1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/filemap.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_linux.inline.hpp"
  40 #include "os_share_linux.hpp"
  41 #include "osContainer_linux.hpp"
  42 #include "prims/jniFastGetField.hpp"
  43 #include "prims/jvm_misc.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/atomic.hpp"
  46 #include "runtime/extendedPC.hpp"
  47 #include "runtime/globals.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/init.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/orderAccess.inline.hpp"
  55 #include "runtime/osThread.hpp"
  56 #include "runtime/perfMemory.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/statSampler.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.inline.hpp"
  61 #include "runtime/threadCritical.hpp"
  62 #include "runtime/threadSMR.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "semaphore_posix.hpp"
  65 #include "services/attachListener.hpp"
  66 #include "services/memTracker.hpp"
  67 #include "services/runtimeService.hpp"
  68 #include "utilities/align.hpp"
  69 #include "utilities/decoder.hpp"
  70 #include "utilities/defaultStream.hpp"
  71 #include "utilities/events.hpp"
  72 #include "utilities/elfFile.hpp"
  73 #include "utilities/growableArray.hpp"
  74 #include "utilities/macros.hpp"
  75 #include "utilities/vmError.hpp"
  76 
  77 // put OS-includes here
  78 # include <sys/types.h>
  79 # include <sys/mman.h>
  80 # include <sys/stat.h>
  81 # include <sys/select.h>
  82 # include <pthread.h>
  83 # include <signal.h>
  84 # include <errno.h>
  85 # include <dlfcn.h>
  86 # include <stdio.h>
  87 # include <unistd.h>
  88 # include <sys/resource.h>
  89 # include <pthread.h>
  90 # include <sys/stat.h>
  91 # include <sys/time.h>
  92 # include <sys/times.h>
  93 # include <sys/utsname.h>
  94 # include <sys/socket.h>
  95 # include <sys/wait.h>
  96 # include <pwd.h>
  97 # include <poll.h>
  98 # include <fcntl.h>
  99 # include <string.h>
 100 # include <syscall.h>
 101 # include <sys/sysinfo.h>
 102 # include <gnu/libc-version.h>
 103 # include <sys/ipc.h>
 104 # include <sys/shm.h>
 105 # include <link.h>
 106 # include <stdint.h>
 107 # include <inttypes.h>
 108 # include <sys/ioctl.h>
 109 
 110 #ifndef _GNU_SOURCE
 111   #define _GNU_SOURCE
 112   #include <sched.h>
 113   #undef _GNU_SOURCE
 114 #else
 115   #include <sched.h>
 116 #endif
 117 
 118 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 119 // getrusage() is prepared to handle the associated failure.
 120 #ifndef RUSAGE_THREAD
 121   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 122 #endif
 123 
 124 #define MAX_PATH    (2 * K)
 125 
 126 #define MAX_SECS 100000000
 127 
 128 // for timer info max values which include all bits
 129 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 130 
 131 #define LARGEPAGES_BIT (1 << 6)
 132 #define DAX_SHARED_BIT (1 << 8)
 133 ////////////////////////////////////////////////////////////////////////////////
 134 // global variables
 135 julong os::Linux::_physical_memory = 0;
 136 
 137 address   os::Linux::_initial_thread_stack_bottom = NULL;
 138 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 139 
 140 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 141 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 142 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 143 Mutex* os::Linux::_createThread_lock = NULL;
 144 pthread_t os::Linux::_main_thread;
 145 int os::Linux::_page_size = -1;
 146 bool os::Linux::_supports_fast_thread_cpu_time = false;
 147 uint32_t os::Linux::_os_version = 0;
 148 const char * os::Linux::_glibc_version = NULL;
 149 const char * os::Linux::_libpthread_version = NULL;
 150 
 151 static jlong initial_time_count=0;
 152 
 153 static int clock_tics_per_sec = 100;
 154 
 155 // For diagnostics to print a message once. see run_periodic_checks
 156 static sigset_t check_signal_done;
 157 static bool check_signals = true;
 158 
 159 // Signal number used to suspend/resume a thread
 160 
 161 // do not use any signal number less than SIGSEGV, see 4355769
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 // utility functions
 166 
 167 static int SR_initialize();
 168 
 169 julong os::available_memory() {
 170   return Linux::available_memory();
 171 }
 172 
 173 julong os::Linux::available_memory() {
 174   // values in struct sysinfo are "unsigned long"
 175   struct sysinfo si;
 176   julong avail_mem;
 177 
 178   if (OSContainer::is_containerized()) {
 179     jlong mem_limit, mem_usage;
 180     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 181       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 182                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 183     }
 184     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 185       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 186     }
 187     if (mem_limit > 0 && mem_usage > 0 ) {
 188       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 189       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 190       return avail_mem;
 191     }
 192   }
 193 
 194   sysinfo(&si);
 195   avail_mem = (julong)si.freeram * si.mem_unit;
 196   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 197   return avail_mem;
 198 }
 199 
 200 julong os::physical_memory() {
 201   jlong phys_mem = 0;
 202   if (OSContainer::is_containerized()) {
 203     jlong mem_limit;
 204     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 205       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 206       return mem_limit;
 207     }
 208     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 209                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 210   }
 211 
 212   phys_mem = Linux::physical_memory();
 213   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 214   return phys_mem;
 215 }
 216 
 217 // Return true if user is running as root.
 218 
 219 bool os::have_special_privileges() {
 220   static bool init = false;
 221   static bool privileges = false;
 222   if (!init) {
 223     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 224     init = true;
 225   }
 226   return privileges;
 227 }
 228 
 229 
 230 #ifndef SYS_gettid
 231 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 232   #ifdef __ia64__
 233     #define SYS_gettid 1105
 234   #else
 235     #ifdef __i386__
 236       #define SYS_gettid 224
 237     #else
 238       #ifdef __amd64__
 239         #define SYS_gettid 186
 240       #else
 241         #ifdef __sparc__
 242           #define SYS_gettid 143
 243         #else
 244           #error define gettid for the arch
 245         #endif
 246       #endif
 247     #endif
 248   #endif
 249 #endif
 250 
 251 
 252 // pid_t gettid()
 253 //
 254 // Returns the kernel thread id of the currently running thread. Kernel
 255 // thread id is used to access /proc.
 256 pid_t os::Linux::gettid() {
 257   int rslt = syscall(SYS_gettid);
 258   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 259   return (pid_t)rslt;
 260 }
 261 
 262 // Most versions of linux have a bug where the number of processors are
 263 // determined by looking at the /proc file system.  In a chroot environment,
 264 // the system call returns 1.  This causes the VM to act as if it is
 265 // a single processor and elide locking (see is_MP() call).
 266 static bool unsafe_chroot_detected = false;
 267 static const char *unstable_chroot_error = "/proc file system not found.\n"
 268                      "Java may be unstable running multithreaded in a chroot "
 269                      "environment on Linux when /proc filesystem is not mounted.";
 270 
 271 void os::Linux::initialize_system_info() {
 272   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 273   if (processor_count() == 1) {
 274     pid_t pid = os::Linux::gettid();
 275     char fname[32];
 276     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 277     FILE *fp = fopen(fname, "r");
 278     if (fp == NULL) {
 279       unsafe_chroot_detected = true;
 280     } else {
 281       fclose(fp);
 282     }
 283   }
 284   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 285   assert(processor_count() > 0, "linux error");
 286 }
 287 
 288 void os::init_system_properties_values() {
 289   // The next steps are taken in the product version:
 290   //
 291   // Obtain the JAVA_HOME value from the location of libjvm.so.
 292   // This library should be located at:
 293   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 294   //
 295   // If "/jre/lib/" appears at the right place in the path, then we
 296   // assume libjvm.so is installed in a JDK and we use this path.
 297   //
 298   // Otherwise exit with message: "Could not create the Java virtual machine."
 299   //
 300   // The following extra steps are taken in the debugging version:
 301   //
 302   // If "/jre/lib/" does NOT appear at the right place in the path
 303   // instead of exit check for $JAVA_HOME environment variable.
 304   //
 305   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 306   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 307   // it looks like libjvm.so is installed there
 308   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 309   //
 310   // Otherwise exit.
 311   //
 312   // Important note: if the location of libjvm.so changes this
 313   // code needs to be changed accordingly.
 314 
 315   // See ld(1):
 316   //      The linker uses the following search paths to locate required
 317   //      shared libraries:
 318   //        1: ...
 319   //        ...
 320   //        7: The default directories, normally /lib and /usr/lib.
 321 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 322   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 323 #else
 324   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 325 #endif
 326 
 327 // Base path of extensions installed on the system.
 328 #define SYS_EXT_DIR     "/usr/java/packages"
 329 #define EXTENSIONS_DIR  "/lib/ext"
 330 
 331   // Buffer that fits several sprintfs.
 332   // Note that the space for the colon and the trailing null are provided
 333   // by the nulls included by the sizeof operator.
 334   const size_t bufsize =
 335     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 336          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     pslash = strrchr(buf, '/');
 347     if (pslash != NULL) {
 348       *pslash = '\0';            // Get rid of /libjvm.so.
 349     }
 350     pslash = strrchr(buf, '/');
 351     if (pslash != NULL) {
 352       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 353     }
 354     Arguments::set_dll_dir(buf);
 355 
 356     if (pslash != NULL) {
 357       pslash = strrchr(buf, '/');
 358       if (pslash != NULL) {
 359         *pslash = '\0';        // Get rid of /lib.
 360       }
 361     }
 362     Arguments::set_java_home(buf);
 363     set_boot_path('/', ':');
 364   }
 365 
 366   // Where to look for native libraries.
 367   //
 368   // Note: Due to a legacy implementation, most of the library path
 369   // is set in the launcher. This was to accomodate linking restrictions
 370   // on legacy Linux implementations (which are no longer supported).
 371   // Eventually, all the library path setting will be done here.
 372   //
 373   // However, to prevent the proliferation of improperly built native
 374   // libraries, the new path component /usr/java/packages is added here.
 375   // Eventually, all the library path setting will be done here.
 376   {
 377     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 378     // should always exist (until the legacy problem cited above is
 379     // addressed).
 380     const char *v = ::getenv("LD_LIBRARY_PATH");
 381     const char *v_colon = ":";
 382     if (v == NULL) { v = ""; v_colon = ""; }
 383     // That's +1 for the colon and +1 for the trailing '\0'.
 384     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 385                                                      strlen(v) + 1 +
 386                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 387                                                      mtInternal);
 388     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 389     Arguments::set_library_path(ld_library_path);
 390     FREE_C_HEAP_ARRAY(char, ld_library_path);
 391   }
 392 
 393   // Extensions directories.
 394   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 395   Arguments::set_ext_dirs(buf);
 396 
 397   FREE_C_HEAP_ARRAY(char, buf);
 398 
 399 #undef DEFAULT_LIBPATH
 400 #undef SYS_EXT_DIR
 401 #undef EXTENSIONS_DIR
 402 }
 403 
 404 ////////////////////////////////////////////////////////////////////////////////
 405 // breakpoint support
 406 
 407 void os::breakpoint() {
 408   BREAKPOINT;
 409 }
 410 
 411 extern "C" void breakpoint() {
 412   // use debugger to set breakpoint here
 413 }
 414 
 415 ////////////////////////////////////////////////////////////////////////////////
 416 // signal support
 417 
 418 debug_only(static bool signal_sets_initialized = false);
 419 static sigset_t unblocked_sigs, vm_sigs;
 420 
 421 bool os::Linux::is_sig_ignored(int sig) {
 422   struct sigaction oact;
 423   sigaction(sig, (struct sigaction*)NULL, &oact);
 424   void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 425                                  : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 426   if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN)) {
 427     return true;
 428   } else {
 429     return false;
 430   }
 431 }
 432 
 433 void os::Linux::signal_sets_init() {
 434   // Should also have an assertion stating we are still single-threaded.
 435   assert(!signal_sets_initialized, "Already initialized");
 436   // Fill in signals that are necessarily unblocked for all threads in
 437   // the VM. Currently, we unblock the following signals:
 438   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 439   //                         by -Xrs (=ReduceSignalUsage));
 440   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 441   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 442   // the dispositions or masks wrt these signals.
 443   // Programs embedding the VM that want to use the above signals for their
 444   // own purposes must, at this time, use the "-Xrs" option to prevent
 445   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 446   // (See bug 4345157, and other related bugs).
 447   // In reality, though, unblocking these signals is really a nop, since
 448   // these signals are not blocked by default.
 449   sigemptyset(&unblocked_sigs);
 450   sigaddset(&unblocked_sigs, SIGILL);
 451   sigaddset(&unblocked_sigs, SIGSEGV);
 452   sigaddset(&unblocked_sigs, SIGBUS);
 453   sigaddset(&unblocked_sigs, SIGFPE);
 454 #if defined(PPC64)
 455   sigaddset(&unblocked_sigs, SIGTRAP);
 456 #endif
 457   sigaddset(&unblocked_sigs, SR_signum);
 458 
 459   if (!ReduceSignalUsage) {
 460     if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 461       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 462     }
 463     if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 464       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 465     }
 466     if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 468     }
 469   }
 470   // Fill in signals that are blocked by all but the VM thread.
 471   sigemptyset(&vm_sigs);
 472   if (!ReduceSignalUsage) {
 473     sigaddset(&vm_sigs, BREAK_SIGNAL);
 474   }
 475   debug_only(signal_sets_initialized = true);
 476 
 477 }
 478 
 479 // These are signals that are unblocked while a thread is running Java.
 480 // (For some reason, they get blocked by default.)
 481 sigset_t* os::Linux::unblocked_signals() {
 482   assert(signal_sets_initialized, "Not initialized");
 483   return &unblocked_sigs;
 484 }
 485 
 486 // These are the signals that are blocked while a (non-VM) thread is
 487 // running Java. Only the VM thread handles these signals.
 488 sigset_t* os::Linux::vm_signals() {
 489   assert(signal_sets_initialized, "Not initialized");
 490   return &vm_sigs;
 491 }
 492 
 493 void os::Linux::hotspot_sigmask(Thread* thread) {
 494 
 495   //Save caller's signal mask before setting VM signal mask
 496   sigset_t caller_sigmask;
 497   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 498 
 499   OSThread* osthread = thread->osthread();
 500   osthread->set_caller_sigmask(caller_sigmask);
 501 
 502   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 503 
 504   if (!ReduceSignalUsage) {
 505     if (thread->is_VM_thread()) {
 506       // Only the VM thread handles BREAK_SIGNAL ...
 507       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 508     } else {
 509       // ... all other threads block BREAK_SIGNAL
 510       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 511     }
 512   }
 513 }
 514 
 515 //////////////////////////////////////////////////////////////////////////////
 516 // detecting pthread library
 517 
 518 void os::Linux::libpthread_init() {
 519   // Save glibc and pthread version strings.
 520 #if !defined(_CS_GNU_LIBC_VERSION) || \
 521     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 522   #error "glibc too old (< 2.3.2)"
 523 #endif
 524 
 525   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 526   assert(n > 0, "cannot retrieve glibc version");
 527   char *str = (char *)malloc(n, mtInternal);
 528   confstr(_CS_GNU_LIBC_VERSION, str, n);
 529   os::Linux::set_glibc_version(str);
 530 
 531   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 532   assert(n > 0, "cannot retrieve pthread version");
 533   str = (char *)malloc(n, mtInternal);
 534   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 535   os::Linux::set_libpthread_version(str);
 536 }
 537 
 538 /////////////////////////////////////////////////////////////////////////////
 539 // thread stack expansion
 540 
 541 // os::Linux::manually_expand_stack() takes care of expanding the thread
 542 // stack. Note that this is normally not needed: pthread stacks allocate
 543 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 544 // committed. Therefore it is not necessary to expand the stack manually.
 545 //
 546 // Manually expanding the stack was historically needed on LinuxThreads
 547 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 548 // it is kept to deal with very rare corner cases:
 549 //
 550 // For one, user may run the VM on an own implementation of threads
 551 // whose stacks are - like the old LinuxThreads - implemented using
 552 // mmap(MAP_GROWSDOWN).
 553 //
 554 // Also, this coding may be needed if the VM is running on the primordial
 555 // thread. Normally we avoid running on the primordial thread; however,
 556 // user may still invoke the VM on the primordial thread.
 557 //
 558 // The following historical comment describes the details about running
 559 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 560 
 561 
 562 // Force Linux kernel to expand current thread stack. If "bottom" is close
 563 // to the stack guard, caller should block all signals.
 564 //
 565 // MAP_GROWSDOWN:
 566 //   A special mmap() flag that is used to implement thread stacks. It tells
 567 //   kernel that the memory region should extend downwards when needed. This
 568 //   allows early versions of LinuxThreads to only mmap the first few pages
 569 //   when creating a new thread. Linux kernel will automatically expand thread
 570 //   stack as needed (on page faults).
