1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  26 #define SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP
  27 
  28 #include "gc/shared/referencePolicy.hpp"
  29 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  30 #include "gc/shared/referenceProcessorStats.hpp"
  31 #include "memory/referenceType.hpp"
  32 #include "oops/instanceRefKlass.hpp"
  33 
  34 class GCTimer;
  35 
  36 // ReferenceProcessor class encapsulates the per-"collector" processing
  37 // of java.lang.Reference objects for GC. The interface is useful for supporting
  38 // a generational abstraction, in particular when there are multiple
  39 // generations that are being independently collected -- possibly
  40 // concurrently and/or incrementally.  Note, however, that the
  41 // ReferenceProcessor class abstracts away from a generational setting
  42 // by using only a heap interval (called "span" below), thus allowing
  43 // its use in a straightforward manner in a general, non-generational
  44 // setting.
  45 //
  46 // The basic idea is that each ReferenceProcessor object concerns
  47 // itself with ("weak") reference processing in a specific "span"
  48 // of the heap of interest to a specific collector. Currently,
  49 // the span is a convex interval of the heap, but, efficiency
  50 // apart, there seems to be no reason it couldn't be extended
  51 // (with appropriate modifications) to any "non-convex interval".
  52 
  53 // forward references
  54 class ReferencePolicy;
  55 class AbstractRefProcTaskExecutor;
  56 
  57 // List of discovered references.
  58 class DiscoveredList {
  59 public:
  60   DiscoveredList() : _len(0), _compressed_head(0), _oop_head(NULL) { }
  61   inline oop head() const;
  62   HeapWord* adr_head() {
  63     return UseCompressedOops ? (HeapWord*)&_compressed_head :
  64                                (HeapWord*)&_oop_head;
  65   }
  66   inline void set_head(oop o);
  67   inline bool is_empty() const;
  68   size_t length()               { return _len; }
  69   void   set_length(size_t len) { _len = len;  }
  70   void   inc_length(size_t inc) { _len += inc; assert(_len > 0, "Error"); }
  71   void   dec_length(size_t dec) { _len -= dec; }
  72 private:
  73   // Set value depending on UseCompressedOops. This could be a template class
  74   // but then we have to fix all the instantiations and declarations that use this class.
  75   oop       _oop_head;
  76   narrowOop _compressed_head;
  77   size_t _len;
  78 };
  79 
  80 // Iterator for the list of discovered references.
  81 class DiscoveredListIterator {
  82 private:
  83   DiscoveredList&    _refs_list;
  84   HeapWord*          _prev_next;
  85   oop                _prev;
  86   oop                _ref;
  87   HeapWord*          _discovered_addr;
  88   oop                _next;
  89   HeapWord*          _referent_addr;
  90   oop                _referent;
  91   OopClosure*        _keep_alive;
  92   BoolObjectClosure* _is_alive;
  93 
  94   DEBUG_ONLY(
  95   oop                _first_seen; // cyclic linked list check
  96   )
  97 
  98   NOT_PRODUCT(
  99   size_t             _processed;
 100   size_t             _removed;
 101   )
 102 
 103 public:
 104   inline DiscoveredListIterator(DiscoveredList&    refs_list,
 105                                 OopClosure*        keep_alive,
 106                                 BoolObjectClosure* is_alive);
 107 
 108   // End Of List.
 109   inline bool has_next() const { return _ref != NULL; }
 110 
 111   // Get oop to the Reference object.
 112   inline oop obj() const { return _ref; }
 113 
 114   // Get oop to the referent object.
 115   inline oop referent() const { return _referent; }
 116 
 117   // Returns true if referent is alive.
 118   inline bool is_referent_alive() const {
 119     return _is_alive->do_object_b(_referent);
 120   }
 121 
 122   // Loads data for the current reference.
 123   // The "allow_null_referent" argument tells us to allow for the possibility
 124   // of a NULL referent in the discovered Reference object. This typically
 125   // happens in the case of concurrent collectors that may have done the
 126   // discovery concurrently, or interleaved, with mutator execution.
 127   void load_ptrs(DEBUG_ONLY(bool allow_null_referent));
 128 
 129   // Move to the next discovered reference.
