1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_TASKQUEUE_HPP
  26 #define SHARE_VM_GC_SHARED_TASKQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/padded.hpp"
  30 #include "oops/oopsHierarchy.hpp"
  31 #include "utilities/ostream.hpp"
  32 #include "utilities/stack.hpp"
  33 
  34 // Simple TaskQueue stats that are collected by default in debug builds.
  35 
  36 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  37 #define TASKQUEUE_STATS 1
  38 #elif !defined(TASKQUEUE_STATS)
  39 #define TASKQUEUE_STATS 0
  40 #endif
  41 
  42 #if TASKQUEUE_STATS
  43 #define TASKQUEUE_STATS_ONLY(code) code
  44 #else
  45 #define TASKQUEUE_STATS_ONLY(code)
  46 #endif // TASKQUEUE_STATS
  47 
  48 #if TASKQUEUE_STATS
  49 class TaskQueueStats {
  50 public:
  51   enum StatId {
  52     push,             // number of taskqueue pushes
  53     pop,              // number of taskqueue pops
  54     pop_slow,         // subset of taskqueue pops that were done slow-path
  55     steal_attempt,    // number of taskqueue steal attempts
  56     steal,            // number of taskqueue steals
  57     overflow,         // number of overflow pushes
  58     overflow_max_len, // max length of overflow stack
  59     last_stat_id
  60   };
  61 
  62 public:
  63   inline TaskQueueStats()       { reset(); }
  64 
  65   inline void record_push()     { ++_stats[push]; }
  66   inline void record_pop()      { ++_stats[pop]; }
  67   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  68   inline void record_steal(bool success);
  69   inline void record_overflow(size_t new_length);
  70 
  71   TaskQueueStats & operator +=(const TaskQueueStats & addend);
  72 
  73   inline size_t get(StatId id) const { return _stats[id]; }
  74   inline const size_t* get() const   { return _stats; }
  75 
  76   inline void reset();
  77 
  78   // Print the specified line of the header (does not include a line separator).
  79   static void print_header(unsigned int line, outputStream* const stream = tty,
  80                            unsigned int width = 10);
  81   // Print the statistics (does not include a line separator).
  82   void print(outputStream* const stream = tty, unsigned int width = 10) const;
  83 
  84   DEBUG_ONLY(void verify() const;)
  85 
  86 private:
  87   size_t                    _stats[last_stat_id];
  88   static const char * const _names[last_stat_id];
  89 };
  90 
  91 void TaskQueueStats::record_steal(bool success) {
  92   ++_stats[steal_attempt];
  93   if (success) ++_stats[steal];
  94 }
  95 
  96 void TaskQueueStats::record_overflow(size_t new_len) {
  97   ++_stats[overflow];
  98   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
  99 }
 100 
 101 void TaskQueueStats::reset() {
 102   memset(_stats, 0, sizeof(_stats));
 103 }
 104 #endif // TASKQUEUE_STATS
 105 
 106 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
 107 
 108 template <unsigned int N, MEMFLAGS F>
 109 class TaskQueueSuper: public CHeapObj<F> {
 110 protected:
 111   // Internal type for indexing the queue; also used for the tag.
 112   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 113 
 114   // The first free element after the last one pushed (mod N).
 115   volatile uint _bottom;
 116 
 117   enum { MOD_N_MASK = N - 1 };
 118 
 119   class Age {
 120   public:
 121     Age(size_t data = 0)         { _data = data; }
 122     Age(const Age& age)          { _data = age._data; }
 123     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 124 
 125     Age   get()        const volatile { return _data; }
 126     void  set(Age age) volatile       { _data = age._data; }
 127 
 128     idx_t top()        const volatile { return _fields._top; }
 129     idx_t tag()        const volatile { return _fields._tag; }
 130 
 131     // Increment top; if it wraps, increment tag also.
 132     void increment() {
 133       _fields._top = increment_index(_fields._top);
 134       if (_fields._top == 0) ++_fields._tag;
 135     }
 136 
 137     Age cmpxchg(const Age new_age, const Age old_age) volatile;
 138 
 139     bool operator ==(const Age& other) const { return _data == other._data; }
 140 
 141   private:
 142     struct fields {
 143       idx_t _top;
 144       idx_t _tag;
 145     };
 146     union {
 147       size_t _data;
 148       fields _fields;
 149     };
 150   };
 151 
 152   // Add paddings to reduce false-sharing cache contention between _bottom and _age
 153   DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, sizeof(_bottom));
 154   volatile Age _age;
 155 
 156   // These both operate mod N.