 571 //
 572 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 573 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 574 //   region, it's hard to tell if the fault is due to a legitimate stack
 575 //   access or because of reading/writing non-exist memory (e.g. buffer
 576 //   overrun). As a rule, if the fault happens below current stack pointer,
 577 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 578 //   application (see Linux kernel fault.c).
 579 //
 580 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 581 //   stack overflow detection.
 582 //
 583 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 584 //   not use MAP_GROWSDOWN.
 585 //
 586 // To get around the problem and allow stack banging on Linux, we need to
 587 // manually expand thread stack after receiving the SIGSEGV.
 588 //
 589 // There are two ways to expand thread stack to address "bottom", we used
 590 // both of them in JVM before 1.5:
 591 //   1. adjust stack pointer first so that it is below "bottom", and then
 592 //      touch "bottom"
 593 //   2. mmap() the page in question
 594 //
 595 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 596 // if current sp is already near the lower end of page 101, and we need to
 597 // call mmap() to map page 100, it is possible that part of the mmap() frame
 598 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 599 // That will destroy the mmap() frame and cause VM to crash.
 600 //
 601 // The following code works by adjusting sp first, then accessing the "bottom"
 602 // page to force a page fault. Linux kernel will then automatically expand the
 603 // stack mapping.
 604 //
 605 // _expand_stack_to() assumes its frame size is less than page size, which
 606 // should always be true if the function is not inlined.
 607 
 608 static void NOINLINE _expand_stack_to(address bottom) {
 609   address sp;
 610   size_t size;
 611   volatile char *p;
 612 
 613   // Adjust bottom to point to the largest address within the same page, it
 614   // gives us a one-page buffer if alloca() allocates slightly more memory.
 615   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 616   bottom += os::Linux::page_size() - 1;
 617 
 618   // sp might be slightly above current stack pointer; if that's the case, we
 619   // will alloca() a little more space than necessary, which is OK. Don't use
 620   // os::current_stack_pointer(), as its result can be slightly below current
 621   // stack pointer, causing us to not alloca enough to reach "bottom".
 622   sp = (address)&sp;
 623 
 624   if (sp > bottom) {
 625     size = sp - bottom;
 626     p = (volatile char *)alloca(size);
 627     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 628     p[0] = '\0';
 629   }
 630 }
 631 
 632 void os::Linux::expand_stack_to(address bottom) {
 633   _expand_stack_to(bottom);
 634 }
 635 
 636 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 637   assert(t!=NULL, "just checking");
 638   assert(t->osthread()->expanding_stack(), "expand should be set");
 639   assert(t->stack_base() != NULL, "stack_base was not initialized");
 640 
 641   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 642     sigset_t mask_all, old_sigset;
 643     sigfillset(&mask_all);
 644     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 645     _expand_stack_to(addr);
 646     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 647     return true;
 648   }
 649   return false;
 650 }
 651 
 652 //////////////////////////////////////////////////////////////////////////////
 653 // create new thread
 654 
 655 // Thread start routine for all newly created threads
 656 static void *thread_native_entry(Thread *thread) {
 657   // Try to randomize the cache line index of hot stack frames.
 658   // This helps when threads of the same stack traces evict each other's
 659   // cache lines. The threads can be either from the same JVM instance, or
 660   // from different JVM instances. The benefit is especially true for
 661   // processors with hyperthreading technology.
 662   static int counter = 0;
 663   int pid = os::current_process_id();
 664   alloca(((pid ^ counter++) & 7) * 128);
 665 
 666   thread->initialize_thread_current();
 667 
 668   OSThread* osthread = thread->osthread();
 669   Monitor* sync = osthread->startThread_lock();
 670 
 671   osthread->set_thread_id(os::current_thread_id());
 672 
 673   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 674     os::current_thread_id(), (uintx) pthread_self());
 675 
 676   if (UseNUMA) {
 677     int lgrp_id = os::numa_get_group_id();
 678     if (lgrp_id != -1) {
 679       thread->set_lgrp_id(lgrp_id);
 680     }
 681   }
 682   // initialize signal mask for this thread
 683   os::Linux::hotspot_sigmask(thread);
 684 
 685   // initialize floating point control register
 686   os::Linux::init_thread_fpu_state();
 687 
 688   // handshaking with parent thread
 689   {
 690     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 691 
 692     // notify parent thread
 693     osthread->set_state(INITIALIZED);
 694     sync->notify_all();
 695 
 696     // wait until os::start_thread()
 697     while (osthread->get_state() == INITIALIZED) {
 698       sync->wait(Mutex::_no_safepoint_check_flag);
 699     }
 700   }
 701 
 702   // call one more level start routine
 703   thread->run();
 704 
 705   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 706     os::current_thread_id(), (uintx) pthread_self());
 707 
 708   // If a thread has not deleted itself ("delete this") as part of its
 709   // termination sequence, we have to ensure thread-local-storage is
 710   // cleared before we actually terminate. No threads should ever be
 711   // deleted asynchronously with respect to their termination.
 712   if (Thread::current_or_null_safe() != NULL) {
 713     assert(Thread::current_or_null_safe() == thread, "current thread is wrong");
 714     thread->clear_thread_current();
 715   }
 716 
 717   return 0;
 718 }
 719 
 720 bool os::create_thread(Thread* thread, ThreadType thr_type,
 721                        size_t req_stack_size) {
 722   assert(thread->osthread() == NULL, "caller responsible");
 723 
 724   // Allocate the OSThread object
 725   OSThread* osthread = new OSThread(NULL, NULL);
 726   if (osthread == NULL) {
 727     return false;
 728   }
 729 
 730   // set the correct thread state
 731   osthread->set_thread_type(thr_type);
 732 
 733   // Initial state is ALLOCATED but not INITIALIZED
 734   osthread->set_state(ALLOCATED);
 735 
 736   thread->set_osthread(osthread);
 737 
 738   // init thread attributes
 739   pthread_attr_t attr;
 740   pthread_attr_init(&attr);
 741   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 742 
 743   // Calculate stack size if it's not specified by caller.
 744   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 745   // In the Linux NPTL pthread implementation the guard size mechanism
 746   // is not implemented properly. The posix standard requires adding
 747   // the size of the guard pages to the stack size, instead Linux
 748   // takes the space out of 'stacksize'. Thus we adapt the requested
 749   // stack_size by the size of the guard pages to mimick proper
 750   // behaviour. However, be careful not to end up with a size
 751   // of zero due to overflow. Don't add the guard page in that case.
 752   size_t guard_size = os::Linux::default_guard_size(thr_type);
 753   if (stack_size <= SIZE_MAX - guard_size) {
 754     stack_size += guard_size;
 755   }
 756   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 757 
 758   int status = pthread_attr_setstacksize(&attr, stack_size);
 759   assert_status(status == 0, status, "pthread_attr_setstacksize");
 760 
 761   // Configure glibc guard page.
 762   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 763 
 764   ThreadState state;
 765 
 766   {
 767     pthread_t tid;
 768     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 769 
 770     char buf[64];
 771     if (ret == 0) {
 772       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 773         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 774     } else {
 775       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 776         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 777     }
 778 
 779     pthread_attr_destroy(&attr);
 780 
 781     if (ret != 0) {
 782       // Need to clean up stuff we've allocated so far
 783       thread->set_osthread(NULL);
 784       delete osthread;
 785       return false;
 786     }
 787 
 788     // Store pthread info into the OSThread
 789     osthread->set_pthread_id(tid);
 790 
 791     // Wait until child thread is either initialized or aborted
 792     {
 793       Monitor* sync_with_child = osthread->startThread_lock();
 794       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 795       while ((state = osthread->get_state()) == ALLOCATED) {
 796         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 797       }
 798     }
 799   }
 800 
 801   // Aborted due to thread limit being reached
 802   if (state == ZOMBIE) {
 803     thread->set_osthread(NULL);
 804     delete osthread;
 805     return false;
 806   }
 807 
 808   // The thread is returned suspended (in state INITIALIZED),
 809   // and is started higher up in the call chain
 810   assert(state == INITIALIZED, "race condition");
 811   return true;
 812 }
 813 
 814 /////////////////////////////////////////////////////////////////////////////
 815 // attach existing thread
 816 
 817 // bootstrap the main thread
 818 bool os::create_main_thread(JavaThread* thread) {
 819   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 820   return create_attached_thread(thread);
 821 }
 822 
 823 bool os::create_attached_thread(JavaThread* thread) {
 824 #ifdef ASSERT
 825   thread->verify_not_published();
 826 #endif
 827 
 828   // Allocate the OSThread object
 829   OSThread* osthread = new OSThread(NULL, NULL);
 830 
 831   if (osthread == NULL) {
 832     return false;
 833   }
 834 
 835   // Store pthread info into the OSThread
 836   osthread->set_thread_id(os::Linux::gettid());
 837   osthread->set_pthread_id(::pthread_self());
 838 
 839   // initialize floating point control register
 840   os::Linux::init_thread_fpu_state();
 841 
 842   // Initial thread state is RUNNABLE
 843   osthread->set_state(RUNNABLE);
 844 
 845   thread->set_osthread(osthread);
 846 
 847   if (UseNUMA) {
 848     int lgrp_id = os::numa_get_group_id();
 849     if (lgrp_id != -1) {
 850       thread->set_lgrp_id(lgrp_id);
 851     }
 852   }
 853 
 854   if (os::is_primordial_thread()) {
 855     // If current thread is primordial thread, its stack is mapped on demand,
 856     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 857     // the entire stack region to avoid SEGV in stack banging.
 858     // It is also useful to get around the heap-stack-gap problem on SuSE
 859     // kernel (see 4821821 for details). We first expand stack to the top
 860     // of yellow zone, then enable stack yellow zone (order is significant,
 861     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 862     // is no gap between the last two virtual memory regions.
 863 
 864     JavaThread *jt = (JavaThread *)thread;
 865     address addr = jt->stack_reserved_zone_base();
 866     assert(addr != NULL, "initialization problem?");
 867     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 868 
 869     osthread->set_expanding_stack();
 870     os::Linux::manually_expand_stack(jt, addr);
 871     osthread->clear_expanding_stack();
 872   }
 873 
 874   // initialize signal mask for this thread
 875   // and save the caller's signal mask
 876   os::Linux::hotspot_sigmask(thread);
 877 
 878   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 879     os::current_thread_id(), (uintx) pthread_self());
 880 
 881   return true;
 882 }
 883 
 884 void os::pd_start_thread(Thread* thread) {
 885   OSThread * osthread = thread->osthread();
 886   assert(osthread->get_state() != INITIALIZED, "just checking");
 887   Monitor* sync_with_child = osthread->startThread_lock();
 888   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 889   sync_with_child->notify();
 890 }
 891 
 892 // Free Linux resources related to the OSThread
 893 void os::free_thread(OSThread* osthread) {
 894   assert(osthread != NULL, "osthread not set");
 895 
 896   // We are told to free resources of the argument thread,
 897   // but we can only really operate on the current thread.
 898   assert(Thread::current()->osthread() == osthread,
 899          "os::free_thread but not current thread");
 900 
 901 #ifdef ASSERT
 902   sigset_t current;
 903   sigemptyset(&current);
 904   pthread_sigmask(SIG_SETMASK, NULL, &current);
 905   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 906 #endif
 907 
 908   // Restore caller's signal mask
 909   sigset_t sigmask = osthread->caller_sigmask();
 910   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 911 
 912   delete osthread;
 913 }
 914 
 915 //////////////////////////////////////////////////////////////////////////////
 916 // primordial thread
 917 
 918 // Check if current thread is the primordial thread, similar to Solaris thr_main.
 919 bool os::is_primordial_thread(void) {
 920   char dummy;
 921   // If called before init complete, thread stack bottom will be null.
 922   // Can be called if fatal error occurs before initialization.
 923   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
 924   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
 925          os::Linux::initial_thread_stack_size()   != 0,
 926          "os::init did not locate primordial thread's stack region");
 927   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
 928       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
 929                         os::Linux::initial_thread_stack_size()) {
 930     return true;
 931   } else {
 932     return false;
 933   }
 934 }
 935 
 936 // Find the virtual memory area that contains addr
 937 static bool find_vma(address addr, address* vma_low, address* vma_high) {
 938   FILE *fp = fopen("/proc/self/maps", "r");
 939   if (fp) {
 940     address low, high;
 941     while (!feof(fp)) {
 942       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
 943         if (low <= addr && addr < high) {
 944           if (vma_low)  *vma_low  = low;
 945           if (vma_high) *vma_high = high;
 946           fclose(fp);
 947           return true;
 948         }
 949       }
 950       for (;;) {
 951         int ch = fgetc(fp);
 952         if (ch == EOF || ch == (int)'\n') break;
 953       }
 954     }
 955     fclose(fp);
 956   }
 957   return false;
 958 }
 959 
 960 // Locate primordial thread stack. This special handling of primordial thread stack
 961 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
 962 // bogus value for the primordial process thread. While the launcher has created
 963 // the VM in a new thread since JDK 6, we still have to allow for the use of the
 964 // JNI invocation API from a primordial thread.
 965 void os::Linux::capture_initial_stack(size_t max_size) {
 966 
 967   // max_size is either 0 (which means accept OS default for thread stacks) or
 968   // a user-specified value known to be at least the minimum needed. If we
 969   // are actually on the primordial thread we can make it appear that we have a
 970   // smaller max_size stack by inserting the guard pages at that location. But we
 971   // cannot do anything to emulate a larger stack than what has been provided by
 972   // the OS or threading library. In fact if we try to use a stack greater than
 973   // what is set by rlimit then we will crash the hosting process.
 974 
 975   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
 976   // If this is "unlimited" then it will be a huge value.
 977   struct rlimit rlim;
 978   getrlimit(RLIMIT_STACK, &rlim);
 979   size_t stack_size = rlim.rlim_cur;
 980 
 981   // 6308388: a bug in ld.so will relocate its own .data section to the
 982   //   lower end of primordial stack; reduce ulimit -s value a little bit
 983   //   so we won't install guard page on ld.so's data section.
 984   //   But ensure we don't underflow the stack size - allow 1 page spare
 985   if (stack_size >= (size_t)(3 * page_size())) {
 986     stack_size -= 2 * page_size();
 987   }
 988 
 989   // Try to figure out where the stack base (top) is. This is harder.
 990   //
 991   // When an application is started, glibc saves the initial stack pointer in
 992   // a global variable "__libc_stack_end", which is then used by system
 993   // libraries. __libc_stack_end should be pretty close to stack top. The
 994   // variable is available since the very early days. However, because it is
 995   // a private interface, it could disappear in the future.
 996   //
 997   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
 998   // to __libc_stack_end, it is very close to stack top, but isn't the real
 999   // stack top. Note that /proc may not exist if VM is running as a chroot
1000   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1001   // /proc/<pid>/stat could change in the future (though unlikely).
1002   //
1003   // We try __libc_stack_end first. If that doesn't work, look for
1004   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1005   // as a hint, which should work well in most cases.
1006 
1007   uintptr_t stack_start;
1008 
1009   // try __libc_stack_end first
1010   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1011   if (p && *p) {
1012     stack_start = *p;
1013   } else {
1014     // see if we can get the start_stack field from /proc/self/stat
1015     FILE *fp;
1016     int pid;
1017     char state;
1018     int ppid;
1019     int pgrp;
1020     int session;
1021     int nr;
1022     int tpgrp;
1023     unsigned long flags;
1024     unsigned long minflt;
1025     unsigned long cminflt;
1026     unsigned long majflt;
1027     unsigned long cmajflt;
1028     unsigned long utime;
1029     unsigned long stime;
1030     long cutime;
1031     long cstime;
1032     long prio;
1033     long nice;
1034     long junk;
1035     long it_real;
1036     uintptr_t start;
1037     uintptr_t vsize;
1038     intptr_t rss;
1039     uintptr_t rsslim;
1040     uintptr_t scodes;
1041     uintptr_t ecode;
1042     int i;
1043 
1044     // Figure what the primordial thread stack base is. Code is inspired
1045     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1046     // followed by command name surrounded by parentheses, state, etc.
1047     char stat[2048];
1048     int statlen;
1049 
1050     fp = fopen("/proc/self/stat", "r");
1051     if (fp) {
1052       statlen = fread(stat, 1, 2047, fp);
1053       stat[statlen] = '\0';
1054       fclose(fp);
1055 
1056       // Skip pid and the command string. Note that we could be dealing with
1057       // weird command names, e.g. user could decide to rename java launcher
1058       // to "java 1.4.2 :)", then the stat file would look like
1059       //                1234 (java 1.4.2 :)) R ... ...
