1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 
  38 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  39 // is an abstract class: there may be many different kinds of heaps.  This
  40 // class defines the functions that a heap must implement, and contains
  41 // infrastructure common to all heaps.
  42 
  43 class AdaptiveSizePolicy;
  44 class BarrierSet;
  45 class CollectorPolicy;
  46 class GCHeapSummary;
  47 class GCTimer;
  48 class GCTracer;
  49 class MetaspaceSummary;
  50 class Thread;
  51 class ThreadClosure;
  52 class VirtualSpaceSummary;
  53 class WorkGang;
  54 class nmethod;
  55 
  56 class GCMessage : public FormatBuffer<1024> {
  57  public:
  58   bool is_before;
  59 
  60  public:
  61   GCMessage() {}
  62 };
  63 
  64 class CollectedHeap;
  65 
  66 class GCHeapLog : public EventLogBase<GCMessage> {
  67  private:
  68   void log_heap(CollectedHeap* heap, bool before);
  69 
  70  public:
  71   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  72 
  73   void log_heap_before(CollectedHeap* heap) {
  74     log_heap(heap, true);
  75   }
  76   void log_heap_after(CollectedHeap* heap) {
  77     log_heap(heap, false);
  78   }
  79 };
  80 
  81 //
  82 // CollectedHeap
  83 //   GenCollectedHeap
  84 //   G1CollectedHeap
  85 //   ParallelScavengeHeap
  86 //   CMSHeap
  87 //
  88 class CollectedHeap : public CHeapObj<mtInternal> {
  89   friend class VMStructs;
  90   friend class JVMCIVMStructs;
  91   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  92 
  93  private:
  94 #ifdef ASSERT
  95   static int       _fire_out_of_memory_count;
  96 #endif
  97 
  98   GCHeapLog* _gc_heap_log;
  99 
 100   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 101   // or INCLUDE_JVMCI is being used
 102   bool _defer_initial_card_mark;
 103 
 104   MemRegion _reserved;
 105 
 106  protected:
 107   BarrierSet* _barrier_set;
 108   bool _is_gc_active;
 109 
 110   // Used for filler objects (static, but initialized in ctor).
 111   static size_t _filler_array_max_size;
 112 
 113   unsigned int _total_collections;          // ... started
 114   unsigned int _total_full_collections;     // ... started
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 116   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 117 
 118   // Reason for current garbage collection.  Should be set to
 119   // a value reflecting no collection between collections.
 120   GCCause::Cause _gc_cause;
 121   GCCause::Cause _gc_lastcause;
 122   PerfStringVariable* _perf_gc_cause;
 123   PerfStringVariable* _perf_gc_lastcause;
 124 
 125   // Constructor
 126   CollectedHeap();
 127 
 128   // Do common initializations that must follow instance construction,
 129   // for example, those needing virtual calls.
 130   // This code could perhaps be moved into initialize() but would
 131   // be slightly more awkward because we want the latter to be a
 132   // pure virtual.
 133   void pre_initialize();
 134 
 135   // Create a new tlab. All TLAB allocations must go through this.
 136   virtual HeapWord* allocate_new_tlab(size_t size);
 137 
 138   // Accumulate statistics on all tlabs.
 139   virtual void accumulate_statistics_all_tlabs();
 140 
 141   // Reinitialize tlabs before resuming mutators.
 142   virtual void resize_all_tlabs();
 143 
 144   // Allocate from the current thread's TLAB, with broken-out slow path.
 145   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 146   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 147 
 148   // Sample the allocation via HeapMonitoring.
 149   static void sample_allocation(Thread* thread, HeapWord* obj, size_t size,
 150                                 size_t fix_sample_rate = 0);
 151   // Try to allocate the object we want to sample in this tlab, returns NULL if
 152   // fails to allocate.
 153   static HeapWord* allocate_sampled_object(Thread* thread, size_t size);
 154 
 155   // Allocate an uninitialized block of the given size, or returns NULL if
 156   // this is impossible.
 157   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 158 
 159   // Like allocate_init, but the block returned by a successful allocation
 160   // is guaranteed initialized to zeros.
 161   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 162 
 163   // Helper functions for (VM) allocation.
