1 /*
   2  * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.BufferedWriter;
  29 import java.io.Closeable;
  30 import java.io.IOException;
  31 import java.io.File;
  32 import java.io.FileOutputStream;
  33 import java.io.FileNotFoundException;
  34 import java.io.Flushable;
  35 import java.io.OutputStream;
  36 import java.io.OutputStreamWriter;
  37 import java.io.PrintStream;
  38 import java.io.UnsupportedEncodingException;
  39 import java.math.BigDecimal;
  40 import java.math.BigInteger;
  41 import java.math.MathContext;
  42 import java.math.RoundingMode;
  43 import java.nio.charset.Charset;
  44 import java.nio.charset.IllegalCharsetNameException;
  45 import java.nio.charset.UnsupportedCharsetException;
  46 import java.text.DateFormatSymbols;
  47 import java.text.DecimalFormat;
  48 import java.text.DecimalFormatSymbols;
  49 import java.text.NumberFormat;
  50 import java.util.regex.Matcher;
  51 import java.util.regex.Pattern;
  52 
  53 import java.time.DateTimeException;
  54 import java.time.Instant;
  55 import java.time.ZoneId;
  56 import java.time.ZoneOffset;
  57 import java.time.temporal.ChronoField;
  58 import java.time.temporal.TemporalAccessor;
  59 import java.time.temporal.TemporalQueries;
  60 
  61 import sun.misc.DoubleConsts;
  62 import sun.misc.FormattedFloatingDecimal;
  63 
  64 /**
  65  * An interpreter for printf-style format strings.  This class provides support
  66  * for layout justification and alignment, common formats for numeric, string,
  67  * and date/time data, and locale-specific output.  Common Java types such as
  68  * {@code byte}, {@link java.math.BigDecimal BigDecimal}, and {@link Calendar}
  69  * are supported.  Limited formatting customization for arbitrary user types is
  70  * provided through the {@link Formattable} interface.
  71  *
  72  * <p> Formatters are not necessarily safe for multithreaded access.  Thread
  73  * safety is optional and is the responsibility of users of methods in this
  74  * class.
  75  *
  76  * <p> Formatted printing for the Java language is heavily inspired by C's
  77  * {@code printf}.  Although the format strings are similar to C, some
  78  * customizations have been made to accommodate the Java language and exploit
  79  * some of its features.  Also, Java formatting is more strict than C's; for
  80  * example, if a conversion is incompatible with a flag, an exception will be
  81  * thrown.  In C inapplicable flags are silently ignored.  The format strings
  82  * are thus intended to be recognizable to C programmers but not necessarily
  83  * completely compatible with those in C.
  84  *
  85  * <p> Examples of expected usage:
  86  *
  87  * <blockquote><pre>
  88  *   StringBuilder sb = new StringBuilder();
  89  *   // Send all output to the Appendable object sb
  90  *   Formatter formatter = new Formatter(sb, Locale.US);
  91  *
  92  *   // Explicit argument indices may be used to re-order output.
  93  *   formatter.format("%4$2s %3$2s %2$2s %1$2s", "a", "b", "c", "d")
  94  *   // -&gt; " d  c  b  a"
  95  *
  96  *   // Optional locale as the first argument can be used to get
  97  *   // locale-specific formatting of numbers.  The precision and width can be
  98  *   // given to round and align the value.
  99  *   formatter.format(Locale.FRANCE, "e = %+10.4f", Math.E);
 100  *   // -&gt; "e =    +2,7183"
 101  *
 102  *   // The '(' numeric flag may be used to format negative numbers with
 103  *   // parentheses rather than a minus sign.  Group separators are
 104  *   // automatically inserted.
 105  *   formatter.format("Amount gained or lost since last statement: $ %(,.2f",
 106  *                    balanceDelta);
 107  *   // -&gt; "Amount gained or lost since last statement: $ (6,217.58)"
 108  * </pre></blockquote>
 109  *
 110  * <p> Convenience methods for common formatting requests exist as illustrated
 111  * by the following invocations:
 112  *
 113  * <blockquote><pre>
 114  *   // Writes a formatted string to System.out.
 115  *   System.out.format("Local time: %tT", Calendar.getInstance());
 116  *   // -&gt; "Local time: 13:34:18"
 117  *
 118  *   // Writes formatted output to System.err.
 119  *   System.err.printf("Unable to open file '%1$s': %2$s",
 120  *                     fileName, exception.getMessage());
 121  *   // -&gt; "Unable to open file 'food': No such file or directory"
 122  * </pre></blockquote>
 123  *
 124  * <p> Like C's {@code sprintf(3)}, Strings may be formatted using the static
 125  * method {@link String#format(String,Object...) String.format}:
 126  *
 127  * <blockquote><pre>
 128  *   // Format a string containing a date.
 129  *   import java.util.Calendar;
 130  *   import java.util.GregorianCalendar;
 131  *   import static java.util.Calendar.*;
 132  *
 133  *   Calendar c = new GregorianCalendar(1995, MAY, 23);
 134  *   String s = String.format("Duke's Birthday: %1$tb %1$te, %1$tY", c);
 135  *   // -&gt; s == "Duke's Birthday: May 23, 1995"
 136  * </pre></blockquote>
 137  *
 138  * <h3><a name="org">Organization</a></h3>
 139  *
 140  * <p> This specification is divided into two sections.  The first section, <a
 141  * href="#summary">Summary</a>, covers the basic formatting concepts.  This
 142  * section is intended for users who want to get started quickly and are
 143  * familiar with formatted printing in other programming languages.  The second
 144  * section, <a href="#detail">Details</a>, covers the specific implementation
 145  * details.  It is intended for users who want more precise specification of
 146  * formatting behavior.
 147  *
 148  * <h3><a name="summary">Summary</a></h3>
 149  *
 150  * <p> This section is intended to provide a brief overview of formatting
 151  * concepts.  For precise behavioral details, refer to the <a
 152  * href="#detail">Details</a> section.
 153  *
 154  * <h4><a name="syntax">Format String Syntax</a></h4>
 155  *
 156  * <p> Every method which produces formatted output requires a <i>format
 157  * string</i> and an <i>argument list</i>.  The format string is a {@link
 158  * String} which may contain fixed text and one or more embedded <i>format
 159  * specifiers</i>.  Consider the following example:
 160  *
 161  * <blockquote><pre>
 162  *   Calendar c = ...;
 163  *   String s = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 164  * </pre></blockquote>
 165  *
 166  * This format string is the first argument to the {@code format} method.  It
 167  * contains three format specifiers "{@code %1$tm}", "{@code %1$te}", and
 168  * "{@code %1$tY}" which indicate how the arguments should be processed and
 169  * where they should be inserted in the text.  The remaining portions of the
 170  * format string are fixed text including {@code "Dukes Birthday: "} and any
 171  * other spaces or punctuation.
 172  *
 173  * The argument list consists of all arguments passed to the method after the
 174  * format string.  In the above example, the argument list is of size one and
 175  * consists of the {@link java.util.Calendar Calendar} object {@code c}.
 176  *
 177  * <ul>
 178  *
 179  * <li> The format specifiers for general, character, and numeric types have
 180  * the following syntax:
 181  *
 182  * <blockquote><pre>
 183  *   %[argument_index$][flags][width][.precision]conversion
 184  * </pre></blockquote>
 185  *
 186  * <p> The optional <i>argument_index</i> is a decimal integer indicating the
 187  * position of the argument in the argument list.  The first argument is
 188  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.
 189  *
 190  * <p> The optional <i>flags</i> is a set of characters that modify the output
 191  * format.  The set of valid flags depends on the conversion.
 192  *
 193  * <p> The optional <i>width</i> is a positive decimal integer indicating
 194  * the minimum number of characters to be written to the output.
 195  *
 196  * <p> The optional <i>precision</i> is a non-negative decimal integer usually
 197  * used to restrict the number of characters.  The specific behavior depends on
 198  * the conversion.
 199  *
 200  * <p> The required <i>conversion</i> is a character indicating how the
 201  * argument should be formatted.  The set of valid conversions for a given
 202  * argument depends on the argument's data type.
 203  *
 204  * <li> The format specifiers for types which are used to represents dates and
 205  * times have the following syntax:
 206  *
 207  * <blockquote><pre>
 208  *   %[argument_index$][flags][width]conversion
 209  * </pre></blockquote>
 210  *
 211  * <p> The optional <i>argument_index</i>, <i>flags</i> and <i>width</i> are
 212  * defined as above.
 213  *
 214  * <p> The required <i>conversion</i> is a two character sequence.  The first
 215  * character is {@code 't'} or {@code 'T'}.  The second character indicates
 216  * the format to be used.  These characters are similar to but not completely
 217  * identical to those defined by GNU {@code date} and POSIX
 218  * {@code strftime(3c)}.
 219  *
 220  * <li> The format specifiers which do not correspond to arguments have the
 221  * following syntax:
 222  *
 223  * <blockquote><pre>
 224  *   %[flags][width]conversion
 225  * </pre></blockquote>
 226  *
 227  * <p> The optional <i>flags</i> and <i>width</i> is defined as above.
 228  *
 229  * <p> The required <i>conversion</i> is a character indicating content to be
 230  * inserted in the output.
 231  *
 232  * </ul>
 233  *
 234  * <h4> Conversions </h4>
 235  *
 236  * <p> Conversions are divided into the following categories:
 237  *
 238  * <ol>
 239  *
 240  * <li> <b>General</b> - may be applied to any argument
 241  * type
 242  *
 243  * <li> <b>Character</b> - may be applied to basic types which represent
 244  * Unicode characters: {@code char}, {@link Character}, {@code byte}, {@link
 245  * Byte}, {@code short}, and {@link Short}. This conversion may also be
 246  * applied to the types {@code int} and {@link Integer} when {@link
 247  * Character#isValidCodePoint} returns {@code true}
 248  *
 249  * <li> <b>Numeric</b>
 250  *
 251  * <ol>
 252  *
 253  * <li> <b>Integral</b> - may be applied to Java integral types: {@code byte},
 254  * {@link Byte}, {@code short}, {@link Short}, {@code int} and {@link
 255  * Integer}, {@code long}, {@link Long}, and {@link java.math.BigInteger
 256  * BigInteger} (but not {@code char} or {@link Character})
 257  *
 258  * <li><b>Floating Point</b> - may be applied to Java floating-point types:
 259  * {@code float}, {@link Float}, {@code double}, {@link Double}, and {@link
 260  * java.math.BigDecimal BigDecimal}
 261  *
 262  * </ol>
 263  *
 264  * <li> <b>Date/Time</b> - may be applied to Java types which are capable of
 265  * encoding a date or time: {@code long}, {@link Long}, {@link Calendar},
 266  * {@link Date} and {@link TemporalAccessor TemporalAccessor}
 267  *
 268  * <li> <b>Percent</b> - produces a literal {@code '%'}
 269  * (<tt>'\u0025'</tt>)
 270  *
 271  * <li> <b>Line Separator</b> - produces the platform-specific line separator
 272  *
 273  * </ol>
 274  *
 275  * <p> The following table summarizes the supported conversions.  Conversions
 276  * denoted by an upper-case character (i.e. {@code 'B'}, {@code 'H'},
 277  * {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'}, {@code 'G'},
 278  * {@code 'A'}, and {@code 'T'}) are the same as those for the corresponding
 279  * lower-case conversion characters except that the result is converted to
 280  * upper case according to the rules of the prevailing {@link java.util.Locale
 281  * Locale}.  The result is equivalent to the following invocation of {@link
 282  * String#toUpperCase()}
 283  *
 284  * <pre>
 285  *    out.toUpperCase() </pre>
 286  *
 287  * <table cellpadding=5 summary="genConv">
 288  *
 289  * <tr><th valign="bottom"> Conversion
 290  *     <th valign="bottom"> Argument Category
 291  *     <th valign="bottom"> Description
 292  *
 293  * <tr><td valign="top"> {@code 'b'}, {@code 'B'}
 294  *     <td valign="top"> general
 295  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 296  *     "{@code false}".  If <i>arg</i> is a {@code boolean} or {@link
 297  *     Boolean}, then the result is the string returned by {@link
 298  *     String#valueOf(boolean) String.valueOf(arg)}.  Otherwise, the result is
 299  *     "true".
 300  *
 301  * <tr><td valign="top"> {@code 'h'}, {@code 'H'}
 302  *     <td valign="top"> general
 303  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 304  *     "{@code null}".  Otherwise, the result is obtained by invoking
 305  *     {@code Integer.toHexString(arg.hashCode())}.
 306  *
 307  * <tr><td valign="top"> {@code 's'}, {@code 'S'}
 308  *     <td valign="top"> general
 309  *     <td> If the argument <i>arg</i> is {@code null}, then the result is
 310  *     "{@code null}".  If <i>arg</i> implements {@link Formattable}, then
 311  *     {@link Formattable#formatTo arg.formatTo} is invoked. Otherwise, the
 312  *     result is obtained by invoking {@code arg.toString()}.
 313  *
 314  * <tr><td valign="top">{@code 'c'}, {@code 'C'}
 315  *     <td valign="top"> character
 316  *     <td> The result is a Unicode character
 317  *
 318  * <tr><td valign="top">{@code 'd'}
 319  *     <td valign="top"> integral
 320  *     <td> The result is formatted as a decimal integer
 321  *
 322  * <tr><td valign="top">{@code 'o'}
 323  *     <td valign="top"> integral
 324  *     <td> The result is formatted as an octal integer
 325  *
 326  * <tr><td valign="top">{@code 'x'}, {@code 'X'}
 327  *     <td valign="top"> integral
 328  *     <td> The result is formatted as a hexadecimal integer
 329  *
 330  * <tr><td valign="top">{@code 'e'}, {@code 'E'}
 331  *     <td valign="top"> floating point
 332  *     <td> The result is formatted as a decimal number in computerized
 333  *     scientific notation
 334  *
 335  * <tr><td valign="top">{@code 'f'}
 336  *     <td valign="top"> floating point
 337  *     <td> The result is formatted as a decimal number
 338  *
 339  * <tr><td valign="top">{@code 'g'}, {@code 'G'}
 340  *     <td valign="top"> floating point
 341  *     <td> The result is formatted using computerized scientific notation or
 342  *     decimal format, depending on the precision and the value after rounding.
 343  *
 344  * <tr><td valign="top">{@code 'a'}, {@code 'A'}
 345  *     <td valign="top"> floating point
 346  *     <td> The result is formatted as a hexadecimal floating-point number with
 347  *     a significand and an exponent. This conversion is <b>not</b> supported
 348  *     for the {@code BigDecimal} type despite the latter's being in the
 349  *     <i>floating point</i> argument category.
 350  *
 351  * <tr><td valign="top">{@code 't'}, {@code 'T'}
 352  *     <td valign="top"> date/time
 353  *     <td> Prefix for date and time conversion characters.  See <a
 354  *     href="#dt">Date/Time Conversions</a>.
 355  *
 356  * <tr><td valign="top">{@code '%'}
 357  *     <td valign="top"> percent
 358  *     <td> The result is a literal {@code '%'} (<tt>'\u0025'</tt>)
 359  *
 360  * <tr><td valign="top">{@code 'n'}
 361  *     <td valign="top"> line separator
 362  *     <td> The result is the platform-specific line separator
 363  *
 364  * </table>
 365  *
 366  * <p> Any characters not explicitly defined as conversions are illegal and are
 367  * reserved for future extensions.
 368  *
 369  * <h4><a name="dt">Date/Time Conversions</a></h4>
 370  *
 371  * <p> The following date and time conversion suffix characters are defined for
 372  * the {@code 't'} and {@code 'T'} conversions.  The types are similar to but
 373  * not completely identical to those defined by GNU {@code date} and POSIX
 374  * {@code strftime(3c)}.  Additional conversion types are provided to access
 375  * Java-specific functionality (e.g. {@code 'L'} for milliseconds within the
 376  * second).
 377  *
 378  * <p> The following conversion characters are used for formatting times:
 379  *
 380  * <table cellpadding=5 summary="time">
 381  *
 382  * <tr><td valign="top"> {@code 'H'}
 383  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
 384  *     a leading zero as necessary i.e. {@code 00 - 23}.
 385  *
 386  * <tr><td valign="top">{@code 'I'}
 387  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
 388  *     zero as necessary, i.e.  {@code 01 - 12}.
 389  *
 390  * <tr><td valign="top">{@code 'k'}
 391  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
 392  *
 393  * <tr><td valign="top">{@code 'l'}
 394  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.
 395  *
 396  * <tr><td valign="top">{@code 'M'}
 397  *     <td> Minute within the hour formatted as two digits with a leading zero
 398  *     as necessary, i.e.  {@code 00 - 59}.
 399  *
 400  * <tr><td valign="top">{@code 'S'}
 401  *     <td> Seconds within the minute, formatted as two digits with a leading
 402  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
 403  *     value required to support leap seconds).
 404  *
 405  * <tr><td valign="top">{@code 'L'}
 406  *     <td> Millisecond within the second formatted as three digits with
 407  *     leading zeros as necessary, i.e. {@code 000 - 999}.
 408  *
 409  * <tr><td valign="top">{@code 'N'}
 410  *     <td> Nanosecond within the second, formatted as nine digits with leading
 411  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.
 412  *
 413  * <tr><td valign="top">{@code 'p'}
 414  *     <td> Locale-specific {@linkplain
 415  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
 416  *     in lower case, e.g."{@code am}" or "{@code pm}". Use of the conversion
 417  *     prefix {@code 'T'} forces this output to upper case.
 418  *
 419  * <tr><td valign="top">{@code 'z'}
 420  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
 421  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
 422  *     value will be adjusted as necessary for Daylight Saving Time.  For
 423  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
 424  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 425  *     instance of the Java virtual machine.
 426  *
 427  * <tr><td valign="top">{@code 'Z'}
 428  *     <td> A string representing the abbreviation for the time zone.  This
 429  *     value will be adjusted as necessary for Daylight Saving Time.  For
 430  *     {@code long}, {@link Long}, and {@link Date} the  time zone used is
 431  *     the {@linkplain TimeZone#getDefault() default time zone} for this
 432  *     instance of the Java virtual machine.  The Formatter's locale will
 433  *     supersede the locale of the argument (if any).
 434  *
 435  * <tr><td valign="top">{@code 's'}
 436  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
 437  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
 438  *     {@code Long.MAX_VALUE/1000}.
 439  *
 440  * <tr><td valign="top">{@code 'Q'}
 441  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
 442  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
 443  *     {@code Long.MAX_VALUE}.
 444  *
 445  * </table>
 446  *
 447  * <p> The following conversion characters are used for formatting dates:
 448  *
 449  * <table cellpadding=5 summary="date">
 450  *
 451  * <tr><td valign="top">{@code 'B'}
 452  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
 453  *     full month name}, e.g. {@code "January"}, {@code "February"}.
 454  *
 455  * <tr><td valign="top">{@code 'b'}
 456  *     <td> Locale-specific {@linkplain
 457  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
 458  *     e.g. {@code "Jan"}, {@code "Feb"}.
 459  *
 460  * <tr><td valign="top">{@code 'h'}
 461  *     <td> Same as {@code 'b'}.
 462  *
 463  * <tr><td valign="top">{@code 'A'}
 464  *     <td> Locale-specific full name of the {@linkplain
 465  *     java.text.DateFormatSymbols#getWeekdays day of the week},
 466  *     e.g. {@code "Sunday"}, {@code "Monday"}
 467  *
 468  * <tr><td valign="top">{@code 'a'}
 469  *     <td> Locale-specific short name of the {@linkplain
 470  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
 471  *     e.g. {@code "Sun"}, {@code "Mon"}
 472  *
 473  * <tr><td valign="top">{@code 'C'}
 474  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
 475  *     with leading zero as necessary, i.e. {@code 00 - 99}
 476  *
 477  * <tr><td valign="top">{@code 'Y'}
 478  *     <td> Year, formatted as at least four digits with leading zeros as
 479  *     necessary, e.g. {@code 0092} equals {@code 92} CE for the Gregorian
 480  *     calendar.
 481  *
 482  * <tr><td valign="top">{@code 'y'}
 483  *     <td> Last two digits of the year, formatted with leading zeros as
 484  *     necessary, i.e. {@code 00 - 99}.
 485  *
 486  * <tr><td valign="top">{@code 'j'}
 487  *     <td> Day of year, formatted as three digits with leading zeros as
 488  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
 489  *
 490  * <tr><td valign="top">{@code 'm'}
 491  *     <td> Month, formatted as two digits with leading zeros as necessary,
 492  *     i.e. {@code 01 - 13}.
 493  *
 494  * <tr><td valign="top">{@code 'd'}
 495  *     <td> Day of month, formatted as two digits with leading zeros as
 496  *     necessary, i.e. {@code 01 - 31}
 497  *
 498  * <tr><td valign="top">{@code 'e'}
 499  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31}.
 500  *
 501  * </table>
 502  *
 503  * <p> The following conversion characters are used for formatting common
 504  * date/time compositions.
 505  *
 506  * <table cellpadding=5 summary="composites">
 507  *
 508  * <tr><td valign="top">{@code 'R'}
 509  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
 510  *
 511  * <tr><td valign="top">{@code 'T'}
 512  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
 513  *
 514  * <tr><td valign="top">{@code 'r'}
 515  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS %Tp"}.
 516  *     The location of the morning or afternoon marker ({@code '%Tp'}) may be
 517  *     locale-dependent.
 518  *
 519  * <tr><td valign="top">{@code 'D'}
 520  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
 521  *
 522  * <tr><td valign="top">{@code 'F'}
 523  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
 524  *     complete date formatted as {@code "%tY-%tm-%td"}.
 525  *
 526  * <tr><td valign="top">{@code 'c'}
 527  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
 528  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
 529  *
 530  * </table>
 531  *
 532  * <p> Any characters not explicitly defined as date/time conversion suffixes
 533  * are illegal and are reserved for future extensions.
 534  *
 535  * <h4> Flags </h4>
 536  *
 537  * <p> The following table summarizes the supported flags.  <i>y</i> means the
 538  * flag is supported for the indicated argument types.
 539  *
 540  * <table cellpadding=5 summary="genConv">
 541  *
 542  * <tr><th valign="bottom"> Flag <th valign="bottom"> General
 543  *     <th valign="bottom"> Character <th valign="bottom"> Integral
 544  *     <th valign="bottom"> Floating Point
 545  *     <th valign="bottom"> Date/Time
 546  *     <th valign="bottom"> Description
 547  *
 548  * <tr><td> '-' <td align="center" valign="top"> y
 549  *     <td align="center" valign="top"> y
 550  *     <td align="center" valign="top"> y
 551  *     <td align="center" valign="top"> y
 552  *     <td align="center" valign="top"> y
 553  *     <td> The result will be left-justified.
