       }
3780       break;
3781     default:
3782       if (!m->is_ignored_by_security_stack_walk()) {
3783         // We have reached the desired frame; return the holder class.
3784         // Acquire method holder as java.lang.Class and push as constant.
3785         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
3786         ciInstance* caller_mirror = caller_klass->java_mirror();
3787         set_result(makecon(TypeInstPtr::make(caller_mirror)));
3788 
3789 #ifndef PRODUCT
3790         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3791           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
3792           tty->print_cr("  JVM state at this point:");
3793           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3794             ciMethod* m = jvms()->of_depth(i)->method();
3795             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3796           }
3797         }
3798 #endif
3799         return true;
3800       }
3801       break;
3802     }
3803   }
3804 
3805 #ifndef PRODUCT
3806   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3807     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
3808     tty->print_cr("  JVM state at this point:");
3809     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
3810       ciMethod* m = jvms()->of_depth(i)->method();
3811       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3812     }
3813   }
3814 #endif
3815 
3816   return false;  // bail-out; let JVM_GetCallerClass do the work
3817 }
3818 
3819 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
3820   Node* arg = argument(0);
3821   Node* result = NULL;
3822 
3823   switch (id) {
3824   case vmIntrinsics::_floatToRawIntBits:    result = new MoveF2INode(arg);  break;
3825   case vmIntrinsics::_intBitsToFloat:       result = new MoveI2FNode(arg);  break;
3826   case vmIntrinsics::_doubleToRawLongBits:  result = new MoveD2LNode(arg);  break;
3827   case vmIntrinsics::_longBitsToDouble:     result = new MoveL2DNode(arg);  break;
3828 
3829   case vmIntrinsics::_doubleToLongBits: {
3830     // two paths (plus control) merge in a wood
3831     RegionNode *r = new RegionNode(3);
3832     Node *phi = new PhiNode(r, TypeLong::LONG);
3833 
3834     Node *cmpisnan = _gvn.transform(new CmpDNode(arg, arg));
3835     // Build the boolean node
3836     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
3837 
3838     // Branch either way.
3839     // NaN case is less traveled, which makes all the difference.
3840     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3841     Node *opt_isnan = _gvn.transform(ifisnan);
3842     assert( opt_isnan->is_If(), "Expect an IfNode");
3843     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3844     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
3845 
3846     set_control(iftrue);
3847 
3848     static const jlong nan_bits = CONST64(0x7ff8000000000000);
3849     Node *slow_result = longcon(nan_bits); // return NaN
3850     phi->init_req(1, _gvn.transform( slow_result ));
3851     r->init_req(1, iftrue);
3852 
3853     // Else fall through
3854     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
3855     set_control(iffalse);
3856 
3857     phi->init_req(2, _gvn.transform(new MoveD2LNode(arg)));
3858     r->init_req(2, iffalse);
3859 
3860     // Post merge
3861     set_control(_gvn.transform(r));
3862     record_for_igvn(r);
3863 
3864     C->set_has_split_ifs(true); // Has chance for split-if optimization
3865     result = phi;
3866     assert(result->bottom_type()->isa_long(), "must be");
3867     break;
3868   }
3869 
3870   case vmIntrinsics::_floatToIntBits: {
3871     // two paths (plus control) merge in a wood
3872     RegionNode *r = new RegionNode(3);
3873     Node *phi = new PhiNode(r, TypeInt::INT);
3874 
3875     Node *cmpisnan = _gvn.transform(new CmpFNode(arg, arg));
3876     // Build the boolean node
3877     Node *bolisnan = _gvn.transform(new BoolNode(cmpisnan, BoolTest::ne));
3878 
3879     // Branch either way.
3880     // NaN case is less traveled, which makes all the difference.
3881     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
3882     Node *opt_isnan = _gvn.transform(ifisnan);
3883     assert( opt_isnan->is_If(), "Expect an IfNode");
3884     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
3885     Node *iftrue = _gvn.transform(new IfTrueNode(opt_ifisnan));
3886 
3887     set_control(iftrue);
3888 
3889     static const jint nan_bits = 0x7fc00000;
3890     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
3891     phi->init_req(1, _gvn.transform( slow_result ));
3892     r->init_req(1, iftrue);
3893 
3894     // Else fall through
3895     Node *iffalse = _gvn.transform(new IfFalseNode(opt_ifisnan));
3896     set_control(iffalse);
3897 
3898     phi->init_req(2, _gvn.transform(new MoveF2INode(arg)));
3899     r->init_req(2, iffalse);
3900 
3901     // Post merge
3902     set_control(_gvn.transform(r));
3903     record_for_igvn(r);
3904 
3905     C->set_has_split_ifs(true); // Has chance for split-if optimization
3906     result = phi;
3907     assert(result->bottom_type()->isa_int(), "must be");
3908     break;
3909   }
3910 
3911   default:
3912     fatal_unexpected_iid(id);
3913     break;
3914   }
3915   set_result(_gvn.transform(result));
3916   return true;
3917 }
3918 
3919 //----------------------inline_unsafe_copyMemory-------------------------
3920 // public native void Unsafe.copyMemory0(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
3921 bool LibraryCallKit::inline_unsafe_copyMemory() {
3922   if (callee()->is_static())  return false;  // caller must have the capability!
3923   null_check_receiver();  // null-check receiver
3924   if (stopped())  return true;
3925 
3926   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3927 
3928   Node* src_ptr =         argument(1);   // type: oop
3929   Node* src_off = ConvL2X(argument(2));  // type: long
3930   Node* dst_ptr =         argument(4);   // type: oop
3931   Node* dst_off = ConvL2X(argument(5));  // type: long
3932   Node* size    = ConvL2X(argument(7));  // type: long
3933 
3934   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
3935          "fieldOffset must be byte-scaled");
3936 
3937   Node* src = make_unsafe_address(src_ptr, src_off, ACCESS_READ);
3938   Node* dst = make_unsafe_address(dst_ptr, dst_off, ACCESS_WRITE);
3939 
3940   // Conservatively insert a memory barrier on all memory slices.
3941   // Do not let writes of the copy source or destination float below the copy.
3942   insert_mem_bar(Op_MemBarCPUOrder);
3943 
3944   Node* thread = _gvn.transform(new ThreadLocalNode());
3945   Node* doing_unsafe_access_addr = basic_plus_adr(top(), thread, in_bytes(JavaThread::doing_unsafe_access_offset()));
3946   BasicType doing_unsafe_access_bt = T_BYTE;
3947   assert((sizeof(bool) * CHAR_BIT) == 8, "not implemented");
3948 
3949   // update volatile field
3950   store_to_memory(control(), doing_unsafe_access_addr, intcon(1), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
3951 
3952   // Call it.  Note that the length argument is not scaled.
3953   make_runtime_call(RC_LEAF|RC_NO_FP,
3954                     OptoRuntime::fast_arraycopy_Type(),
3955                     StubRoutines::unsafe_arraycopy(),
3956                     "unsafe_arraycopy",
3957                     TypeRawPtr::BOTTOM,
3958                     src, dst, size XTOP);
3959 
3960   store_to_memory(control(), doing_unsafe_access_addr, intcon(0), doing_unsafe_access_bt, Compile::AliasIdxRaw, MemNode::unordered);
3961 
3962   // Do not let reads of the copy destination float above the copy.
3963   insert_mem_bar(Op_MemBarCPUOrder);
3964 
3965   return true;
3966 }
3967 
3968 //------------------------clone_coping-----------------------------------
3969 // Helper function for inline_native_clone.
3970 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array) {
3971   assert(obj_size != NULL, "");
3972   Node* raw_obj = alloc_obj->in(1);
3973   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
3974 
3975   AllocateNode* alloc = NULL;
3976   if (ReduceBulkZeroing) {
3977     // We will be completely responsible for initializing this object -
3978     // mark Initialize node as complete.
3979     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
3980     // The object was just allocated - there should be no any stores!
3981     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
3982     // Mark as complete_with_arraycopy so that on AllocateNode
3983     // expansion, we know this AllocateNode is initialized by an array
3984     // copy and a StoreStore barrier exists after the array copy.
3985     alloc->initialization()->set_complete_with_arraycopy();
3986   }
3987 
3988   Node* size = _gvn.transform(obj_size);
3989   access_clone(obj, alloc_obj, size, is_array);
3990 
3991   // Do not let reads from the cloned object float above the arraycopy.
3992   if (alloc != NULL) {
3993     // Do not let stores that initialize this object be reordered with
3994     // a subsequent store that would make this object accessible by
3995     // other threads.
3996     // Record what AllocateNode this StoreStore protects so that
3997     // escape analysis can go from the MemBarStoreStoreNode to the
3998     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
3999     // based on the escape status of the AllocateNode.
4000     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out_or_null(AllocateNode::RawAddress));
4001   } else {
4002     insert_mem_bar(Op_MemBarCPUOrder);
4003   }
4004 }
4005 
4006 //------------------------inline_native_clone----------------------------
4007 // protected native Object java.lang.Object.clone();
4008 //
4009 // Here are the simple edge cases:
4010 //  null receiver => normal trap
4011 //  virtual and clone was overridden => slow path to out-of-line clone
4012 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4013 //
4014 // The general case has two steps, allocation and copying.
4015 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4016 //
4017 // Copying also has two cases, oop arrays and everything else.
4018 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4019 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4020 //
4021 // These steps fold up nicely if and when the cloned object's klass
4022 // can be sharply typed as an object array, a type array, or an instance.
4023 //
4024 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4025   PhiNode* result_val;
4026 
4027   // Set the reexecute bit for the interpreter to reexecute
4028   // the bytecode that invokes Object.clone if deoptimization happens.
4029   { PreserveReexecuteState preexecs(this);
4030     jvms()->set_should_reexecute(true);
4031 
4032     Node* obj = null_check_receiver();
4033     if (stopped())  return true;
4034 
4035     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
4036 
4037     // If we are going to clone an instance, we need its exact type to
4038     // know the number and types of fields to convert the clone to
4039     // loads/stores. Maybe a speculative type can help us.
4040     if (!obj_type->klass_is_exact() &&
4041         obj_type->speculative_type() != NULL &&
4042         obj_type->speculative_type()->is_instance_klass()) {
4043       ciInstanceKlass* spec_ik = obj_type->speculative_type()->as_instance_klass();
4044       if (spec_ik->nof_nonstatic_fields() <= ArrayCopyLoadStoreMaxElem &&
4045           !spec_ik->has_injected_fields()) {
4046         ciKlass* k = obj_type->klass();
4047         if (!k->is_instance_klass() ||
4048             k->as_instance_klass()->is_interface() ||
4049             k->as_instance_klass()->has_subklass()) {
4050           obj = maybe_cast_profiled_obj(obj, obj_type->speculative_type(), false);
4051         }
4052       }
4053     }
4054 
4055     // Conservatively insert a memory barrier on all memory slices.
4056     // Do not let writes into the original float below the clone.
4057     insert_mem_bar(Op_MemBarCPUOrder);
4058 
4059     // paths into result_reg:
4060     enum {
4061       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4062       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4063       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4064       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4065       PATH_LIMIT
4066     };
4067     RegionNode* result_reg = new RegionNode(PATH_LIMIT);
4068     result_val             = new PhiNode(result_reg, TypeInstPtr::NOTNULL);
4069     PhiNode*    result_i_o = new PhiNode(result_reg, Type::ABIO);
4070     PhiNode*    result_mem = new PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
4071     record_for_igvn(result_reg);
4072 
4073     Node* obj_klass = load_object_klass(obj);
4074     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4075     if (array_ctl != NULL) {
4076       // It's an array.
4077       PreserveJVMState pjvms(this);
4078       set_control(array_ctl);
4079       Node* obj_length = load_array_length(obj);
4080       Node* obj_size  = NULL;
4081       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4082 
4083       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
4084       if (bs->array_copy_requires_gc_barriers(true, T_OBJECT, true, BarrierSetC2::Parsing)) {
4085         // If it is an oop array, it requires very special treatment,
4086         // because gc barriers are required when accessing the array.
4087         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4088         if (is_obja != NULL) {
4089           PreserveJVMState pjvms2(this);
4090           set_control(is_obja);
4091           // Generate a direct call to the right arraycopy function(s).
4092           Node* alloc = tightly_coupled_allocation(alloc_obj, NULL);
4093           ArrayCopyNode* ac = ArrayCopyNode::make(this, true, obj, intcon(0), alloc_obj, intcon(0), obj_length, alloc != NULL, false);
4094           ac->set_clone_oop_array();
4095           Node* n = _gvn.transform(ac);
4096           assert(n == ac, "cannot disappear");
4097           ac->connect_outputs(this);
4098 
4099           result_reg->init_req(_objArray_path, control());
4100           result_val->init_req(_objArray_path, alloc_obj);
4101           result_i_o ->set_req(_objArray_path, i_o());
4102           result_mem ->set_req(_objArray_path, reset_memory());
4103         }
4104       }
4105       // Otherwise, there are no barriers to worry about.
4106       // (We can dispense with card marks if we know the allocation
4107       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4108       //  causes the non-eden paths to take compensating steps to
4109       //  simulate a fresh allocation, so that no further
4110       //  card marks are required in compiled code to initialize
4111       //  the object.)
4112 
4113       if (!stopped()) {
4114         copy_to_clone(obj, alloc_obj, obj_size, true);
4115 
4116         // Present the results of the copy.
4117         result_reg->init_req(_array_path, control());
4118         result_val->init_req(_array_path, alloc_obj);
4119         result_i_o ->set_req(_array_path, i_o());
4120         result_mem ->set_req(_array_path, reset_memory());
4121       }
4122     }
4123 
4124     // We only go to the instance fast case code if we pass a number of guards.
4125     // The paths which do not pass are accumulated in the slow_region.
4126     RegionNode* slow_region = new RegionNode(1);
4127     record_for_igvn(slow_region);
4128     if (!stopped()) {
4129       // It's an instance (we did array above).  Make the slow-path tests.
4130       // If this is a virtual call, we generate a funny guard.  We grab
4131       // the vtable entry corresponding to clone() from the target object.
4132       // If the target method which we are calling happens to be the
4133       // Object clone() method, we pass the guard.  We do not need this
4134       // guard for non-virtual calls; the caller is known to be the native
4135       // Object clone().