 130   inline void next() {
 131     _prev_next = _discovered_addr;
 132     _prev = _ref;
 133     move_to_next();
 134   }
 135 
 136   // Remove the current reference from the list
 137   void remove();
 138 
 139   // Make the referent alive.
 140   inline void make_referent_alive() {
 141     if (UseCompressedOops) {
 142       _keep_alive->do_oop((narrowOop*)_referent_addr);
 143     } else {
 144       _keep_alive->do_oop((oop*)_referent_addr);
 145     }
 146   }
 147 
 148   // NULL out referent pointer.
 149   void clear_referent();
 150 
 151   // Statistics
 152   NOT_PRODUCT(
 153   inline size_t processed() const { return _processed; }
 154   inline size_t removed() const   { return _removed; }
 155   )
 156 
 157   inline void move_to_next() {
 158     if (_ref == _next) {
 159       // End of the list.
 160       _ref = NULL;
 161     } else {
 162       _ref = _next;
 163     }
 164     assert(_ref != _first_seen, "cyclic ref_list found");
 165     NOT_PRODUCT(_processed++);
 166   }
 167 };
 168 
 169 class ReferenceProcessor : public CHeapObj<mtGC> {
 170 
 171  private:
 172   size_t total_count(DiscoveredList lists[]) const;
 173 
 174  protected:
 175   // The SoftReference master timestamp clock
 176   static jlong _soft_ref_timestamp_clock;
 177 
 178   MemRegion   _span;                    // (right-open) interval of heap
 179                                         // subject to wkref discovery
 180 
 181   bool        _discovering_refs;        // true when discovery enabled
 182   bool        _discovery_is_atomic;     // if discovery is atomic wrt
 183                                         // other collectors in configuration
 184   bool        _discovery_is_mt;         // true if reference discovery is MT.
 185 
 186   bool        _enqueuing_is_done;       // true if all weak references enqueued
 187   bool        _processing_is_mt;        // true during phases when
 188                                         // reference processing is MT.
 189   uint        _next_id;                 // round-robin mod _num_q counter in
 190                                         // support of work distribution
 191 
 192   // For collectors that do not keep GC liveness information
 193   // in the object header, this field holds a closure that
 194   // helps the reference processor determine the reachability
 195   // of an oop. It is currently initialized to NULL for all
 196   // collectors except for CMS and G1.
 197   BoolObjectClosure* _is_alive_non_header;
 198 
 199   // Soft ref clearing policies
 200   // . the default policy
 201   static ReferencePolicy*   _default_soft_ref_policy;
 202   // . the "clear all" policy
 203   static ReferencePolicy*   _always_clear_soft_ref_policy;
 204   // . the current policy below is either one of the above
 205   ReferencePolicy*          _current_soft_ref_policy;
 206 
 207   // The discovered ref lists themselves
 208 
 209   // The active MT'ness degree of the queues below
 210   uint             _num_q;
 211   // The maximum MT'ness degree of the queues below
 212   uint             _max_num_q;
 213 
 214   // Master array of discovered oops
 215   DiscoveredList* _discovered_refs;
 216 
 217   // Arrays of lists of oops, one per thread (pointers into master array above)
 218   DiscoveredList* _discoveredSoftRefs;
 219   DiscoveredList* _discoveredWeakRefs;
 220   DiscoveredList* _discoveredFinalRefs;
 221   DiscoveredList* _discoveredPhantomRefs;
 222 
 223  public:
 224   static int number_of_subclasses_of_ref() { return (REF_PHANTOM - REF_OTHER); }
 225 
 226   uint num_q()                             { return _num_q; }
 227   uint max_num_q()                         { return _max_num_q; }
 228   void set_active_mt_degree(uint v);
 229 
 230   DiscoveredList* discovered_refs()        { return _discovered_refs; }
 231 
 232   ReferencePolicy* setup_policy(bool always_clear) {
 233     _current_soft_ref_policy = always_clear ?
 234       _always_clear_soft_ref_policy : _default_soft_ref_policy;
 235     _current_soft_ref_policy->setup();   // snapshot the policy threshold
 236     return _current_soft_ref_policy;
 237   }
 238 
 239   // Process references with a certain reachability level.