 554  *
 555  * <tr><td> '#' <td align="center" valign="top"> y<sup>1</sup>
 556  *     <td align="center" valign="top"> -
 557  *     <td align="center" valign="top"> y<sup>3</sup>
 558  *     <td align="center" valign="top"> y
 559  *     <td align="center" valign="top"> -
 560  *     <td> The result should use a conversion-dependent alternate form
 561  *
 562  * <tr><td> '+' <td align="center" valign="top"> -
 563  *     <td align="center" valign="top"> -
 564  *     <td align="center" valign="top"> y<sup>4</sup>
 565  *     <td align="center" valign="top"> y
 566  *     <td align="center" valign="top"> -
 567  *     <td> The result will always include a sign
 568  *
 569  * <tr><td> '&nbsp;&nbsp;' <td align="center" valign="top"> -
 570  *     <td align="center" valign="top"> -
 571  *     <td align="center" valign="top"> y<sup>4</sup>
 572  *     <td align="center" valign="top"> y
 573  *     <td align="center" valign="top"> -
 574  *     <td> The result will include a leading space for positive values
 575  *
 576  * <tr><td> '0' <td align="center" valign="top"> -
 577  *     <td align="center" valign="top"> -
 578  *     <td align="center" valign="top"> y
 579  *     <td align="center" valign="top"> y
 580  *     <td align="center" valign="top"> -
 581  *     <td> The result will be zero-padded
 582  *
 583  * <tr><td> ',' <td align="center" valign="top"> -
 584  *     <td align="center" valign="top"> -
 585  *     <td align="center" valign="top"> y<sup>2</sup>
 586  *     <td align="center" valign="top"> y<sup>5</sup>
 587  *     <td align="center" valign="top"> -
 588  *     <td> The result will include locale-specific {@linkplain
 589  *     java.text.DecimalFormatSymbols#getGroupingSeparator grouping separators}
 590  *
 591  * <tr><td> '(' <td align="center" valign="top"> -
 592  *     <td align="center" valign="top"> -
 593  *     <td align="center" valign="top"> y<sup>4</sup>
 594  *     <td align="center" valign="top"> y<sup>5</sup>
 595  *     <td align="center"> -
 596  *     <td> The result will enclose negative numbers in parentheses
 597  *
 598  * </table>
 599  *
 600  * <p> <sup>1</sup> Depends on the definition of {@link Formattable}.
 601  *
 602  * <p> <sup>2</sup> For {@code 'd'} conversion only.
 603  *
 604  * <p> <sup>3</sup> For {@code 'o'}, {@code 'x'}, and {@code 'X'}
 605  * conversions only.
 606  *
 607  * <p> <sup>4</sup> For {@code 'd'}, {@code 'o'}, {@code 'x'}, and
 608  * {@code 'X'} conversions applied to {@link java.math.BigInteger BigInteger}
 609  * or {@code 'd'} applied to {@code byte}, {@link Byte}, {@code short}, {@link
 610  * Short}, {@code int} and {@link Integer}, {@code long}, and {@link Long}.
 611  *
 612  * <p> <sup>5</sup> For {@code 'e'}, {@code 'E'}, {@code 'f'},
 613  * {@code 'g'}, and {@code 'G'} conversions only.
 614  *
 615  * <p> Any characters not explicitly defined as flags are illegal and are
 616  * reserved for future extensions.
 617  *
 618  * <h4> Width </h4>
 619  *
 620  * <p> The width is the minimum number of characters to be written to the
 621  * output.  For the line separator conversion, width is not applicable; if it
 622  * is provided, an exception will be thrown.
 623  *
 624  * <h4> Precision </h4>
 625  *
 626  * <p> For general argument types, the precision is the maximum number of
 627  * characters to be written to the output.
 628  *
 629  * <p> For the floating-point conversions {@code 'a'}, {@code 'A'}, {@code 'e'},
 630  * {@code 'E'}, and {@code 'f'} the precision is the number of digits after the
 631  * radix point.  If the conversion is {@code 'g'} or {@code 'G'}, then the
 632  * precision is the total number of digits in the resulting magnitude after
 633  * rounding.
 634  *
 635  * <p> For character, integral, and date/time argument types and the percent
 636  * and line separator conversions, the precision is not applicable; if a
 637  * precision is provided, an exception will be thrown.
 638  *
 639  * <h4> Argument Index </h4>
 640  *
 641  * <p> The argument index is a decimal integer indicating the position of the
 642  * argument in the argument list.  The first argument is referenced by
 643  * "{@code 1$}", the second by "{@code 2$}", etc.
 644  *
 645  * <p> Another way to reference arguments by position is to use the
 646  * {@code '<'} (<tt>'\u003c'</tt>) flag, which causes the argument for
 647  * the previous format specifier to be re-used.  For example, the following two
 648  * statements would produce identical strings:
 649  *
 650  * <blockquote><pre>
 651  *   Calendar c = ...;
 652  *   String s1 = String.format("Duke's Birthday: %1$tm %1$te,%1$tY", c);
 653  *
 654  *   String s2 = String.format("Duke's Birthday: %1$tm %&lt;te,%&lt;tY", c);
 655  * </pre></blockquote>
 656  *
 657  * <hr>
 658  * <h3><a name="detail">Details</a></h3>
 659  *
 660  * <p> This section is intended to provide behavioral details for formatting,
 661  * including conditions and exceptions, supported data types, localization, and
 662  * interactions between flags, conversions, and data types.  For an overview of
 663  * formatting concepts, refer to the <a href="#summary">Summary</a>
 664  *
 665  * <p> Any characters not explicitly defined as conversions, date/time
 666  * conversion suffixes, or flags are illegal and are reserved for
 667  * future extensions.  Use of such a character in a format string will
 668  * cause an {@link UnknownFormatConversionException} or {@link
 669  * UnknownFormatFlagsException} to be thrown.
 670  *
 671  * <p> If the format specifier contains a width or precision with an invalid
 672  * value or which is otherwise unsupported, then a {@link
 673  * IllegalFormatWidthException} or {@link IllegalFormatPrecisionException}
 674  * respectively will be thrown.
 675  *
 676  * <p> If a format specifier contains a conversion character that is not
 677  * applicable to the corresponding argument, then an {@link
 678  * IllegalFormatConversionException} will be thrown.
 679  *
 680  * <p> All specified exceptions may be thrown by any of the {@code format}
 681  * methods of {@code Formatter} as well as by any {@code format} convenience
 682  * methods such as {@link String#format(String,Object...) String.format} and
 683  * {@link java.io.PrintStream#printf(String,Object...) PrintStream.printf}.
 684  *
 685  * <p> Conversions denoted by an upper-case character (i.e. {@code 'B'},
 686  * {@code 'H'}, {@code 'S'}, {@code 'C'}, {@code 'X'}, {@code 'E'},
 687  * {@code 'G'}, {@code 'A'}, and {@code 'T'}) are the same as those for the
 688  * corresponding lower-case conversion characters except that the result is
 689  * converted to upper case according to the rules of the prevailing {@link
 690  * java.util.Locale Locale}.  The result is equivalent to the following
 691  * invocation of {@link String#toUpperCase()}
 692  *
 693  * <pre>
 694  *    out.toUpperCase() </pre>
 695  *
 696  * <h4><a name="dgen">General</a></h4>
 697  *
 698  * <p> The following general conversions may be applied to any argument type:
 699  *
 700  * <table cellpadding=5 summary="dgConv">
 701  *
 702  * <tr><td valign="top"> {@code 'b'}
 703  *     <td valign="top"> <tt>'\u0062'</tt>
 704  *     <td> Produces either "{@code true}" or "{@code false}" as returned by
 705  *     {@link Boolean#toString(boolean)}.
 706  *
 707  *     <p> If the argument is {@code null}, then the result is
 708  *     "{@code false}".  If the argument is a {@code boolean} or {@link
 709  *     Boolean}, then the result is the string returned by {@link
 710  *     String#valueOf(boolean) String.valueOf()}.  Otherwise, the result is
 711  *     "{@code true}".
 712  *
 713  *     <p> If the {@code '#'} flag is given, then a {@link
 714  *     FormatFlagsConversionMismatchException} will be thrown.
 715  *
 716  * <tr><td valign="top"> {@code 'B'}
 717  *     <td valign="top"> <tt>'\u0042'</tt>
 718  *     <td> The upper-case variant of {@code 'b'}.
 719  *
 720  * <tr><td valign="top"> {@code 'h'}
 721  *     <td valign="top"> <tt>'\u0068'</tt>
 722  *     <td> Produces a string representing the hash code value of the object.
 723  *
 724  *     <p> If the argument, <i>arg</i> is {@code null}, then the
 725  *     result is "{@code null}".  Otherwise, the result is obtained
 726  *     by invoking {@code Integer.toHexString(arg.hashCode())}.
 727  *
 728  *     <p> If the {@code '#'} flag is given, then a {@link
 729  *     FormatFlagsConversionMismatchException} will be thrown.
 730  *
 731  * <tr><td valign="top"> {@code 'H'}
 732  *     <td valign="top"> <tt>'\u0048'</tt>
 733  *     <td> The upper-case variant of {@code 'h'}.
 734  *
 735  * <tr><td valign="top"> {@code 's'}
 736  *     <td valign="top"> <tt>'\u0073'</tt>
 737  *     <td> Produces a string.
 738  *
 739  *     <p> If the argument is {@code null}, then the result is
 740  *     "{@code null}".  If the argument implements {@link Formattable}, then
 741  *     its {@link Formattable#formatTo formatTo} method is invoked.
 742  *     Otherwise, the result is obtained by invoking the argument's
 743  *     {@code toString()} method.
 744  *
 745  *     <p> If the {@code '#'} flag is given and the argument is not a {@link
 746  *     Formattable} , then a {@link FormatFlagsConversionMismatchException}
 747  *     will be thrown.
 748  *
 749  * <tr><td valign="top"> {@code 'S'}
 750  *     <td valign="top"> <tt>'\u0053'</tt>
 751  *     <td> The upper-case variant of {@code 's'}.
 752  *
 753  * </table>
 754  *
 755  * <p> The following <a name="dFlags">flags</a> apply to general conversions:
 756  *
 757  * <table cellpadding=5 summary="dFlags">
 758  *
 759  * <tr><td valign="top"> {@code '-'}
 760  *     <td valign="top"> <tt>'\u002d'</tt>
 761  *     <td> Left justifies the output.  Spaces (<tt>'\u0020'</tt>) will be
 762  *     added at the end of the converted value as required to fill the minimum
 763  *     width of the field.  If the width is not provided, then a {@link
 764  *     MissingFormatWidthException} will be thrown.  If this flag is not given
 765  *     then the output will be right-justified.
 766  *
 767  * <tr><td valign="top"> {@code '#'}
 768  *     <td valign="top"> <tt>'\u0023'</tt>
 769  *     <td> Requires the output use an alternate form.  The definition of the
 770  *     form is specified by the conversion.
 771  *
 772  * </table>
 773  *
 774  * <p> The <a name="genWidth">width</a> is the minimum number of characters to
 775  * be written to the
 776  * output.  If the length of the converted value is less than the width then
 777  * the output will be padded by <tt>'&nbsp;&nbsp;'</tt> (<tt>'\u0020'</tt>)
 778  * until the total number of characters equals the width.  The padding is on
 779  * the left by default.  If the {@code '-'} flag is given, then the padding
 780  * will be on the right.  If the width is not specified then there is no
 781  * minimum.
 782  *
 783  * <p> The precision is the maximum number of characters to be written to the
 784  * output.  The precision is applied before the width, thus the output will be
 785  * truncated to {@code precision} characters even if the width is greater than
 786  * the precision.  If the precision is not specified then there is no explicit
 787  * limit on the number of characters.
 788  *
 789  * <h4><a name="dchar">Character</a></h4>
 790  *
 791  * This conversion may be applied to {@code char} and {@link Character}.  It
 792  * may also be applied to the types {@code byte}, {@link Byte},
 793  * {@code short}, and {@link Short}, {@code int} and {@link Integer} when
 794  * {@link Character#isValidCodePoint} returns {@code true}.  If it returns
 795  * {@code false} then an {@link IllegalFormatCodePointException} will be
 796  * thrown.
 797  *
 798  * <table cellpadding=5 summary="charConv">
 799  *
 800  * <tr><td valign="top"> {@code 'c'}
 801  *     <td valign="top"> <tt>'\u0063'</tt>
 802  *     <td> Formats the argument as a Unicode character as described in <a
 803  *     href="../lang/Character.html#unicode">Unicode Character
 804  *     Representation</a>.  This may be more than one 16-bit {@code char} in
 805  *     the case where the argument represents a supplementary character.
 806  *
 807  *     <p> If the {@code '#'} flag is given, then a {@link
 808  *     FormatFlagsConversionMismatchException} will be thrown.
 809  *
 810  * <tr><td valign="top"> {@code 'C'}
 811  *     <td valign="top"> <tt>'\u0043'</tt>
 812  *     <td> The upper-case variant of {@code 'c'}.
 813  *
 814  * </table>
 815  *
 816  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
 817  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
 818  * FormatFlagsConversionMismatchException} will be thrown.
 819  *
 820  * <p> The width is defined as for <a href="#genWidth">General conversions</a>.
 821  *
 822  * <p> The precision is not applicable.  If the precision is specified then an
 823  * {@link IllegalFormatPrecisionException} will be thrown.
 824  *
 825  * <h4><a name="dnum">Numeric</a></h4>
 826  *
 827  * <p> Numeric conversions are divided into the following categories:
 828  *
 829  * <ol>
 830  *
 831  * <li> <a href="#dnint"><b>Byte, Short, Integer, and Long</b></a>
 832  *
 833  * <li> <a href="#dnbint"><b>BigInteger</b></a>
 834  *
 835  * <li> <a href="#dndec"><b>Float and Double</b></a>
 836  *
 837  * <li> <a href="#dnbdec"><b>BigDecimal</b></a>
 838  *
 839  * </ol>
 840  *
 841  * <p> Numeric types will be formatted according to the following algorithm:
 842  *
 843  * <p><b><a name="L10nAlgorithm"> Number Localization Algorithm</a></b>
 844  *
 845  * <p> After digits are obtained for the integer part, fractional part, and
 846  * exponent (as appropriate for the data type), the following transformation
 847  * is applied:
 848  *
 849  * <ol>
 850  *
 851  * <li> Each digit character <i>d</i> in the string is replaced by a
 852  * locale-specific digit computed relative to the current locale's
 853  * {@linkplain java.text.DecimalFormatSymbols#getZeroDigit() zero digit}
 854  * <i>z</i>; that is <i>d&nbsp;-&nbsp;</i> {@code '0'}
 855  * <i>&nbsp;+&nbsp;z</i>.
 856  *
 857  * <li> If a decimal separator is present, a locale-specific {@linkplain
 858  * java.text.DecimalFormatSymbols#getDecimalSeparator decimal separator} is
 859  * substituted.
 860  *
 861  * <li> If the {@code ','} (<tt>'\u002c'</tt>)
 862  * <a name="L10nGroup">flag</a> is given, then the locale-specific {@linkplain
 863  * java.text.DecimalFormatSymbols#getGroupingSeparator grouping separator} is
 864  * inserted by scanning the integer part of the string from least significant
 865  * to most significant digits and inserting a separator at intervals defined by
 866  * the locale's {@linkplain java.text.DecimalFormat#getGroupingSize() grouping
 867  * size}.
 868  *
 869  * <li> If the {@code '0'} flag is given, then the locale-specific {@linkplain
 870  * java.text.DecimalFormatSymbols#getZeroDigit() zero digits} are inserted
 871  * after the sign character, if any, and before the first non-zero digit, until
 872  * the length of the string is equal to the requested field width.
 873  *
 874  * <li> If the value is negative and the {@code '('} flag is given, then a
 875  * {@code '('} (<tt>'\u0028'</tt>) is prepended and a {@code ')'}
 876  * (<tt>'\u0029'</tt>) is appended.
 877  *
 878  * <li> If the value is negative (or floating-point negative zero) and
 879  * {@code '('} flag is not given, then a {@code '-'} (<tt>'\u002d'</tt>)
 880  * is prepended.
 881  *
 882  * <li> If the {@code '+'} flag is given and the value is positive or zero (or
 883  * floating-point positive zero), then a {@code '+'} (<tt>'\u002b'</tt>)
 884  * will be prepended.
 885  *
 886  * </ol>
 887  *
 888  * <p> If the value is NaN or positive infinity the literal strings "NaN" or
 889  * "Infinity" respectively, will be output.  If the value is negative infinity,
 890  * then the output will be "(Infinity)" if the {@code '('} flag is given
 891  * otherwise the output will be "-Infinity".  These values are not localized.
 892  *
 893  * <p><a name="dnint"><b> Byte, Short, Integer, and Long </b></a>
 894  *
 895  * <p> The following conversions may be applied to {@code byte}, {@link Byte},
 896  * {@code short}, {@link Short}, {@code int} and {@link Integer},
 897  * {@code long}, and {@link Long}.
 898  *
 899  * <table cellpadding=5 summary="IntConv">
 900  *
 901  * <tr><td valign="top"> {@code 'd'}
 902  *     <td valign="top"> <tt>'\u0064'</tt>
 903  *     <td> Formats the argument as a decimal integer. The <a
 904  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
 905  *
 906  *     <p> If the {@code '0'} flag is given and the value is negative, then
 907  *     the zero padding will occur after the sign.
 908  *
 909  *     <p> If the {@code '#'} flag is given then a {@link
 910  *     FormatFlagsConversionMismatchException} will be thrown.
 911  *
 912  * <tr><td valign="top"> {@code 'o'}
 913  *     <td valign="top"> <tt>'\u006f'</tt>
 914  *     <td> Formats the argument as an integer in base eight.  No localization
 915  *     is applied.
 916  *
 917  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 918  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 919  *     number of bits in the type as returned by the static {@code SIZE} field
 920  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 921  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 922  *     classes as appropriate.
 923  *
 924  *     <p> If the {@code '#'} flag is given then the output will always begin
 925  *     with the radix indicator {@code '0'}.
 926  *
 927  *     <p> If the {@code '0'} flag is given then the output will be padded
 928  *     with leading zeros to the field width following any indication of sign.
 929  *
 930  *     <p> If {@code '('}, {@code '+'}, '&nbsp;&nbsp;', or {@code ','} flags
 931  *     are given then a {@link FormatFlagsConversionMismatchException} will be
 932  *     thrown.
 933  *
 934  * <tr><td valign="top"> {@code 'x'}
 935  *     <td valign="top"> <tt>'\u0078'</tt>
 936  *     <td> Formats the argument as an integer in base sixteen. No
 937  *     localization is applied.
 938  *
 939  *     <p> If <i>x</i> is negative then the result will be an unsigned value
 940  *     generated by adding 2<sup>n</sup> to the value where {@code n} is the
 941  *     number of bits in the type as returned by the static {@code SIZE} field
 942  *     in the {@linkplain Byte#SIZE Byte}, {@linkplain Short#SIZE Short},
 943  *     {@linkplain Integer#SIZE Integer}, or {@linkplain Long#SIZE Long}
 944  *     classes as appropriate.
 945  *
 946  *     <p> If the {@code '#'} flag is given then the output will always begin
 947  *     with the radix indicator {@code "0x"}.
 948  *
 949  *     <p> If the {@code '0'} flag is given then the output will be padded to
 950  *     the field width with leading zeros after the radix indicator or sign (if
 951  *     present).
 952  *
 953  *     <p> If {@code '('}, <tt>'&nbsp;&nbsp;'</tt>, {@code '+'}, or
 954  *     {@code ','} flags are given then a {@link
 955  *     FormatFlagsConversionMismatchException} will be thrown.
 956  *
 957  * <tr><td valign="top"> {@code 'X'}
 958  *     <td valign="top"> <tt>'\u0058'</tt>
 959  *     <td> The upper-case variant of {@code 'x'}.  The entire string
 960  *     representing the number will be converted to {@linkplain
 961  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
 962  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
 963  *     (<tt>'\u0061'</tt> -  <tt>'\u0066'</tt>).
 964  *
 965  * </table>
 966  *
 967  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
 968  * both the {@code '#'} and the {@code '0'} flags are given, then result will
 969  * contain the radix indicator ({@code '0'} for octal and {@code "0x"} or
 970  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
 971  * and the value.
 972  *
 973  * <p> If the {@code '-'} flag is not given, then the space padding will occur
 974  * before the sign.
 975  *
 976  * <p> The following <a name="intFlags">flags</a> apply to numeric integral
 977  * conversions:
 978  *
 979  * <table cellpadding=5 summary="intFlags">
 980  *
 981  * <tr><td valign="top"> {@code '+'}
 982  *     <td valign="top"> <tt>'\u002b'</tt>
 983  *     <td> Requires the output to include a positive sign for all positive
 984  *     numbers.  If this flag is not given then only negative values will
 985  *     include a sign.
 986  *
 987  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
 988  *     then an {@link IllegalFormatFlagsException} will be thrown.
 989  *
 990  * <tr><td valign="top"> <tt>'&nbsp;&nbsp;'</tt>
 991  *     <td valign="top"> <tt>'\u0020'</tt>
 992  *     <td> Requires the output to include a single extra space
 993  *     (<tt>'\u0020'</tt>) for non-negative values.
 994  *
 995  *     <p> If both the {@code '+'} and <tt>'&nbsp;&nbsp;'</tt> flags are given
 996  *     then an {@link IllegalFormatFlagsException} will be thrown.
 997  *
 998  * <tr><td valign="top"> {@code '0'}
 999  *     <td valign="top"> <tt>'\u0030'</tt>
1000  *     <td> Requires the output to be padded with leading {@linkplain
1001  *     java.text.DecimalFormatSymbols#getZeroDigit zeros} to the minimum field
1002  *     width following any sign or radix indicator except when converting NaN
1003  *     or infinity.  If the width is not provided, then a {@link
1004  *     MissingFormatWidthException} will be thrown.
1005  *
1006  *     <p> If both the {@code '-'} and {@code '0'} flags are given then an
1007  *     {@link IllegalFormatFlagsException} will be thrown.
1008  *
1009  * <tr><td valign="top"> {@code ','}
1010  *     <td valign="top"> <tt>'\u002c'</tt>
1011  *     <td> Requires the output to include the locale-specific {@linkplain
1012  *     java.text.DecimalFormatSymbols#getGroupingSeparator group separators} as
1013  *     described in the <a href="#L10nGroup">"group" section</a> of the
1014  *     localization algorithm.
1015  *
1016  * <tr><td valign="top"> {@code '('}
1017  *     <td valign="top"> <tt>'\u0028'</tt>
1018  *     <td> Requires the output to prepend a {@code '('}
1019  *     (<tt>'\u0028'</tt>) and append a {@code ')'}
1020  *     (<tt>'\u0029'</tt>) to negative values.
1021  *
1022  * </table>
1023  *
1024  * <p> If no <a name="intdFlags">flags</a> are given the default formatting is
1025  * as follows:
1026  *
1027  * <ul>
1028  *
1029  * <li> The output is right-justified within the {@code width}
1030  *
1031  * <li> Negative numbers begin with a {@code '-'} (<tt>'\u002d'</tt>)
1032  *
1033  * <li> Positive numbers and zero do not include a sign or extra leading
1034  * space
1035  *
1036  * <li> No grouping separators are included
1037  *
1038  * </ul>
1039  *
1040  * <p> The <a name="intWidth">width</a> is the minimum number of characters to
1041  * be written to the output.  This includes any signs, digits, grouping
1042  * separators, radix indicator, and parentheses.  If the length of the
1043  * converted value is less than the width then the output will be padded by
1044  * spaces (<tt>'\u0020'</tt>) until the total number of characters equals
1045  * width.  The padding is on the left by default.  If {@code '-'} flag is
1046  * given then the padding will be on the right.  If width is not specified then
1047  * there is no minimum.
1048  *
1049  * <p> The precision is not applicable.  If precision is specified then an
1050  * {@link IllegalFormatPrecisionException} will be thrown.
1051  *
1052  * <p><a name="dnbint"><b> BigInteger </b></a>
1053  *
1054  * <p> The following conversions may be applied to {@link
1055  * java.math.BigInteger}.
1056  *
1057  * <table cellpadding=5 summary="BIntConv">
1058  *
1059  * <tr><td valign="top"> {@code 'd'}
1060  *     <td valign="top"> <tt>'\u0064'</tt>
1061  *     <td> Requires the output to be formatted as a decimal integer. The <a
1062  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1063  *
1064  *     <p> If the {@code '#'} flag is given {@link
1065  *     FormatFlagsConversionMismatchException} will be thrown.
1066  *
1067  * <tr><td valign="top"> {@code 'o'}
1068  *     <td valign="top"> <tt>'\u006f'</tt>
1069  *     <td> Requires the output to be formatted as an integer in base eight.
1070  *     No localization is applied.
