1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/methodOop.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "prims/methodHandles.hpp"
  32 #include "runtime/frame.inline.hpp"
  33 #include "runtime/handles.inline.hpp"
  34 #include "runtime/javaCalls.hpp"
  35 #include "runtime/monitorChunk.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #ifdef COMPILER1
  42 #include "c1/c1_Runtime1.hpp"
  43 #include "runtime/vframeArray.hpp"
  44 #endif
  45 
  46 #ifdef ASSERT
  47 void RegisterMap::check_location_valid() {
  48 }
  49 #endif
  50 
  51 
  52 // Profiling/safepoint support
  53 
  54 bool frame::safe_for_sender(JavaThread *thread) {
  55   address   sp = (address)_sp;
  56   address   fp = (address)_fp;
  57   address   unextended_sp = (address)_unextended_sp;
  58 
  59   // consider stack guards when trying to determine "safe" stack pointers
  60   static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
  61   size_t usable_stack_size = thread->stack_size() - stack_guard_size;
  62 
  63   // sp must be within the usable part of the stack (not in guards)
  64   bool sp_safe = (sp < thread->stack_base()) &&
  65                  (sp >= thread->stack_base() - usable_stack_size);
  66 
  67 
  68   if (!sp_safe) {
  69     return false;
  70   }
  71 
  72   // unextended sp must be within the stack and above or equal sp
  73   bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
  74                             (unextended_sp >= sp);
  75 
  76   if (!unextended_sp_safe) {
  77     return false;
  78   }
  79 
  80   // an fp must be within the stack and above (but not equal) sp
  81   // second evaluation on fp+ is added to handle situation where fp is -1
  82   bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
  83 
  84   // We know sp/unextended_sp are safe only fp is questionable here
  85 
  86   // If the current frame is known to the code cache then we can attempt to
  87   // to construct the sender and do some validation of it. This goes a long way
  88   // toward eliminating issues when we get in frame construction code
  89 
  90   if (_cb != NULL ) {
  91 
  92     // First check if frame is complete and tester is reliable
  93     // Unfortunately we can only check frame complete for runtime stubs and nmethod
  94     // other generic buffer blobs are more problematic so we just assume they are
  95     // ok. adapter blobs never have a frame complete and are never ok.
  96 
  97     // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
  98 
  99     if (!Interpreter::contains(_pc) && _cb->frame_size() <= 0) {
 100       //assert(0, "Invalid frame_size");
 101       return false;
 102     }
 103 
 104     if (!_cb->is_frame_complete_at(_pc)) {
 105       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
 106         return false;
 107       }
 108     }
 109     // Entry frame checks
 110     if (is_entry_frame()) {
 111       // an entry frame must have a valid fp.
 112 
 113       if (!fp_safe) return false;
 114 
 115       // Validate the JavaCallWrapper an entry frame must have
 116 
 117       address jcw = (address)entry_frame_call_wrapper();
 118 
 119       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
 120 
 121       return jcw_safe;
 122 
 123     }
 124 
 125     intptr_t* sender_sp = NULL;
 126     address   sender_pc = NULL;
 127 
 128     if (is_interpreted_frame()) {
 129       // fp must be safe
 130       if (!fp_safe) {
 131         return false;
 132       }
 133 
 134       sender_pc = (address) this->fp()[return_addr_offset];
 135       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
 136 
 137     } else {
 138       // must be some sort of compiled/runtime frame
 139       // fp does not have to be safe (although it could be check for c1?)
 140 
 141       sender_sp = _unextended_sp + _cb->frame_size();
 142       // On Intel the return_address is always the word on the stack
 143       sender_pc = (address) *(sender_sp-1);
 144     }
 145 
 146 
 147     // If the potential sender is the interpreter then we can do some more checking
 148     if (Interpreter::contains(sender_pc)) {
 149 
 150       // ebp is always saved in a recognizable place in any code we generate. However
 151       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
 152       // is really a frame pointer.