4136       if (is_virtual) {
4137         generate_virtual_guard(obj_klass, slow_region);
4138       }
4139 
4140       // The object must be easily cloneable and must not have a finalizer.
4141       // Both of these conditions may be checked in a single test.
4142       // We could optimize the test further, but we don't care.
4143       generate_access_flags_guard(obj_klass,
4144                                   // Test both conditions:
4145                                   JVM_ACC_IS_CLONEABLE_FAST | JVM_ACC_HAS_FINALIZER,
4146                                   // Must be cloneable but not finalizer:
4147                                   JVM_ACC_IS_CLONEABLE_FAST,
4148                                   slow_region);
4149     }
4150 
4151     if (!stopped()) {
4152       // It's an instance, and it passed the slow-path tests.
4153       PreserveJVMState pjvms(this);
4154       Node* obj_size  = NULL;
4155       // Need to deoptimize on exception from allocation since Object.clone intrinsic
4156       // is reexecuted if deoptimization occurs and there could be problems when merging
4157       // exception state between multiple Object.clone versions (reexecute=true vs reexecute=false).
4158       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size, /*deoptimize_on_exception=*/true);
4159 
4160       copy_to_clone(obj, alloc_obj, obj_size, false);
4161 
4162       // Present the results of the slow call.
4163       result_reg->init_req(_instance_path, control());
4164       result_val->init_req(_instance_path, alloc_obj);
4165       result_i_o ->set_req(_instance_path, i_o());
4166       result_mem ->set_req(_instance_path, reset_memory());
4167     }
4168 
4169     // Generate code for the slow case.  We make a call to clone().
4170     set_control(_gvn.transform(slow_region));
4171     if (!stopped()) {
4172       PreserveJVMState pjvms(this);
4173       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4174       // We need to deoptimize on exception (see comment above)
4175       Node* slow_result = set_results_for_java_call(slow_call, false, /* deoptimize */ true);
4176       // this->control() comes from set_results_for_java_call
4177       result_reg->init_req(_slow_path, control());
4178       result_val->init_req(_slow_path, slow_result);
4179       result_i_o ->set_req(_slow_path, i_o());
4180       result_mem ->set_req(_slow_path, reset_memory());
4181     }
4182 
4183     // Return the combined state.
4184     set_control(    _gvn.transform(result_reg));
4185     set_i_o(        _gvn.transform(result_i_o));
4186     set_all_memory( _gvn.transform(result_mem));
4187   } // original reexecute is set back here
4188 
4189   set_result(_gvn.transform(result_val));
4190   return true;
4191 }
4192 
4193 // If we have a tightly coupled allocation, the arraycopy may take care
4194 // of the array initialization. If one of the guards we insert between
4195 // the allocation and the arraycopy causes a deoptimization, an
4196 // unitialized array will escape the compiled method. To prevent that
4197 // we set the JVM state for uncommon traps between the allocation and
4198 // the arraycopy to the state before the allocation so, in case of
4199 // deoptimization, we'll reexecute the allocation and the
4200 // initialization.
4201 JVMState* LibraryCallKit::arraycopy_restore_alloc_state(AllocateArrayNode* alloc, int& saved_reexecute_sp) {
4202   if (alloc != NULL) {
4203     ciMethod* trap_method = alloc->jvms()->method();
4204     int trap_bci = alloc->jvms()->bci();
4205 
4206     if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4207         !C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_null_check)) {
4208       // Make sure there's no store between the allocation and the
4209       // arraycopy otherwise visible side effects could be rexecuted
4210       // in case of deoptimization and cause incorrect execution.
4211       bool no_interfering_store = true;
4212       Node* mem = alloc->in(TypeFunc::Memory);
4213       if (mem->is_MergeMem()) {
4214         for (MergeMemStream mms(merged_memory(), mem->as_MergeMem()); mms.next_non_empty2(); ) {
4215           Node* n = mms.memory();
4216           if (n != mms.memory2() && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4217             assert(n->is_Store(), "what else?");
4218             no_interfering_store = false;
4219             break;
4220           }
4221         }
4222       } else {
4223         for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
4224           Node* n = mms.memory();
4225           if (n != mem && !(n->is_Proj() && n->in(0) == alloc->initialization())) {
4226             assert(n->is_Store(), "what else?");
4227             no_interfering_store = false;
4228             break;
4229           }
4230         }
4231       }
4232 
4233       if (no_interfering_store) {
4234         JVMState* old_jvms = alloc->jvms()->clone_shallow(C);
4235         uint size = alloc->req();
4236         SafePointNode* sfpt = new SafePointNode(size, old_jvms);
4237         old_jvms->set_map(sfpt);
4238         for (uint i = 0; i < size; i++) {
4239           sfpt->init_req(i, alloc->in(i));
4240         }
4241         // re-push array length for deoptimization
4242         sfpt->ins_req(old_jvms->stkoff() + old_jvms->sp(), alloc->in(AllocateNode::ALength));
4243         old_jvms->set_sp(old_jvms->sp()+1);
4244         old_jvms->set_monoff(old_jvms->monoff()+1);
4245         old_jvms->set_scloff(old_jvms->scloff()+1);
4246         old_jvms->set_endoff(old_jvms->endoff()+1);
4247         old_jvms->set_should_reexecute(true);
4248 
4249         sfpt->set_i_o(map()->i_o());
4250         sfpt->set_memory(map()->memory());
4251         sfpt->set_control(map()->control());
4252 
4253         JVMState* saved_jvms = jvms();
4254         saved_reexecute_sp = _reexecute_sp;
4255 
4256         set_jvms(sfpt->jvms());
4257         _reexecute_sp = jvms()->sp();
4258 
4259         return saved_jvms;
4260       }
4261     }
4262   }
4263   return NULL;
4264 }
4265 
4266 // In case of a deoptimization, we restart execution at the
4267 // allocation, allocating a new array. We would leave an uninitialized
4268 // array in the heap that GCs wouldn't expect. Move the allocation
4269 // after the traps so we don't allocate the array if we
4270 // deoptimize. This is possible because tightly_coupled_allocation()
4271 // guarantees there's no observer of the allocated array at this point
4272 // and the control flow is simple enough.
4273 void LibraryCallKit::arraycopy_move_allocation_here(AllocateArrayNode* alloc, Node* dest, JVMState* saved_jvms,
4274                                                     int saved_reexecute_sp, uint new_idx) {
4275   if (saved_jvms != NULL && !stopped()) {
4276     assert(alloc != NULL, "only with a tightly coupled allocation");
4277     // restore JVM state to the state at the arraycopy
4278     saved_jvms->map()->set_control(map()->control());
4279     assert(saved_jvms->map()->memory() == map()->memory(), "memory state changed?");
4280     assert(saved_jvms->map()->i_o() == map()->i_o(), "IO state changed?");
4281     // If we've improved the types of some nodes (null check) while
4282     // emitting the guards, propagate them to the current state
4283     map()->replaced_nodes().apply(saved_jvms->map(), new_idx);
4284     set_jvms(saved_jvms);
4285     _reexecute_sp = saved_reexecute_sp;
4286 
4287     // Remove the allocation from above the guards
4288     CallProjections callprojs;
4289     alloc->extract_projections(&callprojs, true);
4290     InitializeNode* init = alloc->initialization();
4291     Node* alloc_mem = alloc->in(TypeFunc::Memory);
4292     C->gvn_replace_by(callprojs.fallthrough_ioproj, alloc->in(TypeFunc::I_O));
4293     C->gvn_replace_by(init->proj_out(TypeFunc::Memory), alloc_mem);
4294     C->gvn_replace_by(init->proj_out(TypeFunc::Control), alloc->in(0));
4295 
4296     // move the allocation here (after the guards)
4297     _gvn.hash_delete(alloc);
4298     alloc->set_req(TypeFunc::Control, control());
4299     alloc->set_req(TypeFunc::I_O, i_o());
4300     Node *mem = reset_memory();
4301     set_all_memory(mem);
4302     alloc->set_req(TypeFunc::Memory, mem);
4303     set_control(init->proj_out_or_null(TypeFunc::Control));
4304     set_i_o(callprojs.fallthrough_ioproj);
4305 
4306     // Update memory as done in GraphKit::set_output_for_allocation()
4307     const TypeInt* length_type = _gvn.find_int_type(alloc->in(AllocateNode::ALength));
4308     const TypeOopPtr* ary_type = _gvn.type(alloc->in(AllocateNode::KlassNode))->is_klassptr()->as_instance_type();
4309     if (ary_type->isa_aryptr() && length_type != NULL) {
4310       ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4311     }
4312     const TypePtr* telemref = ary_type->add_offset(Type::OffsetBot);
4313     int            elemidx  = C->get_alias_index(telemref);
4314     set_memory(init->proj_out_or_null(TypeFunc::Memory), Compile::AliasIdxRaw);
4315     set_memory(init->proj_out_or_null(TypeFunc::Memory), elemidx);
4316 
4317     Node* allocx = _gvn.transform(alloc);
4318     assert(allocx == alloc, "where has the allocation gone?");
4319     assert(dest->is_CheckCastPP(), "not an allocation result?");
4320 
4321     _gvn.hash_delete(dest);
4322     dest->set_req(0, control());
4323     Node* destx = _gvn.transform(dest);
4324     assert(destx == dest, "where has the allocation result gone?");
4325   }
4326 }
4327 
4328 
4329 //------------------------------inline_arraycopy-----------------------
4330 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4331 //                                                      Object dest, int destPos,
4332 //                                                      int length);
4333 bool LibraryCallKit::inline_arraycopy() {
4334   // Get the arguments.
4335   Node* src         = argument(0);  // type: oop
4336   Node* src_offset  = argument(1);  // type: int
4337   Node* dest        = argument(2);  // type: oop
4338   Node* dest_offset = argument(3);  // type: int
4339   Node* length      = argument(4);  // type: int
4340 
4341   uint new_idx = C->unique();
4342 
4343   // Check for allocation before we add nodes that would confuse
4344   // tightly_coupled_allocation()
4345   AllocateArrayNode* alloc = tightly_coupled_allocation(dest, NULL);
4346 
4347   int saved_reexecute_sp = -1;
4348   JVMState* saved_jvms = arraycopy_restore_alloc_state(alloc, saved_reexecute_sp);
4349   // See arraycopy_restore_alloc_state() comment
4350   // if alloc == NULL we don't have to worry about a tightly coupled allocation so we can emit all needed guards
4351   // if saved_jvms != NULL (then alloc != NULL) then we can handle guards and a tightly coupled allocation
4352   // if saved_jvms == NULL and alloc != NULL, we can't emit any guards
4353   bool can_emit_guards = (alloc == NULL || saved_jvms != NULL);
4354 
4355   // The following tests must be performed
4356   // (1) src and dest are arrays.
4357   // (2) src and dest arrays must have elements of the same BasicType
4358   // (3) src and dest must not be null.
4359   // (4) src_offset must not be negative.
4360   // (5) dest_offset must not be negative.
4361   // (6) length must not be negative.
4362   // (7) src_offset + length must not exceed length of src.
4363   // (8) dest_offset + length must not exceed length of dest.
4364   // (9) each element of an oop array must be assignable
4365 
4366   // (3) src and dest must not be null.
4367   // always do this here because we need the JVM state for uncommon traps
4368   Node* null_ctl = top();
4369   src  = saved_jvms != NULL ? null_check_oop(src, &null_ctl, true, true) : null_check(src,  T_ARRAY);
4370   assert(null_ctl->is_top(), "no null control here");
4371   dest = null_check(dest, T_ARRAY);
4372 
4373   if (!can_emit_guards) {
4374     // if saved_jvms == NULL and alloc != NULL, we don't emit any
4375     // guards but the arraycopy node could still take advantage of a
4376     // tightly allocated allocation. tightly_coupled_allocation() is
4377     // called again to make sure it takes the null check above into
4378     // account: the null check is mandatory and if it caused an
4379     // uncommon trap to be emitted then the allocation can't be
4380     // considered tightly coupled in this context.
4381     alloc = tightly_coupled_allocation(dest, NULL);
4382   }
4383 
4384   bool validated = false;
4385 
4386   const Type* src_type  = _gvn.type(src);
4387   const Type* dest_type = _gvn.type(dest);
4388   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4389   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4390 
4391   // Do we have the type of src?
4392   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4393   // Do we have the type of dest?
4394   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4395   // Is the type for src from speculation?
4396   bool src_spec = false;
4397   // Is the type for dest from speculation?
4398   bool dest_spec = false;
4399 
4400   if ((!has_src || !has_dest) && can_emit_guards) {
4401     // We don't have sufficient type information, let's see if
4402     // speculative types can help. We need to have types for both src
4403     // and dest so that it pays off.
4404 
4405     // Do we already have or could we have type information for src
4406     bool could_have_src = has_src;
4407     // Do we already have or could we have type information for dest
4408     bool could_have_dest = has_dest;
4409 
4410     ciKlass* src_k = NULL;
4411     if (!has_src) {
4412       src_k = src_type->speculative_type_not_null();
4413       if (src_k != NULL && src_k->is_array_klass()) {
4414         could_have_src = true;
4415       }
4416     }
4417 
4418     ciKlass* dest_k = NULL;
4419     if (!has_dest) {
4420       dest_k = dest_type->speculative_type_not_null();
4421       if (dest_k != NULL && dest_k->is_array_klass()) {
4422         could_have_dest = true;
4423       }
4424     }
4425 
4426     if (could_have_src && could_have_dest) {
4427       // This is going to pay off so emit the required guards
4428       if (!has_src) {
4429         src = maybe_cast_profiled_obj(src, src_k, true);
4430         src_type  = _gvn.type(src);
4431         top_src  = src_type->isa_aryptr();
4432         has_src = (top_src != NULL && top_src->klass() != NULL);
4433         src_spec = true;
4434       }
4435       if (!has_dest) {
4436         dest = maybe_cast_profiled_obj(dest, dest_k, true);
4437         dest_type  = _gvn.type(dest);
4438         top_dest  = dest_type->isa_aryptr();
4439         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4440         dest_spec = true;
4441       }
4442     }
4443   }
4444 
4445   if (has_src && has_dest && can_emit_guards) {
4446     BasicType src_elem  = top_src->klass()->as_array_klass()->element_type()->basic_type();
4447     BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4448     if (is_reference_type(src_elem))   src_elem  = T_OBJECT;
4449     if (is_reference_type(dest_elem))  dest_elem = T_OBJECT;
4450 
4451     if (src_elem == dest_elem && src_elem == T_OBJECT) {
4452       // If both arrays are object arrays then having the exact types
4453       // for both will remove the need for a subtype check at runtime
4454       // before the call and may make it possible to pick a faster copy
4455       // routine (without a subtype check on every element)
4456       // Do we have the exact type of src?