 157   static uint increment_index(uint ind) {
 158     return (ind + 1) & MOD_N_MASK;
 159   }
 160   static uint decrement_index(uint ind) {
 161     return (ind - 1) & MOD_N_MASK;
 162   }
 163 
 164   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 165   // interpreted as 0.
 166   uint dirty_size(uint bot, uint top) const {
 167     return (bot - top) & MOD_N_MASK;
 168   }
 169 
 170   // Returns the size corresponding to the given "bot" and "top".
 171   uint size(uint bot, uint top) const {
 172     uint sz = dirty_size(bot, top);
 173     // Has the queue "wrapped", so that bottom is less than top?  There's a
 174     // complicated special case here.  A pair of threads could perform pop_local
 175     // and pop_global operations concurrently, starting from a state in which
 176     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 177     // and the pop_global in incrementing _top (in which case the pop_global
 178     // will be awarded the contested queue element.)  The resulting state must
 179     // be interpreted as an empty queue.  (We only need to worry about one such
 180     // event: only the queue owner performs pop_local's, and several concurrent
 181     // threads attempting to perform the pop_global will all perform the same
 182     // CAS, and only one can succeed.)  Any stealing thread that reads after
 183     // either the increment or decrement will see an empty queue, and will not
 184     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 185     // modified by concurrent queues, so the owner thread can reset the state to
 186     // _bottom == top so subsequent pushes will be performed normally.
 187     return (sz == N - 1) ? 0 : sz;
 188   }
 189 
 190 public:
 191   TaskQueueSuper() : _bottom(0), _age() {}
 192 
 193   // Return true if the TaskQueue contains/does not contain any tasks.
 194   bool peek()     const { return _bottom != _age.top(); }
 195   bool is_empty() const { return size() == 0; }
 196 
 197   // Return an estimate of the number of elements in the queue.
 198   // The "careful" version admits the possibility of pop_local/pop_global
 199   // races.
 200   uint size() const {
 201     return size(_bottom, _age.top());
 202   }
 203 
 204   uint dirty_size() const {
 205     return dirty_size(_bottom, _age.top());
 206   }
 207 
 208   void set_empty() {
 209     _bottom = 0;
 210     _age.set(0);
 211   }
 212 
 213   // Maximum number of elements allowed in the queue.  This is two less
 214   // than the actual queue size, for somewhat complicated reasons.
 215   uint max_elems() const { return N - 2; }
 216 
 217   // Total size of queue.
 218   static const uint total_size() { return N; }
 219 
 220   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 221 };
 222 
 223 //
 224 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
 225 // ended-queue (deque), intended for use in work stealing. Queue operations
 226 // are non-blocking.
 227 //
 228 // A queue owner thread performs push() and pop_local() operations on one end
 229 // of the queue, while other threads may steal work using the pop_global()
 230 // method.
 231 //
 232 // The main difference to the original algorithm is that this
 233 // implementation allows wrap-around at the end of its allocated
 234 // storage, which is an array.
 235 //
 236 // The original paper is:
 237 //
 238 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
 239 // Thread scheduling for multiprogrammed multiprocessors.
 240 // Theory of Computing Systems 34, 2 (2001), 115-144.
 241 //
 242 // The following paper provides an correctness proof and an
 243 // implementation for weakly ordered memory models including (pseudo-)
 244 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
 245 // similar to ABP, with the main difference that it allows resizing of the
 246 // underlying storage:
 247 //
 248 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
 249 // Correct and efficient work-stealing for weak memory models
 250 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
 251 // practice of parallel programming (PPoPP 2013), 69-80
 252 //
 253 
 254 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 255 class GenericTaskQueue: public TaskQueueSuper<N, F> {
 256 protected:
 257   typedef typename TaskQueueSuper<N, F>::Age Age;
 258   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
 259 
 260   using TaskQueueSuper<N, F>::_bottom;
 261   using TaskQueueSuper<N, F>::_age;
 262   using TaskQueueSuper<N, F>::increment_index;
 263   using TaskQueueSuper<N, F>::decrement_index;
 264   using TaskQueueSuper<N, F>::dirty_size;
 265 
 266 public:
 267   using TaskQueueSuper<N, F>::max_elems;
 268   using TaskQueueSuper<N, F>::size;
 269 
 270 #if  TASKQUEUE_STATS
 271   using TaskQueueSuper<N, F>::stats;
 272 #endif
 273 
 274 private:
 275   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 276   bool push_slow(E t, uint dirty_n_elems);
 277   bool pop_local_slow(uint localBot, Age oldAge);
 278 
 279 public:
 280   typedef E element_type;
 281 
 282   // Initializes the queue to empty.