1060       // We don't really need to know the command string, just find the last
1061       // occurrence of ")" and then start parsing from there. See bug 4726580.
1062       char * s = strrchr(stat, ')');
1063 
1064       i = 0;
1065       if (s) {
1066         // Skip blank chars
1067         do { s++; } while (s && isspace(*s));
1068 
1069 #define _UFM UINTX_FORMAT
1070 #define _DFM INTX_FORMAT
1071 
1072         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1073         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1074         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1075                    &state,          // 3  %c
1076                    &ppid,           // 4  %d
1077                    &pgrp,           // 5  %d
1078                    &session,        // 6  %d
1079                    &nr,             // 7  %d
1080                    &tpgrp,          // 8  %d
1081                    &flags,          // 9  %lu
1082                    &minflt,         // 10 %lu
1083                    &cminflt,        // 11 %lu
1084                    &majflt,         // 12 %lu
1085                    &cmajflt,        // 13 %lu
1086                    &utime,          // 14 %lu
1087                    &stime,          // 15 %lu
1088                    &cutime,         // 16 %ld
1089                    &cstime,         // 17 %ld
1090                    &prio,           // 18 %ld
1091                    &nice,           // 19 %ld
1092                    &junk,           // 20 %ld
1093                    &it_real,        // 21 %ld
1094                    &start,          // 22 UINTX_FORMAT
1095                    &vsize,          // 23 UINTX_FORMAT
1096                    &rss,            // 24 INTX_FORMAT
1097                    &rsslim,         // 25 UINTX_FORMAT
1098                    &scodes,         // 26 UINTX_FORMAT
1099                    &ecode,          // 27 UINTX_FORMAT
1100                    &stack_start);   // 28 UINTX_FORMAT
1101       }
1102 
1103 #undef _UFM
1104 #undef _DFM
1105 
1106       if (i != 28 - 2) {
1107         assert(false, "Bad conversion from /proc/self/stat");
1108         // product mode - assume we are the primordial thread, good luck in the
1109         // embedded case.
1110         warning("Can't detect primordial thread stack location - bad conversion");
1111         stack_start = (uintptr_t) &rlim;
1112       }
1113     } else {
1114       // For some reason we can't open /proc/self/stat (for example, running on
1115       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1116       // most cases, so don't abort:
1117       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1118       stack_start = (uintptr_t) &rlim;
1119     }
1120   }
1121 
1122   // Now we have a pointer (stack_start) very close to the stack top, the
1123   // next thing to do is to figure out the exact location of stack top. We
1124   // can find out the virtual memory area that contains stack_start by
1125   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1126   // and its upper limit is the real stack top. (again, this would fail if
1127   // running inside chroot, because /proc may not exist.)
1128 
1129   uintptr_t stack_top;
1130   address low, high;
1131   if (find_vma((address)stack_start, &low, &high)) {
1132     // success, "high" is the true stack top. (ignore "low", because initial
1133     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1134     stack_top = (uintptr_t)high;
1135   } else {
1136     // failed, likely because /proc/self/maps does not exist
1137     warning("Can't detect primordial thread stack location - find_vma failed");
1138     // best effort: stack_start is normally within a few pages below the real
1139     // stack top, use it as stack top, and reduce stack size so we won't put
1140     // guard page outside stack.
1141     stack_top = stack_start;
1142     stack_size -= 16 * page_size();
1143   }
1144 
1145   // stack_top could be partially down the page so align it
1146   stack_top = align_up(stack_top, page_size());
1147 
1148   // Allowed stack value is minimum of max_size and what we derived from rlimit
1149   if (max_size > 0) {
1150     _initial_thread_stack_size = MIN2(max_size, stack_size);
1151   } else {
1152     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1153     // clamp it at 8MB as we do on Solaris
1154     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1155   }
1156   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1157   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1158 
1159   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1160 
1161   if (log_is_enabled(Info, os, thread)) {
1162     // See if we seem to be on primordial process thread
1163     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1164                       uintptr_t(&rlim) < stack_top;
1165 
1166     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1167                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1168                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1169                          stack_top, intptr_t(_initial_thread_stack_bottom));
1170   }
1171 }
1172 
1173 ////////////////////////////////////////////////////////////////////////////////
1174 // time support
1175 
1176 // Time since start-up in seconds to a fine granularity.
1177 // Used by VMSelfDestructTimer and the MemProfiler.
1178 double os::elapsedTime() {
1179 
1180   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1181 }
1182 
1183 jlong os::elapsed_counter() {
1184   return javaTimeNanos() - initial_time_count;
1185 }
1186 
1187 jlong os::elapsed_frequency() {
1188   return NANOSECS_PER_SEC; // nanosecond resolution
1189 }
1190 
1191 bool os::supports_vtime() { return true; }
1192 bool os::enable_vtime()   { return false; }
1193 bool os::vtime_enabled()  { return false; }
1194 
1195 double os::elapsedVTime() {
1196   struct rusage usage;
1197   int retval = getrusage(RUSAGE_THREAD, &usage);
1198   if (retval == 0) {
1199     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1200   } else {
1201     // better than nothing, but not much
1202     return elapsedTime();
1203   }
1204 }
1205 
1206 jlong os::javaTimeMillis() {
1207   timeval time;
1208   int status = gettimeofday(&time, NULL);
1209   assert(status != -1, "linux error");
1210   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1211 }
1212 
1213 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1214   timeval time;
1215   int status = gettimeofday(&time, NULL);
1216   assert(status != -1, "linux error");
1217   seconds = jlong(time.tv_sec);
1218   nanos = jlong(time.tv_usec) * 1000;
1219 }
1220 
1221 
1222 #ifndef CLOCK_MONOTONIC
1223   #define CLOCK_MONOTONIC (1)
1224 #endif
1225 
1226 void os::Linux::clock_init() {
1227   // we do dlopen's in this particular order due to bug in linux
1228   // dynamical loader (see 6348968) leading to crash on exit
1229   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1230   if (handle == NULL) {
1231     handle = dlopen("librt.so", RTLD_LAZY);
1232   }
1233 
1234   if (handle) {
1235     int (*clock_getres_func)(clockid_t, struct timespec*) =
1236            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1237     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1238            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1239     if (clock_getres_func && clock_gettime_func) {
1240       // See if monotonic clock is supported by the kernel. Note that some
1241       // early implementations simply return kernel jiffies (updated every
1242       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1243       // for nano time (though the monotonic property is still nice to have).
1244       // It's fixed in newer kernels, however clock_getres() still returns
1245       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1246       // resolution for now. Hopefully as people move to new kernels, this
1247       // won't be a problem.
1248       struct timespec res;
1249       struct timespec tp;
1250       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1251           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1252         // yes, monotonic clock is supported
1253         _clock_gettime = clock_gettime_func;
1254         return;
1255       } else {
1256         // close librt if there is no monotonic clock
1257         dlclose(handle);
1258       }
1259     }
1260   }
1261   warning("No monotonic clock was available - timed services may " \
1262           "be adversely affected if the time-of-day clock changes");
1263 }
1264 
1265 #ifndef SYS_clock_getres
1266   #if defined(X86) || defined(PPC64) || defined(S390)
1267     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1268     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1269   #else
1270     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1271     #define sys_clock_getres(x,y)  -1
1272   #endif
1273 #else
1274   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1275 #endif
1276 
1277 void os::Linux::fast_thread_clock_init() {
1278   if (!UseLinuxPosixThreadCPUClocks) {
1279     return;
1280   }
1281   clockid_t clockid;
1282   struct timespec tp;
1283   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1284       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1285 
1286   // Switch to using fast clocks for thread cpu time if
1287   // the sys_clock_getres() returns 0 error code.
1288   // Note, that some kernels may support the current thread
1289   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1290   // returned by the pthread_getcpuclockid().
1291   // If the fast Posix clocks are supported then the sys_clock_getres()
1292   // must return at least tp.tv_sec == 0 which means a resolution
1293   // better than 1 sec. This is extra check for reliability.
1294 
1295   if (pthread_getcpuclockid_func &&
1296       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1297       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1298     _supports_fast_thread_cpu_time = true;
1299     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1300   }
1301 }
1302 
1303 jlong os::javaTimeNanos() {
1304   if (os::supports_monotonic_clock()) {
1305     struct timespec tp;
1306     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1307     assert(status == 0, "gettime error");
1308     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1309     return result;
1310   } else {
1311     timeval time;
1312     int status = gettimeofday(&time, NULL);
1313     assert(status != -1, "linux error");
1314     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1315     return 1000 * usecs;
1316   }
1317 }
1318 
1319 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1320   if (os::supports_monotonic_clock()) {
1321     info_ptr->max_value = ALL_64_BITS;
1322 
1323     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1324     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1325     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1326   } else {
1327     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1328     info_ptr->max_value = ALL_64_BITS;
1329 
1330     // gettimeofday is a real time clock so it skips
1331     info_ptr->may_skip_backward = true;
1332     info_ptr->may_skip_forward = true;
1333   }
1334 
1335   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1336 }
1337 
1338 // Return the real, user, and system times in seconds from an
1339 // arbitrary fixed point in the past.
1340 bool os::getTimesSecs(double* process_real_time,
1341                       double* process_user_time,
1342                       double* process_system_time) {
1343   struct tms ticks;
1344   clock_t real_ticks = times(&ticks);
1345 
1346   if (real_ticks == (clock_t) (-1)) {
1347     return false;
1348   } else {
1349     double ticks_per_second = (double) clock_tics_per_sec;
1350     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1351     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1352     *process_real_time = ((double) real_ticks) / ticks_per_second;
1353 
1354     return true;
1355   }
1356 }
1357 
1358 
1359 char * os::local_time_string(char *buf, size_t buflen) {
1360   struct tm t;
1361   time_t long_time;
1362   time(&long_time);
1363   localtime_r(&long_time, &t);
1364   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1365                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1366                t.tm_hour, t.tm_min, t.tm_sec);
1367   return buf;
1368 }
1369 
1370 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1371   return localtime_r(clock, res);
1372 }
1373 
1374 ////////////////////////////////////////////////////////////////////////////////
1375 // runtime exit support
1376 
1377 // Note: os::shutdown() might be called very early during initialization, or
1378 // called from signal handler. Before adding something to os::shutdown(), make
1379 // sure it is async-safe and can handle partially initialized VM.
1380 void os::shutdown() {
1381 
1382   // allow PerfMemory to attempt cleanup of any persistent resources
1383   perfMemory_exit();
1384 
1385   // needs to remove object in file system
1386   AttachListener::abort();
1387 
1388   // flush buffered output, finish log files
1389   ostream_abort();
1390 
1391   // Check for abort hook
1392   abort_hook_t abort_hook = Arguments::abort_hook();
1393   if (abort_hook != NULL) {
1394     abort_hook();
1395   }
1396 
1397 }
1398 
1399 // Note: os::abort() might be called very early during initialization, or
1400 // called from signal handler. Before adding something to os::abort(), make
1401 // sure it is async-safe and can handle partially initialized VM.
1402 void os::abort(bool dump_core, void* siginfo, const void* context) {
1403   os::shutdown();
1404   if (dump_core) {
1405 #ifndef PRODUCT
1406     fdStream out(defaultStream::output_fd());
1407     out.print_raw("Current thread is ");
1408     char buf[16];
1409     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1410     out.print_raw_cr(buf);
1411     out.print_raw_cr("Dumping core ...");
1412 #endif
1413     ::abort(); // dump core
1414   }
1415 
1416   ::exit(1);
1417 }
1418 
1419 // Die immediately, no exit hook, no abort hook, no cleanup.
1420 void os::die() {
1421   ::abort();
1422 }
1423 
1424 
1425 // This method is a copy of JDK's sysGetLastErrorString
1426 // from src/solaris/hpi/src/system_md.c
1427 
1428 size_t os::lasterror(char *buf, size_t len) {
1429   if (errno == 0)  return 0;
1430 
1431   const char *s = os::strerror(errno);
1432   size_t n = ::strlen(s);
1433   if (n >= len) {
1434     n = len - 1;
1435   }
1436   ::strncpy(buf, s, n);
1437   buf[n] = '\0';
1438   return n;
1439 }
1440 
1441 // thread_id is kernel thread id (similar to Solaris LWP id)
1442 intx os::current_thread_id() { return os::Linux::gettid(); }
1443 int os::current_process_id() {
1444   return ::getpid();
1445 }
1446 
1447 // DLL functions
1448 
1449 const char* os::dll_file_extension() { return ".so"; }
1450 
1451 // This must be hard coded because it's the system's temporary
1452 // directory not the java application's temp directory, ala java.io.tmpdir.
1453 const char* os::get_temp_directory() { return "/tmp"; }
1454 
1455 static bool file_exists(const char* filename) {
1456   struct stat statbuf;
1457   if (filename == NULL || strlen(filename) == 0) {
1458     return false;
1459   }
1460   return os::stat(filename, &statbuf) == 0;
1461 }
1462 
1463 // check if addr is inside libjvm.so
1464 bool os::address_is_in_vm(address addr) {
1465   static address libjvm_base_addr;
1466   Dl_info dlinfo;
1467 
1468   if (libjvm_base_addr == NULL) {
1469     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1470       libjvm_base_addr = (address)dlinfo.dli_fbase;
1471     }
1472     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1473   }
1474 
1475   if (dladdr((void *)addr, &dlinfo) != 0) {
1476     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1477   }
1478 
1479   return false;
1480 }
1481 
1482 bool os::dll_address_to_function_name(address addr, char *buf,
1483                                       int buflen, int *offset,
1484                                       bool demangle) {
1485   // buf is not optional, but offset is optional
1486   assert(buf != NULL, "sanity check");
1487 
1488   Dl_info dlinfo;
1489 
1490   if (dladdr((void*)addr, &dlinfo) != 0) {
1491     // see if we have a matching symbol
1492     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1493       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1494         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1495       }
1496       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1497       return true;
1498     }
1499     // no matching symbol so try for just file info
1500     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1501       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1502                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1503         return true;
1504       }
1505     }
1506   }
1507 
1508   buf[0] = '\0';
1509   if (offset != NULL) *offset = -1;
1510   return false;
1511 }
1512 
1513 struct _address_to_library_name {
1514   address addr;          // input : memory address
1515   size_t  buflen;        //         size of fname
1516   char*   fname;         // output: library name
1517   address base;          //         library base addr
1518 };
1519 
1520 static int address_to_library_name_callback(struct dl_phdr_info *info,
1521                                             size_t size, void *data) {
1522   int i;
1523   bool found = false;
1524   address libbase = NULL;
1525   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1526 
1527   // iterate through all loadable segments
1528   for (i = 0; i < info->dlpi_phnum; i++) {
1529     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1530     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1531       // base address of a library is the lowest address of its loaded
1532       // segments.
1533       if (libbase == NULL || libbase > segbase) {
1534         libbase = segbase;
1535       }
1536       // see if 'addr' is within current segment
1537       if (segbase <= d->addr &&
1538           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1539         found = true;
1540       }
1541     }
1542   }
1543 
1544   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1545   // so dll_address_to_library_name() can fall through to use dladdr() which
1546   // can figure out executable name from argv[0].
1547   if (found && info->dlpi_name && info->dlpi_name[0]) {
1548     d->base = libbase;
1549     if (d->fname) {
1550       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1551     }
1552     return 1;
1553   }
1554   return 0;
1555 }
1556 
1557 bool os::dll_address_to_library_name(address addr, char* buf,
1558                                      int buflen, int* offset) {
1559   // buf is not optional, but offset is optional
1560   assert(buf != NULL, "sanity check");
1561 
1562   Dl_info dlinfo;
1563   struct _address_to_library_name data;
1564 
1565   // There is a bug in old glibc dladdr() implementation that it could resolve
1566   // to wrong library name if the .so file has a base address != NULL. Here
1567   // we iterate through the program headers of all loaded libraries to find
1568   // out which library 'addr' really belongs to. This workaround can be
1569   // removed once the minimum requirement for glibc is moved to 2.3.x.
1570   data.addr = addr;
1571   data.fname = buf;
1572   data.buflen = buflen;
1573   data.base = NULL;
1574   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1575 
1576   if (rslt) {
1577     // buf already contains library name
1578     if (offset) *offset = addr - data.base;
1579     return true;
1580   }
1581   if (dladdr((void*)addr, &dlinfo) != 0) {
1582     if (dlinfo.dli_fname != NULL) {
1583       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1584     }
1585     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1586       *offset = addr - (address)dlinfo.dli_fbase;
1587     }
1588     return true;
1589   }
1590 
1591   buf[0] = '\0';
1592   if (offset) *offset = -1;
1593   return false;
1594 }
1595 
1596 // Loads .dll/.so and
1597 // in case of error it checks if .dll/.so was built for the
1598 // same architecture as Hotspot is running on
1599 
1600 
1601 // Remember the stack's state. The Linux dynamic linker will change
1602 // the stack to 'executable' at most once, so we must safepoint only once.