 164   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 165   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 166                                                             HeapWord* objPtr);
 167 
 168   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 169 
 170   inline static void post_allocation_setup_array(Klass* klass,
 171                                                  HeapWord* obj, int length);
 172 
 173   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 174 
 175   // Clears an allocated object.
 176   inline static void init_obj(HeapWord* obj, size_t size);
 177 
 178   // Filler object utilities.
 179   static inline size_t filler_array_hdr_size();
 180   static inline size_t filler_array_min_size();
 181 
 182   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 183   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 184 
 185   // Fill with a single array; caller must ensure filler_array_min_size() <=
 186   // words <= filler_array_max_size().
 187   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 188 
 189   // Fill with a single object (either an int array or a java.lang.Object).
 190   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 191 
 192   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 193 
 194   // Verification functions
 195   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 196     PRODUCT_RETURN;
 197   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 198     PRODUCT_RETURN;
 199   debug_only(static void check_for_valid_allocation_state();)
 200 
 201  public:
 202   enum Name {
 203     GenCollectedHeap,
 204     ParallelScavengeHeap,
 205     G1CollectedHeap,
 206     CMSHeap
 207   };
 208 
 209   static inline size_t filler_array_max_size() {
 210     return _filler_array_max_size;
 211   }
 212 
 213   virtual Name kind() const = 0;
 214 
 215   virtual const char* name() const = 0;
 216 
 217   /**
 218    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 219    * and JNI_OK on success.
 220    */
 221   virtual jint initialize() = 0;
 222 
 223   // In many heaps, there will be a need to perform some initialization activities
 224   // after the Universe is fully formed, but before general heap allocation is allowed.
 225   // This is the correct place to place such initialization methods.
 226   virtual void post_initialize() = 0;
 227 
 228   // Stop any onging concurrent work and prepare for exit.
 229   virtual void stop() {}
 230 
 231   // Stop and resume concurrent GC threads interfering with safepoint operations
 232   virtual void safepoint_synchronize_begin() {}
 233   virtual void safepoint_synchronize_end() {}
 234 
 235   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 236   MemRegion reserved_region() const { return _reserved; }
 237   address base() const { return (address)reserved_region().start(); }
 238 
 239   virtual size_t capacity() const = 0;
 240   virtual size_t used() const = 0;
 241 
 242   // Return "true" if the part of the heap that allocates Java
 243   // objects has reached the maximal committed limit that it can
 244   // reach, without a garbage collection.
 245   virtual bool is_maximal_no_gc() const = 0;
 246 
 247   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 248   // memory that the vm could make available for storing 'normal' java objects.
 249   // This is based on the reserved address space, but should not include space
 250   // that the vm uses internally for bookkeeping or temporary storage
 251   // (e.g., in the case of the young gen, one of the survivor
 252   // spaces).
 253   virtual size_t max_capacity() const = 0;
 254 
 255   // Returns "TRUE" if "p" points into the reserved area of the heap.
 256   bool is_in_reserved(const void* p) const {
 257     return _reserved.contains(p);
 258   }
 259 
 260   bool is_in_reserved_or_null(const void* p) const {
 261     return p == NULL || is_in_reserved(p);
 262   }
 263 
 264   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 265   // This method can be expensive so avoid using it in performance critical
 266   // code.
 267   virtual bool is_in(const void* p) const = 0;
 268 
 269   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 270 
 271   // Let's define some terms: a "closed" subset of a heap is one that
 272   //
 273   // 1) contains all currently-allocated objects, and
 274   //
 275   // 2) is closed under reference: no object in the closed subset
 276   //    references one outside the closed subset.
 277   //
 278   // Membership in a heap's closed subset is useful for assertions.
 279   // Clearly, the entire heap is a closed subset, so the default
 280   // implementation is to use "is_in_reserved".  But this may not be too
 281   // liberal to perform useful checking.  Also, the "is_in" predicate
 282   // defines a closed subset, but may be too expensive, since "is_in"
 283   // verifies that its argument points to an object head.  The
 284   // "closed_subset" method allows a heap to define an intermediate
 285   // predicate, allowing more precise checking than "is_in_reserved" at
 286   // lower cost than "is_in."