 153 
 154       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
 155       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 156 
 157       if (!saved_fp_safe) {
 158         return false;
 159       }
 160 
 161       // construct the potential sender
 162 
 163       frame sender(sender_sp, saved_fp, sender_pc);
 164 
 165       return sender.is_interpreted_frame_valid(thread);
 166 
 167     }
 168 
 169     // We must always be able to find a recognizable pc
 170     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
 171     if (sender_pc == NULL ||  sender_blob == NULL) {
 172       return false;
 173     }
 174 
 175     // Could be a zombie method
 176     if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
 177       return false;
 178     }
 179 
 180     // Could just be some random pointer within the codeBlob
 181     if (!sender_blob->code_contains(sender_pc)) {
 182       return false;
 183     }
 184 
 185     // We should never be able to see an adapter if the current frame is something from code cache
 186     if (sender_blob->is_adapter_blob()) {
 187       return false;
 188     }
 189 
 190     // Exception stubs don't make calls
 191     if (sender_blob->is_exception_stub()) {
 192       return false;
 193     }
 194 
 195     if (sender_blob->is_deoptimization_stub()) {
 196         return false;
 197     }
 198 
 199     // Could be the call_stub
 200 
 201     if (StubRoutines::returns_to_call_stub(sender_pc)) {
 202       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
 203       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 204 
 205       if (!saved_fp_safe) {
 206         return false;
 207       }
 208 
 209       // construct the potential sender
 210 
 211       frame sender(sender_sp, saved_fp, sender_pc);
 212 
 213       // Validate the JavaCallWrapper an entry frame must have
 214       address jcw = (address)sender.entry_frame_call_wrapper();
 215 
 216       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
 217 
 218       return jcw_safe;
 219     }
 220 
 221     if (sender_blob->is_nmethod()) {
 222       nmethod* nm = sender_blob->as_nmethod_or_null();
 223       if (nm != NULL) {
 224         if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) {
 225           return false;
 226         }
 227       }
 228     }
 229 
 230     // If the frame size is 0 something is bad because every nmethod has a non-zero frame size
 231     // because the return address counts against the callee's frame.
 232 
 233     if (sender_blob->frame_size() == 0) {
 234       assert(!sender_blob->is_nmethod(), "should count return address at least");
 235       return false;
 236     }
 237 
 238     // We should never be able to see anything here except an nmethod. If something in the
 239     // code cache (current frame) is called by an entity within the code cache that entity
 240     // should not be anything but the call stub (already covered), the interpreter (already covered)
 241     // or an nmethod.
 242 
 243     assert(sender_blob->is_runtime_stub() || sender_blob->is_nmethod(), "Impossible call chain");
 244 
 245     // Could put some more validation for the potential non-interpreted sender
 246     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
 247 
 248     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
 249 
 250     // We've validated the potential sender that would be created
 251     return true;
 252   }
 253 
 254   // Must be native-compiled frame. Since sender will try and use fp to find
 255   // linkages it must be safe
 256 
 257   if (!fp_safe) {
 258     return false;
 259   }
 260 
 261   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
 262 
 263   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
 264 
 265 
 266   // could try and do some more potential verification of native frame if we could think of some...
 267 
 268   return true;
 269 
 270 }
 271 
 272 
 273 void frame::patch_pc(Thread* thread, address pc) {
 274   address* pc_addr = &(((address*) sp())[-1]);
 275   if (TracePcPatching) {
 276     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
 277                   pc_addr, *pc_addr, pc);
 278   }
 279   // Either the return address is the original one or we are going to
 280   // patch in the same address that's already there.
 281   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
 282   *pc_addr = pc;
 283   _cb = CodeCache::find_blob(pc);
 284   address original_pc = nmethod::get_deopt_original_pc(this);
 285   if (original_pc != NULL) {
 286     assert(original_pc == _pc, "expected original PC to be stored before patching");
 287     _deopt_state = is_deoptimized;
 288     // leave _pc as is
 289   } else {
 290     _deopt_state = not_deoptimized;
 291     _pc = pc;
 292   }
 293 }
 294 
 295 bool frame::is_interpreted_frame() const  {
 296   return Interpreter::contains(pc());
 297 }
 298 
 299 int frame::frame_size(RegisterMap* map) const {
 300   frame sender = this->sender(map);
 301   return sender.sp() - sp();
 302 }
 303 
 304 intptr_t* frame::entry_frame_argument_at(int offset) const {
 305   // convert offset to index to deal with tsi
 306   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 307   // Entry frame's arguments are always in relation to unextended_sp()
 308   return &unextended_sp()[index];
 309 }
 310 
 311 // sender_sp
 312 #ifdef CC_INTERP
 313 intptr_t* frame::interpreter_frame_sender_sp() const {
 314   assert(is_interpreted_frame(), "interpreted frame expected");
 315   // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
 316   // seems odd and if we always know interpreted vs. non then sender_sp() is really
 317   // doing too much work.