4457       bool could_have_src = src_spec;
4458       // Do we have the exact type of dest?
4459       bool could_have_dest = dest_spec;
4460       ciKlass* src_k = top_src->klass();
4461       ciKlass* dest_k = top_dest->klass();
4462       if (!src_spec) {
4463         src_k = src_type->speculative_type_not_null();
4464         if (src_k != NULL && src_k->is_array_klass()) {
4465           could_have_src = true;
4466         }
4467       }
4468       if (!dest_spec) {
4469         dest_k = dest_type->speculative_type_not_null();
4470         if (dest_k != NULL && dest_k->is_array_klass()) {
4471           could_have_dest = true;
4472         }
4473       }
4474       if (could_have_src && could_have_dest) {
4475         // If we can have both exact types, emit the missing guards
4476         if (could_have_src && !src_spec) {
4477           src = maybe_cast_profiled_obj(src, src_k, true);
4478         }
4479         if (could_have_dest && !dest_spec) {
4480           dest = maybe_cast_profiled_obj(dest, dest_k, true);
4481         }
4482       }
4483     }
4484   }
4485 
4486   ciMethod* trap_method = method();
4487   int trap_bci = bci();
4488   if (saved_jvms != NULL) {
4489     trap_method = alloc->jvms()->method();
4490     trap_bci = alloc->jvms()->bci();
4491   }
4492 
4493   bool negative_length_guard_generated = false;
4494 
4495   if (!C->too_many_traps(trap_method, trap_bci, Deoptimization::Reason_intrinsic) &&
4496       can_emit_guards &&
4497       !src->is_top() && !dest->is_top()) {
4498     // validate arguments: enables transformation the ArrayCopyNode
4499     validated = true;
4500 
4501     RegionNode* slow_region = new RegionNode(1);
4502     record_for_igvn(slow_region);
4503 
4504     // (1) src and dest are arrays.
4505     generate_non_array_guard(load_object_klass(src), slow_region);
4506     generate_non_array_guard(load_object_klass(dest), slow_region);
4507 
4508     // (2) src and dest arrays must have elements of the same BasicType
4509     // done at macro expansion or at Ideal transformation time
4510 
4511     // (4) src_offset must not be negative.
4512     generate_negative_guard(src_offset, slow_region);
4513 
4514     // (5) dest_offset must not be negative.
4515     generate_negative_guard(dest_offset, slow_region);
4516 
4517     // (7) src_offset + length must not exceed length of src.
4518     generate_limit_guard(src_offset, length,
4519                          load_array_length(src),
4520                          slow_region);
4521 
4522     // (8) dest_offset + length must not exceed length of dest.
4523     generate_limit_guard(dest_offset, length,
4524                          load_array_length(dest),
4525                          slow_region);
4526 
4527     // (6) length must not be negative.
4528     // This is also checked in generate_arraycopy() during macro expansion, but
4529     // we also have to check it here for the case where the ArrayCopyNode will
4530     // be eliminated by Escape Analysis.
4531     if (EliminateAllocations) {
4532       generate_negative_guard(length, slow_region);
4533       negative_length_guard_generated = true;
4534     }
4535 
4536     // (9) each element of an oop array must be assignable
4537     Node* dest_klass = load_object_klass(dest);
4538     if (src != dest) {
4539       Node* not_subtype_ctrl = gen_subtype_check(src, dest_klass);
4540 
4541       if (not_subtype_ctrl != top()) {
4542         PreserveJVMState pjvms(this);
4543         set_control(not_subtype_ctrl);
4544         uncommon_trap(Deoptimization::Reason_intrinsic,
4545                       Deoptimization::Action_make_not_entrant);
4546         assert(stopped(), "Should be stopped");
4547       }
4548     }
4549     {
4550       PreserveJVMState pjvms(this);
4551       set_control(_gvn.transform(slow_region));
4552       uncommon_trap(Deoptimization::Reason_intrinsic,
4553                     Deoptimization::Action_make_not_entrant);
4554       assert(stopped(), "Should be stopped");
4555     }
4556 
4557     const TypeKlassPtr* dest_klass_t = _gvn.type(dest_klass)->is_klassptr();
4558     const Type *toop = TypeOopPtr::make_from_klass(dest_klass_t->klass());
4559     src = _gvn.transform(new CheckCastPPNode(control(), src, toop));
4560   }
4561 
4562   arraycopy_move_allocation_here(alloc, dest, saved_jvms, saved_reexecute_sp, new_idx);
4563 
4564   if (stopped()) {
4565     return true;
4566   }
4567 
4568   ArrayCopyNode* ac = ArrayCopyNode::make(this, true, src, src_offset, dest, dest_offset, length, alloc != NULL, negative_length_guard_generated,
4569                                           // Create LoadRange and LoadKlass nodes for use during macro expansion here
4570                                           // so the compiler has a chance to eliminate them: during macro expansion,
4571                                           // we have to set their control (CastPP nodes are eliminated).
4572                                           load_object_klass(src), load_object_klass(dest),
4573                                           load_array_length(src), load_array_length(dest));
4574 
4575   ac->set_arraycopy(validated);
4576 
4577   Node* n = _gvn.transform(ac);
4578   if (n == ac) {
4579     ac->connect_outputs(this);
4580   } else {
4581     assert(validated, "shouldn't transform if all arguments not validated");
4582     set_all_memory(n);
4583   }
4584   clear_upper_avx();
4585 
4586 
4587   return true;
4588 }
4589 
4590 
4591 // Helper function which determines if an arraycopy immediately follows
4592 // an allocation, with no intervening tests or other escapes for the object.
4593 AllocateArrayNode*
4594 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
4595                                            RegionNode* slow_region) {
4596   if (stopped())             return NULL;  // no fast path
4597   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
4598 
4599   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
4600   if (alloc == NULL)  return NULL;
4601 
4602   Node* rawmem = memory(Compile::AliasIdxRaw);
4603   // Is the allocation's memory state untouched?
4604   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
4605     // Bail out if there have been raw-memory effects since the allocation.
4606     // (Example:  There might have been a call or safepoint.)
4607     return NULL;
4608   }
4609   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
4610   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
4611     return NULL;
4612   }
4613 
4614   // There must be no unexpected observers of this allocation.
4615   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
4616     Node* obs = ptr->fast_out(i);
4617     if (obs != this->map()) {
4618       return NULL;
4619     }
4620   }
4621 
4622   // This arraycopy must unconditionally follow the allocation of the ptr.
4623   Node* alloc_ctl = ptr->in(0);
4624   Node* ctl = control();
4625   while (ctl != alloc_ctl) {
4626     // There may be guards which feed into the slow_region.
4627     // Any other control flow means that we might not get a chance
4628     // to finish initializing the allocated object.
4629     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
4630       IfNode* iff = ctl->in(0)->as_If();
4631       Node* not_ctl = iff->proj_out_or_null(1 - ctl->as_Proj()->_con);
4632       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
4633       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
4634         ctl = iff->in(0);       // This test feeds the known slow_region.
4635         continue;
4636       }
4637       // One more try:  Various low-level checks bottom out in
4638       // uncommon traps.  If the debug-info of the trap omits
4639       // any reference to the allocation, as we've already
4640       // observed, then there can be no objection to the trap.
4641       bool found_trap = false;
4642       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
4643         Node* obs = not_ctl->fast_out(j);
4644         if (obs->in(0) == not_ctl && obs->is_Call() &&
4645             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
4646           found_trap = true; break;
4647         }
4648       }
4649       if (found_trap) {
4650         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
4651         continue;
4652       }
4653     }
4654     return NULL;
4655   }
4656 
4657   // If we get this far, we have an allocation which immediately
4658   // precedes the arraycopy, and we can take over zeroing the new object.
4659   // The arraycopy will finish the initialization, and provide
4660   // a new control state to which we will anchor the destination pointer.
4661 
4662   return alloc;
4663 }
4664 
4665 //-------------inline_encodeISOArray-----------------------------------
4666 // encode char[] to byte[] in ISO_8859_1
4667 bool LibraryCallKit::inline_encodeISOArray() {
4668   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
4669   // no receiver since it is static method
4670   Node *src         = argument(0);
4671   Node *src_offset  = argument(1);
4672   Node *dst         = argument(2);
4673   Node *dst_offset  = argument(3);
4674   Node *length      = argument(4);
4675 
4676   src = must_be_not_null(src, true);
4677   dst = must_be_not_null(dst, true);
4678 
4679   const Type* src_type = src->Value(&_gvn);
4680   const Type* dst_type = dst->Value(&_gvn);
4681   const TypeAryPtr* top_src = src_type->isa_aryptr();
4682   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
4683   if (top_src  == NULL || top_src->klass()  == NULL ||
4684       top_dest == NULL || top_dest->klass() == NULL) {
4685     // failed array check
4686     return false;
4687   }
4688 
4689   // Figure out the size and type of the elements we will be copying.
4690   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4691   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4692   if (!((src_elem == T_CHAR) || (src_elem== T_BYTE)) || dst_elem != T_BYTE) {
4693     return false;
4694   }
4695 
4696   Node* src_start = array_element_address(src, src_offset, T_CHAR);
4697   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
4698   // 'src_start' points to src array + scaled offset
4699   // 'dst_start' points to dst array + scaled offset
4700 
4701   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
4702   Node* enc = new EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
4703   enc = _gvn.transform(enc);
4704   Node* res_mem = _gvn.transform(new SCMemProjNode(enc));
4705   set_memory(res_mem, mtype);
4706   set_result(enc);
4707   clear_upper_avx();
4708 
4709   return true;
4710 }
4711 
4712 //-------------inline_multiplyToLen-----------------------------------
4713 bool LibraryCallKit::inline_multiplyToLen() {
4714   assert(UseMultiplyToLenIntrinsic, "not implemented on this platform");
4715 
4716   address stubAddr = StubRoutines::multiplyToLen();
4717   if (stubAddr == NULL) {
4718     return false; // Intrinsic's stub is not implemented on this platform
4719   }
4720   const char* stubName = "multiplyToLen";
4721 
4722   assert(callee()->signature()->size() == 5, "multiplyToLen has 5 parameters");
4723 
4724   // no receiver because it is a static method
4725   Node* x    = argument(0);
4726   Node* xlen = argument(1);
4727   Node* y    = argument(2);
4728   Node* ylen = argument(3);
4729   Node* z    = argument(4);
4730 
4731   x = must_be_not_null(x, true);
4732   y = must_be_not_null(y, true);
4733 
4734   const Type* x_type = x->Value(&_gvn);
4735   const Type* y_type = y->Value(&_gvn);
4736   const TypeAryPtr* top_x = x_type->isa_aryptr();
4737   const TypeAryPtr* top_y = y_type->isa_aryptr();
4738   if (top_x  == NULL || top_x->klass()  == NULL ||
4739       top_y == NULL || top_y->klass() == NULL) {
4740     // failed array check
4741     return false;
4742   }
4743 
4744   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4745   BasicType y_elem = y_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4746   if (x_elem != T_INT || y_elem != T_INT) {
4747     return false;
4748   }
4749 
4750   // Set the original stack and the reexecute bit for the interpreter to reexecute
4751   // the bytecode that invokes BigInteger.multiplyToLen() if deoptimization happens
4752   // on the return from z array allocation in runtime.
4753   { PreserveReexecuteState preexecs(this);
4754     jvms()->set_should_reexecute(true);
4755 
4756     Node* x_start = array_element_address(x, intcon(0), x_elem);
4757     Node* y_start = array_element_address(y, intcon(0), y_elem);
4758     // 'x_start' points to x array + scaled xlen
4759     // 'y_start' points to y array + scaled ylen
4760 
4761     // Allocate the result array
4762     Node* zlen = _gvn.transform(new AddINode(xlen, ylen));
4763     ciKlass* klass = ciTypeArrayKlass::make(T_INT);
4764     Node* klass_node = makecon(TypeKlassPtr::make(klass));
4765 
4766     IdealKit ideal(this);
4767 
4768 #define __ ideal.
4769      Node* one = __ ConI(1);
4770      Node* zero = __ ConI(0);
4771      IdealVariable need_alloc(ideal), z_alloc(ideal);  __ declarations_done();
4772      __ set(need_alloc, zero);
4773      __ set(z_alloc, z);
4774      __ if_then(z, BoolTest::eq, null()); {
4775        __ increment (need_alloc, one);
4776      } __ else_(); {
4777        // Update graphKit memory and control from IdealKit.
4778        sync_kit(ideal);
4779        Node *cast = new CastPPNode(z, TypePtr::NOTNULL);
4780        cast->init_req(0, control());
4781        _gvn.set_type(cast, cast->bottom_type());
4782        C->record_for_igvn(cast);
4783 
4784        Node* zlen_arg = load_array_length(cast);
4785        // Update IdealKit memory and control from graphKit.
4786        __ sync_kit(this);
4787        __ if_then(zlen_arg, BoolTest::lt, zlen); {
4788          __ increment (need_alloc, one);
4789        } __ end_if();
4790      } __ end_if();
4791 
4792      __ if_then(__ value(need_alloc), BoolTest::ne, zero); {
4793        // Update graphKit memory and control from IdealKit.
4794        sync_kit(ideal);
4795        Node * narr = new_array(klass_node, zlen, 1);
4796        // Update IdealKit memory and control from graphKit.
4797        __ sync_kit(this);
4798        __ set(z_alloc, narr);
4799      } __ end_if();
4800 
4801      sync_kit(ideal);
4802      z = __ value(z_alloc);
4803      // Can't use TypeAryPtr::INTS which uses Bottom offset.
4804      _gvn.set_type(z, TypeOopPtr::make_from_klass(klass));
4805      // Final sync IdealKit and GraphKit.