1603 bool os::Linux::_stack_is_executable = false;
1604 
1605 // VM operation that loads a library.  This is necessary if stack protection
1606 // of the Java stacks can be lost during loading the library.  If we
1607 // do not stop the Java threads, they can stack overflow before the stacks
1608 // are protected again.
1609 class VM_LinuxDllLoad: public VM_Operation {
1610  private:
1611   const char *_filename;
1612   char *_ebuf;
1613   int _ebuflen;
1614   void *_lib;
1615  public:
1616   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1617     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1618   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1619   void doit() {
1620     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1621     os::Linux::_stack_is_executable = true;
1622   }
1623   void* loaded_library() { return _lib; }
1624 };
1625 
1626 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1627   void * result = NULL;
1628   bool load_attempted = false;
1629 
1630   // Check whether the library to load might change execution rights
1631   // of the stack. If they are changed, the protection of the stack
1632   // guard pages will be lost. We need a safepoint to fix this.
1633   //
1634   // See Linux man page execstack(8) for more info.
1635   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1636     if (!ElfFile::specifies_noexecstack(filename)) {
1637       if (!is_init_completed()) {
1638         os::Linux::_stack_is_executable = true;
1639         // This is OK - No Java threads have been created yet, and hence no
1640         // stack guard pages to fix.
1641         //
1642         // This should happen only when you are building JDK7 using a very
1643         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1644         //
1645         // Dynamic loader will make all stacks executable after
1646         // this function returns, and will not do that again.
1647 #ifdef ASSERT
1648         ThreadsListHandle tlh;
1649         assert(tlh.length() == 0, "no Java threads should exist yet.");
1650 #endif
1651       } else {
1652         warning("You have loaded library %s which might have disabled stack guard. "
1653                 "The VM will try to fix the stack guard now.\n"
1654                 "It's highly recommended that you fix the library with "
1655                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1656                 filename);
1657 
1658         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1659         JavaThread *jt = JavaThread::current();
1660         if (jt->thread_state() != _thread_in_native) {
1661           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1662           // that requires ExecStack. Cannot enter safe point. Let's give up.
1663           warning("Unable to fix stack guard. Giving up.");
1664         } else {
1665           if (!LoadExecStackDllInVMThread) {
1666             // This is for the case where the DLL has an static
1667             // constructor function that executes JNI code. We cannot
1668             // load such DLLs in the VMThread.
1669             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1670           }
1671 
1672           ThreadInVMfromNative tiv(jt);
1673           debug_only(VMNativeEntryWrapper vew;)
1674 
1675           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1676           VMThread::execute(&op);
1677           if (LoadExecStackDllInVMThread) {
1678             result = op.loaded_library();
1679           }
1680           load_attempted = true;
1681         }
1682       }
1683     }
1684   }
1685 
1686   if (!load_attempted) {
1687     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1688   }
1689 
1690   if (result != NULL) {
1691     // Successful loading
1692     return result;
1693   }
1694 
1695   Elf32_Ehdr elf_head;
1696   int diag_msg_max_length=ebuflen-strlen(ebuf);
1697   char* diag_msg_buf=ebuf+strlen(ebuf);
1698 
1699   if (diag_msg_max_length==0) {
1700     // No more space in ebuf for additional diagnostics message
1701     return NULL;
1702   }
1703 
1704 
1705   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1706 
1707   if (file_descriptor < 0) {
1708     // Can't open library, report dlerror() message
1709     return NULL;
1710   }
1711 
1712   bool failed_to_read_elf_head=
1713     (sizeof(elf_head)!=
1714      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1715 
1716   ::close(file_descriptor);
1717   if (failed_to_read_elf_head) {
1718     // file i/o error - report dlerror() msg
1719     return NULL;
1720   }
1721 
1722   typedef struct {
1723     Elf32_Half    code;         // Actual value as defined in elf.h
1724     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1725     unsigned char elf_class;    // 32 or 64 bit
1726     unsigned char endianess;    // MSB or LSB
1727     char*         name;         // String representation
1728   } arch_t;
1729 
1730 #ifndef EM_486
1731   #define EM_486          6               /* Intel 80486 */
1732 #endif
1733 #ifndef EM_AARCH64
1734   #define EM_AARCH64    183               /* ARM AARCH64 */
1735 #endif
1736 
1737   static const arch_t arch_array[]={
1738     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1739     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1740     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1741     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1742     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1743     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1744     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1745     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1746 #if defined(VM_LITTLE_ENDIAN)
1747     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1748     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1749 #else
1750     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1751     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1752 #endif
1753     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1754     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1755     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1756     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1757     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1758     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1759     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1760     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1761   };
1762 
1763 #if  (defined IA32)
1764   static  Elf32_Half running_arch_code=EM_386;
1765 #elif   (defined AMD64)
1766   static  Elf32_Half running_arch_code=EM_X86_64;
1767 #elif  (defined IA64)
1768   static  Elf32_Half running_arch_code=EM_IA_64;
1769 #elif  (defined __sparc) && (defined _LP64)
1770   static  Elf32_Half running_arch_code=EM_SPARCV9;
1771 #elif  (defined __sparc) && (!defined _LP64)
1772   static  Elf32_Half running_arch_code=EM_SPARC;
1773 #elif  (defined __powerpc64__)
1774   static  Elf32_Half running_arch_code=EM_PPC64;
1775 #elif  (defined __powerpc__)
1776   static  Elf32_Half running_arch_code=EM_PPC;
1777 #elif  (defined AARCH64)
1778   static  Elf32_Half running_arch_code=EM_AARCH64;
1779 #elif  (defined ARM)
1780   static  Elf32_Half running_arch_code=EM_ARM;
1781 #elif  (defined S390)
1782   static  Elf32_Half running_arch_code=EM_S390;
1783 #elif  (defined ALPHA)
1784   static  Elf32_Half running_arch_code=EM_ALPHA;
1785 #elif  (defined MIPSEL)
1786   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1787 #elif  (defined PARISC)
1788   static  Elf32_Half running_arch_code=EM_PARISC;
1789 #elif  (defined MIPS)
1790   static  Elf32_Half running_arch_code=EM_MIPS;
1791 #elif  (defined M68K)
1792   static  Elf32_Half running_arch_code=EM_68K;
1793 #elif  (defined SH)
1794   static  Elf32_Half running_arch_code=EM_SH;
1795 #else
1796     #error Method os::dll_load requires that one of following is defined:\
1797         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1798 #endif
1799 
1800   // Identify compatability class for VM's architecture and library's architecture
1801   // Obtain string descriptions for architectures
1802 
1803   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1804   int running_arch_index=-1;
1805 
1806   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1807     if (running_arch_code == arch_array[i].code) {
1808       running_arch_index    = i;
1809     }
1810     if (lib_arch.code == arch_array[i].code) {
1811       lib_arch.compat_class = arch_array[i].compat_class;
1812       lib_arch.name         = arch_array[i].name;
1813     }
1814   }
1815 
1816   assert(running_arch_index != -1,
1817          "Didn't find running architecture code (running_arch_code) in arch_array");
1818   if (running_arch_index == -1) {
1819     // Even though running architecture detection failed
1820     // we may still continue with reporting dlerror() message
1821     return NULL;
1822   }
1823 
1824   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1825     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1826     return NULL;
1827   }
1828 
1829 #ifndef S390
1830   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1831     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1832     return NULL;
1833   }
1834 #endif // !S390
1835 
1836   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1837     if (lib_arch.name!=NULL) {
1838       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1839                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1840                  lib_arch.name, arch_array[running_arch_index].name);
1841     } else {
1842       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1843                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1844                  lib_arch.code,
1845                  arch_array[running_arch_index].name);
1846     }
1847   }
1848 
1849   return NULL;
1850 }
1851 
1852 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1853                                 int ebuflen) {
1854   void * result = ::dlopen(filename, RTLD_LAZY);
1855   if (result == NULL) {
1856     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1857     ebuf[ebuflen-1] = '\0';
1858   }
1859   return result;
1860 }
1861 
1862 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1863                                        int ebuflen) {
1864   void * result = NULL;
1865   if (LoadExecStackDllInVMThread) {
1866     result = dlopen_helper(filename, ebuf, ebuflen);
1867   }
1868 
1869   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1870   // library that requires an executable stack, or which does not have this
1871   // stack attribute set, dlopen changes the stack attribute to executable. The
1872   // read protection of the guard pages gets lost.
1873   //
1874   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1875   // may have been queued at the same time.
1876 
1877   if (!_stack_is_executable) {
1878     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1879       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1880           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1881         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1882           warning("Attempt to reguard stack yellow zone failed.");
1883         }
1884       }
1885     }
1886   }
1887 
1888   return result;
1889 }
1890 
1891 void* os::dll_lookup(void* handle, const char* name) {
1892   void* res = dlsym(handle, name);
1893   return res;
1894 }
1895 
1896 void* os::get_default_process_handle() {
1897   return (void*)::dlopen(NULL, RTLD_LAZY);
1898 }
1899 
1900 static bool _print_ascii_file(const char* filename, outputStream* st) {
1901   int fd = ::open(filename, O_RDONLY);
1902   if (fd == -1) {
1903     return false;
1904   }
1905 
1906   char buf[33];
1907   int bytes;
1908   buf[32] = '\0';
1909   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1910     st->print_raw(buf, bytes);
1911   }
1912 
1913   ::close(fd);
1914 
1915   return true;
1916 }
1917 
1918 void os::print_dll_info(outputStream *st) {
1919   st->print_cr("Dynamic libraries:");
1920 
1921   char fname[32];
1922   pid_t pid = os::Linux::gettid();
1923 
1924   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
1925 
1926   if (!_print_ascii_file(fname, st)) {
1927     st->print("Can not get library information for pid = %d\n", pid);
1928   }
1929 }
1930 
1931 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1932   FILE *procmapsFile = NULL;
1933 
1934   // Open the procfs maps file for the current process
1935   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
1936     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
1937     char line[PATH_MAX + 100];
1938 
1939     // Read line by line from 'file'
1940     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
1941       u8 base, top, offset, inode;
1942       char permissions[5];
1943       char device[6];
1944       char name[PATH_MAX + 1];
1945 
1946       // Parse fields from line
1947       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %5s " INT64_FORMAT " %s",
1948              &base, &top, permissions, &offset, device, &inode, name);
1949 
1950       // Filter by device id '00:00' so that we only get file system mapped files.
1951       if (strcmp(device, "00:00") != 0) {
1952 
1953         // Call callback with the fields of interest
1954         if(callback(name, (address)base, (address)top, param)) {
1955           // Oops abort, callback aborted
1956           fclose(procmapsFile);
1957           return 1;
1958         }
1959       }
1960     }
1961     fclose(procmapsFile);
1962   }
1963   return 0;
1964 }
1965 
1966 void os::print_os_info_brief(outputStream* st) {
1967   os::Linux::print_distro_info(st);
1968 
1969   os::Posix::print_uname_info(st);
1970 
1971   os::Linux::print_libversion_info(st);
1972 
1973 }
1974 
1975 void os::print_os_info(outputStream* st) {
1976   st->print("OS:");
1977 
1978   os::Linux::print_distro_info(st);
1979 
1980   os::Posix::print_uname_info(st);
1981 
1982   // Print warning if unsafe chroot environment detected
1983   if (unsafe_chroot_detected) {
1984     st->print("WARNING!! ");
1985     st->print_cr("%s", unstable_chroot_error);
1986   }
1987 
1988   os::Linux::print_libversion_info(st);
1989 
1990   os::Posix::print_rlimit_info(st);
1991 
1992   os::Posix::print_load_average(st);
1993 
1994   os::Linux::print_full_memory_info(st);
1995 
1996   os::Linux::print_container_info(st);
1997 }
1998 
1999 // Try to identify popular distros.
2000 // Most Linux distributions have a /etc/XXX-release file, which contains
2001 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2002 // file that also contains the OS version string. Some have more than one
2003 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2004 // /etc/redhat-release.), so the order is important.
2005 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2006 // their own specific XXX-release file as well as a redhat-release file.
2007 // Because of this the XXX-release file needs to be searched for before the
2008 // redhat-release file.
2009 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2010 // search for redhat-release / SuSE-release needs to be before lsb-release.
2011 // Since the lsb-release file is the new standard it needs to be searched
2012 // before the older style release files.
2013 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2014 // next to last resort.  The os-release file is a new standard that contains
2015 // distribution information and the system-release file seems to be an old
2016 // standard that has been replaced by the lsb-release and os-release files.
2017 // Searching for the debian_version file is the last resort.  It contains
2018 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2019 // "Debian " is printed before the contents of the debian_version file.
2020 
2021 const char* distro_files[] = {
2022   "/etc/oracle-release",
2023   "/etc/mandriva-release",
2024   "/etc/mandrake-release",
2025   "/etc/sun-release",
2026   "/etc/redhat-release",
2027   "/etc/SuSE-release",
2028   "/etc/lsb-release",
2029   "/etc/turbolinux-release",
2030   "/etc/gentoo-release",
2031   "/etc/ltib-release",
2032   "/etc/angstrom-version",
2033   "/etc/system-release",
2034   "/etc/os-release",
2035   NULL };
2036 
2037 void os::Linux::print_distro_info(outputStream* st) {
2038   for (int i = 0;; i++) {
2039     const char* file = distro_files[i];
2040     if (file == NULL) {
2041       break;  // done
2042     }
2043     // If file prints, we found it.
2044     if (_print_ascii_file(file, st)) {
2045       return;
2046     }
2047   }
2048 
2049   if (file_exists("/etc/debian_version")) {
2050     st->print("Debian ");
2051     _print_ascii_file("/etc/debian_version", st);
2052   } else {
2053     st->print("Linux");
2054   }
2055   st->cr();
2056 }
2057 
2058 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2059   char buf[256];
2060   while (fgets(buf, sizeof(buf), fp)) {
2061     // Edit out extra stuff in expected format
2062     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2063       char* ptr = strstr(buf, "\"");  // the name is in quotes
2064       if (ptr != NULL) {
2065         ptr++; // go beyond first quote
2066         char* nl = strchr(ptr, '\"');
2067         if (nl != NULL) *nl = '\0';
2068         strncpy(distro, ptr, length);
2069       } else {
2070         ptr = strstr(buf, "=");
2071         ptr++; // go beyond equals then
2072         char* nl = strchr(ptr, '\n');
2073         if (nl != NULL) *nl = '\0';
2074         strncpy(distro, ptr, length);
2075       }
2076       return;
2077     } else if (get_first_line) {
2078       char* nl = strchr(buf, '\n');
2079       if (nl != NULL) *nl = '\0';
2080       strncpy(distro, buf, length);
2081       return;
2082     }
2083   }
2084   // print last line and close
2085   char* nl = strchr(buf, '\n');
2086   if (nl != NULL) *nl = '\0';
2087   strncpy(distro, buf, length);
2088 }
2089 
2090 static void parse_os_info(char* distro, size_t length, const char* file) {
2091   FILE* fp = fopen(file, "r");
2092   if (fp != NULL) {
2093     // if suse format, print out first line
2094     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2095     parse_os_info_helper(fp, distro, length, get_first_line);
2096     fclose(fp);
2097   }
2098 }
2099 
2100 void os::get_summary_os_info(char* buf, size_t buflen) {
2101   for (int i = 0;; i++) {
2102     const char* file = distro_files[i];
2103     if (file == NULL) {
2104       break; // ran out of distro_files
2105     }
2106     if (file_exists(file)) {
2107       parse_os_info(buf, buflen, file);
2108       return;
2109     }
2110   }
2111   // special case for debian
2112   if (file_exists("/etc/debian_version")) {
2113     strncpy(buf, "Debian ", buflen);
2114     parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2115   } else {
2116     strncpy(buf, "Linux", buflen);
2117   }
2118 }
2119 
2120 void os::Linux::print_libversion_info(outputStream* st) {
2121   // libc, pthread
2122   st->print("libc:");
2123   st->print("%s ", os::Linux::glibc_version());
2124   st->print("%s ", os::Linux::libpthread_version());
2125   st->cr();
2126 }
2127 
2128 void os::Linux::print_full_memory_info(outputStream* st) {
2129   st->print("\n/proc/meminfo:\n");
2130   _print_ascii_file("/proc/meminfo", st);
2131   st->cr();
2132 }
2133 
2134 void os::Linux::print_container_info(outputStream* st) {
2135   if (!OSContainer::is_containerized()) {
2136     return;
2137   }
2138 
2139   st->print("container (cgroup) information:\n");
2140 
2141   const char *p_ct = OSContainer::container_type();
2142   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2143 
2144   char *p = OSContainer::cpu_cpuset_cpus();
2145   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2146   free(p);
2147 
2148   p = OSContainer::cpu_cpuset_memory_nodes();
2149   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2150   free(p);
2151 
2152   int i = OSContainer::active_processor_count();
2153   if (i > 0) {
2154     st->print("active_processor_count: %d\n", i);
2155   } else {
2156     st->print("active_processor_count: failed\n");
2157   }
2158 
2159   i = OSContainer::cpu_quota();
2160   st->print("cpu_quota: %d\n", i);
2161 
2162   i = OSContainer::cpu_period();
2163   st->print("cpu_period: %d\n", i);
2164 
2165   i = OSContainer::cpu_shares();
2166   st->print("cpu_shares: %d\n", i);
2167 
2168   jlong j = OSContainer::memory_limit_in_bytes();
2169   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2170 
2171   j = OSContainer::memory_and_swap_limit_in_bytes();
2172   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2173 
2174   j = OSContainer::memory_soft_limit_in_bytes();
2175   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2176 
2177   j = OSContainer::OSContainer::memory_usage_in_bytes();
2178   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2179 
2180   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2181   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2182   st->cr();
2183 }
2184 
2185 void os::print_memory_info(outputStream* st) {
2186 
2187   st->print("Memory:");
2188   st->print(" %dk page", os::vm_page_size()>>10);
2189 
2190   // values in struct sysinfo are "unsigned long"
2191   struct sysinfo si;
2192   sysinfo(&si);
2193 
2194   st->print(", physical " UINT64_FORMAT "k",
2195             os::physical_memory() >> 10);
2196   st->print("(" UINT64_FORMAT "k free)",
2197             os::available_memory() >> 10);
2198   st->print(", swap " UINT64_FORMAT "k",
2199             ((jlong)si.totalswap * si.mem_unit) >> 10);
2200   st->print("(" UINT64_FORMAT "k free)",
2201             ((jlong)si.freeswap * si.mem_unit) >> 10);
2202   st->cr();
2203 }
2204 
2205 // Print the first "model name" line and the first "flags" line
2206 // that we find and nothing more. We assume "model name" comes
2207 // before "flags" so if we find a second "model name", then the
2208 // "flags" field is considered missing.
2209 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2210 #if defined(IA32) || defined(AMD64)
2211   // Other platforms have less repetitive cpuinfo files
2212   FILE *fp = fopen("/proc/cpuinfo", "r");
2213   if (fp) {
2214     while (!feof(fp)) {
2215       if (fgets(buf, buflen, fp)) {
2216         // Assume model name comes before flags
2217         bool model_name_printed = false;
2218         if (strstr(buf, "model name") != NULL) {
2219           if (!model_name_printed) {
2220             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2221             st->print_raw(buf);
2222             model_name_printed = true;
2223           } else {
2224             // model name printed but not flags?  Odd, just return
2225             fclose(fp);
2226             return true;
2227           }
2228         }
2229         // print the flags line too
2230         if (strstr(buf, "flags") != NULL) {
2231           st->print_raw(buf);
2232           fclose(fp);
2233           return true;
2234         }
2235       }
2236     }
2237     fclose(fp);
2238   }
2239 #endif // x86 platforms
2240   return false;
2241 }
2242 
2243 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2244   // Only print the model name if the platform provides this as a summary
2245   if (!print_model_name_and_flags(st, buf, buflen)) {
2246     st->print("\n/proc/cpuinfo:\n");
2247     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2248       st->print_cr("  <Not Available>");
2249     }
2250   }
2251 }
2252 
2253 #if defined(AMD64) || defined(IA32) || defined(X32)
2254 const char* search_string = "model name";
2255 #elif defined(M68K)
2256 const char* search_string = "CPU";
2257 #elif defined(PPC64)
2258 const char* search_string = "cpu";
2259 #elif defined(S390)
2260 const char* search_string = "processor";
2261 #elif defined(SPARC)
2262 const char* search_string = "cpu";
2263 #else
2264 const char* search_string = "Processor";
2265 #endif
2266 
2267 // Parses the cpuinfo file for string representing the model name.
2268 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2269   FILE* fp = fopen("/proc/cpuinfo", "r");
2270   if (fp != NULL) {
2271     while (!feof(fp)) {
2272       char buf[256];
2273       if (fgets(buf, sizeof(buf), fp)) {
2274         char* start = strstr(buf, search_string);
2275         if (start != NULL) {
2276           char *ptr = start + strlen(search_string);
2277           char *end = buf + strlen(buf);
2278           while (ptr != end) {
2279              // skip whitespace and colon for the rest of the name.
2280              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2281                break;
2282              }
2283              ptr++;
2284           }
2285           if (ptr != end) {
2286             // reasonable string, get rid of newline and keep the rest
2287             char* nl = strchr(buf, '\n');
2288             if (nl != NULL) *nl = '\0';
2289             strncpy(cpuinfo, ptr, length);
2290             fclose(fp);
2291             return;
2292           }
2293         }
2294       }
2295     }
2296     fclose(fp);
2297   }
2298   // cpuinfo not found or parsing failed, just print generic string.  The entire
2299   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2300 #if   defined(AARCH64)
2301   strncpy(cpuinfo, "AArch64", length);
2302 #elif defined(AMD64)
2303   strncpy(cpuinfo, "x86_64", length);
2304 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2305   strncpy(cpuinfo, "ARM", length);
2306 #elif defined(IA32)
2307   strncpy(cpuinfo, "x86_32", length);
2308 #elif defined(IA64)
2309   strncpy(cpuinfo, "IA64", length);
2310 #elif defined(PPC)
2311   strncpy(cpuinfo, "PPC64", length);
2312 #elif defined(S390)
2313   strncpy(cpuinfo, "S390", length);
2314 #elif defined(SPARC)
2315   strncpy(cpuinfo, "sparcv9", length);
2316 #elif defined(ZERO_LIBARCH)
2317   strncpy(cpuinfo, ZERO_LIBARCH, length);
2318 #else
2319   strncpy(cpuinfo, "unknown", length);
2320 #endif
2321 }
2322 
2323 static void print_signal_handler(outputStream* st, int sig,
2324                                  char* buf, size_t buflen);
2325 
2326 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2327   st->print_cr("Signal Handlers:");
2328   print_signal_handler(st, SIGSEGV, buf, buflen);
2329   print_signal_handler(st, SIGBUS , buf, buflen);
2330   print_signal_handler(st, SIGFPE , buf, buflen);
2331   print_signal_handler(st, SIGPIPE, buf, buflen);
2332   print_signal_handler(st, SIGXFSZ, buf, buflen);
2333   print_signal_handler(st, SIGILL , buf, buflen);
2334   print_signal_handler(st, SR_signum, buf, buflen);
2335   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2336   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2337   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2338   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2339 #if defined(PPC64)
2340   print_signal_handler(st, SIGTRAP, buf, buflen);
2341 #endif
2342 }
2343 
2344 static char saved_jvm_path[MAXPATHLEN] = {0};
2345 
2346 // Find the full path to the current module, libjvm.so
2347 void os::jvm_path(char *buf, jint buflen) {
2348   // Error checking.
2349   if (buflen < MAXPATHLEN) {
2350     assert(false, "must use a large-enough buffer");
2351     buf[0] = '\0';
2352     return;
2353   }
2354   // Lazy resolve the path to current module.
2355   if (saved_jvm_path[0] != 0) {
2356     strcpy(buf, saved_jvm_path);
2357     return;
2358   }
2359 
2360   char dli_fname[MAXPATHLEN];
2361   bool ret = dll_address_to_library_name(
2362                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2363                                          dli_fname, sizeof(dli_fname), NULL);
2364   assert(ret, "cannot locate libjvm");
2365   char *rp = NULL;
2366   if (ret && dli_fname[0] != '\0') {
2367     rp = os::Posix::realpath(dli_fname, buf, buflen);
2368   }
2369   if (rp == NULL) {
2370     return;
2371   }
2372 
2373   if (Arguments::sun_java_launcher_is_altjvm()) {
2374     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2375     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2376     // If "/jre/lib/" appears at the right place in the string, then
2377     // assume we are installed in a JDK and we're done. Otherwise, check
2378     // for a JAVA_HOME environment variable and fix up the path so it
2379     // looks like libjvm.so is installed there (append a fake suffix
2380     // hotspot/libjvm.so).
2381     const char *p = buf + strlen(buf) - 1;
2382     for (int count = 0; p > buf && count < 5; ++count) {
2383       for (--p; p > buf && *p != '/'; --p)
2384         /* empty */ ;
2385     }
2386 
2387     if (strncmp(p, "/jre/lib/", 9) != 0) {
2388       // Look for JAVA_HOME in the environment.
2389       char* java_home_var = ::getenv("JAVA_HOME");
2390       if (java_home_var != NULL && java_home_var[0] != 0) {
2391         char* jrelib_p;
2392         int len;
2393 
2394         // Check the current module name "libjvm.so".
2395         p = strrchr(buf, '/');
2396         if (p == NULL) {
2397           return;
2398         }
2399         assert(strstr(p, "/libjvm") == p, "invalid library name");
2400 
2401         rp = os::Posix::realpath(java_home_var, buf, buflen);
2402         if (rp == NULL) {
2403           return;
2404         }
2405 
2406         // determine if this is a legacy image or modules image
2407         // modules image doesn't have "jre" subdirectory
2408         len = strlen(buf);
2409         assert(len < buflen, "Ran out of buffer room");
2410         jrelib_p = buf + len;
2411         snprintf(jrelib_p, buflen-len, "/jre/lib");
2412         if (0 != access(buf, F_OK)) {
2413           snprintf(jrelib_p, buflen-len, "/lib");
2414         }
2415 
2416         if (0 == access(buf, F_OK)) {
2417           // Use current module name "libjvm.so"
2418           len = strlen(buf);
2419           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2420         } else {
2421           // Go back to path of .so
2422           rp = os::Posix::realpath(dli_fname, buf, buflen);
2423           if (rp == NULL) {
2424             return;
2425           }
2426         }
2427       }
2428     }
2429   }
2430 
2431   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2432   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2433 }
2434 
2435 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2436   // no prefix required, not even "_"
2437 }
2438 
2439 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2440   // no suffix required
2441 }
2442 
2443 ////////////////////////////////////////////////////////////////////////////////
2444 // sun.misc.Signal support
2445 
2446 static volatile jint sigint_count = 0;
2447 
2448 static void UserHandler(int sig, void *siginfo, void *context) {
2449   // 4511530 - sem_post is serialized and handled by the manager thread. When
2450   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2451   // don't want to flood the manager thread with sem_post requests.
2452   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2453     return;
2454   }
2455 
2456   // Ctrl-C is pressed during error reporting, likely because the error
2457   // handler fails to abort. Let VM die immediately.
2458   if (sig == SIGINT && VMError::is_error_reported()) {
2459     os::die();
2460   }
2461 
2462   os::signal_notify(sig);
2463 }
2464 
2465 void* os::user_handler() {
2466   return CAST_FROM_FN_PTR(void*, UserHandler);
2467 }
2468 
2469 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2470   struct timespec ts;
2471   // Semaphore's are always associated with CLOCK_REALTIME
2472   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2473   // see os_posix.cpp for discussion on overflow checking
2474   if (sec >= MAX_SECS) {
2475     ts.tv_sec += MAX_SECS;
2476     ts.tv_nsec = 0;
2477   } else {
2478     ts.tv_sec += sec;
2479     ts.tv_nsec += nsec;
2480     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2481       ts.tv_nsec -= NANOSECS_PER_SEC;
2482       ++ts.tv_sec; // note: this must be <= max_secs
2483     }
2484   }
2485 
2486   return ts;
2487 }
2488 
2489 extern "C" {
2490   typedef void (*sa_handler_t)(int);
2491   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2492 }
2493 
2494 void* os::signal(int signal_number, void* handler) {
2495   struct sigaction sigAct, oldSigAct;
2496 
2497   sigfillset(&(sigAct.sa_mask));
2498   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2499   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2500 
2501   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2502     // -1 means registration failed
2503     return (void *)-1;
2504   }
2505 
2506   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2507 }
2508 
2509 void os::signal_raise(int signal_number) {
2510   ::raise(signal_number);
2511 }
2512 
2513 // The following code is moved from os.cpp for making this
2514 // code platform specific, which it is by its very nature.
2515 
2516 // Will be modified when max signal is changed to be dynamic
2517 int os::sigexitnum_pd() {
2518   return NSIG;
2519 }
2520 
2521 // a counter for each possible signal value
2522 static volatile jint pending_signals[NSIG+1] = { 0 };
2523 
2524 // Linux(POSIX) specific hand shaking semaphore.
2525 static Semaphore* sig_sem = NULL;
2526 static PosixSemaphore sr_semaphore;
2527 
2528 void os::signal_init_pd() {
2529   // Initialize signal structures
2530   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2531 
2532   // Initialize signal semaphore
2533   sig_sem = new Semaphore();
2534 }
2535 
2536 void os::signal_notify(int sig) {
2537   if (sig_sem != NULL) {
2538     Atomic::inc(&pending_signals[sig]);
2539     sig_sem->signal();
2540   } else {
2541     // Signal thread is not created with ReduceSignalUsage and signal_init_pd
2542     // initialization isn't called.
2543     assert(ReduceSignalUsage, "signal semaphore should be created");
2544   }
2545 }
2546 
2547 static int check_pending_signals() {
2548   Atomic::store(0, &sigint_count);
2549   for (;;) {
2550     for (int i = 0; i < NSIG + 1; i++) {
2551       jint n = pending_signals[i];
2552       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2553         return i;
2554       }
2555     }
2556     JavaThread *thread = JavaThread::current();
2557     ThreadBlockInVM tbivm(thread);
2558 
2559     bool threadIsSuspended;
2560     do {
2561       thread->set_suspend_equivalent();
2562       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2563       sig_sem->wait();
2564 
2565       // were we externally suspended while we were waiting?
2566       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2567       if (threadIsSuspended) {
2568         // The semaphore has been incremented, but while we were waiting
2569         // another thread suspended us. We don't want to continue running
2570         // while suspended because that would surprise the thread that
2571         // suspended us.
2572         sig_sem->signal();
2573 
2574         thread->java_suspend_self();
2575       }
2576     } while (threadIsSuspended);
2577   }
2578 }
2579 
2580 int os::signal_wait() {
2581   return check_pending_signals();
2582 }
2583 
2584 ////////////////////////////////////////////////////////////////////////////////
2585 // Virtual Memory
2586 
2587 int os::vm_page_size() {
2588   // Seems redundant as all get out
2589   assert(os::Linux::page_size() != -1, "must call os::init");
2590   return os::Linux::page_size();
2591 }
2592 
2593 // Solaris allocates memory by pages.
2594 int os::vm_allocation_granularity() {
2595   assert(os::Linux::page_size() != -1, "must call os::init");
2596   return os::Linux::page_size();
2597 }
2598 
2599 // Rationale behind this function:
2600 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2601 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2602 //  samples for JITted code. Here we create private executable mapping over the code cache
2603 //  and then we can use standard (well, almost, as mapping can change) way to provide
2604 //  info for the reporting script by storing timestamp and location of symbol
2605 void linux_wrap_code(char* base, size_t size) {
2606   static volatile jint cnt = 0;
2607 
2608   if (!UseOprofile) {
2609     return;
2610   }
2611 
2612   char buf[PATH_MAX+1];
2613   int num = Atomic::add(1, &cnt);
2614 
2615   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2616            os::get_temp_directory(), os::current_process_id(), num);
2617   unlink(buf);
2618 
2619   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2620 
2621   if (fd != -1) {
2622     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2623     if (rv != (off_t)-1) {
2624       if (::write(fd, "", 1) == 1) {
2625         mmap(base, size,
2626              PROT_READ|PROT_WRITE|PROT_EXEC,
2627              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2628       }
2629     }
2630     ::close(fd);
2631     unlink(buf);
2632   }
2633 }
2634 
2635 static bool recoverable_mmap_error(int err) {
2636   // See if the error is one we can let the caller handle. This
2637   // list of errno values comes from JBS-6843484. I can't find a
2638   // Linux man page that documents this specific set of errno
2639   // values so while this list currently matches Solaris, it may
2640   // change as we gain experience with this failure mode.
2641   switch (err) {
2642   case EBADF:
2643   case EINVAL:
2644   case ENOTSUP:
2645     // let the caller deal with these errors
2646     return true;
2647 
2648   default:
2649     // Any remaining errors on this OS can cause our reserved mapping
2650     // to be lost. That can cause confusion where different data
2651     // structures think they have the same memory mapped. The worst
2652     // scenario is if both the VM and a library think they have the
2653     // same memory mapped.
2654     return false;
2655   }
2656 }
2657 
2658 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2659                                     int err) {
2660   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2661           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2662           os::strerror(err), err);
2663 }
2664 
2665 static void warn_fail_commit_memory(char* addr, size_t size,
2666                                     size_t alignment_hint, bool exec,
2667                                     int err) {
2668   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2669           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2670           alignment_hint, exec, os::strerror(err), err);
2671 }
2672 
2673 // NOTE: Linux kernel does not really reserve the pages for us.
2674 //       All it does is to check if there are enough free pages
2675 //       left at the time of mmap(). This could be a potential
2676 //       problem.
2677 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2678   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2679   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2680                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2681   if (res != (uintptr_t) MAP_FAILED) {
2682     if (UseNUMAInterleaving) {
2683       numa_make_global(addr, size);
2684     }
2685     return 0;
2686   }
2687 
2688   int err = errno;  // save errno from mmap() call above
2689 
2690   if (!recoverable_mmap_error(err)) {
2691     warn_fail_commit_memory(addr, size, exec, err);
2692     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2693   }
2694 
2695   return err;
2696 }
2697 
2698 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2699   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2700 }
2701 
2702 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2703                                   const char* mesg) {
2704   assert(mesg != NULL, "mesg must be specified");
2705   int err = os::Linux::commit_memory_impl(addr, size, exec);
2706   if (err != 0) {
2707     // the caller wants all commit errors to exit with the specified mesg:
2708     warn_fail_commit_memory(addr, size, exec, err);
2709     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2710   }
2711 }
2712 
2713 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2714 #ifndef MAP_HUGETLB
2715   #define MAP_HUGETLB 0x40000
2716 #endif
2717 
2718 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2719 #ifndef MADV_HUGEPAGE
2720   #define MADV_HUGEPAGE 14
2721 #endif
2722 
2723 int os::Linux::commit_memory_impl(char* addr, size_t size,
2724                                   size_t alignment_hint, bool exec) {
2725   int err = os::Linux::commit_memory_impl(addr, size, exec);
2726   if (err == 0) {
2727     realign_memory(addr, size, alignment_hint);
2728   }
2729   return err;
2730 }
2731 
2732 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2733                           bool exec) {
2734   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2735 }
2736 
2737 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2738                                   size_t alignment_hint, bool exec,
2739                                   const char* mesg) {
2740   assert(mesg != NULL, "mesg must be specified");
2741   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2742   if (err != 0) {
2743     // the caller wants all commit errors to exit with the specified mesg:
2744     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2745     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2746   }
2747 }
2748 
2749 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2750   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2751     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2752     // be supported or the memory may already be backed by huge pages.
2753     ::madvise(addr, bytes, MADV_HUGEPAGE);
2754   }
2755 }
2756 
2757 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2758   // This method works by doing an mmap over an existing mmaping and effectively discarding
2759   // the existing pages. However it won't work for SHM-based large pages that cannot be
2760   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2761   // small pages on top of the SHM segment. This method always works for small pages, so we
2762   // allow that in any case.
2763   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2764     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2765   }
2766 }
2767 
2768 void os::numa_make_global(char *addr, size_t bytes) {
2769   Linux::numa_interleave_memory(addr, bytes);
2770 }
2771 
2772 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2773 // bind policy to MPOL_PREFERRED for the current thread.
2774 #define USE_MPOL_PREFERRED 0
2775 
2776 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2777   // To make NUMA and large pages more robust when both enabled, we need to ease
2778   // the requirements on where the memory should be allocated. MPOL_BIND is the
2779   // default policy and it will force memory to be allocated on the specified
2780   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2781   // the specified node, but will not force it. Using this policy will prevent
2782   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2783   // free large pages.
2784   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2785   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2786 }
2787 
2788 bool os::numa_topology_changed() { return false; }
2789 
2790 size_t os::numa_get_groups_num() {
2791   // Return just the number of nodes in which it's possible to allocate memory
2792   // (in numa terminology, configured nodes).
2793   return Linux::numa_num_configured_nodes();
2794 }
2795 
2796 int os::numa_get_group_id() {
2797   int cpu_id = Linux::sched_getcpu();
2798   if (cpu_id != -1) {
2799     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2800     if (lgrp_id != -1) {
2801       return lgrp_id;
2802     }
2803   }
2804   return 0;
2805 }
2806 
2807 int os::Linux::get_existing_num_nodes() {
2808   size_t node;
2809   size_t highest_node_number = Linux::numa_max_node();
2810   int num_nodes = 0;
2811 
2812   // Get the total number of nodes in the system including nodes without memory.
2813   for (node = 0; node <= highest_node_number; node++) {
2814     if (isnode_in_existing_nodes(node)) {
2815       num_nodes++;
2816     }
2817   }
2818   return num_nodes;
2819 }
2820 
2821 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2822   size_t highest_node_number = Linux::numa_max_node();
2823   size_t i = 0;
2824 
2825   // Map all node ids in which is possible to allocate memory. Also nodes are
2826   // not always consecutively available, i.e. available from 0 to the highest
2827   // node number.
2828   for (size_t node = 0; node <= highest_node_number; node++) {
2829     if (Linux::isnode_in_configured_nodes(node)) {
2830       ids[i++] = node;
2831     }
2832   }
2833   return i;
2834 }
2835 
2836 bool os::get_page_info(char *start, page_info* info) {
2837   return false;
2838 }
2839 
2840 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2841                      page_info* page_found) {
2842   return end;
2843 }
2844 
2845 
2846 int os::Linux::sched_getcpu_syscall(void) {
2847   unsigned int cpu = 0;
2848   int retval = -1;
2849 
2850 #if defined(IA32)
2851   #ifndef SYS_getcpu
2852     #define SYS_getcpu 318
2853   #endif
2854   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2855 #elif defined(AMD64)
2856 // Unfortunately we have to bring all these macros here from vsyscall.h
2857 // to be able to compile on old linuxes.
2858   #define __NR_vgetcpu 2
2859   #define VSYSCALL_START (-10UL << 20)
2860   #define VSYSCALL_SIZE 1024
2861   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2862   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2863   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2864   retval = vgetcpu(&cpu, NULL, NULL);
2865 #endif
2866 
2867   return (retval == -1) ? retval : cpu;
2868 }
2869 
2870 void os::Linux::sched_getcpu_init() {
2871   // sched_getcpu() should be in libc.
2872   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2873                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2874 
2875   // If it's not, try a direct syscall.
2876   if (sched_getcpu() == -1) {
2877     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2878                                     (void*)&sched_getcpu_syscall));
2879   }
2880 }
2881 
2882 // Something to do with the numa-aware allocator needs these symbols
2883 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2884 extern "C" JNIEXPORT void numa_error(char *where) { }
2885 
2886 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2887 // load symbol from base version instead.
2888 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2889   void *f = dlvsym(handle, name, "libnuma_1.1");
2890   if (f == NULL) {
2891     f = dlsym(handle, name);
2892   }
2893   return f;
2894 }
2895 
2896 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2897 // Return NULL if the symbol is not defined in this particular version.
2898 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2899   return dlvsym(handle, name, "libnuma_1.2");
2900 }
2901 
2902 bool os::Linux::libnuma_init() {
2903   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
2904     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2905     if (handle != NULL) {
2906       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2907                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2908       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2909                                        libnuma_dlsym(handle, "numa_max_node")));
2910       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2911                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2912       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2913                                         libnuma_dlsym(handle, "numa_available")));
2914       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2915                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2916       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2917                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2918       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2919                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2920       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2921                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2922       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2923                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2924       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2925                                        libnuma_dlsym(handle, "numa_distance")));
2926 
2927       if (numa_available() != -1) {
2928         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2929         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2930         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2931         // Create an index -> node mapping, since nodes are not always consecutive
2932         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2933         rebuild_nindex_to_node_map();
2934         // Create a cpu -> node mapping
2935         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2936         rebuild_cpu_to_node_map();
2937         return true;
2938       }
2939     }
2940   }
2941   return false;
2942 }
2943 
2944 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
2945   // Creating guard page is very expensive. Java thread has HotSpot
2946   // guard pages, only enable glibc guard page for non-Java threads.
2947   // (Remember: compiler thread is a Java thread, too!)
2948   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
2949 }
2950 
2951 void os::Linux::rebuild_nindex_to_node_map() {
2952   int highest_node_number = Linux::numa_max_node();
2953 
2954   nindex_to_node()->clear();
2955   for (int node = 0; node <= highest_node_number; node++) {
2956     if (Linux::isnode_in_existing_nodes(node)) {
2957       nindex_to_node()->append(node);
2958     }
2959   }
2960 }
2961 
2962 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2963 // The table is later used in get_node_by_cpu().
2964 void os::Linux::rebuild_cpu_to_node_map() {
2965   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2966                               // in libnuma (possible values are starting from 16,
2967                               // and continuing up with every other power of 2, but less
2968                               // than the maximum number of CPUs supported by kernel), and
2969                               // is a subject to change (in libnuma version 2 the requirements
2970                               // are more reasonable) we'll just hardcode the number they use
2971                               // in the library.
2972   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2973 
2974   size_t cpu_num = processor_count();
2975   size_t cpu_map_size = NCPUS / BitsPerCLong;
2976   size_t cpu_map_valid_size =
2977     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2978 
2979   cpu_to_node()->clear();
2980   cpu_to_node()->at_grow(cpu_num - 1);
2981 
2982   size_t node_num = get_existing_num_nodes();
2983 
2984   int distance = 0;
2985   int closest_distance = INT_MAX;
2986   int closest_node = 0;
2987   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2988   for (size_t i = 0; i < node_num; i++) {
2989     // Check if node is configured (not a memory-less node). If it is not, find
2990     // the closest configured node.
2991     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2992       closest_distance = INT_MAX;
2993       // Check distance from all remaining nodes in the system. Ignore distance
2994       // from itself and from another non-configured node.
2995       for (size_t m = 0; m < node_num; m++) {
2996         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2997           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2998           // If a closest node is found, update. There is always at least one
2999           // configured node in the system so there is always at least one node
3000           // close.
3001           if (distance != 0 && distance < closest_distance) {
3002             closest_distance = distance;
3003             closest_node = nindex_to_node()->at(m);
3004           }
3005         }
3006       }
3007      } else {
3008        // Current node is already a configured node.
3009        closest_node = nindex_to_node()->at(i);
3010      }
3011 
3012     // Get cpus from the original node and map them to the closest node. If node
3013     // is a configured node (not a memory-less node), then original node and
3014     // closest node are the same.
3015     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3016       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3017         if (cpu_map[j] != 0) {
3018           for (size_t k = 0; k < BitsPerCLong; k++) {
3019             if (cpu_map[j] & (1UL << k)) {
3020               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3021             }
3022           }
3023         }
3024       }
3025     }
3026   }
3027   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3028 }
3029 
3030 int os::Linux::get_node_by_cpu(int cpu_id) {
3031   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3032     return cpu_to_node()->at(cpu_id);
3033   }
3034   return -1;
3035 }
3036 
3037 GrowableArray<int>* os::Linux::_cpu_to_node;
3038 GrowableArray<int>* os::Linux::_nindex_to_node;
3039 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3040 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3041 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3042 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3043 os::Linux::numa_available_func_t os::Linux::_numa_available;
3044 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3045 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3046 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3047 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3048 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3049 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3050 unsigned long* os::Linux::_numa_all_nodes;
3051 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3052 struct bitmask* os::Linux::_numa_nodes_ptr;
3053 
3054 bool os::pd_uncommit_memory(char* addr, size_t size) {
3055   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3056                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3057   return res  != (uintptr_t) MAP_FAILED;
3058 }
3059 
3060 static address get_stack_commited_bottom(address bottom, size_t size) {
3061   address nbot = bottom;
3062   address ntop = bottom + size;
3063 
3064   size_t page_sz = os::vm_page_size();
3065   unsigned pages = size / page_sz;
3066 
3067   unsigned char vec[1];
3068   unsigned imin = 1, imax = pages + 1, imid;
3069   int mincore_return_value = 0;
3070 
3071   assert(imin <= imax, "Unexpected page size");
3072 
3073   while (imin < imax) {
3074     imid = (imax + imin) / 2;
3075     nbot = ntop - (imid * page_sz);
3076 
3077     // Use a trick with mincore to check whether the page is mapped or not.
3078     // mincore sets vec to 1 if page resides in memory and to 0 if page
3079     // is swapped output but if page we are asking for is unmapped
3080     // it returns -1,ENOMEM
3081     mincore_return_value = mincore(nbot, page_sz, vec);
3082 
3083     if (mincore_return_value == -1) {
3084       // Page is not mapped go up
3085       // to find first mapped page
3086       if (errno != EAGAIN) {
3087         assert(errno == ENOMEM, "Unexpected mincore errno");
3088         imax = imid;
3089       }
3090     } else {
3091       // Page is mapped go down
3092       // to find first not mapped page
3093       imin = imid + 1;
3094     }
3095   }
3096 
3097   nbot = nbot + page_sz;
3098 
3099   // Adjust stack bottom one page up if last checked page is not mapped
3100   if (mincore_return_value == -1) {
3101     nbot = nbot + page_sz;
3102   }
3103 
3104   return nbot;
3105 }
3106 
3107 
3108 // Linux uses a growable mapping for the stack, and if the mapping for
3109 // the stack guard pages is not removed when we detach a thread the
3110 // stack cannot grow beyond the pages where the stack guard was
3111 // mapped.  If at some point later in the process the stack expands to
3112 // that point, the Linux kernel cannot expand the stack any further
3113 // because the guard pages are in the way, and a segfault occurs.
3114 //
3115 // However, it's essential not to split the stack region by unmapping
3116 // a region (leaving a hole) that's already part of the stack mapping,
3117 // so if the stack mapping has already grown beyond the guard pages at
3118 // the time we create them, we have to truncate the stack mapping.
3119 // So, we need to know the extent of the stack mapping when
3120 // create_stack_guard_pages() is called.
3121 
3122 // We only need this for stacks that are growable: at the time of
3123 // writing thread stacks don't use growable mappings (i.e. those
3124 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3125 // only applies to the main thread.
3126 
3127 // If the (growable) stack mapping already extends beyond the point
3128 // where we're going to put our guard pages, truncate the mapping at
3129 // that point by munmap()ping it.  This ensures that when we later
3130 // munmap() the guard pages we don't leave a hole in the stack
3131 // mapping. This only affects the main/primordial thread
3132 
3133 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3134   if (os::is_primordial_thread()) {
3135     // As we manually grow stack up to bottom inside create_attached_thread(),
3136     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3137     // we don't need to do anything special.
3138     // Check it first, before calling heavy function.
3139     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3140     unsigned char vec[1];
3141 
3142     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3143       // Fallback to slow path on all errors, including EAGAIN
3144       stack_extent = (uintptr_t) get_stack_commited_bottom(
3145                                                            os::Linux::initial_thread_stack_bottom(),
3146                                                            (size_t)addr - stack_extent);
3147     }
3148 
3149     if (stack_extent < (uintptr_t)addr) {
3150       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3151     }
3152   }
3153 
3154   return os::commit_memory(addr, size, !ExecMem);
3155 }
3156 
3157 // If this is a growable mapping, remove the guard pages entirely by
3158 // munmap()ping them.  If not, just call uncommit_memory(). This only
3159 // affects the main/primordial thread, but guard against future OS changes.
3160 // It's safe to always unmap guard pages for primordial thread because we
3161 // always place it right after end of the mapped region.
3162 
3163 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3164   uintptr_t stack_extent, stack_base;
3165 
3166   if (os::is_primordial_thread()) {
3167     return ::munmap(addr, size) == 0;
3168   }
3169 
3170   return os::uncommit_memory(addr, size);
3171 }
3172 
3173 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3174 // at 'requested_addr'. If there are existing memory mappings at the same
3175 // location, however, they will be overwritten. If 'fixed' is false,
3176 // 'requested_addr' is only treated as a hint, the return value may or
3177 // may not start from the requested address. Unlike Linux mmap(), this
3178 // function returns NULL to indicate failure.
3179 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3180   char * addr;
3181   int flags;
3182 
3183   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3184   if (fixed) {
3185     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3186     flags |= MAP_FIXED;
3187   }
3188 
3189   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3190   // touch an uncommitted page. Otherwise, the read/write might
3191   // succeed if we have enough swap space to back the physical page.
3192   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3193                        flags, -1, 0);
3194 
3195   return addr == MAP_FAILED ? NULL : addr;
3196 }
3197 
3198 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3199 //   (req_addr != NULL) or with a given alignment.
3200 //  - bytes shall be a multiple of alignment.
3201 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3202 //  - alignment sets the alignment at which memory shall be allocated.
3203 //     It must be a multiple of allocation granularity.
3204 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3205 //  req_addr or NULL.
3206 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3207 
3208   size_t extra_size = bytes;
3209   if (req_addr == NULL && alignment > 0) {
3210     extra_size += alignment;
3211   }
3212 
3213   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3214     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3215     -1, 0);
3216   if (start == MAP_FAILED) {
3217     start = NULL;
3218   } else {
3219     if (req_addr != NULL) {
3220       if (start != req_addr) {
3221         ::munmap(start, extra_size);
3222         start = NULL;
3223       }
3224     } else {
3225       char* const start_aligned = align_up(start, alignment);
3226       char* const end_aligned = start_aligned + bytes;
3227       char* const end = start + extra_size;
3228       if (start_aligned > start) {
3229         ::munmap(start, start_aligned - start);
3230       }
3231       if (end_aligned < end) {
3232         ::munmap(end_aligned, end - end_aligned);
3233       }
3234       start = start_aligned;
3235     }
3236   }
3237   return start;
3238 }
3239 
3240 static int anon_munmap(char * addr, size_t size) {
3241   return ::munmap(addr, size) == 0;
3242 }
3243 
3244 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3245                             size_t alignment_hint) {
3246   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3247 }
3248 
3249 bool os::pd_release_memory(char* addr, size_t size) {
3250   return anon_munmap(addr, size);
3251 }
3252 
3253 static bool linux_mprotect(char* addr, size_t size, int prot) {
3254   // Linux wants the mprotect address argument to be page aligned.
3255   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3256 
3257   // According to SUSv3, mprotect() should only be used with mappings
3258   // established by mmap(), and mmap() always maps whole pages. Unaligned
3259   // 'addr' likely indicates problem in the VM (e.g. trying to change
3260   // protection of malloc'ed or statically allocated memory). Check the
3261   // caller if you hit this assert.
3262   assert(addr == bottom, "sanity check");
3263 
3264   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3265   return ::mprotect(bottom, size, prot) == 0;
3266 }
3267 
3268 // Set protections specified
3269 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3270                         bool is_committed) {
3271   unsigned int p = 0;
3272   switch (prot) {
3273   case MEM_PROT_NONE: p = PROT_NONE; break;
3274   case MEM_PROT_READ: p = PROT_READ; break;
3275   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3276   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3277   default:
3278     ShouldNotReachHere();
3279   }
3280   // is_committed is unused.
3281   return linux_mprotect(addr, bytes, p);
3282 }
3283 
3284 bool os::guard_memory(char* addr, size_t size) {
3285   return linux_mprotect(addr, size, PROT_NONE);
3286 }
3287 
3288 bool os::unguard_memory(char* addr, size_t size) {
3289   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3290 }
3291 
3292 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3293                                                     size_t page_size) {
3294   bool result = false;
3295   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3296                  MAP_ANONYMOUS|MAP_PRIVATE,
3297                  -1, 0);
3298   if (p != MAP_FAILED) {
3299     void *aligned_p = align_up(p, page_size);
3300 
3301     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3302 
3303     munmap(p, page_size * 2);
3304   }
3305 
3306   if (warn && !result) {
3307     warning("TransparentHugePages is not supported by the operating system.");
3308   }
3309 
3310   return result;
3311 }
3312 
3313 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3314   bool result = false;
3315   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3316                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3317                  -1, 0);
3318 
3319   if (p != MAP_FAILED) {
3320     // We don't know if this really is a huge page or not.
3321     FILE *fp = fopen("/proc/self/maps", "r");
3322     if (fp) {
3323       while (!feof(fp)) {
3324         char chars[257];
3325         long x = 0;
3326         if (fgets(chars, sizeof(chars), fp)) {
3327           if (sscanf(chars, "%lx-%*x", &x) == 1
3328               && x == (long)p) {
3329             if (strstr (chars, "hugepage")) {
3330               result = true;
3331               break;
3332             }
3333           }
3334         }
3335       }
3336       fclose(fp);
3337     }
3338     munmap(p, page_size);
3339   }
3340 
3341   if (warn && !result) {
3342     warning("HugeTLBFS is not supported by the operating system.");
3343   }
3344 
3345   return result;
3346 }
3347 
3348 // Set the coredump_filter bits to include largepages in core dump (bit 6)
3349 //
3350 // From the coredump_filter documentation:
3351 //
3352 // - (bit 0) anonymous private memory
3353 // - (bit 1) anonymous shared memory
3354 // - (bit 2) file-backed private memory
3355 // - (bit 3) file-backed shared memory
3356 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3357 //           effective only if the bit 2 is cleared)
3358 // - (bit 5) hugetlb private memory
3359 // - (bit 6) hugetlb shared memory
3360 // - (bit 7) dax private memory
3361 // - (bit 8) dax shared memory
3362 //
3363 static void set_coredump_filter(bool largepages, bool dax_shared) {
3364   FILE *f;
3365   long cdm;
3366   bool filter_changed = false;
3367 
3368   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3369     return;
3370   }
3371 
3372   if (fscanf(f, "%lx", &cdm) != 1) {
3373     fclose(f);
3374     return;
3375   }
3376 
3377   rewind(f);
3378 
3379   if (largepages && (cdm & LARGEPAGES_BIT) == 0) {
3380     cdm |= LARGEPAGES_BIT;
3381     filter_changed = true;
3382   }
3383   if (dax_shared && (cdm & DAX_SHARED_BIT) == 0) {
3384     cdm |= DAX_SHARED_BIT;
3385     filter_changed = true;
3386   }
3387   if (filter_changed) {
3388     fprintf(f, "%#lx", cdm);
3389   }
3390 
3391   fclose(f);
3392 }
3393 
3394 // Large page support
3395 
3396 static size_t _large_page_size = 0;
3397 
3398 size_t os::Linux::find_large_page_size() {
3399   size_t large_page_size = 0;
3400 
3401   // large_page_size on Linux is used to round up heap size. x86 uses either
3402   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3403   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3404   // page as large as 256M.
3405   //
3406   // Here we try to figure out page size by parsing /proc/meminfo and looking
3407   // for a line with the following format:
3408   //    Hugepagesize:     2048 kB
3409   //
3410   // If we can't determine the value (e.g. /proc is not mounted, or the text
3411   // format has been changed), we'll use the largest page size supported by
3412   // the processor.
3413 
3414 #ifndef ZERO
3415   large_page_size =
3416     AARCH64_ONLY(2 * M)
3417     AMD64_ONLY(2 * M)
3418     ARM32_ONLY(2 * M)
3419     IA32_ONLY(4 * M)
3420     IA64_ONLY(256 * M)
3421     PPC_ONLY(4 * M)
3422     S390_ONLY(1 * M)
3423     SPARC_ONLY(4 * M);
3424 #endif // ZERO
3425 
3426   FILE *fp = fopen("/proc/meminfo", "r");
3427   if (fp) {
3428     while (!feof(fp)) {
3429       int x = 0;
3430       char buf[16];
3431       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3432         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3433           large_page_size = x * K;
3434           break;
3435         }
3436       } else {
3437         // skip to next line
3438         for (;;) {
3439           int ch = fgetc(fp);
3440           if (ch == EOF || ch == (int)'\n') break;
3441         }
3442       }
3443     }
3444     fclose(fp);
3445   }
3446 
3447   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3448     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3449             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3450             proper_unit_for_byte_size(large_page_size));
3451   }
3452 
3453   return large_page_size;
3454 }
3455 
3456 size_t os::Linux::setup_large_page_size() {
3457   _large_page_size = Linux::find_large_page_size();
3458   const size_t default_page_size = (size_t)Linux::page_size();
3459   if (_large_page_size > default_page_size) {
3460     _page_sizes[0] = _large_page_size;
3461     _page_sizes[1] = default_page_size;
3462     _page_sizes[2] = 0;
3463   }
3464 
3465   return _large_page_size;
3466 }
3467 
3468 bool os::Linux::setup_large_page_type(size_t page_size) {
3469   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3470       FLAG_IS_DEFAULT(UseSHM) &&
3471       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3472 
3473     // The type of large pages has not been specified by the user.
3474 
3475     // Try UseHugeTLBFS and then UseSHM.
3476     UseHugeTLBFS = UseSHM = true;
3477 
3478     // Don't try UseTransparentHugePages since there are known
3479     // performance issues with it turned on. This might change in the future.
3480     UseTransparentHugePages = false;
3481   }
3482 
3483   if (UseTransparentHugePages) {
3484     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3485     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3486       UseHugeTLBFS = false;
3487       UseSHM = false;
3488       return true;
3489     }
3490     UseTransparentHugePages = false;
3491   }
3492 
3493   if (UseHugeTLBFS) {
3494     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3495     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3496       UseSHM = false;
3497       return true;
3498     }
3499     UseHugeTLBFS = false;
3500   }
3501 
3502   return UseSHM;
3503 }
3504 
3505 void os::large_page_init() {
3506   if (!UseLargePages &&
3507       !UseTransparentHugePages &&
3508       !UseHugeTLBFS &&
3509       !UseSHM) {
3510     // Not using large pages.
3511     return;
3512   }
3513 
3514   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3515     // The user explicitly turned off large pages.
3516     // Ignore the rest of the large pages flags.
3517     UseTransparentHugePages = false;
3518     UseHugeTLBFS = false;
3519     UseSHM = false;
3520     return;
3521   }
3522 
3523   size_t large_page_size = Linux::setup_large_page_size();
3524   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3525 
3526   set_coredump_filter(true /*largepages*/, false /*dax_shared*/);
3527 }
3528 
3529 #ifndef SHM_HUGETLB
3530   #define SHM_HUGETLB 04000
3531 #endif
3532 
3533 #define shm_warning_format(format, ...)              \
3534   do {                                               \
3535     if (UseLargePages &&                             \
3536         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3537          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3538          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3539       warning(format, __VA_ARGS__);                  \
3540     }                                                \
3541   } while (0)
3542 
3543 #define shm_warning(str) shm_warning_format("%s", str)
3544 
3545 #define shm_warning_with_errno(str)                \
3546   do {                                             \
3547     int err = errno;                               \
3548     shm_warning_format(str " (error = %d)", err);  \
3549   } while (0)
3550 
3551 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3552   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3553 
3554   if (!is_aligned(alignment, SHMLBA)) {
3555     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3556     return NULL;
3557   }
3558 
3559   // To ensure that we get 'alignment' aligned memory from shmat,
3560   // we pre-reserve aligned virtual memory and then attach to that.
3561 
3562   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3563   if (pre_reserved_addr == NULL) {
3564     // Couldn't pre-reserve aligned memory.
3565     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3566     return NULL;
3567   }
3568 
3569   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3570   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3571 
3572   if ((intptr_t)addr == -1) {
3573     int err = errno;
3574     shm_warning_with_errno("Failed to attach shared memory.");
3575 
3576     assert(err != EACCES, "Unexpected error");
3577     assert(err != EIDRM,  "Unexpected error");
3578     assert(err != EINVAL, "Unexpected error");
3579 
3580     // Since we don't know if the kernel unmapped the pre-reserved memory area
3581     // we can't unmap it, since that would potentially unmap memory that was
3582     // mapped from other threads.
3583     return NULL;
3584   }
3585 
3586   return addr;
3587 }
3588 
3589 static char* shmat_at_address(int shmid, char* req_addr) {
3590   if (!is_aligned(req_addr, SHMLBA)) {
3591     assert(false, "Requested address needs to be SHMLBA aligned");
3592     return NULL;
3593   }
3594 
3595   char* addr = (char*)shmat(shmid, req_addr, 0);
3596 
3597   if ((intptr_t)addr == -1) {
3598     shm_warning_with_errno("Failed to attach shared memory.");
3599     return NULL;
3600   }
3601 
3602   return addr;
3603 }
3604 
3605 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3606   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3607   if (req_addr != NULL) {
3608     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3609     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3610     return shmat_at_address(shmid, req_addr);
3611   }
3612 
3613   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3614   // return large page size aligned memory addresses when req_addr == NULL.
3615   // However, if the alignment is larger than the large page size, we have
3616   // to manually ensure that the memory returned is 'alignment' aligned.
3617   if (alignment > os::large_page_size()) {
3618     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3619     return shmat_with_alignment(shmid, bytes, alignment);
3620   } else {
3621     return shmat_at_address(shmid, NULL);
3622   }
3623 }
3624 
3625 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3626                                             char* req_addr, bool exec) {
3627   // "exec" is passed in but not used.  Creating the shared image for
3628   // the code cache doesn't have an SHM_X executable permission to check.
3629   assert(UseLargePages && UseSHM, "only for SHM large pages");
3630   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3631   assert(is_aligned(req_addr, alignment), "Unaligned address");
3632 
3633   if (!is_aligned(bytes, os::large_page_size())) {
3634     return NULL; // Fallback to small pages.
3635   }
3636 
3637   // Create a large shared memory region to attach to based on size.
3638   // Currently, size is the total size of the heap.
3639   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3640   if (shmid == -1) {
3641     // Possible reasons for shmget failure:
3642     // 1. shmmax is too small for Java heap.
3643     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3644     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3645     // 2. not enough large page memory.
3646     //    > check available large pages: cat /proc/meminfo
3647     //    > increase amount of large pages:
3648     //          echo new_value > /proc/sys/vm/nr_hugepages
3649     //      Note 1: different Linux may use different name for this property,
3650     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3651     //      Note 2: it's possible there's enough physical memory available but
3652     //            they are so fragmented after a long run that they can't
3653     //            coalesce into large pages. Try to reserve large pages when
3654     //            the system is still "fresh".
3655     shm_warning_with_errno("Failed to reserve shared memory.");
3656     return NULL;
3657   }
3658 
3659   // Attach to the region.
3660   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3661 
3662   // Remove shmid. If shmat() is successful, the actual shared memory segment
3663   // will be deleted when it's detached by shmdt() or when the process
3664   // terminates. If shmat() is not successful this will remove the shared
3665   // segment immediately.
3666   shmctl(shmid, IPC_RMID, NULL);
3667 
3668   return addr;
3669 }
3670 
3671 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3672                                         int error) {
3673   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3674 
3675   bool warn_on_failure = UseLargePages &&
3676       (!FLAG_IS_DEFAULT(UseLargePages) ||
3677        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3678        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3679 
3680   if (warn_on_failure) {
3681     char msg[128];
3682     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3683                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3684     warning("%s", msg);
3685   }
3686 }
3687 
3688 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3689                                                         char* req_addr,
3690                                                         bool exec) {
3691   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3692   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3693   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3694 
3695   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3696   char* addr = (char*)::mmap(req_addr, bytes, prot,
3697                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3698                              -1, 0);
3699 
3700   if (addr == MAP_FAILED) {
3701     warn_on_large_pages_failure(req_addr, bytes, errno);
3702     return NULL;
3703   }
3704 
3705   assert(is_aligned(addr, os::large_page_size()), "Must be");
3706 
3707   return addr;
3708 }
3709 
3710 // Reserve memory using mmap(MAP_HUGETLB).
3711 //  - bytes shall be a multiple of alignment.
3712 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3713 //  - alignment sets the alignment at which memory shall be allocated.
3714 //     It must be a multiple of allocation granularity.
3715 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3716 //  req_addr or NULL.
3717 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3718                                                          size_t alignment,
3719                                                          char* req_addr,
3720                                                          bool exec) {
3721   size_t large_page_size = os::large_page_size();
3722   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3723 
3724   assert(is_aligned(req_addr, alignment), "Must be");
3725   assert(is_aligned(bytes, alignment), "Must be");
3726 
3727   // First reserve - but not commit - the address range in small pages.
3728   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3729 
3730   if (start == NULL) {
3731     return NULL;
3732   }
3733 
3734   assert(is_aligned(start, alignment), "Must be");
3735 
3736   char* end = start + bytes;
3737 
3738   // Find the regions of the allocated chunk that can be promoted to large pages.
3739   char* lp_start = align_up(start, large_page_size);
3740   char* lp_end   = align_down(end, large_page_size);
3741 
3742   size_t lp_bytes = lp_end - lp_start;
3743 
3744   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3745 
3746   if (lp_bytes == 0) {
3747     // The mapped region doesn't even span the start and the end of a large page.