 287 
 288   // One important case is a heap composed of disjoint contiguous spaces,
 289   // such as the Garbage-First collector.  Such heaps have a convenient
 290   // closed subset consisting of the allocated portions of those
 291   // contiguous spaces.
 292 
 293   // Return "TRUE" iff the given pointer points into the heap's defined
 294   // closed subset (which defaults to the entire heap).
 295   virtual bool is_in_closed_subset(const void* p) const {
 296     return is_in_reserved(p);
 297   }
 298 
 299   bool is_in_closed_subset_or_null(const void* p) const {
 300     return p == NULL || is_in_closed_subset(p);
 301   }
 302 
 303   void set_gc_cause(GCCause::Cause v) {
 304      if (UsePerfData) {
 305        _gc_lastcause = _gc_cause;
 306        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 307        _perf_gc_cause->set_value(GCCause::to_string(v));
 308      }
 309     _gc_cause = v;
 310   }
 311   GCCause::Cause gc_cause() { return _gc_cause; }
 312 
 313   // General obj/array allocation facilities.
 314   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 315   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 316   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 317   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 318 
 319   // Raw memory allocation facilities
 320   // The obj and array allocate methods are covers for these methods.
 321   // mem_allocate() should never be
 322   // called to allocate TLABs, only individual objects.
 323   virtual HeapWord* mem_allocate(size_t size,
 324                                  bool* gc_overhead_limit_was_exceeded) = 0;
 325 
 326   // Utilities for turning raw memory into filler objects.
 327   //
 328   // min_fill_size() is the smallest region that can be filled.
 329   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 330   // multiple objects.  fill_with_object() is for regions known to be smaller
 331   // than the largest array of integers; it uses a single object to fill the
 332   // region and has slightly less overhead.
 333   static size_t min_fill_size() {
 334     return size_t(align_object_size(oopDesc::header_size()));
 335   }
 336 
 337   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 338 
 339   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 340   static void fill_with_object(MemRegion region, bool zap = true) {
 341     fill_with_object(region.start(), region.word_size(), zap);
 342   }
 343   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 344     fill_with_object(start, pointer_delta(end, start), zap);
 345   }
 346 
 347   // Return the address "addr" aligned by "alignment_in_bytes" if such
 348   // an address is below "end".  Return NULL otherwise.
 349   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 350                                                    HeapWord* end,
 351                                                    unsigned short alignment_in_bytes);
 352 
 353   // Some heaps may offer a contiguous region for shared non-blocking
 354   // allocation, via inlined code (by exporting the address of the top and
 355   // end fields defining the extent of the contiguous allocation region.)
 356 
 357   // This function returns "true" iff the heap supports this kind of
 358   // allocation.  (Default is "no".)
 359   virtual bool supports_inline_contig_alloc() const {
 360     return false;
 361   }
 362   // These functions return the addresses of the fields that define the
 363   // boundaries of the contiguous allocation area.  (These fields should be
 364   // physically near to one another.)
 365   virtual HeapWord* volatile* top_addr() const {
 366     guarantee(false, "inline contiguous allocation not supported");
 367     return NULL;
 368   }
 369   virtual HeapWord** end_addr() const {
 370     guarantee(false, "inline contiguous allocation not supported");
 371     return NULL;
 372   }
 373 
 374   // Some heaps may be in an unparseable state at certain times between
 375   // collections. This may be necessary for efficient implementation of
 376   // certain allocation-related activities. Calling this function before
 377   // attempting to parse a heap ensures that the heap is in a parsable
 378   // state (provided other concurrent activity does not introduce
 379   // unparsability). It is normally expected, therefore, that this
 380   // method is invoked with the world stopped.
 381   // NOTE: if you override this method, make sure you call
 382   // super::ensure_parsability so that the non-generational
 383   // part of the work gets done. See implementation of
 384   // CollectedHeap::ensure_parsability and, for instance,
 385   // that of GenCollectedHeap::ensure_parsability().
 386   // The argument "retire_tlabs" controls whether existing TLABs
 387   // are merely filled or also retired, thus preventing further
 388   // allocation from them and necessitating allocation of new TLABs.
