1 /*
   2  * Copyright (c) 1999, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/codeBuffer.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_LIRAssembler.hpp"
  31 #include "c1/c1_MacroAssembler.hpp"
  32 #include "c1/c1_Runtime1.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/codeBlob.hpp"
  36 #include "code/compiledIC.hpp"
  37 #include "code/pcDesc.hpp"
  38 #include "code/scopeDesc.hpp"
  39 #include "code/vtableStubs.hpp"
  40 #include "compiler/disassembler.hpp"
  41 #include "gc/shared/barrierSet.hpp"
  42 #include "gc/shared/collectedHeap.hpp"
  43 #include "interpreter/bytecode.hpp"
  44 #include "interpreter/interpreter.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/allocation.inline.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "runtime/atomic.hpp"
  52 #include "runtime/biasedLocking.hpp"
  53 #include "runtime/compilationPolicy.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/javaCalls.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/vframe.hpp"
  59 #include "runtime/vframeArray.hpp"
  60 #include "runtime/vm_version.hpp"
  61 #include "utilities/copy.hpp"
  62 #include "utilities/events.hpp"
  63 
  64 
  65 // Implementation of StubAssembler
  66 
  67 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
  68   _name = name;
  69   _must_gc_arguments = false;
  70   _frame_size = no_frame_size;
  71   _num_rt_args = 0;
  72   _stub_id = stub_id;
  73 }
  74 
  75 
  76 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
  77   _name = name;
  78   _must_gc_arguments = must_gc_arguments;
  79 }
  80 
  81 
  82 void StubAssembler::set_frame_size(int size) {
  83   if (_frame_size == no_frame_size) {
  84     _frame_size = size;
  85   }
  86   assert(_frame_size == size, "can't change the frame size");
  87 }
  88 
  89 
  90 void StubAssembler::set_num_rt_args(int args) {
  91   if (_num_rt_args == 0) {
  92     _num_rt_args = args;
  93   }
  94   assert(_num_rt_args == args, "can't change the number of args");
  95 }
  96 
  97 // Implementation of Runtime1
  98 
  99 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
 100 const char *Runtime1::_blob_names[] = {
 101   RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
 102 };
 103 
 104 #ifndef PRODUCT
 105 // statistics
 106 int Runtime1::_generic_arraycopy_cnt = 0;
 107 int Runtime1::_primitive_arraycopy_cnt = 0;
 108 int Runtime1::_oop_arraycopy_cnt = 0;
 109 int Runtime1::_generic_arraycopystub_cnt = 0;
 110 int Runtime1::_arraycopy_slowcase_cnt = 0;
 111 int Runtime1::_arraycopy_checkcast_cnt = 0;
 112 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
 113 int Runtime1::_new_type_array_slowcase_cnt = 0;
 114 int Runtime1::_new_object_array_slowcase_cnt = 0;
 115 int Runtime1::_new_instance_slowcase_cnt = 0;
 116 int Runtime1::_new_multi_array_slowcase_cnt = 0;
 117 int Runtime1::_monitorenter_slowcase_cnt = 0;
 118 int Runtime1::_monitorexit_slowcase_cnt = 0;
 119 int Runtime1::_patch_code_slowcase_cnt = 0;
 120 int Runtime1::_throw_range_check_exception_count = 0;
 121 int Runtime1::_throw_index_exception_count = 0;
 122 int Runtime1::_throw_div0_exception_count = 0;
 123 int Runtime1::_throw_null_pointer_exception_count = 0;
 124 int Runtime1::_throw_class_cast_exception_count = 0;
 125 int Runtime1::_throw_incompatible_class_change_error_count = 0;
 126 int Runtime1::_throw_array_store_exception_count = 0;
 127 int Runtime1::_throw_count = 0;
 128 
 129 static int _byte_arraycopy_stub_cnt = 0;
 130 static int _short_arraycopy_stub_cnt = 0;
 131 static int _int_arraycopy_stub_cnt = 0;
 132 static int _long_arraycopy_stub_cnt = 0;
 133 static int _oop_arraycopy_stub_cnt = 0;
 134 
 135 address Runtime1::arraycopy_count_address(BasicType type) {
 136   switch (type) {
 137   case T_BOOLEAN:
 138   case T_BYTE:   return (address)&_byte_arraycopy_stub_cnt;
 139   case T_CHAR:
 140   case T_SHORT:  return (address)&_short_arraycopy_stub_cnt;
 141   case T_FLOAT:
 142   case T_INT:    return (address)&_int_arraycopy_stub_cnt;
 143   case T_DOUBLE:
 144   case T_LONG:   return (address)&_long_arraycopy_stub_cnt;
 145   case T_ARRAY:
 146   case T_OBJECT: return (address)&_oop_arraycopy_stub_cnt;
 147   default:
 148     ShouldNotReachHere();
 149     return NULL;
 150   }
 151 }
 152 
 153 
 154 #endif
 155 
 156 // Simple helper to see if the caller of a runtime stub which
 157 // entered the VM has been deoptimized
 158 
 159 static bool caller_is_deopted() {
 160   JavaThread* thread = JavaThread::current();
 161   RegisterMap reg_map(thread, false);
 162   frame runtime_frame = thread->last_frame();
 163   frame caller_frame = runtime_frame.sender(&reg_map);
 164   assert(caller_frame.is_compiled_frame(), "must be compiled");
 165   return caller_frame.is_deoptimized_frame();
 166 }
 167 
 168 // Stress deoptimization
 169 static void deopt_caller() {
 170   if ( !caller_is_deopted()) {
 171     JavaThread* thread = JavaThread::current();
 172     RegisterMap reg_map(thread, false);
 173     frame runtime_frame = thread->last_frame();
 174     frame caller_frame = runtime_frame.sender(&reg_map);
 175     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 176     assert(caller_is_deopted(), "Must be deoptimized");
 177   }
 178 }
 179 
 180 
 181 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
 182   assert(0 <= id && id < number_of_ids, "illegal stub id");
 183   ResourceMark rm;
 184   // create code buffer for code storage
 185   CodeBuffer code(buffer_blob);
 186 
 187   OopMapSet* oop_maps;
 188   int frame_size;
 189   bool must_gc_arguments;
 190 
 191   Compilation::setup_code_buffer(&code, 0);
 192 
 193   // create assembler for code generation
 194   StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
 195   // generate code for runtime stub
 196   oop_maps = generate_code_for(id, sasm);
 197   assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
 198          "if stub has an oop map it must have a valid frame size");
 199 
 200 #ifdef ASSERT
 201   // Make sure that stubs that need oopmaps have them
 202   switch (id) {
 203     // These stubs don't need to have an oopmap
 204   case dtrace_object_alloc_id:
 205   case heap_object_sample_id:
 206   case g1_pre_barrier_slow_id:
 207   case g1_post_barrier_slow_id:
 208   case slow_subtype_check_id:
 209   case fpu2long_stub_id:
 210   case unwind_exception_id:
 211   case counter_overflow_id:
 212 #if defined(SPARC) || defined(PPC32)
 213   case handle_exception_nofpu_id:  // Unused on sparc
 214 #endif
 215     break;
 216 
 217     // All other stubs should have oopmaps
 218   default:
 219     assert(oop_maps != NULL, "must have an oopmap");
 220   }
 221 #endif
 222 
 223   // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
 224   sasm->align(BytesPerWord);
 225   // make sure all code is in code buffer
 226   sasm->flush();
 227 
 228   frame_size = sasm->frame_size();
 229   must_gc_arguments = sasm->must_gc_arguments();
 230   // create blob - distinguish a few special cases