4806      final_sync(ideal);
4807 #undef __
4808 
4809     Node* z_start = array_element_address(z, intcon(0), T_INT);
4810 
4811     Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
4812                                    OptoRuntime::multiplyToLen_Type(),
4813                                    stubAddr, stubName, TypePtr::BOTTOM,
4814                                    x_start, xlen, y_start, ylen, z_start, zlen);
4815   } // original reexecute is set back here
4816 
4817   C->set_has_split_ifs(true); // Has chance for split-if optimization
4818   set_result(z);
4819   return true;
4820 }
4821 
4822 //-------------inline_squareToLen------------------------------------
4823 bool LibraryCallKit::inline_squareToLen() {
4824   assert(UseSquareToLenIntrinsic, "not implemented on this platform");
4825 
4826   address stubAddr = StubRoutines::squareToLen();
4827   if (stubAddr == NULL) {
4828     return false; // Intrinsic's stub is not implemented on this platform
4829   }
4830   const char* stubName = "squareToLen";
4831 
4832   assert(callee()->signature()->size() == 4, "implSquareToLen has 4 parameters");
4833 
4834   Node* x    = argument(0);
4835   Node* len  = argument(1);
4836   Node* z    = argument(2);
4837   Node* zlen = argument(3);
4838 
4839   x = must_be_not_null(x, true);
4840   z = must_be_not_null(z, true);
4841 
4842   const Type* x_type = x->Value(&_gvn);
4843   const Type* z_type = z->Value(&_gvn);
4844   const TypeAryPtr* top_x = x_type->isa_aryptr();
4845   const TypeAryPtr* top_z = z_type->isa_aryptr();
4846   if (top_x  == NULL || top_x->klass()  == NULL ||
4847       top_z  == NULL || top_z->klass()  == NULL) {
4848     // failed array check
4849     return false;
4850   }
4851 
4852   BasicType x_elem = x_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4853   BasicType z_elem = z_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4854   if (x_elem != T_INT || z_elem != T_INT) {
4855     return false;
4856   }
4857 
4858 
4859   Node* x_start = array_element_address(x, intcon(0), x_elem);
4860   Node* z_start = array_element_address(z, intcon(0), z_elem);
4861 
4862   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
4863                                   OptoRuntime::squareToLen_Type(),
4864                                   stubAddr, stubName, TypePtr::BOTTOM,
4865                                   x_start, len, z_start, zlen);
4866 
4867   set_result(z);
4868   return true;
4869 }
4870 
4871 //-------------inline_mulAdd------------------------------------------
4872 bool LibraryCallKit::inline_mulAdd() {
4873   assert(UseMulAddIntrinsic, "not implemented on this platform");
4874 
4875   address stubAddr = StubRoutines::mulAdd();
4876   if (stubAddr == NULL) {
4877     return false; // Intrinsic's stub is not implemented on this platform
4878   }
4879   const char* stubName = "mulAdd";
4880 
4881   assert(callee()->signature()->size() == 5, "mulAdd has 5 parameters");
4882 
4883   Node* out      = argument(0);
4884   Node* in       = argument(1);
4885   Node* offset   = argument(2);
4886   Node* len      = argument(3);
4887   Node* k        = argument(4);
4888 
4889   out = must_be_not_null(out, true);
4890 
4891   const Type* out_type = out->Value(&_gvn);
4892   const Type* in_type = in->Value(&_gvn);
4893   const TypeAryPtr* top_out = out_type->isa_aryptr();
4894   const TypeAryPtr* top_in = in_type->isa_aryptr();
4895   if (top_out  == NULL || top_out->klass()  == NULL ||
4896       top_in == NULL || top_in->klass() == NULL) {
4897     // failed array check
4898     return false;
4899   }
4900 
4901   BasicType out_elem = out_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4902   BasicType in_elem = in_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4903   if (out_elem != T_INT || in_elem != T_INT) {
4904     return false;
4905   }
4906 
4907   Node* outlen = load_array_length(out);
4908   Node* new_offset = _gvn.transform(new SubINode(outlen, offset));
4909   Node* out_start = array_element_address(out, intcon(0), out_elem);
4910   Node* in_start = array_element_address(in, intcon(0), in_elem);
4911 
4912   Node*  call = make_runtime_call(RC_LEAF|RC_NO_FP,
4913                                   OptoRuntime::mulAdd_Type(),
4914                                   stubAddr, stubName, TypePtr::BOTTOM,
4915                                   out_start,in_start, new_offset, len, k);
4916   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
4917   set_result(result);
4918   return true;
4919 }
4920 
4921 //-------------inline_montgomeryMultiply-----------------------------------
4922 bool LibraryCallKit::inline_montgomeryMultiply() {
4923   address stubAddr = StubRoutines::montgomeryMultiply();
4924   if (stubAddr == NULL) {
4925     return false; // Intrinsic's stub is not implemented on this platform
4926   }
4927 
4928   assert(UseMontgomeryMultiplyIntrinsic, "not implemented on this platform");
4929   const char* stubName = "montgomery_multiply";
4930 
4931   assert(callee()->signature()->size() == 7, "montgomeryMultiply has 7 parameters");
4932 
4933   Node* a    = argument(0);
4934   Node* b    = argument(1);
4935   Node* n    = argument(2);
4936   Node* len  = argument(3);
4937   Node* inv  = argument(4);
4938   Node* m    = argument(6);
4939 
4940   const Type* a_type = a->Value(&_gvn);
4941   const TypeAryPtr* top_a = a_type->isa_aryptr();
4942   const Type* b_type = b->Value(&_gvn);
4943   const TypeAryPtr* top_b = b_type->isa_aryptr();
4944   const Type* n_type = a->Value(&_gvn);
4945   const TypeAryPtr* top_n = n_type->isa_aryptr();
4946   const Type* m_type = a->Value(&_gvn);
4947   const TypeAryPtr* top_m = m_type->isa_aryptr();
4948   if (top_a  == NULL || top_a->klass()  == NULL ||
4949       top_b == NULL || top_b->klass()  == NULL ||
4950       top_n == NULL || top_n->klass()  == NULL ||
4951       top_m == NULL || top_m->klass()  == NULL) {
4952     // failed array check
4953     return false;
4954   }
4955 
4956   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4957   BasicType b_elem = b_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4958   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4959   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
4960   if (a_elem != T_INT || b_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
4961     return false;
4962   }
4963 
4964   // Make the call
4965   {
4966     Node* a_start = array_element_address(a, intcon(0), a_elem);
4967     Node* b_start = array_element_address(b, intcon(0), b_elem);
4968     Node* n_start = array_element_address(n, intcon(0), n_elem);
4969     Node* m_start = array_element_address(m, intcon(0), m_elem);
4970 
4971     Node* call = make_runtime_call(RC_LEAF,
4972                                    OptoRuntime::montgomeryMultiply_Type(),
4973                                    stubAddr, stubName, TypePtr::BOTTOM,
4974                                    a_start, b_start, n_start, len, inv, top(),
4975                                    m_start);
4976     set_result(m);
4977   }
4978 
4979   return true;
4980 }
4981 
4982 bool LibraryCallKit::inline_montgomerySquare() {
4983   address stubAddr = StubRoutines::montgomerySquare();
4984   if (stubAddr == NULL) {
4985     return false; // Intrinsic's stub is not implemented on this platform
4986   }
4987 
4988   assert(UseMontgomerySquareIntrinsic, "not implemented on this platform");
4989   const char* stubName = "montgomery_square";
4990 
4991   assert(callee()->signature()->size() == 6, "montgomerySquare has 6 parameters");
4992 
4993   Node* a    = argument(0);
4994   Node* n    = argument(1);
4995   Node* len  = argument(2);
4996   Node* inv  = argument(3);
4997   Node* m    = argument(5);
4998 
4999   const Type* a_type = a->Value(&_gvn);
5000   const TypeAryPtr* top_a = a_type->isa_aryptr();
5001   const Type* n_type = a->Value(&_gvn);
5002   const TypeAryPtr* top_n = n_type->isa_aryptr();
5003   const Type* m_type = a->Value(&_gvn);
5004   const TypeAryPtr* top_m = m_type->isa_aryptr();
5005   if (top_a  == NULL || top_a->klass()  == NULL ||
5006       top_n == NULL || top_n->klass()  == NULL ||
5007       top_m == NULL || top_m->klass()  == NULL) {
5008     // failed array check
5009     return false;
5010   }
5011 
5012   BasicType a_elem = a_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5013   BasicType n_elem = n_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5014   BasicType m_elem = m_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5015   if (a_elem != T_INT || n_elem != T_INT || m_elem != T_INT) {
5016     return false;
5017   }
5018 
5019   // Make the call
5020   {
5021     Node* a_start = array_element_address(a, intcon(0), a_elem);
5022     Node* n_start = array_element_address(n, intcon(0), n_elem);
5023     Node* m_start = array_element_address(m, intcon(0), m_elem);
5024 
5025     Node* call = make_runtime_call(RC_LEAF,
5026                                    OptoRuntime::montgomerySquare_Type(),
5027                                    stubAddr, stubName, TypePtr::BOTTOM,
5028                                    a_start, n_start, len, inv, top(),
5029                                    m_start);
5030     set_result(m);
5031   }
5032 
5033   return true;
5034 }
5035 
5036 bool LibraryCallKit::inline_bigIntegerShift(bool isRightShift) {
5037   address stubAddr = NULL;
5038   const char* stubName = NULL;
5039 
5040   stubAddr = isRightShift? StubRoutines::bigIntegerRightShift(): StubRoutines::bigIntegerLeftShift();
5041   if (stubAddr == NULL) {
5042     return false; // Intrinsic's stub is not implemented on this platform
5043   }
5044 
5045   stubName = isRightShift? "bigIntegerRightShiftWorker" : "bigIntegerLeftShiftWorker";
5046 
5047   assert(callee()->signature()->size() == 5, "expected 5 arguments");
5048 
5049   Node* newArr = argument(0);
5050   Node* oldArr = argument(1);
5051   Node* newIdx = argument(2);
5052   Node* shiftCount = argument(3);
5053   Node* numIter = argument(4);
5054 
5055   const Type* newArr_type = newArr->Value(&_gvn);
5056   const TypeAryPtr* top_newArr = newArr_type->isa_aryptr();
5057   const Type* oldArr_type = oldArr->Value(&_gvn);
5058   const TypeAryPtr* top_oldArr = oldArr_type->isa_aryptr();
5059   if (top_newArr == NULL || top_newArr->klass() == NULL || top_oldArr == NULL
5060       || top_oldArr->klass() == NULL) {
5061     return false;
5062   }
5063 
5064   BasicType newArr_elem = newArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5065   BasicType oldArr_elem = oldArr_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5066   if (newArr_elem != T_INT || oldArr_elem != T_INT) {
5067     return false;
5068   }
5069 
5070   // Make the call
5071   {
5072     Node* newArr_start = array_element_address(newArr, intcon(0), newArr_elem);
5073     Node* oldArr_start = array_element_address(oldArr, intcon(0), oldArr_elem);
5074 
5075     Node* call = make_runtime_call(RC_LEAF,
5076                                    OptoRuntime::bigIntegerShift_Type(),
5077                                    stubAddr,
5078                                    stubName,
5079                                    TypePtr::BOTTOM,
5080                                    newArr_start,
5081                                    oldArr_start,
5082                                    newIdx,
5083                                    shiftCount,
5084                                    numIter);
5085   }
5086 
5087   return true;
5088 }
5089 
5090 //-------------inline_vectorizedMismatch------------------------------
5091 bool LibraryCallKit::inline_vectorizedMismatch() {
5092   assert(UseVectorizedMismatchIntrinsic, "not implementated on this platform");
5093 
5094   address stubAddr = StubRoutines::vectorizedMismatch();
5095   if (stubAddr == NULL) {
5096     return false; // Intrinsic's stub is not implemented on this platform
5097   }
5098   const char* stubName = "vectorizedMismatch";
5099   int size_l = callee()->signature()->size();
5100   assert(callee()->signature()->size() == 8, "vectorizedMismatch has 6 parameters");
5101 
5102   Node* obja = argument(0);
5103   Node* aoffset = argument(1);
5104   Node* objb = argument(3);
5105   Node* boffset = argument(4);
5106   Node* length = argument(6);
5107   Node* scale = argument(7);
5108 
5109   const Type* a_type = obja->Value(&_gvn);
5110   const Type* b_type = objb->Value(&_gvn);
5111   const TypeAryPtr* top_a = a_type->isa_aryptr();
5112   const TypeAryPtr* top_b = b_type->isa_aryptr();
5113   if (top_a == NULL || top_a->klass() == NULL ||
5114     top_b == NULL || top_b->klass() == NULL) {
5115     // failed array check
5116     return false;
5117   }
5118 
5119   Node* call;
5120   jvms()->set_should_reexecute(true);
5121 
5122   Node* obja_adr = make_unsafe_address(obja, aoffset, ACCESS_READ);
5123   Node* objb_adr = make_unsafe_address(objb, boffset, ACCESS_READ);
5124 
5125   call = make_runtime_call(RC_LEAF,
5126     OptoRuntime::vectorizedMismatch_Type(),
5127     stubAddr, stubName, TypePtr::BOTTOM,
5128     obja_adr, objb_adr, length, scale);
5129 
5130   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5131   set_result(result);
5132   return true;
5133 }
5134 
5135 /**
5136  * Calculate CRC32 for byte.
5137  * int java.util.zip.CRC32.update(int crc, int b)
5138  */
5139 bool LibraryCallKit::inline_updateCRC32() {
5140   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5141   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5142   // no receiver since it is static method
5143   Node* crc  = argument(0); // type: int
5144   Node* b    = argument(1); // type: int
5145 
5146   /*
5147    *    int c = ~ crc;
5148    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5149    *    b = b ^ (c >>> 8);
5150    *    crc = ~b;
5151    */
5152 
5153   Node* M1 = intcon(-1);
5154   crc = _gvn.transform(new XorINode(crc, M1));
5155   Node* result = _gvn.transform(new XorINode(crc, b));
5156   result = _gvn.transform(new AndINode(result, intcon(0xFF)));
5157 
5158   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5159   Node* offset = _gvn.transform(new LShiftINode(result, intcon(0x2)));
5160   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5161   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5162 
5163   crc = _gvn.transform(new URShiftINode(crc, intcon(8)));
5164   result = _gvn.transform(new XorINode(crc, result));
5165   result = _gvn.transform(new XorINode(result, M1));
5166   set_result(result);
5167   return true;
5168 }
5169 
5170 /**
5171  * Calculate CRC32 for byte[] array.