 389   virtual void ensure_parsability(bool retire_tlabs);
 390 
 391   // Section on thread-local allocation buffers (TLABs)
 392   // If the heap supports thread-local allocation buffers, it should override
 393   // the following methods:
 394   // Returns "true" iff the heap supports thread-local allocation buffers.
 395   // The default is "no".
 396   virtual bool supports_tlab_allocation() const = 0;
 397 
 398   // The amount of space available for thread-local allocation buffers.
 399   virtual size_t tlab_capacity(Thread *thr) const = 0;
 400 
 401   // The amount of used space for thread-local allocation buffers for the given thread.
 402   virtual size_t tlab_used(Thread *thr) const = 0;
 403 
 404   virtual size_t max_tlab_size() const;
 405 
 406   // An estimate of the maximum allocation that could be performed
 407   // for thread-local allocation buffers without triggering any
 408   // collection or expansion activity.
 409   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 410     guarantee(false, "thread-local allocation buffers not supported");
 411     return 0;
 412   }
 413 
 414   // Can a compiler initialize a new object without store barriers?
 415   // This permission only extends from the creation of a new object
 416   // via a TLAB up to the first subsequent safepoint. If such permission
 417   // is granted for this heap type, the compiler promises to call
 418   // defer_store_barrier() below on any slow path allocation of
 419   // a new object for which such initializing store barriers will
 420   // have been elided.
 421   virtual bool can_elide_tlab_store_barriers() const = 0;
 422 
 423   // If a compiler is eliding store barriers for TLAB-allocated objects,
 424   // there is probably a corresponding slow path which can produce
 425   // an object allocated anywhere.  The compiler's runtime support
 426   // promises to call this function on such a slow-path-allocated
 427   // object before performing initializations that have elided
 428   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 429   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 430 
 431   // Answers whether an initializing store to a new object currently
 432   // allocated at the given address doesn't need a store
 433   // barrier. Returns "true" if it doesn't need an initializing
 434   // store barrier; answers "false" if it does.
 435   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 436 
 437   // If a compiler is eliding store barriers for TLAB-allocated objects,
 438   // we will be informed of a slow-path allocation by a call
 439   // to new_store_pre_barrier() above. Such a call precedes the
 440   // initialization of the object itself, and no post-store-barriers will
 441   // be issued. Some heap types require that the barrier strictly follows
 442   // the initializing stores. (This is currently implemented by deferring the
 443   // barrier until the next slow-path allocation or gc-related safepoint.)
 444   // This interface answers whether a particular heap type needs the card
 445   // mark to be thus strictly sequenced after the stores.
 446   virtual bool card_mark_must_follow_store() const = 0;
 447 
 448   // If the CollectedHeap was asked to defer a store barrier above,
 449   // this informs it to flush such a deferred store barrier to the
 450   // remembered set.
 451   virtual void flush_deferred_store_barrier(JavaThread* thread);
 452 
 453   // Perform a collection of the heap; intended for use in implementing
 454   // "System.gc".  This probably implies as full a collection as the
 455   // "CollectedHeap" supports.
 456   virtual void collect(GCCause::Cause cause) = 0;
 457 
 458   // Perform a full collection
 459   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 460 
 461   // This interface assumes that it's being called by the
 462   // vm thread. It collects the heap assuming that the
 463   // heap lock is already held and that we are executing in
 464   // the context of the vm thread.
 465   virtual void collect_as_vm_thread(GCCause::Cause cause);
 466 
 467   // Returns the barrier set for this heap
 468   BarrierSet* barrier_set() { return _barrier_set; }
 469   void set_barrier_set(BarrierSet* barrier_set);
 470 
 471   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 472   // that it should answer "false" for the concurrent part of a concurrent
 473   // collector -- dld).