1071  *
1072  *     <p> If <i>x</i> is negative then the result will be a signed value
1073  *     beginning with {@code '-'} (<tt>'\u002d'</tt>).  Signed output is
1074  *     allowed for this type because unlike the primitive types it is not
1075  *     possible to create an unsigned equivalent without assuming an explicit
1076  *     data-type size.
1077  *
1078  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1079  *     then the result will begin with {@code '+'} (<tt>'\u002b'</tt>).
1080  *
1081  *     <p> If the {@code '#'} flag is given then the output will always begin
1082  *     with {@code '0'} prefix.
1083  *
1084  *     <p> If the {@code '0'} flag is given then the output will be padded
1085  *     with leading zeros to the field width following any indication of sign.
1086  *
1087  *     <p> If the {@code ','} flag is given then a {@link
1088  *     FormatFlagsConversionMismatchException} will be thrown.
1089  *
1090  * <tr><td valign="top"> {@code 'x'}
1091  *     <td valign="top"> <tt>'\u0078'</tt>
1092  *     <td> Requires the output to be formatted as an integer in base
1093  *     sixteen.  No localization is applied.
1094  *
1095  *     <p> If <i>x</i> is negative then the result will be a signed value
1096  *     beginning with {@code '-'} (<tt>'\u002d'</tt>).  Signed output is
1097  *     allowed for this type because unlike the primitive types it is not
1098  *     possible to create an unsigned equivalent without assuming an explicit
1099  *     data-type size.
1100  *
1101  *     <p> If <i>x</i> is positive or zero and the {@code '+'} flag is given
1102  *     then the result will begin with {@code '+'} (<tt>'\u002b'</tt>).
1103  *
1104  *     <p> If the {@code '#'} flag is given then the output will always begin
1105  *     with the radix indicator {@code "0x"}.
1106  *
1107  *     <p> If the {@code '0'} flag is given then the output will be padded to
1108  *     the field width with leading zeros after the radix indicator or sign (if
1109  *     present).
1110  *
1111  *     <p> If the {@code ','} flag is given then a {@link
1112  *     FormatFlagsConversionMismatchException} will be thrown.
1113  *
1114  * <tr><td valign="top"> {@code 'X'}
1115  *     <td valign="top"> <tt>'\u0058'</tt>
1116  *     <td> The upper-case variant of {@code 'x'}.  The entire string
1117  *     representing the number will be converted to {@linkplain
1118  *     String#toUpperCase upper case} including the {@code 'x'} (if any) and
1119  *     all hexadecimal digits {@code 'a'} - {@code 'f'}
1120  *     (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>).
1121  *
1122  * </table>
1123  *
1124  * <p> If the conversion is {@code 'o'}, {@code 'x'}, or {@code 'X'} and
1125  * both the {@code '#'} and the {@code '0'} flags are given, then result will
1126  * contain the base indicator ({@code '0'} for octal and {@code "0x"} or
1127  * {@code "0X"} for hexadecimal), some number of zeros (based on the width),
1128  * and the value.
1129  *
1130  * <p> If the {@code '0'} flag is given and the value is negative, then the
1131  * zero padding will occur after the sign.
1132  *
1133  * <p> If the {@code '-'} flag is not given, then the space padding will occur
1134  * before the sign.
1135  *
1136  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1137  * Long apply.  The <a href="#intdFlags">default behavior</a> when no flags are
1138  * given is the same as for Byte, Short, Integer, and Long.
1139  *
1140  * <p> The specification of <a href="#intWidth">width</a> is the same as
1141  * defined for Byte, Short, Integer, and Long.
1142  *
1143  * <p> The precision is not applicable.  If precision is specified then an
1144  * {@link IllegalFormatPrecisionException} will be thrown.
1145  *
1146  * <p><a name="dndec"><b> Float and Double</b></a>
1147  *
1148  * <p> The following conversions may be applied to {@code float}, {@link
1149  * Float}, {@code double} and {@link Double}.
1150  *
1151  * <table cellpadding=5 summary="floatConv">
1152  *
1153  * <tr><td valign="top"> {@code 'e'}
1154  *     <td valign="top"> <tt>'\u0065'</tt>
1155  *     <td> Requires the output to be formatted using <a
1156  *     name="scientific">computerized scientific notation</a>.  The <a
1157  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1158  *
1159  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1160  *
1161  *     <p> If <i>m</i> is NaN or infinite, the literal strings "NaN" or
1162  *     "Infinity", respectively, will be output.  These values are not
1163  *     localized.
1164  *
1165  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1166  *     will be {@code "+00"}.
1167  *
1168  *     <p> Otherwise, the result is a string that represents the sign and
1169  *     magnitude (absolute value) of the argument.  The formatting of the sign
1170  *     is described in the <a href="#L10nAlgorithm">localization
1171  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1172  *     value.
1173  *
1174  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1175  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1176  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1177  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1178  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1179  *     decimal separator followed by decimal digits representing the fractional
1180  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1181  *     (<tt>'\u0065'</tt>), followed by the sign of the exponent, followed
1182  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1183  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1184  *     least two digits.
1185  *
1186  *     <p> The number of digits in the result for the fractional part of
1187  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1188  *     specified then the default value is {@code 6}. If the precision is less
1189  *     than the number of digits which would appear after the decimal point in
1190  *     the string returned by {@link Float#toString(float)} or {@link
1191  *     Double#toString(double)} respectively, then the value will be rounded
1192  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1193  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1194  *     For a canonical representation of the value, use {@link
1195  *     Float#toString(float)} or {@link Double#toString(double)} as
1196  *     appropriate.
1197  *
1198  *     <p>If the {@code ','} flag is given, then an {@link
1199  *     FormatFlagsConversionMismatchException} will be thrown.
1200  *
1201  * <tr><td valign="top"> {@code 'E'}
1202  *     <td valign="top"> <tt>'\u0045'</tt>
1203  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1204  *     will be {@code 'E'} (<tt>'\u0045'</tt>).
1205  *
1206  * <tr><td valign="top"> {@code 'g'}
1207  *     <td valign="top"> <tt>'\u0067'</tt>
1208  *     <td> Requires the output to be formatted in general scientific notation
1209  *     as described below. The <a href="#L10nAlgorithm">localization
1210  *     algorithm</a> is applied.
1211  *
1212  *     <p> After rounding for the precision, the formatting of the resulting
1213  *     magnitude <i>m</i> depends on its value.
1214  *
1215  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1216  *     than 10<sup>precision</sup> then it is represented in <i><a
1217  *     href="#decimal">decimal format</a></i>.
1218  *
1219  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1220  *     10<sup>precision</sup>, then it is represented in <i><a
1221  *     href="#scientific">computerized scientific notation</a></i>.
1222  *
1223  *     <p> The total number of significant digits in <i>m</i> is equal to the
1224  *     precision.  If the precision is not specified, then the default value is
1225  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1226  *     {@code 1}.
1227  *
1228  *     <p> If the {@code '#'} flag is given then an {@link
1229  *     FormatFlagsConversionMismatchException} will be thrown.
1230  *
1231  * <tr><td valign="top"> {@code 'G'}
1232  *     <td valign="top"> <tt>'\u0047'</tt>
1233  *     <td> The upper-case variant of {@code 'g'}.
1234  *
1235  * <tr><td valign="top"> {@code 'f'}
1236  *     <td valign="top"> <tt>'\u0066'</tt>
1237  *     <td> Requires the output to be formatted using <a name="decimal">decimal
1238  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1239  *     applied.
1240  *
1241  *     <p> The result is a string that represents the sign and magnitude
1242  *     (absolute value) of the argument.  The formatting of the sign is
1243  *     described in the <a href="#L10nAlgorithm">localization
1244  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1245  *     value.
1246  *
1247  *     <p> If <i>m</i> NaN or infinite, the literal strings "NaN" or
1248  *     "Infinity", respectively, will be output.  These values are not
1249  *     localized.
1250  *
1251  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1252  *     leading zeroes, followed by the decimal separator followed by one or
1253  *     more decimal digits representing the fractional part of <i>m</i>.
1254  *
1255  *     <p> The number of digits in the result for the fractional part of
1256  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1257  *     specified then the default value is {@code 6}. If the precision is less
1258  *     than the number of digits which would appear after the decimal point in
1259  *     the string returned by {@link Float#toString(float)} or {@link
1260  *     Double#toString(double)} respectively, then the value will be rounded
1261  *     using the {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1262  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1263  *     For a canonical representation of the value, use {@link
1264  *     Float#toString(float)} or {@link Double#toString(double)} as
1265  *     appropriate.
1266  *
1267  * <tr><td valign="top"> {@code 'a'}
1268  *     <td valign="top"> <tt>'\u0061'</tt>
1269  *     <td> Requires the output to be formatted in hexadecimal exponential
1270  *     form.  No localization is applied.
1271  *
1272  *     <p> The result is a string that represents the sign and magnitude
1273  *     (absolute value) of the argument <i>x</i>.
1274  *
1275  *     <p> If <i>x</i> is negative or a negative-zero value then the result
1276  *     will begin with {@code '-'} (<tt>'\u002d'</tt>).
1277  *
1278  *     <p> If <i>x</i> is positive or a positive-zero value and the
1279  *     {@code '+'} flag is given then the result will begin with {@code '+'}
1280  *     (<tt>'\u002b'</tt>).
1281  *
1282  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1283  *
1284  *     <ul>
1285  *
1286  *     <li> If the value is NaN or infinite, the literal strings "NaN" or
1287  *     "Infinity", respectively, will be output.
1288  *
1289  *     <li> If <i>m</i> is zero then it is represented by the string
1290  *     {@code "0x0.0p0"}.
1291  *
1292  *     <li> If <i>m</i> is a {@code double} value with a normalized
1293  *     representation then substrings are used to represent the significand and
1294  *     exponent fields.  The significand is represented by the characters
1295  *     {@code "0x1."} followed by the hexadecimal representation of the rest
1296  *     of the significand as a fraction.  The exponent is represented by
1297  *     {@code 'p'} (<tt>'\u0070'</tt>) followed by a decimal string of the
1298  *     unbiased exponent as if produced by invoking {@link
1299  *     Integer#toString(int) Integer.toString} on the exponent value.  If the
1300  *     precision is specified, the value is rounded to the given number of
1301  *     hexadecimal digits.
1302  *
1303  *     <li> If <i>m</i> is a {@code double} value with a subnormal
1304  *     representation then, unless the precision is specified to be in the range
1305  *     1 through 12, inclusive, the significand is represented by the characters
1306  *     {@code '0x0.'} followed by the hexadecimal representation of the rest of
1307  *     the significand as a fraction, and the exponent represented by
1308  *     {@code 'p-1022'}.  If the precision is in the interval
1309  *     [1,&nbsp;12], the subnormal value is normalized such that it
1310  *     begins with the characters {@code '0x1.'}, rounded to the number of
1311  *     hexadecimal digits of precision, and the exponent adjusted
1312  *     accordingly.  Note that there must be at least one nonzero digit in a
1313  *     subnormal significand.
1314  *
1315  *     </ul>
1316  *
1317  *     <p> If the {@code '('} or {@code ','} flags are given, then a {@link
1318  *     FormatFlagsConversionMismatchException} will be thrown.
1319  *
1320  * <tr><td valign="top"> {@code 'A'}
1321  *     <td valign="top"> <tt>'\u0041'</tt>
1322  *     <td> The upper-case variant of {@code 'a'}.  The entire string
1323  *     representing the number will be converted to upper case including the
1324  *     {@code 'x'} (<tt>'\u0078'</tt>) and {@code 'p'}
1325  *     (<tt>'\u0070'</tt> and all hexadecimal digits {@code 'a'} -
1326  *     {@code 'f'} (<tt>'\u0061'</tt> - <tt>'\u0066'</tt>).
1327  *
1328  * </table>
1329  *
1330  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1331  * Long apply.
1332  *
1333  * <p> If the {@code '#'} flag is given, then the decimal separator will
1334  * always be present.
1335  *
1336  * <p> If no <a name="floatdFlags">flags</a> are given the default formatting
1337  * is as follows:
1338  *
1339  * <ul>
1340  *
1341  * <li> The output is right-justified within the {@code width}
1342  *
1343  * <li> Negative numbers begin with a {@code '-'}
1344  *
1345  * <li> Positive numbers and positive zero do not include a sign or extra
1346  * leading space
1347  *
1348  * <li> No grouping separators are included
1349  *
1350  * <li> The decimal separator will only appear if a digit follows it
1351  *
1352  * </ul>
1353  *
1354  * <p> The <a name="floatDWidth">width</a> is the minimum number of characters
1355  * to be written to the output.  This includes any signs, digits, grouping
1356  * separators, decimal separators, exponential symbol, radix indicator,
1357  * parentheses, and strings representing infinity and NaN as applicable.  If
1358  * the length of the converted value is less than the width then the output
1359  * will be padded by spaces (<tt>'\u0020'</tt>) until the total number of
1360  * characters equals width.  The padding is on the left by default.  If the
1361  * {@code '-'} flag is given then the padding will be on the right.  If width
1362  * is not specified then there is no minimum.
1363  *
1364  * <p> If the <a name="floatDPrec">conversion</a> is {@code 'e'},
1365  * {@code 'E'} or {@code 'f'}, then the precision is the number of digits
1366  * after the decimal separator.  If the precision is not specified, then it is
1367  * assumed to be {@code 6}.
1368  *
1369  * <p> If the conversion is {@code 'g'} or {@code 'G'}, then the precision is
1370  * the total number of significant digits in the resulting magnitude after
1371  * rounding.  If the precision is not specified, then the default value is
1372  * {@code 6}.  If the precision is {@code 0}, then it is taken to be
1373  * {@code 1}.
1374  *
1375  * <p> If the conversion is {@code 'a'} or {@code 'A'}, then the precision
1376  * is the number of hexadecimal digits after the radix point.  If the
1377  * precision is not provided, then all of the digits as returned by {@link
1378  * Double#toHexString(double)} will be output.
1379  *
1380  * <p><a name="dnbdec"><b> BigDecimal </b></a>
1381  *
1382  * <p> The following conversions may be applied {@link java.math.BigDecimal
1383  * BigDecimal}.
1384  *
1385  * <table cellpadding=5 summary="floatConv">
1386  *
1387  * <tr><td valign="top"> {@code 'e'}
1388  *     <td valign="top"> <tt>'\u0065'</tt>
1389  *     <td> Requires the output to be formatted using <a
1390  *     name="bscientific">computerized scientific notation</a>.  The <a
1391  *     href="#L10nAlgorithm">localization algorithm</a> is applied.
1392  *
1393  *     <p> The formatting of the magnitude <i>m</i> depends upon its value.
1394  *
1395  *     <p> If <i>m</i> is positive-zero or negative-zero, then the exponent
1396  *     will be {@code "+00"}.
1397  *
1398  *     <p> Otherwise, the result is a string that represents the sign and
1399  *     magnitude (absolute value) of the argument.  The formatting of the sign
1400  *     is described in the <a href="#L10nAlgorithm">localization
1401  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1402  *     value.
1403  *
1404  *     <p> Let <i>n</i> be the unique integer such that 10<sup><i>n</i></sup>
1405  *     &lt;= <i>m</i> &lt; 10<sup><i>n</i>+1</sup>; then let <i>a</i> be the
1406  *     mathematically exact quotient of <i>m</i> and 10<sup><i>n</i></sup> so
1407  *     that 1 &lt;= <i>a</i> &lt; 10. The magnitude is then represented as the
1408  *     integer part of <i>a</i>, as a single decimal digit, followed by the
1409  *     decimal separator followed by decimal digits representing the fractional
1410  *     part of <i>a</i>, followed by the exponent symbol {@code 'e'}
1411  *     (<tt>'\u0065'</tt>), followed by the sign of the exponent, followed
1412  *     by a representation of <i>n</i> as a decimal integer, as produced by the
1413  *     method {@link Long#toString(long, int)}, and zero-padded to include at
1414  *     least two digits.
1415  *
1416  *     <p> The number of digits in the result for the fractional part of
1417  *     <i>m</i> or <i>a</i> is equal to the precision.  If the precision is not
1418  *     specified then the default value is {@code 6}.  If the precision is
1419  *     less than the number of digits to the right of the decimal point then
1420  *     the value will be rounded using the
1421  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1422  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1423  *     For a canonical representation of the value, use {@link
1424  *     BigDecimal#toString()}.
1425  *
1426  *     <p> If the {@code ','} flag is given, then an {@link
1427  *     FormatFlagsConversionMismatchException} will be thrown.
1428  *
1429  * <tr><td valign="top"> {@code 'E'}
1430  *     <td valign="top"> <tt>'\u0045'</tt>
1431  *     <td> The upper-case variant of {@code 'e'}.  The exponent symbol
1432  *     will be {@code 'E'} (<tt>'\u0045'</tt>).
1433  *
1434  * <tr><td valign="top"> {@code 'g'}
1435  *     <td valign="top"> <tt>'\u0067'</tt>
1436  *     <td> Requires the output to be formatted in general scientific notation
1437  *     as described below. The <a href="#L10nAlgorithm">localization
1438  *     algorithm</a> is applied.
1439  *
1440  *     <p> After rounding for the precision, the formatting of the resulting
1441  *     magnitude <i>m</i> depends on its value.
1442  *
1443  *     <p> If <i>m</i> is greater than or equal to 10<sup>-4</sup> but less
1444  *     than 10<sup>precision</sup> then it is represented in <i><a
1445  *     href="#bdecimal">decimal format</a></i>.
1446  *
1447  *     <p> If <i>m</i> is less than 10<sup>-4</sup> or greater than or equal to
1448  *     10<sup>precision</sup>, then it is represented in <i><a
1449  *     href="#bscientific">computerized scientific notation</a></i>.
1450  *
1451  *     <p> The total number of significant digits in <i>m</i> is equal to the
1452  *     precision.  If the precision is not specified, then the default value is
1453  *     {@code 6}.  If the precision is {@code 0}, then it is taken to be
1454  *     {@code 1}.
1455  *
1456  *     <p> If the {@code '#'} flag is given then an {@link
1457  *     FormatFlagsConversionMismatchException} will be thrown.
1458  *
1459  * <tr><td valign="top"> {@code 'G'}
1460  *     <td valign="top"> <tt>'\u0047'</tt>
1461  *     <td> The upper-case variant of {@code 'g'}.
1462  *
1463  * <tr><td valign="top"> {@code 'f'}
1464  *     <td valign="top"> <tt>'\u0066'</tt>
1465  *     <td> Requires the output to be formatted using <a name="bdecimal">decimal
1466  *     format</a>.  The <a href="#L10nAlgorithm">localization algorithm</a> is
1467  *     applied.
1468  *
1469  *     <p> The result is a string that represents the sign and magnitude
1470  *     (absolute value) of the argument.  The formatting of the sign is
1471  *     described in the <a href="#L10nAlgorithm">localization
1472  *     algorithm</a>. The formatting of the magnitude <i>m</i> depends upon its
1473  *     value.
1474  *
1475  *     <p> The magnitude is formatted as the integer part of <i>m</i>, with no
1476  *     leading zeroes, followed by the decimal separator followed by one or
1477  *     more decimal digits representing the fractional part of <i>m</i>.
1478  *
1479  *     <p> The number of digits in the result for the fractional part of
1480  *     <i>m</i> or <i>a</i> is equal to the precision. If the precision is not
1481  *     specified then the default value is {@code 6}.  If the precision is
1482  *     less than the number of digits to the right of the decimal point
1483  *     then the value will be rounded using the
1484  *     {@linkplain java.math.BigDecimal#ROUND_HALF_UP round half up
1485  *     algorithm}.  Otherwise, zeros may be appended to reach the precision.
1486  *     For a canonical representation of the value, use {@link
1487  *     BigDecimal#toString()}.
1488  *
1489  * </table>
1490  *
1491  * <p> All <a href="#intFlags">flags</a> defined for Byte, Short, Integer, and
1492  * Long apply.
1493  *
1494  * <p> If the {@code '#'} flag is given, then the decimal separator will
1495  * always be present.
1496  *
1497  * <p> The <a href="#floatdFlags">default behavior</a> when no flags are
1498  * given is the same as for Float and Double.
1499  *
1500  * <p> The specification of <a href="#floatDWidth">width</a> and <a
1501  * href="#floatDPrec">precision</a> is the same as defined for Float and
1502  * Double.
1503  *
1504  * <h4><a name="ddt">Date/Time</a></h4>
1505  *
1506  * <p> This conversion may be applied to {@code long}, {@link Long}, {@link
1507  * Calendar}, {@link Date} and {@link TemporalAccessor TemporalAccessor}
1508  *
1509  * <table cellpadding=5 summary="DTConv">
1510  *
1511  * <tr><td valign="top"> {@code 't'}
1512  *     <td valign="top"> <tt>'\u0074'</tt>
1513  *     <td> Prefix for date and time conversion characters.
1514  * <tr><td valign="top"> {@code 'T'}
1515  *     <td valign="top"> <tt>'\u0054'</tt>
1516  *     <td> The upper-case variant of {@code 't'}.
1517  *
1518  * </table>
1519  *
1520  * <p> The following date and time conversion character suffixes are defined
1521  * for the {@code 't'} and {@code 'T'} conversions.  The types are similar to
1522  * but not completely identical to those defined by GNU {@code date} and
1523  * POSIX {@code strftime(3c)}.  Additional conversion types are provided to
1524  * access Java-specific functionality (e.g. {@code 'L'} for milliseconds
1525  * within the second).
1526  *
1527  * <p> The following conversion characters are used for formatting times:
1528  *
1529  * <table cellpadding=5 summary="time">
1530  *
1531  * <tr><td valign="top"> {@code 'H'}
1532  *     <td valign="top"> <tt>'\u0048'</tt>
1533  *     <td> Hour of the day for the 24-hour clock, formatted as two digits with
1534  *     a leading zero as necessary i.e. {@code 00 - 23}. {@code 00}
1535  *     corresponds to midnight.
1536  *
1537  * <tr><td valign="top">{@code 'I'}
1538  *     <td valign="top"> <tt>'\u0049'</tt>
1539  *     <td> Hour for the 12-hour clock, formatted as two digits with a leading
1540  *     zero as necessary, i.e.  {@code 01 - 12}.  {@code 01} corresponds to
1541  *     one o'clock (either morning or afternoon).
1542  *
1543  * <tr><td valign="top">{@code 'k'}
1544  *     <td valign="top"> <tt>'\u006b'</tt>
1545  *     <td> Hour of the day for the 24-hour clock, i.e. {@code 0 - 23}.
1546  *     {@code 0} corresponds to midnight.
1547  *
1548  * <tr><td valign="top">{@code 'l'}
1549  *     <td valign="top"> <tt>'\u006c'</tt>
1550  *     <td> Hour for the 12-hour clock, i.e. {@code 1 - 12}.  {@code 1}
1551  *     corresponds to one o'clock (either morning or afternoon).
1552  *
1553  * <tr><td valign="top">{@code 'M'}
1554  *     <td valign="top"> <tt>'\u004d'</tt>
1555  *     <td> Minute within the hour formatted as two digits with a leading zero
1556  *     as necessary, i.e.  {@code 00 - 59}.
1557  *
1558  * <tr><td valign="top">{@code 'S'}
1559  *     <td valign="top"> <tt>'\u0053'</tt>
1560  *     <td> Seconds within the minute, formatted as two digits with a leading
1561  *     zero as necessary, i.e. {@code 00 - 60} ("{@code 60}" is a special
1562  *     value required to support leap seconds).
1563  *
1564  * <tr><td valign="top">{@code 'L'}
1565  *     <td valign="top"> <tt>'\u004c'</tt>
1566  *     <td> Millisecond within the second formatted as three digits with
1567  *     leading zeros as necessary, i.e. {@code 000 - 999}.