5172  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5173  */
5174 bool LibraryCallKit::inline_updateBytesCRC32() {
5175   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5176   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5177   // no receiver since it is static method
5178   Node* crc     = argument(0); // type: int
5179   Node* src     = argument(1); // type: oop
5180   Node* offset  = argument(2); // type: int
5181   Node* length  = argument(3); // type: int
5182 
5183   const Type* src_type = src->Value(&_gvn);
5184   const TypeAryPtr* top_src = src_type->isa_aryptr();
5185   if (top_src  == NULL || top_src->klass()  == NULL) {
5186     // failed array check
5187     return false;
5188   }
5189 
5190   // Figure out the size and type of the elements we will be copying.
5191   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5192   if (src_elem != T_BYTE) {
5193     return false;
5194   }
5195 
5196   // 'src_start' points to src array + scaled offset
5197   src = must_be_not_null(src, true);
5198   Node* src_start = array_element_address(src, offset, src_elem);
5199 
5200   // We assume that range check is done by caller.
5201   // TODO: generate range check (offset+length < src.length) in debug VM.
5202 
5203   // Call the stub.
5204   address stubAddr = StubRoutines::updateBytesCRC32();
5205   const char *stubName = "updateBytesCRC32";
5206 
5207   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5208                                  stubAddr, stubName, TypePtr::BOTTOM,
5209                                  crc, src_start, length);
5210   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5211   set_result(result);
5212   return true;
5213 }
5214 
5215 /**
5216  * Calculate CRC32 for ByteBuffer.
5217  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5218  */
5219 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5220   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5221   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5222   // no receiver since it is static method
5223   Node* crc     = argument(0); // type: int
5224   Node* src     = argument(1); // type: long
5225   Node* offset  = argument(3); // type: int
5226   Node* length  = argument(4); // type: int
5227 
5228   src = ConvL2X(src);  // adjust Java long to machine word
5229   Node* base = _gvn.transform(new CastX2PNode(src));
5230   offset = ConvI2X(offset);
5231 
5232   // 'src_start' points to src array + scaled offset
5233   Node* src_start = basic_plus_adr(top(), base, offset);
5234 
5235   // Call the stub.
5236   address stubAddr = StubRoutines::updateBytesCRC32();
5237   const char *stubName = "updateBytesCRC32";
5238 
5239   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5240                                  stubAddr, stubName, TypePtr::BOTTOM,
5241                                  crc, src_start, length);
5242   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5243   set_result(result);
5244   return true;
5245 }
5246 
5247 //------------------------------get_table_from_crc32c_class-----------------------
5248 Node * LibraryCallKit::get_table_from_crc32c_class(ciInstanceKlass *crc32c_class) {
5249   Node* table = load_field_from_object(NULL, "byteTable", "[I", /*is_exact*/ false, /*is_static*/ true, crc32c_class);
5250   assert (table != NULL, "wrong version of java.util.zip.CRC32C");
5251 
5252   return table;
5253 }
5254 
5255 //------------------------------inline_updateBytesCRC32C-----------------------
5256 //
5257 // Calculate CRC32C for byte[] array.
5258 // int java.util.zip.CRC32C.updateBytes(int crc, byte[] buf, int off, int end)
5259 //
5260 bool LibraryCallKit::inline_updateBytesCRC32C() {
5261   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5262   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5263   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5264   // no receiver since it is a static method
5265   Node* crc     = argument(0); // type: int
5266   Node* src     = argument(1); // type: oop
5267   Node* offset  = argument(2); // type: int
5268   Node* end     = argument(3); // type: int
5269 
5270   Node* length = _gvn.transform(new SubINode(end, offset));
5271 
5272   const Type* src_type = src->Value(&_gvn);
5273   const TypeAryPtr* top_src = src_type->isa_aryptr();
5274   if (top_src  == NULL || top_src->klass()  == NULL) {
5275     // failed array check
5276     return false;
5277   }
5278 
5279   // Figure out the size and type of the elements we will be copying.
5280   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5281   if (src_elem != T_BYTE) {
5282     return false;
5283   }
5284 
5285   // 'src_start' points to src array + scaled offset
5286   src = must_be_not_null(src, true);
5287   Node* src_start = array_element_address(src, offset, src_elem);
5288 
5289   // static final int[] byteTable in class CRC32C
5290   Node* table = get_table_from_crc32c_class(callee()->holder());
5291   table = must_be_not_null(table, true);
5292   Node* table_start = array_element_address(table, intcon(0), T_INT);
5293 
5294   // We assume that range check is done by caller.
5295   // TODO: generate range check (offset+length < src.length) in debug VM.
5296 
5297   // Call the stub.
5298   address stubAddr = StubRoutines::updateBytesCRC32C();
5299   const char *stubName = "updateBytesCRC32C";
5300 
5301   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5302                                  stubAddr, stubName, TypePtr::BOTTOM,
5303                                  crc, src_start, length, table_start);
5304   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5305   set_result(result);
5306   return true;
5307 }
5308 
5309 //------------------------------inline_updateDirectByteBufferCRC32C-----------------------
5310 //
5311 // Calculate CRC32C for DirectByteBuffer.
5312 // int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
5313 //
5314 bool LibraryCallKit::inline_updateDirectByteBufferCRC32C() {
5315   assert(UseCRC32CIntrinsics, "need CRC32C instruction support");
5316   assert(callee()->signature()->size() == 5, "updateDirectByteBuffer has 4 parameters and one is long");
5317   assert(callee()->holder()->is_loaded(), "CRC32C class must be loaded");
5318   // no receiver since it is a static method
5319   Node* crc     = argument(0); // type: int
5320   Node* src     = argument(1); // type: long
5321   Node* offset  = argument(3); // type: int
5322   Node* end     = argument(4); // type: int
5323 
5324   Node* length = _gvn.transform(new SubINode(end, offset));
5325 
5326   src = ConvL2X(src);  // adjust Java long to machine word
5327   Node* base = _gvn.transform(new CastX2PNode(src));
5328   offset = ConvI2X(offset);
5329 
5330   // 'src_start' points to src array + scaled offset
5331   Node* src_start = basic_plus_adr(top(), base, offset);
5332 
5333   // static final int[] byteTable in class CRC32C
5334   Node* table = get_table_from_crc32c_class(callee()->holder());
5335   table = must_be_not_null(table, true);
5336   Node* table_start = array_element_address(table, intcon(0), T_INT);
5337 
5338   // Call the stub.
5339   address stubAddr = StubRoutines::updateBytesCRC32C();
5340   const char *stubName = "updateBytesCRC32C";
5341 
5342   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesCRC32C_Type(),
5343                                  stubAddr, stubName, TypePtr::BOTTOM,
5344                                  crc, src_start, length, table_start);
5345   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5346   set_result(result);
5347   return true;
5348 }
5349 
5350 //------------------------------inline_updateBytesAdler32----------------------
5351 //
5352 // Calculate Adler32 checksum for byte[] array.
5353 // int java.util.zip.Adler32.updateBytes(int crc, byte[] buf, int off, int len)
5354 //
5355 bool LibraryCallKit::inline_updateBytesAdler32() {
5356   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5357   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5358   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5359   // no receiver since it is static method
5360   Node* crc     = argument(0); // type: int
5361   Node* src     = argument(1); // type: oop
5362   Node* offset  = argument(2); // type: int
5363   Node* length  = argument(3); // type: int
5364 
5365   const Type* src_type = src->Value(&_gvn);
5366   const TypeAryPtr* top_src = src_type->isa_aryptr();
5367   if (top_src  == NULL || top_src->klass()  == NULL) {
5368     // failed array check
5369     return false;
5370   }
5371 
5372   // Figure out the size and type of the elements we will be copying.
5373   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5374   if (src_elem != T_BYTE) {
5375     return false;
5376   }
5377 
5378   // 'src_start' points to src array + scaled offset
5379   Node* src_start = array_element_address(src, offset, src_elem);
5380 
5381   // We assume that range check is done by caller.
5382   // TODO: generate range check (offset+length < src.length) in debug VM.
5383 
5384   // Call the stub.
5385   address stubAddr = StubRoutines::updateBytesAdler32();
5386   const char *stubName = "updateBytesAdler32";
5387 
5388   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5389                                  stubAddr, stubName, TypePtr::BOTTOM,
5390                                  crc, src_start, length);
5391   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5392   set_result(result);
5393   return true;
5394 }
5395 
5396 //------------------------------inline_updateByteBufferAdler32---------------
5397 //
5398 // Calculate Adler32 checksum for DirectByteBuffer.
5399 // int java.util.zip.Adler32.updateByteBuffer(int crc, long buf, int off, int len)
5400 //
5401 bool LibraryCallKit::inline_updateByteBufferAdler32() {
5402   assert(UseAdler32Intrinsics, "Adler32 Instrinsic support need"); // check if we actually need to check this flag or check a different one
5403   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5404   assert(callee()->holder()->is_loaded(), "Adler32 class must be loaded");
5405   // no receiver since it is static method
5406   Node* crc     = argument(0); // type: int
5407   Node* src     = argument(1); // type: long
5408   Node* offset  = argument(3); // type: int
5409   Node* length  = argument(4); // type: int
5410 
5411   src = ConvL2X(src);  // adjust Java long to machine word
5412   Node* base = _gvn.transform(new CastX2PNode(src));
5413   offset = ConvI2X(offset);
5414 
5415   // 'src_start' points to src array + scaled offset
5416   Node* src_start = basic_plus_adr(top(), base, offset);
5417 
5418   // Call the stub.
5419   address stubAddr = StubRoutines::updateBytesAdler32();
5420   const char *stubName = "updateBytesAdler32";
5421 
5422   Node* call = make_runtime_call(RC_LEAF, OptoRuntime::updateBytesAdler32_Type(),
5423                                  stubAddr, stubName, TypePtr::BOTTOM,
5424                                  crc, src_start, length);
5425 
5426   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
5427   set_result(result);
5428   return true;
5429 }
5430 
5431 //----------------------------inline_reference_get----------------------------
5432 // public T java.lang.ref.Reference.get();
5433 bool LibraryCallKit::inline_reference_get() {
5434   const int referent_offset = java_lang_ref_Reference::referent_offset;
5435   guarantee(referent_offset > 0, "should have already been set");
5436 
5437   // Get the argument:
5438   Node* reference_obj = null_check_receiver();
5439   if (stopped()) return true;
5440 
5441   const TypeInstPtr* tinst = _gvn.type(reference_obj)->isa_instptr();
5442   assert(tinst != NULL, "obj is null");
5443   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5444   ciInstanceKlass* referenceKlass = tinst->klass()->as_instance_klass();
5445   ciField* field = referenceKlass->get_field_by_name(ciSymbol::make("referent"),
5446                                                      ciSymbol::make("Ljava/lang/Object;"),
5447                                                      false);
5448   assert (field != NULL, "undefined field");
5449 
5450   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5451   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5452 
5453   ciInstanceKlass* klass = env()->Object_klass();
5454   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5455 
5456   DecoratorSet decorators = IN_HEAP | ON_WEAK_OOP_REF;
5457   Node* result = access_load_at(reference_obj, adr, adr_type, object_type, T_OBJECT, decorators);
5458   // Add memory barrier to prevent commoning reads from this field
5459   // across safepoint since GC can change its value.
5460   insert_mem_bar(Op_MemBarCPUOrder);
5461 
5462   set_result(result);
5463   return true;
5464 }
5465 
5466 
5467 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5468                                               bool is_exact=true, bool is_static=false,
5469                                               ciInstanceKlass * fromKls=NULL) {
5470   if (fromKls == NULL) {
5471     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5472     assert(tinst != NULL, "obj is null");
5473     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5474     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5475     fromKls = tinst->klass()->as_instance_klass();
5476   } else {
5477     assert(is_static, "only for static field access");
5478   }
5479   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5480                                               ciSymbol::make(fieldTypeString),
5481                                               is_static);
5482 
5483   assert (field != NULL, "undefined field");
5484   if (field == NULL) return (Node *) NULL;
5485 
5486   if (is_static) {
5487     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5488     fromObj = makecon(tip);
5489   }
5490 
5491   // Next code  copied from Parse::do_get_xxx():
5492 
5493   // Compute address and memory type.
5494   int offset  = field->offset_in_bytes();
5495   bool is_vol = field->is_volatile();
5496   ciType* field_klass = field->type();
5497   assert(field_klass->is_loaded(), "should be loaded");
5498   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5499   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5500   BasicType bt = field->layout_type();
5501 
5502   // Build the resultant type of the load
5503   const Type *type;
5504   if (bt == T_OBJECT) {
5505     type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5506   } else {
5507     type = Type::get_const_basic_type(bt);
5508   }
5509 
5510   DecoratorSet decorators = IN_HEAP;
5511 
5512   if (is_vol) {
5513     decorators |= MO_SEQ_CST;
5514   }
5515 
5516   return access_load_at(fromObj, adr, adr_type, type, bt, decorators);
5517 }
5518 
5519 Node * LibraryCallKit::field_address_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5520                                                  bool is_exact = true, bool is_static = false,
5521                                                  ciInstanceKlass * fromKls = NULL) {
5522   if (fromKls == NULL) {
5523     const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5524     assert(tinst != NULL, "obj is null");
5525     assert(tinst->klass()->is_loaded(), "obj is not loaded");
5526     assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5527     fromKls = tinst->klass()->as_instance_klass();
5528   }
5529   else {
5530     assert(is_static, "only for static field access");
5531   }
5532   ciField* field = fromKls->get_field_by_name(ciSymbol::make(fieldName),
5533     ciSymbol::make(fieldTypeString),
5534     is_static);
5535 
5536   assert(field != NULL, "undefined field");
5537   assert(!field->is_volatile(), "not defined for volatile fields");
5538 
5539   if (is_static) {
5540     const TypeInstPtr* tip = TypeInstPtr::make(fromKls->java_mirror());
5541     fromObj = makecon(tip);
5542   }
5543 
5544   // Next code  copied from Parse::do_get_xxx():
5545 
5546   // Compute address and memory type.