 474   bool is_gc_active() const { return _is_gc_active; }
 475 
 476   // Total number of GC collections (started)
 477   unsigned int total_collections() const { return _total_collections; }
 478   unsigned int total_full_collections() const { return _total_full_collections;}
 479 
 480   // Increment total number of GC collections (started)
 481   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 482   void increment_total_collections(bool full = false) {
 483     _total_collections++;
 484     if (full) {
 485       increment_total_full_collections();
 486     }
 487   }
 488 
 489   void increment_total_full_collections() { _total_full_collections++; }
 490 
 491   // Return the CollectorPolicy for the heap
 492   virtual CollectorPolicy* collector_policy() const = 0;
 493 
 494   // Iterate over all objects, calling "cl.do_object" on each.
 495   virtual void object_iterate(ObjectClosure* cl) = 0;
 496 
 497   // Similar to object_iterate() except iterates only
 498   // over live objects.
 499   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 500 
 501   // NOTE! There is no requirement that a collector implement these
 502   // functions.
 503   //
 504   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 505   // each address in the (reserved) heap is a member of exactly
 506   // one block.  The defining characteristic of a block is that it is
 507   // possible to find its size, and thus to progress forward to the next
 508   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 509   // represent Java objects, or they might be free blocks in a
 510   // free-list-based heap (or subheap), as long as the two kinds are
 511   // distinguishable and the size of each is determinable.
 512 
 513   // Returns the address of the start of the "block" that contains the
 514   // address "addr".  We say "blocks" instead of "object" since some heaps
 515   // may not pack objects densely; a chunk may either be an object or a
 516   // non-object.
 517   virtual HeapWord* block_start(const void* addr) const = 0;
 518 
 519   // Requires "addr" to be the start of a chunk, and returns its size.
 520   // "addr + size" is required to be the start of a new chunk, or the end
 521   // of the active area of the heap.
 522   virtual size_t block_size(const HeapWord* addr) const = 0;
 523 
 524   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 525   // the block is an object.
 526   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 527 
 528   // Returns the longest time (in ms) that has elapsed since the last
 529   // time that any part of the heap was examined by a garbage collection.
 530   virtual jlong millis_since_last_gc() = 0;
 531 
 532   // Perform any cleanup actions necessary before allowing a verification.
 533   virtual void prepare_for_verify() = 0;
 534 
 535   // Generate any dumps preceding or following a full gc
 536  private:
 537   void full_gc_dump(GCTimer* timer, bool before);
 538  public:
 539   void pre_full_gc_dump(GCTimer* timer);
 540   void post_full_gc_dump(GCTimer* timer);
 541 
 542   VirtualSpaceSummary create_heap_space_summary();
 543   GCHeapSummary create_heap_summary();
 544 
 545   MetaspaceSummary create_metaspace_summary();
 546 
 547   // Print heap information on the given outputStream.
 548   virtual void print_on(outputStream* st) const = 0;
 549   // The default behavior is to call print_on() on tty.
 550   virtual void print() const {
 551     print_on(tty);
 552   }
 553   // Print more detailed heap information on the given
 554   // outputStream. The default behavior is to call print_on(). It is
 555   // up to each subclass to override it and add any additional output
 556   // it needs.
 557   virtual void print_extended_on(outputStream* st) const {
 558     print_on(st);
 559   }
 560 
 561   virtual void print_on_error(outputStream* st) const;
 562 
 563   // Print all GC threads (other than the VM thread)
 564   // used by this heap.
 565   virtual void print_gc_threads_on(outputStream* st) const = 0;
 566   // The default behavior is to call print_gc_threads_on() on tty.
 567   void print_gc_threads() {
 568     print_gc_threads_on(tty);
 569   }
 570   // Iterator for all GC threads (other than VM thread)
 571   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 572 
 573   // Print any relevant tracing info that flags imply.
 574   // Default implementation does nothing.
 575   virtual void print_tracing_info() const = 0;
 576 
 577   void print_heap_before_gc();
 578   void print_heap_after_gc();
 579 
 580   // An object is scavengable if its location may move during a scavenge.
 581   // (A scavenge is a GC which is not a full GC.)
 582   virtual bool is_scavengable(oop obj) = 0;
 583   // Registering and unregistering an nmethod (compiled code) with the heap.
 584   // Override with specific mechanism for each specialized heap type.
