1 /*
   2  * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/symbolTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "jvmtifiles/jvmtiEnv.hpp"
  30 #include "oops/instanceMirrorKlass.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "oops/oop.inline2.hpp"
  33 #include "prims/jvmtiEventController.hpp"
  34 #include "prims/jvmtiEventController.inline.hpp"
  35 #include "prims/jvmtiExport.hpp"
  36 #include "prims/jvmtiImpl.hpp"
  37 #include "prims/jvmtiTagMap.hpp"
  38 #include "runtime/biasedLocking.hpp"
  39 #include "runtime/javaCalls.hpp"
  40 #include "runtime/jniHandles.hpp"
  41 #include "runtime/mutex.hpp"
  42 #include "runtime/mutexLocker.hpp"
  43 #include "runtime/reflectionUtils.hpp"
  44 #include "runtime/vframe.hpp"
  45 #include "runtime/vmThread.hpp"
  46 #include "runtime/vm_operations.hpp"
  47 #include "services/serviceUtil.hpp"
  48 #ifndef SERIALGC
  49 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
  50 #endif
  51 
  52 // JvmtiTagHashmapEntry
  53 //
  54 // Each entry encapsulates a reference to the tagged object
  55 // and the tag value. In addition an entry includes a next pointer which
  56 // is used to chain entries together.
  57 
  58 class JvmtiTagHashmapEntry : public CHeapObj<mtInternal> {
  59  private:
  60   friend class JvmtiTagMap;
  61 
  62   oop _object;                          // tagged object
  63   jlong _tag;                           // the tag
  64   JvmtiTagHashmapEntry* _next;          // next on the list
  65 
  66   inline void init(oop object, jlong tag) {
  67     _object = object;
  68     _tag = tag;
  69     _next = NULL;
  70   }
  71 
  72   // constructor
  73   JvmtiTagHashmapEntry(oop object, jlong tag)         { init(object, tag); }
  74 
  75  public:
  76 
  77   // accessor methods
  78   inline oop object() const                           { return _object; }
  79   inline oop* object_addr()                           { return &_object; }
  80   inline jlong tag() const                            { return _tag; }
  81 
  82   inline void set_tag(jlong tag) {
  83     assert(tag != 0, "can't be zero");
  84     _tag = tag;
  85   }
  86 
  87   inline JvmtiTagHashmapEntry* next() const             { return _next; }
  88   inline void set_next(JvmtiTagHashmapEntry* next)      { _next = next; }
  89 };
  90 
  91 
  92 // JvmtiTagHashmap
  93 //
  94 // A hashmap is essentially a table of pointers to entries. Entries
  95 // are hashed to a location, or position in the table, and then
  96 // chained from that location. The "key" for hashing is address of
  97 // the object, or oop. The "value" is the tag value.
  98 //
  99 // A hashmap maintains a count of the number entries in the hashmap
 100 // and resizes if the number of entries exceeds a given threshold.
 101 // The threshold is specified as a percentage of the size - for
 102 // example a threshold of 0.75 will trigger the hashmap to resize
 103 // if the number of entries is >75% of table size.
 104 //
 105 // A hashmap provides functions for adding, removing, and finding
 106 // entries. It also provides a function to iterate over all entries
 107 // in the hashmap.
 108 
 109 class JvmtiTagHashmap : public CHeapObj<mtInternal> {
 110  private:
 111   friend class JvmtiTagMap;
 112 
 113   enum {
 114     small_trace_threshold  = 10000,                  // threshold for tracing
 115     medium_trace_threshold = 100000,
 116     large_trace_threshold  = 1000000,
 117     initial_trace_threshold = small_trace_threshold
 118   };
 119 
 120   static int _sizes[];                  // array of possible hashmap sizes
 121   int _size;                            // actual size of the table
 122   int _size_index;                      // index into size table
 123 
 124   int _entry_count;                     // number of entries in the hashmap
 125 
 126   float _load_factor;                   // load factor as a % of the size
 127   int _resize_threshold;                // computed threshold to trigger resizing.
 128   bool _resizing_enabled;               // indicates if hashmap can resize
 129 
 130   int _trace_threshold;                 // threshold for trace messages
 131 
 132   JvmtiTagHashmapEntry** _table;        // the table of entries.
 133 
 134   // private accessors
 135   int resize_threshold() const                  { return _resize_threshold; }
 136   int trace_threshold() const                   { return _trace_threshold; }
 137 
 138   // initialize the hashmap
 139   void init(int size_index=0, float load_factor=4.0f) {
 140     int initial_size =  _sizes[size_index];
 141     _size_index = size_index;
 142     _size = initial_size;
 143     _entry_count = 0;
 144     if (TraceJVMTIObjectTagging) {
 145       _trace_threshold = initial_trace_threshold;
 146     } else {
 147       _trace_threshold = -1;
 148     }
 149     _load_factor = load_factor;
 150     _resize_threshold = (int)(_load_factor * _size);
 151     _resizing_enabled = true;
 152     size_t s = initial_size * sizeof(JvmtiTagHashmapEntry*);
 153     _table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 154     if (_table == NULL) {
 155       vm_exit_out_of_memory(s, "unable to allocate initial hashtable for jvmti object tags");
 156     }
 157     for (int i=0; i<initial_size; i++) {
 158       _table[i] = NULL;
 159     }
 160   }
 161 
 162   // hash a given key (oop) with the specified size
 163   static unsigned int hash(oop key, int size) {
 164     // shift right to get better distribution (as these bits will be zero
 165     // with aligned addresses)
 166     unsigned int addr = (unsigned int)((intptr_t)key);
 167 #ifdef _LP64
 168     return (addr >> 3) % size;
 169 #else
 170     return (addr >> 2) % size;
 171 #endif
 172   }
 173 
 174   // hash a given key (oop)
 175   unsigned int hash(oop key) {
 176     return hash(key, _size);
 177   }
 178 
 179   // resize the hashmap - allocates a large table and re-hashes
 180   // all entries into the new table.
 181   void resize() {
 182     int new_size_index = _size_index+1;
 183     int new_size = _sizes[new_size_index];
 184     if (new_size < 0) {
 185       // hashmap already at maximum capacity
 186       return;
 187     }
 188 
 189     // allocate new table
 190     size_t s = new_size * sizeof(JvmtiTagHashmapEntry*);
 191     JvmtiTagHashmapEntry** new_table = (JvmtiTagHashmapEntry**)os::malloc(s, mtInternal);
 192     if (new_table == NULL) {
 193       warning("unable to allocate larger hashtable for jvmti object tags");
 194       set_resizing_enabled(false);
 195       return;
 196     }
 197 
 198     // initialize new table
 199     int i;
 200     for (i=0; i<new_size; i++) {
 201       new_table[i] = NULL;
 202     }
 203 
 204     // rehash all entries into the new table
 205     for (i=0; i<_size; i++) {
 206       JvmtiTagHashmapEntry* entry = _table[i];
 207       while (entry != NULL) {
 208         JvmtiTagHashmapEntry* next = entry->next();
 209         oop key = entry->object();
 210         assert(key != NULL, "jni weak reference cleared!!");
 211         unsigned int h = hash(key, new_size);
 212         JvmtiTagHashmapEntry* anchor = new_table[h];
 213         if (anchor == NULL) {
 214           new_table[h] = entry;
 215           entry->set_next(NULL);
 216         } else {
 217           entry->set_next(anchor);
 218           new_table[h] = entry;
 219         }
 220         entry = next;
 221       }
 222     }
 223 
 224     // free old table and update settings.
 225     os::free((void*)_table);
 226     _table = new_table;
 227     _size_index = new_size_index;
 228     _size = new_size;
 229 
 230     // compute new resize threshold
 231     _resize_threshold = (int)(_load_factor * _size);
 232   }
 233 
 234 
 235   // internal remove function - remove an entry at a given position in the
 236   // table.
 237   inline void remove(JvmtiTagHashmapEntry* prev, int pos, JvmtiTagHashmapEntry* entry) {
 238     assert(pos >= 0 && pos < _size, "out of range");
 239     if (prev == NULL) {
 240       _table[pos] = entry->next();
 241     } else {
 242       prev->set_next(entry->next());
 243     }
 244     assert(_entry_count > 0, "checking");
 245     _entry_count--;
 246   }
 247 
 248   // resizing switch
 249   bool is_resizing_enabled() const          { return _resizing_enabled; }
 250   void set_resizing_enabled(bool enable)    { _resizing_enabled = enable; }
 251 
 252   // debugging
 253   void print_memory_usage();
 254   void compute_next_trace_threshold();
 255 
 256  public:
 257 
 258   // create a JvmtiTagHashmap of a preferred size and optionally a load factor.
 259   // The preferred size is rounded down to an actual size.
 260   JvmtiTagHashmap(int size, float load_factor=0.0f) {
 261     int i=0;
 262     while (_sizes[i] < size) {
 263       if (_sizes[i] < 0) {
 264         assert(i > 0, "sanity check");
 265         i--;
 266         break;
 267       }
 268       i++;
 269     }
 270 
 271     // if a load factor is specified then use it, otherwise use default
 272     if (load_factor > 0.01f) {
 273       init(i, load_factor);
 274     } else {
 275       init(i);
 276     }
 277   }
 278 
 279   // create a JvmtiTagHashmap with default settings
 280   JvmtiTagHashmap() {
 281     init();
 282   }
 283 
 284   // release table when JvmtiTagHashmap destroyed
 285   ~JvmtiTagHashmap() {
 286     if (_table != NULL) {
 287       os::free((void*)_table);
 288       _table = NULL;
 289     }
 290   }
 291 
 292   // accessors
 293   int size() const                              { return _size; }
 294   JvmtiTagHashmapEntry** table() const          { return _table; }
 295   int entry_count() const                       { return _entry_count; }
 296 
 297   // find an entry in the hashmap, returns NULL if not found.
 298   inline JvmtiTagHashmapEntry* find(oop key) {
 299     unsigned int h = hash(key);
 300     JvmtiTagHashmapEntry* entry = _table[h];
 301     while (entry != NULL) {
 302       if (entry->object() == key) {
 303          return entry;
 304       }
 305       entry = entry->next();
 306     }
 307     return NULL;
 308   }
 309 
 310 
 311   // add a new entry to hashmap
 312   inline void add(oop key, JvmtiTagHashmapEntry* entry) {
 313     assert(key != NULL, "checking");
 314     assert(find(key) == NULL, "duplicate detected");
 315     unsigned int h = hash(key);
 316     JvmtiTagHashmapEntry* anchor = _table[h];
 317     if (anchor == NULL) {
 318       _table[h] = entry;
 319       entry->set_next(NULL);
 320     } else {
 321       entry->set_next(anchor);
 322       _table[h] = entry;
 323     }
 324 
 325     _entry_count++;
 326     if (trace_threshold() > 0 && entry_count() >= trace_threshold()) {
 327       assert(TraceJVMTIObjectTagging, "should only get here when tracing");
 328       print_memory_usage();
 329       compute_next_trace_threshold();
 330     }
 331 
 332     // if the number of entries exceed the threshold then resize
 333     if (entry_count() > resize_threshold() && is_resizing_enabled()) {
 334       resize();
 335     }
 336   }
 337 
 338   // remove an entry with the given key.
 339   inline JvmtiTagHashmapEntry* remove(oop key) {
 340     unsigned int h = hash(key);
 341     JvmtiTagHashmapEntry* entry = _table[h];
 342     JvmtiTagHashmapEntry* prev = NULL;
 343     while (entry != NULL) {
 344       if (key == entry->object()) {
 345         break;
 346       }
 347       prev = entry;
 348       entry = entry->next();
 349     }
 350     if (entry != NULL) {
 351       remove(prev, h, entry);
 352     }
 353     return entry;
 354   }
 355 
 356   // iterate over all entries in the hashmap
 357   void entry_iterate(JvmtiTagHashmapEntryClosure* closure);
 358 };
 359 
 360 // possible hashmap sizes - odd primes that roughly double in size.
 361 // To avoid excessive resizing the odd primes from 4801-76831 and
 362 // 76831-307261 have been removed. The list must be terminated by -1.
 363 int JvmtiTagHashmap::_sizes[] =  { 4801, 76831, 307261, 614563, 1228891,
 364     2457733, 4915219, 9830479, 19660831, 39321619, 78643219, -1 };
 365 
 366 
 367 // A supporting class for iterating over all entries in Hashmap
 368 class JvmtiTagHashmapEntryClosure {
 369  public:
 370   virtual void do_entry(JvmtiTagHashmapEntry* entry) = 0;
 371 };
 372 
 373 
 374 // iterate over all entries in the hashmap
 375 void JvmtiTagHashmap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 376   for (int i=0; i<_size; i++) {
 377     JvmtiTagHashmapEntry* entry = _table[i];
 378     JvmtiTagHashmapEntry* prev = NULL;
 379     while (entry != NULL) {
 380       // obtain the next entry before invoking do_entry - this is
 381       // necessary because do_entry may remove the entry from the
 382       // hashmap.
 383       JvmtiTagHashmapEntry* next = entry->next();
 384       closure->do_entry(entry);
 385       entry = next;
 386      }
 387   }
 388 }
 389 
 390 // debugging
 391 void JvmtiTagHashmap::print_memory_usage() {
 392   intptr_t p = (intptr_t)this;
 393   tty->print("[JvmtiTagHashmap @ " INTPTR_FORMAT, p);
 394 
 395   // table + entries in KB
 396   int hashmap_usage = (size()*sizeof(JvmtiTagHashmapEntry*) +
 397     entry_count()*sizeof(JvmtiTagHashmapEntry))/K;
 398 
 399   int weak_globals_usage = (int)(JNIHandles::weak_global_handle_memory_usage()/K);
 400   tty->print_cr(", %d entries (%d KB) <JNI weak globals: %d KB>]",
 401     entry_count(), hashmap_usage, weak_globals_usage);
 402 }
 403 
 404 // compute threshold for the next trace message
 405 void JvmtiTagHashmap::compute_next_trace_threshold() {
 406   if (trace_threshold() < medium_trace_threshold) {
 407     _trace_threshold += small_trace_threshold;
 408   } else {
 409     if (trace_threshold() < large_trace_threshold) {
 410       _trace_threshold += medium_trace_threshold;
 411     } else {
 412       _trace_threshold += large_trace_threshold;
 413     }
 414   }
 415 }
 416 
 417 // create a JvmtiTagMap
 418 JvmtiTagMap::JvmtiTagMap(JvmtiEnv* env) :
 419   _env(env),
 420   _lock(Mutex::nonleaf+2, "JvmtiTagMap._lock", false),
 421   _free_entries(NULL),
 422   _free_entries_count(0)
 423 {
 424   assert(JvmtiThreadState_lock->is_locked(), "sanity check");
 425   assert(((JvmtiEnvBase *)env)->tag_map() == NULL, "tag map already exists for environment");
 426 
 427   _hashmap = new JvmtiTagHashmap();
 428 
 429   // finally add us to the environment
 430   ((JvmtiEnvBase *)env)->set_tag_map(this);
 431 }
 432 
 433 
 434 // destroy a JvmtiTagMap
 435 JvmtiTagMap::~JvmtiTagMap() {
 436 
 437   // no lock acquired as we assume the enclosing environment is
 438   // also being destroryed.
 439   ((JvmtiEnvBase *)_env)->set_tag_map(NULL);
 440 
 441   JvmtiTagHashmapEntry** table = _hashmap->table();
 442   for (int j = 0; j < _hashmap->size(); j++) {
 443     JvmtiTagHashmapEntry* entry = table[j];
 444     while (entry != NULL) {
 445       JvmtiTagHashmapEntry* next = entry->next();
 446       delete entry;
 447       entry = next;
 448     }
 449   }
 450 
 451   // finally destroy the hashmap
 452   delete _hashmap;
 453   _hashmap = NULL;
 454 
 455   // remove any entries on the free list
 456   JvmtiTagHashmapEntry* entry = _free_entries;
 457   while (entry != NULL) {
 458     JvmtiTagHashmapEntry* next = entry->next();
 459     delete entry;
 460     entry = next;
 461   }
 462   _free_entries = NULL;
 463 }
 464 
 465 // create a hashmap entry
 466 // - if there's an entry on the (per-environment) free list then this
 467 // is returned. Otherwise an new entry is allocated.