5547   int offset = field->offset_in_bytes();
5548   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5549 
5550   return adr;
5551 }
5552 
5553 //------------------------------inline_aescrypt_Block-----------------------
5554 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5555   address stubAddr = NULL;
5556   const char *stubName;
5557   assert(UseAES, "need AES instruction support");
5558 
5559   switch(id) {
5560   case vmIntrinsics::_aescrypt_encryptBlock:
5561     stubAddr = StubRoutines::aescrypt_encryptBlock();
5562     stubName = "aescrypt_encryptBlock";
5563     break;
5564   case vmIntrinsics::_aescrypt_decryptBlock:
5565     stubAddr = StubRoutines::aescrypt_decryptBlock();
5566     stubName = "aescrypt_decryptBlock";
5567     break;
5568   default:
5569     break;
5570   }
5571   if (stubAddr == NULL) return false;
5572 
5573   Node* aescrypt_object = argument(0);
5574   Node* src             = argument(1);
5575   Node* src_offset      = argument(2);
5576   Node* dest            = argument(3);
5577   Node* dest_offset     = argument(4);
5578 
5579   src = must_be_not_null(src, true);
5580   dest = must_be_not_null(dest, true);
5581 
5582   // (1) src and dest are arrays.
5583   const Type* src_type = src->Value(&_gvn);
5584   const Type* dest_type = dest->Value(&_gvn);
5585   const TypeAryPtr* top_src = src_type->isa_aryptr();
5586   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5587   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5588 
5589   // for the quick and dirty code we will skip all the checks.
5590   // we are just trying to get the call to be generated.
5591   Node* src_start  = src;
5592   Node* dest_start = dest;
5593   if (src_offset != NULL || dest_offset != NULL) {
5594     assert(src_offset != NULL && dest_offset != NULL, "");
5595     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5596     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5597   }
5598 
5599   // now need to get the start of its expanded key array
5600   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5601   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5602   if (k_start == NULL) return false;
5603 
5604   if (Matcher::pass_original_key_for_aes()) {
5605     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5606     // compatibility issues between Java key expansion and SPARC crypto instructions
5607     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5608     if (original_k_start == NULL) return false;
5609 
5610     // Call the stub.
5611     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5612                       stubAddr, stubName, TypePtr::BOTTOM,
5613                       src_start, dest_start, k_start, original_k_start);
5614   } else {
5615     // Call the stub.
5616     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5617                       stubAddr, stubName, TypePtr::BOTTOM,
5618                       src_start, dest_start, k_start);
5619   }
5620 
5621   return true;
5622 }
5623 
5624 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5625 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5626   address stubAddr = NULL;
5627   const char *stubName = NULL;
5628 
5629   assert(UseAES, "need AES instruction support");
5630 
5631   switch(id) {
5632   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5633     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5634     stubName = "cipherBlockChaining_encryptAESCrypt";
5635     break;
5636   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5637     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5638     stubName = "cipherBlockChaining_decryptAESCrypt";
5639     break;
5640   default:
5641     break;
5642   }
5643   if (stubAddr == NULL) return false;
5644 
5645   Node* cipherBlockChaining_object = argument(0);
5646   Node* src                        = argument(1);
5647   Node* src_offset                 = argument(2);
5648   Node* len                        = argument(3);
5649   Node* dest                       = argument(4);
5650   Node* dest_offset                = argument(5);
5651 
5652   src = must_be_not_null(src, false);
5653   dest = must_be_not_null(dest, false);
5654 
5655   // (1) src and dest are arrays.
5656   const Type* src_type = src->Value(&_gvn);
5657   const Type* dest_type = dest->Value(&_gvn);
5658   const TypeAryPtr* top_src = src_type->isa_aryptr();
5659   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5660   assert (top_src  != NULL && top_src->klass()  != NULL
5661           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5662 
5663   // checks are the responsibility of the caller
5664   Node* src_start  = src;
5665   Node* dest_start = dest;
5666   if (src_offset != NULL || dest_offset != NULL) {
5667     assert(src_offset != NULL && dest_offset != NULL, "");
5668     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5669     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5670   }
5671 
5672   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5673   // (because of the predicated logic executed earlier).
5674   // so we cast it here safely.
5675   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5676 
5677   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5678   if (embeddedCipherObj == NULL) return false;
5679 
5680   // cast it to what we know it will be at runtime
5681   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5682   assert(tinst != NULL, "CBC obj is null");
5683   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5684   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5685   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5686 
5687   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5688   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5689   const TypeOopPtr* xtype = aklass->as_instance_type();
5690   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5691   aescrypt_object = _gvn.transform(aescrypt_object);
5692 
5693   // we need to get the start of the aescrypt_object's expanded key array
5694   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5695   if (k_start == NULL) return false;
5696 
5697   // similarly, get the start address of the r vector
5698   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5699   if (objRvec == NULL) return false;
5700   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5701 
5702   Node* cbcCrypt;
5703   if (Matcher::pass_original_key_for_aes()) {
5704     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5705     // compatibility issues between Java key expansion and SPARC crypto instructions
5706     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5707     if (original_k_start == NULL) return false;
5708 
5709     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
5710     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5711                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5712                                  stubAddr, stubName, TypePtr::BOTTOM,
5713                                  src_start, dest_start, k_start, r_start, len, original_k_start);
5714   } else {
5715     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5716     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5717                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5718                                  stubAddr, stubName, TypePtr::BOTTOM,
5719                                  src_start, dest_start, k_start, r_start, len);
5720   }
5721 
5722   // return cipher length (int)
5723   Node* retvalue = _gvn.transform(new ProjNode(cbcCrypt, TypeFunc::Parms));
5724   set_result(retvalue);
5725   return true;
5726 }
5727 
5728 //------------------------------inline_electronicCodeBook_AESCrypt-----------------------
5729 bool LibraryCallKit::inline_electronicCodeBook_AESCrypt(vmIntrinsics::ID id) {
5730   address stubAddr = NULL;
5731   const char *stubName = NULL;
5732 
5733   assert(UseAES, "need AES instruction support");
5734 
5735   switch (id) {
5736   case vmIntrinsics::_electronicCodeBook_encryptAESCrypt:
5737     stubAddr = StubRoutines::electronicCodeBook_encryptAESCrypt();
5738     stubName = "electronicCodeBook_encryptAESCrypt";
5739     break;
5740   case vmIntrinsics::_electronicCodeBook_decryptAESCrypt:
5741     stubAddr = StubRoutines::electronicCodeBook_decryptAESCrypt();
5742     stubName = "electronicCodeBook_decryptAESCrypt";
5743     break;
5744   default:
5745     break;
5746   }
5747 
5748   if (stubAddr == NULL) return false;
5749 
5750   Node* electronicCodeBook_object = argument(0);
5751   Node* src                       = argument(1);
5752   Node* src_offset                = argument(2);
5753   Node* len                       = argument(3);
5754   Node* dest                      = argument(4);
5755   Node* dest_offset               = argument(5);
5756 
5757   // (1) src and dest are arrays.
5758   const Type* src_type = src->Value(&_gvn);
5759   const Type* dest_type = dest->Value(&_gvn);
5760   const TypeAryPtr* top_src = src_type->isa_aryptr();
5761   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5762   assert(top_src != NULL && top_src->klass() != NULL
5763          &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5764 
5765   // checks are the responsibility of the caller
5766   Node* src_start = src;
5767   Node* dest_start = dest;
5768   if (src_offset != NULL || dest_offset != NULL) {
5769     assert(src_offset != NULL && dest_offset != NULL, "");
5770     src_start = array_element_address(src, src_offset, T_BYTE);
5771     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5772   }
5773 
5774   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5775   // (because of the predicated logic executed earlier).
5776   // so we cast it here safely.
5777   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5778 
5779   Node* embeddedCipherObj = load_field_from_object(electronicCodeBook_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5780   if (embeddedCipherObj == NULL) return false;
5781 
5782   // cast it to what we know it will be at runtime
5783   const TypeInstPtr* tinst = _gvn.type(electronicCodeBook_object)->isa_instptr();
5784   assert(tinst != NULL, "ECB obj is null");
5785   assert(tinst->klass()->is_loaded(), "ECB obj is not loaded");
5786   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5787   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5788 
5789   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5790   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5791   const TypeOopPtr* xtype = aklass->as_instance_type();
5792   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5793   aescrypt_object = _gvn.transform(aescrypt_object);
5794 
5795   // we need to get the start of the aescrypt_object's expanded key array
5796   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5797   if (k_start == NULL) return false;
5798 
5799   Node* ecbCrypt;
5800   if (Matcher::pass_original_key_for_aes()) {
5801     // no SPARC version for AES/ECB intrinsics now.
5802     return false;
5803   }
5804   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5805   ecbCrypt = make_runtime_call(RC_LEAF | RC_NO_FP,
5806                                OptoRuntime::electronicCodeBook_aescrypt_Type(),
5807                                stubAddr, stubName, TypePtr::BOTTOM,
5808                                src_start, dest_start, k_start, len);
5809 
5810   // return cipher length (int)
5811   Node* retvalue = _gvn.transform(new ProjNode(ecbCrypt, TypeFunc::Parms));
5812   set_result(retvalue);
5813   return true;
5814 }
5815 
5816 //------------------------------inline_counterMode_AESCrypt-----------------------
5817 bool LibraryCallKit::inline_counterMode_AESCrypt(vmIntrinsics::ID id) {
5818   assert(UseAES, "need AES instruction support");
5819   if (!UseAESCTRIntrinsics) return false;
5820 
5821   address stubAddr = NULL;
5822   const char *stubName = NULL;
5823   if (id == vmIntrinsics::_counterMode_AESCrypt) {
5824     stubAddr = StubRoutines::counterMode_AESCrypt();
5825     stubName = "counterMode_AESCrypt";
5826   }
5827   if (stubAddr == NULL) return false;
5828 
5829   Node* counterMode_object = argument(0);
5830   Node* src = argument(1);
5831   Node* src_offset = argument(2);
5832   Node* len = argument(3);
5833   Node* dest = argument(4);
5834   Node* dest_offset = argument(5);
5835 
5836   // (1) src and dest are arrays.
5837   const Type* src_type = src->Value(&_gvn);
5838   const Type* dest_type = dest->Value(&_gvn);
5839   const TypeAryPtr* top_src = src_type->isa_aryptr();
5840   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5841   assert(top_src != NULL && top_src->klass() != NULL &&
5842          top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5843 
5844   // checks are the responsibility of the caller
5845   Node* src_start = src;
5846   Node* dest_start = dest;
5847   if (src_offset != NULL || dest_offset != NULL) {
5848     assert(src_offset != NULL && dest_offset != NULL, "");
5849     src_start = array_element_address(src, src_offset, T_BYTE);
5850     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5851   }
5852 
5853   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5854   // (because of the predicated logic executed earlier).
5855   // so we cast it here safely.
5856   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5857   Node* embeddedCipherObj = load_field_from_object(counterMode_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5858   if (embeddedCipherObj == NULL) return false;
5859   // cast it to what we know it will be at runtime
5860   const TypeInstPtr* tinst = _gvn.type(counterMode_object)->isa_instptr();
5861   assert(tinst != NULL, "CTR obj is null");
5862   assert(tinst->klass()->is_loaded(), "CTR obj is not loaded");
5863   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5864   assert(klass_AESCrypt->is_loaded(), "predicate checks that this class is loaded");
5865   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5866   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5867   const TypeOopPtr* xtype = aklass->as_instance_type();
5868   Node* aescrypt_object = new CheckCastPPNode(control(), embeddedCipherObj, xtype);
5869   aescrypt_object = _gvn.transform(aescrypt_object);
5870   // we need to get the start of the aescrypt_object's expanded key array
5871   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5872   if (k_start == NULL) return false;
5873   // similarly, get the start address of the r vector
5874   Node* obj_counter = load_field_from_object(counterMode_object, "counter", "[B", /*is_exact*/ false);
5875   if (obj_counter == NULL) return false;
5876   Node* cnt_start = array_element_address(obj_counter, intcon(0), T_BYTE);
5877 
5878   Node* saved_encCounter = load_field_from_object(counterMode_object, "encryptedCounter", "[B", /*is_exact*/ false);
5879   if (saved_encCounter == NULL) return false;
5880   Node* saved_encCounter_start = array_element_address(saved_encCounter, intcon(0), T_BYTE);
5881   Node* used = field_address_from_object(counterMode_object, "used", "I", /*is_exact*/ false);
5882 
5883   Node* ctrCrypt;
5884   if (Matcher::pass_original_key_for_aes()) {
5885     // no SPARC version for AES/CTR intrinsics now.
5886     return false;
5887   }
5888   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5889   ctrCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
5890                                OptoRuntime::counterMode_aescrypt_Type(),
5891                                stubAddr, stubName, TypePtr::BOTTOM,
5892                                src_start, dest_start, k_start, cnt_start, len, saved_encCounter_start, used);
5893 
5894   // return cipher length (int)
5895   Node* retvalue = _gvn.transform(new ProjNode(ctrCrypt, TypeFunc::Parms));
5896   set_result(retvalue);
5897   return true;
5898 }
5899 
5900 //------------------------------get_key_start_from_aescrypt_object-----------------------
5901 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5902 #if defined(PPC64) || defined(S390)
5903   // MixColumns for decryption can be reduced by preprocessing MixColumns with round keys.
5904   // Intel's extention is based on this optimization and AESCrypt generates round keys by preprocessing MixColumns.
5905   // However, ppc64 vncipher processes MixColumns and requires the same round keys with encryption.
5906   // The ppc64 stubs of encryption and decryption use the same round keys (sessionK[0]).
5907   Node* objSessionK = load_field_from_object(aescrypt_object, "sessionK", "[[I", /*is_exact*/ false);
5908   assert (objSessionK != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5909   if (objSessionK == NULL) {
5910     return (Node *) NULL;
5911   }
5912   Node* objAESCryptKey = load_array_element(control(), objSessionK, intcon(0), TypeAryPtr::OOPS);
5913 #else
5914   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5915 #endif // PPC64
5916   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5917   if (objAESCryptKey == NULL) return (Node *) NULL;
5918 
5919   // now have the array, need to get the start address of the K array
5920   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5921   return k_start;
5922 }
5923 
5924 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
5925 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
5926   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
5927   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5928   if (objAESCryptKey == NULL) return (Node *) NULL;
5929 
5930   // now have the array, need to get the start address of the lastKey array
5931   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
5932   return original_k_start;
5933 }
5934 
5935 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5936 // Return node representing slow path of predicate check.