 283   GenericTaskQueue();
 284 
 285   void initialize();
 286 
 287   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 288   inline bool push(E t);
 289 
 290   // Attempts to claim a task from the "local" end of the queue (the most
 291   // recently pushed) as long as the number of entries exceeds the threshold.
 292   // If successful, returns true and sets t to the task; otherwise, returns false
 293   // (the queue is empty or the number of elements below the threshold).
 294   inline bool pop_local(volatile E& t, uint threshold = 0);
 295 
 296   // Like pop_local(), but uses the "global" end of the queue (the least
 297   // recently pushed).
 298   bool pop_global(volatile E& t);
 299 
 300   // Delete any resource associated with the queue.
 301   ~GenericTaskQueue();
 302 
 303   // Apply fn to each element in the task queue.  The queue must not
 304   // be modified while iterating.
 305   template<typename Fn> void iterate(Fn fn);
 306 
 307 private:
 308   // Element array.
 309   volatile E* _elems;
 310 };
 311 
 312 template<class E, MEMFLAGS F, unsigned int N>
 313 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
 314   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 315 }
 316 
 317 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 318 // elements that do not fit in the TaskQueue.
 319 //
 320 // This class hides two methods from super classes:
 321 //
 322 // push() - push onto the task queue or, if that fails, onto the overflow stack
 323 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 324 //
 325 // Note that size() is not hidden--it returns the number of elements in the
 326 // TaskQueue, and does not include the size of the overflow stack.  This
 327 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 328 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 329 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
 330 {
 331 public:
 332   typedef Stack<E, F>               overflow_t;
 333   typedef GenericTaskQueue<E, F, N> taskqueue_t;
 334 
 335   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 336 
 337   // Push task t onto the queue or onto the overflow stack.  Return true.
 338   inline bool push(E t);
 339   // Try to push task t onto the queue only. Returns true if successful, false otherwise.
 340   inline bool try_push_to_taskqueue(E t);
 341 
 342   // Attempt to pop from the overflow stack; return true if anything was popped.
 343   inline bool pop_overflow(E& t);
 344 
 345   inline overflow_t* overflow_stack() { return &_overflow_stack; }
 346 
 347   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 348   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
 349   inline bool is_empty()        const {
 350     return taskqueue_empty() && overflow_empty();
 351   }
 352 
 353 private:
 354   overflow_t _overflow_stack;
 355 };
 356 
 357 class TaskQueueSetSuper {
 358 protected:
 359   static int randomParkAndMiller(int* seed0);
 360 public:
 361   // Returns "true" if some TaskQueue in the set contains a task.
 362   virtual bool peek() = 0;
 363 };
 364 
 365 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
 366 };
 367 
 368 template<class T, MEMFLAGS F>
 369 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
 370 private:
 371   uint _n;
 372   T** _queues;
 373 
 374 public:
 375   typedef typename T::element_type E;
 376 
 377   GenericTaskQueueSet(int n);
 378   ~GenericTaskQueueSet();
 379 
 380   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 381 
 382   void register_queue(uint i, T* q);
 383 
 384   T* queue(uint n);
 385 
 386   // The thread with queue number "queue_num" (and whose random number seed is
 387   // at "seed") is trying to steal a task from some other queue.  (It may try
 388   // several queues, according to some configuration parameter.)  If some steal
 389   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 390   // false.
 391   bool steal(uint queue_num, int* seed, E& t);
 392 
 393   bool peek();
 394 
 395   uint size() const { return _n; }
 396 };
 397 
 398 template<class T, MEMFLAGS F> void
 399 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
 400   assert(i < _n, "index out of range.");
 401   _queues[i] = q;
 402 }
 403 
 404 template<class T, MEMFLAGS F> T*
 405 GenericTaskQueueSet<T, F>::queue(uint i) {
 406   return _queues[i];
 407 }
 408 
 409 template<class T, MEMFLAGS F>
 410 bool GenericTaskQueueSet<T, F>::peek() {
 411   // Try all the queues.
 412   for (uint j = 0; j < _n; j++) {
 413     if (_queues[j]->peek())
 414       return true;
 415   }
 416   return false;
 417 }
 418 
 419 // When to terminate from the termination protocol.
 420 class TerminatorTerminator: public CHeapObj<mtInternal> {
 421 public:
 422   virtual bool should_exit_termination() = 0;
 423 };
 424 
 425 // A class to aid in the termination of a set of parallel tasks using
 426 // TaskQueueSet's for work stealing.