 240   void process_discovered_reflist(DiscoveredList                refs_lists[],
 241                                   ReferencePolicy*              policy,
 242                                   bool                          clear_referent,
 243                                   BoolObjectClosure*            is_alive,
 244                                   OopClosure*                   keep_alive,
 245                                   VoidClosure*                  complete_gc,
 246                                   AbstractRefProcTaskExecutor*  task_executor,
 247                                   ReferenceProcessorPhaseTimes* phase_times);
 248 
 249   size_t process_phaseHeapSampling(BoolObjectClosure* is_alive,
 250                                    OopClosure*        keep_alive,
 251                                    VoidClosure*       complete_gc);
 252 
 253   // Work methods used by the method process_discovered_reflist
 254   // Phase1: keep alive all those referents that are otherwise
 255   // dead but which must be kept alive by policy (and their closure).
 256   void process_phase1(DiscoveredList&     refs_list,
 257                       ReferencePolicy*    policy,
 258                       BoolObjectClosure*  is_alive,
 259                       OopClosure*         keep_alive,
 260                       VoidClosure*        complete_gc);
 261   // Phase2: remove all those references whose referents are
 262   // reachable.
 263   inline void process_phase2(DiscoveredList&    refs_list,
 264                              BoolObjectClosure* is_alive,
 265                              OopClosure*        keep_alive,
 266                              VoidClosure*       complete_gc) {
 267     if (discovery_is_atomic()) {
 268       // complete_gc is ignored in this case for this phase
 269       pp2_work(refs_list, is_alive, keep_alive);
 270     } else {
 271       assert(complete_gc != NULL, "Error");
 272       pp2_work_concurrent_discovery(refs_list, is_alive,
 273                                     keep_alive, complete_gc);
 274     }
 275   }
 276   // Work methods in support of process_phase2
 277   void pp2_work(DiscoveredList&    refs_list,
 278                 BoolObjectClosure* is_alive,
 279                 OopClosure*        keep_alive);
 280   void pp2_work_concurrent_discovery(
 281                 DiscoveredList&    refs_list,
 282                 BoolObjectClosure* is_alive,
 283                 OopClosure*        keep_alive,
 284                 VoidClosure*       complete_gc);
 285   // Phase3: process the referents by either clearing them
 286   // or keeping them alive (and their closure)
 287   void process_phase3(DiscoveredList&    refs_list,
 288                       bool               clear_referent,
 289                       BoolObjectClosure* is_alive,
 290                       OopClosure*        keep_alive,
 291                       VoidClosure*       complete_gc);
 292 
 293   // Enqueue references with a certain reachability level
 294   void enqueue_discovered_reflist(DiscoveredList& refs_list);
 295 
 296   // "Preclean" all the discovered reference lists
 297   // by removing references with strongly reachable referents.
 298   // The first argument is a predicate on an oop that indicates
 299   // its (strong) reachability and the second is a closure that
 300   // may be used to incrementalize or abort the precleaning process.
 301   // The caller is responsible for taking care of potential
 302   // interference with concurrent operations on these lists
 303   // (or predicates involved) by other threads. Currently
 304   // only used by the CMS collector.
 305   void preclean_discovered_references(BoolObjectClosure* is_alive,
 306                                       OopClosure*        keep_alive,
 307                                       VoidClosure*       complete_gc,
 308                                       YieldClosure*      yield,
 309                                       GCTimer*           gc_timer);
 310 
 311   // Returns the name of the discovered reference list
 312   // occupying the i / _num_q slot.
 313   const char* list_name(uint i);
 314 
 315   void enqueue_discovered_reflists(AbstractRefProcTaskExecutor* task_executor,
 316                                    ReferenceProcessorPhaseTimes* phase_times);
 317 
 318  protected:
 319   // "Preclean" the given discovered reference list
 320   // by removing references with strongly reachable referents.
 321   // Currently used in support of CMS only.