5937 // the pseudo code we want to emulate with this predicate is:
5938 // for encryption:
5939 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5940 // for decryption:
5941 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5942 //    note cipher==plain is more conservative than the original java code but that's OK
5943 //
5944 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5945   // The receiver was checked for NULL already.
5946   Node* objCBC = argument(0);
5947 
5948   Node* src = argument(1);
5949   Node* dest = argument(4);
5950 
5951   // Load embeddedCipher field of CipherBlockChaining object.
5952   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5953 
5954   // get AESCrypt klass for instanceOf check
5955   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5956   // will have same classloader as CipherBlockChaining object
5957   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5958   assert(tinst != NULL, "CBCobj is null");
5959   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5960 
5961   // we want to do an instanceof comparison against the AESCrypt class
5962   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5963   if (!klass_AESCrypt->is_loaded()) {
5964     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5965     Node* ctrl = control();
5966     set_control(top()); // no regular fast path
5967     return ctrl;
5968   }
5969 
5970   src = must_be_not_null(src, true);
5971   dest = must_be_not_null(dest, true);
5972 
5973   // Resolve oops to stable for CmpP below.
5974   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5975 
5976   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5977   Node* cmp_instof  = _gvn.transform(new CmpINode(instof, intcon(1)));
5978   Node* bool_instof  = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
5979 
5980   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5981 
5982   // for encryption, we are done
5983   if (!decrypting)
5984     return instof_false;  // even if it is NULL
5985 
5986   // for decryption, we need to add a further check to avoid
5987   // taking the intrinsic path when cipher and plain are the same
5988   // see the original java code for why.
5989   RegionNode* region = new RegionNode(3);
5990   region->init_req(1, instof_false);
5991 
5992   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
5993   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
5994   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5995   region->init_req(2, src_dest_conjoint);
5996 
5997   record_for_igvn(region);
5998   return _gvn.transform(region);
5999 }
6000 
6001 //----------------------------inline_electronicCodeBook_AESCrypt_predicate----------------------------
6002 // Return node representing slow path of predicate check.
6003 // the pseudo code we want to emulate with this predicate is:
6004 // for encryption:
6005 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6006 // for decryption:
6007 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6008 //    note cipher==plain is more conservative than the original java code but that's OK
6009 //
6010 Node* LibraryCallKit::inline_electronicCodeBook_AESCrypt_predicate(bool decrypting) {
6011   // The receiver was checked for NULL already.
6012   Node* objECB = argument(0);
6013 
6014   // Load embeddedCipher field of ElectronicCodeBook object.
6015   Node* embeddedCipherObj = load_field_from_object(objECB, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6016 
6017   // get AESCrypt klass for instanceOf check
6018   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6019   // will have same classloader as ElectronicCodeBook object
6020   const TypeInstPtr* tinst = _gvn.type(objECB)->isa_instptr();
6021   assert(tinst != NULL, "ECBobj is null");
6022   assert(tinst->klass()->is_loaded(), "ECBobj is not loaded");
6023 
6024   // we want to do an instanceof comparison against the AESCrypt class
6025   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6026   if (!klass_AESCrypt->is_loaded()) {
6027     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6028     Node* ctrl = control();
6029     set_control(top()); // no regular fast path
6030     return ctrl;
6031   }
6032   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6033 
6034   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6035   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6036   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6037 
6038   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6039 
6040   // for encryption, we are done
6041   if (!decrypting)
6042     return instof_false;  // even if it is NULL
6043 
6044   // for decryption, we need to add a further check to avoid
6045   // taking the intrinsic path when cipher and plain are the same
6046   // see the original java code for why.
6047   RegionNode* region = new RegionNode(3);
6048   region->init_req(1, instof_false);
6049   Node* src = argument(1);
6050   Node* dest = argument(4);
6051   Node* cmp_src_dest = _gvn.transform(new CmpPNode(src, dest));
6052   Node* bool_src_dest = _gvn.transform(new BoolNode(cmp_src_dest, BoolTest::eq));
6053   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6054   region->init_req(2, src_dest_conjoint);
6055 
6056   record_for_igvn(region);
6057   return _gvn.transform(region);
6058 }
6059 
6060 //----------------------------inline_counterMode_AESCrypt_predicate----------------------------
6061 // Return node representing slow path of predicate check.
6062 // the pseudo code we want to emulate with this predicate is:
6063 // for encryption:
6064 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6065 // for decryption:
6066 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6067 //    note cipher==plain is more conservative than the original java code but that's OK
6068 //
6069 
6070 Node* LibraryCallKit::inline_counterMode_AESCrypt_predicate() {
6071   // The receiver was checked for NULL already.
6072   Node* objCTR = argument(0);
6073 
6074   // Load embeddedCipher field of CipherBlockChaining object.
6075   Node* embeddedCipherObj = load_field_from_object(objCTR, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6076 
6077   // get AESCrypt klass for instanceOf check
6078   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6079   // will have same classloader as CipherBlockChaining object
6080   const TypeInstPtr* tinst = _gvn.type(objCTR)->isa_instptr();
6081   assert(tinst != NULL, "CTRobj is null");
6082   assert(tinst->klass()->is_loaded(), "CTRobj is not loaded");
6083 
6084   // we want to do an instanceof comparison against the AESCrypt class
6085   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6086   if (!klass_AESCrypt->is_loaded()) {
6087     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6088     Node* ctrl = control();
6089     set_control(top()); // no regular fast path
6090     return ctrl;
6091   }
6092 
6093   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6094   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6095   Node* cmp_instof = _gvn.transform(new CmpINode(instof, intcon(1)));
6096   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6097   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6098 
6099   return instof_false; // even if it is NULL
6100 }
6101 
6102 //------------------------------inline_ghash_processBlocks
6103 bool LibraryCallKit::inline_ghash_processBlocks() {
6104   address stubAddr;
6105   const char *stubName;
6106   assert(UseGHASHIntrinsics, "need GHASH intrinsics support");
6107 
6108   stubAddr = StubRoutines::ghash_processBlocks();
6109   stubName = "ghash_processBlocks";
6110 
6111   Node* data           = argument(0);
6112   Node* offset         = argument(1);
6113   Node* len            = argument(2);
6114   Node* state          = argument(3);
6115   Node* subkeyH        = argument(4);
6116 
6117   state = must_be_not_null(state, true);
6118   subkeyH = must_be_not_null(subkeyH, true);
6119   data = must_be_not_null(data, true);
6120 
6121   Node* state_start  = array_element_address(state, intcon(0), T_LONG);
6122   assert(state_start, "state is NULL");
6123   Node* subkeyH_start  = array_element_address(subkeyH, intcon(0), T_LONG);
6124   assert(subkeyH_start, "subkeyH is NULL");
6125   Node* data_start  = array_element_address(data, offset, T_BYTE);
6126   assert(data_start, "data is NULL");
6127 
6128   Node* ghash = make_runtime_call(RC_LEAF|RC_NO_FP,
6129                                   OptoRuntime::ghash_processBlocks_Type(),
6130                                   stubAddr, stubName, TypePtr::BOTTOM,
6131                                   state_start, subkeyH_start, data_start, len);
6132   return true;
6133 }
6134 
6135 bool LibraryCallKit::inline_base64_encodeBlock() {
6136   address stubAddr;
6137   const char *stubName;
6138   assert(UseBASE64Intrinsics, "need Base64 intrinsics support");
6139   assert(callee()->signature()->size() == 6, "base64_encodeBlock has 6 parameters");
6140   stubAddr = StubRoutines::base64_encodeBlock();
6141   stubName = "encodeBlock";
6142 
6143   if (!stubAddr) return false;
6144   Node* base64obj = argument(0);
6145   Node* src = argument(1);
6146   Node* offset = argument(2);
6147   Node* len = argument(3);
6148   Node* dest = argument(4);
6149   Node* dp = argument(5);
6150   Node* isURL = argument(6);
6151 
6152   src = must_be_not_null(src, true);
6153   dest = must_be_not_null(dest, true);
6154 
6155   Node* src_start = array_element_address(src, intcon(0), T_BYTE);
6156   assert(src_start, "source array is NULL");
6157   Node* dest_start = array_element_address(dest, intcon(0), T_BYTE);
6158   assert(dest_start, "destination array is NULL");
6159 
6160   Node* base64 = make_runtime_call(RC_LEAF,
6161                                    OptoRuntime::base64_encodeBlock_Type(),
6162                                    stubAddr, stubName, TypePtr::BOTTOM,
6163                                    src_start, offset, len, dest_start, dp, isURL);
6164   return true;
6165 }
6166 
6167 //------------------------------inline_sha_implCompress-----------------------
6168 //
6169 // Calculate SHA (i.e., SHA-1) for single-block byte[] array.
6170 // void com.sun.security.provider.SHA.implCompress(byte[] buf, int ofs)
6171 //
6172 // Calculate SHA2 (i.e., SHA-244 or SHA-256) for single-block byte[] array.
6173 // void com.sun.security.provider.SHA2.implCompress(byte[] buf, int ofs)
6174 //
6175 // Calculate SHA5 (i.e., SHA-384 or SHA-512) for single-block byte[] array.
6176 // void com.sun.security.provider.SHA5.implCompress(byte[] buf, int ofs)
6177 //
6178 bool LibraryCallKit::inline_sha_implCompress(vmIntrinsics::ID id) {
6179   assert(callee()->signature()->size() == 2, "sha_implCompress has 2 parameters");
6180 
6181   Node* sha_obj = argument(0);
6182   Node* src     = argument(1); // type oop
6183   Node* ofs     = argument(2); // type int
6184 
6185   const Type* src_type = src->Value(&_gvn);
6186   const TypeAryPtr* top_src = src_type->isa_aryptr();
6187   if (top_src  == NULL || top_src->klass()  == NULL) {
6188     // failed array check
6189     return false;
6190   }
6191   // Figure out the size and type of the elements we will be copying.
6192   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6193   if (src_elem != T_BYTE) {
6194     return false;
6195   }
6196   // 'src_start' points to src array + offset
6197   src = must_be_not_null(src, true);
6198   Node* src_start = array_element_address(src, ofs, src_elem);
6199   Node* state = NULL;
6200   address stubAddr;
6201   const char *stubName;
6202 
6203   switch(id) {
6204   case vmIntrinsics::_sha_implCompress:
6205     assert(UseSHA1Intrinsics, "need SHA1 instruction support");
6206     state = get_state_from_sha_object(sha_obj);
6207     stubAddr = StubRoutines::sha1_implCompress();
6208     stubName = "sha1_implCompress";
6209     break;
6210   case vmIntrinsics::_sha2_implCompress:
6211     assert(UseSHA256Intrinsics, "need SHA256 instruction support");
6212     state = get_state_from_sha_object(sha_obj);
6213     stubAddr = StubRoutines::sha256_implCompress();
6214     stubName = "sha256_implCompress";
6215     break;
6216   case vmIntrinsics::_sha5_implCompress:
6217     assert(UseSHA512Intrinsics, "need SHA512 instruction support");
6218     state = get_state_from_sha5_object(sha_obj);
6219     stubAddr = StubRoutines::sha512_implCompress();
6220     stubName = "sha512_implCompress";
6221     break;
6222   default:
6223     fatal_unexpected_iid(id);
6224     return false;
6225   }
6226   if (state == NULL) return false;
6227 
6228   assert(stubAddr != NULL, "Stub is generated");
6229   if (stubAddr == NULL) return false;
6230 
6231   // Call the stub.
6232   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::sha_implCompress_Type(),
6233                                  stubAddr, stubName, TypePtr::BOTTOM,
6234                                  src_start, state);
6235 
6236   return true;
6237 }
6238 
6239 //------------------------------inline_digestBase_implCompressMB-----------------------
6240 //
6241 // Calculate SHA/SHA2/SHA5 for multi-block byte[] array.
6242 // int com.sun.security.provider.DigestBase.implCompressMultiBlock(byte[] b, int ofs, int limit)
6243 //
6244 bool LibraryCallKit::inline_digestBase_implCompressMB(int predicate) {
6245   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6246          "need SHA1/SHA256/SHA512 instruction support");
6247   assert((uint)predicate < 3, "sanity");
6248   assert(callee()->signature()->size() == 3, "digestBase_implCompressMB has 3 parameters");
6249 
6250   Node* digestBase_obj = argument(0); // The receiver was checked for NULL already.
6251   Node* src            = argument(1); // byte[] array
6252   Node* ofs            = argument(2); // type int
6253   Node* limit          = argument(3); // type int
6254 
6255   const Type* src_type = src->Value(&_gvn);
6256   const TypeAryPtr* top_src = src_type->isa_aryptr();
6257   if (top_src  == NULL || top_src->klass()  == NULL) {
6258     // failed array check
6259     return false;
6260   }
6261   // Figure out the size and type of the elements we will be copying.
6262   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
6263   if (src_elem != T_BYTE) {
6264     return false;
6265   }
6266   // 'src_start' points to src array + offset
6267   src = must_be_not_null(src, false);
6268   Node* src_start = array_element_address(src, ofs, src_elem);
6269 
6270   const char* klass_SHA_name = NULL;
6271   const char* stub_name = NULL;
6272   address     stub_addr = NULL;
6273   bool        long_state = false;
6274 
6275   switch (predicate) {
6276   case 0:
6277     if (UseSHA1Intrinsics) {
6278       klass_SHA_name = "sun/security/provider/SHA";
6279       stub_name = "sha1_implCompressMB";
6280       stub_addr = StubRoutines::sha1_implCompressMB();
6281     }
6282     break;
6283   case 1:
6284     if (UseSHA256Intrinsics) {
6285       klass_SHA_name = "sun/security/provider/SHA2";
6286       stub_name = "sha256_implCompressMB";
6287       stub_addr = StubRoutines::sha256_implCompressMB();
6288     }
6289     break;
6290   case 2:
6291     if (UseSHA512Intrinsics) {
6292       klass_SHA_name = "sun/security/provider/SHA5";
6293       stub_name = "sha512_implCompressMB";
6294       stub_addr = StubRoutines::sha512_implCompressMB();
6295       long_state = true;
6296     }
6297     break;
6298   default:
6299     fatal("unknown SHA intrinsic predicate: %d", predicate);
6300   }
6301   if (klass_SHA_name != NULL) {
6302     assert(stub_addr != NULL, "Stub is generated");
6303     if (stub_addr == NULL) return false;
6304 
6305     // get DigestBase klass to lookup for SHA klass
6306     const TypeInstPtr* tinst = _gvn.type(digestBase_obj)->isa_instptr();
6307     assert(tinst != NULL, "digestBase_obj is not instance???");
6308     assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6309 
6310     ciKlass* klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6311     assert(klass_SHA->is_loaded(), "predicate checks that this class is loaded");
6312     ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6313     return inline_sha_implCompressMB(digestBase_obj, instklass_SHA, long_state, stub_addr, stub_name, src_start, ofs, limit);
6314   }
6315   return false;
6316 }
6317 //------------------------------inline_sha_implCompressMB-----------------------
6318 bool LibraryCallKit::inline_sha_implCompressMB(Node* digestBase_obj, ciInstanceKlass* instklass_SHA,
6319                                                bool long_state, address stubAddr, const char *stubName,
6320                                                Node* src_start, Node* ofs, Node* limit) {
6321   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_SHA);
6322   const TypeOopPtr* xtype = aklass->as_instance_type();
6323   Node* sha_obj = new CheckCastPPNode(control(), digestBase_obj, xtype);
6324   sha_obj = _gvn.transform(sha_obj);
6325 
6326   Node* state;
6327   if (long_state) {
6328     state = get_state_from_sha5_object(sha_obj);
6329   } else {
6330     state = get_state_from_sha_object(sha_obj);
6331   }
6332   if (state == NULL) return false;
6333 
6334   // Call the stub.