 585   virtual void register_nmethod(nmethod* nm) {}
 586   virtual void unregister_nmethod(nmethod* nm) {}
 587   virtual void verify_nmethod(nmethod* nmethod) {}
 588 
 589   void trace_heap_before_gc(const GCTracer* gc_tracer);
 590   void trace_heap_after_gc(const GCTracer* gc_tracer);
 591 
 592   // Heap verification
 593   virtual void verify(VerifyOption option) = 0;
 594 
 595   // Return true if concurrent phase control (via
 596   // request_concurrent_phase_control) is supported by this collector.
 597   // The default implementation returns false.
 598   virtual bool supports_concurrent_phase_control() const;
 599 
 600   // Return a NULL terminated array of concurrent phase names provided
 601   // by this collector.  Supports Whitebox testing.  These are the
 602   // names recognized by request_concurrent_phase(). The default
 603   // implementation returns an array of one NULL element.
 604   virtual const char* const* concurrent_phases() const;
 605 
 606   // Request the collector enter the indicated concurrent phase, and
 607   // wait until it does so.  Supports WhiteBox testing.  Only one
 608   // request may be active at a time.  Phases are designated by name;
 609   // the set of names and their meaning is GC-specific.  Once the
 610   // requested phase has been reached, the collector will attempt to
 611   // avoid transitioning to a new phase until a new request is made.
 612   // [Note: A collector might not be able to remain in a given phase.
 613   // For example, a full collection might cancel an in-progress
 614   // concurrent collection.]
 615   //
 616   // Returns true when the phase is reached.  Returns false for an
 617   // unknown phase.  The default implementation returns false.
 618   virtual bool request_concurrent_phase(const char* phase);
 619 
 620   // Provides a thread pool to SafepointSynchronize to use
 621   // for parallel safepoint cleanup.
 622   // GCs that use a GC worker thread pool may want to share
 623   // it for use during safepoint cleanup. This is only possible
 624   // if the GC can pause and resume concurrent work (e.g. G1
 625   // concurrent marking) for an intermittent non-GC safepoint.
 626   // If this method returns NULL, SafepointSynchronize will
 627   // perform cleanup tasks serially in the VMThread.
 628   virtual WorkGang* get_safepoint_workers() { return NULL; }
 629 
 630   // Non product verification and debugging.
 631 #ifndef PRODUCT
 632   // Support for PromotionFailureALot.  Return true if it's time to cause a
 633   // promotion failure.  The no-argument version uses
 634   // this->_promotion_failure_alot_count as the counter.
 635   inline bool promotion_should_fail(volatile size_t* count);
 636   inline bool promotion_should_fail();
 637 
 638   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 639   // GC in which promotion failure occurred.
 640   inline void reset_promotion_should_fail(volatile size_t* count);
 641   inline void reset_promotion_should_fail();
 642 #endif  // #ifndef PRODUCT
 643 
 644 #ifdef ASSERT
 645   static int fired_fake_oom() {
 646     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 647   }
 648 #endif
 649 
 650  public:
 651   // Copy the current allocation context statistics for the specified contexts.
 652   // For each context in contexts, set the corresponding entries in the totals
 653   // and accuracy arrays to the current values held by the statistics.  Each
 654   // array should be of length len.
 655   // Returns true if there are more stats available.
 656   virtual bool copy_allocation_context_stats(const jint* contexts,
 657                                              jlong* totals,
 658                                              jbyte* accuracy,
 659                                              jint len) {
 660     return false;
 661   }
 662 
 663 };
 664 
 665 // Class to set and reset the GC cause for a CollectedHeap.
 666 
 667 class GCCauseSetter : StackObj {
 668   CollectedHeap* _heap;
 669   GCCause::Cause _previous_cause;
 670  public:
 671   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 672     assert(SafepointSynchronize::is_at_safepoint(),
 673            "This method manipulates heap state without locking");
 674     _heap = heap;
 675     _previous_cause = _heap->gc_cause();
 676     _heap->set_gc_cause(cause);
 677   }
 678 
 679   ~GCCauseSetter() {
 680     assert(SafepointSynchronize::is_at_safepoint(),
 681           "This method manipulates heap state without locking");
 682     _heap->set_gc_cause(_previous_cause);
 683   }
 684 };
 685 
 686 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP