1 /*
   2  * Copyright (c) 1994, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.nio.charset.Charset;
  31 import java.util.ArrayList;
  32 import java.util.Arrays;
  33 import java.util.Comparator;
  34 import java.util.Formatter;
  35 import java.util.Locale;
  36 import java.util.Objects;
  37 import java.util.Spliterator;
  38 import java.util.StringJoiner;
  39 import java.util.function.IntConsumer;
  40 import java.util.regex.Matcher;
  41 import java.util.regex.Pattern;
  42 import java.util.regex.PatternSyntaxException;
  43 import java.util.stream.IntStream;
  44 import java.util.stream.StreamSupport;
  45 
  46 /**
  47  * The {@code String} class represents character strings. All
  48  * string literals in Java programs, such as {@code "abc"}, are
  49  * implemented as instances of this class.
  50  * <p>
  51  * Strings are constant; their values cannot be changed after they
  52  * are created. String buffers support mutable strings.
  53  * Because String objects are immutable they can be shared. For example:
  54  * <blockquote><pre>
  55  *     String str = "abc";
  56  * </pre></blockquote><p>
  57  * is equivalent to:
  58  * <blockquote><pre>
  59  *     char data[] = {'a', 'b', 'c'};
  60  *     String str = new String(data);
  61  * </pre></blockquote><p>
  62  * Here are some more examples of how strings can be used:
  63  * <blockquote><pre>
  64  *     System.out.println("abc");
  65  *     String cde = "cde";
  66  *     System.out.println("abc" + cde);
  67  *     String c = "abc".substring(2,3);
  68  *     String d = cde.substring(1, 2);
  69  * </pre></blockquote>
  70  * <p>
  71  * The class {@code String} includes methods for examining
  72  * individual characters of the sequence, for comparing strings, for
  73  * searching strings, for extracting substrings, and for creating a
  74  * copy of a string with all characters translated to uppercase or to
  75  * lowercase. Case mapping is based on the Unicode Standard version
  76  * specified by the {@link java.lang.Character Character} class.
  77  * <p>
  78  * The Java language provides special support for the string
  79  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  80  * other objects to strings. String concatenation is implemented
  81  * through the {@code StringBuilder}(or {@code StringBuffer})
  82  * class and its {@code append} method.
  83  * String conversions are implemented through the method
  84  * {@code toString}, defined by {@code Object} and
  85  * inherited by all classes in Java. For additional information on
  86  * string concatenation and conversion, see Gosling, Joy, and Steele,
  87  * <i>The Java Language Specification</i>.
  88  *
  89  * <p> Unless otherwise noted, passing a <tt>null</tt> argument to a constructor
  90  * or method in this class will cause a {@link NullPointerException} to be
  91  * thrown.
  92  *
  93  * <p>A {@code String} represents a string in the UTF-16 format
  94  * in which <em>supplementary characters</em> are represented by <em>surrogate
  95  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
  96  * Character Representations</a> in the {@code Character} class for
  97  * more information).
  98  * Index values refer to {@code char} code units, so a supplementary
  99  * character uses two positions in a {@code String}.
 100  * <p>The {@code String} class provides methods for dealing with
 101  * Unicode code points (i.e., characters), in addition to those for
 102  * dealing with Unicode code units (i.e., {@code char} values).
 103  *
 104  * @author  Lee Boynton
 105  * @author  Arthur van Hoff
 106  * @author  Martin Buchholz
 107  * @author  Ulf Zibis
 108  * @see     java.lang.Object#toString()
 109  * @see     java.lang.StringBuffer
 110  * @see     java.lang.StringBuilder
 111  * @see     java.nio.charset.Charset
 112  * @since   1.0
 113  */
 114 
 115 public final class String
 116     implements java.io.Serializable, Comparable<String>, CharSequence {
 117     /** The value is used for character storage. */
 118     private final char value[];
 119 
 120     /** Cache the hash code for the string */
 121     private int hash; // Default to 0
 122 
 123     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 124     private static final long serialVersionUID = -6849794470754667710L;
 125 
 126     /**
 127      * Class String is special cased within the Serialization Stream Protocol.
 128      *
 129      * A String instance is written into an ObjectOutputStream according to
 130      * <a href="{@docRoot}/../platform/serialization/spec/output.html">
 131      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 132      */
 133     private static final ObjectStreamField[] serialPersistentFields =
 134         new ObjectStreamField[0];
 135 
 136     /**
 137      * Initializes a newly created {@code String} object so that it represents
 138      * an empty character sequence.  Note that use of this constructor is
 139      * unnecessary since Strings are immutable.
 140      */
 141     public String() {
 142         this.value = "".value;
 143     }
 144 
 145     /**
 146      * Initializes a newly created {@code String} object so that it represents
 147      * the same sequence of characters as the argument; in other words, the
 148      * newly created string is a copy of the argument string. Unless an
 149      * explicit copy of {@code original} is needed, use of this constructor is
 150      * unnecessary since Strings are immutable.
 151      *
 152      * @param  original
 153      *         A {@code String}
 154      */
 155     public String(String original) {
 156         this.value = original.value;
 157         this.hash = original.hash;
 158     }
 159 
 160     /**
 161      * Allocates a new {@code String} so that it represents the sequence of
 162      * characters currently contained in the character array argument. The
 163      * contents of the character array are copied; subsequent modification of
 164      * the character array does not affect the newly created string.
 165      *
 166      * @param  value
 167      *         The initial value of the string
 168      */
 169     public String(char value[]) {
 170         this.value = Arrays.copyOf(value, value.length);
 171     }
 172 
 173     /**
 174      * Allocates a new {@code String} that contains characters from a subarray
 175      * of the character array argument. The {@code offset} argument is the
 176      * index of the first character of the subarray and the {@code count}
 177      * argument specifies the length of the subarray. The contents of the
 178      * subarray are copied; subsequent modification of the character array does
 179      * not affect the newly created string.
 180      *
 181      * @param  value
 182          *         Array that is the source of characters
 183      *
 184      * @param  offset
 185      *         The initial offset
 186      *
 187      * @param  count
 188      *         The length
 189      *
 190      * @throws  IndexOutOfBoundsException
 191      *          If {@code offset} is negative, {@code count} is negative, or
 192      *          {@code offset} is greater than {@code value.length - count}
 193      */
 194     public String(char value[], int offset, int count) {
 195         if (offset < 0) {
 196             throw new StringIndexOutOfBoundsException(offset);
 197         }
 198         if (count <= 0) {
 199             if (count < 0) {
 200                 throw new StringIndexOutOfBoundsException(count);
 201             }
 202             if (offset <= value.length) {
 203                 this.value = "".value;
 204                 return;
 205             }
 206         }
 207         // Note: offset or count might be near -1>>>1.
 208         if (offset > value.length - count) {
 209             throw new StringIndexOutOfBoundsException(offset + count);
 210         }
 211         this.value = Arrays.copyOfRange(value, offset, offset+count);
 212     }
 213 
 214     /**
 215      * Allocates a new {@code String} that contains characters from a subarray
 216      * of the <a href="Character.html#unicode">Unicode code point</a> array
 217      * argument.  The {@code offset} argument is the index of the first code
 218      * point of the subarray and the {@code count} argument specifies the
 219      * length of the subarray.  The contents of the subarray are converted to
 220      * {@code char}s; subsequent modification of the {@code int} array does not
 221      * affect the newly created string.
 222      *
 223      * @param  codePoints
 224      *         Array that is the source of Unicode code points
 225      *
 226      * @param  offset
 227      *         The initial offset
 228      *
 229      * @param  count
 230      *         The length
 231      *
 232      * @throws  IllegalArgumentException
 233      *          If any invalid Unicode code point is found in {@code
 234      *          codePoints}
 235      *
 236      * @throws  IndexOutOfBoundsException
 237      *          If {@code offset} is negative, {@code count} is negative, or
 238      *          {@code offset} is greater than {@code codePoints.length - count}
 239      *
 240      * @since  1.5
 241      */
 242     public String(int[] codePoints, int offset, int count) {
 243         if (offset < 0) {
 244             throw new StringIndexOutOfBoundsException(offset);
 245         }
 246         if (count <= 0) {
 247             if (count < 0) {
 248                 throw new StringIndexOutOfBoundsException(count);
 249             }
 250             if (offset <= codePoints.length) {
 251                 this.value = "".value;
 252                 return;
 253             }
 254         }
 255         // Note: offset or count might be near -1>>>1.
 256         if (offset > codePoints.length - count) {
 257             throw new StringIndexOutOfBoundsException(offset + count);
 258         }
 259 
 260         final int end = offset + count;
 261 
 262         // Pass 1: Compute precise size of char[]
 263         int n = count;
 264         for (int i = offset; i < end; i++) {
 265         int c = codePoints[i];
 266         if (Character.isBmpCodePoint(c))
 267             continue;
 268         else if (Character.isValidCodePoint(c))
 269             n++;
 270             else throw new IllegalArgumentException(Integer.toString(c));
 271         }
 272 
 273         // Pass 2: Allocate and fill in char[]
 274         final char[] v = new char[n];
 275 
 276         for (int i = offset, j = 0; i < end; i++, j++) {
 277             int c = codePoints[i];
 278             if (Character.isBmpCodePoint(c))
 279                 v[j] = (char)c;
 280             else
 281                 Character.toSurrogates(c, v, j++);
 282         }
 283 
 284         this.value = v;
 285     }
 286 
 287     /**
 288      * Allocates a new {@code String} constructed from a subarray of an array
 289      * of 8-bit integer values.
 290      *
 291      * <p> The {@code offset} argument is the index of the first byte of the
 292      * subarray, and the {@code count} argument specifies the length of the
 293      * subarray.
 294      *
 295      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 296      * specified in the method above.
 297      *
 298      * @deprecated This method does not properly convert bytes into characters.
 299      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 300      * {@code String} constructors that take a {@link
 301      * java.nio.charset.Charset}, charset name, or that use the platform's
 302      * default charset.
 303      *
 304      * @param  ascii
 305      *         The bytes to be converted to characters
 306      *
 307      * @param  hibyte
 308      *         The top 8 bits of each 16-bit Unicode code unit
 309      *
 310      * @param  offset
 311      *         The initial offset
 312      * @param  count
 313      *         The length
 314      *
 315      * @throws  IndexOutOfBoundsException
 316      *          If {@code offset} is negative, {@code count} is negative, or
 317      *          {@code offset} is greater than {@code ascii.length - count}
 318      *
 319      * @see  #String(byte[], int)
 320      * @see  #String(byte[], int, int, java.lang.String)
 321      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 322      * @see  #String(byte[], int, int)
 323      * @see  #String(byte[], java.lang.String)
 324      * @see  #String(byte[], java.nio.charset.Charset)
 325      * @see  #String(byte[])
 326      */
 327     @Deprecated
 328     public String(byte ascii[], int hibyte, int offset, int count) {
 329         checkBounds(ascii, offset, count);
 330         char value[] = new char[count];
 331 
 332         if (hibyte == 0) {
 333             for (int i = count; i-- > 0;) {
 334                 value[i] = (char)(ascii[i + offset] & 0xff);
 335             }
 336         } else {
 337             hibyte <<= 8;
 338             for (int i = count; i-- > 0;) {
 339                 value[i] = (char)(hibyte | (ascii[i + offset] & 0xff));
 340             }
 341         }
 342         this.value = value;
 343     }
 344 
 345     /**
 346      * Allocates a new {@code String} containing characters constructed from
 347      * an array of 8-bit integer values. Each character <i>c</i>in the
 348      * resulting string is constructed from the corresponding component
 349      * <i>b</i> in the byte array such that:
 350      *
 351      * <blockquote><pre>
 352      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 353      *                         | (<b><i>b</i></b> &amp; 0xff))
 354      * </pre></blockquote>
 355      *
 356      * @deprecated  This method does not properly convert bytes into
 357      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 358      * {@code String} constructors that take a {@link
 359      * java.nio.charset.Charset}, charset name, or that use the platform's
 360      * default charset.
 361      *
 362      * @param  ascii
 363      *         The bytes to be converted to characters
 364      *
 365      * @param  hibyte
 366      *         The top 8 bits of each 16-bit Unicode code unit
 367      *
 368      * @see  #String(byte[], int, int, java.lang.String)
 369      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 370      * @see  #String(byte[], int, int)
 371      * @see  #String(byte[], java.lang.String)
 372      * @see  #String(byte[], java.nio.charset.Charset)
 373      * @see  #String(byte[])
 374      */
 375     @Deprecated
 376     public String(byte ascii[], int hibyte) {
 377         this(ascii, hibyte, 0, ascii.length);
 378     }
 379 
 380     /* Common private utility method used to bounds check the byte array
 381      * and requested offset & length values used by the String(byte[],..)
 382      * constructors.
 383      */
 384     private static void checkBounds(byte[] bytes, int offset, int length) {
 385         if (length < 0)
 386             throw new StringIndexOutOfBoundsException(length);
 387         if (offset < 0)
 388             throw new StringIndexOutOfBoundsException(offset);
 389         if (offset > bytes.length - length)
 390             throw new StringIndexOutOfBoundsException(offset + length);
 391     }
 392 
 393     /**
 394      * Constructs a new {@code String} by decoding the specified subarray of
 395      * bytes using the specified charset.  The length of the new {@code String}
 396      * is a function of the charset, and hence may not be equal to the length
 397      * of the subarray.
 398      *
 399      * <p> The behavior of this constructor when the given bytes are not valid
 400      * in the given charset is unspecified.  The {@link
 401      * java.nio.charset.CharsetDecoder} class should be used when more control
 402      * over the decoding process is required.
 403      *
 404      * @param  bytes
 405      *         The bytes to be decoded into characters
 406      *
 407      * @param  offset
 408      *         The index of the first byte to decode
 409      *
 410      * @param  length
 411      *         The number of bytes to decode
 412 
 413      * @param  charsetName
 414      *         The name of a supported {@linkplain java.nio.charset.Charset
 415      *         charset}
 416      *
 417      * @throws  UnsupportedEncodingException
 418      *          If the named charset is not supported
 419      *
 420      * @throws  IndexOutOfBoundsException
 421      *          If {@code offset} is negative, {@code length} is negative, or
 422      *          {@code offset} is greater than {@code bytes.length - length}
 423      *
 424      * @since  1.1
 425      */
 426     public String(byte bytes[], int offset, int length, String charsetName)
 427             throws UnsupportedEncodingException {
 428         if (charsetName == null)
 429             throw new NullPointerException("charsetName");
 430         checkBounds(bytes, offset, length);
 431         this.value = StringCoding.decode(charsetName, bytes, offset, length);
 432     }
 433 
 434     /**
 435      * Constructs a new {@code String} by decoding the specified subarray of
 436      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 437      * The length of the new {@code String} is a function of the charset, and
 438      * hence may not be equal to the length of the subarray.
 439      *
 440      * <p> This method always replaces malformed-input and unmappable-character
 441      * sequences with this charset's default replacement string.  The {@link
 442      * java.nio.charset.CharsetDecoder} class should be used when more control
 443      * over the decoding process is required.