 231   CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
 232                                                  &code,
 233                                                  CodeOffsets::frame_never_safe,
 234                                                  frame_size,
 235                                                  oop_maps,
 236                                                  must_gc_arguments);
 237   // install blob
 238   assert(blob != NULL, "blob must exist");
 239   _blobs[id] = blob;
 240 }
 241 
 242 
 243 void Runtime1::initialize(BufferBlob* blob) {
 244   // platform-dependent initialization
 245   initialize_pd();
 246   // generate stubs
 247   for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
 248   // printing
 249 #ifndef PRODUCT
 250   if (PrintSimpleStubs) {
 251     ResourceMark rm;
 252     for (int id = 0; id < number_of_ids; id++) {
 253       _blobs[id]->print();
 254       if (_blobs[id]->oop_maps() != NULL) {
 255         _blobs[id]->oop_maps()->print();
 256       }
 257     }
 258   }
 259 #endif
 260 }
 261 
 262 
 263 CodeBlob* Runtime1::blob_for(StubID id) {
 264   assert(0 <= id && id < number_of_ids, "illegal stub id");
 265   return _blobs[id];
 266 }
 267 
 268 
 269 const char* Runtime1::name_for(StubID id) {
 270   assert(0 <= id && id < number_of_ids, "illegal stub id");
 271   return _blob_names[id];
 272 }
 273 
 274 const char* Runtime1::name_for_address(address entry) {
 275   for (int id = 0; id < number_of_ids; id++) {
 276     if (entry == entry_for((StubID)id)) return name_for((StubID)id);
 277   }
 278 
 279 #define FUNCTION_CASE(a, f) \
 280   if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f))  return #f
 281 
 282   FUNCTION_CASE(entry, os::javaTimeMillis);
 283   FUNCTION_CASE(entry, os::javaTimeNanos);
 284   FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
 285   FUNCTION_CASE(entry, SharedRuntime::d2f);
 286   FUNCTION_CASE(entry, SharedRuntime::d2i);
 287   FUNCTION_CASE(entry, SharedRuntime::d2l);
 288   FUNCTION_CASE(entry, SharedRuntime::dcos);
 289   FUNCTION_CASE(entry, SharedRuntime::dexp);
 290   FUNCTION_CASE(entry, SharedRuntime::dlog);
 291   FUNCTION_CASE(entry, SharedRuntime::dlog10);
 292   FUNCTION_CASE(entry, SharedRuntime::dpow);
 293   FUNCTION_CASE(entry, SharedRuntime::drem);
 294   FUNCTION_CASE(entry, SharedRuntime::dsin);
 295   FUNCTION_CASE(entry, SharedRuntime::dtan);
 296   FUNCTION_CASE(entry, SharedRuntime::f2i);
 297   FUNCTION_CASE(entry, SharedRuntime::f2l);
 298   FUNCTION_CASE(entry, SharedRuntime::frem);
 299   FUNCTION_CASE(entry, SharedRuntime::l2d);
 300   FUNCTION_CASE(entry, SharedRuntime::l2f);
 301   FUNCTION_CASE(entry, SharedRuntime::ldiv);
 302   FUNCTION_CASE(entry, SharedRuntime::lmul);
 303   FUNCTION_CASE(entry, SharedRuntime::lrem);
 304   FUNCTION_CASE(entry, SharedRuntime::lrem);
 305   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
 306   FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
 307   FUNCTION_CASE(entry, is_instance_of);
 308   FUNCTION_CASE(entry, trace_block_entry);
 309 #ifdef TRACE_HAVE_INTRINSICS
 310   FUNCTION_CASE(entry, TRACE_TIME_METHOD);
 311 #endif
 312   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
 313   FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32C());
 314   FUNCTION_CASE(entry, StubRoutines::vectorizedMismatch());
 315   FUNCTION_CASE(entry, StubRoutines::dexp());
 316   FUNCTION_CASE(entry, StubRoutines::dlog());
 317   FUNCTION_CASE(entry, StubRoutines::dlog10());
 318   FUNCTION_CASE(entry, StubRoutines::dpow());
 319   FUNCTION_CASE(entry, StubRoutines::dsin());
 320   FUNCTION_CASE(entry, StubRoutines::dcos());
 321   FUNCTION_CASE(entry, StubRoutines::dtan());
 322 
 323 #undef FUNCTION_CASE
 324 
 325   // Soft float adds more runtime names.
 326   return pd_name_for_address(entry);
 327 }
 328 
 329 
 330 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
 331   NOT_PRODUCT(_new_instance_slowcase_cnt++;)
 332 
 333   assert(klass->is_klass(), "not a class");
 334   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 335   InstanceKlass* h = InstanceKlass::cast(klass);
 336   h->check_valid_for_instantiation(true, CHECK);
 337   // make sure klass is initialized
 338   h->initialize(CHECK);
 339   // allocate instance and return via TLS
 340   oop obj = h->allocate_instance(CHECK);
 341   thread->set_vm_result(obj);
 342 JRT_END
 343 
 344 
 345 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
 346   NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
 347   // Note: no handle for klass needed since they are not used
 348   //       anymore after new_typeArray() and no GC can happen before.
 349   //       (This may have to change if this code changes!)
 350   assert(klass->is_klass(), "not a class");
 351   BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
 352   oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
 353   thread->set_vm_result(obj);
 354   // This is pretty rare but this runtime patch is stressful to deoptimization
 355   // if we deoptimize here so force a deopt to stress the path.
 356   if (DeoptimizeALot) {
 357     deopt_caller();
 358   }
 359 
 360 JRT_END
 361 
 362 
 363 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
 364   NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
 365 
 366   // Note: no handle for klass needed since they are not used
 367   //       anymore after new_objArray() and no GC can happen before.
 368   //       (This may have to change if this code changes!)
 369   assert(array_klass->is_klass(), "not a class");
 370   Handle holder(THREAD, array_klass->klass_holder()); // keep the klass alive
 371   Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
 372   objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
 373   thread->set_vm_result(obj);
 374   // This is pretty rare but this runtime patch is stressful to deoptimization
 375   // if we deoptimize here so force a deopt to stress the path.
 376   if (DeoptimizeALot) {
 377     deopt_caller();
 378   }
 379 JRT_END
 380 
 381 
 382 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
 383   NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
 384 
 385   assert(klass->is_klass(), "not a class");
 386   assert(rank >= 1, "rank must be nonzero");
 387   Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 388   oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
 389   thread->set_vm_result(obj);
 390 JRT_END
 391 
 392 
 393 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
 394   tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
 395 JRT_END
 396 
 397 
 398 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
 399   ResourceMark rm(thread);
 400   const char* klass_name = obj->klass()->external_name();
 401   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
 402 JRT_END
 403 
 404 
 405 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
 406 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
 407 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
 408 // a constant.