1568  *
1569  * <tr><td valign="top">{@code 'N'}
1570  *     <td valign="top"> <tt>'\u004e'</tt>
1571  *     <td> Nanosecond within the second, formatted as nine digits with leading
1572  *     zeros as necessary, i.e. {@code 000000000 - 999999999}.  The precision
1573  *     of this value is limited by the resolution of the underlying operating
1574  *     system or hardware.
1575  *
1576  * <tr><td valign="top">{@code 'p'}
1577  *     <td valign="top"> <tt>'\u0070'</tt>
1578  *     <td> Locale-specific {@linkplain
1579  *     java.text.DateFormatSymbols#getAmPmStrings morning or afternoon} marker
1580  *     in lower case, e.g."{@code am}" or "{@code pm}".  Use of the
1581  *     conversion prefix {@code 'T'} forces this output to upper case.  (Note
1582  *     that {@code 'p'} produces lower-case output.  This is different from
1583  *     GNU {@code date} and POSIX {@code strftime(3c)} which produce
1584  *     upper-case output.)
1585  *
1586  * <tr><td valign="top">{@code 'z'}
1587  *     <td valign="top"> <tt>'\u007a'</tt>
1588  *     <td> <a href="http://www.ietf.org/rfc/rfc0822.txt">RFC&nbsp;822</a>
1589  *     style numeric time zone offset from GMT, e.g. {@code -0800}.  This
1590  *     value will be adjusted as necessary for Daylight Saving Time.  For
1591  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1592  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1593  *     instance of the Java virtual machine.
1594  *
1595  * <tr><td valign="top">{@code 'Z'}
1596  *     <td valign="top"> <tt>'\u005a'</tt>
1597  *     <td> A string representing the abbreviation for the time zone.  This
1598  *     value will be adjusted as necessary for Daylight Saving Time.  For
1599  *     {@code long}, {@link Long}, and {@link Date} the time zone used is
1600  *     the {@linkplain TimeZone#getDefault() default time zone} for this
1601  *     instance of the Java virtual machine.  The Formatter's locale will
1602  *     supersede the locale of the argument (if any).
1603  *
1604  * <tr><td valign="top">{@code 's'}
1605  *     <td valign="top"> <tt>'\u0073'</tt>
1606  *     <td> Seconds since the beginning of the epoch starting at 1 January 1970
1607  *     {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE/1000} to
1608  *     {@code Long.MAX_VALUE/1000}.
1609  *
1610  * <tr><td valign="top">{@code 'Q'}
1611  *     <td valign="top"> <tt>'\u004f'</tt>
1612  *     <td> Milliseconds since the beginning of the epoch starting at 1 January
1613  *     1970 {@code 00:00:00} UTC, i.e. {@code Long.MIN_VALUE} to
1614  *     {@code Long.MAX_VALUE}. The precision of this value is limited by
1615  *     the resolution of the underlying operating system or hardware.
1616  *
1617  * </table>
1618  *
1619  * <p> The following conversion characters are used for formatting dates:
1620  *
1621  * <table cellpadding=5 summary="date">
1622  *
1623  * <tr><td valign="top">{@code 'B'}
1624  *     <td valign="top"> <tt>'\u0042'</tt>
1625  *     <td> Locale-specific {@linkplain java.text.DateFormatSymbols#getMonths
1626  *     full month name}, e.g. {@code "January"}, {@code "February"}.
1627  *
1628  * <tr><td valign="top">{@code 'b'}
1629  *     <td valign="top"> <tt>'\u0062'</tt>
1630  *     <td> Locale-specific {@linkplain
1631  *     java.text.DateFormatSymbols#getShortMonths abbreviated month name},
1632  *     e.g. {@code "Jan"}, {@code "Feb"}.
1633  *
1634  * <tr><td valign="top">{@code 'h'}
1635  *     <td valign="top"> <tt>'\u0068'</tt>
1636  *     <td> Same as {@code 'b'}.
1637  *
1638  * <tr><td valign="top">{@code 'A'}
1639  *     <td valign="top"> <tt>'\u0041'</tt>
1640  *     <td> Locale-specific full name of the {@linkplain
1641  *     java.text.DateFormatSymbols#getWeekdays day of the week},
1642  *     e.g. {@code "Sunday"}, {@code "Monday"}
1643  *
1644  * <tr><td valign="top">{@code 'a'}
1645  *     <td valign="top"> <tt>'\u0061'</tt>
1646  *     <td> Locale-specific short name of the {@linkplain
1647  *     java.text.DateFormatSymbols#getShortWeekdays day of the week},
1648  *     e.g. {@code "Sun"}, {@code "Mon"}
1649  *
1650  * <tr><td valign="top">{@code 'C'}
1651  *     <td valign="top"> <tt>'\u0043'</tt>
1652  *     <td> Four-digit year divided by {@code 100}, formatted as two digits
1653  *     with leading zero as necessary, i.e. {@code 00 - 99}
1654  *
1655  * <tr><td valign="top">{@code 'Y'}
1656  *     <td valign="top"> <tt>'\u0059'</tt> <td> Year, formatted to at least
1657  *     four digits with leading zeros as necessary, e.g. {@code 0092} equals
1658  *     {@code 92} CE for the Gregorian calendar.
1659  *
1660  * <tr><td valign="top">{@code 'y'}
1661  *     <td valign="top"> <tt>'\u0079'</tt>
1662  *     <td> Last two digits of the year, formatted with leading zeros as
1663  *     necessary, i.e. {@code 00 - 99}.
1664  *
1665  * <tr><td valign="top">{@code 'j'}
1666  *     <td valign="top"> <tt>'\u006a'</tt>
1667  *     <td> Day of year, formatted as three digits with leading zeros as
1668  *     necessary, e.g. {@code 001 - 366} for the Gregorian calendar.
1669  *     {@code 001} corresponds to the first day of the year.
1670  *
1671  * <tr><td valign="top">{@code 'm'}
1672  *     <td valign="top"> <tt>'\u006d'</tt>
1673  *     <td> Month, formatted as two digits with leading zeros as necessary,
1674  *     i.e. {@code 01 - 13}, where "{@code 01}" is the first month of the
1675  *     year and ("{@code 13}" is a special value required to support lunar
1676  *     calendars).
1677  *
1678  * <tr><td valign="top">{@code 'd'}
1679  *     <td valign="top"> <tt>'\u0064'</tt>
1680  *     <td> Day of month, formatted as two digits with leading zeros as
1681  *     necessary, i.e. {@code 01 - 31}, where "{@code 01}" is the first day
1682  *     of the month.
1683  *
1684  * <tr><td valign="top">{@code 'e'}
1685  *     <td valign="top"> <tt>'\u0065'</tt>
1686  *     <td> Day of month, formatted as two digits, i.e. {@code 1 - 31} where
1687  *     "{@code 1}" is the first day of the month.
1688  *
1689  * </table>
1690  *
1691  * <p> The following conversion characters are used for formatting common
1692  * date/time compositions.
1693  *
1694  * <table cellpadding=5 summary="composites">
1695  *
1696  * <tr><td valign="top">{@code 'R'}
1697  *     <td valign="top"> <tt>'\u0052'</tt>
1698  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM"}
1699  *
1700  * <tr><td valign="top">{@code 'T'}
1701  *     <td valign="top"> <tt>'\u0054'</tt>
1702  *     <td> Time formatted for the 24-hour clock as {@code "%tH:%tM:%tS"}.
1703  *
1704  * <tr><td valign="top">{@code 'r'}
1705  *     <td valign="top"> <tt>'\u0072'</tt>
1706  *     <td> Time formatted for the 12-hour clock as {@code "%tI:%tM:%tS
1707  *     %Tp"}.  The location of the morning or afternoon marker
1708  *     ({@code '%Tp'}) may be locale-dependent.
1709  *
1710  * <tr><td valign="top">{@code 'D'}
1711  *     <td valign="top"> <tt>'\u0044'</tt>
1712  *     <td> Date formatted as {@code "%tm/%td/%ty"}.
1713  *
1714  * <tr><td valign="top">{@code 'F'}
1715  *     <td valign="top"> <tt>'\u0046'</tt>
1716  *     <td> <a href="http://www.w3.org/TR/NOTE-datetime">ISO&nbsp;8601</a>
1717  *     complete date formatted as {@code "%tY-%tm-%td"}.
1718  *
1719  * <tr><td valign="top">{@code 'c'}
1720  *     <td valign="top"> <tt>'\u0063'</tt>
1721  *     <td> Date and time formatted as {@code "%ta %tb %td %tT %tZ %tY"},
1722  *     e.g. {@code "Sun Jul 20 16:17:00 EDT 1969"}.
1723  *
1724  * </table>
1725  *
1726  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1727  * conversions</a> applies.  If the {@code '#'} flag is given, then a {@link
1728  * FormatFlagsConversionMismatchException} will be thrown.
1729  *
1730  * <p> The width is the minimum number of characters to
1731  * be written to the output.  If the length of the converted value is less than
1732  * the {@code width} then the output will be padded by spaces
1733  * (<tt>'\u0020'</tt>) until the total number of characters equals width.
1734  * The padding is on the left by default.  If the {@code '-'} flag is given
1735  * then the padding will be on the right.  If width is not specified then there
1736  * is no minimum.
1737  *
1738  * <p> The precision is not applicable.  If the precision is specified then an
1739  * {@link IllegalFormatPrecisionException} will be thrown.
1740  *
1741  * <h4><a name="dper">Percent</a></h4>
1742  *
1743  * <p> The conversion does not correspond to any argument.
1744  *
1745  * <table cellpadding=5 summary="DTConv">
1746  *
1747  * <tr><td valign="top">{@code '%'}
1748  *     <td> The result is a literal {@code '%'} (<tt>'\u0025'</tt>)
1749  *
1750  * <p> The width is the minimum number of characters to
1751  * be written to the output including the {@code '%'}.  If the length of the
1752  * converted value is less than the {@code width} then the output will be
1753  * padded by spaces (<tt>'\u0020'</tt>) until the total number of
1754  * characters equals width.  The padding is on the left.  If width is not
1755  * specified then just the {@code '%'} is output.
1756  *
1757  * <p> The {@code '-'} flag defined for <a href="#dFlags">General
1758  * conversions</a> applies.  If any other flags are provided, then a
1759  * {@link FormatFlagsConversionMismatchException} will be thrown.
1760  *
1761  * <p> The precision is not applicable.  If the precision is specified an
1762  * {@link IllegalFormatPrecisionException} will be thrown.
1763  *
1764  * </table>
1765  *
1766  * <h4><a name="dls">Line Separator</a></h4>
1767  *
1768  * <p> The conversion does not correspond to any argument.
1769  *
1770  * <table cellpadding=5 summary="DTConv">
1771  *
1772  * <tr><td valign="top">{@code 'n'}
1773  *     <td> the platform-specific line separator as returned by {@link
1774  *     System#getProperty System.getProperty("line.separator")}.
1775  *
1776  * </table>
1777  *
1778  * <p> Flags, width, and precision are not applicable.  If any are provided an
1779  * {@link IllegalFormatFlagsException}, {@link IllegalFormatWidthException},
1780  * and {@link IllegalFormatPrecisionException}, respectively will be thrown.
1781  *
1782  * <h4><a name="dpos">Argument Index</a></h4>
1783  *
1784  * <p> Format specifiers can reference arguments in three ways:
1785  *
1786  * <ul>
1787  *
1788  * <li> <i>Explicit indexing</i> is used when the format specifier contains an
1789  * argument index.  The argument index is a decimal integer indicating the
1790  * position of the argument in the argument list.  The first argument is
1791  * referenced by "{@code 1$}", the second by "{@code 2$}", etc.  An argument
1792  * may be referenced more than once.
1793  *
1794  * <p> For example:
1795  *
1796  * <blockquote><pre>
1797  *   formatter.format("%4$s %3$s %2$s %1$s %4$s %3$s %2$s %1$s",
1798  *                    "a", "b", "c", "d")
1799  *   // -&gt; "d c b a d c b a"
1800  * </pre></blockquote>
1801  *
1802  * <li> <i>Relative indexing</i> is used when the format specifier contains a
1803  * {@code '<'} (<tt>'\u003c'</tt>) flag which causes the argument for
1804  * the previous format specifier to be re-used.  If there is no previous
1805  * argument, then a {@link MissingFormatArgumentException} is thrown.
1806  *
1807  * <blockquote><pre>
1808  *    formatter.format("%s %s %&lt;s %&lt;s", "a", "b", "c", "d")
1809  *    // -&gt; "a b b b"
1810  *    // "c" and "d" are ignored because they are not referenced
1811  * </pre></blockquote>
1812  *
1813  * <li> <i>Ordinary indexing</i> is used when the format specifier contains
1814  * neither an argument index nor a {@code '<'} flag.  Each format specifier
1815  * which uses ordinary indexing is assigned a sequential implicit index into
1816  * argument list which is independent of the indices used by explicit or
1817  * relative indexing.
1818  *
1819  * <blockquote><pre>
1820  *   formatter.format("%s %s %s %s", "a", "b", "c", "d")
1821  *   // -&gt; "a b c d"
1822  * </pre></blockquote>
1823  *
1824  * </ul>
1825  *
1826  * <p> It is possible to have a format string which uses all forms of indexing,
1827  * for example:
1828  *
1829  * <blockquote><pre>
1830  *   formatter.format("%2$s %s %&lt;s %s", "a", "b", "c", "d")
1831  *   // -&gt; "b a a b"
1832  *   // "c" and "d" are ignored because they are not referenced
1833  * </pre></blockquote>
1834  *
1835  * <p> The maximum number of arguments is limited by the maximum dimension of a
1836  * Java array as defined by
1837  * <cite>The Java&trade; Virtual Machine Specification</cite>.
1838  * If the argument index is does not correspond to an
1839  * available argument, then a {@link MissingFormatArgumentException} is thrown.
1840  *
1841  * <p> If there are more arguments than format specifiers, the extra arguments
1842  * are ignored.
1843  *
1844  * <p> Unless otherwise specified, passing a {@code null} argument to any
1845  * method or constructor in this class will cause a {@link
1846  * NullPointerException} to be thrown.
1847  *
1848  * @author  Iris Clark
1849  * @since 1.5
1850  */
1851 public final class Formatter implements Closeable, Flushable {
1852     private Appendable a;
1853     private final Locale l;
1854 
1855     private IOException lastException;
1856 
1857     private final char zero;
1858     private static double scaleUp;
1859 
1860     // 1 (sign) + 19 (max # sig digits) + 1 ('.') + 1 ('e') + 1 (sign)
1861     // + 3 (max # exp digits) + 4 (error) = 30
1862     private static final int MAX_FD_CHARS = 30;
1863 
1864     /**
1865      * Returns a charset object for the given charset name.
1866      * @throws NullPointerException          is csn is null
1867      * @throws UnsupportedEncodingException  if the charset is not supported
1868      */
1869     private static Charset toCharset(String csn)
1870         throws UnsupportedEncodingException
1871     {
1872         Objects.requireNonNull(csn, "charsetName");
1873         try {
1874             return Charset.forName(csn);
1875         } catch (IllegalCharsetNameException|UnsupportedCharsetException unused) {
1876             // UnsupportedEncodingException should be thrown
1877             throw new UnsupportedEncodingException(csn);
1878         }
1879     }
1880 
1881     private static final Appendable nonNullAppendable(Appendable a) {
1882         if (a == null)
1883             return new StringBuilder();
1884 
1885         return a;
1886     }
1887 
1888     /* Private constructors */
1889     private Formatter(Locale l, Appendable a) {
1890         this.a = a;
1891         this.l = l;
1892         this.zero = getZero(l);
1893     }
1894 
1895     private Formatter(Charset charset, Locale l, File file)
1896         throws FileNotFoundException
1897     {
1898         this(l,
1899              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file), charset)));
1900     }
1901 
1902     /**
1903      * Constructs a new formatter.
1904      *
1905      * <p> The destination of the formatted output is a {@link StringBuilder}
1906      * which may be retrieved by invoking {@link #out out()} and whose
1907      * current content may be converted into a string by invoking {@link
1908      * #toString toString()}.  The locale used is the {@linkplain
1909      * Locale#getDefault(Locale.Category) default locale} for
1910      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1911      * virtual machine.
1912      */
1913     public Formatter() {
1914         this(Locale.getDefault(Locale.Category.FORMAT), new StringBuilder());
1915     }
1916 
1917     /**
1918      * Constructs a new formatter with the specified destination.
1919      *
1920      * <p> The locale used is the {@linkplain
1921      * Locale#getDefault(Locale.Category) default locale} for
1922      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1923      * virtual machine.
1924      *
1925      * @param  a
1926      *         Destination for the formatted output.  If {@code a} is
1927      *         {@code null} then a {@link StringBuilder} will be created.
1928      */
1929     public Formatter(Appendable a) {
1930         this(Locale.getDefault(Locale.Category.FORMAT), nonNullAppendable(a));
1931     }
1932 
1933     /**
1934      * Constructs a new formatter with the specified locale.
1935      *
1936      * <p> The destination of the formatted output is a {@link StringBuilder}
1937      * which may be retrieved by invoking {@link #out out()} and whose current
1938      * content may be converted into a string by invoking {@link #toString
1939      * toString()}.
1940      *
1941      * @param  l
1942      *         The {@linkplain java.util.Locale locale} to apply during
1943      *         formatting.  If {@code l} is {@code null} then no localization
1944      *         is applied.
1945      */
1946     public Formatter(Locale l) {
1947         this(l, new StringBuilder());
1948     }
1949 
1950     /**
1951      * Constructs a new formatter with the specified destination and locale.
1952      *
1953      * @param  a
1954      *         Destination for the formatted output.  If {@code a} is
1955      *         {@code null} then a {@link StringBuilder} will be created.
1956      *
1957      * @param  l
1958      *         The {@linkplain java.util.Locale locale} to apply during
1959      *         formatting.  If {@code l} is {@code null} then no localization
1960      *         is applied.
1961      */
1962     public Formatter(Appendable a, Locale l) {
1963         this(l, nonNullAppendable(a));
1964     }
1965 
1966     /**
1967      * Constructs a new formatter with the specified file name.
1968      *
1969      * <p> The charset used is the {@linkplain
1970      * java.nio.charset.Charset#defaultCharset() default charset} for this
1971      * instance of the Java virtual machine.
1972      *
1973      * <p> The locale used is the {@linkplain
1974      * Locale#getDefault(Locale.Category) default locale} for
1975      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
1976      * virtual machine.
1977      *
1978      * @param  fileName
1979      *         The name of the file to use as the destination of this
1980      *         formatter.  If the file exists then it will be truncated to
1981      *         zero size; otherwise, a new file will be created.  The output
1982      *         will be written to the file and is buffered.
1983      *
1984      * @throws  SecurityException
1985      *          If a security manager is present and {@link
1986      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
1987      *          access to the file
1988      *
1989      * @throws  FileNotFoundException
1990      *          If the given file name does not denote an existing, writable
1991      *          regular file and a new regular file of that name cannot be
1992      *          created, or if some other error occurs while opening or
1993      *          creating the file
1994      */
1995     public Formatter(String fileName) throws FileNotFoundException {
1996         this(Locale.getDefault(Locale.Category.FORMAT),
1997              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(fileName))));
1998     }
1999 
2000     /**
2001      * Constructs a new formatter with the specified file name and charset.
2002      *
2003      * <p> The locale used is the {@linkplain
2004      * Locale#getDefault(Locale.Category) default locale} for
2005      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2006      * virtual machine.
2007      *
2008      * @param  fileName
2009      *         The name of the file to use as the destination of this
2010      *         formatter.  If the file exists then it will be truncated to
2011      *         zero size; otherwise, a new file will be created.  The output
2012      *         will be written to the file and is buffered.
2013      *
2014      * @param  csn
2015      *         The name of a supported {@linkplain java.nio.charset.Charset
2016      *         charset}
2017      *
2018      * @throws  FileNotFoundException
2019      *          If the given file name does not denote an existing, writable
2020      *          regular file and a new regular file of that name cannot be
2021      *          created, or if some other error occurs while opening or
2022      *          creating the file
2023      *
2024      * @throws  SecurityException
2025      *          If a security manager is present and {@link
2026      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2027      *          access to the file
2028      *
2029      * @throws  UnsupportedEncodingException
2030      *          If the named charset is not supported
2031      */
2032     public Formatter(String fileName, String csn)
2033         throws FileNotFoundException, UnsupportedEncodingException
2034     {
2035         this(fileName, csn, Locale.getDefault(Locale.Category.FORMAT));
2036     }
2037 
2038     /**
2039      * Constructs a new formatter with the specified file name, charset, and
2040      * locale.
2041      *
2042      * @param  fileName
2043      *         The name of the file to use as the destination of this
2044      *         formatter.  If the file exists then it will be truncated to
2045      *         zero size; otherwise, a new file will be created.  The output
2046      *         will be written to the file and is buffered.
2047      *
2048      * @param  csn
2049      *         The name of a supported {@linkplain java.nio.charset.Charset
2050      *         charset}
2051      *
2052      * @param  l
2053      *         The {@linkplain java.util.Locale locale} to apply during
2054      *         formatting.  If {@code l} is {@code null} then no localization
2055      *         is applied.
2056      *
2057      * @throws  FileNotFoundException
2058      *          If the given file name does not denote an existing, writable
2059      *          regular file and a new regular file of that name cannot be
2060      *          created, or if some other error occurs while opening or
2061      *          creating the file
2062      *
2063      * @throws  SecurityException
2064      *          If a security manager is present and {@link
2065      *          SecurityManager#checkWrite checkWrite(fileName)} denies write
2066      *          access to the file
2067      *
2068      * @throws  UnsupportedEncodingException
2069      *          If the named charset is not supported
2070      */
2071     public Formatter(String fileName, String csn, Locale l)
2072         throws FileNotFoundException, UnsupportedEncodingException
2073     {
2074         this(toCharset(csn), l, new File(fileName));
2075     }
2076 
2077     /**
2078      * Constructs a new formatter with the specified file.
2079      *
2080      * <p> The charset used is the {@linkplain
2081      * java.nio.charset.Charset#defaultCharset() default charset} for this
2082      * instance of the Java virtual machine.
2083      *
2084      * <p> The locale used is the {@linkplain
2085      * Locale#getDefault(Locale.Category) default locale} for
2086      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2087      * virtual machine.
2088      *
2089      * @param  file
2090      *         The file to use as the destination of this formatter.  If the
2091      *         file exists then it will be truncated to zero size; otherwise,
2092      *         a new file will be created.  The output will be written to the
2093      *         file and is buffered.
2094      *
2095      * @throws  SecurityException
2096      *          If a security manager is present and {@link
2097      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2098      *          write access to the file
2099      *
2100      * @throws  FileNotFoundException
2101      *          If the given file object does not denote an existing, writable
2102      *          regular file and a new regular file of that name cannot be
2103      *          created, or if some other error occurs while opening or
2104      *          creating the file
2105      */
2106     public Formatter(File file) throws FileNotFoundException {
2107         this(Locale.getDefault(Locale.Category.FORMAT),
2108              new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file))));
2109     }
2110 
2111     /**
2112      * Constructs a new formatter with the specified file and charset.
2113      *
2114      * <p> The locale used is the {@linkplain
2115      * Locale#getDefault(Locale.Category) default locale} for
2116      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2117      * virtual machine.
2118      *
2119      * @param  file
2120      *         The file to use as the destination of this formatter.  If the
2121      *         file exists then it will be truncated to zero size; otherwise,
2122      *         a new file will be created.  The output will be written to the
2123      *         file and is buffered.
2124      *
2125      * @param  csn
2126      *         The name of a supported {@linkplain java.nio.charset.Charset
2127      *         charset}
2128      *
2129      * @throws  FileNotFoundException
2130      *          If the given file object does not denote an existing, writable
2131      *          regular file and a new regular file of that name cannot be
2132      *          created, or if some other error occurs while opening or
2133      *          creating the file
2134      *
2135      * @throws  SecurityException
2136      *          If a security manager is present and {@link
2137      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2138      *          write access to the file
2139      *
2140      * @throws  UnsupportedEncodingException
2141      *          If the named charset is not supported
2142      */
2143     public Formatter(File file, String csn)
2144         throws FileNotFoundException, UnsupportedEncodingException
2145     {
2146         this(file, csn, Locale.getDefault(Locale.Category.FORMAT));
2147     }
2148 
2149     /**
2150      * Constructs a new formatter with the specified file, charset, and
2151      * locale.
2152      *
2153      * @param  file
2154      *         The file to use as the destination of this formatter.  If the
2155      *         file exists then it will be truncated to zero size; otherwise,
2156      *         a new file will be created.  The output will be written to the
2157      *         file and is buffered.
2158      *
2159      * @param  csn
2160      *         The name of a supported {@linkplain java.nio.charset.Charset
2161      *         charset}
2162      *
2163      * @param  l
2164      *         The {@linkplain java.util.Locale locale} to apply during
2165      *         formatting.  If {@code l} is {@code null} then no localization
2166      *         is applied.
2167      *
2168      * @throws  FileNotFoundException
2169      *          If the given file object does not denote an existing, writable
2170      *          regular file and a new regular file of that name cannot be
2171      *          created, or if some other error occurs while opening or
2172      *          creating the file
2173      *
2174      * @throws  SecurityException
2175      *          If a security manager is present and {@link
2176      *          SecurityManager#checkWrite checkWrite(file.getPath())} denies
2177      *          write access to the file
2178      *
2179      * @throws  UnsupportedEncodingException
2180      *          If the named charset is not supported
2181      */
2182     public Formatter(File file, String csn, Locale l)
2183         throws FileNotFoundException, UnsupportedEncodingException
2184     {
2185         this(toCharset(csn), l, file);
2186     }
2187 
2188     /**
2189      * Constructs a new formatter with the specified print stream.
2190      *
2191      * <p> The locale used is the {@linkplain
2192      * Locale#getDefault(Locale.Category) default locale} for
2193      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2194      * virtual machine.
2195      *
2196      * <p> Characters are written to the given {@link java.io.PrintStream
2197      * PrintStream} object and are therefore encoded using that object's
2198      * charset.
2199      *
2200      * @param  ps
2201      *         The stream to use as the destination of this formatter.
2202      */
2203     public Formatter(PrintStream ps) {
2204         this(Locale.getDefault(Locale.Category.FORMAT),
2205              (Appendable)Objects.requireNonNull(ps));
2206     }
2207 
2208     /**
2209      * Constructs a new formatter with the specified output stream.
2210      *
2211      * <p> The charset used is the {@linkplain
2212      * java.nio.charset.Charset#defaultCharset() default charset} for this
2213      * instance of the Java virtual machine.
2214      *
2215      * <p> The locale used is the {@linkplain
2216      * Locale#getDefault(Locale.Category) default locale} for
2217      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2218      * virtual machine.
2219      *
2220      * @param  os
2221      *         The output stream to use as the destination of this formatter.
2222      *         The output will be buffered.
2223      */
2224     public Formatter(OutputStream os) {
2225         this(Locale.getDefault(Locale.Category.FORMAT),
2226              new BufferedWriter(new OutputStreamWriter(os)));
2227     }
2228 
2229     /**
2230      * Constructs a new formatter with the specified output stream and
2231      * charset.
2232      *
2233      * <p> The locale used is the {@linkplain
2234      * Locale#getDefault(Locale.Category) default locale} for
2235      * {@linkplain Locale.Category#FORMAT formatting} for this instance of the Java
2236      * virtual machine.
2237      *
2238      * @param  os
2239      *         The output stream to use as the destination of this formatter.
2240      *         The output will be buffered.
2241      *
2242      * @param  csn
2243      *         The name of a supported {@linkplain java.nio.charset.Charset
2244      *         charset}
2245      *
2246      * @throws  UnsupportedEncodingException
2247      *          If the named charset is not supported
2248      */
2249     public Formatter(OutputStream os, String csn)
2250         throws UnsupportedEncodingException
2251     {
2252         this(os, csn, Locale.getDefault(Locale.Category.FORMAT));
2253     }
2254 
2255     /**
2256      * Constructs a new formatter with the specified output stream, charset,
2257      * and locale.
2258      *
2259      * @param  os
2260      *         The output stream to use as the destination of this formatter.
2261      *         The output will be buffered.
2262      *
2263      * @param  csn
2264      *         The name of a supported {@linkplain java.nio.charset.Charset
2265      *         charset}
2266      *
2267      * @param  l
2268      *         The {@linkplain java.util.Locale locale} to apply during
2269      *         formatting.  If {@code l} is {@code null} then no localization
2270      *         is applied.
2271      *
2272      * @throws  UnsupportedEncodingException
2273      *          If the named charset is not supported
2274      */
2275     public Formatter(OutputStream os, String csn, Locale l)
2276         throws UnsupportedEncodingException
2277     {
2278         this(l, new BufferedWriter(new OutputStreamWriter(os, csn)));
2279     }
2280 
2281     private static char getZero(Locale l) {
2282         if ((l != null) && !l.equals(Locale.US)) {
2283             DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
2284             return dfs.getZeroDigit();
2285         } else {
2286             return '0';
2287         }
2288     }
2289 
2290     /**
2291      * Returns the locale set by the construction of this formatter.
2292      *
2293      * <p> The {@link #format(java.util.Locale,String,Object...) format} method
2294      * for this object which has a locale argument does not change this value.
2295      *
2296      * @return  {@code null} if no localization is applied, otherwise a
2297      *          locale
2298      *
2299      * @throws  FormatterClosedException
2300      *          If this formatter has been closed by invoking its {@link
2301      *          #close()} method
2302      */
2303     public Locale locale() {
2304         ensureOpen();
2305         return l;
2306     }
2307 
2308     /**
2309      * Returns the destination for the output.
2310      *
2311      * @return  The destination for the output
2312      *
2313      * @throws  FormatterClosedException
2314      *          If this formatter has been closed by invoking its {@link
2315      *          #close()} method
2316      */
2317     public Appendable out() {
2318         ensureOpen();
2319         return a;
2320     }
2321 
2322     /**
2323      * Returns the result of invoking {@code toString()} on the destination
2324      * for the output.  For example, the following code formats text into a
2325      * {@link StringBuilder} then retrieves the resultant string:
2326      *
2327      * <blockquote><pre>
2328      *   Formatter f = new Formatter();
2329      *   f.format("Last reboot at %tc", lastRebootDate);
2330      *   String s = f.toString();
2331      *   // -&gt; s == "Last reboot at Sat Jan 01 00:00:00 PST 2000"
2332      * </pre></blockquote>
2333      *
2334      * <p> An invocation of this method behaves in exactly the same way as the
2335      * invocation
2336      *
2337      * <pre>
2338      *     out().toString() </pre>
2339      *
2340      * <p> Depending on the specification of {@code toString} for the {@link
2341      * Appendable}, the returned string may or may not contain the characters
2342      * written to the destination.  For instance, buffers typically return
2343      * their contents in {@code toString()}, but streams cannot since the
2344      * data is discarded.
2345      *
2346      * @return  The result of invoking {@code toString()} on the destination
2347      *          for the output
2348      *
2349      * @throws  FormatterClosedException
2350      *          If this formatter has been closed by invoking its {@link
2351      *          #close()} method
2352      */
2353     public String toString() {
2354         ensureOpen();
2355         return a.toString();
2356     }
2357 
2358     /**
2359      * Flushes this formatter.  If the destination implements the {@link
2360      * java.io.Flushable} interface, its {@code flush} method will be invoked.
2361      *
2362      * <p> Flushing a formatter writes any buffered output in the destination
2363      * to the underlying stream.
2364      *
2365      * @throws  FormatterClosedException
2366      *          If this formatter has been closed by invoking its {@link
2367      *          #close()} method
2368      */
2369     public void flush() {
2370         ensureOpen();
2371         if (a instanceof Flushable) {
2372             try {
2373                 ((Flushable)a).flush();
2374             } catch (IOException ioe) {
2375                 lastException = ioe;
2376             }
2377         }
2378     }
2379 
2380     /**
2381      * Closes this formatter.  If the destination implements the {@link
2382      * java.io.Closeable} interface, its {@code close} method will be invoked.
2383      *
2384      * <p> Closing a formatter allows it to release resources it may be holding
2385      * (such as open files).  If the formatter is already closed, then invoking
2386      * this method has no effect.
2387      *
2388      * <p> Attempting to invoke any methods except {@link #ioException()} in
2389      * this formatter after it has been closed will result in a {@link
2390      * FormatterClosedException}.
2391      */
2392     public void close() {
2393         if (a == null)
2394             return;
2395         try {
2396             if (a instanceof Closeable)
2397                 ((Closeable)a).close();
2398         } catch (IOException ioe) {
2399             lastException = ioe;
2400         } finally {
2401             a = null;
2402         }
2403     }
2404 
2405     private void ensureOpen() {
2406         if (a == null)
2407             throw new FormatterClosedException();
2408     }
2409 
2410     /**
2411      * Returns the {@code IOException} last thrown by this formatter's {@link
2412      * Appendable}.
2413      *
2414      * <p> If the destination's {@code append()} method never throws
2415      * {@code IOException}, then this method will always return {@code null}.
2416      *
2417      * @return  The last exception thrown by the Appendable or {@code null} if
2418      *          no such exception exists.
2419      */
2420     public IOException ioException() {
2421         return lastException;
2422     }
2423 
2424     /**
2425      * Writes a formatted string to this object's destination using the
2426      * specified format string and arguments.  The locale used is the one
2427      * defined during the construction of this formatter.
2428      *
2429      * @param  format
2430      *         A format string as described in <a href="#syntax">Format string
2431      *         syntax</a>.
2432      *
2433      * @param  args
2434      *         Arguments referenced by the format specifiers in the format
2435      *         string.  If there are more arguments than format specifiers, the
2436      *         extra arguments are ignored.  The maximum number of arguments is
2437      *         limited by the maximum dimension of a Java array as defined by
2438      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2439      *
2440      * @throws  IllegalFormatException
2441      *          If a format string contains an illegal syntax, a format
2442      *          specifier that is incompatible with the given arguments,
2443      *          insufficient arguments given the format string, or other
2444      *          illegal conditions.  For specification of all possible
2445      *          formatting errors, see the <a href="#detail">Details</a>
2446      *          section of the formatter class specification.
2447      *
2448      * @throws  FormatterClosedException
2449      *          If this formatter has been closed by invoking its {@link
2450      *          #close()} method
2451      *
2452      * @return  This formatter
2453      */
2454     public Formatter format(String format, Object ... args) {
2455         return format(l, format, args);
2456     }
2457 
2458     /**
2459      * Writes a formatted string to this object's destination using the
2460      * specified locale, format string, and arguments.
2461      *
2462      * @param  l
2463      *         The {@linkplain java.util.Locale locale} to apply during
2464      *         formatting.  If {@code l} is {@code null} then no localization
2465      *         is applied.  This does not change this object's locale that was
2466      *         set during construction.
2467      *
2468      * @param  format
2469      *         A format string as described in <a href="#syntax">Format string
2470      *         syntax</a>
2471      *
2472      * @param  args
2473      *         Arguments referenced by the format specifiers in the format
2474      *         string.  If there are more arguments than format specifiers, the
2475      *         extra arguments are ignored.  The maximum number of arguments is
2476      *         limited by the maximum dimension of a Java array as defined by
2477      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2478      *
2479      * @throws  IllegalFormatException
2480      *          If a format string contains an illegal syntax, a format
2481      *          specifier that is incompatible with the given arguments,
2482      *          insufficient arguments given the format string, or other
2483      *          illegal conditions.  For specification of all possible
2484      *          formatting errors, see the <a href="#detail">Details</a>
2485      *          section of the formatter class specification.
2486      *
2487      * @throws  FormatterClosedException
2488      *          If this formatter has been closed by invoking its {@link
2489      *          #close()} method
2490      *
2491      * @return  This formatter
2492      */
2493     public Formatter format(Locale l, String format, Object ... args) {
2494         ensureOpen();
2495 
2496         // index of last argument referenced
2497         int last = -1;
2498         // last ordinary index
2499         int lasto = -1;
2500 
2501         List<FormatString> fsa = parse(format);
2502         for (FormatString fs : fsa) {
2503             int index = fs.index();
2504             try {
2505                 switch (index) {
2506                 case -2:  // fixed string, "%n", or "%%"
2507                     fs.print(null, l);
2508                     break;
2509                 case -1:  // relative index
2510                     if (last < 0 || (args != null && last > args.length - 1))
2511                         throw new MissingFormatArgumentException(fs.toString());
2512                     fs.print((args == null ? null : args[last]), l);
2513                     break;
2514                 case 0:  // ordinary index
2515                     lasto++;
2516                     last = lasto;
2517                     if (args != null && lasto > args.length - 1)
2518                         throw new MissingFormatArgumentException(fs.toString());
2519                     fs.print((args == null ? null : args[lasto]), l);
2520                     break;
2521                 default:  // explicit index
2522                     last = index - 1;
2523                     if (args != null && last > args.length - 1)
2524                         throw new MissingFormatArgumentException(fs.toString());
2525                     fs.print((args == null ? null : args[last]), l);
2526                     break;
2527                 }
2528             } catch (IOException x) {
2529                 lastException = x;
2530             }
2531         }
2532         return this;
2533     }
2534 
2535     // %[argument_index$][flags][width][.precision][t]conversion
2536     private static final String formatSpecifier
2537         = "%(\\d+\\$)?([-#+ 0,(\\<]*)?(\\d+)?(\\.\\d+)?([tT])?([a-zA-Z%])";
2538 
2539     private static Pattern fsPattern = Pattern.compile(formatSpecifier);
2540 
2541     /**
2542      * Finds format specifiers in the format string.
2543      */
2544     private List<FormatString> parse(String s) {
2545         ArrayList<FormatString> al = new ArrayList<>();
2546         Matcher m = fsPattern.matcher(s);
2547         for (int i = 0, len = s.length(); i < len; ) {
2548             if (m.find(i)) {
2549                 // Anything between the start of the string and the beginning
2550                 // of the format specifier is either fixed text or contains
2551                 // an invalid format string.
2552                 if (m.start() != i) {
2553                     // Make sure we didn't miss any invalid format specifiers
2554                     checkText(s, i, m.start());
2555                     // Assume previous characters were fixed text
2556                     al.add(new FixedString(s, i, m.start()));
2557                 }
2558 
2559                 al.add(new FormatSpecifier(s, m));
2560                 i = m.end();
2561             } else {
2562                 // No more valid format specifiers.  Check for possible invalid
2563                 // format specifiers.
2564                 checkText(s, i, len);
2565                 // The rest of the string is fixed text
2566                 al.add(new FixedString(s, i, s.length()));
2567                 break;
2568             }
2569         }
2570         return al;
2571     }
2572 
2573     private static void checkText(String s, int start, int end) {
2574         for (int i = start; i < end; i++) {
2575             // Any '%' found in the region starts an invalid format specifier.
2576             if (s.charAt(i) == '%') {
2577                 char c = (i == end - 1) ? '%' : s.charAt(i + 1);
2578                 throw new UnknownFormatConversionException(String.valueOf(c));
2579             }
2580         }
2581     }
2582 
2583     private interface FormatString {
2584         int index();
2585         void print(Object arg, Locale l) throws IOException;
2586         String toString();
2587     }
2588 
2589     private class FixedString implements FormatString {
2590         private String s;
2591         private int start;
2592         private int end;
2593         FixedString(String s, int start, int end) {
2594             this.s = s;
2595             this.start = start;
2596             this.end = end;
2597         }
2598         public int index() { return -2; }
2599         public void print(Object arg, Locale l)
2600             throws IOException { a.append(s, start, end); }
2601         public String toString() { return s.substring(start, end); }
2602     }
2603 
2604     /**
2605      * Enum for {@code BigDecimal} formatting.
2606      */
2607     public enum BigDecimalLayoutForm {
2608         /**
2609          * Format the {@code BigDecimal} in computerized scientific notation.
2610          */
2611         SCIENTIFIC,
2612 
2613         /**
2614          * Format the {@code BigDecimal} as a decimal number.
2615          */
2616         DECIMAL_FLOAT
2617     };
2618 
2619     private class FormatSpecifier implements FormatString {
2620         private int index = -1;
2621         private Flags f = Flags.NONE;
2622         private int width;
2623         private int precision;
2624         private boolean dt = false;
2625         private char c;
2626 
2627         private int index(String s) {
2628             if (s != null) {
2629                 try {
2630                     index = Integer.parseInt(s.substring(0, s.length() - 1));
2631                 } catch (NumberFormatException x) {
2632                     assert(false);
2633                 }
2634             } else {
2635                 index = 0;
2636             }
2637             return index;
2638         }
2639 
2640         public int index() {
2641             return index;
2642         }
2643 
2644         private Flags flags(String s, int start, int end) {
2645             f = Flags.parse(s, start, end);
2646             if (f.contains(Flags.PREVIOUS))
2647                 index = -1;
2648             return f;
2649         }
2650 
2651         Flags flags() {
2652             return f;
2653         }
2654 
2655         private int width(String s) {
2656             width = -1;
2657             if (s != null) {
2658                 try {
2659                     width  = Integer.parseInt(s);
2660                     if (width < 0)
2661                         throw new IllegalFormatWidthException(width);
2662                 } catch (NumberFormatException x) {
2663                     assert(false);
2664                 }
2665             }
2666             return width;
2667         }
2668 
2669         int width() {
2670             return width;
2671         }
2672 
2673         private int precision(String s) {
2674             precision = -1;
2675             if (s != null) {
2676                 try {
2677                     // remove the '.'
2678                     precision = Integer.parseInt(s.substring(1));
2679                     if (precision < 0)
2680                         throw new IllegalFormatPrecisionException(precision);
2681                 } catch (NumberFormatException x) {
2682                     assert(false);
2683                 }
2684             }
2685             return precision;
2686         }
2687 
2688         int precision() {
2689             return precision;
2690         }
2691 
2692         private char conversion(char conv) {
2693             c = conv;
2694             if (!dt) {
2695                 if (!Conversion.isValid(conv)) {
2696                     throw new UnknownFormatConversionException(String.valueOf(c));
2697                 }
2698                 if (Character.isUpperCase(conv)) {
2699                     f.add(Flags.UPPERCASE);
2700                     c = Character.toLowerCase(conv);
2701                 }
2702                 if (Conversion.isText(conv)) {
2703                     index = -2;
2704                 }
2705             }
2706             return c;
2707         }
2708 
2709         private char conversion() {
2710             return c;
2711         }
2712 
2713         FormatSpecifier(String s, Matcher m) {
2714             int idx = 1;
2715 
2716             index(m.group(idx++));
2717             flags(s, m.start(idx), m.end(idx++));
2718             width(m.group(idx++));
2719             precision(m.group(idx++));
2720 
2721             int tTStart = m.start(idx);
2722             int tTEnd = m.end(idx++);
2723             if (tTStart != -1 && tTEnd != -1) {
2724                 dt = true;
2725                 if (tTStart == tTEnd - 1 && s.charAt(tTStart) == 'T') {
2726                     f.add(Flags.UPPERCASE);
2727                 }
2728             }
2729 
2730             conversion(s.charAt(m.start(idx)));
2731 
2732             if (dt)
2733                 checkDateTime();
2734             else if (Conversion.isGeneral(c))
2735                 checkGeneral();
2736             else if (Conversion.isCharacter(c))
2737                 checkCharacter();
2738             else if (Conversion.isInteger(c))
2739                 checkInteger();
2740             else if (Conversion.isFloat(c))
2741                 checkFloat();
2742             else if (Conversion.isText(c))
2743                 checkText();
2744             else
2745                 throw new UnknownFormatConversionException(String.valueOf(c));
2746         }
2747 
2748         public void print(Object arg, Locale l) throws IOException {
2749             if (dt) {
2750                 printDateTime(arg, l);
2751                 return;
2752             }
2753             switch(c) {
2754             case Conversion.DECIMAL_INTEGER:
2755             case Conversion.OCTAL_INTEGER:
2756             case Conversion.HEXADECIMAL_INTEGER:
2757                 printInteger(arg, l);
2758                 break;
2759             case Conversion.SCIENTIFIC:
2760             case Conversion.GENERAL:
2761             case Conversion.DECIMAL_FLOAT:
2762             case Conversion.HEXADECIMAL_FLOAT:
2763                 printFloat(arg, l);
2764                 break;
2765             case Conversion.CHARACTER:
2766             case Conversion.CHARACTER_UPPER:
2767                 printCharacter(arg);
2768                 break;
2769             case Conversion.BOOLEAN:
2770                 printBoolean(arg);
2771                 break;
2772             case Conversion.STRING:
2773                 printString(arg, l);
2774                 break;
2775             case Conversion.HASHCODE:
2776                 printHashCode(arg);
2777                 break;
2778             case Conversion.LINE_SEPARATOR:
2779                 a.append(System.lineSeparator());
2780                 break;
2781             case Conversion.PERCENT_SIGN:
2782                 a.append('%');
2783                 break;
2784             default:
2785                 assert false;
2786             }
2787         }
2788 
2789         private void printInteger(Object arg, Locale l) throws IOException {
2790             if (arg == null)
2791                 print("null");
2792             else if (arg instanceof Byte)
2793                 print(((Byte)arg).byteValue(), l);
2794             else if (arg instanceof Short)
2795                 print(((Short)arg).shortValue(), l);
2796             else if (arg instanceof Integer)
2797                 print(((Integer)arg).intValue(), l);
2798             else if (arg instanceof Long)
2799                 print(((Long)arg).longValue(), l);
2800             else if (arg instanceof BigInteger)
2801                 print(((BigInteger)arg), l);
2802             else
2803                 failConversion(c, arg);
2804         }
2805 
2806         private void printFloat(Object arg, Locale l) throws IOException {
2807             if (arg == null)
2808                 print("null");
2809             else if (arg instanceof Float)
2810                 print(((Float)arg).floatValue(), l);
2811             else if (arg instanceof Double)
2812                 print(((Double)arg).doubleValue(), l);
2813             else if (arg instanceof BigDecimal)
2814                 print(((BigDecimal)arg), l);
2815             else
2816                 failConversion(c, arg);
2817         }
2818 
2819         private void printDateTime(Object arg, Locale l) throws IOException {
2820             if (arg == null) {
2821                 print("null");
2822                 return;
2823             }
2824             Calendar cal = null;
2825 
2826             // Instead of Calendar.setLenient(true), perhaps we should
2827             // wrap the IllegalArgumentException that might be thrown?
2828             if (arg instanceof Long) {
2829                 // Note that the following method uses an instance of the
2830                 // default time zone (TimeZone.getDefaultRef().
2831                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2832                 cal.setTimeInMillis((Long)arg);
2833             } else if (arg instanceof Date) {
2834                 // Note that the following method uses an instance of the
2835                 // default time zone (TimeZone.getDefaultRef().
2836                 cal = Calendar.getInstance(l == null ? Locale.US : l);
2837                 cal.setTime((Date)arg);
2838             } else if (arg instanceof Calendar) {
2839                 cal = (Calendar) ((Calendar) arg).clone();
2840                 cal.setLenient(true);
2841             } else if (arg instanceof TemporalAccessor) {
2842                 print((TemporalAccessor) arg, c, l);
2843                 return;
2844             } else {
2845                 failConversion(c, arg);
2846             }
2847             // Use the provided locale so that invocations of
2848             // localizedMagnitude() use optimizations for null.
2849             print(cal, c, l);
2850         }
2851 
2852         private void printCharacter(Object arg) throws IOException {
2853             if (arg == null) {
2854                 print("null");
2855                 return;
2856             }
2857             String s = null;
2858             if (arg instanceof Character) {
2859                 s = ((Character)arg).toString();
2860             } else if (arg instanceof Byte) {
2861                 byte i = ((Byte)arg).byteValue();
2862                 if (Character.isValidCodePoint(i))
2863                     s = new String(Character.toChars(i));
2864                 else
2865                     throw new IllegalFormatCodePointException(i);
2866             } else if (arg instanceof Short) {
2867                 short i = ((Short)arg).shortValue();
2868                 if (Character.isValidCodePoint(i))
2869                     s = new String(Character.toChars(i));
2870                 else
2871                     throw new IllegalFormatCodePointException(i);
2872             } else if (arg instanceof Integer) {
2873                 int i = ((Integer)arg).intValue();
2874                 if (Character.isValidCodePoint(i))
2875                     s = new String(Character.toChars(i));
2876                 else
2877                     throw new IllegalFormatCodePointException(i);
2878             } else {
2879                 failConversion(c, arg);
2880             }
2881             print(s);
2882         }
2883 
2884         private void printString(Object arg, Locale l) throws IOException {
2885             if (arg instanceof Formattable) {
2886                 Formatter fmt = Formatter.this;
2887                 if (fmt.locale() != l)
2888                     fmt = new Formatter(fmt.out(), l);
2889                 ((Formattable)arg).formatTo(fmt, f.valueOf(), width, precision);
2890             } else {
2891                 if (f.contains(Flags.ALTERNATE))
2892                     failMismatch(Flags.ALTERNATE, 's');
2893                 if (arg == null)
2894                     print("null");
2895                 else
2896                     print(arg.toString());
2897             }
2898         }
2899 
2900         private void printBoolean(Object arg) throws IOException {
2901             String s;
2902             if (arg != null)
2903                 s = ((arg instanceof Boolean)
2904                      ? ((Boolean)arg).toString()
2905                      : Boolean.toString(true));
2906             else
2907                 s = Boolean.toString(false);
2908             print(s);
2909         }
2910 
2911         private void printHashCode(Object arg) throws IOException {
2912             String s = (arg == null
2913                         ? "null"
2914                         : Integer.toHexString(arg.hashCode()));
2915             print(s);
2916         }
2917 
2918         private void print(String s) throws IOException {
2919             if (precision != -1 && precision < s.length())
2920                 s = s.substring(0, precision);
2921             if (f.contains(Flags.UPPERCASE))
2922                 s = s.toUpperCase();
2923             appendJustified(a, s);
2924         }
2925 
2926         private Appendable appendJustified(Appendable a, CharSequence cs) throws IOException {
2927              if (width == -1) {
2928                  return a.append(cs);
2929              }
2930              boolean padLeft = f.contains(Flags.LEFT_JUSTIFY);
2931              int sp = width - cs.length();
2932              if (padLeft) {
2933                  a.append(cs);
2934              }
2935              for (int i = 0; i < sp; i++) {
2936                  a.append(' ');
2937              }
2938              if (!padLeft) {
2939                  a.append(cs);
2940              }
2941              return a;
2942         }
2943 
2944         public String toString() {
2945             StringBuilder sb = new StringBuilder("%");
2946             // Flags.UPPERCASE is set internally for legal conversions.
2947             Flags dupf = f.dup().remove(Flags.UPPERCASE);
2948             sb.append(dupf.toString());
2949             if (index > 0)
2950                 sb.append(index).append('$');
2951             if (width != -1)
2952                 sb.append(width);
2953             if (precision != -1)
2954                 sb.append('.').append(precision);
2955             if (dt)
2956                 sb.append(f.contains(Flags.UPPERCASE) ? 'T' : 't');
2957             sb.append(f.contains(Flags.UPPERCASE)
2958                       ? Character.toUpperCase(c) : c);
2959             return sb.toString();
2960         }
2961 
2962         private void checkGeneral() {
2963             if ((c == Conversion.BOOLEAN || c == Conversion.HASHCODE)
2964                 && f.contains(Flags.ALTERNATE))
2965                 failMismatch(Flags.ALTERNATE, c);
2966             // '-' requires a width
2967             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2968                 throw new MissingFormatWidthException(toString());
2969             checkBadFlags(Flags.PLUS, Flags.LEADING_SPACE, Flags.ZERO_PAD,
2970                           Flags.GROUP, Flags.PARENTHESES);
2971         }
2972 
2973         private void checkDateTime() {
2974             if (precision != -1)
2975                 throw new IllegalFormatPrecisionException(precision);
2976             if (!DateTime.isValid(c))
2977                 throw new UnknownFormatConversionException("t" + c);
2978             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2979                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2980             // '-' requires a width
2981             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2982                 throw new MissingFormatWidthException(toString());
2983         }
2984 
2985         private void checkCharacter() {
2986             if (precision != -1)
2987                 throw new IllegalFormatPrecisionException(precision);
2988             checkBadFlags(Flags.ALTERNATE, Flags.PLUS, Flags.LEADING_SPACE,
2989                           Flags.ZERO_PAD, Flags.GROUP, Flags.PARENTHESES);
2990             // '-' requires a width
2991             if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
2992                 throw new MissingFormatWidthException(toString());
2993         }
2994 
2995         private void checkInteger() {
2996             checkNumeric();
2997             if (precision != -1)
2998                 throw new IllegalFormatPrecisionException(precision);
2999 
3000             if (c == Conversion.DECIMAL_INTEGER)
3001                 checkBadFlags(Flags.ALTERNATE);
3002             else if (c == Conversion.OCTAL_INTEGER)
3003                 checkBadFlags(Flags.GROUP);
3004             else
3005                 checkBadFlags(Flags.GROUP);
3006         }
3007 
3008         private void checkBadFlags(Flags ... badFlags) {
3009             for (Flags badFlag : badFlags)
3010                 if (f.contains(badFlag))
3011                     failMismatch(badFlag, c);
3012         }
3013 
3014         private void checkFloat() {
3015             checkNumeric();
3016             if (c == Conversion.DECIMAL_FLOAT) {
3017             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3018                 checkBadFlags(Flags.PARENTHESES, Flags.GROUP);
3019             } else if (c == Conversion.SCIENTIFIC) {
3020                 checkBadFlags(Flags.GROUP);
3021             } else if (c == Conversion.GENERAL) {
3022                 checkBadFlags(Flags.ALTERNATE);
3023             }
3024         }
3025 
3026         private void checkNumeric() {
3027             if (width != -1 && width < 0)
3028                 throw new IllegalFormatWidthException(width);
3029 
3030             if (precision != -1 && precision < 0)
3031                 throw new IllegalFormatPrecisionException(precision);
3032 
3033             // '-' and '0' require a width
3034             if (width == -1
3035                 && (f.contains(Flags.LEFT_JUSTIFY) || f.contains(Flags.ZERO_PAD)))
3036                 throw new MissingFormatWidthException(toString());
3037 
3038             // bad combination
3039             if ((f.contains(Flags.PLUS) && f.contains(Flags.LEADING_SPACE))
3040                 || (f.contains(Flags.LEFT_JUSTIFY) && f.contains(Flags.ZERO_PAD)))
3041                 throw new IllegalFormatFlagsException(f.toString());
3042         }
3043 
3044         private void checkText() {
3045             if (precision != -1)
3046                 throw new IllegalFormatPrecisionException(precision);
3047             switch (c) {
3048             case Conversion.PERCENT_SIGN:
3049                 if (f.valueOf() != Flags.LEFT_JUSTIFY.valueOf()
3050                     && f.valueOf() != Flags.NONE.valueOf())
3051                     throw new IllegalFormatFlagsException(f.toString());
3052                 // '-' requires a width
3053                 if (width == -1 && f.contains(Flags.LEFT_JUSTIFY))
3054                     throw new MissingFormatWidthException(toString());
3055                 break;
3056             case Conversion.LINE_SEPARATOR:
3057                 if (width != -1)
3058                     throw new IllegalFormatWidthException(width);
3059                 if (f.valueOf() != Flags.NONE.valueOf())
3060                     throw new IllegalFormatFlagsException(f.toString());
3061                 break;
3062             default:
3063                 assert false;
3064             }
3065         }
3066 
3067         private void print(byte value, Locale l) throws IOException {
3068             long v = value;
3069             if (value < 0
3070                 && (c == Conversion.OCTAL_INTEGER
3071                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3072                 v += (1L << 8);
3073                 assert v >= 0 : v;
3074             }
3075             print(v, l);
3076         }
3077 
3078         private void print(short value, Locale l) throws IOException {
3079             long v = value;
3080             if (value < 0
3081                 && (c == Conversion.OCTAL_INTEGER
3082                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3083                 v += (1L << 16);
3084                 assert v >= 0 : v;
3085             }
3086             print(v, l);
3087         }
3088 
3089         private void print(int value, Locale l) throws IOException {
3090             long v = value;
3091             if (value < 0
3092                 && (c == Conversion.OCTAL_INTEGER
3093                     || c == Conversion.HEXADECIMAL_INTEGER)) {
3094                 v += (1L << 32);
3095                 assert v >= 0 : v;
3096             }
3097             print(v, l);
3098         }
3099 
3100         private void print(long value, Locale l) throws IOException {
3101 
3102             StringBuilder sb = new StringBuilder();
3103 
3104             if (c == Conversion.DECIMAL_INTEGER) {
3105                 boolean neg = value < 0;
3106                 String valueStr;
3107                 if (neg) {
3108                     if (value == Long.MIN_VALUE) {
3109                         valueStr = "9223372036854775808";
3110                     } else {
3111                         valueStr = Long.toString(-value, 10);
3112                     }
3113                 } else {
3114                     valueStr = Long.toString(value, 10);
3115                 }
3116 
3117                 // leading sign indicator
3118                 leadingSign(sb, neg);
3119 
3120                 // the value
3121                 localizedMagnitude(sb, valueStr, 0, f, adjustWidth(width, f, neg), l);
3122 
3123                 // trailing sign indicator
3124                 trailingSign(sb, neg);
3125             } else if (c == Conversion.OCTAL_INTEGER) {
3126                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3127                               Flags.PLUS);
3128                 String s = Long.toOctalString(value);
3129                 int len = (f.contains(Flags.ALTERNATE)
3130                            ? s.length() + 1
3131                            : s.length());
3132 
3133                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3134                 if (f.contains(Flags.ALTERNATE))
3135                     sb.append('0');
3136                 if (f.contains(Flags.ZERO_PAD)) {
3137                     trailingZeros(sb, width - len);
3138                 }   
3139                 sb.append(s);
3140             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3141                 checkBadFlags(Flags.PARENTHESES, Flags.LEADING_SPACE,
3142                               Flags.PLUS);
3143                 String s = Long.toHexString(value);
3144                 int len = (f.contains(Flags.ALTERNATE)
3145                            ? s.length() + 2
3146                            : s.length());
3147 
3148                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3149                 if (f.contains(Flags.ALTERNATE))
3150                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3151                 if (f.contains(Flags.ZERO_PAD)) {
3152                     trailingZeros(sb, width - len);
3153                 }   
3154                 if (f.contains(Flags.UPPERCASE))
3155                     s = s.toUpperCase();
3156                 sb.append(s);
3157             }
3158 
3159             // justify based on width
3160             appendJustified(a, sb);
3161         }
3162 
3163         // neg := val < 0
3164         private StringBuilder leadingSign(StringBuilder sb, boolean neg) {
3165             if (!neg) {
3166                 if (f.contains(Flags.PLUS)) {
3167                     sb.append('+');
3168                 } else if (f.contains(Flags.LEADING_SPACE)) {
3169                     sb.append(' ');
3170                 }
3171             } else {
3172                 if (f.contains(Flags.PARENTHESES))
3173                     sb.append('(');
3174                 else
3175                     sb.append('-');
3176             }
3177             return sb;
3178         }
3179 
3180         // neg := val < 0
3181         private StringBuilder trailingSign(StringBuilder sb, boolean neg) {
3182             if (neg && f.contains(Flags.PARENTHESES))
3183                 sb.append(')');
3184             return sb;
3185         }
3186 
3187         private void print(BigInteger value, Locale l) throws IOException {
3188             StringBuilder sb = new StringBuilder();
3189             boolean neg = value.signum() == -1;
3190             BigInteger v = value.abs();
3191 
3192             // leading sign indicator
3193             leadingSign(sb, neg);
3194 
3195             // the value
3196             if (c == Conversion.DECIMAL_INTEGER) {
3197                 localizedMagnitude(sb, v.toString(), 0, f, adjustWidth(width, f, neg), l);
3198             } else if (c == Conversion.OCTAL_INTEGER) {
3199                 String s = v.toString(8);
3200 
3201                 int len = s.length() + sb.length();
3202                 if (neg && f.contains(Flags.PARENTHESES))
3203                     len++;
3204 
3205                 // apply ALTERNATE (radix indicator for octal) before ZERO_PAD
3206                 if (f.contains(Flags.ALTERNATE)) {
3207                     len++;
3208                     sb.append('0');
3209                 }
3210                 if (f.contains(Flags.ZERO_PAD)) {
3211                     trailingZeros(sb, width - len);
3212                 }
3213                 sb.append(s);
3214             } else if (c == Conversion.HEXADECIMAL_INTEGER) {
3215                 String s = v.toString(16);
3216 
3217                 int len = s.length() + sb.length();
3218                 if (neg && f.contains(Flags.PARENTHESES))
3219                     len++;
3220 
3221                 // apply ALTERNATE (radix indicator for hex) before ZERO_PAD
3222                 if (f.contains(Flags.ALTERNATE)) {
3223                     len += 2;
3224                     sb.append(f.contains(Flags.UPPERCASE) ? "0X" : "0x");
3225                 }
3226                 if (f.contains(Flags.ZERO_PAD)) {
3227                     trailingZeros(sb, width - len);
3228                 }
3229                 if (f.contains(Flags.UPPERCASE))
3230                     s = s.toUpperCase();
3231                 sb.append(s);
3232             }
3233 
3234             // trailing sign indicator
3235             trailingSign(sb, (value.signum() == -1));
3236 
3237             // justify based on width
3238             appendJustified(a, sb);
3239         }
3240 
3241         private void print(float value, Locale l) throws IOException {
3242             print((double) value, l);
3243         }
3244 
3245         private void print(double value, Locale l) throws IOException {
3246             StringBuilder sb = new StringBuilder();
3247             boolean neg = Double.compare(value, 0.0) == -1;
3248 
3249             if (!Double.isNaN(value)) {
3250                 double v = Math.abs(value);
3251 
3252                 // leading sign indicator
3253                 leadingSign(sb, neg);
3254 
3255                 // the value
3256                 if (!Double.isInfinite(v))
3257                     print(sb, v, l, f, c, precision, neg);
3258                 else
3259                     sb.append(f.contains(Flags.UPPERCASE)
3260                               ? "INFINITY" : "Infinity");
3261 
3262                 // trailing sign indicator
3263                 trailingSign(sb, neg);
3264             } else {
3265                 sb.append(f.contains(Flags.UPPERCASE) ? "NAN" : "NaN");
3266             }
3267 
3268             // justify based on width
3269             appendJustified(a, sb);
3270         }
3271 
3272         // !Double.isInfinite(value) && !Double.isNaN(value)
3273         private void print(StringBuilder sb, double value, Locale l,
3274                            Flags f, char c, int precision, boolean neg)
3275             throws IOException
3276         {
3277             if (c == Conversion.SCIENTIFIC) {
3278                 // Create a new FormattedFloatingDecimal with the desired
3279                 // precision.
3280                 int prec = (precision == -1 ? 6 : precision);
3281 
3282                 FormattedFloatingDecimal fd
3283                         = FormattedFloatingDecimal.valueOf(value, prec,
3284                           FormattedFloatingDecimal.Form.SCIENTIFIC);
3285 
3286                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3287                 addZeros(mant, prec);
3288 
3289                 // If the precision is zero and the '#' flag is set, add the
3290                 // requested decimal point.
3291                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3292                     mant.append('.');
3293                 }
3294 
3295                 StringBuilder exp = new StringBuilder();
3296                 if (value == 0.0) {
3297                     exp.append("+00");
3298                 } else {
3299                     exp.append(fd.getExponent());
3300                 }
3301 
3302                 int newW = width;
3303                 if (width != -1)
3304                     newW = adjustWidth(width - exp.length() - 1, f, neg);
3305                 localizedMagnitude(sb, mant, 0, f, newW, l);
3306 
3307                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3308 
3309                 Flags flags = f.dup().remove(Flags.GROUP);
3310                 char sign = exp.charAt(0);
3311                 assert(sign == '+' || sign == '-');
3312                 sb.append(sign);
3313 
3314                 sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3315             } else if (c == Conversion.DECIMAL_FLOAT) {
3316                 // Create a new FormattedFloatingDecimal with the desired
3317                 // precision.
3318                 int prec = (precision == -1 ? 6 : precision);
3319 
3320                 FormattedFloatingDecimal fd
3321                         = FormattedFloatingDecimal.valueOf(value, prec,
3322                           FormattedFloatingDecimal.Form.DECIMAL_FLOAT);
3323 
3324                 StringBuilder mant = new StringBuilder().append(fd.getMantissa());
3325                 addZeros(mant, prec);
3326 
3327                 // If the precision is zero and the '#' flag is set, add the
3328                 // requested decimal point.
3329                 if (f.contains(Flags.ALTERNATE) && (prec == 0))
3330                     mant.append('.');
3331 
3332                 int newW = width;
3333                 if (width != -1)
3334                     newW = adjustWidth(width, f, neg);
3335                 localizedMagnitude(sb, mant, 0, f, newW, l);
3336             } else if (c == Conversion.GENERAL) {
3337                 int prec = precision;
3338                 if (precision == -1)
3339                     prec = 6;
3340                 else if (precision == 0)
3341                     prec = 1;
3342 
3343                 StringBuilder exp;
3344                 StringBuilder mant = new StringBuilder();
3345                 int expRounded;
3346                 if (value == 0.0) {
3347                     exp = null;
3348                     mant.append('0');
3349                     expRounded = 0;
3350                 } else {
3351                     FormattedFloatingDecimal fd
3352                         = FormattedFloatingDecimal.valueOf(value, prec,
3353                           FormattedFloatingDecimal.Form.GENERAL);
3354                     char[] expArray = fd.getExponent();
3355                     if (expArray != null) {
3356                         exp = new StringBuilder().append(expArray);
3357                     } else {
3358                         exp = null;
3359                     }
3360                     mant.append(fd.getMantissa());
3361                     expRounded = fd.getExponentRounded();
3362                 }
3363 
3364                 if (exp != null) {
3365                     prec -= 1;
3366                 } else {
3367                     prec -= expRounded + 1;
3368                 }
3369 
3370                 addZeros(mant, prec);
3371                 // If the precision is zero and the '#' flag is set, add the
3372                 // requested decimal point.
3373                 if (f.contains(Flags.ALTERNATE) && (prec == 0)) {
3374                     mant.append('.');
3375                 }
3376 
3377                 int newW = width;
3378                 if (width != -1) {
3379                     if (exp != null)
3380                         newW = adjustWidth(width - exp.length() - 1, f, neg);
3381                     else
3382                         newW = adjustWidth(width, f, neg);
3383                 }
3384                 localizedMagnitude(sb, mant, 0, f, newW, l);
3385 
3386                 if (exp != null) {
3387                     sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3388 
3389                     Flags flags = f.dup().remove(Flags.GROUP);
3390                     char sign = exp.charAt(0);
3391                     assert(sign == '+' || sign == '-');
3392                     sb.append(sign);
3393 
3394                     sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3395                 }
3396             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3397                 int prec = precision;
3398                 if (precision == -1)
3399                     // assume that we want all of the digits
3400                     prec = 0;
3401                 else if (precision == 0)
3402                     prec = 1;
3403 
3404                 String s = hexDouble(value, prec);
3405 
3406                 StringBuilder va = new StringBuilder();
3407                 boolean upper = f.contains(Flags.UPPERCASE);
3408                 sb.append(upper ? "0X" : "0x");
3409 
3410                 if (f.contains(Flags.ZERO_PAD)) {
3411                     trailingZeros(sb, width - s.length() - 2);
3412                 }
3413 
3414                 int idx = s.indexOf('p');
3415                 if (upper) {
3416                     String tmp = s.substring(0, idx);
3417                     // don't localize hex
3418                     tmp = tmp.toUpperCase(Locale.US);
3419                     va.append(tmp);
3420                 } else {
3421                     va.append(s, 0, idx);
3422                 }
3423                 if (prec != 0) {
3424                     addZeros(va, prec);
3425                 }
3426                 sb.append(va);
3427                 sb.append(upper ? 'P' : 'p');
3428                 sb.append(s, idx+1, s.length());
3429             }
3430         }
3431 
3432         // Add zeros to the requested precision.
3433         private void addZeros(StringBuilder sb, int prec) {
3434             // Look for the dot.  If we don't find one, the we'll need to add
3435             // it before we add the zeros.
3436             int len = sb.length();
3437             int i;
3438             for (i = 0; i < len; i++) {
3439                 if (sb.charAt(i) == '.') {
3440                     break;
3441                 }
3442             }
3443             boolean needDot = false;
3444             if (i == len) {
3445                 needDot = true;
3446             }
3447 
3448             // Determine existing precision.
3449             int outPrec = len - i - (needDot ? 0 : 1);
3450             assert (outPrec <= prec);
3451             if (outPrec == prec) {
3452                 return;
3453             }
3454 
3455             // Add dot if previously determined to be necessary.
3456             if (needDot) {
3457                 sb.append('.');
3458             }
3459 
3460             // Add zeros.
3461             trailingZeros(sb, prec - outPrec);
3462         }
3463 
3464         // Method assumes that d > 0.
3465         private String hexDouble(double d, int prec) {
3466             // Let Double.toHexString handle simple cases
3467             if (!Double.isFinite(d) || d == 0.0 || prec == 0 || prec >= 13) {
3468                 // remove "0x"
3469                 return Double.toHexString(d).substring(2);
3470             } else {
3471                 assert(prec >= 1 && prec <= 12);
3472 
3473                 int exponent  = Math.getExponent(d);
3474                 boolean subnormal
3475                     = (exponent == DoubleConsts.MIN_EXPONENT - 1);
3476 
3477                 // If this is subnormal input so normalize (could be faster to
3478                 // do as integer operation).
3479                 if (subnormal) {
3480                     scaleUp = Math.scalb(1.0, 54);
3481                     d *= scaleUp;
3482                     // Calculate the exponent.  This is not just exponent + 54
3483                     // since the former is not the normalized exponent.
3484                     exponent = Math.getExponent(d);
3485                     assert exponent >= DoubleConsts.MIN_EXPONENT &&
3486                         exponent <= DoubleConsts.MAX_EXPONENT: exponent;
3487                 }
3488 
3489                 int precision = 1 + prec*4;
3490                 int shiftDistance
3491                     =  DoubleConsts.SIGNIFICAND_WIDTH - precision;
3492                 assert(shiftDistance >= 1 && shiftDistance < DoubleConsts.SIGNIFICAND_WIDTH);
3493 
3494                 long doppel = Double.doubleToLongBits(d);
3495                 // Deterime the number of bits to keep.
3496                 long newSignif
3497                     = (doppel & (DoubleConsts.EXP_BIT_MASK
3498                                  | DoubleConsts.SIGNIF_BIT_MASK))
3499                                      >> shiftDistance;
3500                 // Bits to round away.
3501                 long roundingBits = doppel & ~(~0L << shiftDistance);
3502 
3503                 // To decide how to round, look at the low-order bit of the
3504                 // working significand, the highest order discarded bit (the
3505                 // round bit) and whether any of the lower order discarded bits
3506                 // are nonzero (the sticky bit).
3507 
3508                 boolean leastZero = (newSignif & 0x1L) == 0L;
3509                 boolean round
3510                     = ((1L << (shiftDistance - 1) ) & roundingBits) != 0L;
3511                 boolean sticky  = shiftDistance > 1 &&
3512                     (~(1L<< (shiftDistance - 1)) & roundingBits) != 0;
3513                 if((leastZero && round && sticky) || (!leastZero && round)) {
3514                     newSignif++;
3515                 }
3516 
3517                 long signBit = doppel & DoubleConsts.SIGN_BIT_MASK;
3518                 newSignif = signBit | (newSignif << shiftDistance);
3519                 double result = Double.longBitsToDouble(newSignif);
3520 
3521                 if (Double.isInfinite(result) ) {
3522                     // Infinite result generated by rounding
3523                     return "1.0p1024";
3524                 } else {
3525                     String res = Double.toHexString(result).substring(2);
3526                     if (!subnormal)
3527                         return res;
3528                     else {
3529                         // Create a normalized subnormal string.
3530                         int idx = res.indexOf('p');
3531                         if (idx == -1) {
3532                             // No 'p' character in hex string.
3533                             assert false;
3534                             return null;
3535                         } else {
3536                             // Get exponent and append at the end.
3537                             String exp = res.substring(idx + 1);
3538                             int iexp = Integer.parseInt(exp) -54;
3539                             return res.substring(0, idx) + "p"
3540                                 + Integer.toString(iexp);
3541                         }
3542                     }
3543                 }
3544             }
3545         }
3546 
3547         private void print(BigDecimal value, Locale l) throws IOException {
3548             if (c == Conversion.HEXADECIMAL_FLOAT)
3549                 failConversion(c, value);
3550             StringBuilder sb = new StringBuilder();
3551             boolean neg = value.signum() == -1;
3552             BigDecimal v = value.abs();
3553             // leading sign indicator
3554             leadingSign(sb, neg);
3555 
3556             // the value
3557             print(sb, v, l, f, c, precision, neg);
3558 
3559             // trailing sign indicator
3560             trailingSign(sb, neg);
3561 
3562             // justify based on width
3563             appendJustified(a, sb);
3564         }
3565 
3566         // value > 0
3567         private void print(StringBuilder sb, BigDecimal value, Locale l,
3568                            Flags f, char c, int precision, boolean neg)
3569             throws IOException
3570         {
3571             if (c == Conversion.SCIENTIFIC) {
3572                 // Create a new BigDecimal with the desired precision.
3573                 int prec = (precision == -1 ? 6 : precision);
3574                 int scale = value.scale();
3575                 int origPrec = value.precision();
3576                 int nzeros = 0;
3577                 int compPrec;
3578 
3579                 if (prec > origPrec - 1) {
3580                     compPrec = origPrec;
3581                     nzeros = prec - (origPrec - 1);
3582                 } else {
3583                     compPrec = prec + 1;
3584                 }
3585 
3586                 MathContext mc = new MathContext(compPrec);
3587                 BigDecimal v
3588                     = new BigDecimal(value.unscaledValue(), scale, mc);
3589 
3590                 BigDecimalLayout bdl
3591                     = new BigDecimalLayout(v.unscaledValue(), v.scale(),
3592                                            BigDecimalLayoutForm.SCIENTIFIC);
3593 
3594                 StringBuilder mant = bdl.mantissa();
3595 
3596                 // Add a decimal point if necessary.  The mantissa may not
3597                 // contain a decimal point if the scale is zero (the internal
3598                 // representation has no fractional part) or the original
3599                 // precision is one. Append a decimal point if '#' is set or if
3600                 // we require zero padding to get to the requested precision.
3601                 if ((origPrec == 1 || !bdl.hasDot())
3602                         && (nzeros > 0 || (f.contains(Flags.ALTERNATE)))) {
3603                     mant.append('.');
3604                 }
3605 
3606                 // Add trailing zeros in the case precision is greater than
3607                 // the number of available digits after the decimal separator.
3608                 trailingZeros(mant, nzeros);
3609 
3610                 StringBuilder exp = bdl.exponent();
3611                 int newW = width;
3612                 if (width != -1) {
3613                     newW = adjustWidth(width - exp.length() - 1, f, neg);
3614                 }
3615                 localizedMagnitude(sb, mant, 0, f, newW, l);
3616 
3617                 sb.append(f.contains(Flags.UPPERCASE) ? 'E' : 'e');
3618 
3619                 Flags flags = f.dup().remove(Flags.GROUP);
3620                 char sign = exp.charAt(0);
3621                 assert(sign == '+' || sign == '-');
3622                 sb.append(sign);
3623 
3624                 sb.append(localizedMagnitude(null, exp, 1, flags, -1, l));
3625             } else if (c == Conversion.DECIMAL_FLOAT) {
3626                 // Create a new BigDecimal with the desired precision.
3627                 int prec = (precision == -1 ? 6 : precision);
3628                 int scale = value.scale();
3629 
3630                 if (scale > prec) {
3631                     // more "scale" digits than the requested "precision"
3632                     int compPrec = value.precision();
3633                     if (compPrec <= scale) {
3634                         // case of 0.xxxxxx
3635                         value = value.setScale(prec, RoundingMode.HALF_UP);
3636                     } else {
3637                         compPrec -= (scale - prec);
3638                         value = new BigDecimal(value.unscaledValue(),
3639                                                scale,
3640                                                new MathContext(compPrec));
3641                     }
3642                 }
3643                 BigDecimalLayout bdl = new BigDecimalLayout(
3644                                            value.unscaledValue(),
3645                                            value.scale(),
3646                                            BigDecimalLayoutForm.DECIMAL_FLOAT);
3647 
3648                 StringBuilder mant = bdl.mantissa();
3649                 int nzeros = (bdl.scale() < prec ? prec - bdl.scale() : 0);
3650 
3651                 // Add a decimal point if necessary.  The mantissa may not
3652                 // contain a decimal point if the scale is zero (the internal
3653                 // representation has no fractional part).  Append a decimal
3654                 // point if '#' is set or we require zero padding to get to the
3655                 // requested precision.
3656                 if (bdl.scale() == 0 && (f.contains(Flags.ALTERNATE)
3657                         || nzeros > 0)) {
3658                     mant.append('.');
3659                 }
3660 
3661                 // Add trailing zeros if the precision is greater than the
3662                 // number of available digits after the decimal separator.
3663                 trailingZeros(mant, nzeros);
3664 
3665                 localizedMagnitude(sb, mant, 0, f, adjustWidth(width, f, neg), l);
3666             } else if (c == Conversion.GENERAL) {
3667                 int prec = precision;
3668                 if (precision == -1)
3669                     prec = 6;
3670                 else if (precision == 0)
3671                     prec = 1;
3672 
3673                 BigDecimal tenToTheNegFour = BigDecimal.valueOf(1, 4);
3674                 BigDecimal tenToThePrec = BigDecimal.valueOf(1, -prec);
3675                 if ((value.equals(BigDecimal.ZERO))
3676                     || ((value.compareTo(tenToTheNegFour) != -1)
3677                         && (value.compareTo(tenToThePrec) == -1))) {
3678 
3679                     int e = - value.scale()
3680                         + (value.unscaledValue().toString().length() - 1);
3681 
3682                     // xxx.yyy
3683                     //   g precision (# sig digits) = #x + #y
3684                     //   f precision = #y
3685                     //   exponent = #x - 1
3686                     // => f precision = g precision - exponent - 1
3687                     // 0.000zzz
3688                     //   g precision (# sig digits) = #z
3689                     //   f precision = #0 (after '.') + #z
3690                     //   exponent = - #0 (after '.') - 1
3691                     // => f precision = g precision - exponent - 1
3692                     prec = prec - e - 1;
3693 
3694                     print(sb, value, l, f, Conversion.DECIMAL_FLOAT, prec,
3695                           neg);
3696                 } else {
3697                     print(sb, value, l, f, Conversion.SCIENTIFIC, prec - 1, neg);
3698                 }
3699             } else if (c == Conversion.HEXADECIMAL_FLOAT) {
3700                 // This conversion isn't supported.  The error should be
3701                 // reported earlier.
3702                 assert false;
3703             }
3704         }
3705 
3706         private class BigDecimalLayout {
3707             private StringBuilder mant;
3708             private StringBuilder exp;
3709             private boolean dot = false;
3710             private int scale;
3711 
3712             public BigDecimalLayout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3713                 layout(intVal, scale, form);
3714             }
3715 
3716             public boolean hasDot() {
3717                 return dot;
3718             }
3719 
3720             public int scale() {
3721                 return scale;
3722             }
3723 
3724             public StringBuilder mantissa() {
3725                 return mant;
3726             }
3727 
3728             // The exponent will be formatted as a sign ('+' or '-') followed
3729             // by the exponent zero-padded to include at least two digits.
3730             public StringBuilder exponent() {
3731                 return exp;
3732             }
3733 
3734             private void layout(BigInteger intVal, int scale, BigDecimalLayoutForm form) {
3735                 String coeff = intVal.toString();
3736                 this.scale = scale;
3737 
3738                 // Construct a buffer, with sufficient capacity for all cases.
3739                 // If E-notation is needed, length will be: +1 if negative, +1
3740                 // if '.' needed, +2 for "E+", + up to 10 for adjusted
3741                 // exponent.  Otherwise it could have +1 if negative, plus
3742                 // leading "0.00000"
3743                 int len = coeff.length();
3744                 mant = new StringBuilder(len + 14);
3745 
3746                 if (scale == 0) {
3747                     if (len > 1) {
3748                         mant.append(coeff.charAt(0));
3749                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3750                             mant.append('.');
3751                             dot = true;
3752                             mant.append(coeff, 1, len);
3753                             exp = new StringBuilder("+");
3754                             if (len < 10) {
3755                                 exp.append('0').append(len - 1);
3756                             } else {
3757                                 exp.append(len - 1);
3758                             }
3759                         } else {
3760                             mant.append(coeff, 1, len);
3761                         }
3762                     } else {
3763                         mant.append(coeff);
3764                         if (form == BigDecimalLayoutForm.SCIENTIFIC) {
3765                             exp = new StringBuilder("+00");
3766                         }
3767                     }
3768                     return;
3769                 }
3770                 long adjusted = -(long) scale + (len - 1);
3771                 if (form == BigDecimalLayoutForm.DECIMAL_FLOAT) {
3772                     // count of padding zeros
3773                     int pad = scale - len;
3774                     if (pad >= 0) {
3775                         // 0.xxx form
3776                         mant.append("0.");
3777                         dot = true;
3778                         trailingZeros(mant, pad);
3779                         mant.append(coeff);
3780                     } else {
3781                         if (-pad < len) {
3782                             // xx.xx form
3783                             mant.append(coeff, 0, -pad);
3784                             mant.append('.');
3785                             dot = true;
3786                             mant.append(coeff, -pad, -pad + scale);
3787                         } else {
3788                             // xx form
3789                             mant.append(coeff, 0, len);
3790                             trailingZeros(mant, -scale);
3791                             this.scale = 0;
3792                         }
3793                     }
3794                 } else {
3795                     // x.xxx form
3796                     mant.append(coeff.charAt(0));
3797                     if (len > 1) {
3798                         mant.append('.');
3799                         dot = true;
3800                         mant.append(coeff, 1, len);
3801                     }
3802                     exp = new StringBuilder();
3803                     if (adjusted != 0) {
3804                         long abs = Math.abs(adjusted);
3805                         // require sign
3806                         exp.append(adjusted < 0 ? '-' : '+');
3807                         if (abs < 10) {
3808                             exp.append('0');
3809                         }
3810                         exp.append(abs);
3811                     } else {
3812                         exp.append("+00");
3813                     }
3814                 }
3815             }
3816         }
3817 
3818         private int adjustWidth(int width, Flags f, boolean neg) {
3819             int newW = width;
3820             if (newW != -1 && neg && f.contains(Flags.PARENTHESES))
3821                 newW--;
3822             return newW;
3823         }
3824 
3825         // Add trailing zeros
3826         private void trailingZeros(StringBuilder sb, int nzeros) {
3827             for (int i = 0; i < nzeros; i++) {
3828                 sb.append('0');
3829             }
3830         }
3831 
3832         private void print(Calendar t, char c, Locale l)  throws IOException {
3833             StringBuilder sb = new StringBuilder();
3834             print(sb, t, c, l);
3835 
3836             // justify based on width
3837             if (f.contains(Flags.UPPERCASE)) {
3838                 appendJustified(a, sb.toString().toUpperCase());
3839             } else {
3840                 appendJustified(a, sb);
3841             }
3842         }
3843 
3844         private Appendable print(StringBuilder sb, Calendar t, char c, Locale l)
3845                 throws IOException {
3846             if (sb == null)
3847                 sb = new StringBuilder();
3848             switch (c) {
3849             case DateTime.HOUR_OF_DAY_0: // 'H' (00 - 23)
3850             case DateTime.HOUR_0:        // 'I' (01 - 12)
3851             case DateTime.HOUR_OF_DAY:   // 'k' (0 - 23) -- like H
3852             case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
3853                 int i = t.get(Calendar.HOUR_OF_DAY);
3854                 if (c == DateTime.HOUR_0 || c == DateTime.HOUR)
3855                     i = (i == 0 || i == 12 ? 12 : i % 12);
3856                 Flags flags = (c == DateTime.HOUR_OF_DAY_0
3857                                || c == DateTime.HOUR_0
3858                                ? Flags.ZERO_PAD
3859                                : Flags.NONE);
3860                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3861                 break;
3862             }
3863             case DateTime.MINUTE:      { // 'M' (00 - 59)
3864                 int i = t.get(Calendar.MINUTE);
3865                 Flags flags = Flags.ZERO_PAD;
3866                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3867                 break;
3868             }
3869             case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
3870                 int i = t.get(Calendar.MILLISECOND) * 1000000;
3871                 Flags flags = Flags.ZERO_PAD;
3872                 sb.append(localizedMagnitude(null, i, flags, 9, l));
3873                 break;
3874             }
3875             case DateTime.MILLISECOND: { // 'L' (000 - 999)
3876                 int i = t.get(Calendar.MILLISECOND);
3877                 Flags flags = Flags.ZERO_PAD;
3878                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3879                 break;
3880             }
3881             case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
3882                 long i = t.getTimeInMillis();
3883                 Flags flags = Flags.NONE;
3884                 sb.append(localizedMagnitude(null, i, flags, width, l));
3885                 break;
3886             }
3887             case DateTime.AM_PM:       { // 'p' (am or pm)
3888                 // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
3889                 String[] ampm = { "AM", "PM" };
3890                 if (l != null && l != Locale.US) {
3891                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
3892                     ampm = dfs.getAmPmStrings();
3893                 }
3894                 String s = ampm[t.get(Calendar.AM_PM)];
3895                 sb.append(s.toLowerCase(l != null ? l : Locale.US));
3896                 break;
3897             }
3898             case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
3899                 long i = t.getTimeInMillis() / 1000;
3900                 Flags flags = Flags.NONE;
3901                 sb.append(localizedMagnitude(null, i, flags, width, l));
3902                 break;
3903             }
3904             case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
3905                 int i = t.get(Calendar.SECOND);
3906                 Flags flags = Flags.ZERO_PAD;
3907                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3908                 break;
3909             }
3910             case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
3911                 int i = t.get(Calendar.ZONE_OFFSET) + t.get(Calendar.DST_OFFSET);
3912                 boolean neg = i < 0;
3913                 sb.append(neg ? '-' : '+');
3914                 if (neg)
3915                     i = -i;
3916                 int min = i / 60000;
3917                 // combine minute and hour into a single integer
3918                 int offset = (min / 60) * 100 + (min % 60);
3919                 Flags flags = Flags.ZERO_PAD;
3920 
3921                 sb.append(localizedMagnitude(null, offset, flags, 4, l));
3922                 break;
3923             }
3924             case DateTime.ZONE:        { // 'Z' (symbol)
3925                 TimeZone tz = t.getTimeZone();
3926                 sb.append(tz.getDisplayName((t.get(Calendar.DST_OFFSET) != 0),
3927                                            TimeZone.SHORT,
3928                                             (l == null) ? Locale.US : l));
3929                 break;
3930             }
3931 
3932             // Date
3933             case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
3934             case DateTime.NAME_OF_DAY:          { // 'A'
3935                 int i = t.get(Calendar.DAY_OF_WEEK);
3936                 Locale lt = ((l == null) ? Locale.US : l);
3937                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3938                 if (c == DateTime.NAME_OF_DAY)
3939                     sb.append(dfs.getWeekdays()[i]);
3940                 else
3941                     sb.append(dfs.getShortWeekdays()[i]);
3942                 break;
3943             }
3944             case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
3945             case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
3946             case DateTime.NAME_OF_MONTH:        { // 'B'
3947                 int i = t.get(Calendar.MONTH);
3948                 Locale lt = ((l == null) ? Locale.US : l);
3949                 DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
3950                 if (c == DateTime.NAME_OF_MONTH)
3951                     sb.append(dfs.getMonths()[i]);
3952                 else
3953                     sb.append(dfs.getShortMonths()[i]);
3954                 break;
3955             }
3956             case DateTime.CENTURY:                // 'C' (00 - 99)
3957             case DateTime.YEAR_2:                 // 'y' (00 - 99)
3958             case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
3959                 int i = t.get(Calendar.YEAR);
3960                 int size = 2;
3961                 switch (c) {
3962                 case DateTime.CENTURY:
3963                     i /= 100;
3964                     break;
3965                 case DateTime.YEAR_2:
3966                     i %= 100;
3967                     break;
3968                 case DateTime.YEAR_4:
3969                     size = 4;
3970                     break;
3971                 }
3972                 Flags flags = Flags.ZERO_PAD;
3973                 sb.append(localizedMagnitude(null, i, flags, size, l));
3974                 break;
3975             }
3976             case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
3977             case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
3978                 int i = t.get(Calendar.DATE);
3979                 Flags flags = (c == DateTime.DAY_OF_MONTH_0
3980                                ? Flags.ZERO_PAD
3981                                : Flags.NONE);
3982                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3983                 break;
3984             }
3985             case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
3986                 int i = t.get(Calendar.DAY_OF_YEAR);
3987                 Flags flags = Flags.ZERO_PAD;
3988                 sb.append(localizedMagnitude(null, i, flags, 3, l));
3989                 break;
3990             }
3991             case DateTime.MONTH:                { // 'm' (01 - 12)
3992                 int i = t.get(Calendar.MONTH) + 1;
3993                 Flags flags = Flags.ZERO_PAD;
3994                 sb.append(localizedMagnitude(null, i, flags, 2, l));
3995                 break;
3996             }
3997 
3998             // Composites
3999             case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4000             case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4001                 char sep = ':';
4002                 print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4003                 print(sb, t, DateTime.MINUTE, l);
4004                 if (c == DateTime.TIME) {
4005                     sb.append(sep);
4006                     print(sb, t, DateTime.SECOND, l);
4007                 }
4008                 break;
4009             }
4010             case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4011                 char sep = ':';
4012                 print(sb, t, DateTime.HOUR_0, l).append(sep);
4013                 print(sb, t, DateTime.MINUTE, l).append(sep);
4014                 print(sb, t, DateTime.SECOND, l).append(' ');
4015                 // this may be in wrong place for some locales
4016                 StringBuilder tsb = new StringBuilder();
4017                 print(tsb, t, DateTime.AM_PM, l);
4018 
4019                 sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4020                 break;
4021             }
4022             case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4023                 char sep = ' ';
4024                 print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4025                 print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4026                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4027                 print(sb, t, DateTime.TIME, l).append(sep);
4028                 print(sb, t, DateTime.ZONE, l).append(sep);
4029                 print(sb, t, DateTime.YEAR_4, l);
4030                 break;
4031             }
4032             case DateTime.DATE:            { // 'D' (mm/dd/yy)
4033                 char sep = '/';
4034                 print(sb, t, DateTime.MONTH, l).append(sep);
4035                 print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4036                 print(sb, t, DateTime.YEAR_2, l);
4037                 break;
4038             }
4039             case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4040                 char sep = '-';
4041                 print(sb, t, DateTime.YEAR_4, l).append(sep);
4042                 print(sb, t, DateTime.MONTH, l).append(sep);
4043                 print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4044                 break;
4045             }
4046             default:
4047                 assert false;
4048             }
4049             return sb;
4050         }
4051 
4052         private void print(TemporalAccessor t, char c, Locale l)  throws IOException {
4053             StringBuilder sb = new StringBuilder();
4054             print(sb, t, c, l);
4055             // justify based on width
4056             if (f.contains(Flags.UPPERCASE)) {
4057                 appendJustified(a, sb.toString().toUpperCase());
4058             } else {
4059                 appendJustified(a, sb);
4060             }
4061         }
4062 
4063         private Appendable print(StringBuilder sb, TemporalAccessor t, char c,
4064                                  Locale l) throws IOException {
4065             if (sb == null)
4066                 sb = new StringBuilder();
4067             try {
4068                 switch (c) {
4069                 case DateTime.HOUR_OF_DAY_0: {  // 'H' (00 - 23)
4070                     int i = t.get(ChronoField.HOUR_OF_DAY);
4071                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4072                     break;
4073                 }
4074                 case DateTime.HOUR_OF_DAY: {   // 'k' (0 - 23) -- like H
4075                     int i = t.get(ChronoField.HOUR_OF_DAY);
4076                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4077                     break;
4078                 }
4079                 case DateTime.HOUR_0:      {  // 'I' (01 - 12)
4080                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4081                     sb.append(localizedMagnitude(null, i, Flags.ZERO_PAD, 2, l));
4082                     break;
4083                 }
4084                 case DateTime.HOUR:        { // 'l' (1 - 12) -- like I
4085                     int i = t.get(ChronoField.CLOCK_HOUR_OF_AMPM);
4086                     sb.append(localizedMagnitude(null, i, Flags.NONE, 2, l));
4087                     break;
4088                 }
4089                 case DateTime.MINUTE:      { // 'M' (00 - 59)
4090                     int i = t.get(ChronoField.MINUTE_OF_HOUR);
4091                     Flags flags = Flags.ZERO_PAD;
4092                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4093                     break;
4094                 }
4095                 case DateTime.NANOSECOND:  { // 'N' (000000000 - 999999999)
4096                     int i = t.get(ChronoField.MILLI_OF_SECOND) * 1000000;
4097                     Flags flags = Flags.ZERO_PAD;
4098                     sb.append(localizedMagnitude(null, i, flags, 9, l));
4099                     break;
4100                 }
4101                 case DateTime.MILLISECOND: { // 'L' (000 - 999)
4102                     int i = t.get(ChronoField.MILLI_OF_SECOND);
4103                     Flags flags = Flags.ZERO_PAD;
4104                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4105                     break;
4106                 }
4107                 case DateTime.MILLISECOND_SINCE_EPOCH: { // 'Q' (0 - 99...?)
4108                     long i = t.getLong(ChronoField.INSTANT_SECONDS) * 1000L +
4109                              t.getLong(ChronoField.MILLI_OF_SECOND);
4110                     Flags flags = Flags.NONE;
4111                     sb.append(localizedMagnitude(null, i, flags, width, l));
4112                     break;
4113                 }
4114                 case DateTime.AM_PM:       { // 'p' (am or pm)
4115                     // Calendar.AM = 0, Calendar.PM = 1, LocaleElements defines upper
4116                     String[] ampm = { "AM", "PM" };
4117                     if (l != null && l != Locale.US) {
4118                         DateFormatSymbols dfs = DateFormatSymbols.getInstance(l);
4119                         ampm = dfs.getAmPmStrings();
4120                     }
4121                     String s = ampm[t.get(ChronoField.AMPM_OF_DAY)];
4122                     sb.append(s.toLowerCase(l != null ? l : Locale.US));
4123                     break;
4124                 }
4125                 case DateTime.SECONDS_SINCE_EPOCH: { // 's' (0 - 99...?)
4126                     long i = t.getLong(ChronoField.INSTANT_SECONDS);
4127                     Flags flags = Flags.NONE;
4128                     sb.append(localizedMagnitude(null, i, flags, width, l));
4129                     break;
4130                 }
4131                 case DateTime.SECOND:      { // 'S' (00 - 60 - leap second)
4132                     int i = t.get(ChronoField.SECOND_OF_MINUTE);
4133                     Flags flags = Flags.ZERO_PAD;
4134                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4135                     break;
4136                 }
4137                 case DateTime.ZONE_NUMERIC: { // 'z' ({-|+}####) - ls minus?
4138                     int i = t.get(ChronoField.OFFSET_SECONDS);
4139                     boolean neg = i < 0;
4140                     sb.append(neg ? '-' : '+');
4141                     if (neg)
4142                         i = -i;
4143                     int min = i / 60;
4144                     // combine minute and hour into a single integer
4145                     int offset = (min / 60) * 100 + (min % 60);
4146                     Flags flags = Flags.ZERO_PAD;
4147                     sb.append(localizedMagnitude(null, offset, flags, 4, l));
4148                     break;
4149                 }
4150                 case DateTime.ZONE:        { // 'Z' (symbol)
4151                     ZoneId zid = t.query(TemporalQueries.zone());
4152                     if (zid == null) {
4153                         throw new IllegalFormatConversionException(c, t.getClass());
4154                     }
4155                     if (!(zid instanceof ZoneOffset) &&
4156                         t.isSupported(ChronoField.INSTANT_SECONDS)) {
4157                         Instant instant = Instant.from(t);
4158                         sb.append(TimeZone.getTimeZone(zid.getId())
4159                                           .getDisplayName(zid.getRules().isDaylightSavings(instant),
4160                                                           TimeZone.SHORT,
4161                                                           (l == null) ? Locale.US : l));
4162                         break;
4163                     }
4164                     sb.append(zid.getId());
4165                     break;
4166                 }
4167                 // Date
4168                 case DateTime.NAME_OF_DAY_ABBREV:     // 'a'
4169                 case DateTime.NAME_OF_DAY:          { // 'A'
4170                     int i = t.get(ChronoField.DAY_OF_WEEK) % 7 + 1;
4171                     Locale lt = ((l == null) ? Locale.US : l);
4172                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4173                     if (c == DateTime.NAME_OF_DAY)
4174                         sb.append(dfs.getWeekdays()[i]);
4175                     else
4176                         sb.append(dfs.getShortWeekdays()[i]);
4177                     break;
4178                 }
4179                 case DateTime.NAME_OF_MONTH_ABBREV:   // 'b'
4180                 case DateTime.NAME_OF_MONTH_ABBREV_X: // 'h' -- same b
4181                 case DateTime.NAME_OF_MONTH:        { // 'B'
4182                     int i = t.get(ChronoField.MONTH_OF_YEAR) - 1;
4183                     Locale lt = ((l == null) ? Locale.US : l);
4184                     DateFormatSymbols dfs = DateFormatSymbols.getInstance(lt);
4185                     if (c == DateTime.NAME_OF_MONTH)
4186                         sb.append(dfs.getMonths()[i]);
4187                     else
4188                         sb.append(dfs.getShortMonths()[i]);
4189                     break;
4190                 }
4191                 case DateTime.CENTURY:                // 'C' (00 - 99)
4192                 case DateTime.YEAR_2:                 // 'y' (00 - 99)
4193                 case DateTime.YEAR_4:               { // 'Y' (0000 - 9999)
4194                     int i = t.get(ChronoField.YEAR_OF_ERA);
4195                     int size = 2;
4196                     switch (c) {
4197                     case DateTime.CENTURY:
4198                         i /= 100;
4199                         break;
4200                     case DateTime.YEAR_2:
4201                         i %= 100;
4202                         break;
4203                     case DateTime.YEAR_4:
4204                         size = 4;
4205                         break;
4206                     }
4207                     Flags flags = Flags.ZERO_PAD;
4208                     sb.append(localizedMagnitude(null, i, flags, size, l));
4209                     break;
4210                 }
4211                 case DateTime.DAY_OF_MONTH_0:         // 'd' (01 - 31)
4212                 case DateTime.DAY_OF_MONTH:         { // 'e' (1 - 31) -- like d
4213                     int i = t.get(ChronoField.DAY_OF_MONTH);
4214                     Flags flags = (c == DateTime.DAY_OF_MONTH_0
4215                                    ? Flags.ZERO_PAD
4216                                    : Flags.NONE);
4217                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4218                     break;
4219                 }
4220                 case DateTime.DAY_OF_YEAR:          { // 'j' (001 - 366)
4221                     int i = t.get(ChronoField.DAY_OF_YEAR);
4222                     Flags flags = Flags.ZERO_PAD;
4223                     sb.append(localizedMagnitude(null, i, flags, 3, l));
4224                     break;
4225                 }
4226                 case DateTime.MONTH:                { // 'm' (01 - 12)
4227                     int i = t.get(ChronoField.MONTH_OF_YEAR);
4228                     Flags flags = Flags.ZERO_PAD;
4229                     sb.append(localizedMagnitude(null, i, flags, 2, l));
4230                     break;
4231                 }
4232 
4233                 // Composites
4234                 case DateTime.TIME:         // 'T' (24 hour hh:mm:ss - %tH:%tM:%tS)
4235                 case DateTime.TIME_24_HOUR:    { // 'R' (hh:mm same as %H:%M)
4236                     char sep = ':';
4237                     print(sb, t, DateTime.HOUR_OF_DAY_0, l).append(sep);
4238                     print(sb, t, DateTime.MINUTE, l);
4239                     if (c == DateTime.TIME) {
4240                         sb.append(sep);
4241                         print(sb, t, DateTime.SECOND, l);
4242                     }
4243                     break;
4244                 }
4245                 case DateTime.TIME_12_HOUR:    { // 'r' (hh:mm:ss [AP]M)
4246                     char sep = ':';
4247                     print(sb, t, DateTime.HOUR_0, l).append(sep);
4248                     print(sb, t, DateTime.MINUTE, l).append(sep);
4249                     print(sb, t, DateTime.SECOND, l).append(' ');
4250                     // this may be in wrong place for some locales
4251                     StringBuilder tsb = new StringBuilder();
4252                     print(tsb, t, DateTime.AM_PM, l);
4253                     sb.append(tsb.toString().toUpperCase(l != null ? l : Locale.US));
4254                     break;
4255                 }
4256                 case DateTime.DATE_TIME:    { // 'c' (Sat Nov 04 12:02:33 EST 1999)
4257                     char sep = ' ';
4258                     print(sb, t, DateTime.NAME_OF_DAY_ABBREV, l).append(sep);
4259                     print(sb, t, DateTime.NAME_OF_MONTH_ABBREV, l).append(sep);
4260                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4261                     print(sb, t, DateTime.TIME, l).append(sep);
4262                     print(sb, t, DateTime.ZONE, l).append(sep);
4263                     print(sb, t, DateTime.YEAR_4, l);
4264                     break;
4265                 }
4266                 case DateTime.DATE:            { // 'D' (mm/dd/yy)
4267                     char sep = '/';
4268                     print(sb, t, DateTime.MONTH, l).append(sep);
4269                     print(sb, t, DateTime.DAY_OF_MONTH_0, l).append(sep);
4270                     print(sb, t, DateTime.YEAR_2, l);
4271                     break;
4272                 }
4273                 case DateTime.ISO_STANDARD_DATE: { // 'F' (%Y-%m-%d)
4274                     char sep = '-';
4275                     print(sb, t, DateTime.YEAR_4, l).append(sep);
4276                     print(sb, t, DateTime.MONTH, l).append(sep);
4277                     print(sb, t, DateTime.DAY_OF_MONTH_0, l);
4278                     break;
4279                 }
4280                 default:
4281                     assert false;
4282                 }
4283             } catch (DateTimeException x) {
4284                 throw new IllegalFormatConversionException(c, t.getClass());
4285             }
4286             return sb;
4287         }
4288 
4289         // -- Methods to support throwing exceptions --
4290 
4291         private void failMismatch(Flags f, char c) {
4292             String fs = f.toString();
4293             throw new FormatFlagsConversionMismatchException(fs, c);
4294         }
4295 
4296         private void failConversion(char c, Object arg) {
4297             throw new IllegalFormatConversionException(c, arg.getClass());
4298         }
4299 
4300         private char getZero(Locale l) {
4301             if ((l != null) &&  !l.equals(locale())) {
4302                 DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4303                 return dfs.getZeroDigit();
4304             }
4305             return zero;
4306         }
4307 
4308         private StringBuilder localizedMagnitude(StringBuilder sb,
4309                 long value, Flags f, int width, Locale l) {
4310             return localizedMagnitude(sb, Long.toString(value, 10), 0, f, width, l);
4311         }
4312 
4313         private StringBuilder localizedMagnitude(StringBuilder sb,
4314                 CharSequence value, final int offset, Flags f, int width,
4315                 Locale l) {
4316             if (sb == null) {
4317                 sb = new StringBuilder();
4318             }
4319             int begin = sb.length();
4320 
4321             char zero = getZero(l);
4322 
4323             // determine localized grouping separator and size
4324             char grpSep = '\0';
4325             int  grpSize = -1;
4326             char decSep = '\0';
4327 
4328             int len = value.length();
4329             int dot = len;
4330             for (int j = offset; j < len; j++) {
4331                 if (value.charAt(j) == '.') {
4332                     dot = j;
4333                     break;
4334                 }
4335             }
4336 
4337             if (dot < len) {
4338                 if (l == null || l.equals(Locale.US)) {
4339                     decSep  = '.';
4340                 } else {
4341                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4342                     decSep  = dfs.getDecimalSeparator();
4343                 }
4344             }
4345 
4346             if (f.contains(Flags.GROUP)) {
4347                 if (l == null || l.equals(Locale.US)) {
4348                     grpSep = ',';
4349                     grpSize = 3;
4350                 } else {
4351                     DecimalFormatSymbols dfs = DecimalFormatSymbols.getInstance(l);
4352                     grpSep = dfs.getGroupingSeparator();
4353                     DecimalFormat df = (DecimalFormat) NumberFormat.getIntegerInstance(l);
4354                     grpSize = df.getGroupingSize();
4355                 }
4356             }
4357 
4358             // localize the digits inserting group separators as necessary
4359             for (int j = offset; j < len; j++) {
4360                 if (j == dot) {
4361                     sb.append(decSep);
4362                     // no more group separators after the decimal separator
4363                     grpSep = '\0';
4364                     continue;
4365                 }
4366 
4367                 char c = value.charAt(j);
4368                 sb.append((char) ((c - '0') + zero));
4369                 if (grpSep != '\0' && j != dot - 1 && ((dot - j) % grpSize == 1)) {
4370                     sb.append(grpSep);
4371                 }
4372             }
4373 
4374             // apply zero padding
4375             if (width != -1 && f.contains(Flags.ZERO_PAD)) {
4376                 sb.ensureCapacity(width);
4377                 for (int k = sb.length(); k < width; k++) {
4378                     sb.insert(begin, zero);
4379                 }
4380             }
4381 
4382             return sb;
4383         }
4384     }
4385 
4386     private static class Flags {
4387         private int flags;
4388 
4389         static final Flags NONE          = new Flags(0);      // ''
4390 
4391         // duplicate declarations from Formattable.java
4392         static final Flags LEFT_JUSTIFY  = new Flags(1<<0);   // '-'
4393         static final Flags UPPERCASE     = new Flags(1<<1);   // '^'
4394         static final Flags ALTERNATE     = new Flags(1<<2);   // '#'
4395 
4396         // numerics
4397         static final Flags PLUS          = new Flags(1<<3);   // '+'
4398         static final Flags LEADING_SPACE = new Flags(1<<4);   // ' '
4399         static final Flags ZERO_PAD      = new Flags(1<<5);   // '0'
4400         static final Flags GROUP         = new Flags(1<<6);   // ','
4401         static final Flags PARENTHESES   = new Flags(1<<7);   // '('
4402 
4403         // indexing
4404         static final Flags PREVIOUS      = new Flags(1<<8);   // '<'
4405 
4406         private Flags(int f) {
4407             flags = f;
4408         }
4409 
4410         public int valueOf() {
4411             return flags;
4412         }
4413 
4414         public boolean contains(Flags f) {
4415             return (flags & f.valueOf()) == f.valueOf();
4416         }
4417 
4418         public Flags dup() {
4419             return new Flags(flags);
4420         }
4421 
4422         private Flags add(Flags f) {
4423             flags |= f.valueOf();
4424             return this;
4425         }
4426 
4427         public Flags remove(Flags f) {
4428             flags &= ~f.valueOf();
4429             return this;
4430         }
4431 
4432         public static Flags parse(String s, int start, int end) {
4433             Flags f = new Flags(0);
4434             for (int i = start; i < end; i++) {
4435                 char c = s.charAt(i);
4436                 Flags v = parse(c);
4437                 if (f.contains(v))
4438                     throw new DuplicateFormatFlagsException(v.toString());
4439                 f.add(v);
4440             }
4441             return f;
4442         }
4443 
4444         // parse those flags which may be provided by users
4445         private static Flags parse(char c) {
4446             switch (c) {
4447             case '-': return LEFT_JUSTIFY;
4448             case '#': return ALTERNATE;
4449             case '+': return PLUS;
4450             case ' ': return LEADING_SPACE;
4451             case '0': return ZERO_PAD;
4452             case ',': return GROUP;
4453             case '(': return PARENTHESES;
4454             case '<': return PREVIOUS;
4455             default:
4456                 throw new UnknownFormatFlagsException(String.valueOf(c));
4457             }
4458         }
4459 
4460         // Returns a string representation of the current {@code Flags}.
4461         public static String toString(Flags f) {
4462             return f.toString();
4463         }
4464 
4465         public String toString() {
4466             StringBuilder sb = new StringBuilder();
4467             if (contains(LEFT_JUSTIFY))  sb.append('-');
4468             if (contains(UPPERCASE))     sb.append('^');
4469             if (contains(ALTERNATE))     sb.append('#');
4470             if (contains(PLUS))          sb.append('+');
4471             if (contains(LEADING_SPACE)) sb.append(' ');
4472             if (contains(ZERO_PAD))      sb.append('0');
4473             if (contains(GROUP))         sb.append(',');
4474             if (contains(PARENTHESES))   sb.append('(');
4475             if (contains(PREVIOUS))      sb.append('<');
4476             return sb.toString();
4477         }
4478     }
4479 
4480     private static class Conversion {
4481         // Byte, Short, Integer, Long, BigInteger
4482         // (and associated primitives due to autoboxing)
4483         static final char DECIMAL_INTEGER     = 'd';
4484         static final char OCTAL_INTEGER       = 'o';
4485         static final char HEXADECIMAL_INTEGER = 'x';
4486         static final char HEXADECIMAL_INTEGER_UPPER = 'X';
4487 
4488         // Float, Double, BigDecimal
4489         // (and associated primitives due to autoboxing)
4490         static final char SCIENTIFIC          = 'e';
4491         static final char SCIENTIFIC_UPPER    = 'E';
4492         static final char GENERAL             = 'g';
4493         static final char GENERAL_UPPER       = 'G';
4494         static final char DECIMAL_FLOAT       = 'f';
4495         static final char HEXADECIMAL_FLOAT   = 'a';
4496         static final char HEXADECIMAL_FLOAT_UPPER = 'A';
4497 
4498         // Character, Byte, Short, Integer
4499         // (and associated primitives due to autoboxing)
4500         static final char CHARACTER           = 'c';
4501         static final char CHARACTER_UPPER     = 'C';
4502 
4503         // java.util.Date, java.util.Calendar, long
4504         static final char DATE_TIME           = 't';
4505         static final char DATE_TIME_UPPER     = 'T';
4506 
4507         // if (arg.TYPE != boolean) return boolean
4508         // if (arg != null) return true; else return false;
4509         static final char BOOLEAN             = 'b';
4510         static final char BOOLEAN_UPPER       = 'B';
4511         // if (arg instanceof Formattable) arg.formatTo()
4512         // else arg.toString();
4513         static final char STRING              = 's';
4514         static final char STRING_UPPER        = 'S';
4515         // arg.hashCode()
4516         static final char HASHCODE            = 'h';
4517         static final char HASHCODE_UPPER      = 'H';
4518 
4519         static final char LINE_SEPARATOR      = 'n';
4520         static final char PERCENT_SIGN        = '%';
4521 
4522         static boolean isValid(char c) {
4523             return (isGeneral(c) || isInteger(c) || isFloat(c) || isText(c)
4524                     || c == 't' || isCharacter(c));
4525         }
4526 
4527         // Returns true iff the Conversion is applicable to all objects.
4528         static boolean isGeneral(char c) {
4529             switch (c) {
4530             case BOOLEAN:
4531             case BOOLEAN_UPPER:
4532             case STRING:
4533             case STRING_UPPER:
4534             case HASHCODE:
4535             case HASHCODE_UPPER:
4536                 return true;
4537             default:
4538                 return false;
4539             }
4540         }
4541 
4542         // Returns true iff the Conversion is applicable to character.
4543         static boolean isCharacter(char c) {
4544             switch (c) {
4545             case CHARACTER:
4546             case CHARACTER_UPPER:
4547                 return true;
4548             default:
4549                 return false;
4550             }
4551         }
4552 
4553         // Returns true iff the Conversion is an integer type.
4554         static boolean isInteger(char c) {
4555             switch (c) {
4556             case DECIMAL_INTEGER:
4557             case OCTAL_INTEGER:
4558             case HEXADECIMAL_INTEGER:
4559             case HEXADECIMAL_INTEGER_UPPER:
4560                 return true;
4561             default:
4562                 return false;
4563             }
4564         }
4565 
4566         // Returns true iff the Conversion is a floating-point type.
4567         static boolean isFloat(char c) {
4568             switch (c) {
4569             case SCIENTIFIC:
4570             case SCIENTIFIC_UPPER:
4571             case GENERAL:
4572             case GENERAL_UPPER:
4573             case DECIMAL_FLOAT:
4574             case HEXADECIMAL_FLOAT:
4575             case HEXADECIMAL_FLOAT_UPPER:
4576                 return true;
4577             default:
4578                 return false;
4579             }
4580         }
4581 
4582         // Returns true iff the Conversion does not require an argument
4583         static boolean isText(char c) {
4584             switch (c) {
4585             case LINE_SEPARATOR:
4586             case PERCENT_SIGN:
4587                 return true;
4588             default:
4589                 return false;
4590             }
4591         }
4592     }
4593 
4594     private static class DateTime {
4595         static final char HOUR_OF_DAY_0 = 'H'; // (00 - 23)
4596         static final char HOUR_0        = 'I'; // (01 - 12)
4597         static final char HOUR_OF_DAY   = 'k'; // (0 - 23) -- like H
4598         static final char HOUR          = 'l'; // (1 - 12) -- like I
4599         static final char MINUTE        = 'M'; // (00 - 59)
4600         static final char NANOSECOND    = 'N'; // (000000000 - 999999999)
4601         static final char MILLISECOND   = 'L'; // jdk, not in gnu (000 - 999)
4602         static final char MILLISECOND_SINCE_EPOCH = 'Q'; // (0 - 99...?)
4603         static final char AM_PM         = 'p'; // (am or pm)
4604         static final char SECONDS_SINCE_EPOCH = 's'; // (0 - 99...?)
4605         static final char SECOND        = 'S'; // (00 - 60 - leap second)
4606         static final char TIME          = 'T'; // (24 hour hh:mm:ss)
4607         static final char ZONE_NUMERIC  = 'z'; // (-1200 - +1200) - ls minus?
4608         static final char ZONE          = 'Z'; // (symbol)
4609 
4610         // Date
4611         static final char NAME_OF_DAY_ABBREV    = 'a'; // 'a'
4612         static final char NAME_OF_DAY           = 'A'; // 'A'
4613         static final char NAME_OF_MONTH_ABBREV  = 'b'; // 'b'
4614         static final char NAME_OF_MONTH         = 'B'; // 'B'
4615         static final char CENTURY               = 'C'; // (00 - 99)
4616         static final char DAY_OF_MONTH_0        = 'd'; // (01 - 31)
4617         static final char DAY_OF_MONTH          = 'e'; // (1 - 31) -- like d
4618 // *    static final char ISO_WEEK_OF_YEAR_2    = 'g'; // cross %y %V
4619 // *    static final char ISO_WEEK_OF_YEAR_4    = 'G'; // cross %Y %V
4620         static final char NAME_OF_MONTH_ABBREV_X  = 'h'; // -- same b
4621         static final char DAY_OF_YEAR           = 'j'; // (001 - 366)
4622         static final char MONTH                 = 'm'; // (01 - 12)
4623 // *    static final char DAY_OF_WEEK_1         = 'u'; // (1 - 7) Monday
4624 // *    static final char WEEK_OF_YEAR_SUNDAY   = 'U'; // (0 - 53) Sunday+
4625 // *    static final char WEEK_OF_YEAR_MONDAY_01 = 'V'; // (01 - 53) Monday+
4626 // *    static final char DAY_OF_WEEK_0         = 'w'; // (0 - 6) Sunday
4627 // *    static final char WEEK_OF_YEAR_MONDAY   = 'W'; // (00 - 53) Monday
4628         static final char YEAR_2                = 'y'; // (00 - 99)
4629         static final char YEAR_4                = 'Y'; // (0000 - 9999)
4630 
4631         // Composites
4632         static final char TIME_12_HOUR  = 'r'; // (hh:mm:ss [AP]M)
4633         static final char TIME_24_HOUR  = 'R'; // (hh:mm same as %H:%M)
4634 // *    static final char LOCALE_TIME   = 'X'; // (%H:%M:%S) - parse format?
4635         static final char DATE_TIME             = 'c';
4636                                             // (Sat Nov 04 12:02:33 EST 1999)
4637         static final char DATE                  = 'D'; // (mm/dd/yy)
4638         static final char ISO_STANDARD_DATE     = 'F'; // (%Y-%m-%d)
4639 // *    static final char LOCALE_DATE           = 'x'; // (mm/dd/yy)
4640 
4641         static boolean isValid(char c) {
4642             switch (c) {
4643             case HOUR_OF_DAY_0:
4644             case HOUR_0:
4645             case HOUR_OF_DAY:
4646             case HOUR:
4647             case MINUTE:
4648             case NANOSECOND:
4649             case MILLISECOND:
4650             case MILLISECOND_SINCE_EPOCH:
4651             case AM_PM:
4652             case SECONDS_SINCE_EPOCH:
4653             case SECOND:
4654             case TIME:
4655             case ZONE_NUMERIC:
4656             case ZONE:
4657 
4658             // Date
4659             case NAME_OF_DAY_ABBREV:
4660             case NAME_OF_DAY:
4661             case NAME_OF_MONTH_ABBREV:
4662             case NAME_OF_MONTH:
4663             case CENTURY:
4664             case DAY_OF_MONTH_0:
4665             case DAY_OF_MONTH:
4666 // *        case ISO_WEEK_OF_YEAR_2:
4667 // *        case ISO_WEEK_OF_YEAR_4:
4668             case NAME_OF_MONTH_ABBREV_X:
4669             case DAY_OF_YEAR:
4670             case MONTH:
4671 // *        case DAY_OF_WEEK_1:
4672 // *        case WEEK_OF_YEAR_SUNDAY:
4673 // *        case WEEK_OF_YEAR_MONDAY_01:
4674 // *        case DAY_OF_WEEK_0:
4675 // *        case WEEK_OF_YEAR_MONDAY:
4676             case YEAR_2:
4677             case YEAR_4:
4678 
4679             // Composites
4680             case TIME_12_HOUR:
4681             case TIME_24_HOUR:
4682 // *        case LOCALE_TIME:
4683             case DATE_TIME:
4684             case DATE:
4685             case ISO_STANDARD_DATE:
4686 // *        case LOCALE_DATE:
4687                 return true;
4688             default:
4689                 return false;
4690             }
4691         }
4692     }
4693 }