 468 JvmtiTagHashmapEntry* JvmtiTagMap::create_entry(oop ref, jlong tag) {
 469   assert(Thread::current()->is_VM_thread() || is_locked(), "checking");
 470   JvmtiTagHashmapEntry* entry;
 471   if (_free_entries == NULL) {
 472     entry = new JvmtiTagHashmapEntry(ref, tag);
 473   } else {
 474     assert(_free_entries_count > 0, "mismatched _free_entries_count");
 475     _free_entries_count--;
 476     entry = _free_entries;
 477     _free_entries = entry->next();
 478     entry->init(ref, tag);
 479   }
 480   return entry;
 481 }
 482 
 483 // destroy an entry by returning it to the free list
 484 void JvmtiTagMap::destroy_entry(JvmtiTagHashmapEntry* entry) {
 485   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 486   // limit the size of the free list
 487   if (_free_entries_count >= max_free_entries) {
 488     delete entry;
 489   } else {
 490     entry->set_next(_free_entries);
 491     _free_entries = entry;
 492     _free_entries_count++;
 493   }
 494 }
 495 
 496 // returns the tag map for the given environments. If the tag map
 497 // doesn't exist then it is created.
 498 JvmtiTagMap* JvmtiTagMap::tag_map_for(JvmtiEnv* env) {
 499   JvmtiTagMap* tag_map = ((JvmtiEnvBase*)env)->tag_map();
 500   if (tag_map == NULL) {
 501     MutexLocker mu(JvmtiThreadState_lock);
 502     tag_map = ((JvmtiEnvBase*)env)->tag_map();
 503     if (tag_map == NULL) {
 504       tag_map = new JvmtiTagMap(env);
 505     }
 506   } else {
 507     CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops());
 508   }
 509   return tag_map;
 510 }
 511 
 512 // iterate over all entries in the tag map.
 513 void JvmtiTagMap::entry_iterate(JvmtiTagHashmapEntryClosure* closure) {
 514   hashmap()->entry_iterate(closure);
 515 }
 516 
 517 // returns true if the hashmaps are empty
 518 bool JvmtiTagMap::is_empty() {
 519   assert(SafepointSynchronize::is_at_safepoint() || is_locked(), "checking");
 520   return hashmap()->entry_count() == 0;
 521 }
 522 
 523 
 524 // Return the tag value for an object, or 0 if the object is
 525 // not tagged
 526 //
 527 static inline jlong tag_for(JvmtiTagMap* tag_map, oop o) {
 528   JvmtiTagHashmapEntry* entry = tag_map->hashmap()->find(o);
 529   if (entry == NULL) {
 530     return 0;
 531   } else {
 532     return entry->tag();
 533   }
 534 }
 535 
 536 // If the object is a java.lang.Class then return the klassOop,
 537 // otherwise return the original object
 538 static inline oop klassOop_if_java_lang_Class(oop o) {
 539   if (o->klass() == SystemDictionary::Class_klass()) {
 540     if (!java_lang_Class::is_primitive(o)) {
 541       o = (oop)java_lang_Class::as_klassOop(o);
 542       assert(o != NULL, "class for non-primitive mirror must exist");
 543     }
 544   }
 545   return o;
 546 }
 547 
 548 // A CallbackWrapper is a support class for querying and tagging an object
 549 // around a callback to a profiler. The constructor does pre-callback
 550 // work to get the tag value, klass tag value, ... and the destructor
 551 // does the post-callback work of tagging or untagging the object.
 552 //
 553 // {
 554 //   CallbackWrapper wrapper(tag_map, o);
 555 //
 556 //   (*callback)(wrapper.klass_tag(), wrapper.obj_size(), wrapper.obj_tag_p(), ...)
 557 //
 558 // } // wrapper goes out of scope here which results in the destructor
 559 //      checking to see if the object has been tagged, untagged, or the
 560 //      tag value has changed.
 561 //
 562 class CallbackWrapper : public StackObj {
 563  private:
 564   JvmtiTagMap* _tag_map;
 565   JvmtiTagHashmap* _hashmap;
 566   JvmtiTagHashmapEntry* _entry;
 567   oop _o;
 568   jlong _obj_size;
 569   jlong _obj_tag;
 570   klassOop _klass;         // the object's class
 571   jlong _klass_tag;
 572 
 573  protected:
 574   JvmtiTagMap* tag_map() const      { return _tag_map; }
 575 
 576   // invoked post-callback to tag, untag, or update the tag of an object
 577   void inline post_callback_tag_update(oop o, JvmtiTagHashmap* hashmap,
 578                                        JvmtiTagHashmapEntry* entry, jlong obj_tag);
 579  public:
 580   CallbackWrapper(JvmtiTagMap* tag_map, oop o) {
 581     assert(Thread::current()->is_VM_thread() || tag_map->is_locked(),
 582            "MT unsafe or must be VM thread");
 583 
 584     // for Classes the klassOop is tagged
 585     _o = klassOop_if_java_lang_Class(o);
 586 
 587     // object size
 588     _obj_size = (jlong)_o->size() * wordSize;
 589 
 590     // record the context
 591     _tag_map = tag_map;
 592     _hashmap = tag_map->hashmap();
 593     _entry = _hashmap->find(_o);
 594 
 595     // get object tag
 596     _obj_tag = (_entry == NULL) ? 0 : _entry->tag();
 597 
 598     // get the class and the class's tag value
 599     if (_o == o) {
 600       _klass = _o->klass();
 601     } else {
 602       // if the object represents a runtime class then use the
 603       // tag for java.lang.Class
 604       _klass = SystemDictionary::Class_klass();
 605     }
 606     _klass_tag = tag_for(tag_map, _klass);
 607   }
 608 
 609   ~CallbackWrapper() {
 610     post_callback_tag_update(_o, _hashmap, _entry, _obj_tag);
 611   }
 612 
 613   inline jlong* obj_tag_p()                     { return &_obj_tag; }
 614   inline jlong obj_size() const                 { return _obj_size; }
 615   inline jlong obj_tag() const                  { return _obj_tag; }
 616   inline klassOop klass() const                 { return _klass; }
 617   inline jlong klass_tag() const                { return _klass_tag; }
 618 };
 619 
 620 
 621 
 622 // callback post-callback to tag, untag, or update the tag of an object
 623 void inline CallbackWrapper::post_callback_tag_update(oop o,
 624                                                       JvmtiTagHashmap* hashmap,
 625                                                       JvmtiTagHashmapEntry* entry,
 626                                                       jlong obj_tag) {
 627   if (entry == NULL) {
 628     if (obj_tag != 0) {
 629       // callback has tagged the object
 630       assert(Thread::current()->is_VM_thread(), "must be VMThread");
 631       entry = tag_map()->create_entry(o, obj_tag);
 632       hashmap->add(o, entry);
 633     }
 634   } else {
 635     // object was previously tagged - the callback may have untagged
 636     // the object or changed the tag value
 637     if (obj_tag == 0) {
 638 
 639       JvmtiTagHashmapEntry* entry_removed = hashmap->remove(o);
 640       assert(entry_removed == entry, "checking");
 641       tag_map()->destroy_entry(entry);
 642 
 643     } else {
 644       if (obj_tag != entry->tag()) {
 645          entry->set_tag(obj_tag);
 646       }
 647     }
 648   }
 649 }
 650 
 651 // An extended CallbackWrapper used when reporting an object reference
 652 // to the agent.
 653 //
 654 // {
 655 //   TwoOopCallbackWrapper wrapper(tag_map, referrer, o);
 656 //
 657 //   (*callback)(wrapper.klass_tag(),
 658 //               wrapper.obj_size(),
 659 //               wrapper.obj_tag_p()
 660 //               wrapper.referrer_tag_p(), ...)
 661 //
 662 // } // wrapper goes out of scope here which results in the destructor
 663 //      checking to see if the referrer object has been tagged, untagged,
 664 //      or the tag value has changed.
 665 //
 666 class TwoOopCallbackWrapper : public CallbackWrapper {
 667  private:
 668   bool _is_reference_to_self;
 669   JvmtiTagHashmap* _referrer_hashmap;
 670   JvmtiTagHashmapEntry* _referrer_entry;
 671   oop _referrer;
 672   jlong _referrer_obj_tag;
 673   jlong _referrer_klass_tag;
 674   jlong* _referrer_tag_p;
 675 
 676   bool is_reference_to_self() const             { return _is_reference_to_self; }
 677 
 678  public:
 679   TwoOopCallbackWrapper(JvmtiTagMap* tag_map, oop referrer, oop o) :
 680     CallbackWrapper(tag_map, o)
 681   {
 682     // self reference needs to be handled in a special way
 683     _is_reference_to_self = (referrer == o);
 684 
 685     if (_is_reference_to_self) {
 686       _referrer_klass_tag = klass_tag();
 687       _referrer_tag_p = obj_tag_p();
 688     } else {
 689       // for Classes the klassOop is tagged
 690       _referrer = klassOop_if_java_lang_Class(referrer);
 691       // record the context
 692       _referrer_hashmap = tag_map->hashmap();
 693       _referrer_entry = _referrer_hashmap->find(_referrer);
 694 
 695       // get object tag
 696       _referrer_obj_tag = (_referrer_entry == NULL) ? 0 : _referrer_entry->tag();
 697       _referrer_tag_p = &_referrer_obj_tag;
 698 
 699       // get referrer class tag.
 700       klassOop k = (_referrer == referrer) ?  // Check if referrer is a class...
 701           _referrer->klass()                  // No, just get its class
 702          : SystemDictionary::Class_klass();   // Yes, its class is Class
 703       _referrer_klass_tag = tag_for(tag_map, k);
 704     }
 705   }
 706 
 707   ~TwoOopCallbackWrapper() {
 708     if (!is_reference_to_self()){
 709       post_callback_tag_update(_referrer,
 710                                _referrer_hashmap,
 711                                _referrer_entry,
 712                                _referrer_obj_tag);
 713     }
 714   }
 715 
 716   // address of referrer tag
 717   // (for a self reference this will return the same thing as obj_tag_p())
 718   inline jlong* referrer_tag_p()        { return _referrer_tag_p; }
 719 
 720   // referrer's class tag
 721   inline jlong referrer_klass_tag()     { return _referrer_klass_tag; }
 722 };
 723 
 724 // tag an object
 725 //
 726 // This function is performance critical. If many threads attempt to tag objects
 727 // around the same time then it's possible that the Mutex associated with the
 728 // tag map will be a hot lock.
 729 void JvmtiTagMap::set_tag(jobject object, jlong tag) {
 730   MutexLocker ml(lock());
 731 
 732   // resolve the object
 733   oop o = JNIHandles::resolve_non_null(object);
 734 
 735   // for Classes we tag the klassOop
 736   o = klassOop_if_java_lang_Class(o);
 737 
 738   // see if the object is already tagged
 739   JvmtiTagHashmap* hashmap = _hashmap;
 740   JvmtiTagHashmapEntry* entry = hashmap->find(o);
 741 
 742   // if the object is not already tagged then we tag it
 743   if (entry == NULL) {
 744     if (tag != 0) {
 745       entry = create_entry(o, tag);
 746       hashmap->add(o, entry);
 747     } else {
 748       // no-op
 749     }
 750   } else {
 751     // if the object is already tagged then we either update
 752     // the tag (if a new tag value has been provided)
 753     // or remove the object if the new tag value is 0.
 754     if (tag == 0) {
 755       hashmap->remove(o);
 756       destroy_entry(entry);
 757     } else {
 758       entry->set_tag(tag);
 759     }
 760   }
 761 }
 762 
 763 // get the tag for an object
 764 jlong JvmtiTagMap::get_tag(jobject object) {
 765   MutexLocker ml(lock());
 766 
 767   // resolve the object
 768   oop o = JNIHandles::resolve_non_null(object);
 769 
 770   // for Classes get the tag from the klassOop
 771   return tag_for(this, klassOop_if_java_lang_Class(o));
 772 }
 773 
 774 
 775 // Helper class used to describe the static or instance fields of a class.
 776 // For each field it holds the field index (as defined by the JVMTI specification),
 777 // the field type, and the offset.
 778 
 779 class ClassFieldDescriptor: public CHeapObj<mtInternal> {
 780  private:
 781   int _field_index;
 782   int _field_offset;
 783   char _field_type;
 784  public:
 785   ClassFieldDescriptor(int index, char type, int offset) :
 786     _field_index(index), _field_type(type), _field_offset(offset) {
 787   }
 788   int field_index()  const  { return _field_index; }
 789   char field_type()  const  { return _field_type; }
 790   int field_offset() const  { return _field_offset; }
 791 };
 792 
 793 class ClassFieldMap: public CHeapObj<mtInternal> {
 794  private:
 795   enum {
 796     initial_field_count = 5
 797   };
 798 
 799   // list of field descriptors
 800   GrowableArray<ClassFieldDescriptor*>* _fields;
 801 
 802   // constructor
 803   ClassFieldMap();
 804 
 805   // add a field
 806   void add(int index, char type, int offset);
 807 
 808   // returns the field count for the given class
 809   static int compute_field_count(instanceKlassHandle ikh);
 810 
 811  public:
 812   ~ClassFieldMap();
 813 
 814   // access
 815   int field_count()                     { return _fields->length(); }
 816   ClassFieldDescriptor* field_at(int i) { return _fields->at(i); }
 817 
 818   // functions to create maps of static or instance fields
 819   static ClassFieldMap* create_map_of_static_fields(klassOop k);
 820   static ClassFieldMap* create_map_of_instance_fields(oop obj);
 821 };
 822 
 823 ClassFieldMap::ClassFieldMap() {
 824   _fields = new (ResourceObj::C_HEAP, mtInternal)
 825     GrowableArray<ClassFieldDescriptor*>(initial_field_count, true);
 826 }
 827 
 828 ClassFieldMap::~ClassFieldMap() {
 829   for (int i=0; i<_fields->length(); i++) {
 830     delete _fields->at(i);
 831   }
 832   delete _fields;
 833 }
 834 
 835 void ClassFieldMap::add(int index, char type, int offset) {
 836   ClassFieldDescriptor* field = new ClassFieldDescriptor(index, type, offset);
 837   _fields->append(field);
 838 }
 839 
 840 // Returns a heap allocated ClassFieldMap to describe the static fields
 841 // of the given class.
 842 //
 843 ClassFieldMap* ClassFieldMap::create_map_of_static_fields(klassOop k) {
 844   HandleMark hm;
 845   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), k);
 846 
 847   // create the field map
 848   ClassFieldMap* field_map = new ClassFieldMap();
 849 
 850   FilteredFieldStream f(ikh, false, false);
 851   int max_field_index = f.field_count()-1;
 852 
 853   int index = 0;
 854   for (FilteredFieldStream fld(ikh, true, true); !fld.eos(); fld.next(), index++) {
 855     // ignore instance fields
 856     if (!fld.access_flags().is_static()) {
 857       continue;
 858     }
 859     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
 860   }
 861   return field_map;
 862 }
 863 
 864 // Returns a heap allocated ClassFieldMap to describe the instance fields
 865 // of the given class. All instance fields are included (this means public
 866 // and private fields declared in superclasses and superinterfaces too).
 867 //
 868 ClassFieldMap* ClassFieldMap::create_map_of_instance_fields(oop obj) {
 869   HandleMark hm;
 870   instanceKlassHandle ikh = instanceKlassHandle(Thread::current(), obj->klass());
 871 
 872   // create the field map
 873   ClassFieldMap* field_map = new ClassFieldMap();
 874 
 875   FilteredFieldStream f(ikh, false, false);
 876 
 877   int max_field_index = f.field_count()-1;
 878 
 879   int index = 0;
 880   for (FilteredFieldStream fld(ikh, false, false); !fld.eos(); fld.next(), index++) {
 881     // ignore static fields
 882     if (fld.access_flags().is_static()) {
 883       continue;
 884     }
 885     field_map->add(max_field_index - index, fld.signature()->byte_at(0), fld.offset());
 886   }
 887 
 888   return field_map;
 889 }
 890 
 891 // Helper class used to cache a ClassFileMap for the instance fields of
 892 // a cache. A JvmtiCachedClassFieldMap can be cached by an instanceKlass during
 893 // heap iteration and avoid creating a field map for each object in the heap
 894 // (only need to create the map when the first instance of a class is encountered).