 409 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
 410   nmethod* osr_nm = NULL;
 411   methodHandle method(THREAD, m);
 412 
 413   RegisterMap map(THREAD, false);
 414   frame fr =  THREAD->last_frame().sender(&map);
 415   nmethod* nm = (nmethod*) fr.cb();
 416   assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
 417   methodHandle enclosing_method(THREAD, nm->method());
 418 
 419   CompLevel level = (CompLevel)nm->comp_level();
 420   int bci = InvocationEntryBci;
 421   if (branch_bci != InvocationEntryBci) {
 422     // Compute destination bci
 423     address pc = method()->code_base() + branch_bci;
 424     Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
 425     int offset = 0;
 426     switch (branch) {
 427       case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
 428       case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
 429       case Bytecodes::_if_icmple: case Bytecodes::_ifle:
 430       case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
 431       case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
 432       case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
 433       case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
 434         offset = (int16_t)Bytes::get_Java_u2(pc + 1);
 435         break;
 436       case Bytecodes::_goto_w:
 437         offset = Bytes::get_Java_u4(pc + 1);
 438         break;
 439       default: ;
 440     }
 441     bci = branch_bci + offset;
 442   }
 443   assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
 444   osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
 445   assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
 446   return osr_nm;
 447 }
 448 
 449 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
 450   nmethod* osr_nm;
 451   JRT_BLOCK
 452     osr_nm = counter_overflow_helper(thread, bci, method);
 453     if (osr_nm != NULL) {
 454       RegisterMap map(thread, false);
 455       frame fr =  thread->last_frame().sender(&map);
 456       Deoptimization::deoptimize_frame(thread, fr.id());
 457     }
 458   JRT_BLOCK_END
 459   return NULL;
 460 JRT_END
 461 
 462 extern void vm_exit(int code);
 463 
 464 // Enter this method from compiled code handler below. This is where we transition
 465 // to VM mode. This is done as a helper routine so that the method called directly
 466 // from compiled code does not have to transition to VM. This allows the entry
 467 // method to see if the nmethod that we have just looked up a handler for has
 468 // been deoptimized while we were in the vm. This simplifies the assembly code
 469 // cpu directories.
 470 //
 471 // We are entering here from exception stub (via the entry method below)
 472 // If there is a compiled exception handler in this method, we will continue there;
 473 // otherwise we will unwind the stack and continue at the caller of top frame method
 474 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
 475 // control the area where we can allow a safepoint. After we exit the safepoint area we can
 476 // check to see if the handler we are going to return is now in a nmethod that has
 477 // been deoptimized. If that is the case we return the deopt blob
 478 // unpack_with_exception entry instead. This makes life for the exception blob easier
 479 // because making that same check and diverting is painful from assembly language.
 480 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
 481   // Reset method handle flag.
 482   thread->set_is_method_handle_return(false);
 483 
 484   Handle exception(thread, ex);
 485   nm = CodeCache::find_nmethod(pc);
 486   assert(nm != NULL, "this is not an nmethod");
 487   // Adjust the pc as needed/
 488   if (nm->is_deopt_pc(pc)) {
 489     RegisterMap map(thread, false);
 490     frame exception_frame = thread->last_frame().sender(&map);
 491     // if the frame isn't deopted then pc must not correspond to the caller of last_frame
 492     assert(exception_frame.is_deoptimized_frame(), "must be deopted");
 493     pc = exception_frame.pc();
 494   }
 495 #ifdef ASSERT
 496   assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
 497   assert(exception->is_oop(), "just checking");
 498   // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
 499   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 500     if (ExitVMOnVerifyError) vm_exit(-1);
 501     ShouldNotReachHere();
 502   }
 503 #endif
 504 
 505   // Check the stack guard pages and reenable them if necessary and there is
 506   // enough space on the stack to do so.  Use fast exceptions only if the guard
 507   // pages are enabled.
 508   bool guard_pages_enabled = thread->stack_guards_enabled();
 509   if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 510 
 511   if (JvmtiExport::can_post_on_exceptions()) {
 512     // To ensure correct notification of exception catches and throws
 513     // we have to deoptimize here.  If we attempted to notify the
 514     // catches and throws during this exception lookup it's possible
 515     // we could deoptimize on the way out of the VM and end back in
 516     // the interpreter at the throw site.  This would result in double
 517     // notifications since the interpreter would also notify about
 518     // these same catches and throws as it unwound the frame.
 519 
 520     RegisterMap reg_map(thread);
 521     frame stub_frame = thread->last_frame();
 522     frame caller_frame = stub_frame.sender(&reg_map);
 523 
 524     // We don't really want to deoptimize the nmethod itself since we
 525     // can actually continue in the exception handler ourselves but I
 526     // don't see an easy way to have the desired effect.
 527     Deoptimization::deoptimize_frame(thread, caller_frame.id());
 528     assert(caller_is_deopted(), "Must be deoptimized");
 529 
 530     return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 531   }
 532 
 533   // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
 534   if (guard_pages_enabled) {
 535     address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
 536     if (fast_continuation != NULL) {
 537       // Set flag if return address is a method handle call site.
 538       thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 539       return fast_continuation;
 540     }
 541   }
 542 
 543   // If the stack guard pages are enabled, check whether there is a handler in
 544   // the current method.  Otherwise (guard pages disabled), force an unwind and
 545   // skip the exception cache update (i.e., just leave continuation==NULL).
 546   address continuation = NULL;
 547   if (guard_pages_enabled) {
 548 
 549     // New exception handling mechanism can support inlined methods
 550     // with exception handlers since the mappings are from PC to PC
 551 
 552     // debugging support
 553     // tracing
 554     if (log_is_enabled(Info, exceptions)) {
 555       ResourceMark rm;
 556       stringStream tempst;
 557       tempst.print("compiled method <%s>\n"
 558                    " at PC" INTPTR_FORMAT " for thread " INTPTR_FORMAT,
 559                    nm->method()->print_value_string(), p2i(pc), p2i(thread));
 560       Exceptions::log_exception(exception, tempst);
 561     }
 562     // for AbortVMOnException flag
 563     Exceptions::debug_check_abort(exception);
 564 
 565     // Clear out the exception oop and pc since looking up an
 566     // exception handler can cause class loading, which might throw an
 567     // exception and those fields are expected to be clear during
 568     // normal bytecode execution.
 569     thread->clear_exception_oop_and_pc();
 570 
 571     bool recursive_exception = false;
 572     continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false, recursive_exception);
 573     // If an exception was thrown during exception dispatch, the exception oop may have changed
 574     thread->set_exception_oop(exception());
 575     thread->set_exception_pc(pc);
 576 
 577     // the exception cache is used only by non-implicit exceptions
 578     // Update the exception cache only when there didn't happen
 579     // another exception during the computation of the compiled
 580     // exception handler. Checking for exception oop equality is not
 581     // sufficient because some exceptions are pre-allocated and reused.
 582     if (continuation != NULL && !recursive_exception) {
 583       nm->add_handler_for_exception_and_pc(exception, pc, continuation);
 584     }
 585   }
 586 
 587   thread->set_vm_result(exception());
 588   // Set flag if return address is a method handle call site.
 589   thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
 590 
 591   if (log_is_enabled(Info, exceptions)) {
 592     ResourceMark rm;
 593     log_info(exceptions)("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT
 594                          " for exception thrown at PC " PTR_FORMAT,
 595                          p2i(thread), p2i(continuation), p2i(pc));
 596   }
 597 
 598   return continuation;
 599 JRT_END
 600 
 601 // Enter this method from compiled code only if there is a Java exception handler
 602 // in the method handling the exception.
 603 // We are entering here from exception stub. We don't do a normal VM transition here.
 604 // We do it in a helper. This is so we can check to see if the nmethod we have just
 605 // searched for an exception handler has been deoptimized in the meantime.
 606 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
 607   oop exception = thread->exception_oop();
 608   address pc = thread->exception_pc();
 609   // Still in Java mode
 610   DEBUG_ONLY(ResetNoHandleMark rnhm);
 611   nmethod* nm = NULL;
 612   address continuation = NULL;
 613   {
 614     // Enter VM mode by calling the helper
 615     ResetNoHandleMark rnhm;
 616     continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
 617   }
 618   // Back in JAVA, use no oops DON'T safepoint
 619 
 620   // Now check to see if the nmethod we were called from is now deoptimized.
 621   // If so we must return to the deopt blob and deoptimize the nmethod
 622   if (nm != NULL && caller_is_deopted()) {
 623     continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 624   }
 625 
 626   assert(continuation != NULL, "no handler found");
 627   return continuation;
 628 }
 629 
 630 
 631 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
 632   NOT_PRODUCT(_throw_range_check_exception_count++;)
 633   char message[jintAsStringSize];
 634   sprintf(message, "%d", index);
 635   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
 636 JRT_END
 637 
 638 
 639 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
 640   NOT_PRODUCT(_throw_index_exception_count++;)
 641   char message[16];
 642   sprintf(message, "%d", index);
 643   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
 644 JRT_END
 645 
 646 
 647 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
 648   NOT_PRODUCT(_throw_div0_exception_count++;)
 649   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 650 JRT_END
 651 
 652 
 653 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
 654   NOT_PRODUCT(_throw_null_pointer_exception_count++;)
 655   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 656 JRT_END
 657 
 658 
 659 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
 660   NOT_PRODUCT(_throw_class_cast_exception_count++;)
 661   ResourceMark rm(thread);
 662   char* message = SharedRuntime::generate_class_cast_message(
 663     thread, object->klass());
 664   SharedRuntime::throw_and_post_jvmti_exception(
 665     thread, vmSymbols::java_lang_ClassCastException(), message);
 666 JRT_END
 667 
 668 
 669 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
 670   NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
 671   ResourceMark rm(thread);
 672   SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
 673 JRT_END
 674 
 675 
 676 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
 677   NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
 678   if (PrintBiasedLockingStatistics) {
 679     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
 680   }
 681   Handle h_obj(thread, obj);
 682   assert(h_obj()->is_oop(), "must be NULL or an object");
 683   if (UseBiasedLocking) {
 684     // Retry fast entry if bias is revoked to avoid unnecessary inflation
 685     ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
 686   } else {
 687     if (UseFastLocking) {
 688       // When using fast locking, the compiled code has already tried the fast case
 689       assert(obj == lock->obj(), "must match");
 690       ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
 691     } else {
 692       lock->set_obj(obj);
 693       ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
 694     }
 695   }
 696 JRT_END
 697 
 698 
 699 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
 700   NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
 701   assert(thread == JavaThread::current(), "threads must correspond");
 702   assert(thread->last_Java_sp(), "last_Java_sp must be set");
 703   // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
 704   EXCEPTION_MARK;
 705 
 706   oop obj = lock->obj();
 707   assert(obj->is_oop(), "must be NULL or an object");
 708   if (UseFastLocking) {
 709     // When using fast locking, the compiled code has already tried the fast case
 710     ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
 711   } else {
 712     ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
 713   }
 714 JRT_END
 715 
 716 // Cf. OptoRuntime::deoptimize_caller_frame
 717 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread, jint trap_request))
 718   // Called from within the owner thread, so no need for safepoint
 719   RegisterMap reg_map(thread, false);
 720   frame stub_frame = thread->last_frame();
 721   assert(stub_frame.is_runtime_frame(), "Sanity check");
 722   frame caller_frame = stub_frame.sender(&reg_map);
 723   nmethod* nm = caller_frame.cb()->as_nmethod_or_null();
 724   assert(nm != NULL, "Sanity check");
 725   methodHandle method(thread, nm->method());
 726   assert(nm == CodeCache::find_nmethod(caller_frame.pc()), "Should be the same");
 727   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
 728   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
 729 
 730   if (action == Deoptimization::Action_make_not_entrant) {
 731     if (nm->make_not_entrant()) {
 732       if (reason == Deoptimization::Reason_tenured) {
 733         MethodData* trap_mdo = Deoptimization::get_method_data(thread, method, true /*create_if_missing*/);
 734         if (trap_mdo != NULL) {
 735           trap_mdo->inc_tenure_traps();
 736         }
 737       }
 738     }
 739   }
 740 
 741   // Deoptimize the caller frame.
 742   Deoptimization::deoptimize_frame(thread, caller_frame.id());
 743   // Return to the now deoptimized frame.
 744 JRT_END
 745 
 746 
 747 #ifndef DEOPTIMIZE_WHEN_PATCHING
 748 
 749 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
 750   Bytecode_field field_access(caller, bci);
 751   // This can be static or non-static field access
 752   Bytecodes::Code code       = field_access.code();
 753 
 754   // We must load class, initialize class and resolve the field
 755   fieldDescriptor result; // initialize class if needed
 756   constantPoolHandle constants(THREAD, caller->constants());
 757   LinkResolver::resolve_field_access(result, constants, field_access.index(), caller, Bytecodes::java_code(code), CHECK_NULL);
 758   return result.field_holder();
 759 }
 760 
 761 
 762 //
 763 // This routine patches sites where a class wasn't loaded or
 764 // initialized at the time the code was generated.  It handles
 765 // references to classes, fields and forcing of initialization.  Most
 766 // of the cases are straightforward and involving simply forcing
 767 // resolution of a class, rewriting the instruction stream with the
 768 // needed constant and replacing the call in this function with the
 769 // patched code.  The case for static field is more complicated since
 770 // the thread which is in the process of initializing a class can
 771 // access it's static fields but other threads can't so the code
 772 // either has to deoptimize when this case is detected or execute a
 773 // check that the current thread is the initializing thread.  The
 774 // current
 775 //
 776 // Patches basically look like this:
 777 //
 778 //
 779 // patch_site: jmp patch stub     ;; will be patched
 780 // continue:   ...
 781 //             ...
 782 //             ...
 783 //             ...
 784 //
 785 // They have a stub which looks like this:
 786 //
 787 //             ;; patch body
 788 //             movl <const>, reg           (for class constants)
 789 //        <or> movl [reg1 + <const>], reg  (for field offsets)
 790 //        <or> movl reg, [reg1 + <const>]  (for field offsets)
 791 //             <being_init offset> <bytes to copy> <bytes to skip>
 792 // patch_stub: call Runtime1::patch_code (through a runtime stub)
 793 //             jmp patch_site
 794 //
 795 //
 796 // A normal patch is done by rewriting the patch body, usually a move,
 797 // and then copying it into place over top of the jmp instruction
 798 // being careful to flush caches and doing it in an MP-safe way.  The
 799 // constants following the patch body are used to find various pieces
 800 // of the patch relative to the call site for Runtime1::patch_code.
 801 // The case for getstatic and putstatic is more complicated because
 802 // getstatic and putstatic have special semantics when executing while
 803 // the class is being initialized.  getstatic/putstatic on a class
 804 // which is being_initialized may be executed by the initializing
 805 // thread but other threads have to block when they execute it.  This
 806 // is accomplished in compiled code by executing a test of the current
 807 // thread against the initializing thread of the class.  It's emitted
 808 // as boilerplate in their stub which allows the patched code to be
 809 // executed before it's copied back into the main body of the nmethod.
 810 //
 811 // being_init: get_thread(<tmp reg>
 812 //             cmpl [reg1 + <init_thread_offset>], <tmp reg>
 813 //             jne patch_stub
 814 //             movl [reg1 + <const>], reg  (for field offsets)  <or>
 815 //             movl reg, [reg1 + <const>]  (for field offsets)
 816 //             jmp continue
 817 //             <being_init offset> <bytes to copy> <bytes to skip>
 818 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
 819 //             jmp patch_site
 820 //
 821 // If the class is being initialized the patch body is rewritten and
 822 // the patch site is rewritten to jump to being_init, instead of
 823 // patch_stub.  Whenever this code is executed it checks the current
 824 // thread against the intializing thread so other threads will enter
 825 // the runtime and end up blocked waiting the class to finish
 826 // initializing inside the calls to resolve_field below.  The
 827 // initializing class will continue on it's way.  Once the class is
 828 // fully_initialized, the intializing_thread of the class becomes
 829 // NULL, so the next thread to execute this code will fail the test,
 830 // call into patch_code and complete the patching process by copying
 831 // the patch body back into the main part of the nmethod and resume
 832 // executing.
 833 //
 834 //
 835 
 836 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
 837   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
 838 
 839   ResourceMark rm(thread);
 840   RegisterMap reg_map(thread, false);
 841   frame runtime_frame = thread->last_frame();
 842   frame caller_frame = runtime_frame.sender(&reg_map);
 843 
 844   // last java frame on stack
 845   vframeStream vfst(thread, true);
 846   assert(!vfst.at_end(), "Java frame must exist");
 847 
 848   methodHandle caller_method(THREAD, vfst.method());
 849   // Note that caller_method->code() may not be same as caller_code because of OSR's
 850   // Note also that in the presence of inlining it is not guaranteed
 851   // that caller_method() == caller_code->method()
 852 
 853   int bci = vfst.bci();
 854   Bytecodes::Code code = caller_method()->java_code_at(bci);
 855 
 856   // this is used by assertions in the access_field_patching_id
 857   BasicType patch_field_type = T_ILLEGAL;
 858   bool deoptimize_for_volatile = false;
 859   bool deoptimize_for_atomic = false;
 860   int patch_field_offset = -1;
 861   Klass* init_klass = NULL; // klass needed by load_klass_patching code
 862   Klass* load_klass = NULL; // klass needed by load_klass_patching code
 863   Handle mirror(THREAD, NULL);                    // oop needed by load_mirror_patching code
 864   Handle appendix(THREAD, NULL);                  // oop needed by appendix_patching code
 865   bool load_klass_or_mirror_patch_id =
 866     (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
 867 
 868   if (stub_id == Runtime1::access_field_patching_id) {
 869 
 870     Bytecode_field field_access(caller_method, bci);
 871     fieldDescriptor result; // initialize class if needed
 872     Bytecodes::Code code = field_access.code();
 873     constantPoolHandle constants(THREAD, caller_method->constants());
 874     LinkResolver::resolve_field_access(result, constants, field_access.index(), caller_method, Bytecodes::java_code(code), CHECK);
 875     patch_field_offset = result.offset();
 876 
 877     // If we're patching a field which is volatile then at compile it
 878     // must not have been know to be volatile, so the generated code
 879     // isn't correct for a volatile reference.  The nmethod has to be
 880     // deoptimized so that the code can be regenerated correctly.
 881     // This check is only needed for access_field_patching since this
 882     // is the path for patching field offsets.  load_klass is only
 883     // used for patching references to oops which don't need special
 884     // handling in the volatile case.
 885 
 886     deoptimize_for_volatile = result.access_flags().is_volatile();
 887 
 888     // If we are patching a field which should be atomic, then
 889     // the generated code is not correct either, force deoptimizing.
 890     // We need to only cover T_LONG and T_DOUBLE fields, as we can
 891     // break access atomicity only for them.
 892 
 893     // Strictly speaking, the deoptimizaation on 64-bit platforms
 894     // is unnecessary, and T_LONG stores on 32-bit platforms need
 895     // to be handled by special patching code when AlwaysAtomicAccesses
 896     // becomes product feature. At this point, we are still going
 897     // for the deoptimization for consistency against volatile
 898     // accesses.
 899 
 900     patch_field_type = result.field_type();
 901     deoptimize_for_atomic = (AlwaysAtomicAccesses && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG));
 902 
 903   } else if (load_klass_or_mirror_patch_id) {
 904     Klass* k = NULL;
 905     switch (code) {
 906       case Bytecodes::_putstatic:
 907       case Bytecodes::_getstatic:
 908         { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
 909           init_klass = klass;
 910           mirror = Handle(THREAD, klass->java_mirror());
 911         }
 912         break;
 913       case Bytecodes::_new:
 914         { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
 915           k = caller_method->constants()->klass_at(bnew.index(), CHECK);
 916         }
 917         break;
 918       case Bytecodes::_multianewarray:
 919         { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
 920           k = caller_method->constants()->klass_at(mna.index(), CHECK);
 921         }
 922         break;
 923       case Bytecodes::_instanceof:
 924         { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
 925           k = caller_method->constants()->klass_at(io.index(), CHECK);
 926         }
 927         break;
 928       case Bytecodes::_checkcast:
 929         { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
 930           k = caller_method->constants()->klass_at(cc.index(), CHECK);
 931         }
 932         break;
 933       case Bytecodes::_anewarray:
 934         { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
 935           Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
 936           k = ek->array_klass(CHECK);
 937         }
 938         break;
 939       case Bytecodes::_ldc:
 940       case Bytecodes::_ldc_w:
 941         {
 942           Bytecode_loadconstant cc(caller_method, bci);
 943           oop m = cc.resolve_constant(CHECK);
 944           mirror = Handle(THREAD, m);
 945         }
 946         break;
 947       default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
 948     }
 949     load_klass = k;
 950   } else if (stub_id == load_appendix_patching_id) {
 951     Bytecode_invoke bytecode(caller_method, bci);
 952     Bytecodes::Code bc = bytecode.invoke_code();
 953 
 954     CallInfo info;
 955     constantPoolHandle pool(thread, caller_method->constants());
 956     int index = bytecode.index();
 957     LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
 958     switch (bc) {
 959       case Bytecodes::_invokehandle: {
 960         int cache_index = ConstantPool::decode_cpcache_index(index, true);
 961         assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
 962         ConstantPoolCacheEntry* cpce = pool->cache()->entry_at(cache_index);
 963         cpce->set_method_handle(pool, info);
 964         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 965         break;
 966       }
 967       case Bytecodes::_invokedynamic: {
 968         ConstantPoolCacheEntry* cpce = pool->invokedynamic_cp_cache_entry_at(index);
 969         cpce->set_dynamic_call(pool, info);
 970         appendix = Handle(THREAD, cpce->appendix_if_resolved(pool)); // just in case somebody already resolved the entry
 971         break;
 972       }
 973       default: fatal("unexpected bytecode for load_appendix_patching_id");
 974     }
 975   } else {
 976     ShouldNotReachHere();
 977   }
 978 
 979   if (deoptimize_for_volatile || deoptimize_for_atomic) {
 980     // At compile time we assumed the field wasn't volatile/atomic but after
 981     // loading it turns out it was volatile/atomic so we have to throw the
 982     // compiled code out and let it be regenerated.
 983     if (TracePatching) {
 984       if (deoptimize_for_volatile) {
 985         tty->print_cr("Deoptimizing for patching volatile field reference");
 986       }
 987       if (deoptimize_for_atomic) {
 988         tty->print_cr("Deoptimizing for patching atomic field reference");
 989       }
 990     }
 991 
 992     // It's possible the nmethod was invalidated in the last
 993     // safepoint, but if it's still alive then make it not_entrant.
 994     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
 995     if (nm != NULL) {
 996       nm->make_not_entrant();
 997     }
 998 
 999     Deoptimization::deoptimize_frame(thread, caller_frame.id());
1000 
1001     // Return to the now deoptimized frame.
1002   }
1003 
1004   // Now copy code back
1005 
1006   {
1007     MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
1008     //
1009     // Deoptimization may have happened while we waited for the lock.
1010     // In that case we don't bother to do any patching we just return
1011     // and let the deopt happen
1012     if (!caller_is_deopted()) {
1013       NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
1014       address instr_pc = jump->jump_destination();
1015       NativeInstruction* ni = nativeInstruction_at(instr_pc);
1016       if (ni->is_jump() ) {
1017         // the jump has not been patched yet
1018         // The jump destination is slow case and therefore not part of the stubs
1019         // (stubs are only for StaticCalls)
1020 
1021         // format of buffer
1022         //    ....
1023         //    instr byte 0     <-- copy_buff
1024         //    instr byte 1
1025         //    ..
1026         //    instr byte n-1
1027         //      n
1028         //    ....             <-- call destination
1029 
1030         address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
1031         unsigned char* byte_count = (unsigned char*) (stub_location - 1);
1032         unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
1033         unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
1034         address copy_buff = stub_location - *byte_skip - *byte_count;
1035         address being_initialized_entry = stub_location - *being_initialized_entry_offset;
1036         if (TracePatching) {
1037           ttyLocker ttyl;
1038           tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT "  (%s)", Bytecodes::name(code), bci,
1039                         p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
1040           nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
1041           assert(caller_code != NULL, "nmethod not found");
1042 
1043           // NOTE we use pc() not original_pc() because we already know they are
1044           // identical otherwise we'd have never entered this block of code
1045 
1046           const ImmutableOopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
1047           assert(map != NULL, "null check");
1048           map->print();
1049           tty->cr();
1050 
1051           Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1052         }
1053         // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
1054         bool do_patch = true;
1055         if (stub_id == Runtime1::access_field_patching_id) {
1056           // The offset may not be correct if the class was not loaded at code generation time.
1057           // Set it now.
1058           NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
1059           assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1060           assert(patch_field_offset >= 0, "illegal offset");
1061           n_move->add_offset_in_bytes(patch_field_offset);
1062         } else if (load_klass_or_mirror_patch_id) {
1063           // If a getstatic or putstatic is referencing a klass which
1064           // isn't fully initialized, the patch body isn't copied into
1065           // place until initialization is complete.  In this case the
1066           // patch site is setup so that any threads besides the
1067           // initializing thread are forced to come into the VM and
1068           // block.
1069           do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1070                      InstanceKlass::cast(init_klass)->is_initialized();
1071           NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1072           if (jump->jump_destination() == being_initialized_entry) {
1073             assert(do_patch == true, "initialization must be complete at this point");
1074           } else {
1075             // patch the instruction <move reg, klass>
1076             NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1077 
1078             assert(n_copy->data() == 0 ||
1079                    n_copy->data() == (intptr_t)Universe::non_oop_word(),
1080                    "illegal init value");
1081             if (stub_id == Runtime1::load_klass_patching_id) {
1082               assert(load_klass != NULL, "klass not set");
1083               n_copy->set_data((intx) (load_klass));
1084             } else {
1085               assert(mirror() != NULL, "klass not set");
1086               // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1087               n_copy->set_data(cast_from_oop<intx>(mirror()));
1088             }
1089 
1090             if (TracePatching) {
1091               Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1092             }
1093           }
1094         } else if (stub_id == Runtime1::load_appendix_patching_id) {
1095           NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1096           assert(n_copy->data() == 0 ||
1097                  n_copy->data() == (intptr_t)Universe::non_oop_word(),
1098                  "illegal init value");
1099           n_copy->set_data(cast_from_oop<intx>(appendix()));
1100 
1101           if (TracePatching) {
1102             Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1103           }
1104         } else {
1105           ShouldNotReachHere();
1106         }
1107 
1108 #if defined(SPARC) || defined(PPC32)
1109         if (load_klass_or_mirror_patch_id ||
1110             stub_id == Runtime1::load_appendix_patching_id) {
1111           // Update the location in the nmethod with the proper
1112           // metadata.  When the code was generated, a NULL was stuffed
1113           // in the metadata table and that table needs to be update to
1114           // have the right value.  On intel the value is kept
1115           // directly in the instruction instead of in the metadata
1116           // table, so set_data above effectively updated the value.
1117           nmethod* nm = CodeCache::find_nmethod(instr_pc);
1118           assert(nm != NULL, "invalid nmethod_pc");
1119           RelocIterator mds(nm, copy_buff, copy_buff + 1);
1120           bool found = false;
1121           while (mds.next() && !found) {
1122             if (mds.type() == relocInfo::oop_type) {
1123               assert(stub_id == Runtime1::load_mirror_patching_id ||
1124                      stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1125               oop_Relocation* r = mds.oop_reloc();
1126               oop* oop_adr = r->oop_addr();
1127               *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1128               r->fix_oop_relocation();
1129               found = true;
1130             } else if (mds.type() == relocInfo::metadata_type) {
1131               assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1132               metadata_Relocation* r = mds.metadata_reloc();
1133               Metadata** metadata_adr = r->metadata_addr();
1134               *metadata_adr = load_klass;
1135               r->fix_metadata_relocation();
1136               found = true;
1137             }
1138           }
1139           assert(found, "the metadata must exist!");
1140         }
1141 #endif
1142         if (do_patch) {
1143           // replace instructions
1144           // first replace the tail, then the call
1145 #ifdef ARM
1146           if((load_klass_or_mirror_patch_id ||
1147               stub_id == Runtime1::load_appendix_patching_id) &&
1148               nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1149             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1150             address addr = NULL;
1151             assert(nm != NULL, "invalid nmethod_pc");
1152             RelocIterator mds(nm, copy_buff, copy_buff + 1);
1153             while (mds.next()) {
1154               if (mds.type() == relocInfo::oop_type) {
1155                 assert(stub_id == Runtime1::load_mirror_patching_id ||
1156                        stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1157                 oop_Relocation* r = mds.oop_reloc();
1158                 addr = (address)r->oop_addr();
1159                 break;
1160               } else if (mds.type() == relocInfo::metadata_type) {
1161                 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1162                 metadata_Relocation* r = mds.metadata_reloc();
1163                 addr = (address)r->metadata_addr();
1164                 break;
1165               }
1166             }
1167             assert(addr != NULL, "metadata relocation must exist");
1168             copy_buff -= *byte_count;
1169             NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1170             n_copy2->set_pc_relative_offset(addr, instr_pc);
1171           }
1172 #endif
1173 
1174           for (int i = NativeGeneralJump::instruction_size; i < *byte_count; i++) {
1175             address ptr = copy_buff + i;
1176             int a_byte = (*ptr) & 0xFF;
1177             address dst = instr_pc + i;
1178             *(unsigned char*)dst = (unsigned char) a_byte;
1179           }
1180           ICache::invalidate_range(instr_pc, *byte_count);
1181           NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1182 
1183           if (load_klass_or_mirror_patch_id ||
1184               stub_id == Runtime1::load_appendix_patching_id) {
1185             relocInfo::relocType rtype =
1186               (stub_id == Runtime1::load_klass_patching_id) ?
1187                                    relocInfo::metadata_type :
1188                                    relocInfo::oop_type;
1189             // update relocInfo to metadata
1190             nmethod* nm = CodeCache::find_nmethod(instr_pc);
1191             assert(nm != NULL, "invalid nmethod_pc");
1192 
1193             // The old patch site is now a move instruction so update
1194             // the reloc info so that it will get updated during
1195             // future GCs.
1196             RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1197             relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1198                                                      relocInfo::none, rtype);
1199 #ifdef SPARC
1200             // Sparc takes two relocations for an metadata so update the second one.
1201             address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1202             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1203             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1204                                                      relocInfo::none, rtype);
1205 #endif
1206 #ifdef PPC32
1207           { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1208             RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1209             relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1210                                                      relocInfo::none, rtype);
1211           }
1212 #endif
1213           }
1214 
1215         } else {
1216           ICache::invalidate_range(copy_buff, *byte_count);
1217           NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1218         }
1219       }
1220     }
1221   }
1222 
1223   // If we are patching in a non-perm oop, make sure the nmethod
1224   // is on the right list.
1225   if (ScavengeRootsInCode) {
1226     MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1227     nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1228     guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1229     if (!nm->on_scavenge_root_list() &&
1230         ((mirror.not_null() && mirror()->is_scavengable()) ||
1231          (appendix.not_null() && appendix->is_scavengable()))) {
1232       CodeCache::add_scavenge_root_nmethod(nm);
1233     }
1234 
1235     // Since we've patched some oops in the nmethod,
1236     // (re)register it with the heap.
1237     Universe::heap()->register_nmethod(nm);
1238   }
1239 JRT_END
1240 
1241 #else // DEOPTIMIZE_WHEN_PATCHING
1242 
1243 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
1244   RegisterMap reg_map(thread, false);
1245 
1246   NOT_PRODUCT(_patch_code_slowcase_cnt++;)
1247   if (TracePatching) {
1248     tty->print_cr("Deoptimizing because patch is needed");
1249   }
1250 
1251   frame runtime_frame = thread->last_frame();
1252   frame caller_frame = runtime_frame.sender(&reg_map);
1253 
1254   // It's possible the nmethod was invalidated in the last
1255   // safepoint, but if it's still alive then make it not_entrant.
1256   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1257   if (nm != NULL) {
1258     nm->make_not_entrant();
1259   }
1260 
1261   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1262 
1263   // Return to the now deoptimized frame.
1264 JRT_END
1265 
1266 #endif // DEOPTIMIZE_WHEN_PATCHING
1267 
1268 //
1269 // Entry point for compiled code. We want to patch a nmethod.
1270 // We don't do a normal VM transition here because we want to
1271 // know after the patching is complete and any safepoint(s) are taken
1272 // if the calling nmethod was deoptimized. We do this by calling a
1273 // helper method which does the normal VM transition and when it
1274 // completes we can check for deoptimization. This simplifies the
1275 // assembly code in the cpu directories.
1276 //
1277 int Runtime1::move_klass_patching(JavaThread* thread) {
1278 //
1279 // NOTE: we are still in Java
1280 //
1281   Thread* THREAD = thread;
1282   debug_only(NoHandleMark nhm;)
1283   {
1284     // Enter VM mode
1285 
1286     ResetNoHandleMark rnhm;
1287     patch_code(thread, load_klass_patching_id);
1288   }
1289   // Back in JAVA, use no oops DON'T safepoint
1290 
1291   // Return true if calling code is deoptimized
1292 
1293   return caller_is_deopted();
1294 }
1295 
1296 int Runtime1::move_mirror_patching(JavaThread* thread) {
1297 //
1298 // NOTE: we are still in Java
1299 //
1300   Thread* THREAD = thread;
1301   debug_only(NoHandleMark nhm;)
1302   {
1303     // Enter VM mode
1304 
1305     ResetNoHandleMark rnhm;
1306     patch_code(thread, load_mirror_patching_id);
1307   }
1308   // Back in JAVA, use no oops DON'T safepoint
1309 
1310   // Return true if calling code is deoptimized
1311 
1312   return caller_is_deopted();
1313 }
1314 
1315 int Runtime1::move_appendix_patching(JavaThread* thread) {
1316 //
1317 // NOTE: we are still in Java
1318 //
1319   Thread* THREAD = thread;
1320   debug_only(NoHandleMark nhm;)
1321   {
1322     // Enter VM mode
1323 
1324     ResetNoHandleMark rnhm;
1325     patch_code(thread, load_appendix_patching_id);
1326   }
1327   // Back in JAVA, use no oops DON'T safepoint
1328 
1329   // Return true if calling code is deoptimized
1330 
1331   return caller_is_deopted();
1332 }
1333 //
1334 // Entry point for compiled code. We want to patch a nmethod.
1335 // We don't do a normal VM transition here because we want to
1336 // know after the patching is complete and any safepoint(s) are taken
1337 // if the calling nmethod was deoptimized. We do this by calling a
1338 // helper method which does the normal VM transition and when it
1339 // completes we can check for deoptimization. This simplifies the
1340 // assembly code in the cpu directories.
1341 //
1342 
1343 int Runtime1::access_field_patching(JavaThread* thread) {
1344 //
1345 // NOTE: we are still in Java
1346 //
1347   Thread* THREAD = thread;
1348   debug_only(NoHandleMark nhm;)
1349   {
1350     // Enter VM mode
1351 
1352     ResetNoHandleMark rnhm;
1353     patch_code(thread, access_field_patching_id);
1354   }
1355   // Back in JAVA, use no oops DON'T safepoint
1356 
1357   // Return true if calling code is deoptimized
1358 
1359   return caller_is_deopted();
1360 JRT_END
1361 
1362 
1363 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1364   // for now we just print out the block id
1365   tty->print("%d ", block_id);
1366 JRT_END
1367 
1368 
1369 // Array copy return codes.
1370 enum {
1371   ac_failed = -1, // arraycopy failed
1372   ac_ok = 0       // arraycopy succeeded
1373 };
1374 
1375 
1376 // Below length is the # elements copied.
1377 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1378                                           oopDesc* dst, T* dst_addr,
1379                                           int length) {
1380 
1381   // For performance reasons, we assume we are using a card marking write
1382   // barrier. The assert will fail if this is not the case.
1383   // Note that we use the non-virtual inlineable variant of write_ref_array.
1384   BarrierSet* bs = Universe::heap()->barrier_set();
1385   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1386   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1387   if (src == dst) {
1388     // same object, no check
1389     bs->write_ref_array_pre(dst_addr, length);
1390     Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1391     bs->write_ref_array((HeapWord*)dst_addr, length);
1392     return ac_ok;
1393   } else {
1394     Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1395     Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1396     if (stype == bound || stype->is_subtype_of(bound)) {
1397       // Elements are guaranteed to be subtypes, so no check necessary
1398       bs->write_ref_array_pre(dst_addr, length);
1399       Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1400       bs->write_ref_array((HeapWord*)dst_addr, length);
1401       return ac_ok;
1402     }
1403   }
1404   return ac_failed;
1405 }
1406 
1407 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1408 // and we did not copy anything
1409 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1410 #ifndef PRODUCT
1411   _generic_arraycopy_cnt++;        // Slow-path oop array copy
1412 #endif
1413 
1414   if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1415   if (!dst->is_array() || !src->is_array()) return ac_failed;
1416   if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1417   if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1418 
1419   if (length == 0) return ac_ok;
1420   if (src->is_typeArray()) {
1421     Klass* klass_oop = src->klass();
1422     if (klass_oop != dst->klass()) return ac_failed;
1423     TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1424     const int l2es = klass->log2_element_size();
1425     const int ihs = klass->array_header_in_bytes() / wordSize;
1426     char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1427     char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1428     // Potential problem: memmove is not guaranteed to be word atomic
1429     // Revisit in Merlin
1430     memmove(dst_addr, src_addr, length << l2es);
1431     return ac_ok;
1432   } else if (src->is_objArray() && dst->is_objArray()) {
1433     if (UseCompressedOops) {
1434       narrowOop *src_addr  = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1435       narrowOop *dst_addr  = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1436       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1437     } else {
1438       oop *src_addr  = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1439       oop *dst_addr  = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1440       return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1441     }
1442   }
1443   return ac_failed;
1444 JRT_END
1445 
1446 
1447 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1448 #ifndef PRODUCT
1449   _primitive_arraycopy_cnt++;
1450 #endif
1451 
1452   if (length == 0) return;
1453   // Not guaranteed to be word atomic, but that doesn't matter
1454   // for anything but an oop array, which is covered by oop_arraycopy.
1455   Copy::conjoint_jbytes(src, dst, length);
1456 JRT_END
1457 
1458 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1459 #ifndef PRODUCT
1460   _oop_arraycopy_cnt++;
1461 #endif
1462 
1463   if (num == 0) return;
1464   BarrierSet* bs = Universe::heap()->barrier_set();
1465   assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1466   assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1467   if (UseCompressedOops) {
1468     bs->write_ref_array_pre((narrowOop*)dst, num);
1469     Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1470   } else {
1471     bs->write_ref_array_pre((oop*)dst, num);
1472     Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1473   }
1474   bs->write_ref_array(dst, num);
1475 JRT_END
1476 
1477 
1478 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1479   // had to return int instead of bool, otherwise there may be a mismatch
1480   // between the C calling convention and the Java one.
1481   // e.g., on x86, GCC may clear only %al when returning a bool false, but
1482   // JVM takes the whole %eax as the return value, which may misinterpret
1483   // the return value as a boolean true.
1484 
1485   assert(mirror != NULL, "should null-check on mirror before calling");
1486   Klass* k = java_lang_Class::as_Klass(mirror);
1487   return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1488 JRT_END
1489 
1490 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1491   ResourceMark rm;
1492 
1493   assert(!TieredCompilation, "incompatible with tiered compilation");
1494 
1495   RegisterMap reg_map(thread, false);
1496   frame runtime_frame = thread->last_frame();
1497   frame caller_frame = runtime_frame.sender(&reg_map);
1498 
1499   nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1500   assert (nm != NULL, "no more nmethod?");
1501   nm->make_not_entrant();
1502 
1503   methodHandle m(nm->method());
1504   MethodData* mdo = m->method_data();
1505 
1506   if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1507     // Build an MDO.  Ignore errors like OutOfMemory;
1508     // that simply means we won't have an MDO to update.
1509     Method::build_interpreter_method_data(m, THREAD);
1510     if (HAS_PENDING_EXCEPTION) {
1511       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1512       CLEAR_PENDING_EXCEPTION;
1513     }
1514     mdo = m->method_data();
1515   }
1516 
1517   if (mdo != NULL) {
1518     mdo->inc_trap_count(Deoptimization::Reason_none);
1519   }
1520 
1521   if (TracePredicateFailedTraps) {
1522     stringStream ss1, ss2;
1523     vframeStream vfst(thread);
1524     methodHandle inlinee = methodHandle(vfst.method());
1525     inlinee->print_short_name(&ss1);
1526     m->print_short_name(&ss2);
1527     tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1528   }
1529 
1530 
1531   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1532 
1533 JRT_END
1534 
1535 #ifndef PRODUCT
1536 void Runtime1::print_statistics() {
1537   tty->print_cr("C1 Runtime statistics:");
1538   tty->print_cr(" _resolve_invoke_virtual_cnt:     %d", SharedRuntime::_resolve_virtual_ctr);
1539   tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1540   tty->print_cr(" _resolve_invoke_static_cnt:      %d", SharedRuntime::_resolve_static_ctr);
1541   tty->print_cr(" _handle_wrong_method_cnt:        %d", SharedRuntime::_wrong_method_ctr);
1542   tty->print_cr(" _ic_miss_cnt:                    %d", SharedRuntime::_ic_miss_ctr);
1543   tty->print_cr(" _generic_arraycopy_cnt:          %d", _generic_arraycopy_cnt);
1544   tty->print_cr(" _generic_arraycopystub_cnt:      %d", _generic_arraycopystub_cnt);
1545   tty->print_cr(" _byte_arraycopy_cnt:             %d", _byte_arraycopy_stub_cnt);
1546   tty->print_cr(" _short_arraycopy_cnt:            %d", _short_arraycopy_stub_cnt);
1547   tty->print_cr(" _int_arraycopy_cnt:              %d", _int_arraycopy_stub_cnt);
1548   tty->print_cr(" _long_arraycopy_cnt:             %d", _long_arraycopy_stub_cnt);
1549   tty->print_cr(" _primitive_arraycopy_cnt:        %d", _primitive_arraycopy_cnt);
1550   tty->print_cr(" _oop_arraycopy_cnt (C):          %d", Runtime1::_oop_arraycopy_cnt);
1551   tty->print_cr(" _oop_arraycopy_cnt (stub):       %d", _oop_arraycopy_stub_cnt);
1552   tty->print_cr(" _arraycopy_slowcase_cnt:         %d", _arraycopy_slowcase_cnt);
1553   tty->print_cr(" _arraycopy_checkcast_cnt:        %d", _arraycopy_checkcast_cnt);
1554   tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1555 
1556   tty->print_cr(" _new_type_array_slowcase_cnt:    %d", _new_type_array_slowcase_cnt);
1557   tty->print_cr(" _new_object_array_slowcase_cnt:  %d", _new_object_array_slowcase_cnt);
1558   tty->print_cr(" _new_instance_slowcase_cnt:      %d", _new_instance_slowcase_cnt);
1559   tty->print_cr(" _new_multi_array_slowcase_cnt:   %d", _new_multi_array_slowcase_cnt);
1560   tty->print_cr(" _monitorenter_slowcase_cnt:      %d", _monitorenter_slowcase_cnt);
1561   tty->print_cr(" _monitorexit_slowcase_cnt:       %d", _monitorexit_slowcase_cnt);
1562   tty->print_cr(" _patch_code_slowcase_cnt:        %d", _patch_code_slowcase_cnt);
1563 
1564   tty->print_cr(" _throw_range_check_exception_count:            %d:", _throw_range_check_exception_count);
1565   tty->print_cr(" _throw_index_exception_count:                  %d:", _throw_index_exception_count);
1566   tty->print_cr(" _throw_div0_exception_count:                   %d:", _throw_div0_exception_count);
1567   tty->print_cr(" _throw_null_pointer_exception_count:           %d:", _throw_null_pointer_exception_count);
1568   tty->print_cr(" _throw_class_cast_exception_count:             %d:", _throw_class_cast_exception_count);
1569   tty->print_cr(" _throw_incompatible_class_change_error_count:  %d:", _throw_incompatible_class_change_error_count);
1570   tty->print_cr(" _throw_array_store_exception_count:            %d:", _throw_array_store_exception_count);
1571   tty->print_cr(" _throw_count:                                  %d:", _throw_count);
1572 
1573   SharedRuntime::print_ic_miss_histogram();
1574   tty->cr();
1575 }
1576 #endif // PRODUCT