 318   return get_interpreterState()->sender_sp();
 319 }
 320 
 321 // monitor elements
 322 
 323 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 324   return get_interpreterState()->monitor_base();
 325 }
 326 
 327 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 328   return (BasicObjectLock*) get_interpreterState()->stack_base();
 329 }
 330 
 331 #else // CC_INTERP
 332 
 333 intptr_t* frame::interpreter_frame_sender_sp() const {
 334   assert(is_interpreted_frame(), "interpreted frame expected");
 335   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
 336 }
 337 
 338 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
 339   assert(is_interpreted_frame(), "interpreted frame expected");
 340   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
 341 }
 342 
 343 
 344 // monitor elements
 345 
 346 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 347   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
 348 }
 349 
 350 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 351   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
 352   // make sure the pointer points inside the frame
 353   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
 354   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
 355   return result;
 356 }
 357 
 358 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
 359   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
 360 }
 361 
 362 // Used by template based interpreter deoptimization
 363 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
 364     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
 365 }
 366 #endif // CC_INTERP
 367 
 368 frame frame::sender_for_entry_frame(RegisterMap* map) const {
 369   assert(map != NULL, "map must be set");
 370   // Java frame called from C; skip all C frames and return top C
 371   // frame of that chunk as the sender
 372   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
 373   assert(!entry_frame_is_first(), "next Java fp must be non zero");
 374   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
 375   map->clear();
 376   assert(map->include_argument_oops(), "should be set by clear");
 377   if (jfa->last_Java_pc() != NULL ) {
 378     frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
 379     return fr;
 380   }
 381   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
 382   return fr;
 383 }
 384 
 385 //------------------------------------------------------------------------------
 386 // frame::verify_deopt_original_pc
 387 //
 388 // Verifies the calculated original PC of a deoptimization PC for the
 389 // given unextended SP.  The unextended SP might also be the saved SP
 390 // for MethodHandle call sites.
 391 #if ASSERT
 392 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
 393   frame fr;
 394 
 395   // This is ugly but it's better than to change {get,set}_original_pc
 396   // to take an SP value as argument.  And it's only a debugging
 397   // method anyway.
 398   fr._unextended_sp = unextended_sp;
 399 
 400   address original_pc = nm->get_original_pc(&fr);
 401   assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
 402   assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
 403 }
 404 #endif
 405 
 406 //------------------------------------------------------------------------------
 407 // frame::adjust_unextended_sp
 408 void frame::adjust_unextended_sp() {
 409   // If we are returning to a compiled MethodHandle call site, the
 410   // saved_fp will in fact be a saved value of the unextended SP.  The
 411   // simplest way to tell whether we are returning to such a call site
 412   // is as follows:
 413 
 414   nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
 415   if (sender_nm != NULL) {
 416     // If the sender PC is a deoptimization point, get the original
 417     // PC.  For MethodHandle call site the unextended_sp is stored in
 418     // saved_fp.
 419     if (sender_nm->is_deopt_mh_entry(_pc)) {
 420       DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
 421       _unextended_sp = _fp;
 422     }
 423     else if (sender_nm->is_deopt_entry(_pc)) {
 424       DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
 425     }
 426     else if (sender_nm->is_method_handle_return(_pc)) {
 427       _unextended_sp = _fp;
 428     }
 429   }
 430 }
 431 
 432 //------------------------------------------------------------------------------
 433 // frame::update_map_with_saved_link
 434 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
 435   // The interpreter and compiler(s) always save EBP/RBP in a known
 436   // location on entry. We must record where that location is
 437   // so this if EBP/RBP was live on callout from c2 we can find
 438   // the saved copy no matter what it called.
 439 
 440   // Since the interpreter always saves EBP/RBP if we record where it is then
 441   // we don't have to always save EBP/RBP on entry and exit to c2 compiled
 442   // code, on entry will be enough.
 443   map->set_location(rbp->as_VMReg(), (address) link_addr);
 444 #ifdef AMD64
 445   // this is weird "H" ought to be at a higher address however the
 446   // oopMaps seems to have the "H" regs at the same address and the
 447   // vanilla register.