 895 //
 896 class JvmtiCachedClassFieldMap : public CHeapObj<mtInternal> {
 897  private:
 898    enum {
 899      initial_class_count = 200
 900    };
 901   ClassFieldMap* _field_map;
 902 
 903   ClassFieldMap* field_map() const          { return _field_map; }
 904 
 905   JvmtiCachedClassFieldMap(ClassFieldMap* field_map);
 906   ~JvmtiCachedClassFieldMap();
 907 
 908   static GrowableArray<instanceKlass*>* _class_list;
 909   static void add_to_class_list(instanceKlass* ik);
 910 
 911  public:
 912   // returns the field map for a given object (returning map cached
 913   // by instanceKlass if possible
 914   static ClassFieldMap* get_map_of_instance_fields(oop obj);
 915 
 916   // removes the field map from all instanceKlasses - should be
 917   // called before VM operation completes
 918   static void clear_cache();
 919 
 920   // returns the number of ClassFieldMap cached by instanceKlasses
 921   static int cached_field_map_count();
 922 };
 923 
 924 GrowableArray<instanceKlass*>* JvmtiCachedClassFieldMap::_class_list;
 925 
 926 JvmtiCachedClassFieldMap::JvmtiCachedClassFieldMap(ClassFieldMap* field_map) {
 927   _field_map = field_map;
 928 }
 929 
 930 JvmtiCachedClassFieldMap::~JvmtiCachedClassFieldMap() {
 931   if (_field_map != NULL) {
 932     delete _field_map;
 933   }
 934 }
 935 
 936 // Marker class to ensure that the class file map cache is only used in a defined
 937 // scope.
 938 class ClassFieldMapCacheMark : public StackObj {
 939  private:
 940    static bool _is_active;
 941  public:
 942    ClassFieldMapCacheMark() {
 943      assert(Thread::current()->is_VM_thread(), "must be VMThread");
 944      assert(JvmtiCachedClassFieldMap::cached_field_map_count() == 0, "cache not empty");
 945      assert(!_is_active, "ClassFieldMapCacheMark cannot be nested");
 946      _is_active = true;
 947    }
 948    ~ClassFieldMapCacheMark() {
 949      JvmtiCachedClassFieldMap::clear_cache();
 950      _is_active = false;
 951    }
 952    static bool is_active() { return _is_active; }
 953 };
 954 
 955 bool ClassFieldMapCacheMark::_is_active;
 956 
 957 
 958 // record that the given instanceKlass is caching a field map
 959 void JvmtiCachedClassFieldMap::add_to_class_list(instanceKlass* ik) {
 960   if (_class_list == NULL) {
 961     _class_list = new (ResourceObj::C_HEAP, mtInternal)
 962       GrowableArray<instanceKlass*>(initial_class_count, true);
 963   }
 964   _class_list->push(ik);
 965 }
 966 
 967 // returns the instance field map for the given object
 968 // (returns field map cached by the instanceKlass if possible)
 969 ClassFieldMap* JvmtiCachedClassFieldMap::get_map_of_instance_fields(oop obj) {
 970   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 971   assert(ClassFieldMapCacheMark::is_active(), "ClassFieldMapCacheMark not active");
 972 
 973   klassOop k = obj->klass();
 974   instanceKlass* ik = instanceKlass::cast(k);
 975 
 976   // return cached map if possible
 977   JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 978   if (cached_map != NULL) {
 979     assert(cached_map->field_map() != NULL, "missing field list");
 980     return cached_map->field_map();
 981   } else {
 982     ClassFieldMap* field_map = ClassFieldMap::create_map_of_instance_fields(obj);
 983     cached_map = new JvmtiCachedClassFieldMap(field_map);
 984     ik->set_jvmti_cached_class_field_map(cached_map);
 985     add_to_class_list(ik);
 986     return field_map;
 987   }
 988 }
 989 
 990 // remove the fields maps cached from all instanceKlasses
 991 void JvmtiCachedClassFieldMap::clear_cache() {
 992   assert(Thread::current()->is_VM_thread(), "must be VMThread");
 993   if (_class_list != NULL) {
 994     for (int i = 0; i < _class_list->length(); i++) {
 995       instanceKlass* ik = _class_list->at(i);
 996       JvmtiCachedClassFieldMap* cached_map = ik->jvmti_cached_class_field_map();
 997       assert(cached_map != NULL, "should not be NULL");
 998       ik->set_jvmti_cached_class_field_map(NULL);
 999       delete cached_map;  // deletes the encapsulated field map
1000     }
1001     delete _class_list;
1002     _class_list = NULL;
1003   }
1004 }
1005 
1006 // returns the number of ClassFieldMap cached by instanceKlasses
1007 int JvmtiCachedClassFieldMap::cached_field_map_count() {
1008   return (_class_list == NULL) ? 0 : _class_list->length();
1009 }
1010 
1011 // helper function to indicate if an object is filtered by its tag or class tag
1012 static inline bool is_filtered_by_heap_filter(jlong obj_tag,
1013                                               jlong klass_tag,
1014                                               int heap_filter) {
1015   // apply the heap filter
1016   if (obj_tag != 0) {
1017     // filter out tagged objects
1018     if (heap_filter & JVMTI_HEAP_FILTER_TAGGED) return true;
1019   } else {
1020     // filter out untagged objects
1021     if (heap_filter & JVMTI_HEAP_FILTER_UNTAGGED) return true;
1022   }
1023   if (klass_tag != 0) {
1024     // filter out objects with tagged classes
1025     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_TAGGED) return true;
1026   } else {
1027     // filter out objects with untagged classes.
1028     if (heap_filter & JVMTI_HEAP_FILTER_CLASS_UNTAGGED) return true;
1029   }
1030   return false;
1031 }
1032 
1033 // helper function to indicate if an object is filtered by a klass filter
1034 static inline bool is_filtered_by_klass_filter(oop obj, KlassHandle klass_filter) {
1035   if (!klass_filter.is_null()) {
1036     if (obj->klass() != klass_filter()) {
1037       return true;
1038     }
1039   }
1040   return false;
1041 }
1042 
1043 // helper function to tell if a field is a primitive field or not
1044 static inline bool is_primitive_field_type(char type) {
1045   return (type != 'L' && type != '[');
1046 }
1047 
1048 // helper function to copy the value from location addr to jvalue.
1049 static inline void copy_to_jvalue(jvalue *v, address addr, jvmtiPrimitiveType value_type) {
1050   switch (value_type) {
1051     case JVMTI_PRIMITIVE_TYPE_BOOLEAN : { v->z = *(jboolean*)addr; break; }
1052     case JVMTI_PRIMITIVE_TYPE_BYTE    : { v->b = *(jbyte*)addr;    break; }
1053     case JVMTI_PRIMITIVE_TYPE_CHAR    : { v->c = *(jchar*)addr;    break; }
1054     case JVMTI_PRIMITIVE_TYPE_SHORT   : { v->s = *(jshort*)addr;   break; }
1055     case JVMTI_PRIMITIVE_TYPE_INT     : { v->i = *(jint*)addr;     break; }
1056     case JVMTI_PRIMITIVE_TYPE_LONG    : { v->j = *(jlong*)addr;    break; }
1057     case JVMTI_PRIMITIVE_TYPE_FLOAT   : { v->f = *(jfloat*)addr;   break; }
1058     case JVMTI_PRIMITIVE_TYPE_DOUBLE  : { v->d = *(jdouble*)addr;  break; }
1059     default: ShouldNotReachHere();
1060   }
1061 }
1062 
1063 // helper function to invoke string primitive value callback
1064 // returns visit control flags
1065 static jint invoke_string_value_callback(jvmtiStringPrimitiveValueCallback cb,
1066                                          CallbackWrapper* wrapper,
1067                                          oop str,
1068                                          void* user_data)
1069 {
1070   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
1071 
1072   // get the string value and length
1073   // (string value may be offset from the base)
1074   int s_len = java_lang_String::length(str);
1075   typeArrayOop s_value = java_lang_String::value(str);
1076   int s_offset = java_lang_String::offset(str);
1077   jchar* value;
1078   if (s_len > 0) {
1079     value = s_value->char_at_addr(s_offset);
1080   } else {
1081     value = (jchar*) s_value->base(T_CHAR);
1082   }
1083 
1084   // invoke the callback
1085   return (*cb)(wrapper->klass_tag(),
1086                wrapper->obj_size(),
1087                wrapper->obj_tag_p(),
1088                value,
1089                (jint)s_len,
1090                user_data);
1091 }
1092 
1093 // helper function to invoke string primitive value callback
1094 // returns visit control flags
1095 static jint invoke_array_primitive_value_callback(jvmtiArrayPrimitiveValueCallback cb,
1096                                                   CallbackWrapper* wrapper,
1097                                                   oop obj,
1098                                                   void* user_data)
1099 {
1100   assert(obj->is_typeArray(), "not a primitive array");
1101 
1102   // get base address of first element
1103   typeArrayOop array = typeArrayOop(obj);
1104   BasicType type = typeArrayKlass::cast(array->klass())->element_type();
1105   void* elements = array->base(type);
1106 
1107   // jvmtiPrimitiveType is defined so this mapping is always correct
1108   jvmtiPrimitiveType elem_type = (jvmtiPrimitiveType)type2char(type);
1109 
1110   return (*cb)(wrapper->klass_tag(),
1111                wrapper->obj_size(),
1112                wrapper->obj_tag_p(),
1113                (jint)array->length(),
1114                elem_type,
1115                elements,
1116                user_data);
1117 }
1118 
1119 // helper function to invoke the primitive field callback for all static fields
1120 // of a given class
1121 static jint invoke_primitive_field_callback_for_static_fields
1122   (CallbackWrapper* wrapper,
1123    oop obj,
1124    jvmtiPrimitiveFieldCallback cb,
1125    void* user_data)
1126 {
1127   // for static fields only the index will be set
1128   static jvmtiHeapReferenceInfo reference_info = { 0 };
1129 
1130   assert(obj->klass() == SystemDictionary::Class_klass(), "not a class");
1131   if (java_lang_Class::is_primitive(obj)) {
1132     return 0;
1133   }
1134   klassOop k = java_lang_Class::as_klassOop(obj);
1135   Klass* klass = k->klass_part();
1136 
1137   // ignore classes for object and type arrays
1138   if (!klass->oop_is_instance()) {
1139     return 0;
1140   }
1141 
1142   // ignore classes which aren't linked yet
1143   instanceKlass* ik = instanceKlass::cast(k);
1144   if (!ik->is_linked()) {
1145     return 0;
1146   }
1147 
1148   // get the field map
1149   ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
1150 
1151   // invoke the callback for each static primitive field
1152   for (int i=0; i<field_map->field_count(); i++) {
1153     ClassFieldDescriptor* field = field_map->field_at(i);
1154 
1155     // ignore non-primitive fields
1156     char type = field->field_type();
1157     if (!is_primitive_field_type(type)) {
1158       continue;
1159     }
1160     // one-to-one mapping
1161     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1162 
1163     // get offset and field value
1164     int offset = field->field_offset();
1165     address addr = (address)klass->java_mirror() + offset;
1166     jvalue value;
1167     copy_to_jvalue(&value, addr, value_type);
1168 
1169     // field index
1170     reference_info.field.index = field->field_index();
1171 
1172     // invoke the callback
1173     jint res = (*cb)(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
1174                      &reference_info,
1175                      wrapper->klass_tag(),
1176                      wrapper->obj_tag_p(),
1177                      value,
1178                      value_type,
1179                      user_data);
1180     if (res & JVMTI_VISIT_ABORT) {
1181       delete field_map;
1182       return res;
1183     }
1184   }
1185 
1186   delete field_map;
1187   return 0;
1188 }
1189 
1190 // helper function to invoke the primitive field callback for all instance fields
1191 // of a given object
1192 static jint invoke_primitive_field_callback_for_instance_fields(
1193   CallbackWrapper* wrapper,
1194   oop obj,
1195   jvmtiPrimitiveFieldCallback cb,
1196   void* user_data)
1197 {
1198   // for instance fields only the index will be set
1199   static jvmtiHeapReferenceInfo reference_info = { 0 };
1200 
1201   // get the map of the instance fields
1202   ClassFieldMap* fields = JvmtiCachedClassFieldMap::get_map_of_instance_fields(obj);
1203 
1204   // invoke the callback for each instance primitive field
1205   for (int i=0; i<fields->field_count(); i++) {
1206     ClassFieldDescriptor* field = fields->field_at(i);
1207 
1208     // ignore non-primitive fields
1209     char type = field->field_type();
1210     if (!is_primitive_field_type(type)) {
1211       continue;
1212     }
1213     // one-to-one mapping
1214     jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
1215 
1216     // get offset and field value
1217     int offset = field->field_offset();
1218     address addr = (address)obj + offset;
1219     jvalue value;
1220     copy_to_jvalue(&value, addr, value_type);
1221 
1222     // field index
1223     reference_info.field.index = field->field_index();
1224 
1225     // invoke the callback
1226     jint res = (*cb)(JVMTI_HEAP_REFERENCE_FIELD,
1227                      &reference_info,
1228                      wrapper->klass_tag(),
1229                      wrapper->obj_tag_p(),
1230                      value,
1231                      value_type,
1232                      user_data);
1233     if (res & JVMTI_VISIT_ABORT) {
1234       return res;
1235     }
1236   }
1237   return 0;
1238 }
1239 
1240 
1241 // VM operation to iterate over all objects in the heap (both reachable
1242 // and unreachable)
1243 class VM_HeapIterateOperation: public VM_Operation {
1244  private:
1245   ObjectClosure* _blk;
1246  public:
1247   VM_HeapIterateOperation(ObjectClosure* blk) { _blk = blk; }
1248 
1249   VMOp_Type type() const { return VMOp_HeapIterateOperation; }
1250   void doit() {
1251     // allows class files maps to be cached during iteration
1252     ClassFieldMapCacheMark cm;
1253 
1254     // make sure that heap is parsable (fills TLABs with filler objects)
1255     Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1256 
1257     // Verify heap before iteration - if the heap gets corrupted then
1258     // JVMTI's IterateOverHeap will crash.
1259     if (VerifyBeforeIteration) {
1260       Universe::verify();
1261     }
1262 
1263     // do the iteration
1264     // If this operation encounters a bad object when using CMS,
1265     // consider using safe_object_iterate() which avoids perm gen
1266     // objects that may contain bad references.
1267     Universe::heap()->object_iterate(_blk);
1268 
1269     // when sharing is enabled we must iterate over the shared spaces
1270     if (UseSharedSpaces) {
1271       GenCollectedHeap* gch = GenCollectedHeap::heap();
1272       CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1273       gen->ro_space()->object_iterate(_blk);
1274       gen->rw_space()->object_iterate(_blk);
1275     }
1276   }
1277 
1278 };
1279 
1280 
1281 // An ObjectClosure used to support the deprecated IterateOverHeap and
1282 // IterateOverInstancesOfClass functions
1283 class IterateOverHeapObjectClosure: public ObjectClosure {
1284  private:
1285   JvmtiTagMap* _tag_map;
1286   KlassHandle _klass;
1287   jvmtiHeapObjectFilter _object_filter;
1288   jvmtiHeapObjectCallback _heap_object_callback;
1289   const void* _user_data;
1290 
1291   // accessors
1292   JvmtiTagMap* tag_map() const                    { return _tag_map; }
1293   jvmtiHeapObjectFilter object_filter() const     { return _object_filter; }
1294   jvmtiHeapObjectCallback object_callback() const { return _heap_object_callback; }
1295   KlassHandle klass() const                       { return _klass; }
1296   const void* user_data() const                   { return _user_data; }
1297 
1298   // indicates if iteration has been aborted
1299   bool _iteration_aborted;
1300   bool is_iteration_aborted() const               { return _iteration_aborted; }
1301   void set_iteration_aborted(bool aborted)        { _iteration_aborted = aborted; }
1302 
1303  public:
1304   IterateOverHeapObjectClosure(JvmtiTagMap* tag_map,
1305                                KlassHandle klass,
1306                                jvmtiHeapObjectFilter object_filter,
1307                                jvmtiHeapObjectCallback heap_object_callback,
1308                                const void* user_data) :
1309     _tag_map(tag_map),
1310     _klass(klass),
1311     _object_filter(object_filter),
1312     _heap_object_callback(heap_object_callback),
1313     _user_data(user_data),
1314     _iteration_aborted(false)
1315   {
1316   }
1317 
1318   void do_object(oop o);
1319 };
1320 
1321 // invoked for each object in the heap
1322 void IterateOverHeapObjectClosure::do_object(oop o) {
1323   // check if iteration has been halted
1324   if (is_iteration_aborted()) return;
1325 
1326   // ignore any objects that aren't visible to profiler
1327   if (!ServiceUtil::visible_oop(o)) return;
1328 
1329   // instanceof check when filtering by klass
1330   if (!klass().is_null() && !o->is_a(klass()())) {
1331     return;
1332   }
1333   // prepare for the calllback
1334   CallbackWrapper wrapper(tag_map(), o);
1335 
1336   // if the object is tagged and we're only interested in untagged objects
1337   // then don't invoke the callback. Similiarly, if the object is untagged
1338   // and we're only interested in tagged objects we skip the callback.
1339   if (wrapper.obj_tag() != 0) {
1340     if (object_filter() == JVMTI_HEAP_OBJECT_UNTAGGED) return;
1341   } else {
1342     if (object_filter() == JVMTI_HEAP_OBJECT_TAGGED) return;
1343   }
1344 
1345   // invoke the agent's callback
1346   jvmtiIterationControl control = (*object_callback())(wrapper.klass_tag(),
1347                                                        wrapper.obj_size(),
1348                                                        wrapper.obj_tag_p(),
1349                                                        (void*)user_data());
1350   if (control == JVMTI_ITERATION_ABORT) {
1351     set_iteration_aborted(true);
1352   }
1353 }
1354 
1355 // An ObjectClosure used to support the IterateThroughHeap function
1356 class IterateThroughHeapObjectClosure: public ObjectClosure {
1357  private:
1358   JvmtiTagMap* _tag_map;
1359   KlassHandle _klass;
1360   int _heap_filter;
1361   const jvmtiHeapCallbacks* _callbacks;
1362   const void* _user_data;
1363 
1364   // accessor functions
1365   JvmtiTagMap* tag_map() const                     { return _tag_map; }
1366   int heap_filter() const                          { return _heap_filter; }
1367   const jvmtiHeapCallbacks* callbacks() const      { return _callbacks; }
1368   KlassHandle klass() const                        { return _klass; }
1369   const void* user_data() const                    { return _user_data; }
1370 
1371   // indicates if the iteration has been aborted
1372   bool _iteration_aborted;
1373   bool is_iteration_aborted() const                { return _iteration_aborted; }
1374 
1375   // used to check the visit control flags. If the abort flag is set
1376   // then we set the iteration aborted flag so that the iteration completes
1377   // without processing any further objects
1378   bool check_flags_for_abort(jint flags) {
1379     bool is_abort = (flags & JVMTI_VISIT_ABORT) != 0;
1380     if (is_abort) {
1381       _iteration_aborted = true;
1382     }
1383     return is_abort;
1384   }
1385 
1386  public:
1387   IterateThroughHeapObjectClosure(JvmtiTagMap* tag_map,
1388                                   KlassHandle klass,
1389                                   int heap_filter,
1390                                   const jvmtiHeapCallbacks* heap_callbacks,
1391                                   const void* user_data) :
1392     _tag_map(tag_map),
1393     _klass(klass),
1394     _heap_filter(heap_filter),
1395     _callbacks(heap_callbacks),
1396     _user_data(user_data),
1397     _iteration_aborted(false)
1398   {
1399   }
1400 
1401   void do_object(oop o);
1402 };
1403 
1404 // invoked for each object in the heap
1405 void IterateThroughHeapObjectClosure::do_object(oop obj) {
1406   // check if iteration has been halted
1407   if (is_iteration_aborted()) return;
1408 
1409   // ignore any objects that aren't visible to profiler
1410   if (!ServiceUtil::visible_oop(obj)) return;
1411 
1412   // apply class filter
1413   if (is_filtered_by_klass_filter(obj, klass())) return;
1414 
1415   // prepare for callback
1416   CallbackWrapper wrapper(tag_map(), obj);
1417 
1418   // check if filtered by the heap filter
1419   if (is_filtered_by_heap_filter(wrapper.obj_tag(), wrapper.klass_tag(), heap_filter())) {
1420     return;
1421   }
1422 
1423   // for arrays we need the length, otherwise -1
1424   bool is_array = obj->is_array();
1425   int len = is_array ? arrayOop(obj)->length() : -1;
1426 
1427   // invoke the object callback (if callback is provided)
1428   if (callbacks()->heap_iteration_callback != NULL) {
1429     jvmtiHeapIterationCallback cb = callbacks()->heap_iteration_callback;
1430     jint res = (*cb)(wrapper.klass_tag(),
1431                      wrapper.obj_size(),
1432                      wrapper.obj_tag_p(),
1433                      (jint)len,
1434                      (void*)user_data());
1435     if (check_flags_for_abort(res)) return;
1436   }
1437 
1438   // for objects and classes we report primitive fields if callback provided
1439   if (callbacks()->primitive_field_callback != NULL && obj->is_instance()) {
1440     jint res;
1441     jvmtiPrimitiveFieldCallback cb = callbacks()->primitive_field_callback;
1442     if (obj->klass() == SystemDictionary::Class_klass()) {
1443       res = invoke_primitive_field_callback_for_static_fields(&wrapper,
1444                                                                     obj,
1445                                                                     cb,
1446                                                                     (void*)user_data());
1447     } else {
1448       res = invoke_primitive_field_callback_for_instance_fields(&wrapper,
1449                                                                       obj,
1450                                                                       cb,
1451                                                                       (void*)user_data());
1452     }
1453     if (check_flags_for_abort(res)) return;
1454   }
1455 
1456   // string callback
1457   if (!is_array &&
1458       callbacks()->string_primitive_value_callback != NULL &&
1459       obj->klass() == SystemDictionary::String_klass()) {
1460     jint res = invoke_string_value_callback(
1461                 callbacks()->string_primitive_value_callback,
1462                 &wrapper,
1463                 obj,
1464                 (void*)user_data() );
1465     if (check_flags_for_abort(res)) return;
1466   }
1467 
1468   // array callback
1469   if (is_array &&
1470       callbacks()->array_primitive_value_callback != NULL &&
1471       obj->is_typeArray()) {
1472     jint res = invoke_array_primitive_value_callback(
1473                callbacks()->array_primitive_value_callback,
1474                &wrapper,
1475                obj,
1476                (void*)user_data() );
1477     if (check_flags_for_abort(res)) return;
1478   }
1479 };
1480 
1481 
1482 // Deprecated function to iterate over all objects in the heap
1483 void JvmtiTagMap::iterate_over_heap(jvmtiHeapObjectFilter object_filter,
1484                                     KlassHandle klass,
1485                                     jvmtiHeapObjectCallback heap_object_callback,
1486                                     const void* user_data)
1487 {
1488   MutexLocker ml(Heap_lock);
1489   IterateOverHeapObjectClosure blk(this,
1490                                    klass,
1491                                    object_filter,
1492                                    heap_object_callback,
1493                                    user_data);
1494   VM_HeapIterateOperation op(&blk);
1495   VMThread::execute(&op);
1496 }
1497 
1498 
1499 // Iterates over all objects in the heap
1500 void JvmtiTagMap::iterate_through_heap(jint heap_filter,
1501                                        KlassHandle klass,
1502                                        const jvmtiHeapCallbacks* callbacks,
1503                                        const void* user_data)
1504 {
1505   MutexLocker ml(Heap_lock);
1506   IterateThroughHeapObjectClosure blk(this,
1507                                       klass,
1508                                       heap_filter,
1509                                       callbacks,
1510                                       user_data);
1511   VM_HeapIterateOperation op(&blk);
1512   VMThread::execute(&op);
1513 }
1514 
1515 // support class for get_objects_with_tags
1516 
1517 class TagObjectCollector : public JvmtiTagHashmapEntryClosure {
1518  private:
1519   JvmtiEnv* _env;
1520   jlong* _tags;
1521   jint _tag_count;
1522 
1523   GrowableArray<jobject>* _object_results;  // collected objects (JNI weak refs)
1524   GrowableArray<uint64_t>* _tag_results;    // collected tags
1525 
1526  public:
1527   TagObjectCollector(JvmtiEnv* env, const jlong* tags, jint tag_count) {
1528     _env = env;
1529     _tags = (jlong*)tags;
1530     _tag_count = tag_count;
1531     _object_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<jobject>(1,true);
1532     _tag_results = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<uint64_t>(1,true);
1533   }
1534 
1535   ~TagObjectCollector() {
1536     delete _object_results;
1537     delete _tag_results;
1538   }
1539 
1540   // for each tagged object check if the tag value matches
1541   // - if it matches then we create a JNI local reference to the object
1542   // and record the reference and tag value.
1543   //
1544   void do_entry(JvmtiTagHashmapEntry* entry) {
1545     for (int i=0; i<_tag_count; i++) {
1546       if (_tags[i] == entry->tag()) {
1547         oop o = entry->object();
1548         assert(o != NULL, "sanity check");
1549 
1550         // the mirror is tagged
1551         if (o->is_klass()) {
1552           klassOop k = (klassOop)o;
1553           o = Klass::cast(k)->java_mirror();
1554         }
1555 
1556         jobject ref = JNIHandles::make_local(JavaThread::current(), o);
1557         _object_results->append(ref);
1558         _tag_results->append((uint64_t)entry->tag());
1559       }
1560     }
1561   }
1562 
1563   // return the results from the collection
1564   //
1565   jvmtiError result(jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1566     jvmtiError error;
1567     int count = _object_results->length();
1568     assert(count >= 0, "sanity check");
1569 
1570     // if object_result_ptr is not NULL then allocate the result and copy
1571     // in the object references.
1572     if (object_result_ptr != NULL) {
1573       error = _env->Allocate(count * sizeof(jobject), (unsigned char**)object_result_ptr);
1574       if (error != JVMTI_ERROR_NONE) {
1575         return error;
1576       }
1577       for (int i=0; i<count; i++) {
1578         (*object_result_ptr)[i] = _object_results->at(i);
1579       }
1580     }
1581 
1582     // if tag_result_ptr is not NULL then allocate the result and copy
1583     // in the tag values.
1584     if (tag_result_ptr != NULL) {
1585       error = _env->Allocate(count * sizeof(jlong), (unsigned char**)tag_result_ptr);
1586       if (error != JVMTI_ERROR_NONE) {
1587         if (object_result_ptr != NULL) {
1588           _env->Deallocate((unsigned char*)object_result_ptr);
1589         }
1590         return error;
1591       }
1592       for (int i=0; i<count; i++) {
1593         (*tag_result_ptr)[i] = (jlong)_tag_results->at(i);
1594       }
1595     }
1596 
1597     *count_ptr = count;
1598     return JVMTI_ERROR_NONE;
1599   }
1600 };
1601 
1602 // return the list of objects with the specified tags
1603 jvmtiError JvmtiTagMap::get_objects_with_tags(const jlong* tags,
1604   jint count, jint* count_ptr, jobject** object_result_ptr, jlong** tag_result_ptr) {
1605 
1606   TagObjectCollector collector(env(), tags, count);
1607   {
1608     // iterate over all tagged objects
1609     MutexLocker ml(lock());
1610     entry_iterate(&collector);
1611   }
1612   return collector.result(count_ptr, object_result_ptr, tag_result_ptr);
1613 }
1614 
1615 
1616 // ObjectMarker is used to support the marking objects when walking the
1617 // heap.
1618 //
1619 // This implementation uses the existing mark bits in an object for
1620 // marking. Objects that are marked must later have their headers restored.
1621 // As most objects are unlocked and don't have their identity hash computed
1622 // we don't have to save their headers. Instead we save the headers that
1623 // are "interesting". Later when the headers are restored this implementation
1624 // restores all headers to their initial value and then restores the few
1625 // objects that had interesting headers.
1626 //
1627 // Future work: This implementation currently uses growable arrays to save
1628 // the oop and header of interesting objects. As an optimization we could
1629 // use the same technique as the GC and make use of the unused area
1630 // between top() and end().
1631 //
1632 
1633 // An ObjectClosure used to restore the mark bits of an object
1634 class RestoreMarksClosure : public ObjectClosure {
1635  public:
1636   void do_object(oop o) {
1637     if (o != NULL) {
1638       markOop mark = o->mark();
1639       if (mark->is_marked()) {
1640         o->init_mark();
1641       }
1642     }
1643   }
1644 };
1645 
1646 // ObjectMarker provides the mark and visited functions
1647 class ObjectMarker : AllStatic {
1648  private:
1649   // saved headers
1650   static GrowableArray<oop>* _saved_oop_stack;
1651   static GrowableArray<markOop>* _saved_mark_stack;
1652   static bool _needs_reset;                  // do we need to reset mark bits?
1653 
1654  public:
1655   static void init();                       // initialize
1656   static void done();                       // clean-up
1657 
1658   static inline void mark(oop o);           // mark an object
1659   static inline bool visited(oop o);        // check if object has been visited
1660 
1661   static inline bool needs_reset()            { return _needs_reset; }
1662   static inline void set_needs_reset(bool v)  { _needs_reset = v; }
1663 };
1664 
1665 GrowableArray<oop>* ObjectMarker::_saved_oop_stack = NULL;
1666 GrowableArray<markOop>* ObjectMarker::_saved_mark_stack = NULL;
1667 bool ObjectMarker::_needs_reset = true;  // need to reset mark bits by default
1668 
1669 // initialize ObjectMarker - prepares for object marking
1670 void ObjectMarker::init() {
1671   assert(Thread::current()->is_VM_thread(), "must be VMThread");
1672 
1673   // prepare heap for iteration
1674   Universe::heap()->ensure_parsability(false);  // no need to retire TLABs
1675 
1676   // create stacks for interesting headers
1677   _saved_mark_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<markOop>(4000, true);
1678   _saved_oop_stack = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(4000, true);
1679 
1680   if (UseBiasedLocking) {
1681     BiasedLocking::preserve_marks();
1682   }
1683 }
1684 
1685 // Object marking is done so restore object headers
1686 void ObjectMarker::done() {
1687   // iterate over all objects and restore the mark bits to
1688   // their initial value
1689   RestoreMarksClosure blk;
1690   if (needs_reset()) {
1691     Universe::heap()->object_iterate(&blk);
1692   } else {
1693     // We don't need to reset mark bits on this call, but reset the
1694     // flag to the default for the next call.
1695     set_needs_reset(true);
1696   }
1697 
1698   // When sharing is enabled we need to restore the headers of the objects
1699   // in the readwrite space too.
1700   if (UseSharedSpaces) {
1701     GenCollectedHeap* gch = GenCollectedHeap::heap();
1702     CompactingPermGenGen* gen = (CompactingPermGenGen*)gch->perm_gen();
1703     gen->rw_space()->object_iterate(&blk);
1704   }
1705 
1706   // now restore the interesting headers
1707   for (int i = 0; i < _saved_oop_stack->length(); i++) {
1708     oop o = _saved_oop_stack->at(i);
1709     markOop mark = _saved_mark_stack->at(i);
1710     o->set_mark(mark);
1711   }
1712 
1713   if (UseBiasedLocking) {
1714     BiasedLocking::restore_marks();
1715   }
1716 
1717   // free the stacks
1718   delete _saved_oop_stack;
1719   delete _saved_mark_stack;
1720 }
1721 
1722 // mark an object
1723 inline void ObjectMarker::mark(oop o) {
1724   assert(Universe::heap()->is_in(o), "sanity check");
1725   assert(!o->mark()->is_marked(), "should only mark an object once");
1726 
1727   // object's mark word
1728   markOop mark = o->mark();
1729 
1730   if (mark->must_be_preserved(o)) {
1731     _saved_mark_stack->push(mark);
1732     _saved_oop_stack->push(o);
1733   }
1734 
1735   // mark the object
1736   o->set_mark(markOopDesc::prototype()->set_marked());
1737 }
1738 
1739 // return true if object is marked
1740 inline bool ObjectMarker::visited(oop o) {
1741   return o->mark()->is_marked();
1742 }
1743 
1744 // Stack allocated class to help ensure that ObjectMarker is used
1745 // correctly. Constructor initializes ObjectMarker, destructor calls
1746 // ObjectMarker's done() function to restore object headers.