 322   void preclean_discovered_reflist(DiscoveredList&    refs_list,
 323                                    BoolObjectClosure* is_alive,
 324                                    OopClosure*        keep_alive,
 325                                    VoidClosure*       complete_gc,
 326                                    YieldClosure*      yield);
 327 
 328   // round-robin mod _num_q (not: _not_ mode _max_num_q)
 329   uint next_id() {
 330     uint id = _next_id;
 331     assert(!_discovery_is_mt, "Round robin should only be used in serial discovery");
 332     if (++_next_id == _num_q) {
 333       _next_id = 0;
 334     }
 335     assert(_next_id < _num_q, "_next_id %u _num_q %u _max_num_q %u", _next_id, _num_q, _max_num_q);
 336     return id;
 337   }
 338   DiscoveredList* get_discovered_list(ReferenceType rt);
 339   inline void add_to_discovered_list_mt(DiscoveredList& refs_list, oop obj,
 340                                         HeapWord* discovered_addr);
 341 
 342   void clear_discovered_references(DiscoveredList& refs_list);
 343 
 344   void log_reflist_counts(DiscoveredList ref_lists[], uint active_length, size_t total_count) PRODUCT_RETURN;
 345 
 346   // Balances reference queues.
 347   void balance_queues(DiscoveredList ref_lists[]);
 348 
 349   // Update (advance) the soft ref master clock field.
 350   void update_soft_ref_master_clock();
 351 
 352  public:
 353   // Default parameters give you a vanilla reference processor.
 354   ReferenceProcessor(MemRegion span,
 355                      bool mt_processing = false, uint mt_processing_degree = 1,
 356                      bool mt_discovery  = false, uint mt_discovery_degree  = 1,
 357                      bool atomic_discovery = true,
 358                      BoolObjectClosure* is_alive_non_header = NULL);
 359 
 360   // RefDiscoveryPolicy values
 361   enum DiscoveryPolicy {
 362     ReferenceBasedDiscovery = 0,
 363     ReferentBasedDiscovery  = 1,
 364     DiscoveryPolicyMin      = ReferenceBasedDiscovery,
 365     DiscoveryPolicyMax      = ReferentBasedDiscovery
 366   };
 367 
 368   static void init_statics();
 369 
 370  public:
 371   // get and set "is_alive_non_header" field
 372   BoolObjectClosure* is_alive_non_header() {
 373     return _is_alive_non_header;
 374   }
 375   void set_is_alive_non_header(BoolObjectClosure* is_alive_non_header) {
 376     _is_alive_non_header = is_alive_non_header;
 377   }
 378 
 379   // get and set span
 380   MemRegion span()                   { return _span; }
 381   void      set_span(MemRegion span) { _span = span; }
 382 
 383   // start and stop weak ref discovery
 384   void enable_discovery(bool check_no_refs = true);
 385   void disable_discovery()  { _discovering_refs = false; }
 386   bool discovery_enabled()  { return _discovering_refs;  }
 387 
 388   // whether discovery is atomic wrt other collectors
 389   bool discovery_is_atomic() const { return _discovery_is_atomic; }
 390   void set_atomic_discovery(bool atomic) { _discovery_is_atomic = atomic; }
 391 
 392   // whether discovery is done by multiple threads same-old-timeously
 393   bool discovery_is_mt() const { return _discovery_is_mt; }
 394   void set_mt_discovery(bool mt) { _discovery_is_mt = mt; }
 395 
 396   // Whether we are in a phase when _processing_ is MT.
 397   bool processing_is_mt() const { return _processing_is_mt; }
 398   void set_mt_processing(bool mt) { _processing_is_mt = mt; }
 399 
 400   // whether all enqueueing of weak references is complete
 401   bool enqueuing_is_done()  { return _enqueuing_is_done; }
 402   void set_enqueuing_is_done(bool v) { _enqueuing_is_done = v; }
 403 
 404   // iterate over oops
 405   void weak_oops_do(OopClosure* f);       // weak roots
 406 
 407   // Balance each of the discovered lists.
