1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.inline.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc/shared/collectedHeap.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "gc/shared/gcTimer.hpp"
  31 #include "gc/shared/gcTraceTime.inline.hpp"
  32 #include "gc/shared/referencePolicy.hpp"
  33 #include "gc/shared/referenceProcessor.inline.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/allocation.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/heapMonitoring.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/jniHandles.hpp"
  41 
  42 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  43 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  44 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  45 
  46 void referenceProcessor_init() {
  47   ReferenceProcessor::init_statics();
  48 }
  49 
  50 void ReferenceProcessor::init_statics() {
  51   // We need a monotonically non-decreasing time in ms but
  52   // os::javaTimeMillis() does not guarantee monotonicity.
  53   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  54 
  55   // Initialize the soft ref timestamp clock.
  56   _soft_ref_timestamp_clock = now;
  57   // Also update the soft ref clock in j.l.r.SoftReference
  58   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  59 
  60   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  61   if (is_server_compilation_mode_vm()) {
  62     _default_soft_ref_policy = new LRUMaxHeapPolicy();
  63   } else {
  64     _default_soft_ref_policy = new LRUCurrentHeapPolicy();
  65   }
  66   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  67     vm_exit_during_initialization("Could not allocate reference policy object");
  68   }
  69   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  70             RefDiscoveryPolicy == ReferentBasedDiscovery,
  71             "Unrecognized RefDiscoveryPolicy");
  72 }
  73 
  74 void ReferenceProcessor::enable_discovery(bool check_no_refs) {
  75 #ifdef ASSERT
  76   // Verify that we're not currently discovering refs
  77   assert(!_discovering_refs, "nested call?");
  78 
  79   if (check_no_refs) {
  80     // Verify that the discovered lists are empty
  81     verify_no_references_recorded();
  82   }
  83 #endif // ASSERT
  84 
  85   // Someone could have modified the value of the static
  86   // field in the j.l.r.SoftReference class that holds the
  87   // soft reference timestamp clock using reflection or
  88   // Unsafe between GCs. Unconditionally update the static
  89   // field in ReferenceProcessor here so that we use the new
  90   // value during reference discovery.
  91 
  92   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  93   _discovering_refs = true;
  94 }
  95 
  96 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  97                                        bool      mt_processing,
  98                                        uint      mt_processing_degree,
  99                                        bool      mt_discovery,
 100                                        uint      mt_discovery_degree,
 101                                        bool      atomic_discovery,
 102                                        BoolObjectClosure* is_alive_non_header)  :
 103   _discovering_refs(false),
 104   _enqueuing_is_done(false),
 105   _is_alive_non_header(is_alive_non_header),
 106   _processing_is_mt(mt_processing),
 107   _next_id(0)
 108 {
 109   _span = span;
 110   _discovery_is_atomic = atomic_discovery;
 111   _discovery_is_mt     = mt_discovery;
 112   _num_q               = MAX2(1U, mt_processing_degree);
 113   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 114   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 115             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 116 
 117   if (_discovered_refs == NULL) {
 118     vm_exit_during_initialization("Could not allocated RefProc Array");
 119   }
 120   _discoveredSoftRefs    = &_discovered_refs[0];
 121   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 122   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 123   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 124 
 125   // Initialize all entries to NULL
 126   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 127     _discovered_refs[i].set_head(NULL);
 128     _discovered_refs[i].set_length(0);
 129   }
 130 
 131   setup_policy(false /* default soft ref policy */);
 132 }
 133 
 134 #ifndef PRODUCT
 135 void ReferenceProcessor::verify_no_references_recorded() {
 136   guarantee(!_discovering_refs, "Discovering refs?");
 137   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 138     guarantee(_discovered_refs[i].is_empty(),
 139               "Found non-empty discovered list at %u", i);
 140   }
 141 }
 142 #endif
 143 
 144 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 145   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 146     if (UseCompressedOops) {
 147       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 148     } else {
 149       f->do_oop((oop*)_discovered_refs[i].adr_head());
 150     }
 151   }
 152 }
 153 
 154 void ReferenceProcessor::update_soft_ref_master_clock() {
 155   // Update (advance) the soft ref master clock field. This must be done
 156   // after processing the soft ref list.
 157 
 158   // We need a monotonically non-decreasing time in ms but
 159   // os::javaTimeMillis() does not guarantee monotonicity.
 160   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 161   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 162   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 163 
 164   NOT_PRODUCT(
 165   if (now < _soft_ref_timestamp_clock) {
 166     log_warning(gc)("time warp: " JLONG_FORMAT " to " JLONG_FORMAT,
 167                     _soft_ref_timestamp_clock, now);
 168   }
 169   )
 170   // The values of now and _soft_ref_timestamp_clock are set using
 171   // javaTimeNanos(), which is guaranteed to be monotonically
 172   // non-decreasing provided the underlying platform provides such
 173   // a time source (and it is bug free).
 174   // In product mode, however, protect ourselves from non-monotonicity.
 175   if (now > _soft_ref_timestamp_clock) {
 176     _soft_ref_timestamp_clock = now;
 177     java_lang_ref_SoftReference::set_clock(now);
 178   }
 179   // Else leave clock stalled at its old value until time progresses
 180   // past clock value.
 181 }
 182 
 183 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) const {
 184   size_t total = 0;
 185   for (uint i = 0; i < _max_num_q; ++i) {
 186     total += lists[i].length();
 187   }
 188   return total;
 189 }
 190 
 191 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 192   BoolObjectClosure*            is_alive,
 193   OopClosure*                   keep_alive,
 194   VoidClosure*                  complete_gc,
 195   AbstractRefProcTaskExecutor*  task_executor,
 196   ReferenceProcessorPhaseTimes* phase_times) {
 197 
 198   double start_time = os::elapsedTime();
 199 
 200   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 201   // Stop treating discovered references specially.