1747 class ObjectMarkerController : public StackObj {
1748  public:
1749   ObjectMarkerController() {
1750     ObjectMarker::init();
1751   }
1752   ~ObjectMarkerController() {
1753     ObjectMarker::done();
1754   }
1755 };
1756 
1757 
1758 // helper to map a jvmtiHeapReferenceKind to an old style jvmtiHeapRootKind
1759 // (not performance critical as only used for roots)
1760 static jvmtiHeapRootKind toJvmtiHeapRootKind(jvmtiHeapReferenceKind kind) {
1761   switch (kind) {
1762     case JVMTI_HEAP_REFERENCE_JNI_GLOBAL:   return JVMTI_HEAP_ROOT_JNI_GLOBAL;
1763     case JVMTI_HEAP_REFERENCE_SYSTEM_CLASS: return JVMTI_HEAP_ROOT_SYSTEM_CLASS;
1764     case JVMTI_HEAP_REFERENCE_MONITOR:      return JVMTI_HEAP_ROOT_MONITOR;
1765     case JVMTI_HEAP_REFERENCE_STACK_LOCAL:  return JVMTI_HEAP_ROOT_STACK_LOCAL;
1766     case JVMTI_HEAP_REFERENCE_JNI_LOCAL:    return JVMTI_HEAP_ROOT_JNI_LOCAL;
1767     case JVMTI_HEAP_REFERENCE_THREAD:       return JVMTI_HEAP_ROOT_THREAD;
1768     case JVMTI_HEAP_REFERENCE_OTHER:        return JVMTI_HEAP_ROOT_OTHER;
1769     default: ShouldNotReachHere();          return JVMTI_HEAP_ROOT_OTHER;
1770   }
1771 }
1772 
1773 // Base class for all heap walk contexts. The base class maintains a flag
1774 // to indicate if the context is valid or not.
1775 class HeapWalkContext VALUE_OBJ_CLASS_SPEC {
1776  private:
1777   bool _valid;
1778  public:
1779   HeapWalkContext(bool valid)                   { _valid = valid; }
1780   void invalidate()                             { _valid = false; }
1781   bool is_valid() const                         { return _valid; }
1782 };
1783 
1784 // A basic heap walk context for the deprecated heap walking functions.
1785 // The context for a basic heap walk are the callbacks and fields used by
1786 // the referrer caching scheme.
1787 class BasicHeapWalkContext: public HeapWalkContext {
1788  private:
1789   jvmtiHeapRootCallback _heap_root_callback;
1790   jvmtiStackReferenceCallback _stack_ref_callback;
1791   jvmtiObjectReferenceCallback _object_ref_callback;
1792 
1793   // used for caching
1794   oop _last_referrer;
1795   jlong _last_referrer_tag;
1796 
1797  public:
1798   BasicHeapWalkContext() : HeapWalkContext(false) { }
1799 
1800   BasicHeapWalkContext(jvmtiHeapRootCallback heap_root_callback,
1801                        jvmtiStackReferenceCallback stack_ref_callback,
1802                        jvmtiObjectReferenceCallback object_ref_callback) :
1803     HeapWalkContext(true),
1804     _heap_root_callback(heap_root_callback),
1805     _stack_ref_callback(stack_ref_callback),
1806     _object_ref_callback(object_ref_callback),
1807     _last_referrer(NULL),
1808     _last_referrer_tag(0) {
1809   }
1810 
1811   // accessors
1812   jvmtiHeapRootCallback heap_root_callback() const         { return _heap_root_callback; }
1813   jvmtiStackReferenceCallback stack_ref_callback() const   { return _stack_ref_callback; }
1814   jvmtiObjectReferenceCallback object_ref_callback() const { return _object_ref_callback;  }
1815 
1816   oop last_referrer() const               { return _last_referrer; }
1817   void set_last_referrer(oop referrer)    { _last_referrer = referrer; }
1818   jlong last_referrer_tag() const         { return _last_referrer_tag; }
1819   void set_last_referrer_tag(jlong value) { _last_referrer_tag = value; }
1820 };
1821 
1822 // The advanced heap walk context for the FollowReferences functions.
1823 // The context is the callbacks, and the fields used for filtering.
1824 class AdvancedHeapWalkContext: public HeapWalkContext {
1825  private:
1826   jint _heap_filter;
1827   KlassHandle _klass_filter;
1828   const jvmtiHeapCallbacks* _heap_callbacks;
1829 
1830  public:
1831   AdvancedHeapWalkContext() : HeapWalkContext(false) { }
1832 
1833   AdvancedHeapWalkContext(jint heap_filter,
1834                            KlassHandle klass_filter,
1835                            const jvmtiHeapCallbacks* heap_callbacks) :
1836     HeapWalkContext(true),
1837     _heap_filter(heap_filter),
1838     _klass_filter(klass_filter),
1839     _heap_callbacks(heap_callbacks) {
1840   }
1841 
1842   // accessors
1843   jint heap_filter() const         { return _heap_filter; }
1844   KlassHandle klass_filter() const { return _klass_filter; }
1845 
1846   const jvmtiHeapReferenceCallback heap_reference_callback() const {
1847     return _heap_callbacks->heap_reference_callback;
1848   };
1849   const jvmtiPrimitiveFieldCallback primitive_field_callback() const {
1850     return _heap_callbacks->primitive_field_callback;
1851   }
1852   const jvmtiArrayPrimitiveValueCallback array_primitive_value_callback() const {
1853     return _heap_callbacks->array_primitive_value_callback;
1854   }
1855   const jvmtiStringPrimitiveValueCallback string_primitive_value_callback() const {
1856     return _heap_callbacks->string_primitive_value_callback;
1857   }
1858 };
1859 
1860 // The CallbackInvoker is a class with static functions that the heap walk can call
1861 // into to invoke callbacks. It works in one of two modes. The "basic" mode is
1862 // used for the deprecated IterateOverReachableObjects functions. The "advanced"
1863 // mode is for the newer FollowReferences function which supports a lot of
1864 // additional callbacks.
1865 class CallbackInvoker : AllStatic {
1866  private:
1867   // heap walk styles
1868   enum { basic, advanced };
1869   static int _heap_walk_type;
1870   static bool is_basic_heap_walk()           { return _heap_walk_type == basic; }
1871   static bool is_advanced_heap_walk()        { return _heap_walk_type == advanced; }
1872 
1873   // context for basic style heap walk
1874   static BasicHeapWalkContext _basic_context;
1875   static BasicHeapWalkContext* basic_context() {
1876     assert(_basic_context.is_valid(), "invalid");
1877     return &_basic_context;
1878   }
1879 
1880   // context for advanced style heap walk
1881   static AdvancedHeapWalkContext _advanced_context;
1882   static AdvancedHeapWalkContext* advanced_context() {
1883     assert(_advanced_context.is_valid(), "invalid");
1884     return &_advanced_context;
1885   }
1886 
1887   // context needed for all heap walks
1888   static JvmtiTagMap* _tag_map;
1889   static const void* _user_data;
1890   static GrowableArray<oop>* _visit_stack;
1891 
1892   // accessors
1893   static JvmtiTagMap* tag_map()                        { return _tag_map; }
1894   static const void* user_data()                       { return _user_data; }
1895   static GrowableArray<oop>* visit_stack()             { return _visit_stack; }
1896 
1897   // if the object hasn't been visited then push it onto the visit stack
1898   // so that it will be visited later
1899   static inline bool check_for_visit(oop obj) {
1900     if (!ObjectMarker::visited(obj)) visit_stack()->push(obj);
1901     return true;
1902   }
1903 
1904   // invoke basic style callbacks
1905   static inline bool invoke_basic_heap_root_callback
1906     (jvmtiHeapRootKind root_kind, oop obj);
1907   static inline bool invoke_basic_stack_ref_callback
1908     (jvmtiHeapRootKind root_kind, jlong thread_tag, jint depth, jmethodID method,
1909      int slot, oop obj);
1910   static inline bool invoke_basic_object_reference_callback
1911     (jvmtiObjectReferenceKind ref_kind, oop referrer, oop referree, jint index);
1912 
1913   // invoke advanced style callbacks
1914   static inline bool invoke_advanced_heap_root_callback
1915     (jvmtiHeapReferenceKind ref_kind, oop obj);
1916   static inline bool invoke_advanced_stack_ref_callback
1917     (jvmtiHeapReferenceKind ref_kind, jlong thread_tag, jlong tid, int depth,
1918      jmethodID method, jlocation bci, jint slot, oop obj);
1919   static inline bool invoke_advanced_object_reference_callback
1920     (jvmtiHeapReferenceKind ref_kind, oop referrer, oop referree, jint index);
1921 
1922   // used to report the value of primitive fields
1923   static inline bool report_primitive_field
1924     (jvmtiHeapReferenceKind ref_kind, oop obj, jint index, address addr, char type);
1925 
1926  public:
1927   // initialize for basic mode
1928   static void initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1929                                              GrowableArray<oop>* visit_stack,
1930                                              const void* user_data,
1931                                              BasicHeapWalkContext context);
1932 
1933   // initialize for advanced mode
1934   static void initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1935                                                 GrowableArray<oop>* visit_stack,
1936                                                 const void* user_data,
1937                                                 AdvancedHeapWalkContext context);
1938 
1939    // functions to report roots
1940   static inline bool report_simple_root(jvmtiHeapReferenceKind kind, oop o);
1941   static inline bool report_jni_local_root(jlong thread_tag, jlong tid, jint depth,
1942     jmethodID m, oop o);
1943   static inline bool report_stack_ref_root(jlong thread_tag, jlong tid, jint depth,
1944     jmethodID method, jlocation bci, jint slot, oop o);
1945 
1946   // functions to report references
1947   static inline bool report_array_element_reference(oop referrer, oop referree, jint index);
1948   static inline bool report_class_reference(oop referrer, oop referree);
1949   static inline bool report_class_loader_reference(oop referrer, oop referree);
1950   static inline bool report_signers_reference(oop referrer, oop referree);
1951   static inline bool report_protection_domain_reference(oop referrer, oop referree);
1952   static inline bool report_superclass_reference(oop referrer, oop referree);
1953   static inline bool report_interface_reference(oop referrer, oop referree);
1954   static inline bool report_static_field_reference(oop referrer, oop referree, jint slot);
1955   static inline bool report_field_reference(oop referrer, oop referree, jint slot);
1956   static inline bool report_constant_pool_reference(oop referrer, oop referree, jint index);
1957   static inline bool report_primitive_array_values(oop array);
1958   static inline bool report_string_value(oop str);
1959   static inline bool report_primitive_instance_field(oop o, jint index, address value, char type);
1960   static inline bool report_primitive_static_field(oop o, jint index, address value, char type);
1961 };
1962 
1963 // statics
1964 int CallbackInvoker::_heap_walk_type;
1965 BasicHeapWalkContext CallbackInvoker::_basic_context;
1966 AdvancedHeapWalkContext CallbackInvoker::_advanced_context;
1967 JvmtiTagMap* CallbackInvoker::_tag_map;
1968 const void* CallbackInvoker::_user_data;
1969 GrowableArray<oop>* CallbackInvoker::_visit_stack;
1970 
1971 // initialize for basic heap walk (IterateOverReachableObjects et al)
1972 void CallbackInvoker::initialize_for_basic_heap_walk(JvmtiTagMap* tag_map,
1973                                                      GrowableArray<oop>* visit_stack,
1974                                                      const void* user_data,
1975                                                      BasicHeapWalkContext context) {
1976   _tag_map = tag_map;
1977   _visit_stack = visit_stack;
1978   _user_data = user_data;
1979   _basic_context = context;
1980   _advanced_context.invalidate();       // will trigger assertion if used
1981   _heap_walk_type = basic;
1982 }
1983 
1984 // initialize for advanced heap walk (FollowReferences)
1985 void CallbackInvoker::initialize_for_advanced_heap_walk(JvmtiTagMap* tag_map,
1986                                                         GrowableArray<oop>* visit_stack,
1987                                                         const void* user_data,
1988                                                         AdvancedHeapWalkContext context) {
1989   _tag_map = tag_map;
1990   _visit_stack = visit_stack;
1991   _user_data = user_data;
1992   _advanced_context = context;
1993   _basic_context.invalidate();      // will trigger assertion if used
1994   _heap_walk_type = advanced;
1995 }
1996 
1997 
1998 // invoke basic style heap root callback
1999 inline bool CallbackInvoker::invoke_basic_heap_root_callback(jvmtiHeapRootKind root_kind, oop obj) {
2000   assert(ServiceUtil::visible_oop(obj), "checking");
2001 
2002   // if we heap roots should be reported
2003   jvmtiHeapRootCallback cb = basic_context()->heap_root_callback();
2004   if (cb == NULL) {
2005     return check_for_visit(obj);
2006   }
2007 
2008   CallbackWrapper wrapper(tag_map(), obj);
2009   jvmtiIterationControl control = (*cb)(root_kind,
2010                                         wrapper.klass_tag(),
2011                                         wrapper.obj_size(),
2012                                         wrapper.obj_tag_p(),
2013                                         (void*)user_data());
2014   // push root to visit stack when following references
2015   if (control == JVMTI_ITERATION_CONTINUE &&
2016       basic_context()->object_ref_callback() != NULL) {
2017     visit_stack()->push(obj);
2018   }
2019   return control != JVMTI_ITERATION_ABORT;
2020 }
2021 
2022 // invoke basic style stack ref callback
2023 inline bool CallbackInvoker::invoke_basic_stack_ref_callback(jvmtiHeapRootKind root_kind,
2024                                                              jlong thread_tag,
2025                                                              jint depth,
2026                                                              jmethodID method,
2027                                                              jint slot,
2028                                                              oop obj) {
2029   assert(ServiceUtil::visible_oop(obj), "checking");
2030 
2031   // if we stack refs should be reported
2032   jvmtiStackReferenceCallback cb = basic_context()->stack_ref_callback();
2033   if (cb == NULL) {
2034     return check_for_visit(obj);
2035   }
2036 
2037   CallbackWrapper wrapper(tag_map(), obj);
2038   jvmtiIterationControl control = (*cb)(root_kind,
2039                                         wrapper.klass_tag(),
2040                                         wrapper.obj_size(),
2041                                         wrapper.obj_tag_p(),
2042                                         thread_tag,
2043                                         depth,
2044                                         method,
2045                                         slot,
2046                                         (void*)user_data());
2047   // push root to visit stack when following references
2048   if (control == JVMTI_ITERATION_CONTINUE &&
2049       basic_context()->object_ref_callback() != NULL) {
2050     visit_stack()->push(obj);
2051   }
2052   return control != JVMTI_ITERATION_ABORT;
2053 }
2054 
2055 // invoke basic style object reference callback
2056 inline bool CallbackInvoker::invoke_basic_object_reference_callback(jvmtiObjectReferenceKind ref_kind,
2057                                                                     oop referrer,
2058                                                                     oop referree,
2059                                                                     jint index) {
2060 
2061   assert(ServiceUtil::visible_oop(referrer), "checking");
2062   assert(ServiceUtil::visible_oop(referree), "checking");
2063 
2064   BasicHeapWalkContext* context = basic_context();
2065 
2066   // callback requires the referrer's tag. If it's the same referrer
2067   // as the last call then we use the cached value.
2068   jlong referrer_tag;
2069   if (referrer == context->last_referrer()) {
2070     referrer_tag = context->last_referrer_tag();
2071   } else {
2072     referrer_tag = tag_for(tag_map(), klassOop_if_java_lang_Class(referrer));
2073   }
2074 
2075   // do the callback
2076   CallbackWrapper wrapper(tag_map(), referree);
2077   jvmtiObjectReferenceCallback cb = context->object_ref_callback();
2078   jvmtiIterationControl control = (*cb)(ref_kind,
2079                                         wrapper.klass_tag(),
2080                                         wrapper.obj_size(),
2081                                         wrapper.obj_tag_p(),
2082                                         referrer_tag,
2083                                         index,
2084                                         (void*)user_data());
2085 
2086   // record referrer and referrer tag. For self-references record the
2087   // tag value from the callback as this might differ from referrer_tag.