 408   void balance_all_queues();
 409   void verify_list(DiscoveredList& ref_list);
 410 
 411   // Discover a Reference object, using appropriate discovery criteria
 412   bool discover_reference(oop obj, ReferenceType rt);
 413 
 414   // Has discovered references that need handling
 415   bool has_discovered_references();
 416 
 417   // Process references found during GC (called by the garbage collector)
 418   ReferenceProcessorStats
 419   process_discovered_references(BoolObjectClosure*            is_alive,
 420                                 OopClosure*                   keep_alive,
 421                                 VoidClosure*                  complete_gc,
 422                                 AbstractRefProcTaskExecutor*  task_executor,
 423                                 ReferenceProcessorPhaseTimes* phase_times);
 424 
 425   // Enqueue references at end of GC (called by the garbage collector)
 426   void enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor,
 427                                      ReferenceProcessorPhaseTimes* phase_times);
 428 
 429   // If a discovery is in process that is being superceded, abandon it: all
 430   // the discovered lists will be empty, and all the objects on them will
 431   // have NULL discovered fields.  Must be called only at a safepoint.
 432   void abandon_partial_discovery();
 433 
 434   size_t total_reference_count(ReferenceType rt) const;
 435 
 436   // debugging
 437   void verify_no_references_recorded() PRODUCT_RETURN;
 438   void verify_referent(oop obj)        PRODUCT_RETURN;
 439 };
 440 
 441 // A utility class to disable reference discovery in
 442 // the scope which contains it, for given ReferenceProcessor.
 443 class NoRefDiscovery: StackObj {
 444  private:
 445   ReferenceProcessor* _rp;
 446   bool _was_discovering_refs;
 447  public:
 448   NoRefDiscovery(ReferenceProcessor* rp) : _rp(rp) {
 449     _was_discovering_refs = _rp->discovery_enabled();
 450     if (_was_discovering_refs) {
 451       _rp->disable_discovery();
 452     }
 453   }
 454 
 455   ~NoRefDiscovery() {
 456     if (_was_discovering_refs) {
 457       _rp->enable_discovery(false /*check_no_refs*/);
 458     }
 459   }
 460 };
 461 
 462 
 463 // A utility class to temporarily mutate the span of the
 464 // given ReferenceProcessor in the scope that contains it.
 465 class ReferenceProcessorSpanMutator: StackObj {
 466  private:
 467   ReferenceProcessor* _rp;
 468   MemRegion           _saved_span;
 469 
 470  public:
 471   ReferenceProcessorSpanMutator(ReferenceProcessor* rp,
 472                                 MemRegion span):
 473     _rp(rp) {
 474     _saved_span = _rp->span();
 475     _rp->set_span(span);
 476   }
 477 
 478   ~ReferenceProcessorSpanMutator() {
 479     _rp->set_span(_saved_span);
 480   }
 481 };
 482 
 483 // A utility class to temporarily change the MT'ness of
 484 // reference discovery for the given ReferenceProcessor
 485 // in the scope that contains it.
 486 class ReferenceProcessorMTDiscoveryMutator: StackObj {
 487  private:
 488   ReferenceProcessor* _rp;
 489   bool                _saved_mt;
 490 
 491  public:
 492   ReferenceProcessorMTDiscoveryMutator(ReferenceProcessor* rp,
 493                                        bool mt):
 494     _rp(rp) {
 495     _saved_mt = _rp->discovery_is_mt();
 496     _rp->set_mt_discovery(mt);
 497   }
 498 
 499   ~ReferenceProcessorMTDiscoveryMutator() {
 500     _rp->set_mt_discovery(_saved_mt);
 501   }
 502 };
 503 
 504 
 505 // A utility class to temporarily change the disposition
 506 // of the "is_alive_non_header" closure field of the
 507 // given ReferenceProcessor in the scope that contains it.
 508 class ReferenceProcessorIsAliveMutator: StackObj {
 509  private:
 510   ReferenceProcessor* _rp;
 511   BoolObjectClosure*  _saved_cl;
 512 
 513  public:
 514   ReferenceProcessorIsAliveMutator(ReferenceProcessor* rp,
 515                                    BoolObjectClosure*  cl):
 516     _rp(rp) {
 517     _saved_cl = _rp->is_alive_non_header();
 518     _rp->set_is_alive_non_header(cl);
 519   }
 520 
 521   ~ReferenceProcessorIsAliveMutator() {
 522     _rp->set_is_alive_non_header(_saved_cl);
 523   }
 524 };
 525 
 526 // A utility class to temporarily change the disposition
 527 // of the "discovery_is_atomic" field of the
 528 // given ReferenceProcessor in the scope that contains it.