 448   // XXXX make this go away
 449   if (true) {
 450     map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
 451   }
 452 #endif // AMD64
 453 }
 454 
 455 
 456 //------------------------------------------------------------------------------
 457 // frame::sender_for_interpreter_frame
 458 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
 459   // SP is the raw SP from the sender after adapter or interpreter
 460   // extension.
 461   intptr_t* sender_sp = this->sender_sp();
 462 
 463   // This is the sp before any possible extension (adapter/locals).
 464   intptr_t* unextended_sp = interpreter_frame_sender_sp();
 465 
 466 #ifdef COMPILER2
 467   if (map->update_map()) {
 468     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
 469   }
 470 #endif // COMPILER2
 471 
 472   return frame(sender_sp, unextended_sp, link(), sender_pc());
 473 }
 474 
 475 
 476 //------------------------------------------------------------------------------
 477 // frame::sender_for_compiled_frame
 478 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
 479   assert(map != NULL, "map must be set");
 480 
 481   // frame owned by optimizing compiler
 482   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
 483   intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
 484   intptr_t* unextended_sp = sender_sp;
 485 
 486   // On Intel the return_address is always the word on the stack
 487   address sender_pc = (address) *(sender_sp-1);
 488 
 489   // This is the saved value of EBP which may or may not really be an FP.
 490   // It is only an FP if the sender is an interpreter frame (or C1?).
 491   intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
 492 
 493   if (map->update_map()) {
 494     // Tell GC to use argument oopmaps for some runtime stubs that need it.
 495     // For C1, the runtime stub might not have oop maps, so set this flag
 496     // outside of update_register_map.
 497     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
 498     if (_cb->oop_maps() != NULL) {
 499       OopMapSet::update_register_map(this, map);
 500     }
 501 
 502     // Since the prolog does the save and restore of EBP there is no oopmap
 503     // for it so we must fill in its location as if there was an oopmap entry
 504     // since if our caller was compiled code there could be live jvm state in it.
 505     update_map_with_saved_link(map, saved_fp_addr);
 506   }
 507 
 508   assert(sender_sp != sp(), "must have changed");
 509   return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
 510 }
 511 
 512 
 513 //------------------------------------------------------------------------------
 514 // frame::sender
 515 frame frame::sender(RegisterMap* map) const {
 516   // Default is we done have to follow them. The sender_for_xxx will
 517   // update it accordingly
 518   map->set_include_argument_oops(false);
 519 
 520   if (is_entry_frame())       return sender_for_entry_frame(map);
 521   if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
 522   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
 523 
 524   if (_cb != NULL) {
 525     return sender_for_compiled_frame(map);
 526   }
 527   // Must be native-compiled frame, i.e. the marshaling code for native
 528   // methods that exists in the core system.
 529   return frame(sender_sp(), link(), sender_pc());
 530 }
 531 
 532 
 533 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
 534   assert(is_interpreted_frame(), "must be interpreter frame");
 535   methodOop method = interpreter_frame_method();
 536   // When unpacking an optimized frame the frame pointer is
 537   // adjusted with:
 538   int diff = (method->max_locals() - method->size_of_parameters()) *
 539              Interpreter::stackElementWords;
 540   return _fp == (fp - diff);
 541 }
 542 
 543 void frame::pd_gc_epilog() {
 544   // nothing done here now
 545 }
 546 
 547 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
 548 // QQQ
 549 #ifdef CC_INTERP
 550 #else
 551   assert(is_interpreted_frame(), "Not an interpreted frame");
 552   // These are reasonable sanity checks
 553   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
 554     return false;
 555   }
 556   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
 557     return false;
 558   }
 559   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
 560     return false;
 561   }
 562   // These are hacks to keep us out of trouble.
 563   // The problem with these is that they mask other problems
 564   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
 565     return false;
 566   }
 567 
 568   // do some validation of frame elements
 569 
 570   // first the method
 571 
 572   methodOop m = *interpreter_frame_method_addr();
 573 
 574   // validate the method we'd find in this potential sender
 575   if (!Universe::heap()->is_valid_method(m)) return false;
 576 
 577   // stack frames shouldn't be much larger than max_stack elements
 578 
 579   if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
 580     return false;
 581   }
 582 
 583   // validate bci/bcx
 584 
 585   intptr_t  bcx    = interpreter_frame_bcx();
 586   if (m->validate_bci_from_bcx(bcx) < 0) {
 587     return false;
 588   }
 589 
 590   // validate constantPoolCacheOop
 591 
 592   constantPoolCacheOop cp = *interpreter_frame_cache_addr();
 593 
 594   if (cp == NULL ||
 595       !Space::is_aligned(cp) ||
 596       !Universe::heap()->is_permanent((void*)cp)) return false;
 597 
 598   // validate locals
 599 
 600   address locals =  (address) *interpreter_frame_locals_addr();
 601 
 602   if (locals > thread->stack_base() || locals < (address) fp()) return false;
 603 
 604   // We'd have to be pretty unlucky to be mislead at this point
 605 
 606 #endif // CC_INTERP
 607   return true;
 608 }
 609 
 610 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
 611 #ifdef CC_INTERP
 612   // Needed for JVMTI. The result should always be in the
 613   // interpreterState object
 614   interpreterState istate = get_interpreterState();
 615 #endif // CC_INTERP
 616   assert(is_interpreted_frame(), "interpreted frame expected");
 617   methodOop method = interpreter_frame_method();
 618   BasicType type = method->result_type();
 619 
 620   intptr_t* tos_addr;
 621   if (method->is_native()) {
 622     // Prior to calling into the runtime to report the method_exit the possible
 623     // return value is pushed to the native stack. If the result is a jfloat/jdouble
 624     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
 625     tos_addr = (intptr_t*)sp();
 626     if (type == T_FLOAT || type == T_DOUBLE) {
 627     // QQQ seems like this code is equivalent on the two platforms
 628 #ifdef AMD64
 629       // This is times two because we do a push(ltos) after pushing XMM0
 630       // and that takes two interpreter stack slots.
 631       tos_addr += 2 * Interpreter::stackElementWords;
 632 #else
 633       tos_addr += 2;
 634 #endif // AMD64
 635     }
 636   } else {
 637     tos_addr = (intptr_t*)interpreter_frame_tos_address();
 638   }
 639 
 640   switch (type) {
 641     case T_OBJECT  :
 642     case T_ARRAY   : {
 643       oop obj;
 644       if (method->is_native()) {
 645 #ifdef CC_INTERP
 646         obj = istate->_oop_temp;
 647 #else
 648         obj = (oop) at(interpreter_frame_oop_temp_offset);
 649 #endif // CC_INTERP
 650       } else {
 651         oop* obj_p = (oop*)tos_addr;
 652         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
 653       }
 654       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
 655       *oop_result = obj;
 656       break;
 657     }
 658     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
 659     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
 660     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
 661     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
 662     case T_INT     : value_result->i = *(jint*)tos_addr; break;
 663     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
 664     case T_FLOAT   : {
 665 #ifdef AMD64
 666         value_result->f = *(jfloat*)tos_addr;
 667 #else
 668       if (method->is_native()) {
 669         jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
 670         value_result->f = (jfloat)d;
 671       } else {
 672         value_result->f = *(jfloat*)tos_addr;
 673       }
 674 #endif // AMD64
 675       break;
 676     }
 677     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
 678     case T_VOID    : /* Nothing to do */ break;
 679     default        : ShouldNotReachHere();
 680   }
 681 
 682   return type;
 683 }
 684 
 685 
 686 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
 687   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 688   return &interpreter_frame_tos_address()[index];
 689 }
 690 
 691 #ifndef PRODUCT
 692 
 693 #define DESCRIBE_FP_OFFSET(name) \
 694   values.describe(frame_no, fp() + frame::name##_offset, #name)
 695 
 696 void frame::describe_pd(FrameValues& values, int frame_no) {
 697   if (is_interpreted_frame()) {
 698     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
 699     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
 700     DESCRIBE_FP_OFFSET(interpreter_frame_method);
 701     DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
 702     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
 703     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
 704     DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
 705     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
 706   }
 707 }
 708 #endif
 709 
 710 intptr_t *frame::initial_deoptimization_info() {
 711   // used to reset the saved FP
 712   return fp();
 713 }
 714 
 715 intptr_t* frame::real_fp() const {
 716   if (_cb != NULL) {
 717     // use the frame size if valid
 718     int size = _cb->frame_size();
 719     if (size > 0) {
 720       return unextended_sp() + size;
 721     }
 722   }
 723   // else rely on fp()
 724   assert(! is_compiled_frame(), "unknown compiled frame size");
 725   return fp();
 726 }