2088   context->set_last_referrer(referrer);
2089   if (referrer == referree) {
2090     context->set_last_referrer_tag(*wrapper.obj_tag_p());
2091   } else {
2092     context->set_last_referrer_tag(referrer_tag);
2093   }
2094 
2095   if (control == JVMTI_ITERATION_CONTINUE) {
2096     return check_for_visit(referree);
2097   } else {
2098     return control != JVMTI_ITERATION_ABORT;
2099   }
2100 }
2101 
2102 // invoke advanced style heap root callback
2103 inline bool CallbackInvoker::invoke_advanced_heap_root_callback(jvmtiHeapReferenceKind ref_kind,
2104                                                                 oop obj) {
2105   assert(ServiceUtil::visible_oop(obj), "checking");
2106 
2107   AdvancedHeapWalkContext* context = advanced_context();
2108 
2109   // check that callback is provided
2110   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2111   if (cb == NULL) {
2112     return check_for_visit(obj);
2113   }
2114 
2115   // apply class filter
2116   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2117     return check_for_visit(obj);
2118   }
2119 
2120   // setup the callback wrapper
2121   CallbackWrapper wrapper(tag_map(), obj);
2122 
2123   // apply tag filter
2124   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2125                                  wrapper.klass_tag(),
2126                                  context->heap_filter())) {
2127     return check_for_visit(obj);
2128   }
2129 
2130   // for arrays we need the length, otherwise -1
2131   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2132 
2133   // invoke the callback
2134   jint res  = (*cb)(ref_kind,
2135                     NULL, // referrer info
2136                     wrapper.klass_tag(),
2137                     0,    // referrer_class_tag is 0 for heap root
2138                     wrapper.obj_size(),
2139                     wrapper.obj_tag_p(),
2140                     NULL, // referrer_tag_p
2141                     len,
2142                     (void*)user_data());
2143   if (res & JVMTI_VISIT_ABORT) {
2144     return false;// referrer class tag
2145   }
2146   if (res & JVMTI_VISIT_OBJECTS) {
2147     check_for_visit(obj);
2148   }
2149   return true;
2150 }
2151 
2152 // report a reference from a thread stack to an object
2153 inline bool CallbackInvoker::invoke_advanced_stack_ref_callback(jvmtiHeapReferenceKind ref_kind,
2154                                                                 jlong thread_tag,
2155                                                                 jlong tid,
2156                                                                 int depth,
2157                                                                 jmethodID method,
2158                                                                 jlocation bci,
2159                                                                 jint slot,
2160                                                                 oop obj) {
2161   assert(ServiceUtil::visible_oop(obj), "checking");
2162 
2163   AdvancedHeapWalkContext* context = advanced_context();
2164 
2165   // check that callback is provider
2166   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2167   if (cb == NULL) {
2168     return check_for_visit(obj);
2169   }
2170 
2171   // apply class filter
2172   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2173     return check_for_visit(obj);
2174   }
2175 
2176   // setup the callback wrapper
2177   CallbackWrapper wrapper(tag_map(), obj);
2178 
2179   // apply tag filter
2180   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2181                                  wrapper.klass_tag(),
2182                                  context->heap_filter())) {
2183     return check_for_visit(obj);
2184   }
2185 
2186   // setup the referrer info
2187   jvmtiHeapReferenceInfo reference_info;
2188   reference_info.stack_local.thread_tag = thread_tag;
2189   reference_info.stack_local.thread_id = tid;
2190   reference_info.stack_local.depth = depth;
2191   reference_info.stack_local.method = method;
2192   reference_info.stack_local.location = bci;
2193   reference_info.stack_local.slot = slot;
2194 
2195   // for arrays we need the length, otherwise -1
2196   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2197 
2198   // call into the agent
2199   int res = (*cb)(ref_kind,
2200                   &reference_info,
2201                   wrapper.klass_tag(),
2202                   0,    // referrer_class_tag is 0 for heap root (stack)
2203                   wrapper.obj_size(),
2204                   wrapper.obj_tag_p(),
2205                   NULL, // referrer_tag is 0 for root
2206                   len,
2207                   (void*)user_data());
2208 
2209   if (res & JVMTI_VISIT_ABORT) {
2210     return false;
2211   }
2212   if (res & JVMTI_VISIT_OBJECTS) {
2213     check_for_visit(obj);
2214   }
2215   return true;
2216 }
2217 
2218 // This mask is used to pass reference_info to a jvmtiHeapReferenceCallback
2219 // only for ref_kinds defined by the JVM TI spec. Otherwise, NULL is passed.
2220 #define REF_INFO_MASK  ((1 << JVMTI_HEAP_REFERENCE_FIELD)         \
2221                       | (1 << JVMTI_HEAP_REFERENCE_STATIC_FIELD)  \
2222                       | (1 << JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT) \
2223                       | (1 << JVMTI_HEAP_REFERENCE_CONSTANT_POOL) \
2224                       | (1 << JVMTI_HEAP_REFERENCE_STACK_LOCAL)   \
2225                       | (1 << JVMTI_HEAP_REFERENCE_JNI_LOCAL))
2226 
2227 // invoke the object reference callback to report a reference
2228 inline bool CallbackInvoker::invoke_advanced_object_reference_callback(jvmtiHeapReferenceKind ref_kind,
2229                                                                        oop referrer,
2230                                                                        oop obj,
2231                                                                        jint index)
2232 {
2233   // field index is only valid field in reference_info
2234   static jvmtiHeapReferenceInfo reference_info = { 0 };
2235 
2236   assert(ServiceUtil::visible_oop(referrer), "checking");
2237   assert(ServiceUtil::visible_oop(obj), "checking");
2238 
2239   AdvancedHeapWalkContext* context = advanced_context();
2240 
2241   // check that callback is provider
2242   jvmtiHeapReferenceCallback cb = context->heap_reference_callback();
2243   if (cb == NULL) {
2244     return check_for_visit(obj);
2245   }
2246 
2247   // apply class filter
2248   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2249     return check_for_visit(obj);
2250   }
2251 
2252   // setup the callback wrapper
2253   TwoOopCallbackWrapper wrapper(tag_map(), referrer, obj);
2254 
2255   // apply tag filter
2256   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2257                                  wrapper.klass_tag(),
2258                                  context->heap_filter())) {
2259     return check_for_visit(obj);
2260   }
2261 
2262   // field index is only valid field in reference_info
2263   reference_info.field.index = index;
2264 
2265   // for arrays we need the length, otherwise -1
2266   jint len = (jint)(obj->is_array() ? arrayOop(obj)->length() : -1);
2267 
2268   // invoke the callback
2269   int res = (*cb)(ref_kind,
2270                   (REF_INFO_MASK & (1 << ref_kind)) ? &reference_info : NULL,
2271                   wrapper.klass_tag(),
2272                   wrapper.referrer_klass_tag(),
2273                   wrapper.obj_size(),
2274                   wrapper.obj_tag_p(),
2275                   wrapper.referrer_tag_p(),
2276                   len,
2277                   (void*)user_data());
2278 
2279   if (res & JVMTI_VISIT_ABORT) {
2280     return false;
2281   }
2282   if (res & JVMTI_VISIT_OBJECTS) {
2283     check_for_visit(obj);
2284   }
2285   return true;
2286 }
2287 
2288 // report a "simple root"
2289 inline bool CallbackInvoker::report_simple_root(jvmtiHeapReferenceKind kind, oop obj) {
2290   assert(kind != JVMTI_HEAP_REFERENCE_STACK_LOCAL &&
2291          kind != JVMTI_HEAP_REFERENCE_JNI_LOCAL, "not a simple root");
2292   assert(ServiceUtil::visible_oop(obj), "checking");
2293 
2294   if (is_basic_heap_walk()) {
2295     // map to old style root kind
2296     jvmtiHeapRootKind root_kind = toJvmtiHeapRootKind(kind);
2297     return invoke_basic_heap_root_callback(root_kind, obj);
2298   } else {
2299     assert(is_advanced_heap_walk(), "wrong heap walk type");
2300     return invoke_advanced_heap_root_callback(kind, obj);
2301   }
2302 }
2303 
2304 
2305 // invoke the primitive array values
2306 inline bool CallbackInvoker::report_primitive_array_values(oop obj) {
2307   assert(obj->is_typeArray(), "not a primitive array");
2308 
2309   AdvancedHeapWalkContext* context = advanced_context();
2310   assert(context->array_primitive_value_callback() != NULL, "no callback");
2311 
2312   // apply class filter
2313   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2314     return true;
2315   }
2316 
2317   CallbackWrapper wrapper(tag_map(), obj);
2318 
2319   // apply tag filter
2320   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2321                                  wrapper.klass_tag(),
2322                                  context->heap_filter())) {
2323     return true;
2324   }
2325 
2326   // invoke the callback
2327   int res = invoke_array_primitive_value_callback(context->array_primitive_value_callback(),
2328                                                   &wrapper,
2329                                                   obj,
2330                                                   (void*)user_data());
2331   return (!(res & JVMTI_VISIT_ABORT));
2332 }
2333 
2334 // invoke the string value callback
2335 inline bool CallbackInvoker::report_string_value(oop str) {
2336   assert(str->klass() == SystemDictionary::String_klass(), "not a string");
2337 
2338   AdvancedHeapWalkContext* context = advanced_context();
2339   assert(context->string_primitive_value_callback() != NULL, "no callback");
2340 
2341   // apply class filter
2342   if (is_filtered_by_klass_filter(str, context->klass_filter())) {
2343     return true;
2344   }
2345 
2346   CallbackWrapper wrapper(tag_map(), str);
2347 
2348   // apply tag filter
2349   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2350                                  wrapper.klass_tag(),
2351                                  context->heap_filter())) {
2352     return true;
2353   }
2354 
2355   // invoke the callback
2356   int res = invoke_string_value_callback(context->string_primitive_value_callback(),
2357                                          &wrapper,
2358                                          str,
2359                                          (void*)user_data());
2360   return (!(res & JVMTI_VISIT_ABORT));
2361 }
2362 
2363 // invoke the primitive field callback
2364 inline bool CallbackInvoker::report_primitive_field(jvmtiHeapReferenceKind ref_kind,
2365                                                     oop obj,
2366                                                     jint index,
2367                                                     address addr,
2368                                                     char type)
2369 {
2370   // for primitive fields only the index will be set
2371   static jvmtiHeapReferenceInfo reference_info = { 0 };
2372 
2373   AdvancedHeapWalkContext* context = advanced_context();
2374   assert(context->primitive_field_callback() != NULL, "no callback");
2375 
2376   // apply class filter
2377   if (is_filtered_by_klass_filter(obj, context->klass_filter())) {
2378     return true;
2379   }
2380 
2381   CallbackWrapper wrapper(tag_map(), obj);
2382 
2383   // apply tag filter
2384   if (is_filtered_by_heap_filter(wrapper.obj_tag(),
2385                                  wrapper.klass_tag(),
2386                                  context->heap_filter())) {
2387     return true;
2388   }
2389 
2390   // the field index in the referrer
2391   reference_info.field.index = index;
2392 
2393   // map the type
2394   jvmtiPrimitiveType value_type = (jvmtiPrimitiveType)type;
2395 
2396   // setup the jvalue
2397   jvalue value;
2398   copy_to_jvalue(&value, addr, value_type);
2399 
2400   jvmtiPrimitiveFieldCallback cb = context->primitive_field_callback();
2401   int res = (*cb)(ref_kind,
2402                   &reference_info,
2403                   wrapper.klass_tag(),
2404                   wrapper.obj_tag_p(),
2405                   value,
2406                   value_type,
2407                   (void*)user_data());
2408   return (!(res & JVMTI_VISIT_ABORT));
2409 }
2410 
2411 
2412 // instance field
2413 inline bool CallbackInvoker::report_primitive_instance_field(oop obj,
2414                                                              jint index,
2415                                                              address value,
2416                                                              char type) {
2417   return report_primitive_field(JVMTI_HEAP_REFERENCE_FIELD,
2418                                 obj,
2419                                 index,
2420                                 value,
2421                                 type);
2422 }
2423 
2424 // static field
2425 inline bool CallbackInvoker::report_primitive_static_field(oop obj,
2426                                                            jint index,
2427                                                            address value,
2428                                                            char type) {
2429   return report_primitive_field(JVMTI_HEAP_REFERENCE_STATIC_FIELD,
2430                                 obj,
2431                                 index,
2432                                 value,
2433                                 type);
2434 }
2435 
2436 // report a JNI local (root object) to the profiler
2437 inline bool CallbackInvoker::report_jni_local_root(jlong thread_tag, jlong tid, jint depth, jmethodID m, oop obj) {
2438   if (is_basic_heap_walk()) {
2439     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_JNI_LOCAL,
2440                                            thread_tag,
2441                                            depth,
2442                                            m,
2443                                            -1,
2444                                            obj);
2445   } else {
2446     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_JNI_LOCAL,
2447                                               thread_tag, tid,
2448                                               depth,
2449                                               m,
2450                                               (jlocation)-1,
2451                                               -1,
2452                                               obj);
2453   }
2454 }
2455 
2456 
2457 // report a local (stack reference, root object)
2458 inline bool CallbackInvoker::report_stack_ref_root(jlong thread_tag,
2459                                                    jlong tid,
2460                                                    jint depth,
2461                                                    jmethodID method,
2462                                                    jlocation bci,
2463                                                    jint slot,
2464                                                    oop obj) {
2465   if (is_basic_heap_walk()) {
2466     return invoke_basic_stack_ref_callback(JVMTI_HEAP_ROOT_STACK_LOCAL,
2467                                            thread_tag,
2468                                            depth,
2469                                            method,
2470                                            slot,
2471                                            obj);
2472   } else {
2473     return invoke_advanced_stack_ref_callback(JVMTI_HEAP_REFERENCE_STACK_LOCAL,
2474                                               thread_tag,
2475                                               tid,
2476                                               depth,
2477                                               method,
2478                                               bci,
2479                                               slot,
2480                                               obj);
2481   }
2482 }
2483 
2484 // report an object referencing a class.
2485 inline bool CallbackInvoker::report_class_reference(oop referrer, oop referree) {
2486   if (is_basic_heap_walk()) {
2487     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2488   } else {
2489     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS, referrer, referree, -1);
2490   }
2491 }
2492 
2493 // report a class referencing its class loader.
2494 inline bool CallbackInvoker::report_class_loader_reference(oop referrer, oop referree) {
2495   if (is_basic_heap_walk()) {
2496     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2497   } else {
2498     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CLASS_LOADER, referrer, referree, -1);
2499   }
2500 }
2501 
2502 // report a class referencing its signers.
2503 inline bool CallbackInvoker::report_signers_reference(oop referrer, oop referree) {
2504   if (is_basic_heap_walk()) {
2505     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_SIGNERS, referrer, referree, -1);
2506   } else {
2507     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SIGNERS, referrer, referree, -1);
2508   }
2509 }
2510 
2511 // report a class referencing its protection domain..
2512 inline bool CallbackInvoker::report_protection_domain_reference(oop referrer, oop referree) {
2513   if (is_basic_heap_walk()) {
2514     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2515   } else {
2516     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_PROTECTION_DOMAIN, referrer, referree, -1);
2517   }
2518 }
2519 
2520 // report a class referencing its superclass.
2521 inline bool CallbackInvoker::report_superclass_reference(oop referrer, oop referree) {
2522   if (is_basic_heap_walk()) {
2523     // Send this to be consistent with past implementation
2524     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CLASS, referrer, referree, -1);
2525   } else {
2526     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_SUPERCLASS, referrer, referree, -1);
2527   }
2528 }
2529 
2530 // report a class referencing one of its interfaces.
2531 inline bool CallbackInvoker::report_interface_reference(oop referrer, oop referree) {
2532   if (is_basic_heap_walk()) {
2533     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_INTERFACE, referrer, referree, -1);
2534   } else {
2535     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_INTERFACE, referrer, referree, -1);
2536   }
2537 }
2538 
2539 // report a class referencing one of its static fields.
2540 inline bool CallbackInvoker::report_static_field_reference(oop referrer, oop referree, jint slot) {
2541   if (is_basic_heap_walk()) {
2542     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2543   } else {
2544     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_STATIC_FIELD, referrer, referree, slot);
2545   }
2546 }
2547 
2548 // report an array referencing an element object
2549 inline bool CallbackInvoker::report_array_element_reference(oop referrer, oop referree, jint index) {
2550   if (is_basic_heap_walk()) {
2551     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2552   } else {
2553     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_ARRAY_ELEMENT, referrer, referree, index);
2554   }
2555 }
2556 
2557 // report an object referencing an instance field object
2558 inline bool CallbackInvoker::report_field_reference(oop referrer, oop referree, jint slot) {
2559   if (is_basic_heap_walk()) {
2560     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_FIELD, referrer, referree, slot);
2561   } else {
2562     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_FIELD, referrer, referree, slot);
2563   }
2564 }
2565 
2566 // report an array referencing an element object
2567 inline bool CallbackInvoker::report_constant_pool_reference(oop referrer, oop referree, jint index) {
2568   if (is_basic_heap_walk()) {
2569     return invoke_basic_object_reference_callback(JVMTI_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2570   } else {
2571     return invoke_advanced_object_reference_callback(JVMTI_HEAP_REFERENCE_CONSTANT_POOL, referrer, referree, index);
2572   }
2573 }
2574 
2575 // A supporting closure used to process simple roots
2576 class SimpleRootsClosure : public OopClosure {
2577  private:
2578   jvmtiHeapReferenceKind _kind;
2579   bool _continue;
2580 
2581   jvmtiHeapReferenceKind root_kind()    { return _kind; }
2582 
2583  public:
2584   void set_kind(jvmtiHeapReferenceKind kind) {
2585     _kind = kind;
2586     _continue = true;
2587   }
2588 
2589   inline bool stopped() {
2590     return !_continue;
2591   }
2592 
2593   void do_oop(oop* obj_p) {
2594     // iteration has terminated
2595     if (stopped()) {
2596       return;
2597     }
2598 
2599     // ignore null or deleted handles
2600     oop o = *obj_p;
2601     if (o == NULL || o == JNIHandles::deleted_handle()) {
2602       return;
2603     }
2604 
2605     jvmtiHeapReferenceKind kind = root_kind();
2606 
2607     // many roots are Klasses so we use the java mirror
2608     if (o->is_klass()) {
2609       klassOop k = (klassOop)o;
2610       o = Klass::cast(k)->java_mirror();
2611       if (o == NULL) {
2612         // Classes without mirrors don't correspond to real Java
2613         // classes so just ignore them.
2614         return;
2615       }
2616     } else {
2617 
2618       // SystemDictionary::always_strong_oops_do reports the application
2619       // class loader as a root. We want this root to be reported as
2620       // a root kind of "OTHER" rather than "SYSTEM_CLASS".
2621       if (o->is_instance() && root_kind() == JVMTI_HEAP_REFERENCE_SYSTEM_CLASS) {
2622         kind = JVMTI_HEAP_REFERENCE_OTHER;
2623       }
2624     }
2625 
2626     // some objects are ignored - in the case of simple
2627     // roots it's mostly Symbol*s that we are skipping
2628     // here.
2629     if (!ServiceUtil::visible_oop(o)) {
2630       return;
2631     }
2632 
2633     // invoke the callback
2634     _continue = CallbackInvoker::report_simple_root(kind, o);
2635 
2636   }
2637   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2638 };
2639 
2640 // A supporting closure used to process JNI locals
2641 class JNILocalRootsClosure : public OopClosure {
2642  private:
2643   jlong _thread_tag;
2644   jlong _tid;
2645   jint _depth;
2646   jmethodID _method;
2647   bool _continue;
2648  public:
2649   void set_context(jlong thread_tag, jlong tid, jint depth, jmethodID method) {
2650     _thread_tag = thread_tag;
2651     _tid = tid;
2652     _depth = depth;
2653     _method = method;
2654     _continue = true;
2655   }
2656 
2657   inline bool stopped() {
2658     return !_continue;
2659   }
2660 
2661   void do_oop(oop* obj_p) {
2662     // iteration has terminated
2663     if (stopped()) {
2664       return;
2665     }
2666 
2667     // ignore null or deleted handles
2668     oop o = *obj_p;
2669     if (o == NULL || o == JNIHandles::deleted_handle()) {
2670       return;
2671     }
2672 
2673     if (!ServiceUtil::visible_oop(o)) {
2674       return;
2675     }
2676 
2677     // invoke the callback
2678     _continue = CallbackInvoker::report_jni_local_root(_thread_tag, _tid, _depth, _method, o);
2679   }
2680   virtual void do_oop(narrowOop* obj_p) { ShouldNotReachHere(); }
2681 };
2682 
2683 
2684 // A VM operation to iterate over objects that are reachable from
2685 // a set of roots or an initial object.
2686 //
2687 // For VM_HeapWalkOperation the set of roots used is :-
2688 //
2689 // - All JNI global references
2690 // - All inflated monitors
2691 // - All classes loaded by the boot class loader (or all classes
2692 //     in the event that class unloading is disabled)
2693 // - All java threads
2694 // - For each java thread then all locals and JNI local references
2695 //      on the thread's execution stack
2696 // - All visible/explainable objects from Universes::oops_do
2697 //
2698 class VM_HeapWalkOperation: public VM_Operation {
2699  private:
2700   enum {
2701     initial_visit_stack_size = 4000
2702   };
2703 
2704   bool _is_advanced_heap_walk;                      // indicates FollowReferences
2705   JvmtiTagMap* _tag_map;
2706   Handle _initial_object;
2707   GrowableArray<oop>* _visit_stack;                 // the visit stack
2708 
2709   bool _collecting_heap_roots;                      // are we collecting roots
2710   bool _following_object_refs;                      // are we following object references
2711 
2712   bool _reporting_primitive_fields;                 // optional reporting
2713   bool _reporting_primitive_array_values;
2714   bool _reporting_string_values;
2715 
2716   GrowableArray<oop>* create_visit_stack() {
2717     return new (ResourceObj::C_HEAP, mtInternal) GrowableArray<oop>(initial_visit_stack_size, true);
2718   }
2719 
2720   // accessors
2721   bool is_advanced_heap_walk() const               { return _is_advanced_heap_walk; }
2722   JvmtiTagMap* tag_map() const                     { return _tag_map; }
2723   Handle initial_object() const                    { return _initial_object; }
2724 
2725   bool is_following_references() const             { return _following_object_refs; }
2726 
2727   bool is_reporting_primitive_fields()  const      { return _reporting_primitive_fields; }
2728   bool is_reporting_primitive_array_values() const { return _reporting_primitive_array_values; }
2729   bool is_reporting_string_values() const          { return _reporting_string_values; }
2730 
2731   GrowableArray<oop>* visit_stack() const          { return _visit_stack; }
2732 
2733   // iterate over the various object types
2734   inline bool iterate_over_array(oop o);
2735   inline bool iterate_over_type_array(oop o);
2736   inline bool iterate_over_class(klassOop o);
2737   inline bool iterate_over_object(oop o);
2738 
2739   // root collection
2740   inline bool collect_simple_roots();
2741   inline bool collect_stack_roots();
2742   inline bool collect_stack_roots(JavaThread* java_thread, JNILocalRootsClosure* blk);
2743 
2744   // visit an object
2745   inline bool visit(oop o);
2746 
2747  public:
2748   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2749                        Handle initial_object,
2750                        BasicHeapWalkContext callbacks,
2751                        const void* user_data);
2752 
2753   VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2754                        Handle initial_object,
2755                        AdvancedHeapWalkContext callbacks,
2756                        const void* user_data);
2757 
2758   ~VM_HeapWalkOperation();
2759 
2760   VMOp_Type type() const { return VMOp_HeapWalkOperation; }
2761   void doit();
2762 };
2763 
2764 
2765 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2766                                            Handle initial_object,
2767                                            BasicHeapWalkContext callbacks,
2768                                            const void* user_data) {
2769   _is_advanced_heap_walk = false;
2770   _tag_map = tag_map;
2771   _initial_object = initial_object;
2772   _following_object_refs = (callbacks.object_ref_callback() != NULL);
2773   _reporting_primitive_fields = false;
2774   _reporting_primitive_array_values = false;
2775   _reporting_string_values = false;
2776   _visit_stack = create_visit_stack();
2777 
2778 
2779   CallbackInvoker::initialize_for_basic_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2780 }
2781 
2782 VM_HeapWalkOperation::VM_HeapWalkOperation(JvmtiTagMap* tag_map,
2783                                            Handle initial_object,
2784                                            AdvancedHeapWalkContext callbacks,
2785                                            const void* user_data) {
2786   _is_advanced_heap_walk = true;
2787   _tag_map = tag_map;
2788   _initial_object = initial_object;
2789   _following_object_refs = true;
2790   _reporting_primitive_fields = (callbacks.primitive_field_callback() != NULL);;
2791   _reporting_primitive_array_values = (callbacks.array_primitive_value_callback() != NULL);;
2792   _reporting_string_values = (callbacks.string_primitive_value_callback() != NULL);;
2793   _visit_stack = create_visit_stack();
2794 
2795   CallbackInvoker::initialize_for_advanced_heap_walk(tag_map, _visit_stack, user_data, callbacks);
2796 }
2797 
2798 VM_HeapWalkOperation::~VM_HeapWalkOperation() {
2799   if (_following_object_refs) {
2800     assert(_visit_stack != NULL, "checking");
2801     delete _visit_stack;
2802     _visit_stack = NULL;
2803   }
2804 }
2805 
2806 // an array references its class and has a reference to
2807 // each element in the array
2808 inline bool VM_HeapWalkOperation::iterate_over_array(oop o) {
2809   objArrayOop array = objArrayOop(o);
2810   if (array->klass() == Universe::systemObjArrayKlassObj()) {
2811     // filtered out
2812     return true;
2813   }
2814 
2815   // array reference to its class
2816   oop mirror = objArrayKlass::cast(array->klass())->java_mirror();
2817   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2818     return false;
2819   }
2820 
2821   // iterate over the array and report each reference to a
2822   // non-null element
2823   for (int index=0; index<array->length(); index++) {
2824     oop elem = array->obj_at(index);
2825     if (elem == NULL) {
2826       continue;
2827     }
2828 
2829     // report the array reference o[index] = elem
2830     if (!CallbackInvoker::report_array_element_reference(o, elem, index)) {
2831       return false;
2832     }
2833   }
2834   return true;
2835 }
2836 
2837 // a type array references its class
2838 inline bool VM_HeapWalkOperation::iterate_over_type_array(oop o) {
2839   klassOop k = o->klass();
2840   oop mirror = Klass::cast(k)->java_mirror();
2841   if (!CallbackInvoker::report_class_reference(o, mirror)) {
2842     return false;
2843   }
2844 
2845   // report the array contents if required
2846   if (is_reporting_primitive_array_values()) {
2847     if (!CallbackInvoker::report_primitive_array_values(o)) {
2848       return false;
2849     }
2850   }
2851   return true;
2852 }
2853 
2854 // verify that a static oop field is in range
2855 static inline bool verify_static_oop(instanceKlass* ik,
2856                                      oop mirror, int offset) {
2857   address obj_p = (address)mirror + offset;
2858   address start = (address)instanceMirrorKlass::start_of_static_fields(mirror);
2859   address end = start + (java_lang_Class::static_oop_field_count(mirror) * heapOopSize);
2860   assert(end >= start, "sanity check");
2861 
2862   if (obj_p >= start && obj_p < end) {
2863     return true;
2864   } else {
2865     return false;
2866   }
2867 }
2868 
2869 // a class references its super class, interfaces, class loader, ...
2870 // and finally its static fields
2871 inline bool VM_HeapWalkOperation::iterate_over_class(klassOop k) {
2872   int i;
2873   Klass* klass = klassOop(k)->klass_part();
2874 
2875   if (klass->oop_is_instance()) {
2876     instanceKlass* ik = instanceKlass::cast(k);
2877 
2878     // ignore the class if it's has been initialized yet
2879     if (!ik->is_linked()) {
2880       return true;
2881     }
2882 
2883     // get the java mirror
2884     oop mirror = klass->java_mirror();
2885 
2886     // super (only if something more interesting than java.lang.Object)
2887     klassOop java_super = ik->java_super();
2888     if (java_super != NULL && java_super != SystemDictionary::Object_klass()) {
2889       oop super = Klass::cast(java_super)->java_mirror();
2890       if (!CallbackInvoker::report_superclass_reference(mirror, super)) {
2891         return false;
2892       }
2893     }
2894 
2895     // class loader
2896     oop cl = ik->class_loader();
2897     if (cl != NULL) {
2898       if (!CallbackInvoker::report_class_loader_reference(mirror, cl)) {
2899         return false;
2900       }
2901     }
2902 
2903     // protection domain
2904     oop pd = ik->protection_domain();
2905     if (pd != NULL) {
2906       if (!CallbackInvoker::report_protection_domain_reference(mirror, pd)) {
2907         return false;
2908       }
2909     }
2910 
2911     // signers
2912     oop signers = ik->signers();
2913     if (signers != NULL) {
2914       if (!CallbackInvoker::report_signers_reference(mirror, signers)) {
2915         return false;
2916       }
2917     }
2918 
2919     // references from the constant pool
2920     {
2921       const constantPoolOop pool = ik->constants();
2922       for (int i = 1; i < pool->length(); i++) {
2923         constantTag tag = pool->tag_at(i).value();
2924         if (tag.is_string() || tag.is_klass()) {
2925           oop entry;
2926           if (tag.is_string()) {
2927             entry = pool->resolved_string_at(i);
2928             assert(java_lang_String::is_instance(entry), "must be string");
2929           } else {
2930             entry = Klass::cast(pool->resolved_klass_at(i))->java_mirror();
2931           }
2932           if (!CallbackInvoker::report_constant_pool_reference(mirror, entry, (jint)i)) {
2933             return false;
2934           }
2935         }
2936       }
2937     }
2938 
2939     // interfaces
2940     // (These will already have been reported as references from the constant pool
2941     //  but are specified by IterateOverReachableObjects and must be reported).
2942     objArrayOop interfaces = ik->local_interfaces();
2943     for (i = 0; i < interfaces->length(); i++) {
2944       oop interf = Klass::cast((klassOop)interfaces->obj_at(i))->java_mirror();
2945       if (interf == NULL) {
2946         continue;
2947       }
2948       if (!CallbackInvoker::report_interface_reference(mirror, interf)) {
2949         return false;
2950       }
2951     }
2952 
2953     // iterate over the static fields
2954 
2955     ClassFieldMap* field_map = ClassFieldMap::create_map_of_static_fields(k);
2956     for (i=0; i<field_map->field_count(); i++) {
2957       ClassFieldDescriptor* field = field_map->field_at(i);
2958       char type = field->field_type();
2959       if (!is_primitive_field_type(type)) {
2960         oop fld_o = mirror->obj_field(field->field_offset());
2961         assert(verify_static_oop(ik, mirror, field->field_offset()), "sanity check");
2962         if (fld_o != NULL) {
2963           int slot = field->field_index();
2964           if (!CallbackInvoker::report_static_field_reference(mirror, fld_o, slot)) {
2965             delete field_map;
2966             return false;
2967           }
2968         }
2969       } else {
2970          if (is_reporting_primitive_fields()) {
2971            address addr = (address)mirror + field->field_offset();
2972            int slot = field->field_index();
2973            if (!CallbackInvoker::report_primitive_static_field(mirror, slot, addr, type)) {
2974              delete field_map;
2975              return false;
2976           }
2977         }
2978       }
2979     }
2980     delete field_map;
2981 
2982     return true;
2983   }
2984 
2985   return true;
2986 }
2987 
2988 // an object references a class and its instance fields
2989 // (static fields are ignored here as we report these as
2990 // references from the class).
2991 inline bool VM_HeapWalkOperation::iterate_over_object(oop o) {
2992   // reference to the class
2993   if (!CallbackInvoker::report_class_reference(o, Klass::cast(o->klass())->java_mirror())) {
2994     return false;
2995   }
2996 
2997   // iterate over instance fields
2998   ClassFieldMap* field_map = JvmtiCachedClassFieldMap::get_map_of_instance_fields(o);
2999   for (int i=0; i<field_map->field_count(); i++) {
3000     ClassFieldDescriptor* field = field_map->field_at(i);
3001     char type = field->field_type();
3002     if (!is_primitive_field_type(type)) {
3003       oop fld_o = o->obj_field(field->field_offset());
3004       // ignore any objects that aren't visible to profiler
3005       if (fld_o != NULL && ServiceUtil::visible_oop(fld_o)) {
3006         // reflection code may have a reference to a klassOop.
3007         // - see sun.reflect.UnsafeStaticFieldAccessorImpl and sun.misc.Unsafe
3008         if (fld_o->is_klass()) {
3009           klassOop k = (klassOop)fld_o;
3010           fld_o = Klass::cast(k)->java_mirror();
3011         }
3012         int slot = field->field_index();
3013         if (!CallbackInvoker::report_field_reference(o, fld_o, slot)) {
3014           return false;
3015         }
3016       }
3017     } else {
3018       if (is_reporting_primitive_fields()) {
3019         // primitive instance field
3020         address addr = (address)o + field->field_offset();
3021         int slot = field->field_index();
3022         if (!CallbackInvoker::report_primitive_instance_field(o, slot, addr, type)) {
3023           return false;
3024         }
3025       }
3026     }
3027   }
3028 
3029   // if the object is a java.lang.String
3030   if (is_reporting_string_values() &&
3031       o->klass() == SystemDictionary::String_klass()) {
3032     if (!CallbackInvoker::report_string_value(o)) {
3033       return false;
3034     }
3035   }
3036   return true;
3037 }
3038 
3039 
3040 // Collects all simple (non-stack) roots except for threads;
3041 // threads are handled in collect_stack_roots() as an optimization.
3042 // if there's a heap root callback provided then the callback is
3043 // invoked for each simple root.
3044 // if an object reference callback is provided then all simple
3045 // roots are pushed onto the marking stack so that they can be
3046 // processed later
3047 //
3048 inline bool VM_HeapWalkOperation::collect_simple_roots() {
3049   SimpleRootsClosure blk;
3050 
3051   // JNI globals
3052   blk.set_kind(JVMTI_HEAP_REFERENCE_JNI_GLOBAL);
3053   JNIHandles::oops_do(&blk);
3054   if (blk.stopped()) {
3055     return false;
3056   }
3057 
3058   // Preloaded classes and loader from the system dictionary
3059   blk.set_kind(JVMTI_HEAP_REFERENCE_SYSTEM_CLASS);
3060   SystemDictionary::always_strong_oops_do(&blk);
3061   if (blk.stopped()) {
3062     return false;
3063   }
3064 
3065   // Inflated monitors
3066   blk.set_kind(JVMTI_HEAP_REFERENCE_MONITOR);
3067   ObjectSynchronizer::oops_do(&blk);
3068   if (blk.stopped()) {
3069     return false;
3070   }
3071 
3072   // threads are now handled in collect_stack_roots()
3073 
3074   // Other kinds of roots maintained by HotSpot
3075   // Many of these won't be visible but others (such as instances of important
3076   // exceptions) will be visible.
3077   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3078   Universe::oops_do(&blk);
3079 
3080   // If there are any non-perm roots in the code cache, visit them.
3081   blk.set_kind(JVMTI_HEAP_REFERENCE_OTHER);
3082   CodeBlobToOopClosure look_in_blobs(&blk, false);
3083   CodeCache::scavenge_root_nmethods_do(&look_in_blobs);
3084 
3085   return true;
3086 }
3087 
3088 // Walk the stack of a given thread and find all references (locals
3089 // and JNI calls) and report these as stack references
3090 inline bool VM_HeapWalkOperation::collect_stack_roots(JavaThread* java_thread,
3091                                                       JNILocalRootsClosure* blk)
3092 {
3093   oop threadObj = java_thread->threadObj();
3094   assert(threadObj != NULL, "sanity check");
3095 
3096   // only need to get the thread's tag once per thread
3097   jlong thread_tag = tag_for(_tag_map, threadObj);
3098 
3099   // also need the thread id
3100   jlong tid = java_lang_Thread::thread_id(threadObj);
3101 
3102 
3103   if (java_thread->has_last_Java_frame()) {
3104 
3105     // vframes are resource allocated
3106     Thread* current_thread = Thread::current();
3107     ResourceMark rm(current_thread);
3108     HandleMark hm(current_thread);
3109 
3110     RegisterMap reg_map(java_thread);
3111     frame f = java_thread->last_frame();
3112     vframe* vf = vframe::new_vframe(&f, &reg_map, java_thread);
3113 
3114     bool is_top_frame = true;
3115     int depth = 0;
3116     frame* last_entry_frame = NULL;
3117 
3118     while (vf != NULL) {
3119       if (vf->is_java_frame()) {
3120 
3121         // java frame (interpreted, compiled, ...)
3122         javaVFrame *jvf = javaVFrame::cast(vf);
3123 
3124         // the jmethodID
3125         jmethodID method = jvf->method()->jmethod_id();
3126 
3127         if (!(jvf->method()->is_native())) {
3128           jlocation bci = (jlocation)jvf->bci();
3129           StackValueCollection* locals = jvf->locals();
3130           for (int slot=0; slot<locals->size(); slot++) {
3131             if (locals->at(slot)->type() == T_OBJECT) {
3132               oop o = locals->obj_at(slot)();
3133               if (o == NULL) {
3134                 continue;
3135               }
3136 
3137               // stack reference
3138               if (!CallbackInvoker::report_stack_ref_root(thread_tag, tid, depth, method,
3139                                                    bci, slot, o)) {
3140                 return false;
3141               }
3142             }
3143           }
3144         } else {
3145           blk->set_context(thread_tag, tid, depth, method);
3146           if (is_top_frame) {
3147             // JNI locals for the top frame.
3148             java_thread->active_handles()->oops_do(blk);
3149           } else {
3150             if (last_entry_frame != NULL) {
3151               // JNI locals for the entry frame
3152               assert(last_entry_frame->is_entry_frame(), "checking");
3153               last_entry_frame->entry_frame_call_wrapper()->handles()->oops_do(blk);
3154             }
3155           }
3156         }
3157         last_entry_frame = NULL;
3158         depth++;
3159       } else {
3160         // externalVFrame - for an entry frame then we report the JNI locals
3161         // when we find the corresponding javaVFrame
3162         frame* fr = vf->frame_pointer();
3163         assert(fr != NULL, "sanity check");
3164         if (fr->is_entry_frame()) {
3165           last_entry_frame = fr;
3166         }
3167       }
3168 
3169       vf = vf->sender();
3170       is_top_frame = false;
3171     }
3172   } else {
3173     // no last java frame but there may be JNI locals
3174     blk->set_context(thread_tag, tid, 0, (jmethodID)NULL);
3175     java_thread->active_handles()->oops_do(blk);
3176   }
3177   return true;
3178 }
3179 
3180 
3181 // Collects the simple roots for all threads and collects all
3182 // stack roots - for each thread it walks the execution
3183 // stack to find all references and local JNI refs.
3184 inline bool VM_HeapWalkOperation::collect_stack_roots() {
3185   JNILocalRootsClosure blk;
3186   for (JavaThread* thread = Threads::first(); thread != NULL ; thread = thread->next()) {
3187     oop threadObj = thread->threadObj();
3188     if (threadObj != NULL && !thread->is_exiting() && !thread->is_hidden_from_external_view()) {
3189       // Collect the simple root for this thread before we
3190       // collect its stack roots
3191       if (!CallbackInvoker::report_simple_root(JVMTI_HEAP_REFERENCE_THREAD,
3192                                                threadObj)) {
3193         return false;
3194       }
3195       if (!collect_stack_roots(thread, &blk)) {
3196         return false;
3197       }
3198     }
3199   }
3200   return true;
3201 }
3202 
3203 // visit an object
3204 // first mark the object as visited
3205 // second get all the outbound references from this object (in other words, all
3206 // the objects referenced by this object).
3207 //
3208 bool VM_HeapWalkOperation::visit(oop o) {
3209   // mark object as visited
3210   assert(!ObjectMarker::visited(o), "can't visit same object more than once");
3211   ObjectMarker::mark(o);
3212 
3213   // instance
3214   if (o->is_instance()) {
3215     if (o->klass() == SystemDictionary::Class_klass()) {
3216       o = klassOop_if_java_lang_Class(o);
3217       if (o->is_klass()) {
3218         // a java.lang.Class
3219         return iterate_over_class(klassOop(o));
3220       }
3221     } else {
3222       return iterate_over_object(o);
3223     }
3224   }
3225 
3226   // object array
3227   if (o->is_objArray()) {
3228     return iterate_over_array(o);
3229   }
3230 
3231   // type array
3232   if (o->is_typeArray()) {
3233     return iterate_over_type_array(o);
3234   }
3235 
3236   return true;
3237 }
3238 
3239 void VM_HeapWalkOperation::doit() {
3240   ResourceMark rm;
3241   ObjectMarkerController marker;
3242   ClassFieldMapCacheMark cm;
3243 
3244   assert(visit_stack()->is_empty(), "visit stack must be empty");
3245 
3246   // the heap walk starts with an initial object or the heap roots
3247   if (initial_object().is_null()) {
3248     // If either collect_stack_roots() or collect_simple_roots()
3249     // returns false at this point, then there are no mark bits
3250     // to reset.
3251     ObjectMarker::set_needs_reset(false);
3252 
3253     // Calling collect_stack_roots() before collect_simple_roots()
3254     // can result in a big performance boost for an agent that is
3255     // focused on analyzing references in the thread stacks.
3256     if (!collect_stack_roots()) return;
3257 
3258     if (!collect_simple_roots()) return;
3259 
3260     // no early return so enable heap traversal to reset the mark bits
3261     ObjectMarker::set_needs_reset(true);
3262   } else {
3263     visit_stack()->push(initial_object()());
3264   }
3265 
3266   // object references required
3267   if (is_following_references()) {
3268 
3269     // visit each object until all reachable objects have been
3270     // visited or the callback asked to terminate the iteration.
3271     while (!visit_stack()->is_empty()) {
3272       oop o = visit_stack()->pop();
3273       if (!ObjectMarker::visited(o)) {
3274         if (!visit(o)) {
3275           break;
3276         }
3277       }
3278     }
3279   }
3280 }
3281 
3282 // iterate over all objects that are reachable from a set of roots
3283 void JvmtiTagMap::iterate_over_reachable_objects(jvmtiHeapRootCallback heap_root_callback,
3284                                                  jvmtiStackReferenceCallback stack_ref_callback,
3285                                                  jvmtiObjectReferenceCallback object_ref_callback,
3286                                                  const void* user_data) {
3287   MutexLocker ml(Heap_lock);
3288   BasicHeapWalkContext context(heap_root_callback, stack_ref_callback, object_ref_callback);
3289   VM_HeapWalkOperation op(this, Handle(), context, user_data);
3290   VMThread::execute(&op);
3291 }
3292 
3293 // iterate over all objects that are reachable from a given object
3294 void JvmtiTagMap::iterate_over_objects_reachable_from_object(jobject object,
3295                                                              jvmtiObjectReferenceCallback object_ref_callback,
3296                                                              const void* user_data) {
3297   oop obj = JNIHandles::resolve(object);
3298   Handle initial_object(Thread::current(), obj);
3299 
3300   MutexLocker ml(Heap_lock);
3301   BasicHeapWalkContext context(NULL, NULL, object_ref_callback);
3302   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3303   VMThread::execute(&op);
3304 }
3305 
3306 // follow references from an initial object or the GC roots
3307 void JvmtiTagMap::follow_references(jint heap_filter,
3308                                     KlassHandle klass,
3309                                     jobject object,
3310                                     const jvmtiHeapCallbacks* callbacks,
3311                                     const void* user_data)
3312 {
3313   oop obj = JNIHandles::resolve(object);
3314   Handle initial_object(Thread::current(), obj);
3315 
3316   MutexLocker ml(Heap_lock);
3317   AdvancedHeapWalkContext context(heap_filter, klass, callbacks);
3318   VM_HeapWalkOperation op(this, initial_object, context, user_data);
3319   VMThread::execute(&op);
3320 }
3321 
3322 
3323 void JvmtiTagMap::weak_oops_do(BoolObjectClosure* is_alive, OopClosure* f) {
3324   // No locks during VM bring-up (0 threads) and no safepoints after main
3325   // thread creation and before VMThread creation (1 thread); initial GC
3326   // verification can happen in that window which gets to here.
3327   assert(Threads::number_of_threads() <= 1 ||
3328          SafepointSynchronize::is_at_safepoint(),
3329          "must be executed at a safepoint");
3330   if (JvmtiEnv::environments_might_exist()) {
3331     JvmtiEnvIterator it;
3332     for (JvmtiEnvBase* env = it.first(); env != NULL; env = it.next(env)) {
3333       JvmtiTagMap* tag_map = env->tag_map();
3334       if (tag_map != NULL && !tag_map->is_empty()) {
3335         tag_map->do_weak_oops(is_alive, f);
3336       }
3337     }
3338   }
3339 }
3340 
3341 void JvmtiTagMap::do_weak_oops(BoolObjectClosure* is_alive, OopClosure* f) {
3342 
3343   // does this environment have the OBJECT_FREE event enabled
3344   bool post_object_free = env()->is_enabled(JVMTI_EVENT_OBJECT_FREE);
3345 
3346   // counters used for trace message
3347   int freed = 0;
3348   int moved = 0;
3349 
3350   JvmtiTagHashmap* hashmap = this->hashmap();
3351 
3352   // reenable sizing (if disabled)
3353   hashmap->set_resizing_enabled(true);
3354 
3355   // if the hashmap is empty then we can skip it
3356   if (hashmap->_entry_count == 0) {
3357     return;
3358   }
3359 
3360   // now iterate through each entry in the table
3361 
3362   JvmtiTagHashmapEntry** table = hashmap->table();
3363   int size = hashmap->size();
3364 
3365   JvmtiTagHashmapEntry* delayed_add = NULL;
3366 
3367   for (int pos = 0; pos < size; ++pos) {
3368     JvmtiTagHashmapEntry* entry = table[pos];
3369     JvmtiTagHashmapEntry* prev = NULL;
3370 
3371     while (entry != NULL) {
3372       JvmtiTagHashmapEntry* next = entry->next();
3373 
3374       oop* obj = entry->object_addr();
3375 
3376       // has object been GC'ed
3377       if (!is_alive->do_object_b(entry->object())) {
3378         // grab the tag
3379         jlong tag = entry->tag();
3380         guarantee(tag != 0, "checking");
3381 
3382         // remove GC'ed entry from hashmap and return the
3383         // entry to the free list
3384         hashmap->remove(prev, pos, entry);
3385         destroy_entry(entry);
3386 
3387         // post the event to the profiler
3388         if (post_object_free) {
3389           JvmtiExport::post_object_free(env(), tag);
3390         }
3391 
3392         ++freed;
3393       } else {
3394         f->do_oop(entry->object_addr());
3395         oop new_oop = entry->object();
3396 
3397         // if the object has moved then re-hash it and move its
3398         // entry to its new location.
3399         unsigned int new_pos = JvmtiTagHashmap::hash(new_oop, size);
3400         if (new_pos != (unsigned int)pos) {
3401           if (prev == NULL) {
3402             table[pos] = next;
3403           } else {
3404             prev->set_next(next);
3405           }
3406           if (new_pos < (unsigned int)pos) {
3407             entry->set_next(table[new_pos]);
3408             table[new_pos] = entry;
3409           } else {
3410             // Delay adding this entry to it's new position as we'd end up
3411             // hitting it again during this iteration.
3412             entry->set_next(delayed_add);
3413             delayed_add = entry;
3414           }
3415           moved++;
3416         } else {
3417           // object didn't move
3418           prev = entry;
3419         }
3420       }
3421 
3422       entry = next;
3423     }
3424   }
3425 
3426   // Re-add all the entries which were kept aside
3427   while (delayed_add != NULL) {
3428     JvmtiTagHashmapEntry* next = delayed_add->next();
3429     unsigned int pos = JvmtiTagHashmap::hash(delayed_add->object(), size);
3430     delayed_add->set_next(table[pos]);
3431     table[pos] = delayed_add;
3432     delayed_add = next;
3433   }
3434 
3435   // stats
3436   if (TraceJVMTIObjectTagging) {
3437     int post_total = hashmap->_entry_count;
3438     int pre_total = post_total + freed;
3439 
3440     tty->print_cr("(%d->%d, %d freed, %d total moves)",
3441         pre_total, post_total, freed, moved);
3442   }
3443 }