 529 class ReferenceProcessorAtomicMutator: StackObj {
 530  private:
 531   ReferenceProcessor* _rp;
 532   bool                _saved_atomic_discovery;
 533 
 534  public:
 535   ReferenceProcessorAtomicMutator(ReferenceProcessor* rp,
 536                                   bool atomic):
 537     _rp(rp) {
 538     _saved_atomic_discovery = _rp->discovery_is_atomic();
 539     _rp->set_atomic_discovery(atomic);
 540   }
 541 
 542   ~ReferenceProcessorAtomicMutator() {
 543     _rp->set_atomic_discovery(_saved_atomic_discovery);
 544   }
 545 };
 546 
 547 
 548 // A utility class to temporarily change the MT processing
 549 // disposition of the given ReferenceProcessor instance
 550 // in the scope that contains it.
 551 class ReferenceProcessorMTProcMutator: StackObj {
 552  private:
 553   ReferenceProcessor* _rp;
 554   bool  _saved_mt;
 555 
 556  public:
 557   ReferenceProcessorMTProcMutator(ReferenceProcessor* rp,
 558                                   bool mt):
 559     _rp(rp) {
 560     _saved_mt = _rp->processing_is_mt();
 561     _rp->set_mt_processing(mt);
 562   }
 563 
 564   ~ReferenceProcessorMTProcMutator() {
 565     _rp->set_mt_processing(_saved_mt);
 566   }
 567 };
 568 
 569 
 570 // This class is an interface used to implement task execution for the
 571 // reference processing.
 572 class AbstractRefProcTaskExecutor {
 573 public:
 574 
 575   // Abstract tasks to execute.
 576   class ProcessTask;
 577   class EnqueueTask;
 578 
 579   // Executes a task using worker threads.
 580   virtual void execute(ProcessTask& task) = 0;
 581   virtual void execute(EnqueueTask& task) = 0;
 582 
 583   // Switch to single threaded mode.
 584   virtual void set_single_threaded_mode() { };
 585 };
 586 
 587 // Abstract reference processing task to execute.
 588 class AbstractRefProcTaskExecutor::ProcessTask {
 589 protected:
 590   ProcessTask(ReferenceProcessor&           ref_processor,
 591               DiscoveredList                refs_lists[],
 592               bool                          marks_oops_alive,
 593               ReferenceProcessorPhaseTimes* phase_times)
 594     : _ref_processor(ref_processor),
 595       _refs_lists(refs_lists),
 596       _phase_times(phase_times),
 597       _marks_oops_alive(marks_oops_alive)
 598   { }
 599 
 600 public:
 601   virtual void work(unsigned int work_id, BoolObjectClosure& is_alive,
 602                     OopClosure& keep_alive,
 603                     VoidClosure& complete_gc) = 0;
 604 
 605   // Returns true if a task marks some oops as alive.
 606   bool marks_oops_alive() const
 607   { return _marks_oops_alive; }
 608 
 609 protected:
 610   ReferenceProcessor&           _ref_processor;
 611   DiscoveredList*               _refs_lists;
 612   ReferenceProcessorPhaseTimes* _phase_times;
 613   const bool                    _marks_oops_alive;
 614 };
 615 
 616 // Abstract reference processing task to execute.
 617 class AbstractRefProcTaskExecutor::EnqueueTask {
 618 protected:
 619   EnqueueTask(ReferenceProcessor&           ref_processor,
 620               DiscoveredList                refs_lists[],
 621               int                           n_queues,
 622               ReferenceProcessorPhaseTimes* phase_times)
 623     : _ref_processor(ref_processor),
 624       _refs_lists(refs_lists),
 625       _n_queues(n_queues),
 626       _phase_times(phase_times)
 627   { }
 628 
 629 public:
 630   virtual void work(unsigned int work_id) = 0;
 631 
 632 protected:
 633   ReferenceProcessor&           _ref_processor;
 634   DiscoveredList*               _refs_lists;
 635   ReferenceProcessorPhaseTimes* _phase_times;
 636   int                           _n_queues;
 637 };
 638 
 639 #endif // SHARE_VM_GC_SHARED_REFERENCEPROCESSOR_HPP