 202   disable_discovery();
 203 
 204   // If discovery was concurrent, someone could have modified
 205   // the value of the static field in the j.l.r.SoftReference
 206   // class that holds the soft reference timestamp clock using
 207   // reflection or Unsafe between when discovery was enabled and
 208   // now. Unconditionally update the static field in ReferenceProcessor
 209   // here so that we use the new value during processing of the
 210   // discovered soft refs.
 211 
 212   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 213 
 214   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 215                                 total_count(_discoveredWeakRefs),
 216                                 total_count(_discoveredFinalRefs),
 217                                 total_count(_discoveredPhantomRefs));
 218 
 219   // Soft references
 220   {
 221     RefProcPhaseTimesTracker tt(REF_SOFT, phase_times, this);
 222     process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 223                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 224   }
 225 
 226   update_soft_ref_master_clock();
 227 
 228   // Weak references
 229   {
 230     RefProcPhaseTimesTracker tt(REF_WEAK, phase_times, this);
 231     process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 232                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 233   }
 234 
 235   // Final references
 236   {
 237     RefProcPhaseTimesTracker tt(REF_FINAL, phase_times, this);
 238     process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 239                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 240   }
 241 
 242   // Phantom references
 243   {
 244     RefProcPhaseTimesTracker tt(REF_PHANTOM, phase_times, this);
 245     process_discovered_reflist(_discoveredPhantomRefs, NULL, true,
 246                                is_alive, keep_alive, complete_gc, task_executor, phase_times);
 247   }
 248 
 249   // Weak global JNI references. It would make more sense (semantically) to
 250   // traverse these simultaneously with the regular weak references above, but
 251   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 252   // thus use JNI weak references to circumvent the phantom references and
 253   // resurrect a "post-mortem" object.
 254   {
 255     GCTraceTime(Debug, gc, ref) tt("JNI Weak Reference", phase_times->gc_timer());
 256     if (task_executor != NULL) {
 257       task_executor->set_single_threaded_mode();
 258     }
 259     process_phaseJNI(is_alive, keep_alive, complete_gc);
 260   }
 261 
 262   // Heap Monitoring references
 263   size_t handled;
 264   {
 265     GCTraceTime(Debug, gc, ref) tt("Heap Monitoring Weak Reference", gc_timer);
 266     handled = process_phaseHeapSampling(is_alive, keep_alive, complete_gc, task_executor);
 267   }
 268 
 269   phase_times->set_total_time_ms((os::elapsedTime() - start_time) * 1000);
 270 
 271   log_develop_trace(gc, ref)("JNI Weak Reference count: " SIZE_FORMAT, count_jni_refs());
 272   log_develop_trace(gc, ref)("Heap Sampler Weak Reference handled: " SIZE_FORMAT, handled);
 273 
 274   return stats;
 275 }
 276 
 277 #ifndef PRODUCT
 278 // Calculate the number of jni handles.
 279 size_t ReferenceProcessor::count_jni_refs() {
 280   class CountHandleClosure: public OopClosure {
 281   private:
 282     size_t _count;
 283   public:
 284     CountHandleClosure(): _count(0) {}
 285     void do_oop(oop* unused)       { _count++; }
 286     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 287     size_t count() { return _count; }
 288   };
 289   CountHandleClosure global_handle_count;
 290   JNIHandles::weak_oops_do(&global_handle_count);
 291   return global_handle_count.count();
 292 }
 293 #endif
 294 
 295 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 296                                           OopClosure*        keep_alive,
 297                                           VoidClosure*       complete_gc) {
 298   JNIHandles::weak_oops_do(is_alive, keep_alive);
 299   complete_gc->do_void();
 300 }
 301 
 302 size_t ReferenceProcessor::process_phaseHeapSampling(
 303     BoolObjectClosure*           is_alive,
 304     OopClosure*                  keep_alive,
 305     VoidClosure*                 complete_gc,
 306     AbstractRefProcTaskExecutor* task_executor) {
 307   size_t count = 0;
 308   if (HeapMonitoring::enabled()) {
 309     if (task_executor != NULL) {
 310       task_executor->set_single_threaded_mode();
 311     }
 312     count = HeapMonitoring::weak_oops_do(is_alive, keep_alive);
 313     complete_gc->do_void();
 314   }
 315   return count;
 316 }
 317 
 318 void ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor*  task_executor,
 319                                                        ReferenceProcessorPhaseTimes* phase_times) {
 320   // Enqueue references that are not made active again, and
 321   // clear the decks for the next collection (cycle).
 322   enqueue_discovered_reflists(task_executor, phase_times);
 323 
 324   // Stop treating discovered references specially.
 325   disable_discovery();
 326 }
 327 
 328 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list) {
 329   // Given a list of refs linked through the "discovered" field
 330   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 331   // thus distinguishing them from active References, then
 332   // prepend them to the pending list.
 333   //
 334   // The Java threads will see the Reference objects linked together through
 335   // the discovered field. Instead of trying to do the write barrier updates
 336   // in all places in the reference processor where we manipulate the discovered
 337   // field we make sure to do the barrier here where we anyway iterate through
 338   // all linked Reference objects. Note that it is important to not dirty any
 339   // cards during reference processing since this will cause card table
 340   // verification to fail for G1.
 341   log_develop_trace(gc, ref)("ReferenceProcessor::enqueue_discovered_reflist list " INTPTR_FORMAT, p2i(&refs_list));
 342 
 343   oop obj = NULL;
 344   oop next_d = refs_list.head();
 345   // Walk down the list, self-looping the next field
 346   // so that the References are not considered active.
 347   while (obj != next_d) {
 348     obj = next_d;
 349     assert(obj->is_instance(), "should be an instance object");
 350     assert(InstanceKlass::cast(obj->klass())->is_reference_instance_klass(), "should be reference object");
 351     next_d = java_lang_ref_Reference::discovered(obj);
 352     log_develop_trace(gc, ref)("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT, p2i(obj), p2i(next_d));
 353     assert(java_lang_ref_Reference::next(obj) == NULL,
 354            "Reference not active; should not be discovered");
 355     // Self-loop next, so as to make Ref not active.
 356     java_lang_ref_Reference::set_next_raw(obj, obj);
 357     if (next_d != obj) {
 358       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 359     } else {
 360       // This is the last object.
 361       // Swap refs_list into pending list and set obj's
 362       // discovered to what we read from the pending list.
 363       oop old = Universe::swap_reference_pending_list(refs_list.head());
 364       java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 365       oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 366     }
 367   }
 368 }
 369 
 370 // Parallel enqueue task
 371 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 372 public:
 373   RefProcEnqueueTask(ReferenceProcessor&           ref_processor,
 374                      DiscoveredList                discovered_refs[],
 375                      int                           n_queues,
 376                      ReferenceProcessorPhaseTimes* phase_times)
 377     : EnqueueTask(ref_processor, discovered_refs, n_queues, phase_times)
 378   { }
 379 
 380   virtual void work(unsigned int work_id) {
 381     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefEnqueue, _phase_times, work_id);
 382 
 383     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 384     // Simplest first cut: static partitioning.
 385     int index = work_id;
 386     // The increment on "index" must correspond to the maximum number of queues
 387     // (n_queues) with which that ReferenceProcessor was created.  That
 388     // is because of the "clever" way the discovered references lists were
 389     // allocated and are indexed into.
 390     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 391     for (int j = 0;
 392          j < ReferenceProcessor::number_of_subclasses_of_ref();
 393          j++, index += _n_queues) {
 394       _ref_processor.enqueue_discovered_reflist(_refs_lists[index]);
 395       _refs_lists[index].set_head(NULL);
 396       _refs_lists[index].set_length(0);
 397     }
 398   }
 399 };
 400 
 401 // Enqueue references that are not made active again
 402 void ReferenceProcessor::enqueue_discovered_reflists(AbstractRefProcTaskExecutor*  task_executor,
 403                                                      ReferenceProcessorPhaseTimes* phase_times) {
 404 
 405   ReferenceProcessorStats stats(total_count(_discoveredSoftRefs),
 406                                 total_count(_discoveredWeakRefs),
 407                                 total_count(_discoveredFinalRefs),
 408                                 total_count(_discoveredPhantomRefs));
 409 
 410   RefProcEnqueueTimeTracker tt(phase_times, stats);
 411 
 412   if (_processing_is_mt && task_executor != NULL) {
 413     // Parallel code
 414     RefProcEnqueueTask tsk(*this, _discovered_refs, _max_num_q, phase_times);
 415     task_executor->execute(tsk);
 416   } else {
 417     // Serial code: call the parent class's implementation
 418     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 419       enqueue_discovered_reflist(_discovered_refs[i]);
 420       _discovered_refs[i].set_head(NULL);
 421       _discovered_refs[i].set_length(0);
 422     }
 423   }
 424 }
 425 
 426 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 427   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 428   oop discovered = java_lang_ref_Reference::discovered(_ref);
 429   assert(_discovered_addr && oopDesc::is_oop_or_null(discovered),
 430          "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
 431   _next = discovered;
 432   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 433   _referent = java_lang_ref_Reference::referent(_ref);
 434   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 435          "Wrong oop found in java.lang.Reference object");
 436   assert(allow_null_referent ?
 437              oopDesc::is_oop_or_null(_referent)
 438            : oopDesc::is_oop(_referent),
 439          "Expected an oop%s for referent field at " PTR_FORMAT,
 440          (allow_null_referent ? " or NULL" : ""),
 441          p2i(_referent));
 442 }
 443 
 444 void DiscoveredListIterator::remove() {
 445   assert(oopDesc::is_oop(_ref), "Dropping a bad reference");
 446   oop_store_raw(_discovered_addr, NULL);
 447 
 448   // First _prev_next ref actually points into DiscoveredList (gross).
 449   oop new_next;
 450   if (_next == _ref) {
 451     // At the end of the list, we should make _prev point to itself.
 452     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 453     // and _prev will be NULL.
 454     new_next = _prev;
 455   } else {
 456     new_next = _next;
 457   }
 458   // Remove Reference object from discovered list. Note that G1 does not need a
 459   // pre-barrier here because we know the Reference has already been found/marked,
 460   // that's how it ended up in the discovered list in the first place.
 461   oop_store_raw(_prev_next, new_next);
 462   NOT_PRODUCT(_removed++);
 463   _refs_list.dec_length(1);
 464 }
 465 
 466 void DiscoveredListIterator::clear_referent() {
 467   oop_store_raw(_referent_addr, NULL);
 468 }
 469 
 470 // NOTE: process_phase*() are largely similar, and at a high level
 471 // merely iterate over the extant list applying a predicate to
 472 // each of its elements and possibly removing that element from the
 473 // list and applying some further closures to that element.
 474 // We should consider the possibility of replacing these
 475 // process_phase*() methods by abstracting them into
 476 // a single general iterator invocation that receives appropriate
 477 // closures that accomplish this work.
 478 
 479 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 480 // referents are not alive, but that should be kept alive for policy reasons.
 481 // Keep alive the transitive closure of all such referents.
 482 void
 483 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 484                                    ReferencePolicy*   policy,
 485                                    BoolObjectClosure* is_alive,
 486                                    OopClosure*        keep_alive,
 487                                    VoidClosure*       complete_gc) {
 488   assert(policy != NULL, "Must have a non-NULL policy");
 489   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 490   // Decide which softly reachable refs should be kept alive.
 491   while (iter.has_next()) {
 492     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 493     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 494     if (referent_is_dead &&
 495         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 496       log_develop_trace(gc, ref)("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 497                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 498       // Remove Reference object from list
 499       iter.remove();
 500       // keep the referent around
 501       iter.make_referent_alive();
 502       iter.move_to_next();
 503     } else {
 504       iter.next();
 505     }
 506   }
 507   // Close the reachable set
 508   complete_gc->do_void();
 509   log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " dead Refs out of " SIZE_FORMAT " discovered Refs by policy, from list " INTPTR_FORMAT,
 510                              iter.removed(), iter.processed(), p2i(&refs_list));
 511 }
 512 
 513 // Traverse the list and remove any Refs that are not active, or
 514 // whose referents are either alive or NULL.
 515 void
 516 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 517                              BoolObjectClosure* is_alive,
 518                              OopClosure*        keep_alive) {
 519   assert(discovery_is_atomic(), "Error");
 520   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 521   while (iter.has_next()) {
 522     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 523     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 524     assert(next == NULL, "Should not discover inactive Reference");
 525     if (iter.is_referent_alive()) {
 526       log_develop_trace(gc, ref)("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 527                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
 528       // The referent is reachable after all.
 529       // Remove Reference object from list.
 530       iter.remove();
 531       // Update the referent pointer as necessary: Note that this
 532       // should not entail any recursive marking because the
 533       // referent must already have been traversed.
 534       iter.make_referent_alive();
 535       iter.move_to_next();
 536     } else {
 537       iter.next();
 538     }
 539   }
 540   NOT_PRODUCT(
 541     if (iter.processed() > 0) {
 542       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 543         " Refs in discovered list " INTPTR_FORMAT,
 544         iter.removed(), iter.processed(), p2i(&refs_list));
 545     }
 546   )
 547 }
 548 
 549 void
 550 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 551                                                   BoolObjectClosure* is_alive,
 552                                                   OopClosure*        keep_alive,
 553                                                   VoidClosure*       complete_gc) {
 554   assert(!discovery_is_atomic(), "Error");
 555   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 556   while (iter.has_next()) {
 557     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 558     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 559     oop next = java_lang_ref_Reference::next(iter.obj());
 560     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 561          next != NULL)) {
 562       assert(oopDesc::is_oop_or_null(next), "Expected an oop or NULL for next field at " PTR_FORMAT, p2i(next));
 563       // Remove Reference object from list
 564       iter.remove();
 565       // Trace the cohorts
 566       iter.make_referent_alive();
 567       if (UseCompressedOops) {
 568         keep_alive->do_oop((narrowOop*)next_addr);
 569       } else {
 570         keep_alive->do_oop((oop*)next_addr);
 571       }
 572       iter.move_to_next();
 573     } else {
 574       iter.next();
 575     }
 576   }
 577   // Now close the newly reachable set
 578   complete_gc->do_void();
 579   NOT_PRODUCT(
 580     if (iter.processed() > 0) {
 581       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " active Refs out of " SIZE_FORMAT
 582         " Refs in discovered list " INTPTR_FORMAT,
 583         iter.removed(), iter.processed(), p2i(&refs_list));
 584     }
 585   )
 586 }
 587 
 588 // Traverse the list and process the referents, by either
 589 // clearing them or keeping them (and their reachable
 590 // closure) alive.
 591 void
 592 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 593                                    bool               clear_referent,
 594                                    BoolObjectClosure* is_alive,
 595                                    OopClosure*        keep_alive,
 596                                    VoidClosure*       complete_gc) {
 597   ResourceMark rm;
 598   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 599   while (iter.has_next()) {
 600     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 601     if (clear_referent) {
 602       // NULL out referent pointer
 603       iter.clear_referent();
 604     } else {
 605       // keep the referent around
 606       iter.make_referent_alive();
 607     }
 608     log_develop_trace(gc, ref)("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 609                                clear_referent ? "cleared " : "", p2i(iter.obj()), iter.obj()->klass()->internal_name());
 610     assert(oopDesc::is_oop(iter.obj(), UseConcMarkSweepGC), "Adding a bad reference");
 611     iter.next();
 612   }
 613   // Close the reachable set
 614   complete_gc->do_void();
 615 }
 616 
 617 void
 618 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 619   oop obj = NULL;
 620   oop next = refs_list.head();
 621   while (next != obj) {
 622     obj = next;
 623     next = java_lang_ref_Reference::discovered(obj);
 624     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 625   }
 626   refs_list.set_head(NULL);
 627   refs_list.set_length(0);
 628 }
 629 
 630 void ReferenceProcessor::abandon_partial_discovery() {
 631   // loop over the lists
 632   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 633     if ((i % _max_num_q) == 0) {
 634       log_develop_trace(gc, ref)("Abandoning %s discovered list", list_name(i));
 635     }
 636     clear_discovered_references(_discovered_refs[i]);
 637   }
 638 }
 639 
 640 size_t ReferenceProcessor::total_reference_count(ReferenceType type) const {
 641   DiscoveredList* list = NULL;
 642 
 643   switch (type) {
 644     case REF_SOFT:
 645       list = _discoveredSoftRefs;
 646       break;
 647     case REF_WEAK:
 648       list = _discoveredWeakRefs;
 649       break;
 650     case REF_FINAL:
 651       list = _discoveredFinalRefs;
 652       break;
 653     case REF_PHANTOM:
 654       list = _discoveredPhantomRefs;
 655       break;
 656     case REF_OTHER:
 657     case REF_NONE:
 658     default:
 659       ShouldNotReachHere();
 660   }
 661   return total_count(list);
 662 }
 663 
 664 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 665 public:
 666   RefProcPhase1Task(ReferenceProcessor&           ref_processor,
 667                     DiscoveredList                refs_lists[],
 668                     ReferencePolicy*              policy,
 669                     bool                          marks_oops_alive,
 670                     ReferenceProcessorPhaseTimes* phase_times)
 671     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 672       _policy(policy)
 673   { }
 674   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 675                     OopClosure& keep_alive,
 676                     VoidClosure& complete_gc)
 677   {
 678     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, _phase_times, i);
 679 
 680     _ref_processor.process_phase1(_refs_lists[i], _policy,
 681                                   &is_alive, &keep_alive, &complete_gc);
 682   }
 683 private:
 684   ReferencePolicy* _policy;
 685 };
 686 
 687 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 688 public:
 689   RefProcPhase2Task(ReferenceProcessor&           ref_processor,
 690                     DiscoveredList                refs_lists[],
 691                     bool                          marks_oops_alive,
 692                     ReferenceProcessorPhaseTimes* phase_times)
 693     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times)
 694   { }
 695   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 696                     OopClosure& keep_alive,
 697                     VoidClosure& complete_gc)
 698   {
 699     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, _phase_times, i);
 700 
 701     _ref_processor.process_phase2(_refs_lists[i],
 702                                   &is_alive, &keep_alive, &complete_gc);
 703   }
 704 };
 705 
 706 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 707 public:
 708   RefProcPhase3Task(ReferenceProcessor&           ref_processor,
 709                     DiscoveredList                refs_lists[],
 710                     bool                         clear_referent,
 711                     bool                          marks_oops_alive,
 712                     ReferenceProcessorPhaseTimes* phase_times)
 713     : ProcessTask(ref_processor, refs_lists, marks_oops_alive, phase_times),
 714       _clear_referent(clear_referent)
 715   { }
 716   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 717                     OopClosure& keep_alive,
 718                     VoidClosure& complete_gc)
 719   {
 720     RefProcWorkerTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, _phase_times, i);
 721 
 722     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 723                                   &is_alive, &keep_alive, &complete_gc);
 724   }
 725 private:
 726   bool _clear_referent;
 727 };
 728 
 729 #ifndef PRODUCT
 730 void ReferenceProcessor::log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_refs) {
 731   if (!log_is_enabled(Trace, gc, ref)) {
 732     return;
 733   }
 734 
 735   stringStream st;
 736   for (uint i = 0; i < active_length; ++i) {
 737     st.print(SIZE_FORMAT " ", ref_lists[i].length());
 738   }
 739   log_develop_trace(gc, ref)("%s= " SIZE_FORMAT, st.as_string(), total_refs);
 740 #ifdef ASSERT
 741   for (uint i = active_length; i < _max_num_q; i++) {
 742     assert(ref_lists[i].length() == 0, SIZE_FORMAT " unexpected References in %u",
 743            ref_lists[i].length(), i);
 744   }
 745 #endif
 746 }
 747 #endif
 748 
 749 void ReferenceProcessor::set_active_mt_degree(uint v) {
 750   _num_q = v;
 751   _next_id = 0;
 752 }
 753 
 754 // Balances reference queues.
 755 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 756 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 757 // corresponding to the active workers will be processed.
 758 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 759 {
 760   // calculate total length
 761   size_t total_refs = 0;
 762   log_develop_trace(gc, ref)("Balance ref_lists ");
 763 
 764   for (uint i = 0; i < _max_num_q; ++i) {
 765     total_refs += ref_lists[i].length();
 766   }
 767   log_reflist_counts(ref_lists, _max_num_q, total_refs);
 768   size_t avg_refs = total_refs / _num_q + 1;
 769   uint to_idx = 0;
 770   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 771     bool move_all = false;
 772     if (from_idx >= _num_q) {
 773       move_all = ref_lists[from_idx].length() > 0;
 774     }
 775     while ((ref_lists[from_idx].length() > avg_refs) ||
 776            move_all) {
 777       assert(to_idx < _num_q, "Sanity Check!");
 778       if (ref_lists[to_idx].length() < avg_refs) {
 779         // move superfluous refs
 780         size_t refs_to_move;
 781         // Move all the Ref's if the from queue will not be processed.
 782         if (move_all) {
 783           refs_to_move = MIN2(ref_lists[from_idx].length(),
 784                               avg_refs - ref_lists[to_idx].length());
 785         } else {
 786           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 787                               avg_refs - ref_lists[to_idx].length());
 788         }
 789 
 790         assert(refs_to_move > 0, "otherwise the code below will fail");
 791 
 792         oop move_head = ref_lists[from_idx].head();
 793         oop move_tail = move_head;
 794         oop new_head  = move_head;
 795         // find an element to split the list on
 796         for (size_t j = 0; j < refs_to_move; ++j) {
 797           move_tail = new_head;
 798           new_head = java_lang_ref_Reference::discovered(new_head);
 799         }
 800 
 801         // Add the chain to the to list.
 802         if (ref_lists[to_idx].head() == NULL) {
 803           // to list is empty. Make a loop at the end.
 804           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 805         } else {
 806           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 807         }
 808         ref_lists[to_idx].set_head(move_head);
 809         ref_lists[to_idx].inc_length(refs_to_move);
 810 
 811         // Remove the chain from the from list.
 812         if (move_tail == new_head) {
 813           // We found the end of the from list.
 814           ref_lists[from_idx].set_head(NULL);
 815         } else {
 816           ref_lists[from_idx].set_head(new_head);
 817         }
 818         ref_lists[from_idx].dec_length(refs_to_move);
 819         if (ref_lists[from_idx].length() == 0) {
 820           break;
 821         }
 822       } else {
 823         to_idx = (to_idx + 1) % _num_q;
 824       }
 825     }
 826   }
 827 #ifdef ASSERT
 828   size_t balanced_total_refs = 0;
 829   for (uint i = 0; i < _num_q; ++i) {
 830     balanced_total_refs += ref_lists[i].length();
 831   }
 832   log_reflist_counts(ref_lists, _num_q, balanced_total_refs);
 833   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 834 #endif
 835 }
 836 
 837 void ReferenceProcessor::balance_all_queues() {
 838   balance_queues(_discoveredSoftRefs);
 839   balance_queues(_discoveredWeakRefs);
 840   balance_queues(_discoveredFinalRefs);
 841   balance_queues(_discoveredPhantomRefs);
 842 }
 843 
 844 void ReferenceProcessor::process_discovered_reflist(
 845   DiscoveredList                refs_lists[],
 846   ReferencePolicy*              policy,
 847   bool                          clear_referent,
 848   BoolObjectClosure*            is_alive,
 849   OopClosure*                   keep_alive,
 850   VoidClosure*                  complete_gc,
 851   AbstractRefProcTaskExecutor*  task_executor,
 852   ReferenceProcessorPhaseTimes* phase_times)
 853 {
 854   bool mt_processing = task_executor != NULL && _processing_is_mt;
 855 
 856   phase_times->set_processing_is_mt(mt_processing);
 857 
 858   // If discovery used MT and a dynamic number of GC threads, then
 859   // the queues must be balanced for correctness if fewer than the
 860   // maximum number of queues were used.  The number of queue used
 861   // during discovery may be different than the number to be used
 862   // for processing so don't depend of _num_q < _max_num_q as part
 863   // of the test.
 864   bool must_balance = _discovery_is_mt;
 865 
 866   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 867       must_balance) {
 868     RefProcBalanceQueuesTimeTracker tt(phase_times);
 869     balance_queues(refs_lists);
 870   }
 871 
 872   // Phase 1 (soft refs only):
 873   // . Traverse the list and remove any SoftReferences whose
 874   //   referents are not alive, but that should be kept alive for
 875   //   policy reasons. Keep alive the transitive closure of all
 876   //   such referents.
 877   if (policy != NULL) {
 878     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase1, phase_times);
 879 
 880     if (mt_processing) {
 881       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/, phase_times);
 882       task_executor->execute(phase1);
 883     } else {
 884       for (uint i = 0; i < _max_num_q; i++) {
 885         process_phase1(refs_lists[i], policy,
 886                        is_alive, keep_alive, complete_gc);
 887       }
 888     }
 889   } else { // policy == NULL
 890     assert(refs_lists != _discoveredSoftRefs,
 891            "Policy must be specified for soft references.");
 892   }
 893 
 894   // Phase 2:
 895   // . Traverse the list and remove any refs whose referents are alive.
 896   {
 897     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase2, phase_times);
 898 
 899     if (mt_processing) {
 900       RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/, phase_times);
 901       task_executor->execute(phase2);
 902     } else {
 903       for (uint i = 0; i < _max_num_q; i++) {
 904         process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 905       }
 906     }
 907   }
 908 
 909   // Phase 3:
 910   // . Traverse the list and process referents as appropriate.
 911   {
 912     RefProcParPhaseTimeTracker tt(ReferenceProcessorPhaseTimes::RefPhase3, phase_times);
 913 
 914     if (mt_processing) {
 915       RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/, phase_times);
 916       task_executor->execute(phase3);
 917     } else {
 918       for (uint i = 0; i < _max_num_q; i++) {
 919         process_phase3(refs_lists[i], clear_referent,
 920                        is_alive, keep_alive, complete_gc);
 921       }
 922     }
 923   }
 924 }
 925 
 926 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
 927   uint id = 0;
 928   // Determine the queue index to use for this object.
 929   if (_discovery_is_mt) {
 930     // During a multi-threaded discovery phase,
 931     // each thread saves to its "own" list.
 932     Thread* thr = Thread::current();
 933     id = thr->as_Worker_thread()->id();
 934   } else {
 935     // single-threaded discovery, we save in round-robin
 936     // fashion to each of the lists.
 937     if (_processing_is_mt) {
 938       id = next_id();
 939     }
 940   }
 941   assert(id < _max_num_q, "Id is out-of-bounds id %u and max id %u)", id, _max_num_q);
 942 
 943   // Get the discovered queue to which we will add
 944   DiscoveredList* list = NULL;
 945   switch (rt) {
 946     case REF_OTHER:
 947       // Unknown reference type, no special treatment
 948       break;
 949     case REF_SOFT:
 950       list = &_discoveredSoftRefs[id];
 951       break;
 952     case REF_WEAK:
 953       list = &_discoveredWeakRefs[id];
 954       break;
 955     case REF_FINAL:
 956       list = &_discoveredFinalRefs[id];
 957       break;
 958     case REF_PHANTOM:
 959       list = &_discoveredPhantomRefs[id];
 960       break;
 961     case REF_NONE:
 962       // we should not reach here if we are an InstanceRefKlass
 963     default:
 964       ShouldNotReachHere();
 965   }
 966   log_develop_trace(gc, ref)("Thread %d gets list " INTPTR_FORMAT, id, p2i(list));
 967   return list;
 968 }
 969 
 970 inline void
 971 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
 972                                               oop             obj,
 973                                               HeapWord*       discovered_addr) {
 974   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
 975   // First we must make sure this object is only enqueued once. CAS in a non null
 976   // discovered_addr.
 977   oop current_head = refs_list.head();
 978   // The last ref must have its discovered field pointing to itself.
 979   oop next_discovered = (current_head != NULL) ? current_head : obj;
 980 
 981   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
 982                                                     NULL);
 983   if (retest == NULL) {
 984     // This thread just won the right to enqueue the object.
 985     // We have separate lists for enqueueing, so no synchronization
 986     // is necessary.
 987     refs_list.set_head(obj);
 988     refs_list.inc_length(1);
 989 
 990     log_develop_trace(gc, ref)("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
 991                                p2i(obj), obj->klass()->internal_name());
 992   } else {
 993     // If retest was non NULL, another thread beat us to it:
 994     // The reference has already been discovered...
 995     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
 996                                p2i(obj), obj->klass()->internal_name());
 997     }
 998   }
 999 
1000 #ifndef PRODUCT
1001 // Non-atomic (i.e. concurrent) discovery might allow us
1002 // to observe j.l.References with NULL referents, being those
1003 // cleared concurrently by mutators during (or after) discovery.
1004 void ReferenceProcessor::verify_referent(oop obj) {
1005   bool da = discovery_is_atomic();
1006   oop referent = java_lang_ref_Reference::referent(obj);
1007   assert(da ? oopDesc::is_oop(referent) : oopDesc::is_oop_or_null(referent),
1008          "Bad referent " INTPTR_FORMAT " found in Reference "
1009          INTPTR_FORMAT " during %satomic discovery ",
1010          p2i(referent), p2i(obj), da ? "" : "non-");
1011 }
1012 #endif
1013 
1014 // We mention two of several possible choices here:
1015 // #0: if the reference object is not in the "originating generation"
1016 //     (or part of the heap being collected, indicated by our "span"
1017 //     we don't treat it specially (i.e. we scan it as we would
1018 //     a normal oop, treating its references as strong references).
1019 //     This means that references can't be discovered unless their
1020 //     referent is also in the same span. This is the simplest,
1021 //     most "local" and most conservative approach, albeit one
1022 //     that may cause weak references to be enqueued least promptly.
1023 //     We call this choice the "ReferenceBasedDiscovery" policy.
1024 // #1: the reference object may be in any generation (span), but if
1025 //     the referent is in the generation (span) being currently collected
1026 //     then we can discover the reference object, provided
1027 //     the object has not already been discovered by
1028 //     a different concurrently running collector (as may be the
1029 //     case, for instance, if the reference object is in CMS and
1030 //     the referent in DefNewGeneration), and provided the processing
1031 //     of this reference object by the current collector will
1032 //     appear atomic to every other collector in the system.
1033 //     (Thus, for instance, a concurrent collector may not
1034 //     discover references in other generations even if the
1035 //     referent is in its own generation). This policy may,
1036 //     in certain cases, enqueue references somewhat sooner than
1037 //     might Policy #0 above, but at marginally increased cost
1038 //     and complexity in processing these references.
1039 //     We call this choice the "RefeferentBasedDiscovery" policy.
1040 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1041   // Make sure we are discovering refs (rather than processing discovered refs).
1042   if (!_discovering_refs || !RegisterReferences) {
1043     return false;
1044   }
1045   // We only discover active references.
1046   oop next = java_lang_ref_Reference::next(obj);
1047   if (next != NULL) {   // Ref is no longer active
1048     return false;
1049   }
1050 
1051   HeapWord* obj_addr = (HeapWord*)obj;
1052   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1053       !_span.contains(obj_addr)) {
1054     // Reference is not in the originating generation;
1055     // don't treat it specially (i.e. we want to scan it as a normal
1056     // object with strong references).
1057     return false;
1058   }
1059 
1060   // We only discover references whose referents are not (yet)
1061   // known to be strongly reachable.
1062   if (is_alive_non_header() != NULL) {
1063     verify_referent(obj);
1064     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1065       return false;  // referent is reachable
1066     }
1067   }
1068   if (rt == REF_SOFT) {
1069     // For soft refs we can decide now if these are not
1070     // current candidates for clearing, in which case we
1071     // can mark through them now, rather than delaying that
1072     // to the reference-processing phase. Since all current
1073     // time-stamp policies advance the soft-ref clock only
1074     // at a full collection cycle, this is always currently
1075     // accurate.
1076     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1077       return false;
1078     }
1079   }
1080 
1081   ResourceMark rm;      // Needed for tracing.
1082 
1083   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1084   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1085   assert(oopDesc::is_oop_or_null(discovered), "Expected an oop or NULL for discovered field at " PTR_FORMAT, p2i(discovered));
1086   if (discovered != NULL) {
1087     // The reference has already been discovered...
1088     log_develop_trace(gc, ref)("Already discovered reference (" INTPTR_FORMAT ": %s)",
1089                                p2i(obj), obj->klass()->internal_name());
1090     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1091       // assumes that an object is not processed twice;
1092       // if it's been already discovered it must be on another
1093       // generation's discovered list; so we won't discover it.
1094       return false;
1095     } else {
1096       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1097              "Unrecognized policy");
1098       // Check assumption that an object is not potentially
1099       // discovered twice except by concurrent collectors that potentially
1100       // trace the same Reference object twice.
1101       assert(UseConcMarkSweepGC || UseG1GC,
1102              "Only possible with a concurrent marking collector");
1103       return true;
1104     }
1105   }
1106 
1107   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1108     verify_referent(obj);
1109     // Discover if and only if EITHER:
1110     // .. reference is in our span, OR
1111     // .. we are an atomic collector and referent is in our span
1112     if (_span.contains(obj_addr) ||
1113         (discovery_is_atomic() &&
1114          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1115       // should_enqueue = true;
1116     } else {
1117       return false;
1118     }
1119   } else {
1120     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1121            _span.contains(obj_addr), "code inconsistency");
1122   }
1123 
1124   // Get the right type of discovered queue head.
1125   DiscoveredList* list = get_discovered_list(rt);
1126   if (list == NULL) {
1127     return false;   // nothing special needs to be done
1128   }
1129 
1130   if (_discovery_is_mt) {
1131     add_to_discovered_list_mt(*list, obj, discovered_addr);
1132   } else {
1133     // We do a raw store here: the field will be visited later when processing
1134     // the discovered references.
1135     oop current_head = list->head();
1136     // The last ref must have its discovered field pointing to itself.
1137     oop next_discovered = (current_head != NULL) ? current_head : obj;
1138 
1139     assert(discovered == NULL, "control point invariant");
1140     oop_store_raw(discovered_addr, next_discovered);
1141     list->set_head(obj);
1142     list->inc_length(1);
1143 
1144     log_develop_trace(gc, ref)("Discovered reference (" INTPTR_FORMAT ": %s)", p2i(obj), obj->klass()->internal_name());
1145   }
1146   assert(oopDesc::is_oop(obj), "Discovered a bad reference");
1147   verify_referent(obj);
1148   return true;
1149 }
1150 
1151 bool ReferenceProcessor::has_discovered_references() {
1152   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1153     if (!_discovered_refs[i].is_empty()) {
1154       return true;
1155     }
1156   }
1157   return false;
1158 }
1159 
1160 // Preclean the discovered references by removing those
1161 // whose referents are alive, and by marking from those that
1162 // are not active. These lists can be handled here
1163 // in any order and, indeed, concurrently.
1164 void ReferenceProcessor::preclean_discovered_references(
1165   BoolObjectClosure* is_alive,
1166   OopClosure* keep_alive,
1167   VoidClosure* complete_gc,
1168   YieldClosure* yield,
1169   GCTimer* gc_timer) {
1170 
1171   // Soft references
1172   {
1173     GCTraceTime(Debug, gc, ref) tm("Preclean SoftReferences", gc_timer);
1174     for (uint i = 0; i < _max_num_q; i++) {
1175       if (yield->should_return()) {
1176         return;
1177       }
1178       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1179                                   keep_alive, complete_gc, yield);
1180     }
1181   }
1182 
1183   // Weak references
1184   {
1185     GCTraceTime(Debug, gc, ref) tm("Preclean WeakReferences", gc_timer);
1186     for (uint i = 0; i < _max_num_q; i++) {
1187       if (yield->should_return()) {
1188         return;
1189       }
1190       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1191                                   keep_alive, complete_gc, yield);
1192     }
1193   }
1194 
1195   // Final references
1196   {
1197     GCTraceTime(Debug, gc, ref) tm("Preclean FinalReferences", gc_timer);
1198     for (uint i = 0; i < _max_num_q; i++) {
1199       if (yield->should_return()) {
1200         return;
1201       }
1202       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1203                                   keep_alive, complete_gc, yield);
1204     }
1205   }
1206 
1207   // Phantom references
1208   {
1209     GCTraceTime(Debug, gc, ref) tm("Preclean PhantomReferences", gc_timer);
1210     for (uint i = 0; i < _max_num_q; i++) {
1211       if (yield->should_return()) {
1212         return;
1213       }
1214       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1215                                   keep_alive, complete_gc, yield);
1216     }
1217   }
1218 }
1219 
1220 // Walk the given discovered ref list, and remove all reference objects
1221 // whose referents are still alive, whose referents are NULL or which
1222 // are not active (have a non-NULL next field). NOTE: When we are
1223 // thus precleaning the ref lists (which happens single-threaded today),
1224 // we do not disable refs discovery to honor the correct semantics of
1225 // java.lang.Reference. As a result, we need to be careful below
1226 // that ref removal steps interleave safely with ref discovery steps
1227 // (in this thread).
1228 void
1229 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1230                                                 BoolObjectClosure* is_alive,
1231                                                 OopClosure*        keep_alive,
1232                                                 VoidClosure*       complete_gc,
1233                                                 YieldClosure*      yield) {
1234   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1235   while (iter.has_next()) {
1236     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1237     oop obj = iter.obj();
1238     oop next = java_lang_ref_Reference::next(obj);
1239     if (iter.referent() == NULL || iter.is_referent_alive() ||
1240         next != NULL) {
1241       // The referent has been cleared, or is alive, or the Reference is not
1242       // active; we need to trace and mark its cohort.
1243       log_develop_trace(gc, ref)("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1244                                  p2i(iter.obj()), iter.obj()->klass()->internal_name());
1245       // Remove Reference object from list
1246       iter.remove();
1247       // Keep alive its cohort.
1248       iter.make_referent_alive();
1249       if (UseCompressedOops) {
1250         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1251         keep_alive->do_oop(next_addr);
1252       } else {
1253         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1254         keep_alive->do_oop(next_addr);
1255       }
1256       iter.move_to_next();
1257     } else {
1258       iter.next();
1259     }
1260   }
1261   // Close the reachable set
1262   complete_gc->do_void();
1263 
1264   NOT_PRODUCT(
1265     if (iter.processed() > 0) {
1266       log_develop_trace(gc, ref)(" Dropped " SIZE_FORMAT " Refs out of " SIZE_FORMAT " Refs in discovered list " INTPTR_FORMAT,
1267         iter.removed(), iter.processed(), p2i(&refs_list));
1268     }
1269   )
1270 }
1271 
1272 const char* ReferenceProcessor::list_name(uint i) {
1273    assert(i <= _max_num_q * number_of_subclasses_of_ref(),
1274           "Out of bounds index");
1275 
1276    int j = i / _max_num_q;
1277    switch (j) {
1278      case 0: return "SoftRef";
1279      case 1: return "WeakRef";
1280      case 2: return "FinalRef";
1281      case 3: return "PhantomRef";
1282    }
1283    ShouldNotReachHere();
1284    return NULL;
1285 }