 444      *
 445      * @param  bytes
 446      *         The bytes to be decoded into characters
 447      *
 448      * @param  offset
 449      *         The index of the first byte to decode
 450      *
 451      * @param  length
 452      *         The number of bytes to decode
 453      *
 454      * @param  charset
 455      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 456      *         decode the {@code bytes}
 457      *
 458      * @throws  IndexOutOfBoundsException
 459      *          If {@code offset} is negative, {@code length} is negative, or
 460      *          {@code offset} is greater than {@code bytes.length - length}
 461      *
 462      * @since  1.6
 463      */
 464     public String(byte bytes[], int offset, int length, Charset charset) {
 465         if (charset == null)
 466             throw new NullPointerException("charset");
 467         checkBounds(bytes, offset, length);
 468         this.value =  StringCoding.decode(charset, bytes, offset, length);
 469     }
 470 
 471     /**
 472      * Constructs a new {@code String} by decoding the specified array of bytes
 473      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 474      * length of the new {@code String} is a function of the charset, and hence
 475      * may not be equal to the length of the byte array.
 476      *
 477      * <p> The behavior of this constructor when the given bytes are not valid
 478      * in the given charset is unspecified.  The {@link
 479      * java.nio.charset.CharsetDecoder} class should be used when more control
 480      * over the decoding process is required.
 481      *
 482      * @param  bytes
 483      *         The bytes to be decoded into characters
 484      *
 485      * @param  charsetName
 486      *         The name of a supported {@linkplain java.nio.charset.Charset
 487      *         charset}
 488      *
 489      * @throws  UnsupportedEncodingException
 490      *          If the named charset is not supported
 491      *
 492      * @since  1.1
 493      */
 494     public String(byte bytes[], String charsetName)
 495             throws UnsupportedEncodingException {
 496         this(bytes, 0, bytes.length, charsetName);
 497     }
 498 
 499     /**
 500      * Constructs a new {@code String} by decoding the specified array of
 501      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 502      * The length of the new {@code String} is a function of the charset, and
 503      * hence may not be equal to the length of the byte array.
 504      *
 505      * <p> This method always replaces malformed-input and unmappable-character
 506      * sequences with this charset's default replacement string.  The {@link
 507      * java.nio.charset.CharsetDecoder} class should be used when more control
 508      * over the decoding process is required.
 509      *
 510      * @param  bytes
 511      *         The bytes to be decoded into characters
 512      *
 513      * @param  charset
 514      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 515      *         decode the {@code bytes}
 516      *
 517      * @since  1.6
 518      */
 519     public String(byte bytes[], Charset charset) {
 520         this(bytes, 0, bytes.length, charset);
 521     }
 522 
 523     /**
 524      * Constructs a new {@code String} by decoding the specified subarray of
 525      * bytes using the platform's default charset.  The length of the new
 526      * {@code String} is a function of the charset, and hence may not be equal
 527      * to the length of the subarray.
 528      *
 529      * <p> The behavior of this constructor when the given bytes are not valid
 530      * in the default charset is unspecified.  The {@link
 531      * java.nio.charset.CharsetDecoder} class should be used when more control
 532      * over the decoding process is required.
 533      *
 534      * @param  bytes
 535      *         The bytes to be decoded into characters
 536      *
 537      * @param  offset
 538      *         The index of the first byte to decode
 539      *
 540      * @param  length
 541      *         The number of bytes to decode
 542      *
 543      * @throws  IndexOutOfBoundsException
 544      *          If {@code offset} is negative, {@code length} is negative, or
 545      *          {@code offset} is greater than {@code bytes.length - length}
 546      *
 547      * @since  1.1
 548      */
 549     public String(byte bytes[], int offset, int length) {
 550         checkBounds(bytes, offset, length);
 551         this.value = StringCoding.decode(bytes, offset, length);
 552     }
 553 
 554     /**
 555      * Constructs a new {@code String} by decoding the specified array of bytes
 556      * using the platform's default charset.  The length of the new {@code
 557      * String} is a function of the charset, and hence may not be equal to the
 558      * length of the byte array.
 559      *
 560      * <p> The behavior of this constructor when the given bytes are not valid
 561      * in the default charset is unspecified.  The {@link
 562      * java.nio.charset.CharsetDecoder} class should be used when more control
 563      * over the decoding process is required.
 564      *
 565      * @param  bytes
 566      *         The bytes to be decoded into characters
 567      *
 568      * @since  1.1
 569      */
 570     public String(byte bytes[]) {
 571         this(bytes, 0, bytes.length);
 572     }
 573 
 574     /**
 575      * Allocates a new string that contains the sequence of characters
 576      * currently contained in the string buffer argument. The contents of the
 577      * string buffer are copied; subsequent modification of the string buffer
 578      * does not affect the newly created string.
 579      *
 580      * @param  buffer
 581      *         A {@code StringBuffer}
 582      */
 583     public String(StringBuffer buffer) {
 584         synchronized(buffer) {
 585             this.value = Arrays.copyOf(buffer.getValue(), buffer.length());
 586         }
 587     }
 588 
 589     /**
 590      * Allocates a new string that contains the sequence of characters
 591      * currently contained in the string builder argument. The contents of the
 592      * string builder are copied; subsequent modification of the string builder
 593      * does not affect the newly created string.
 594      *
 595      * <p> This constructor is provided to ease migration to {@code
 596      * StringBuilder}. Obtaining a string from a string builder via the {@code
 597      * toString} method is likely to run faster and is generally preferred.
 598      *
 599      * @param   builder
 600      *          A {@code StringBuilder}
 601      *
 602      * @since  1.5
 603      */
 604     public String(StringBuilder builder) {
 605         this.value = Arrays.copyOf(builder.getValue(), builder.length());
 606     }
 607 
 608     /*
 609     * Package private constructor which shares value array for speed.
 610     * this constructor is always expected to be called with share==true.
 611     * a separate constructor is needed because we already have a public
 612     * String(char[]) constructor that makes a copy of the given char[].
 613     */
 614     String(char[] value, boolean share) {
 615         // assert share : "unshared not supported";
 616         this.value = value;
 617     }
 618 
 619     /**
 620      * Returns the length of this string.
 621      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 622      * code units</a> in the string.
 623      *
 624      * @return  the length of the sequence of characters represented by this
 625      *          object.
 626      */
 627     public int length() {
 628         return value.length;
 629     }
 630 
 631     /**
 632      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 633      *
 634      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 635      * {@code false}
 636      *
 637      * @since 1.6
 638      */
 639     public boolean isEmpty() {
 640         return value.length == 0;
 641     }
 642 
 643     /**
 644      * Returns the {@code char} value at the
 645      * specified index. An index ranges from {@code 0} to
 646      * {@code length() - 1}. The first {@code char} value of the sequence
 647      * is at index {@code 0}, the next at index {@code 1},
 648      * and so on, as for array indexing.
 649      *
 650      * <p>If the {@code char} value specified by the index is a
 651      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 652      * value is returned.
 653      *
 654      * @param      index   the index of the {@code char} value.
 655      * @return     the {@code char} value at the specified index of this string.
 656      *             The first {@code char} value is at index {@code 0}.
 657      * @exception  IndexOutOfBoundsException  if the {@code index}
 658      *             argument is negative or not less than the length of this
 659      *             string.
 660      */
 661     public char charAt(int index) {
 662         if ((index < 0) || (index >= value.length)) {
 663             throw new StringIndexOutOfBoundsException(index);
 664         }
 665         return value[index];
 666     }
 667 
 668     /**
 669      * Returns the character (Unicode code point) at the specified
 670      * index. The index refers to {@code char} values
 671      * (Unicode code units) and ranges from {@code 0} to
 672      * {@link #length()}{@code  - 1}.
 673      *
 674      * <p> If the {@code char} value specified at the given index
 675      * is in the high-surrogate range, the following index is less
 676      * than the length of this {@code String}, and the
 677      * {@code char} value at the following index is in the
 678      * low-surrogate range, then the supplementary code point
 679      * corresponding to this surrogate pair is returned. Otherwise,
 680      * the {@code char} value at the given index is returned.
 681      *
 682      * @param      index the index to the {@code char} values
 683      * @return     the code point value of the character at the
 684      *             {@code index}
 685      * @exception  IndexOutOfBoundsException  if the {@code index}
 686      *             argument is negative or not less than the length of this
 687      *             string.
 688      * @since      1.5
 689      */
 690     public int codePointAt(int index) {
 691         if ((index < 0) || (index >= value.length)) {
 692             throw new StringIndexOutOfBoundsException(index);
 693         }
 694         return Character.codePointAtImpl(value, index, value.length);
 695     }
 696 
 697     /**
 698      * Returns the character (Unicode code point) before the specified
 699      * index. The index refers to {@code char} values
 700      * (Unicode code units) and ranges from {@code 1} to {@link
 701      * CharSequence#length() length}.
 702      *
 703      * <p> If the {@code char} value at {@code (index - 1)}
 704      * is in the low-surrogate range, {@code (index - 2)} is not
 705      * negative, and the {@code char} value at {@code (index -
 706      * 2)} is in the high-surrogate range, then the
 707      * supplementary code point value of the surrogate pair is
 708      * returned. If the {@code char} value at {@code index -
 709      * 1} is an unpaired low-surrogate or a high-surrogate, the
 710      * surrogate value is returned.
 711      *
 712      * @param     index the index following the code point that should be returned
 713      * @return    the Unicode code point value before the given index.
 714      * @exception IndexOutOfBoundsException if the {@code index}
 715      *            argument is less than 1 or greater than the length
 716      *            of this string.
 717      * @since     1.5
 718      */
 719     public int codePointBefore(int index) {
 720         int i = index - 1;
 721         if ((i < 0) || (i >= value.length)) {
 722             throw new StringIndexOutOfBoundsException(index);
 723         }
 724         return Character.codePointBeforeImpl(value, index, 0);
 725     }
 726 
 727     /**
 728      * Returns the number of Unicode code points in the specified text
 729      * range of this {@code String}. The text range begins at the
 730      * specified {@code beginIndex} and extends to the
 731      * {@code char} at index {@code endIndex - 1}. Thus the
 732      * length (in {@code char}s) of the text range is
 733      * {@code endIndex-beginIndex}. Unpaired surrogates within
 734      * the text range count as one code point each.
 735      *
 736      * @param beginIndex the index to the first {@code char} of
 737      * the text range.
 738      * @param endIndex the index after the last {@code char} of
 739      * the text range.
 740      * @return the number of Unicode code points in the specified text
 741      * range
 742      * @exception IndexOutOfBoundsException if the
 743      * {@code beginIndex} is negative, or {@code endIndex}
 744      * is larger than the length of this {@code String}, or
 745      * {@code beginIndex} is larger than {@code endIndex}.
 746      * @since  1.5
 747      */
 748     public int codePointCount(int beginIndex, int endIndex) {
 749         if (beginIndex < 0 || endIndex > value.length || beginIndex > endIndex) {
 750             throw new IndexOutOfBoundsException();
 751         }
 752         return Character.codePointCountImpl(value, beginIndex, endIndex - beginIndex);
 753     }
 754 
 755     /**
 756      * Returns the index within this {@code String} that is
 757      * offset from the given {@code index} by
 758      * {@code codePointOffset} code points. Unpaired surrogates
 759      * within the text range given by {@code index} and
 760      * {@code codePointOffset} count as one code point each.
 761      *
 762      * @param index the index to be offset
 763      * @param codePointOffset the offset in code points
 764      * @return the index within this {@code String}
 765      * @exception IndexOutOfBoundsException if {@code index}
 766      *   is negative or larger then the length of this
 767      *   {@code String}, or if {@code codePointOffset} is positive
 768      *   and the substring starting with {@code index} has fewer
 769      *   than {@code codePointOffset} code points,
 770      *   or if {@code codePointOffset} is negative and the substring
 771      *   before {@code index} has fewer than the absolute value
 772      *   of {@code codePointOffset} code points.
 773      * @since 1.5
 774      */
 775     public int offsetByCodePoints(int index, int codePointOffset) {
 776         if (index < 0 || index > value.length) {
 777             throw new IndexOutOfBoundsException();
 778         }
 779         return Character.offsetByCodePointsImpl(value, 0, value.length,
 780                 index, codePointOffset);
 781     }
 782 
 783     /**
 784      * Copy characters from this string into dst starting at dstBegin.
 785      * This method doesn't perform any range checking.
 786      */
 787     void getChars(char dst[], int dstBegin) {
 788         System.arraycopy(value, 0, dst, dstBegin, value.length);
 789     }
 790 
 791     /**
 792      * Copies characters from this string into the destination character
 793      * array.
 794      * <p>
 795      * The first character to be copied is at index {@code srcBegin};
 796      * the last character to be copied is at index {@code srcEnd-1}
 797      * (thus the total number of characters to be copied is
 798      * {@code srcEnd-srcBegin}). The characters are copied into the
 799      * subarray of {@code dst} starting at index {@code dstBegin}
 800      * and ending at index:
 801      * <blockquote><pre>
 802      *     dstBegin + (srcEnd-srcBegin) - 1
 803      * </pre></blockquote>
 804      *
 805      * @param      srcBegin   index of the first character in the string
 806      *                        to copy.
 807      * @param      srcEnd     index after the last character in the string
 808      *                        to copy.
 809      * @param      dst        the destination array.
 810      * @param      dstBegin   the start offset in the destination array.
 811      * @exception IndexOutOfBoundsException If any of the following
 812      *            is true:
 813      *            <ul><li>{@code srcBegin} is negative.
 814      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 815      *            <li>{@code srcEnd} is greater than the length of this
 816      *                string
 817      *            <li>{@code dstBegin} is negative
 818      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 819      *                {@code dst.length}</ul>
 820      */
 821     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 822         if (srcBegin < 0) {
 823             throw new StringIndexOutOfBoundsException(srcBegin);
 824         }
 825         if (srcEnd > value.length) {
 826             throw new StringIndexOutOfBoundsException(srcEnd);
 827         }
 828         if (srcBegin > srcEnd) {
 829             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 830         }
 831         System.arraycopy(value, srcBegin, dst, dstBegin, srcEnd - srcBegin);
 832     }
 833 
 834     /**
 835      * Copies characters from this string into the destination byte array. Each
 836      * byte receives the 8 low-order bits of the corresponding character. The
 837      * eight high-order bits of each character are not copied and do not
 838      * participate in the transfer in any way.
 839      *
 840      * <p> The first character to be copied is at index {@code srcBegin}; the
 841      * last character to be copied is at index {@code srcEnd-1}.  The total
 842      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 843      * characters, converted to bytes, are copied into the subarray of {@code
 844      * dst} starting at index {@code dstBegin} and ending at index:
 845      *
 846      * <blockquote><pre>
 847      *     dstBegin + (srcEnd-srcBegin) - 1
 848      * </pre></blockquote>
 849      *
 850      * @deprecated  This method does not properly convert characters into
 851      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 852      * {@link #getBytes()} method, which uses the platform's default charset.
 853      *
 854      * @param  srcBegin
 855      *         Index of the first character in the string to copy
 856      *
 857      * @param  srcEnd
 858      *         Index after the last character in the string to copy
 859      *
 860      * @param  dst
 861      *         The destination array
 862      *
 863      * @param  dstBegin
 864      *         The start offset in the destination array
 865      *
 866      * @throws  IndexOutOfBoundsException
 867      *          If any of the following is true:
 868      *          <ul>
 869      *            <li> {@code srcBegin} is negative
 870      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 871      *            <li> {@code srcEnd} is greater than the length of this String
 872      *            <li> {@code dstBegin} is negative
 873      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 874      *                 dst.length}
 875      *          </ul>
 876      */
 877     @Deprecated
 878     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 879         if (srcBegin < 0) {
 880             throw new StringIndexOutOfBoundsException(srcBegin);
 881         }
 882         if (srcEnd > value.length) {
 883             throw new StringIndexOutOfBoundsException(srcEnd);
 884         }
 885         if (srcBegin > srcEnd) {
 886             throw new StringIndexOutOfBoundsException(srcEnd - srcBegin);
 887         }
 888         Objects.requireNonNull(dst);
 889 
 890         int j = dstBegin;
 891         int n = srcEnd;
 892         int i = srcBegin;
 893         char[] val = value;   /* avoid getfield opcode */
 894 
 895         while (i < n) {
 896             dst[j++] = (byte)val[i++];
 897         }
 898     }
 899 
 900     /**
 901      * Encodes this {@code String} into a sequence of bytes using the named
 902      * charset, storing the result into a new byte array.
 903      *
 904      * <p> The behavior of this method when this string cannot be encoded in
 905      * the given charset is unspecified.  The {@link
 906      * java.nio.charset.CharsetEncoder} class should be used when more control
 907      * over the encoding process is required.
 908      *
 909      * @param  charsetName
 910      *         The name of a supported {@linkplain java.nio.charset.Charset
 911      *         charset}
 912      *
 913      * @return  The resultant byte array
 914      *
 915      * @throws  UnsupportedEncodingException
 916      *          If the named charset is not supported
 917      *
 918      * @since  1.1
 919      */
 920     public byte[] getBytes(String charsetName)
 921             throws UnsupportedEncodingException {
 922         if (charsetName == null) throw new NullPointerException();
 923         return StringCoding.encode(charsetName, value, 0, value.length);
 924     }
 925 
 926     /**
 927      * Encodes this {@code String} into a sequence of bytes using the given
 928      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 929      * new byte array.
 930      *
 931      * <p> This method always replaces malformed-input and unmappable-character
 932      * sequences with this charset's default replacement byte array.  The
 933      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 934      * control over the encoding process is required.
 935      *
 936      * @param  charset
 937      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 938      *         the {@code String}
 939      *
 940      * @return  The resultant byte array
 941      *
 942      * @since  1.6
 943      */
 944     public byte[] getBytes(Charset charset) {
 945         if (charset == null) throw new NullPointerException();
 946         return StringCoding.encode(charset, value, 0, value.length);
 947     }
 948 
 949     /**
 950      * Encodes this {@code String} into a sequence of bytes using the
 951      * platform's default charset, storing the result into a new byte array.
 952      *
 953      * <p> The behavior of this method when this string cannot be encoded in
 954      * the default charset is unspecified.  The {@link
 955      * java.nio.charset.CharsetEncoder} class should be used when more control
 956      * over the encoding process is required.
 957      *
 958      * @return  The resultant byte array
 959      *
 960      * @since      1.1
 961      */
 962     public byte[] getBytes() {
 963         return StringCoding.encode(value, 0, value.length);
 964     }
 965 
 966     /**
 967      * Compares this string to the specified object.  The result is {@code
 968      * true} if and only if the argument is not {@code null} and is a {@code
 969      * String} object that represents the same sequence of characters as this
 970      * object.
 971      *
 972      * @param  anObject
 973      *         The object to compare this {@code String} against
 974      *
 975      * @return  {@code true} if the given object represents a {@code String}
 976      *          equivalent to this string, {@code false} otherwise
 977      *
 978      * @see  #compareTo(String)
 979      * @see  #equalsIgnoreCase(String)
 980      */
 981     public boolean equals(Object anObject) {
 982         if (this == anObject) {
 983             return true;
 984         }
 985         if (anObject instanceof String) {
 986             String anotherString = (String)anObject;
 987             int n = value.length;
 988             if (n == anotherString.value.length) {
 989                 char v1[] = value;
 990                 char v2[] = anotherString.value;
 991                 int i = 0;
 992                 while (n-- != 0) {
 993                     if (v1[i] != v2[i])
 994                         return false;
 995                     i++;
 996                 }
 997                 return true;
 998             }
 999         }
1000         return false;
1001     }
1002 
1003     /**
1004      * Compares this string to the specified {@code StringBuffer}.  The result
1005      * is {@code true} if and only if this {@code String} represents the same
1006      * sequence of characters as the specified {@code StringBuffer}. This method
1007      * synchronizes on the {@code StringBuffer}.
1008      *
1009      * @param  sb
1010      *         The {@code StringBuffer} to compare this {@code String} against
1011      *
1012      * @return  {@code true} if this {@code String} represents the same
1013      *          sequence of characters as the specified {@code StringBuffer},
1014      *          {@code false} otherwise
1015      *
1016      * @since  1.4
1017      */
1018     public boolean contentEquals(StringBuffer sb) {
1019         return contentEquals((CharSequence)sb);
1020     }
1021 
1022     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1023         char v1[] = value;
1024         char v2[] = sb.getValue();
1025         int n = v1.length;
1026         if (n != sb.length()) {
1027             return false;
1028         }
1029         for (int i = 0; i < n; i++) {
1030             if (v1[i] != v2[i]) {
1031                 return false;
1032             }
1033         }
1034         return true;
1035     }
1036 
1037     /**
1038      * Compares this string to the specified {@code CharSequence}.  The
1039      * result is {@code true} if and only if this {@code String} represents the
1040      * same sequence of char values as the specified sequence. Note that if the
1041      * {@code CharSequence} is a {@code StringBuffer} then the method
1042      * synchronizes on it.
1043      *
1044      * @param  cs
1045      *         The sequence to compare this {@code String} against
1046      *
1047      * @return  {@code true} if this {@code String} represents the same
1048      *          sequence of char values as the specified sequence, {@code
1049      *          false} otherwise
1050      *
1051      * @since  1.5
1052      */
1053     public boolean contentEquals(CharSequence cs) {
1054         // Argument is a StringBuffer, StringBuilder
1055         if (cs instanceof AbstractStringBuilder) {
1056             if (cs instanceof StringBuffer) {
1057                 synchronized(cs) {
1058                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1059                 }
1060             } else {
1061                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1062             }
1063         }
1064         // Argument is a String
1065         if (cs instanceof String) {
1066             return equals(cs);
1067         }
1068         // Argument is a generic CharSequence
1069         char v1[] = value;
1070         int n = v1.length;
1071         if (n != cs.length()) {
1072             return false;
1073         }
1074         for (int i = 0; i < n; i++) {
1075             if (v1[i] != cs.charAt(i)) {
1076                 return false;
1077             }
1078         }
1079         return true;
1080     }
1081 
1082     /**
1083      * Compares this {@code String} to another {@code String}, ignoring case
1084      * considerations.  Two strings are considered equal ignoring case if they
1085      * are of the same length and corresponding characters in the two strings
1086      * are equal ignoring case.
1087      *
1088      * <p> Two characters {@code c1} and {@code c2} are considered the same
1089      * ignoring case if at least one of the following is true:
1090      * <ul>
1091      *   <li> The two characters are the same (as compared by the
1092      *        {@code ==} operator)
1093      *   <li> Applying the method {@link
1094      *        java.lang.Character#toUpperCase(char)} to each character
1095      *        produces the same result
1096      *   <li> Applying the method {@link
1097      *        java.lang.Character#toLowerCase(char)} to each character
1098      *        produces the same result
1099      * </ul>
1100      *
1101      * @param  anotherString
1102      *         The {@code String} to compare this {@code String} against
1103      *
1104      * @return  {@code true} if the argument is not {@code null} and it
1105      *          represents an equivalent {@code String} ignoring case; {@code
1106      *          false} otherwise
1107      *
1108      * @see  #equals(Object)
1109      */
1110     public boolean equalsIgnoreCase(String anotherString) {
1111         return (this == anotherString) ? true
1112                 : (anotherString != null)
1113                 && (anotherString.value.length == value.length)
1114                 && regionMatches(true, 0, anotherString, 0, value.length);
1115     }
1116 
1117     /**
1118      * Compares two strings lexicographically.
1119      * The comparison is based on the Unicode value of each character in
1120      * the strings. The character sequence represented by this
1121      * {@code String} object is compared lexicographically to the
1122      * character sequence represented by the argument string. The result is
1123      * a negative integer if this {@code String} object
1124      * lexicographically precedes the argument string. The result is a
1125      * positive integer if this {@code String} object lexicographically
1126      * follows the argument string. The result is zero if the strings
1127      * are equal; {@code compareTo} returns {@code 0} exactly when
1128      * the {@link #equals(Object)} method would return {@code true}.
1129      * <p>
1130      * This is the definition of lexicographic ordering. If two strings are
1131      * different, then either they have different characters at some index
1132      * that is a valid index for both strings, or their lengths are different,
1133      * or both. If they have different characters at one or more index
1134      * positions, let <i>k</i> be the smallest such index; then the string
1135      * whose character at position <i>k</i> has the smaller value, as
1136      * determined by using the &lt; operator, lexicographically precedes the
1137      * other string. In this case, {@code compareTo} returns the
1138      * difference of the two character values at position {@code k} in
1139      * the two string -- that is, the value:
1140      * <blockquote><pre>
1141      * this.charAt(k)-anotherString.charAt(k)
1142      * </pre></blockquote>
1143      * If there is no index position at which they differ, then the shorter
1144      * string lexicographically precedes the longer string. In this case,
1145      * {@code compareTo} returns the difference of the lengths of the
1146      * strings -- that is, the value:
1147      * <blockquote><pre>
1148      * this.length()-anotherString.length()
1149      * </pre></blockquote>
1150      *
1151      * @param   anotherString   the {@code String} to be compared.
1152      * @return  the value {@code 0} if the argument string is equal to
1153      *          this string; a value less than {@code 0} if this string
1154      *          is lexicographically less than the string argument; and a
1155      *          value greater than {@code 0} if this string is
1156      *          lexicographically greater than the string argument.
1157      */
1158     public int compareTo(String anotherString) {
1159         int len1 = value.length;
1160         int len2 = anotherString.value.length;
1161         int lim = Math.min(len1, len2);
1162         char v1[] = value;
1163         char v2[] = anotherString.value;
1164 
1165         int k = 0;
1166         while (k < lim) {
1167             char c1 = v1[k];
1168             char c2 = v2[k];
1169             if (c1 != c2) {
1170                 return c1 - c2;
1171             }
1172             k++;
1173         }
1174         return len1 - len2;
1175     }
1176 
1177     /**
1178      * A Comparator that orders {@code String} objects as by
1179      * {@code compareToIgnoreCase}. This comparator is serializable.
1180      * <p>
1181      * Note that this Comparator does <em>not</em> take locale into account,
1182      * and will result in an unsatisfactory ordering for certain locales.
1183      * The java.text package provides <em>Collators</em> to allow
1184      * locale-sensitive ordering.
1185      *
1186      * @see     java.text.Collator#compare(String, String)
1187      * @since   1.2
1188      */
1189     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1190                                          = new CaseInsensitiveComparator();
1191     private static class CaseInsensitiveComparator
1192             implements Comparator<String>, java.io.Serializable {
1193         // use serialVersionUID from JDK 1.2.2 for interoperability
1194         private static final long serialVersionUID = 8575799808933029326L;
1195 
1196         public int compare(String s1, String s2) {
1197             int n1 = s1.length();
1198             int n2 = s2.length();
1199             int min = Math.min(n1, n2);
1200             for (int i = 0; i < min; i++) {
1201                 char c1 = s1.charAt(i);
1202                 char c2 = s2.charAt(i);
1203                 if (c1 != c2) {
1204                     c1 = Character.toUpperCase(c1);
1205                     c2 = Character.toUpperCase(c2);
1206                     if (c1 != c2) {
1207                         c1 = Character.toLowerCase(c1);
1208                         c2 = Character.toLowerCase(c2);
1209                         if (c1 != c2) {
1210                             // No overflow because of numeric promotion
1211                             return c1 - c2;
1212                         }
1213                     }
1214                 }
1215             }
1216             return n1 - n2;
1217         }
1218 
1219         /** Replaces the de-serialized object. */
1220         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1221     }
1222 
1223     /**
1224      * Compares two strings lexicographically, ignoring case
1225      * differences. This method returns an integer whose sign is that of
1226      * calling {@code compareTo} with normalized versions of the strings
1227      * where case differences have been eliminated by calling
1228      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1229      * each character.
1230      * <p>
1231      * Note that this method does <em>not</em> take locale into account,
1232      * and will result in an unsatisfactory ordering for certain locales.
1233      * The java.text package provides <em>collators</em> to allow
1234      * locale-sensitive ordering.
1235      *
1236      * @param   str   the {@code String} to be compared.
1237      * @return  a negative integer, zero, or a positive integer as the
1238      *          specified String is greater than, equal to, or less
1239      *          than this String, ignoring case considerations.
1240      * @see     java.text.Collator#compare(String, String)
1241      * @since   1.2
1242      */
1243     public int compareToIgnoreCase(String str) {
1244         return CASE_INSENSITIVE_ORDER.compare(this, str);
1245     }
1246 
1247     /**
1248      * Tests if two string regions are equal.
1249      * <p>
1250      * A substring of this {@code String} object is compared to a substring
1251      * of the argument other. The result is true if these substrings
1252      * represent identical character sequences. The substring of this
1253      * {@code String} object to be compared begins at index {@code toffset}
1254      * and has length {@code len}. The substring of other to be compared
1255      * begins at index {@code ooffset} and has length {@code len}. The
1256      * result is {@code false} if and only if at least one of the following
1257      * is true:
1258      * <ul><li>{@code toffset} is negative.
1259      * <li>{@code ooffset} is negative.
1260      * <li>{@code toffset+len} is greater than the length of this
1261      * {@code String} object.
1262      * <li>{@code ooffset+len} is greater than the length of the other
1263      * argument.
1264      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1265      * such that:
1266      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1267      * <i>k</i>{@code )}
1268      * </ul>
1269      *
1270      * @param   toffset   the starting offset of the subregion in this string.
1271      * @param   other     the string argument.
1272      * @param   ooffset   the starting offset of the subregion in the string
1273      *                    argument.
1274      * @param   len       the number of characters to compare.
1275      * @return  {@code true} if the specified subregion of this string
1276      *          exactly matches the specified subregion of the string argument;
1277      *          {@code false} otherwise.
1278      */
1279     public boolean regionMatches(int toffset, String other, int ooffset,
1280             int len) {
1281         char ta[] = value;
1282         int to = toffset;
1283         char pa[] = other.value;
1284         int po = ooffset;
1285         // Note: toffset, ooffset, or len might be near -1>>>1.
1286         if ((ooffset < 0) || (toffset < 0)
1287                 || (toffset > (long)value.length - len)
1288                 || (ooffset > (long)other.value.length - len)) {
1289             return false;
1290         }
1291         while (len-- > 0) {
1292             if (ta[to++] != pa[po++]) {
1293                 return false;
1294             }
1295         }
1296         return true;
1297     }
1298 
1299     /**
1300      * Tests if two string regions are equal.
1301      * <p>
1302      * A substring of this {@code String} object is compared to a substring
1303      * of the argument {@code other}. The result is {@code true} if these
1304      * substrings represent character sequences that are the same, ignoring
1305      * case if and only if {@code ignoreCase} is true. The substring of
1306      * this {@code String} object to be compared begins at index
1307      * {@code toffset} and has length {@code len}. The substring of
1308      * {@code other} to be compared begins at index {@code ooffset} and
1309      * has length {@code len}. The result is {@code false} if and only if
1310      * at least one of the following is true:
1311      * <ul><li>{@code toffset} is negative.
1312      * <li>{@code ooffset} is negative.
1313      * <li>{@code toffset+len} is greater than the length of this
1314      * {@code String} object.
1315      * <li>{@code ooffset+len} is greater than the length of the other
1316      * argument.
1317      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1318      * integer <i>k</i> less than {@code len} such that:
1319      * <blockquote><pre>
1320      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1321      * </pre></blockquote>
1322      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1323      * integer <i>k</i> less than {@code len} such that:
1324      * <blockquote><pre>
1325      * Character.toLowerCase(this.charAt(toffset+k)) !=
1326      Character.toLowerCase(other.charAt(ooffset+k))
1327      * </pre></blockquote>
1328      * and:
1329      * <blockquote><pre>
1330      * Character.toUpperCase(this.charAt(toffset+k)) !=
1331      *         Character.toUpperCase(other.charAt(ooffset+k))
1332      * </pre></blockquote>
1333      * </ul>
1334      *
1335      * @param   ignoreCase   if {@code true}, ignore case when comparing
1336      *                       characters.
1337      * @param   toffset      the starting offset of the subregion in this
1338      *                       string.
1339      * @param   other        the string argument.
1340      * @param   ooffset      the starting offset of the subregion in the string
1341      *                       argument.
1342      * @param   len          the number of characters to compare.
1343      * @return  {@code true} if the specified subregion of this string
1344      *          matches the specified subregion of the string argument;
1345      *          {@code false} otherwise. Whether the matching is exact
1346      *          or case insensitive depends on the {@code ignoreCase}
1347      *          argument.
1348      */
1349     public boolean regionMatches(boolean ignoreCase, int toffset,
1350             String other, int ooffset, int len) {
1351         char ta[] = value;
1352         int to = toffset;
1353         char pa[] = other.value;
1354         int po = ooffset;
1355         // Note: toffset, ooffset, or len might be near -1>>>1.
1356         if ((ooffset < 0) || (toffset < 0)
1357                 || (toffset > (long)value.length - len)
1358                 || (ooffset > (long)other.value.length - len)) {
1359             return false;
1360         }
1361         while (len-- > 0) {
1362             char c1 = ta[to++];
1363             char c2 = pa[po++];
1364             if (c1 == c2) {
1365                 continue;
1366             }
1367             if (ignoreCase) {
1368                 // If characters don't match but case may be ignored,
1369                 // try converting both characters to uppercase.
1370                 // If the results match, then the comparison scan should
1371                 // continue.
1372                 char u1 = Character.toUpperCase(c1);
1373                 char u2 = Character.toUpperCase(c2);
1374                 if (u1 == u2) {
1375                     continue;
1376                 }
1377                 // Unfortunately, conversion to uppercase does not work properly
1378                 // for the Georgian alphabet, which has strange rules about case
1379                 // conversion.  So we need to make one last check before
1380                 // exiting.
1381                 if (Character.toLowerCase(u1) == Character.toLowerCase(u2)) {
1382                     continue;
1383                 }
1384             }
1385             return false;
1386         }
1387         return true;
1388     }
1389 
1390     /**
1391      * Tests if the substring of this string beginning at the
1392      * specified index starts with the specified prefix.
1393      *
1394      * @param   prefix    the prefix.
1395      * @param   toffset   where to begin looking in this string.
1396      * @return  {@code true} if the character sequence represented by the
1397      *          argument is a prefix of the substring of this object starting
1398      *          at index {@code toffset}; {@code false} otherwise.
1399      *          The result is {@code false} if {@code toffset} is
1400      *          negative or greater than the length of this
1401      *          {@code String} object; otherwise the result is the same
1402      *          as the result of the expression
1403      *          <pre>
1404      *          this.substring(toffset).startsWith(prefix)
1405      *          </pre>
1406      */
1407     public boolean startsWith(String prefix, int toffset) {
1408         char ta[] = value;
1409         int to = toffset;
1410         char pa[] = prefix.value;
1411         int po = 0;
1412         int pc = prefix.value.length;
1413         // Note: toffset might be near -1>>>1.
1414         if ((toffset < 0) || (toffset > value.length - pc)) {
1415             return false;
1416         }
1417         while (--pc >= 0) {
1418             if (ta[to++] != pa[po++]) {
1419                 return false;
1420             }
1421         }
1422         return true;
1423     }
1424 
1425     /**
1426      * Tests if this string starts with the specified prefix.
1427      *
1428      * @param   prefix   the prefix.
1429      * @return  {@code true} if the character sequence represented by the
1430      *          argument is a prefix of the character sequence represented by
1431      *          this string; {@code false} otherwise.
1432      *          Note also that {@code true} will be returned if the
1433      *          argument is an empty string or is equal to this
1434      *          {@code String} object as determined by the
1435      *          {@link #equals(Object)} method.
1436      * @since   1.0
1437      */
1438     public boolean startsWith(String prefix) {
1439         return startsWith(prefix, 0);
1440     }
1441 
1442     /**
1443      * Tests if this string ends with the specified suffix.
1444      *
1445      * @param   suffix   the suffix.
1446      * @return  {@code true} if the character sequence represented by the
1447      *          argument is a suffix of the character sequence represented by
1448      *          this object; {@code false} otherwise. Note that the
1449      *          result will be {@code true} if the argument is the
1450      *          empty string or is equal to this {@code String} object
1451      *          as determined by the {@link #equals(Object)} method.
1452      */
1453     public boolean endsWith(String suffix) {
1454         return startsWith(suffix, value.length - suffix.value.length);
1455     }
1456 
1457     /**
1458      * Returns a hash code for this string. The hash code for a
1459      * {@code String} object is computed as
1460      * <blockquote><pre>
1461      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1462      * </pre></blockquote>
1463      * using {@code int} arithmetic, where {@code s[i]} is the
1464      * <i>i</i>th character of the string, {@code n} is the length of
1465      * the string, and {@code ^} indicates exponentiation.
1466      * (The hash value of the empty string is zero.)
1467      *
1468      * @return  a hash code value for this object.
1469      */
1470     public int hashCode() {
1471         int h = hash;
1472         if (h == 0) {
1473             for (char v : value) {
1474                 h = 31 * h + v;
1475             }
1476             hash = h;
1477         }
1478         return h;
1479     }
1480 
1481     /**
1482      * Returns the index within this string of the first occurrence of
1483      * the specified character. If a character with value
1484      * {@code ch} occurs in the character sequence represented by
1485      * this {@code String} object, then the index (in Unicode
1486      * code units) of the first such occurrence is returned. For
1487      * values of {@code ch} in the range from 0 to 0xFFFF
1488      * (inclusive), this is the smallest value <i>k</i> such that:
1489      * <blockquote><pre>
1490      * this.charAt(<i>k</i>) == ch
1491      * </pre></blockquote>
1492      * is true. For other values of {@code ch}, it is the
1493      * smallest value <i>k</i> such that:
1494      * <blockquote><pre>
1495      * this.codePointAt(<i>k</i>) == ch
1496      * </pre></blockquote>
1497      * is true. In either case, if no such character occurs in this
1498      * string, then {@code -1} is returned.
1499      *
1500      * @param   ch   a character (Unicode code point).
1501      * @return  the index of the first occurrence of the character in the
1502      *          character sequence represented by this object, or
1503      *          {@code -1} if the character does not occur.
1504      */
1505     public int indexOf(int ch) {
1506         return indexOf(ch, 0);
1507     }
1508 
1509     /**
1510      * Returns the index within this string of the first occurrence of the
1511      * specified character, starting the search at the specified index.
1512      * <p>
1513      * If a character with value {@code ch} occurs in the
1514      * character sequence represented by this {@code String}
1515      * object at an index no smaller than {@code fromIndex}, then
1516      * the index of the first such occurrence is returned. For values
1517      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1518      * this is the smallest value <i>k</i> such that:
1519      * <blockquote><pre>
1520      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1521      * </pre></blockquote>
1522      * is true. For other values of {@code ch}, it is the
1523      * smallest value <i>k</i> such that:
1524      * <blockquote><pre>
1525      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1526      * </pre></blockquote>
1527      * is true. In either case, if no such character occurs in this
1528      * string at or after position {@code fromIndex}, then
1529      * {@code -1} is returned.
1530      *
1531      * <p>
1532      * There is no restriction on the value of {@code fromIndex}. If it
1533      * is negative, it has the same effect as if it were zero: this entire
1534      * string may be searched. If it is greater than the length of this
1535      * string, it has the same effect as if it were equal to the length of
1536      * this string: {@code -1} is returned.
1537      *
1538      * <p>All indices are specified in {@code char} values
1539      * (Unicode code units).
1540      *
1541      * @param   ch          a character (Unicode code point).
1542      * @param   fromIndex   the index to start the search from.
1543      * @return  the index of the first occurrence of the character in the
1544      *          character sequence represented by this object that is greater
1545      *          than or equal to {@code fromIndex}, or {@code -1}
1546      *          if the character does not occur.
1547      */
1548     public int indexOf(int ch, int fromIndex) {
1549         final int max = value.length;
1550         if (fromIndex < 0) {
1551             fromIndex = 0;
1552         } else if (fromIndex >= max) {
1553             // Note: fromIndex might be near -1>>>1.
1554             return -1;
1555         }
1556 
1557         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1558             // handle most cases here (ch is a BMP code point or a
1559             // negative value (invalid code point))
1560             final char[] value = this.value;
1561             for (int i = fromIndex; i < max; i++) {
1562                 if (value[i] == ch) {
1563                     return i;
1564                 }
1565             }
1566             return -1;
1567         } else {
1568             return indexOfSupplementary(ch, fromIndex);
1569         }
1570     }
1571 
1572     /**
1573      * Handles (rare) calls of indexOf with a supplementary character.
1574      */
1575     private int indexOfSupplementary(int ch, int fromIndex) {
1576         if (Character.isValidCodePoint(ch)) {
1577             final char[] value = this.value;
1578             final char hi = Character.highSurrogate(ch);
1579             final char lo = Character.lowSurrogate(ch);
1580             final int max = value.length - 1;
1581             for (int i = fromIndex; i < max; i++) {
1582                 if (value[i] == hi && value[i + 1] == lo) {
1583                     return i;
1584                 }
1585             }
1586         }
1587         return -1;
1588     }
1589 
1590     /**
1591      * Returns the index within this string of the last occurrence of
1592      * the specified character. For values of {@code ch} in the
1593      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1594      * units) returned is the largest value <i>k</i> such that:
1595      * <blockquote><pre>
1596      * this.charAt(<i>k</i>) == ch
1597      * </pre></blockquote>
1598      * is true. For other values of {@code ch}, it is the
1599      * largest value <i>k</i> such that:
1600      * <blockquote><pre>
1601      * this.codePointAt(<i>k</i>) == ch
1602      * </pre></blockquote>
1603      * is true.  In either case, if no such character occurs in this
1604      * string, then {@code -1} is returned.  The
1605      * {@code String} is searched backwards starting at the last
1606      * character.
1607      *
1608      * @param   ch   a character (Unicode code point).
1609      * @return  the index of the last occurrence of the character in the
1610      *          character sequence represented by this object, or
1611      *          {@code -1} if the character does not occur.
1612      */
1613     public int lastIndexOf(int ch) {
1614         return lastIndexOf(ch, value.length - 1);
1615     }
1616 
1617     /**
1618      * Returns the index within this string of the last occurrence of
1619      * the specified character, searching backward starting at the
1620      * specified index. For values of {@code ch} in the range
1621      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1622      * value <i>k</i> such that:
1623      * <blockquote><pre>
1624      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1625      * </pre></blockquote>
1626      * is true. For other values of {@code ch}, it is the
1627      * largest value <i>k</i> such that:
1628      * <blockquote><pre>
1629      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1630      * </pre></blockquote>
1631      * is true. In either case, if no such character occurs in this
1632      * string at or before position {@code fromIndex}, then
1633      * {@code -1} is returned.
1634      *
1635      * <p>All indices are specified in {@code char} values
1636      * (Unicode code units).
1637      *
1638      * @param   ch          a character (Unicode code point).
1639      * @param   fromIndex   the index to start the search from. There is no
1640      *          restriction on the value of {@code fromIndex}. If it is
1641      *          greater than or equal to the length of this string, it has
1642      *          the same effect as if it were equal to one less than the
1643      *          length of this string: this entire string may be searched.
1644      *          If it is negative, it has the same effect as if it were -1:
1645      *          -1 is returned.
1646      * @return  the index of the last occurrence of the character in the
1647      *          character sequence represented by this object that is less
1648      *          than or equal to {@code fromIndex}, or {@code -1}
1649      *          if the character does not occur before that point.
1650      */
1651     public int lastIndexOf(int ch, int fromIndex) {
1652         if (ch < Character.MIN_SUPPLEMENTARY_CODE_POINT) {
1653             // handle most cases here (ch is a BMP code point or a
1654             // negative value (invalid code point))
1655             final char[] value = this.value;
1656             int i = Math.min(fromIndex, value.length - 1);
1657             for (; i >= 0; i--) {
1658                 if (value[i] == ch) {
1659                     return i;
1660                 }
1661             }
1662             return -1;
1663         } else {
1664             return lastIndexOfSupplementary(ch, fromIndex);
1665         }
1666     }
1667 
1668     /**
1669      * Handles (rare) calls of lastIndexOf with a supplementary character.
1670      */
1671     private int lastIndexOfSupplementary(int ch, int fromIndex) {
1672         if (Character.isValidCodePoint(ch)) {
1673             final char[] value = this.value;
1674             char hi = Character.highSurrogate(ch);
1675             char lo = Character.lowSurrogate(ch);
1676             int i = Math.min(fromIndex, value.length - 2);
1677             for (; i >= 0; i--) {
1678                 if (value[i] == hi && value[i + 1] == lo) {
1679                     return i;
1680                 }
1681             }
1682         }
1683         return -1;
1684     }
1685 
1686     /**
1687      * Returns the index within this string of the first occurrence of the
1688      * specified substring.
1689      *
1690      * <p>The returned index is the smallest value {@code k} for which:
1691      * <pre>{@code
1692      * this.startsWith(str, k)
1693      * }</pre>
1694      * If no such value of {@code k} exists, then {@code -1} is returned.
1695      *
1696      * @param   str   the substring to search for.
1697      * @return  the index of the first occurrence of the specified substring,
1698      *          or {@code -1} if there is no such occurrence.
1699      */
1700     public int indexOf(String str) {
1701         return indexOf(str, 0);
1702     }
1703 
1704     /**
1705      * Returns the index within this string of the first occurrence of the
1706      * specified substring, starting at the specified index.
1707      *
1708      * <p>The returned index is the smallest value {@code k} for which:
1709      * <pre>{@code
1710      *     k >= Math.min(fromIndex, this.length()) &&
1711      *                   this.startsWith(str, k)
1712      * }</pre>
1713      * If no such value of {@code k} exists, then {@code -1} is returned.
1714      *
1715      * @param   str         the substring to search for.
1716      * @param   fromIndex   the index from which to start the search.
1717      * @return  the index of the first occurrence of the specified substring,
1718      *          starting at the specified index,
1719      *          or {@code -1} if there is no such occurrence.
1720      */
1721     public int indexOf(String str, int fromIndex) {
1722         return indexOf(value, 0, value.length,
1723                 str.value, 0, str.value.length, fromIndex);
1724     }
1725 
1726     /**
1727      * Code shared by String and AbstractStringBuilder to do searches. The
1728      * source is the character array being searched, and the target
1729      * is the string being searched for.
1730      *
1731      * @param   source       the characters being searched.
1732      * @param   sourceOffset offset of the source string.
1733      * @param   sourceCount  count of the source string.
1734      * @param   target       the characters being searched for.
1735      * @param   fromIndex    the index to begin searching from.
1736      */
1737     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1738             String target, int fromIndex) {
1739         return indexOf(source, sourceOffset, sourceCount,
1740                        target.value, 0, target.value.length,
1741                        fromIndex);
1742     }
1743 
1744     /**
1745      * Code shared by String and StringBuffer to do searches. The
1746      * source is the character array being searched, and the target
1747      * is the string being searched for.
1748      *
1749      * @param   source       the characters being searched.
1750      * @param   sourceOffset offset of the source string.
1751      * @param   sourceCount  count of the source string.
1752      * @param   target       the characters being searched for.
1753      * @param   targetOffset offset of the target string.
1754      * @param   targetCount  count of the target string.
1755      * @param   fromIndex    the index to begin searching from.
1756      */
1757     static int indexOf(char[] source, int sourceOffset, int sourceCount,
1758             char[] target, int targetOffset, int targetCount,
1759             int fromIndex) {
1760         if (fromIndex >= sourceCount) {
1761             return (targetCount == 0 ? sourceCount : -1);
1762         }
1763         if (fromIndex < 0) {
1764             fromIndex = 0;
1765         }
1766         if (targetCount == 0) {
1767             return fromIndex;
1768         }
1769 
1770         char first = target[targetOffset];
1771         int max = sourceOffset + (sourceCount - targetCount);
1772 
1773         for (int i = sourceOffset + fromIndex; i <= max; i++) {
1774             /* Look for first character. */
1775             if (source[i] != first) {
1776                 while (++i <= max && source[i] != first);
1777             }
1778 
1779             /* Found first character, now look at the rest of v2 */
1780             if (i <= max) {
1781                 int j = i + 1;
1782                 int end = j + targetCount - 1;
1783                 for (int k = targetOffset + 1; j < end && source[j]
1784                         == target[k]; j++, k++);
1785 
1786                 if (j == end) {
1787                     /* Found whole string. */
1788                     return i - sourceOffset;
1789                 }
1790             }
1791         }
1792         return -1;
1793     }
1794 
1795     /**
1796      * Returns the index within this string of the last occurrence of the
1797      * specified substring.  The last occurrence of the empty string ""
1798      * is considered to occur at the index value {@code this.length()}.
1799      *
1800      * <p>The returned index is the largest value {@code k} for which:
1801      * <pre>{@code
1802      * this.startsWith(str, k)
1803      * }</pre>
1804      * If no such value of {@code k} exists, then {@code -1} is returned.
1805      *
1806      * @param   str   the substring to search for.
1807      * @return  the index of the last occurrence of the specified substring,
1808      *          or {@code -1} if there is no such occurrence.
1809      */
1810     public int lastIndexOf(String str) {
1811         return lastIndexOf(str, value.length);
1812     }
1813 
1814     /**
1815      * Returns the index within this string of the last occurrence of the
1816      * specified substring, searching backward starting at the specified index.
1817      *
1818      * <p>The returned index is the largest value {@code k} for which:
1819      * <pre>{@code
1820      *     k <= Math.min(fromIndex, this.length()) &&
1821      *                   this.startsWith(str, k)
1822      * }</pre>
1823      * If no such value of {@code k} exists, then {@code -1} is returned.
1824      *
1825      * @param   str         the substring to search for.
1826      * @param   fromIndex   the index to start the search from.
1827      * @return  the index of the last occurrence of the specified substring,
1828      *          searching backward from the specified index,
1829      *          or {@code -1} if there is no such occurrence.
1830      */
1831     public int lastIndexOf(String str, int fromIndex) {
1832         return lastIndexOf(value, 0, value.length,
1833                 str.value, 0, str.value.length, fromIndex);
1834     }
1835 
1836     /**
1837      * Code shared by String and AbstractStringBuilder to do searches. The
1838      * source is the character array being searched, and the target
1839      * is the string being searched for.
1840      *
1841      * @param   source       the characters being searched.
1842      * @param   sourceOffset offset of the source string.
1843      * @param   sourceCount  count of the source string.
1844      * @param   target       the characters being searched for.
1845      * @param   fromIndex    the index to begin searching from.
1846      */
1847     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1848             String target, int fromIndex) {
1849         return lastIndexOf(source, sourceOffset, sourceCount,
1850                        target.value, 0, target.value.length,
1851                        fromIndex);
1852     }
1853 
1854     /**
1855      * Code shared by String and StringBuffer to do searches. The
1856      * source is the character array being searched, and the target
1857      * is the string being searched for.
1858      *
1859      * @param   source       the characters being searched.
1860      * @param   sourceOffset offset of the source string.
1861      * @param   sourceCount  count of the source string.
1862      * @param   target       the characters being searched for.
1863      * @param   targetOffset offset of the target string.
1864      * @param   targetCount  count of the target string.
1865      * @param   fromIndex    the index to begin searching from.
1866      */
1867     static int lastIndexOf(char[] source, int sourceOffset, int sourceCount,
1868             char[] target, int targetOffset, int targetCount,
1869             int fromIndex) {
1870         /*
1871          * Check arguments; return immediately where possible. For
1872          * consistency, don't check for null str.
1873          */
1874         int rightIndex = sourceCount - targetCount;
1875         if (fromIndex < 0) {
1876             return -1;
1877         }
1878         if (fromIndex > rightIndex) {
1879             fromIndex = rightIndex;
1880         }
1881         /* Empty string always matches. */
1882         if (targetCount == 0) {
1883             return fromIndex;
1884         }
1885 
1886         int strLastIndex = targetOffset + targetCount - 1;
1887         char strLastChar = target[strLastIndex];
1888         int min = sourceOffset + targetCount - 1;
1889         int i = min + fromIndex;
1890 
1891     startSearchForLastChar:
1892         while (true) {
1893             while (i >= min && source[i] != strLastChar) {
1894                 i--;
1895             }
1896             if (i < min) {
1897                 return -1;
1898             }
1899             int j = i - 1;
1900             int start = j - (targetCount - 1);
1901             int k = strLastIndex - 1;
1902 
1903             while (j > start) {
1904                 if (source[j--] != target[k--]) {
1905                     i--;
1906                     continue startSearchForLastChar;
1907                 }
1908             }
1909             return start - sourceOffset + 1;
1910         }
1911     }
1912 
1913     /**
1914      * Returns a string that is a substring of this string. The
1915      * substring begins with the character at the specified index and
1916      * extends to the end of this string. <p>
1917      * Examples:
1918      * <blockquote><pre>
1919      * "unhappy".substring(2) returns "happy"
1920      * "Harbison".substring(3) returns "bison"
1921      * "emptiness".substring(9) returns "" (an empty string)
1922      * </pre></blockquote>
1923      *
1924      * @param      beginIndex   the beginning index, inclusive.
1925      * @return     the specified substring.
1926      * @exception  IndexOutOfBoundsException  if
1927      *             {@code beginIndex} is negative or larger than the
1928      *             length of this {@code String} object.
1929      */
1930     public String substring(int beginIndex) {
1931         if (beginIndex < 0) {
1932             throw new StringIndexOutOfBoundsException(beginIndex);
1933         }
1934         int subLen = value.length - beginIndex;
1935         if (subLen < 0) {
1936             throw new StringIndexOutOfBoundsException(subLen);
1937         }
1938         return (beginIndex == 0) ? this : new String(value, beginIndex, subLen);
1939     }
1940 
1941     /**
1942      * Returns a string that is a substring of this string. The
1943      * substring begins at the specified {@code beginIndex} and
1944      * extends to the character at index {@code endIndex - 1}.
1945      * Thus the length of the substring is {@code endIndex-beginIndex}.
1946      * <p>
1947      * Examples:
1948      * <blockquote><pre>
1949      * "hamburger".substring(4, 8) returns "urge"
1950      * "smiles".substring(1, 5) returns "mile"
1951      * </pre></blockquote>
1952      *
1953      * @param      beginIndex   the beginning index, inclusive.
1954      * @param      endIndex     the ending index, exclusive.
1955      * @return     the specified substring.
1956      * @exception  IndexOutOfBoundsException  if the
1957      *             {@code beginIndex} is negative, or
1958      *             {@code endIndex} is larger than the length of
1959      *             this {@code String} object, or
1960      *             {@code beginIndex} is larger than
1961      *             {@code endIndex}.
1962      */
1963     public String substring(int beginIndex, int endIndex) {
1964         if (beginIndex < 0) {
1965             throw new StringIndexOutOfBoundsException(beginIndex);
1966         }
1967         if (endIndex > value.length) {
1968             throw new StringIndexOutOfBoundsException(endIndex);
1969         }
1970         int subLen = endIndex - beginIndex;
1971         if (subLen < 0) {
1972             throw new StringIndexOutOfBoundsException(subLen);
1973         }
1974         return ((beginIndex == 0) && (endIndex == value.length)) ? this
1975                 : new String(value, beginIndex, subLen);
1976     }
1977 
1978     /**
1979      * Returns a character sequence that is a subsequence of this sequence.
1980      *
1981      * <p> An invocation of this method of the form
1982      *
1983      * <blockquote><pre>
1984      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1985      *
1986      * behaves in exactly the same way as the invocation
1987      *
1988      * <blockquote><pre>
1989      * str.substring(begin,&nbsp;end)</pre></blockquote>
1990      *
1991      * @apiNote
1992      * This method is defined so that the {@code String} class can implement
1993      * the {@link CharSequence} interface.
1994      *
1995      * @param   beginIndex   the begin index, inclusive.
1996      * @param   endIndex     the end index, exclusive.
1997      * @return  the specified subsequence.
1998      *
1999      * @throws  IndexOutOfBoundsException
2000      *          if {@code beginIndex} or {@code endIndex} is negative,
2001      *          if {@code endIndex} is greater than {@code length()},
2002      *          or if {@code beginIndex} is greater than {@code endIndex}
2003      *
2004      * @since 1.4
2005      * @spec JSR-51
2006      */
2007     public CharSequence subSequence(int beginIndex, int endIndex) {
2008         return this.substring(beginIndex, endIndex);
2009     }
2010 
2011     /**
2012      * Concatenates the specified string to the end of this string.
2013      * <p>
2014      * If the length of the argument string is {@code 0}, then this
2015      * {@code String} object is returned. Otherwise, a
2016      * {@code String} object is returned that represents a character
2017      * sequence that is the concatenation of the character sequence
2018      * represented by this {@code String} object and the character
2019      * sequence represented by the argument string.<p>
2020      * Examples:
2021      * <blockquote><pre>
2022      * "cares".concat("s") returns "caress"
2023      * "to".concat("get").concat("her") returns "together"
2024      * </pre></blockquote>
2025      *
2026      * @param   str   the {@code String} that is concatenated to the end
2027      *                of this {@code String}.
2028      * @return  a string that represents the concatenation of this object's
2029      *          characters followed by the string argument's characters.
2030      */
2031     public String concat(String str) {
2032         int otherLen = str.length();
2033         if (otherLen == 0) {
2034             return this;
2035         }
2036         int len = value.length;
2037         char buf[] = Arrays.copyOf(value, len + otherLen);
2038         str.getChars(buf, len);
2039         return new String(buf, true);
2040     }
2041 
2042     /**
2043      * Returns a string resulting from replacing all occurrences of
2044      * {@code oldChar} in this string with {@code newChar}.
2045      * <p>
2046      * If the character {@code oldChar} does not occur in the
2047      * character sequence represented by this {@code String} object,
2048      * then a reference to this {@code String} object is returned.
2049      * Otherwise, a {@code String} object is returned that
2050      * represents a character sequence identical to the character sequence
2051      * represented by this {@code String} object, except that every
2052      * occurrence of {@code oldChar} is replaced by an occurrence
2053      * of {@code newChar}.
2054      * <p>
2055      * Examples:
2056      * <blockquote><pre>
2057      * "mesquite in your cellar".replace('e', 'o')
2058      *         returns "mosquito in your collar"
2059      * "the war of baronets".replace('r', 'y')
2060      *         returns "the way of bayonets"
2061      * "sparring with a purple porpoise".replace('p', 't')
2062      *         returns "starring with a turtle tortoise"
2063      * "JonL".replace('q', 'x') returns "JonL" (no change)
2064      * </pre></blockquote>
2065      *
2066      * @param   oldChar   the old character.
2067      * @param   newChar   the new character.
2068      * @return  a string derived from this string by replacing every
2069      *          occurrence of {@code oldChar} with {@code newChar}.
2070      */
2071     public String replace(char oldChar, char newChar) {
2072         if (oldChar != newChar) {
2073             int len = value.length;
2074             int i = -1;
2075             char[] val = value; /* avoid getfield opcode */
2076 
2077             while (++i < len) {
2078                 if (val[i] == oldChar) {
2079                     break;
2080                 }
2081             }
2082             if (i < len) {
2083                 char buf[] = new char[len];
2084                 for (int j = 0; j < i; j++) {
2085                     buf[j] = val[j];
2086                 }
2087                 while (i < len) {
2088                     char c = val[i];
2089                     buf[i] = (c == oldChar) ? newChar : c;
2090                     i++;
2091                 }
2092                 return new String(buf, true);
2093             }
2094         }
2095         return this;
2096     }
2097 
2098     /**
2099      * Tells whether or not this string matches the given <a
2100      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2101      *
2102      * <p> An invocation of this method of the form
2103      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2104      * same result as the expression
2105      *
2106      * <blockquote>
2107      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2108      * matches(<i>regex</i>, <i>str</i>)}
2109      * </blockquote>
2110      *
2111      * @param   regex
2112      *          the regular expression to which this string is to be matched
2113      *
2114      * @return  {@code true} if, and only if, this string matches the
2115      *          given regular expression
2116      *
2117      * @throws  PatternSyntaxException
2118      *          if the regular expression's syntax is invalid
2119      *
2120      * @see java.util.regex.Pattern
2121      *
2122      * @since 1.4
2123      * @spec JSR-51
2124      */
2125     public boolean matches(String regex) {
2126         return Pattern.matches(regex, this);
2127     }
2128 
2129     /**
2130      * Returns true if and only if this string contains the specified
2131      * sequence of char values.
2132      *
2133      * @param s the sequence to search for
2134      * @return true if this string contains {@code s}, false otherwise
2135      * @since 1.5
2136      */
2137     public boolean contains(CharSequence s) {
2138         return indexOf(s.toString()) >= 0;
2139     }
2140 
2141     /**
2142      * Replaces the first substring of this string that matches the given <a
2143      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2144      * given replacement.
2145      *
2146      * <p> An invocation of this method of the form
2147      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2148      * yields exactly the same result as the expression
2149      *
2150      * <blockquote>
2151      * <code>
2152      * {@link java.util.regex.Pattern}.{@link
2153      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2154      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2155      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2156      * </code>
2157      * </blockquote>
2158      *
2159      *<p>
2160      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2161      * replacement string may cause the results to be different than if it were
2162      * being treated as a literal replacement string; see
2163      * {@link java.util.regex.Matcher#replaceFirst}.
2164      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2165      * meaning of these characters, if desired.
2166      *
2167      * @param   regex
2168      *          the regular expression to which this string is to be matched
2169      * @param   replacement
2170      *          the string to be substituted for the first match
2171      *
2172      * @return  The resulting {@code String}
2173      *
2174      * @throws  PatternSyntaxException
2175      *          if the regular expression's syntax is invalid
2176      *
2177      * @see java.util.regex.Pattern
2178      *
2179      * @since 1.4
2180      * @spec JSR-51
2181      */
2182     public String replaceFirst(String regex, String replacement) {
2183         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2184     }
2185 
2186     /**
2187      * Replaces each substring of this string that matches the given <a
2188      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2189      * given replacement.
2190      *
2191      * <p> An invocation of this method of the form
2192      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2193      * yields exactly the same result as the expression
2194      *
2195      * <blockquote>
2196      * <code>
2197      * {@link java.util.regex.Pattern}.{@link
2198      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2199      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2200      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2201      * </code>
2202      * </blockquote>
2203      *
2204      *<p>
2205      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2206      * replacement string may cause the results to be different than if it were
2207      * being treated as a literal replacement string; see
2208      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2209      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2210      * meaning of these characters, if desired.
2211      *
2212      * @param   regex
2213      *          the regular expression to which this string is to be matched
2214      * @param   replacement
2215      *          the string to be substituted for each match
2216      *
2217      * @return  The resulting {@code String}
2218      *
2219      * @throws  PatternSyntaxException
2220      *          if the regular expression's syntax is invalid
2221      *
2222      * @see java.util.regex.Pattern
2223      *
2224      * @since 1.4
2225      * @spec JSR-51
2226      */
2227     public String replaceAll(String regex, String replacement) {
2228         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2229     }
2230 
2231     /**
2232      * Replaces each substring of this string that matches the literal target
2233      * sequence with the specified literal replacement sequence. The
2234      * replacement proceeds from the beginning of the string to the end, for
2235      * example, replacing "aa" with "b" in the string "aaa" will result in
2236      * "ba" rather than "ab".
2237      *
2238      * @param  target The sequence of char values to be replaced
2239      * @param  replacement The replacement sequence of char values
2240      * @return  The resulting string
2241      * @since 1.5
2242      */
2243     public String replace(CharSequence target, CharSequence replacement) {
2244         return Pattern.compile(target.toString(), Pattern.LITERAL).matcher(
2245                 this).replaceAll(Matcher.quoteReplacement(replacement.toString()));
2246     }
2247 
2248     /**
2249      * Splits this string around matches of the given
2250      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2251      *
2252      * <p> The array returned by this method contains each substring of this
2253      * string that is terminated by another substring that matches the given
2254      * expression or is terminated by the end of the string.  The substrings in
2255      * the array are in the order in which they occur in this string.  If the
2256      * expression does not match any part of the input then the resulting array
2257      * has just one element, namely this string.
2258      *
2259      * <p> When there is a positive-width match at the beginning of this
2260      * string then an empty leading substring is included at the beginning
2261      * of the resulting array. A zero-width match at the beginning however
2262      * never produces such empty leading substring.
2263      *
2264      * <p> The {@code limit} parameter controls the number of times the
2265      * pattern is applied and therefore affects the length of the resulting
2266      * array.  If the limit <i>n</i> is greater than zero then the pattern
2267      * will be applied at most <i>n</i>&nbsp;-&nbsp;1 times, the array's
2268      * length will be no greater than <i>n</i>, and the array's last entry
2269      * will contain all input beyond the last matched delimiter.  If <i>n</i>
2270      * is non-positive then the pattern will be applied as many times as
2271      * possible and the array can have any length.  If <i>n</i> is zero then
2272      * the pattern will be applied as many times as possible, the array can
2273      * have any length, and trailing empty strings will be discarded.
2274      *
2275      * <p> The string {@code "boo:and:foo"}, for example, yields the
2276      * following results with these parameters:
2277      *
2278      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split example showing regex, limit, and result">
2279      * <tr>
2280      *     <th>Regex</th>
2281      *     <th>Limit</th>
2282      *     <th>Result</th>
2283      * </tr>
2284      * <tr><td align=center>:</td>
2285      *     <td align=center>2</td>
2286      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2287      * <tr><td align=center>:</td>
2288      *     <td align=center>5</td>
2289      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2290      * <tr><td align=center>:</td>
2291      *     <td align=center>-2</td>
2292      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2293      * <tr><td align=center>o</td>
2294      *     <td align=center>5</td>
2295      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2296      * <tr><td align=center>o</td>
2297      *     <td align=center>-2</td>
2298      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2299      * <tr><td align=center>o</td>
2300      *     <td align=center>0</td>
2301      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2302      * </table></blockquote>
2303      *
2304      * <p> An invocation of this method of the form
2305      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2306      * yields the same result as the expression
2307      *
2308      * <blockquote>
2309      * <code>
2310      * {@link java.util.regex.Pattern}.{@link
2311      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2312      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2313      * </code>
2314      * </blockquote>
2315      *
2316      *
2317      * @param  regex
2318      *         the delimiting regular expression
2319      *
2320      * @param  limit
2321      *         the result threshold, as described above
2322      *
2323      * @return  the array of strings computed by splitting this string
2324      *          around matches of the given regular expression
2325      *
2326      * @throws  PatternSyntaxException
2327      *          if the regular expression's syntax is invalid
2328      *
2329      * @see java.util.regex.Pattern
2330      *
2331      * @since 1.4
2332      * @spec JSR-51
2333      */
2334     public String[] split(String regex, int limit) {
2335         /* fastpath if the regex is a
2336          (1)one-char String and this character is not one of the
2337             RegEx's meta characters ".$|()[{^?*+\\", or
2338          (2)two-char String and the first char is the backslash and
2339             the second is not the ascii digit or ascii letter.
2340          */
2341         char ch = 0;
2342         if (((regex.value.length == 1 &&
2343              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2344              (regex.length() == 2 &&
2345               regex.charAt(0) == '\\' &&
2346               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2347               ((ch-'a')|('z'-ch)) < 0 &&
2348               ((ch-'A')|('Z'-ch)) < 0)) &&
2349             (ch < Character.MIN_HIGH_SURROGATE ||
2350              ch > Character.MAX_LOW_SURROGATE))
2351         {
2352             int off = 0;
2353             int next = 0;
2354             boolean limited = limit > 0;
2355             ArrayList<String> list = new ArrayList<>();
2356             while ((next = indexOf(ch, off)) != -1) {
2357                 if (!limited || list.size() < limit - 1) {
2358                     list.add(substring(off, next));
2359                     off = next + 1;
2360                 } else {    // last one
2361                     //assert (list.size() == limit - 1);
2362                     list.add(substring(off, value.length));
2363                     off = value.length;
2364                     break;
2365                 }
2366             }
2367             // If no match was found, return this
2368             if (off == 0)
2369                 return new String[]{this};
2370 
2371             // Add remaining segment
2372             if (!limited || list.size() < limit)
2373                 list.add(substring(off, value.length));
2374 
2375             // Construct result
2376             int resultSize = list.size();
2377             if (limit == 0) {
2378                 while (resultSize > 0 && list.get(resultSize - 1).length() == 0) {
2379                     resultSize--;
2380                 }
2381             }
2382             String[] result = new String[resultSize];
2383             return list.subList(0, resultSize).toArray(result);
2384         }
2385         return Pattern.compile(regex).split(this, limit);
2386     }
2387 
2388     /**
2389      * Splits this string around matches of the given <a
2390      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2391      *
2392      * <p> This method works as if by invoking the two-argument {@link
2393      * #split(String, int) split} method with the given expression and a limit
2394      * argument of zero.  Trailing empty strings are therefore not included in
2395      * the resulting array.
2396      *
2397      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2398      * results with these expressions:
2399      *
2400      * <blockquote><table cellpadding=1 cellspacing=0 summary="Split examples showing regex and result">
2401      * <tr>
2402      *  <th>Regex</th>
2403      *  <th>Result</th>
2404      * </tr>
2405      * <tr><td align=center>:</td>
2406      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2407      * <tr><td align=center>o</td>
2408      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2409      * </table></blockquote>
2410      *
2411      *
2412      * @param  regex
2413      *         the delimiting regular expression
2414      *
2415      * @return  the array of strings computed by splitting this string
2416      *          around matches of the given regular expression
2417      *
2418      * @throws  PatternSyntaxException
2419      *          if the regular expression's syntax is invalid
2420      *
2421      * @see java.util.regex.Pattern
2422      *
2423      * @since 1.4
2424      * @spec JSR-51
2425      */
2426     public String[] split(String regex) {
2427         return split(regex, 0);
2428     }
2429 
2430     /**
2431      * Returns a new String composed of copies of the
2432      * {@code CharSequence elements} joined together with a copy of
2433      * the specified {@code delimiter}.
2434      *
2435      * <blockquote>For example,
2436      * <pre>{@code
2437      *     String message = String.join("-", "Java", "is", "cool");
2438      *     // message returned is: "Java-is-cool"
2439      * }</pre></blockquote>
2440      *
2441      * Note that if an element is null, then {@code "null"} is added.
2442      *
2443      * @param  delimiter the delimiter that separates each element
2444      * @param  elements the elements to join together.
2445      *
2446      * @return a new {@code String} that is composed of the {@code elements}
2447      *         separated by the {@code delimiter}
2448      *
2449      * @throws NullPointerException If {@code delimiter} or {@code elements}
2450      *         is {@code null}
2451      *
2452      * @see java.util.StringJoiner
2453      * @since 1.8
2454      */
2455     public static String join(CharSequence delimiter, CharSequence... elements) {
2456         Objects.requireNonNull(delimiter);
2457         Objects.requireNonNull(elements);
2458         // Number of elements not likely worth Arrays.stream overhead.
2459         StringJoiner joiner = new StringJoiner(delimiter);
2460         for (CharSequence cs: elements) {
2461             joiner.add(cs);
2462         }
2463         return joiner.toString();
2464     }
2465 
2466     /**
2467      * Returns a new {@code String} composed of copies of the
2468      * {@code CharSequence elements} joined together with a copy of the
2469      * specified {@code delimiter}.
2470      *
2471      * <blockquote>For example,
2472      * <pre>{@code
2473      *     List<String> strings = new LinkedList<>();
2474      *     strings.add("Java");strings.add("is");
2475      *     strings.add("cool");
2476      *     String message = String.join(" ", strings);
2477      *     //message returned is: "Java is cool"
2478      *
2479      *     Set<String> strings = new LinkedHashSet<>();
2480      *     strings.add("Java"); strings.add("is");
2481      *     strings.add("very"); strings.add("cool");
2482      *     String message = String.join("-", strings);
2483      *     //message returned is: "Java-is-very-cool"
2484      * }</pre></blockquote>
2485      *
2486      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2487      *
2488      * @param  delimiter a sequence of characters that is used to separate each
2489      *         of the {@code elements} in the resulting {@code String}
2490      * @param  elements an {@code Iterable} that will have its {@code elements}
2491      *         joined together.
2492      *
2493      * @return a new {@code String} that is composed from the {@code elements}
2494      *         argument
2495      *
2496      * @throws NullPointerException If {@code delimiter} or {@code elements}
2497      *         is {@code null}
2498      *
2499      * @see    #join(CharSequence,CharSequence...)
2500      * @see    java.util.StringJoiner
2501      * @since 1.8
2502      */
2503     public static String join(CharSequence delimiter,
2504             Iterable<? extends CharSequence> elements) {
2505         Objects.requireNonNull(delimiter);
2506         Objects.requireNonNull(elements);
2507         StringJoiner joiner = new StringJoiner(delimiter);
2508         for (CharSequence cs: elements) {
2509             joiner.add(cs);
2510         }
2511         return joiner.toString();
2512     }
2513 
2514     /**
2515      * Converts all of the characters in this {@code String} to lower
2516      * case using the rules of the given {@code Locale}.  Case mapping is based
2517      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2518      * class. Since case mappings are not always 1:1 char mappings, the resulting
2519      * {@code String} may be a different length than the original {@code String}.
2520      * <p>
2521      * Examples of lowercase  mappings are in the following table:
2522      * <table border="1" summary="Lowercase mapping examples showing language code of locale, upper case, lower case, and description">
2523      * <tr>
2524      *   <th>Language Code of Locale</th>
2525      *   <th>Upper Case</th>
2526      *   <th>Lower Case</th>
2527      *   <th>Description</th>
2528      * </tr>
2529      * <tr>
2530      *   <td>tr (Turkish)</td>
2531      *   <td>\u0130</td>
2532      *   <td>\u0069</td>
2533      *   <td>capital letter I with dot above -&gt; small letter i</td>
2534      * </tr>
2535      * <tr>
2536      *   <td>tr (Turkish)</td>
2537      *   <td>\u0049</td>
2538      *   <td>\u0131</td>
2539      *   <td>capital letter I -&gt; small letter dotless i </td>
2540      * </tr>
2541      * <tr>
2542      *   <td>(all)</td>
2543      *   <td>French Fries</td>
2544      *   <td>french fries</td>
2545      *   <td>lowercased all chars in String</td>
2546      * </tr>
2547      * <tr>
2548      *   <td>(all)</td>
2549      *   <td><img src="doc-files/capiota.gif" alt="capiota"><img src="doc-files/capchi.gif" alt="capchi">
2550      *       <img src="doc-files/captheta.gif" alt="captheta"><img src="doc-files/capupsil.gif" alt="capupsil">
2551      *       <img src="doc-files/capsigma.gif" alt="capsigma"></td>
2552      *   <td><img src="doc-files/iota.gif" alt="iota"><img src="doc-files/chi.gif" alt="chi">
2553      *       <img src="doc-files/theta.gif" alt="theta"><img src="doc-files/upsilon.gif" alt="upsilon">
2554      *       <img src="doc-files/sigma1.gif" alt="sigma"></td>
2555      *   <td>lowercased all chars in String</td>
2556      * </tr>
2557      * </table>
2558      *
2559      * @param locale use the case transformation rules for this locale
2560      * @return the {@code String}, converted to lowercase.
2561      * @see     java.lang.String#toLowerCase()
2562      * @see     java.lang.String#toUpperCase()
2563      * @see     java.lang.String#toUpperCase(Locale)
2564      * @since   1.1
2565      */
2566     public String toLowerCase(Locale locale) {
2567         if (locale == null) {
2568             throw new NullPointerException();
2569         }
2570         int first;
2571         boolean hasSurr = false;
2572         final int len = value.length;
2573 
2574         // Now check if there are any characters that need to be changed, or are surrogate
2575         for (first = 0 ; first < len; first++) {
2576             int cp = (int)value[first];
2577             if (Character.isSurrogate((char)cp)) {
2578                 hasSurr = true;
2579                 break;
2580             }
2581             if (cp != Character.toLowerCase(cp)) {  // no need to check Character.ERROR
2582                 break;
2583             }
2584         }
2585         if (first == len)
2586             return this;
2587         char[] result = new char[len];
2588         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2589                                                        // lowerCase characters.
2590         String lang = locale.getLanguage();
2591         if (lang == "tr" || lang == "az" || lang == "lt") {
2592             return toLowerCaseEx(result, first, locale, true);
2593         }
2594         if (hasSurr) {
2595             return toLowerCaseEx(result, first, locale, false);
2596         }
2597         for (int i = first; i < len; i++) {
2598             int cp = (int)value[i];
2599             if (cp == '\u03A3' ||                       // GREEK CAPITAL LETTER SIGMA
2600                 Character.isSurrogate((char)cp)) {
2601                 return toLowerCaseEx(result, i, locale, false);
2602             }
2603             if (cp == '\u0130') {                       // LATIN CAPITAL LETTER I WITH DOT ABOVE
2604                 return toLowerCaseEx(result, i, locale, true);
2605             }
2606             cp = Character.toLowerCase(cp);
2607             if (!Character.isBmpCodePoint(cp)) {
2608                 return toLowerCaseEx(result, i, locale, false);
2609             }
2610             result[i] = (char)cp;
2611         }
2612         return new String(result, true);
2613     }
2614 
2615     private String toLowerCaseEx(char[] result, int first, Locale locale, boolean localeDependent) {
2616         int resultOffset = first;
2617         int srcCount;
2618         for (int i = first; i < value.length; i += srcCount) {
2619             int srcChar = (int)value[i];
2620             int lowerChar;
2621             char[] lowerCharArray;
2622             srcCount = 1;
2623             if (Character.isSurrogate((char)srcChar)) {
2624                 srcChar = codePointAt(i);
2625                 srcCount = Character.charCount(srcChar);
2626             }
2627             if (localeDependent || srcChar == '\u03A3') { // GREEK CAPITAL LETTER SIGMA
2628                 lowerChar = ConditionalSpecialCasing.toLowerCaseEx(this, i, locale);
2629             } else {
2630                 lowerChar = Character.toLowerCase(srcChar);
2631             }
2632             if (Character.isBmpCodePoint(lowerChar)) {    // Character.ERROR is not a bmp
2633                 result[resultOffset++] = (char)lowerChar;
2634             } else {
2635                 if (lowerChar == Character.ERROR) {
2636                     lowerCharArray = ConditionalSpecialCasing.toLowerCaseCharArray(this, i, locale);
2637                 } else if (srcCount == 2) {
2638                     resultOffset += Character.toChars(lowerChar, result, resultOffset);
2639                     continue;
2640                 } else {
2641                     lowerCharArray = Character.toChars(lowerChar);
2642                 }
2643                 /* Grow result if needed */
2644                 int mapLen = lowerCharArray.length;
2645                 if (mapLen > srcCount) {
2646                     char[] result2 = new char[result.length + mapLen - srcCount];
2647                     System.arraycopy(result, 0, result2, 0, resultOffset);
2648                     result = result2;
2649                 }
2650                 for (int x = 0; x < mapLen; ++x) {
2651                     result[resultOffset++] = lowerCharArray[x];
2652                 }
2653             }
2654         }
2655         return new String(result, 0, resultOffset);
2656     }
2657 
2658     /**
2659      * Converts all of the characters in this {@code String} to lower
2660      * case using the rules of the default locale. This is equivalent to calling
2661      * {@code toLowerCase(Locale.getDefault())}.
2662      * <p>
2663      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2664      * results if used for strings that are intended to be interpreted locale
2665      * independently.
2666      * Examples are programming language identifiers, protocol keys, and HTML
2667      * tags.
2668      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2669      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2670      * LATIN SMALL LETTER DOTLESS I character.
2671      * To obtain correct results for locale insensitive strings, use
2672      * {@code toLowerCase(Locale.ROOT)}.
2673      *
2674      * @return  the {@code String}, converted to lowercase.
2675      * @see     java.lang.String#toLowerCase(Locale)
2676      */
2677     public String toLowerCase() {
2678         return toLowerCase(Locale.getDefault());
2679     }
2680 
2681     /**
2682      * Converts all of the characters in this {@code String} to upper
2683      * case using the rules of the given {@code Locale}. Case mapping is based
2684      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2685      * class. Since case mappings are not always 1:1 char mappings, the resulting
2686      * {@code String} may be a different length than the original {@code String}.
2687      * <p>
2688      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2689      *
2690      * <table border="1" summary="Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.">
2691      * <tr>
2692      *   <th>Language Code of Locale</th>
2693      *   <th>Lower Case</th>
2694      *   <th>Upper Case</th>
2695      *   <th>Description</th>
2696      * </tr>
2697      * <tr>
2698      *   <td>tr (Turkish)</td>
2699      *   <td>\u0069</td>
2700      *   <td>\u0130</td>
2701      *   <td>small letter i -&gt; capital letter I with dot above</td>
2702      * </tr>
2703      * <tr>
2704      *   <td>tr (Turkish)</td>
2705      *   <td>\u0131</td>
2706      *   <td>\u0049</td>
2707      *   <td>small letter dotless i -&gt; capital letter I</td>
2708      * </tr>
2709      * <tr>
2710      *   <td>(all)</td>
2711      *   <td>\u00df</td>
2712      *   <td>\u0053 \u0053</td>
2713      *   <td>small letter sharp s -&gt; two letters: SS</td>
2714      * </tr>
2715      * <tr>
2716      *   <td>(all)</td>
2717      *   <td>Fahrvergn&uuml;gen</td>
2718      *   <td>FAHRVERGN&Uuml;GEN</td>
2719      *   <td></td>
2720      * </tr>
2721      * </table>
2722      * @param locale use the case transformation rules for this locale
2723      * @return the {@code String}, converted to uppercase.
2724      * @see     java.lang.String#toUpperCase()
2725      * @see     java.lang.String#toLowerCase()
2726      * @see     java.lang.String#toLowerCase(Locale)
2727      * @since   1.1
2728      */
2729     public String toUpperCase(Locale locale) {
2730         if (locale == null) {
2731             throw new NullPointerException();
2732         }
2733         int first;
2734         boolean hasSurr = false;
2735         final int len = value.length;
2736 
2737         // Now check if there are any characters that need to be changed, or are surrogate
2738         for (first = 0 ; first < len; first++ ) {
2739             int cp = (int)value[first];
2740             if (Character.isSurrogate((char)cp)) {
2741                 hasSurr = true;
2742                 break;
2743             }
2744             if (cp != Character.toUpperCaseEx(cp)) {   // no need to check Character.ERROR
2745                 break;
2746             }
2747         }
2748         if (first == len) {
2749             return this;
2750         }
2751         char[] result = new char[len];
2752         System.arraycopy(value, 0, result, 0, first);  // Just copy the first few
2753                                                        // upperCase characters.
2754         String lang = locale.getLanguage();
2755         if (lang == "tr" || lang == "az" || lang == "lt") {
2756             return toUpperCaseEx(result, first, locale, true);
2757         }
2758         if (hasSurr) {
2759             return toUpperCaseEx(result, first, locale, false);
2760         }
2761         for (int i = first; i < len; i++) {
2762             int cp = (int)value[i];
2763             if (Character.isSurrogate((char)cp)) {
2764                 return toUpperCaseEx(result, i, locale, false);
2765             }
2766             cp = Character.toUpperCaseEx(cp);
2767             if (!Character.isBmpCodePoint(cp)) {    // Character.ERROR is not bmp
2768                 return toUpperCaseEx(result, i, locale, false);
2769             }
2770             result[i] = (char)cp;
2771         }
2772         return new String(result, true);
2773     }
2774 
2775     private String toUpperCaseEx(char[] result, int first, Locale locale,
2776                                  boolean localeDependent) {
2777         int resultOffset = first;
2778         int srcCount;
2779         for (int i = first; i < value.length; i += srcCount) {
2780             int srcChar = (int)value[i];
2781             int upperChar;
2782             char[] upperCharArray;
2783             srcCount = 1;
2784             if (Character.isSurrogate((char)srcChar)) {
2785                 srcChar = codePointAt(i);
2786                 srcCount = Character.charCount(srcChar);
2787             }
2788             if (localeDependent) {
2789                 upperChar = ConditionalSpecialCasing.toUpperCaseEx(this, i, locale);
2790             } else {
2791                 upperChar = Character.toUpperCaseEx(srcChar);
2792             }
2793             if (Character.isBmpCodePoint(upperChar)) {
2794                 result[resultOffset++] = (char)upperChar;
2795             } else {
2796                 if (upperChar == Character.ERROR) {
2797                     if (localeDependent) {
2798                         upperCharArray =
2799                             ConditionalSpecialCasing.toUpperCaseCharArray(this, i, locale);
2800                     } else {
2801                         upperCharArray = Character.toUpperCaseCharArray(srcChar);
2802                     }
2803                 } else if (srcCount == 2) {
2804                     resultOffset += Character.toChars(upperChar, result, resultOffset);
2805                     continue;
2806                 } else {
2807                     upperCharArray = Character.toChars(upperChar);
2808                 }
2809                 /* Grow result if needed */
2810                 int mapLen = upperCharArray.length;
2811                 if (mapLen > srcCount) {
2812                     char[] result2 = new char[result.length + mapLen - srcCount];
2813                     System.arraycopy(result, 0, result2, 0, resultOffset);
2814                     result = result2;
2815                  }
2816                  for (int x = 0; x < mapLen; ++x) {
2817                     result[resultOffset++] = upperCharArray[x];
2818                  }
2819             }
2820         }
2821         return new String(result, 0, resultOffset);
2822     }
2823 
2824     /**
2825      * Converts all of the characters in this {@code String} to upper
2826      * case using the rules of the default locale. This method is equivalent to
2827      * {@code toUpperCase(Locale.getDefault())}.
2828      * <p>
2829      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2830      * results if used for strings that are intended to be interpreted locale
2831      * independently.
2832      * Examples are programming language identifiers, protocol keys, and HTML
2833      * tags.
2834      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2835      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2836      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2837      * To obtain correct results for locale insensitive strings, use
2838      * {@code toUpperCase(Locale.ROOT)}.
2839      *
2840      * @return  the {@code String}, converted to uppercase.
2841      * @see     java.lang.String#toUpperCase(Locale)
2842      */
2843     public String toUpperCase() {
2844         return toUpperCase(Locale.getDefault());
2845     }
2846 
2847     /**
2848      * Returns a string whose value is this string, with any leading and trailing
2849      * whitespace removed.
2850      * <p>
2851      * If this {@code String} object represents an empty character
2852      * sequence, or the first and last characters of character sequence
2853      * represented by this {@code String} object both have codes
2854      * greater than {@code '\u005Cu0020'} (the space character), then a
2855      * reference to this {@code String} object is returned.
2856      * <p>
2857      * Otherwise, if there is no character with a code greater than
2858      * {@code '\u005Cu0020'} in the string, then a
2859      * {@code String} object representing an empty string is
2860      * returned.
2861      * <p>
2862      * Otherwise, let <i>k</i> be the index of the first character in the
2863      * string whose code is greater than {@code '\u005Cu0020'}, and let
2864      * <i>m</i> be the index of the last character in the string whose code
2865      * is greater than {@code '\u005Cu0020'}. A {@code String}
2866      * object is returned, representing the substring of this string that
2867      * begins with the character at index <i>k</i> and ends with the
2868      * character at index <i>m</i>-that is, the result of
2869      * {@code this.substring(k, m + 1)}.
2870      * <p>
2871      * This method may be used to trim whitespace (as defined above) from
2872      * the beginning and end of a string.
2873      *
2874      * @return  A string whose value is this string, with any leading and trailing white
2875      *          space removed, or this string if it has no leading or
2876      *          trailing white space.
2877      */
2878     public String trim() {
2879         int len = value.length;
2880         int st = 0;
2881         char[] val = value;    /* avoid getfield opcode */
2882 
2883         while ((st < len) && (val[st] <= ' ')) {
2884             st++;
2885         }
2886         while ((st < len) && (val[len - 1] <= ' ')) {
2887             len--;
2888         }
2889         return ((st > 0) || (len < value.length)) ? substring(st, len) : this;
2890     }
2891 
2892     /**
2893      * This object (which is already a string!) is itself returned.
2894      *
2895      * @return  the string itself.
2896      */
2897     public String toString() {
2898         return this;
2899     }
2900 
2901     static class IntCharArraySpliterator implements Spliterator.OfInt {
2902         private final char[] array;
2903         private int index;        // current index, modified on advance/split
2904         private final int fence;  // one past last index
2905         private final int cs;
2906 
2907         IntCharArraySpliterator(char[] array, int acs) {
2908             this(array, 0, array.length, acs);
2909         }
2910 
2911         IntCharArraySpliterator(char[] array, int origin, int fence, int acs) {
2912             this.array = array;
2913             this.index = origin;
2914             this.fence = fence;
2915             this.cs = acs | Spliterator.ORDERED | Spliterator.SIZED
2916                       | Spliterator.SUBSIZED;
2917         }
2918 
2919         @Override
2920         public OfInt trySplit() {
2921             int lo = index, mid = (lo + fence) >>> 1;
2922             return (lo >= mid)
2923                    ? null
2924                    : new IntCharArraySpliterator(array, lo, index = mid, cs);
2925         }
2926 
2927         @Override
2928         public void forEachRemaining(IntConsumer action) {
2929             char[] a; int i, hi; // hoist accesses and checks from loop
2930             if (action == null)
2931                 throw new NullPointerException();
2932             if ((a = array).length >= (hi = fence) &&
2933                 (i = index) >= 0 && i < (index = hi)) {
2934                 do { action.accept(a[i]); } while (++i < hi);
2935             }
2936         }
2937 
2938         @Override
2939         public boolean tryAdvance(IntConsumer action) {
2940             if (action == null)
2941                 throw new NullPointerException();
2942             if (index >= 0 && index < fence) {
2943                 action.accept(array[index++]);
2944                 return true;
2945             }
2946             return false;
2947         }
2948 
2949         @Override
2950         public long estimateSize() { return (long)(fence - index); }
2951 
2952         @Override
2953         public int characteristics() {
2954             return cs;
2955         }
2956     }
2957 
2958     /**
2959      * Returns a stream of {@code int} zero-extending the {@code char} values
2960      * from this sequence.  Any char which maps to a <a
2961      * href="{@docRoot}/java/lang/Character.html#unicode">surrogate code
2962      * point</a> is passed through uninterpreted.
2963      *
2964      * @return an IntStream of char values from this sequence
2965      * @since 1.9
2966      */
2967     @Override
2968     public IntStream chars() {
2969         return StreamSupport.intStream(
2970                 new IntCharArraySpliterator(value, Spliterator.IMMUTABLE), false);
2971     }
2972 
2973     static class CodePointsSpliterator implements Spliterator.OfInt {
2974         private final char[] array;
2975         private int index;        // current index, modified on advance/split
2976         private final int fence;  // one past last index
2977         private final int cs;
2978 
2979         CodePointsSpliterator(char[] array, int acs) {
2980             this(array, 0, array.length, acs);
2981         }
2982 
2983         CodePointsSpliterator(char[] array, int origin, int fence, int acs) {
2984             this.array = array;
2985             this.index = origin;
2986             this.fence = fence;
2987             this.cs = acs | Spliterator.ORDERED;
2988         }
2989 
2990         @Override
2991         public OfInt trySplit() {
2992             int lo = index, mid = (lo + fence) >>> 1;
2993             if (lo >= mid)
2994                 return null;
2995 
2996             int midOneLess;
2997             // If the mid-point intersects a surrogate pair
2998             if (Character.isLowSurrogate(array[mid]) &&
2999                 Character.isHighSurrogate(array[midOneLess = (mid -1)])) {
3000                 // If there is only one pair it cannot be split
3001                 if (lo >= midOneLess)
3002                     return null;
3003                 // Shift the mid-point to align with the surrogate pair
3004                 return new CodePointsSpliterator(array, lo, index = midOneLess, cs);
3005             }
3006             return new CodePointsSpliterator(array, lo, index = mid, cs);
3007         }
3008 
3009         @Override
3010         public void forEachRemaining(IntConsumer action) {
3011             char[] a; int i, hi; // hoist accesses and checks from loop
3012             if (action == null)
3013                 throw new NullPointerException();
3014             if ((a = array).length >= (hi = fence) &&
3015                 (i = index) >= 0 && i < (index = hi)) {
3016                 do {
3017                     i = advance(a, i, hi, action);
3018                 } while (i < hi);
3019             }
3020         }
3021 
3022         @Override
3023         public boolean tryAdvance(IntConsumer action) {
3024             if (action == null)
3025                 throw new NullPointerException();
3026             if (index >= 0 && index < fence) {
3027                 index = advance(array, index, fence, action);
3028                 return true;
3029             }
3030             return false;
3031         }
3032 
3033         // Advance one code point from the index, i, and return the next
3034         // index to advance from
3035         private static int advance(char[] a, int i, int hi, IntConsumer action) {
3036             char c1 = a[i++];
3037             int cp = c1;
3038             if (Character.isHighSurrogate(c1) && i < hi) {
3039                 char c2 = a[i];
3040                 if (Character.isLowSurrogate(c2)) {
3041                     i++;
3042                     cp = Character.toCodePoint(c1, c2);
3043                 }
3044             }
3045             action.accept(cp);
3046             return i;
3047         }
3048 
3049         @Override
3050         public long estimateSize() { return (long)(fence - index); }
3051 
3052         @Override
3053         public int characteristics() {
3054             return cs;
3055         }
3056     }
3057 
3058     /**
3059      * Returns a stream of code point values from this sequence.  Any surrogate
3060      * pairs encountered in the sequence are combined as if by {@linkplain
3061      * Character#toCodePoint Character.toCodePoint} and the result is passed
3062      * to the stream. Any other code units, including ordinary BMP characters,
3063      * unpaired surrogates, and undefined code units, are zero-extended to
3064      * {@code int} values which are then passed to the stream.
3065      *
3066      * @return an IntStream of Unicode code points from this sequence
3067      * @since 1.9
3068      */
3069     @Override
3070     public IntStream codePoints() {
3071         return StreamSupport.intStream(
3072                 new CodePointsSpliterator(value, Spliterator.IMMUTABLE), false);
3073     }
3074 
3075     /**
3076      * Converts this string to a new character array.
3077      *
3078      * @return  a newly allocated character array whose length is the length
3079      *          of this string and whose contents are initialized to contain
3080      *          the character sequence represented by this string.
3081      */
3082     public char[] toCharArray() {
3083         // Cannot use Arrays.copyOf because of class initialization order issues
3084         char result[] = new char[value.length];
3085         System.arraycopy(value, 0, result, 0, value.length);
3086         return result;
3087     }
3088 
3089     /**
3090      * Returns a formatted string using the specified format string and
3091      * arguments.
3092      *
3093      * <p> The locale always used is the one returned by {@link
3094      * java.util.Locale#getDefault() Locale.getDefault()}.
3095      *
3096      * @param  format
3097      *         A <a href="../util/Formatter.html#syntax">format string</a>
3098      *
3099      * @param  args
3100      *         Arguments referenced by the format specifiers in the format
3101      *         string.  If there are more arguments than format specifiers, the
3102      *         extra arguments are ignored.  The number of arguments is
3103      *         variable and may be zero.  The maximum number of arguments is
3104      *         limited by the maximum dimension of a Java array as defined by
3105      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3106      *         The behaviour on a
3107      *         {@code null} argument depends on the <a
3108      *         href="../util/Formatter.html#syntax">conversion</a>.
3109      *
3110      * @throws  java.util.IllegalFormatException
3111      *          If a format string contains an illegal syntax, a format
3112      *          specifier that is incompatible with the given arguments,
3113      *          insufficient arguments given the format string, or other
3114      *          illegal conditions.  For specification of all possible
3115      *          formatting errors, see the <a
3116      *          href="../util/Formatter.html#detail">Details</a> section of the
3117      *          formatter class specification.
3118      *
3119      * @return  A formatted string
3120      *
3121      * @see  java.util.Formatter
3122      * @since  1.5
3123      */
3124     public static String format(String format, Object... args) {
3125         return new Formatter().format(format, args).toString();
3126     }
3127 
3128     /**
3129      * Returns a formatted string using the specified locale, format string,
3130      * and arguments.
3131      *
3132      * @param  l
3133      *         The {@linkplain java.util.Locale locale} to apply during
3134      *         formatting.  If {@code l} is {@code null} then no localization
3135      *         is applied.
3136      *
3137      * @param  format
3138      *         A <a href="../util/Formatter.html#syntax">format string</a>
3139      *
3140      * @param  args
3141      *         Arguments referenced by the format specifiers in the format
3142      *         string.  If there are more arguments than format specifiers, the
3143      *         extra arguments are ignored.  The number of arguments is
3144      *         variable and may be zero.  The maximum number of arguments is
3145      *         limited by the maximum dimension of a Java array as defined by
3146      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3147      *         The behaviour on a
3148      *         {@code null} argument depends on the
3149      *         <a href="../util/Formatter.html#syntax">conversion</a>.
3150      *
3151      * @throws  java.util.IllegalFormatException
3152      *          If a format string contains an illegal syntax, a format
3153      *          specifier that is incompatible with the given arguments,
3154      *          insufficient arguments given the format string, or other
3155      *          illegal conditions.  For specification of all possible
3156      *          formatting errors, see the <a
3157      *          href="../util/Formatter.html#detail">Details</a> section of the
3158      *          formatter class specification
3159      *
3160      * @return  A formatted string
3161      *
3162      * @see  java.util.Formatter
3163      * @since  1.5
3164      */
3165     public static String format(Locale l, String format, Object... args) {
3166         return new Formatter(l).format(format, args).toString();
3167     }
3168 
3169     /**
3170      * Returns the string representation of the {@code Object} argument.
3171      *
3172      * @param   obj   an {@code Object}.
3173      * @return  if the argument is {@code null}, then a string equal to
3174      *          {@code "null"}; otherwise, the value of
3175      *          {@code obj.toString()} is returned.
3176      * @see     java.lang.Object#toString()
3177      */
3178     public static String valueOf(Object obj) {
3179         return (obj == null) ? "null" : obj.toString();
3180     }
3181 
3182     /**
3183      * Returns the string representation of the {@code char} array
3184      * argument. The contents of the character array are copied; subsequent
3185      * modification of the character array does not affect the returned
3186      * string.
3187      *
3188      * @param   data     the character array.
3189      * @return  a {@code String} that contains the characters of the
3190      *          character array.
3191      */
3192     public static String valueOf(char data[]) {
3193         return new String(data);
3194     }
3195 
3196     /**
3197      * Returns the string representation of a specific subarray of the
3198      * {@code char} array argument.
3199      * <p>
3200      * The {@code offset} argument is the index of the first
3201      * character of the subarray. The {@code count} argument
3202      * specifies the length of the subarray. The contents of the subarray
3203      * are copied; subsequent modification of the character array does not
3204      * affect the returned string.
3205      *
3206      * @param   data     the character array.
3207      * @param   offset   initial offset of the subarray.
3208      * @param   count    length of the subarray.
3209      * @return  a {@code String} that contains the characters of the
3210      *          specified subarray of the character array.
3211      * @exception IndexOutOfBoundsException if {@code offset} is
3212      *          negative, or {@code count} is negative, or
3213      *          {@code offset+count} is larger than
3214      *          {@code data.length}.
3215      */
3216     public static String valueOf(char data[], int offset, int count) {
3217         return new String(data, offset, count);
3218     }
3219 
3220     /**
3221      * Equivalent to {@link #valueOf(char[], int, int)}.
3222      *
3223      * @param   data     the character array.
3224      * @param   offset   initial offset of the subarray.
3225      * @param   count    length of the subarray.
3226      * @return  a {@code String} that contains the characters of the
3227      *          specified subarray of the character array.
3228      * @exception IndexOutOfBoundsException if {@code offset} is
3229      *          negative, or {@code count} is negative, or
3230      *          {@code offset+count} is larger than
3231      *          {@code data.length}.
3232      */
3233     public static String copyValueOf(char data[], int offset, int count) {
3234         return new String(data, offset, count);
3235     }
3236 
3237     /**
3238      * Equivalent to {@link #valueOf(char[])}.
3239      *
3240      * @param   data   the character array.
3241      * @return  a {@code String} that contains the characters of the
3242      *          character array.
3243      */
3244     public static String copyValueOf(char data[]) {
3245         return new String(data);
3246     }
3247 
3248     /**
3249      * Returns the string representation of the {@code boolean} argument.
3250      *
3251      * @param   b   a {@code boolean}.
3252      * @return  if the argument is {@code true}, a string equal to
3253      *          {@code "true"} is returned; otherwise, a string equal to
3254      *          {@code "false"} is returned.
3255      */
3256     public static String valueOf(boolean b) {
3257         return b ? "true" : "false";
3258     }
3259 
3260     /**
3261      * Returns the string representation of the {@code char}
3262      * argument.
3263      *
3264      * @param   c   a {@code char}.
3265      * @return  a string of length {@code 1} containing
3266      *          as its single character the argument {@code c}.
3267      */
3268     public static String valueOf(char c) {
3269         char data[] = {c};
3270         return new String(data, true);
3271     }
3272 
3273     /**
3274      * Returns the string representation of the {@code int} argument.
3275      * <p>
3276      * The representation is exactly the one returned by the
3277      * {@code Integer.toString} method of one argument.
3278      *
3279      * @param   i   an {@code int}.
3280      * @return  a string representation of the {@code int} argument.
3281      * @see     java.lang.Integer#toString(int, int)
3282      */
3283     public static String valueOf(int i) {
3284         return Integer.toString(i);
3285     }
3286 
3287     /**
3288      * Returns the string representation of the {@code long} argument.
3289      * <p>
3290      * The representation is exactly the one returned by the
3291      * {@code Long.toString} method of one argument.
3292      *
3293      * @param   l   a {@code long}.
3294      * @return  a string representation of the {@code long} argument.
3295      * @see     java.lang.Long#toString(long)
3296      */
3297     public static String valueOf(long l) {
3298         return Long.toString(l);
3299     }
3300 
3301     /**
3302      * Returns the string representation of the {@code float} argument.
3303      * <p>
3304      * The representation is exactly the one returned by the
3305      * {@code Float.toString} method of one argument.
3306      *
3307      * @param   f   a {@code float}.
3308      * @return  a string representation of the {@code float} argument.
3309      * @see     java.lang.Float#toString(float)
3310      */
3311     public static String valueOf(float f) {
3312         return Float.toString(f);
3313     }
3314 
3315     /**
3316      * Returns the string representation of the {@code double} argument.
3317      * <p>
3318      * The representation is exactly the one returned by the
3319      * {@code Double.toString} method of one argument.
3320      *
3321      * @param   d   a {@code double}.
3322      * @return  a  string representation of the {@code double} argument.
3323      * @see     java.lang.Double#toString(double)
3324      */
3325     public static String valueOf(double d) {
3326         return Double.toString(d);
3327     }
3328 
3329     /**
3330      * Returns a canonical representation for the string object.
3331      * <p>
3332      * A pool of strings, initially empty, is maintained privately by the
3333      * class {@code String}.
3334      * <p>
3335      * When the intern method is invoked, if the pool already contains a
3336      * string equal to this {@code String} object as determined by
3337      * the {@link #equals(Object)} method, then the string from the pool is
3338      * returned. Otherwise, this {@code String} object is added to the
3339      * pool and a reference to this {@code String} object is returned.
3340      * <p>
3341      * It follows that for any two strings {@code s} and {@code t},
3342      * {@code s.intern() == t.intern()} is {@code true}
3343      * if and only if {@code s.equals(t)} is {@code true}.
3344      * <p>
3345      * All literal strings and string-valued constant expressions are
3346      * interned. String literals are defined in section 3.10.5 of the
3347      * <cite>The Java&trade; Language Specification</cite>.
3348      *
3349      * @return  a string that has the same contents as this string, but is
3350      *          guaranteed to be from a pool of unique strings.
3351      */
3352     public native String intern();
3353 }