6335   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
6336                                  OptoRuntime::digestBase_implCompressMB_Type(),
6337                                  stubAddr, stubName, TypePtr::BOTTOM,
6338                                  src_start, state, ofs, limit);
6339   // return ofs (int)
6340   Node* result = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
6341   set_result(result);
6342 
6343   return true;
6344 }
6345 
6346 //------------------------------get_state_from_sha_object-----------------------
6347 Node * LibraryCallKit::get_state_from_sha_object(Node *sha_object) {
6348   Node* sha_state = load_field_from_object(sha_object, "state", "[I", /*is_exact*/ false);
6349   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA/SHA2");
6350   if (sha_state == NULL) return (Node *) NULL;
6351 
6352   // now have the array, need to get the start address of the state array
6353   Node* state = array_element_address(sha_state, intcon(0), T_INT);
6354   return state;
6355 }
6356 
6357 //------------------------------get_state_from_sha5_object-----------------------
6358 Node * LibraryCallKit::get_state_from_sha5_object(Node *sha_object) {
6359   Node* sha_state = load_field_from_object(sha_object, "state", "[J", /*is_exact*/ false);
6360   assert (sha_state != NULL, "wrong version of sun.security.provider.SHA5");
6361   if (sha_state == NULL) return (Node *) NULL;
6362 
6363   // now have the array, need to get the start address of the state array
6364   Node* state = array_element_address(sha_state, intcon(0), T_LONG);
6365   return state;
6366 }
6367 
6368 //----------------------------inline_digestBase_implCompressMB_predicate----------------------------
6369 // Return node representing slow path of predicate check.
6370 // the pseudo code we want to emulate with this predicate is:
6371 //    if (digestBaseObj instanceof SHA/SHA2/SHA5) do_intrinsic, else do_javapath
6372 //
6373 Node* LibraryCallKit::inline_digestBase_implCompressMB_predicate(int predicate) {
6374   assert(UseSHA1Intrinsics || UseSHA256Intrinsics || UseSHA512Intrinsics,
6375          "need SHA1/SHA256/SHA512 instruction support");
6376   assert((uint)predicate < 3, "sanity");
6377 
6378   // The receiver was checked for NULL already.
6379   Node* digestBaseObj = argument(0);
6380 
6381   // get DigestBase klass for instanceOf check
6382   const TypeInstPtr* tinst = _gvn.type(digestBaseObj)->isa_instptr();
6383   assert(tinst != NULL, "digestBaseObj is null");
6384   assert(tinst->klass()->is_loaded(), "DigestBase is not loaded");
6385 
6386   const char* klass_SHA_name = NULL;
6387   switch (predicate) {
6388   case 0:
6389     if (UseSHA1Intrinsics) {
6390       // we want to do an instanceof comparison against the SHA class
6391       klass_SHA_name = "sun/security/provider/SHA";
6392     }
6393     break;
6394   case 1:
6395     if (UseSHA256Intrinsics) {
6396       // we want to do an instanceof comparison against the SHA2 class
6397       klass_SHA_name = "sun/security/provider/SHA2";
6398     }
6399     break;
6400   case 2:
6401     if (UseSHA512Intrinsics) {
6402       // we want to do an instanceof comparison against the SHA5 class
6403       klass_SHA_name = "sun/security/provider/SHA5";
6404     }
6405     break;
6406   default:
6407     fatal("unknown SHA intrinsic predicate: %d", predicate);
6408   }
6409 
6410   ciKlass* klass_SHA = NULL;
6411   if (klass_SHA_name != NULL) {
6412     klass_SHA = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make(klass_SHA_name));
6413   }
6414   if ((klass_SHA == NULL) || !klass_SHA->is_loaded()) {
6415     // if none of SHA/SHA2/SHA5 is loaded, we never take the intrinsic fast path
6416     Node* ctrl = control();
6417     set_control(top()); // no intrinsic path
6418     return ctrl;
6419   }
6420   ciInstanceKlass* instklass_SHA = klass_SHA->as_instance_klass();
6421 
6422   Node* instofSHA = gen_instanceof(digestBaseObj, makecon(TypeKlassPtr::make(instklass_SHA)));
6423   Node* cmp_instof = _gvn.transform(new CmpINode(instofSHA, intcon(1)));
6424   Node* bool_instof = _gvn.transform(new BoolNode(cmp_instof, BoolTest::ne));
6425   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6426 
6427   return instof_false;  // even if it is NULL
6428 }
6429 
6430 //-------------inline_fma-----------------------------------
6431 bool LibraryCallKit::inline_fma(vmIntrinsics::ID id) {
6432   Node *a = NULL;
6433   Node *b = NULL;
6434   Node *c = NULL;
6435   Node* result = NULL;
6436   switch (id) {
6437   case vmIntrinsics::_fmaD:
6438     assert(callee()->signature()->size() == 6, "fma has 3 parameters of size 2 each.");
6439     // no receiver since it is static method
6440     a = round_double_node(argument(0));
6441     b = round_double_node(argument(2));
6442     c = round_double_node(argument(4));
6443     result = _gvn.transform(new FmaDNode(control(), a, b, c));
6444     break;
6445   case vmIntrinsics::_fmaF:
6446     assert(callee()->signature()->size() == 3, "fma has 3 parameters of size 1 each.");
6447     a = argument(0);
6448     b = argument(1);
6449     c = argument(2);
6450     result = _gvn.transform(new FmaFNode(control(), a, b, c));
6451     break;
6452   default:
6453     fatal_unexpected_iid(id);  break;
6454   }
6455   set_result(result);
6456   return true;
6457 }
6458 
6459 bool LibraryCallKit::inline_character_compare(vmIntrinsics::ID id) {
6460   // argument(0) is receiver
6461   Node* codePoint = argument(1);
6462   Node* n = NULL;
6463 
6464   switch (id) {
6465     case vmIntrinsics::_isDigit :
6466       n = new DigitNode(control(), codePoint);
6467       break;
6468     case vmIntrinsics::_isLowerCase :
6469       n = new LowerCaseNode(control(), codePoint);
6470       break;
6471     case vmIntrinsics::_isUpperCase :
6472       n = new UpperCaseNode(control(), codePoint);
6473       break;
6474     case vmIntrinsics::_isWhitespace :
6475       n = new WhitespaceNode(control(), codePoint);
6476       break;
6477     default:
6478       fatal_unexpected_iid(id);
6479   }
6480 
6481   set_result(_gvn.transform(n));
6482   return true;
6483 }
6484 
6485 //------------------------------inline_fp_min_max------------------------------
6486 bool LibraryCallKit::inline_fp_min_max(vmIntrinsics::ID id) {
6487 /* DISABLED BECAUSE METHOD DATA ISN'T COLLECTED PER CALL-SITE, SEE JDK-8015416.
6488 
6489   // The intrinsic should be used only when the API branches aren't predictable,
6490   // the last one performing the most important comparison. The following heuristic
6491   // uses the branch statistics to eventually bail out if necessary.
6492 
6493   ciMethodData *md = callee()->method_data();
6494 
6495   if ( md != NULL && md->is_mature() && md->invocation_count() > 0 ) {
6496     ciCallProfile cp = caller()->call_profile_at_bci(bci());
6497 
6498     if ( ((double)cp.count()) / ((double)md->invocation_count()) < 0.8 ) {
6499       // Bail out if the call-site didn't contribute enough to the statistics.
6500       return false;
6501     }
6502 
6503     uint taken = 0, not_taken = 0;
6504 
6505     for (ciProfileData *p = md->first_data(); md->is_valid(p); p = md->next_data(p)) {
6506       if (p->is_BranchData()) {
6507         taken = ((ciBranchData*)p)->taken();
6508         not_taken = ((ciBranchData*)p)->not_taken();
6509       }
6510     }
6511 
6512     double balance = (((double)taken) - ((double)not_taken)) / ((double)md->invocation_count());
6513     balance = balance < 0 ? -balance : balance;
6514     if ( balance > 0.2 ) {
6515       // Bail out if the most important branch is predictable enough.
6516       return false;
6517     }
6518   }
6519 */
6520 
6521   Node *a = NULL;
6522   Node *b = NULL;
6523   Node *n = NULL;
6524   switch (id) {
6525   case vmIntrinsics::_maxF:
6526   case vmIntrinsics::_minF:
6527     assert(callee()->signature()->size() == 2, "minF/maxF has 2 parameters of size 1 each.");
6528     a = argument(0);
6529     b = argument(1);
6530     break;
6531   case vmIntrinsics::_maxD:
6532   case vmIntrinsics::_minD:
6533     assert(callee()->signature()->size() == 4, "minD/maxD has 2 parameters of size 2 each.");
6534     a = round_double_node(argument(0));
6535     b = round_double_node(argument(2));
6536     break;
6537   default:
6538     fatal_unexpected_iid(id);
6539     break;
6540   }
6541   switch (id) {
6542   case vmIntrinsics::_maxF:  n = new MaxFNode(a, b);  break;
6543   case vmIntrinsics::_minF:  n = new MinFNode(a, b);  break;
6544   case vmIntrinsics::_maxD:  n = new MaxDNode(a, b);  break;
6545   case vmIntrinsics::_minD:  n = new MinDNode(a, b);  break;
6546   default:  fatal_unexpected_iid(id);  break;
6547   }
6548   set_result(_gvn.transform(n));
6549   return true;
6550 }
6551 
6552 bool LibraryCallKit::inline_profileBoolean() {
6553   Node* counts = argument(1);
6554   const TypeAryPtr* ary = NULL;
6555   ciArray* aobj = NULL;
6556   if (counts->is_Con()
6557       && (ary = counts->bottom_type()->isa_aryptr()) != NULL
6558       && (aobj = ary->const_oop()->as_array()) != NULL
6559       && (aobj->length() == 2)) {
6560     // Profile is int[2] where [0] and [1] correspond to false and true value occurrences respectively.
6561     jint false_cnt = aobj->element_value(0).as_int();
6562     jint  true_cnt = aobj->element_value(1).as_int();
6563 
6564     if (C->log() != NULL) {
6565       C->log()->elem("observe source='profileBoolean' false='%d' true='%d'",
6566                      false_cnt, true_cnt);
6567     }
6568 
6569     if (false_cnt + true_cnt == 0) {
6570       // According to profile, never executed.
6571       uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6572                           Deoptimization::Action_reinterpret);
6573       return true;
6574     }
6575 
6576     // result is a boolean (0 or 1) and its profile (false_cnt & true_cnt)
6577     // is a number of each value occurrences.
6578     Node* result = argument(0);
6579     if (false_cnt == 0 || true_cnt == 0) {
6580       // According to profile, one value has been never seen.
6581       int expected_val = (false_cnt == 0) ? 1 : 0;
6582 
6583       Node* cmp  = _gvn.transform(new CmpINode(result, intcon(expected_val)));
6584       Node* test = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
6585 
6586       IfNode* check = create_and_map_if(control(), test, PROB_ALWAYS, COUNT_UNKNOWN);
6587       Node* fast_path = _gvn.transform(new IfTrueNode(check));
6588       Node* slow_path = _gvn.transform(new IfFalseNode(check));
6589 
6590       { // Slow path: uncommon trap for never seen value and then reexecute
6591         // MethodHandleImpl::profileBoolean() to bump the count, so JIT knows
6592         // the value has been seen at least once.
6593         PreserveJVMState pjvms(this);
6594         PreserveReexecuteState preexecs(this);
6595         jvms()->set_should_reexecute(true);
6596 
6597         set_control(slow_path);
6598         set_i_o(i_o());
6599 
6600         uncommon_trap_exact(Deoptimization::Reason_intrinsic,
6601                             Deoptimization::Action_reinterpret);
6602       }
6603       // The guard for never seen value enables sharpening of the result and
6604       // returning a constant. It allows to eliminate branches on the same value
6605       // later on.
6606       set_control(fast_path);
6607       result = intcon(expected_val);
6608     }
6609     // Stop profiling.
6610     // MethodHandleImpl::profileBoolean() has profiling logic in its bytecode.
6611     // By replacing method body with profile data (represented as ProfileBooleanNode
6612     // on IR level) we effectively disable profiling.
6613     // It enables full speed execution once optimized code is generated.
6614     Node* profile = _gvn.transform(new ProfileBooleanNode(result, false_cnt, true_cnt));
6615     C->record_for_igvn(profile);
6616     set_result(profile);
6617     return true;
6618   } else {
6619     // Continue profiling.
6620     // Profile data isn't available at the moment. So, execute method's bytecode version.
6621     // Usually, when GWT LambdaForms are profiled it means that a stand-alone nmethod
6622     // is compiled and counters aren't available since corresponding MethodHandle
6623     // isn't a compile-time constant.
6624     return false;
6625   }
6626 }
6627 
6628 bool LibraryCallKit::inline_isCompileConstant() {
6629   Node* n = argument(0);
6630   set_result(n->is_Con() ? intcon(1) : intcon(0));
6631   return true;
6632 }