 427 
 428 #undef TRACESPINNING
 429 
 430 class ParallelTaskTerminator: public StackObj {
 431 private:
 432   uint _n_threads;
 433   TaskQueueSetSuper* _queue_set;
 434 
 435   DEFINE_PAD_MINUS_SIZE(0, DEFAULT_CACHE_LINE_SIZE, 0);
 436   volatile uint _offered_termination;
 437   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile uint));
 438 
 439 #ifdef TRACESPINNING
 440   static uint _total_yields;
 441   static uint _total_spins;
 442   static uint _total_peeks;
 443 #endif
 444 
 445   bool peek_in_queue_set();
 446 protected:
 447   virtual void yield();
 448   void sleep(uint millis);
 449 
 450 public:
 451 
 452   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 453   // queue sets of work queues of other threads.
 454   ParallelTaskTerminator(uint n_threads, TaskQueueSetSuper* queue_set);
 455 
 456   // The current thread has no work, and is ready to terminate if everyone
 457   // else is.  If returns "true", all threads are terminated.  If returns
 458   // "false", available work has been observed in one of the task queues,
 459   // so the global task is not complete.
 460   bool offer_termination() {
 461     return offer_termination(NULL);
 462   }
 463 
 464   // As above, but it also terminates if the should_exit_termination()
 465   // method of the terminator parameter returns true. If terminator is
 466   // NULL, then it is ignored.
 467   bool offer_termination(TerminatorTerminator* terminator);
 468 
 469   // Reset the terminator, so that it may be reused again.
 470   // The caller is responsible for ensuring that this is done
 471   // in an MT-safe manner, once the previous round of use of
 472   // the terminator is finished.
 473   void reset_for_reuse();
 474   // Same as above but the number of parallel threads is set to the
 475   // given number.
 476   void reset_for_reuse(uint n_threads);
 477 
 478 #ifdef TRACESPINNING
 479   static uint total_yields() { return _total_yields; }
 480   static uint total_spins() { return _total_spins; }
 481   static uint total_peeks() { return _total_peeks; }
 482   static void print_termination_counts();
 483 #endif
 484 };
 485 
 486 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
 487 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
 488 
 489 #ifdef _MSC_VER
 490 #pragma warning(push)
 491 // warning C4522: multiple assignment operators specified
 492 #pragma warning(disable:4522)
 493 #endif
 494 
 495 // This is a container class for either an oop* or a narrowOop*.
 496 // Both are pushed onto a task queue and the consumer will test is_narrow()
 497 // to determine which should be processed.
 498 class StarTask {
 499   void*  _holder;        // either union oop* or narrowOop*
 500 
 501   enum { COMPRESSED_OOP_MASK = 1 };
 502 
 503  public:
 504   StarTask(narrowOop* p) {
 505     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 506     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 507   }
 508   StarTask(oop* p)       {
 509     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 510     _holder = (void*)p;
 511   }
 512   StarTask()             { _holder = NULL; }
 513   operator oop*()        { return (oop*)_holder; }
 514   operator narrowOop*()  {
 515     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 516   }
 517 
 518   StarTask& operator=(const StarTask& t) {
 519     _holder = t._holder;
 520     return *this;
 521   }
 522   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 523     _holder = t._holder;
 524     return *this;
 525   }
 526 
 527   bool is_narrow() const {
 528     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 529   }
 530 };
 531 
 532 class ObjArrayTask
 533 {
 534 public:
 535   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 536   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 537     assert(idx <= size_t(max_jint), "too big");
 538   }
 539   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 540 
 541   ObjArrayTask& operator =(const ObjArrayTask& t) {
 542     _obj = t._obj;
 543     _index = t._index;
 544     return *this;
 545   }
 546   volatile ObjArrayTask&
 547   operator =(const volatile ObjArrayTask& t) volatile {
 548     (void)const_cast<oop&>(_obj = t._obj);
 549     _index = t._index;
 550     return *this;
 551   }
 552 
 553   inline oop obj()   const { return _obj; }
 554   inline int index() const { return _index; }
 555 
 556   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 557 
 558 private:
 559   oop _obj;
 560   int _index;
 561 };
 562 
 563 #ifdef _MSC_VER
 564 #pragma warning(pop)
 565 #endif
 566 
 567 typedef OverflowTaskQueue<StarTask, mtGC>           OopStarTaskQueue;
 568 typedef GenericTaskQueueSet<OopStarTaskQueue, mtGC> OopStarTaskQueueSet;
 569 
 570 typedef OverflowTaskQueue<size_t, mtGC>             RegionTaskQueue;
 571 typedef GenericTaskQueueSet<RegionTaskQueue, mtGC>  RegionTaskQueueSet;
 572 
 573 #endif // SHARE_VM_GC_SHARED_TASKQUEUE_HPP