3748     // Fall back to allocate a non-special area.
3749     ::munmap(start, end - start);
3750     return NULL;
3751   }
3752 
3753   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3754 
3755   void* result;
3756 
3757   // Commit small-paged leading area.
3758   if (start != lp_start) {
3759     result = ::mmap(start, lp_start - start, prot,
3760                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3761                     -1, 0);
3762     if (result == MAP_FAILED) {
3763       ::munmap(lp_start, end - lp_start);
3764       return NULL;
3765     }
3766   }
3767 
3768   // Commit large-paged area.
3769   result = ::mmap(lp_start, lp_bytes, prot,
3770                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3771                   -1, 0);
3772   if (result == MAP_FAILED) {
3773     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3774     // If the mmap above fails, the large pages region will be unmapped and we
3775     // have regions before and after with small pages. Release these regions.
3776     //
3777     // |  mapped  |  unmapped  |  mapped  |
3778     // ^          ^            ^          ^
3779     // start      lp_start     lp_end     end
3780     //
3781     ::munmap(start, lp_start - start);
3782     ::munmap(lp_end, end - lp_end);
3783     return NULL;
3784   }
3785 
3786   // Commit small-paged trailing area.
3787   if (lp_end != end) {
3788     result = ::mmap(lp_end, end - lp_end, prot,
3789                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3790                     -1, 0);
3791     if (result == MAP_FAILED) {
3792       ::munmap(start, lp_end - start);
3793       return NULL;
3794     }
3795   }
3796 
3797   return start;
3798 }
3799 
3800 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
3801                                                    size_t alignment,
3802                                                    char* req_addr,
3803                                                    bool exec) {
3804   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3805   assert(is_aligned(req_addr, alignment), "Must be");
3806   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3807   assert(is_power_of_2(os::large_page_size()), "Must be");
3808   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3809 
3810   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3811     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3812   } else {
3813     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3814   }
3815 }
3816 
3817 char* os::reserve_memory_special(size_t bytes, size_t alignment,
3818                                  char* req_addr, bool exec) {
3819   assert(UseLargePages, "only for large pages");
3820 
3821   char* addr;
3822   if (UseSHM) {
3823     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3824   } else {
3825     assert(UseHugeTLBFS, "must be");
3826     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3827   }
3828 
3829   if (addr != NULL) {
3830     if (UseNUMAInterleaving) {
3831       numa_make_global(addr, bytes);
3832     }
3833 
3834     // The memory is committed
3835     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3836   }
3837 
3838   return addr;
3839 }
3840 
3841 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3842   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3843   return shmdt(base) == 0;
3844 }
3845 
3846 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3847   return pd_release_memory(base, bytes);
3848 }
3849 
3850 bool os::release_memory_special(char* base, size_t bytes) {
3851   bool res;
3852   if (MemTracker::tracking_level() > NMT_minimal) {
3853     Tracker tkr(Tracker::release);
3854     res = os::Linux::release_memory_special_impl(base, bytes);
3855     if (res) {
3856       tkr.record((address)base, bytes);
3857     }
3858 
3859   } else {
3860     res = os::Linux::release_memory_special_impl(base, bytes);
3861   }
3862   return res;
3863 }
3864 
3865 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3866   assert(UseLargePages, "only for large pages");
3867   bool res;
3868 
3869   if (UseSHM) {
3870     res = os::Linux::release_memory_special_shm(base, bytes);
3871   } else {
3872     assert(UseHugeTLBFS, "must be");
3873     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3874   }
3875   return res;
3876 }
3877 
3878 size_t os::large_page_size() {
3879   return _large_page_size;
3880 }
3881 
3882 // With SysV SHM the entire memory region must be allocated as shared
3883 // memory.
3884 // HugeTLBFS allows application to commit large page memory on demand.
3885 // However, when committing memory with HugeTLBFS fails, the region
3886 // that was supposed to be committed will lose the old reservation
3887 // and allow other threads to steal that memory region. Because of this
3888 // behavior we can't commit HugeTLBFS memory.
3889 bool os::can_commit_large_page_memory() {
3890   return UseTransparentHugePages;
3891 }
3892 
3893 bool os::can_execute_large_page_memory() {
3894   return UseTransparentHugePages || UseHugeTLBFS;
3895 }
3896 
3897 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
3898   assert(file_desc >= 0, "file_desc is not valid");
3899   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
3900   if (result != NULL) {
3901     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
3902       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
3903     }
3904   }
3905   return result;
3906 }
3907 
3908 // Reserve memory at an arbitrary address, only if that area is
3909 // available (and not reserved for something else).
3910 
3911 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3912   const int max_tries = 10;
3913   char* base[max_tries];
3914   size_t size[max_tries];
3915   const size_t gap = 0x000000;
3916 
3917   // Assert only that the size is a multiple of the page size, since
3918   // that's all that mmap requires, and since that's all we really know
3919   // about at this low abstraction level.  If we need higher alignment,
3920   // we can either pass an alignment to this method or verify alignment
3921   // in one of the methods further up the call chain.  See bug 5044738.
3922   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3923 
3924   // Repeatedly allocate blocks until the block is allocated at the
3925   // right spot.
3926 
3927   // Linux mmap allows caller to pass an address as hint; give it a try first,
3928   // if kernel honors the hint then we can return immediately.
3929   char * addr = anon_mmap(requested_addr, bytes, false);
3930   if (addr == requested_addr) {
3931     return requested_addr;
3932   }
3933 
3934   if (addr != NULL) {
3935     // mmap() is successful but it fails to reserve at the requested address
3936     anon_munmap(addr, bytes);
3937   }
3938 
3939   int i;
3940   for (i = 0; i < max_tries; ++i) {
3941     base[i] = reserve_memory(bytes);
3942 
3943     if (base[i] != NULL) {
3944       // Is this the block we wanted?
3945       if (base[i] == requested_addr) {
3946         size[i] = bytes;
3947         break;
3948       }
3949 
3950       // Does this overlap the block we wanted? Give back the overlapped
3951       // parts and try again.
3952 
3953       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
3954       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
3955         unmap_memory(base[i], top_overlap);
3956         base[i] += top_overlap;
3957         size[i] = bytes - top_overlap;
3958       } else {
3959         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
3960         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
3961           unmap_memory(requested_addr, bottom_overlap);
3962           size[i] = bytes - bottom_overlap;
3963         } else {
3964           size[i] = bytes;
3965         }
3966       }
3967     }
3968   }
3969 
3970   // Give back the unused reserved pieces.
3971 
3972   for (int j = 0; j < i; ++j) {
3973     if (base[j] != NULL) {
3974       unmap_memory(base[j], size[j]);
3975     }
3976   }
3977 
3978   if (i < max_tries) {
3979     return requested_addr;
3980   } else {
3981     return NULL;
3982   }
3983 }
3984 
3985 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3986   return ::read(fd, buf, nBytes);
3987 }
3988 
3989 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
3990   return ::pread(fd, buf, nBytes, offset);
3991 }
3992 
3993 // Short sleep, direct OS call.
3994 //
3995 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3996 // sched_yield(2) will actually give up the CPU:
3997 //
3998 //   * Alone on this pariticular CPU, keeps running.
3999 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4000 //     (pre 2.6.39).
4001 //
4002 // So calling this with 0 is an alternative.
4003 //
4004 void os::naked_short_sleep(jlong ms) {
4005   struct timespec req;
4006 
4007   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4008   req.tv_sec = 0;
4009   if (ms > 0) {
4010     req.tv_nsec = (ms % 1000) * 1000000;
4011   } else {
4012     req.tv_nsec = 1;
4013   }
4014 
4015   nanosleep(&req, NULL);
4016 
4017   return;
4018 }
4019 
4020 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4021 void os::infinite_sleep() {
4022   while (true) {    // sleep forever ...
4023     ::sleep(100);   // ... 100 seconds at a time
4024   }
4025 }
4026 
4027 // Used to convert frequent JVM_Yield() to nops
4028 bool os::dont_yield() {
4029   return DontYieldALot;
4030 }
4031 
4032 void os::naked_yield() {
4033   sched_yield();
4034 }
4035 
4036 ////////////////////////////////////////////////////////////////////////////////
4037 // thread priority support
4038 
4039 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4040 // only supports dynamic priority, static priority must be zero. For real-time
4041 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4042 // However, for large multi-threaded applications, SCHED_RR is not only slower
4043 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4044 // of 5 runs - Sep 2005).
4045 //
4046 // The following code actually changes the niceness of kernel-thread/LWP. It
4047 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4048 // not the entire user process, and user level threads are 1:1 mapped to kernel
4049 // threads. It has always been the case, but could change in the future. For
4050 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4051 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4052 
4053 int os::java_to_os_priority[CriticalPriority + 1] = {
4054   19,              // 0 Entry should never be used
4055 
4056    4,              // 1 MinPriority
4057    3,              // 2
4058    2,              // 3
4059 
4060    1,              // 4
4061    0,              // 5 NormPriority
4062   -1,              // 6
4063 
4064   -2,              // 7
4065   -3,              // 8
4066   -4,              // 9 NearMaxPriority
4067 
4068   -5,              // 10 MaxPriority
4069 
4070   -5               // 11 CriticalPriority
4071 };
4072 
4073 static int prio_init() {
4074   if (ThreadPriorityPolicy == 1) {
4075     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4076     // if effective uid is not root. Perhaps, a more elegant way of doing
4077     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4078     if (geteuid() != 0) {
4079       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4080         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4081       }
4082       ThreadPriorityPolicy = 0;
4083     }
4084   }
4085   if (UseCriticalJavaThreadPriority) {
4086     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4087   }
4088   return 0;
4089 }
4090 
4091 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4092   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4093 
4094   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4095   return (ret == 0) ? OS_OK : OS_ERR;
4096 }
4097 
4098 OSReturn os::get_native_priority(const Thread* const thread,
4099                                  int *priority_ptr) {
4100   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4101     *priority_ptr = java_to_os_priority[NormPriority];
4102     return OS_OK;
4103   }
4104 
4105   errno = 0;
4106   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4107   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4108 }
4109 
4110 // Hint to the underlying OS that a task switch would not be good.
4111 // Void return because it's a hint and can fail.
4112 void os::hint_no_preempt() {}
4113 
4114 ////////////////////////////////////////////////////////////////////////////////
4115 // suspend/resume support
4116 
4117 //  The low-level signal-based suspend/resume support is a remnant from the
4118 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4119 //  within hotspot. Currently used by JFR's OSThreadSampler
4120 //
4121 //  The remaining code is greatly simplified from the more general suspension
4122 //  code that used to be used.
4123 //
4124 //  The protocol is quite simple:
4125 //  - suspend:
4126 //      - sends a signal to the target thread
4127 //      - polls the suspend state of the osthread using a yield loop
4128 //      - target thread signal handler (SR_handler) sets suspend state
4129 //        and blocks in sigsuspend until continued
4130 //  - resume:
4131 //      - sets target osthread state to continue
4132 //      - sends signal to end the sigsuspend loop in the SR_handler
4133 //
4134 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4135 //  but is checked for NULL in SR_handler as a thread termination indicator.
4136 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4137 //
4138 //  Note that resume_clear_context() and suspend_save_context() are needed
4139 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4140 //  which in part is used by:
4141 //    - Forte Analyzer: AsyncGetCallTrace()
4142 //    - StackBanging: get_frame_at_stack_banging_point()
4143 
4144 static void resume_clear_context(OSThread *osthread) {
4145   osthread->set_ucontext(NULL);
4146   osthread->set_siginfo(NULL);
4147 }
4148 
4149 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4150                                  ucontext_t* context) {
4151   osthread->set_ucontext(context);
4152   osthread->set_siginfo(siginfo);
4153 }
4154 
4155 // Handler function invoked when a thread's execution is suspended or
4156 // resumed. We have to be careful that only async-safe functions are
4157 // called here (Note: most pthread functions are not async safe and
4158 // should be avoided.)
4159 //
4160 // Note: sigwait() is a more natural fit than sigsuspend() from an
4161 // interface point of view, but sigwait() prevents the signal hander
4162 // from being run. libpthread would get very confused by not having
4163 // its signal handlers run and prevents sigwait()'s use with the
4164 // mutex granting granting signal.
4165 //
4166 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4167 //
4168 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4169   // Save and restore errno to avoid confusing native code with EINTR
4170   // after sigsuspend.
4171   int old_errno = errno;
4172 
4173   Thread* thread = Thread::current_or_null_safe();
4174   assert(thread != NULL, "Missing current thread in SR_handler");
4175 
4176   // On some systems we have seen signal delivery get "stuck" until the signal
4177   // mask is changed as part of thread termination. Check that the current thread
4178   // has not already terminated (via SR_lock()) - else the following assertion
4179   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4180   // destructor has completed.
4181 
4182   if (thread->SR_lock() == NULL) {
4183     return;
4184   }
4185 
4186   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4187 
4188   OSThread* osthread = thread->osthread();
4189 
4190   os::SuspendResume::State current = osthread->sr.state();
4191   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4192     suspend_save_context(osthread, siginfo, context);
4193 
4194     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4195     os::SuspendResume::State state = osthread->sr.suspended();
4196     if (state == os::SuspendResume::SR_SUSPENDED) {
4197       sigset_t suspend_set;  // signals for sigsuspend()
4198       sigemptyset(&suspend_set);
4199       // get current set of blocked signals and unblock resume signal
4200       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4201       sigdelset(&suspend_set, SR_signum);
4202 
4203       sr_semaphore.signal();
4204       // wait here until we are resumed
4205       while (1) {
4206         sigsuspend(&suspend_set);
4207 
4208         os::SuspendResume::State result = osthread->sr.running();
4209         if (result == os::SuspendResume::SR_RUNNING) {
4210           sr_semaphore.signal();
4211           break;
4212         }
4213       }
4214 
4215     } else if (state == os::SuspendResume::SR_RUNNING) {
4216       // request was cancelled, continue
4217     } else {
4218       ShouldNotReachHere();
4219     }
4220 
4221     resume_clear_context(osthread);
4222   } else if (current == os::SuspendResume::SR_RUNNING) {
4223     // request was cancelled, continue
4224   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4225     // ignore
4226   } else {
4227     // ignore
4228   }
4229 
4230   errno = old_errno;
4231 }
4232 
4233 static int SR_initialize() {
4234   struct sigaction act;
4235   char *s;
4236 
4237   // Get signal number to use for suspend/resume
4238   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4239     int sig = ::strtol(s, 0, 10);
4240     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4241         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4242       SR_signum = sig;
4243     } else {
4244       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4245               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4246     }
4247   }
4248 
4249   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4250          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4251 
4252   sigemptyset(&SR_sigset);
4253   sigaddset(&SR_sigset, SR_signum);
4254 
4255   // Set up signal handler for suspend/resume
4256   act.sa_flags = SA_RESTART|SA_SIGINFO;
4257   act.sa_handler = (void (*)(int)) SR_handler;
4258 
4259   // SR_signum is blocked by default.
4260   // 4528190 - We also need to block pthread restart signal (32 on all
4261   // supported Linux platforms). Note that LinuxThreads need to block
4262   // this signal for all threads to work properly. So we don't have
4263   // to use hard-coded signal number when setting up the mask.
4264   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4265 
4266   if (sigaction(SR_signum, &act, 0) == -1) {
4267     return -1;
4268   }
4269 
4270   // Save signal flag
4271   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4272   return 0;
4273 }
4274 
4275 static int sr_notify(OSThread* osthread) {
4276   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4277   assert_status(status == 0, status, "pthread_kill");
4278   return status;
4279 }
4280 
4281 // "Randomly" selected value for how long we want to spin
4282 // before bailing out on suspending a thread, also how often
4283 // we send a signal to a thread we want to resume
4284 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4285 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4286 
4287 // returns true on success and false on error - really an error is fatal
4288 // but this seems the normal response to library errors
4289 static bool do_suspend(OSThread* osthread) {
4290   assert(osthread->sr.is_running(), "thread should be running");
4291   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4292 
4293   // mark as suspended and send signal
4294   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4295     // failed to switch, state wasn't running?
4296     ShouldNotReachHere();
4297     return false;
4298   }
4299 
4300   if (sr_notify(osthread) != 0) {
4301     ShouldNotReachHere();
4302   }
4303 
4304   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4305   while (true) {
4306     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4307       break;
4308     } else {
4309       // timeout
4310       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4311       if (cancelled == os::SuspendResume::SR_RUNNING) {
4312         return false;
4313       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4314         // make sure that we consume the signal on the semaphore as well
4315         sr_semaphore.wait();
4316         break;
4317       } else {
4318         ShouldNotReachHere();
4319         return false;
4320       }
4321     }
4322   }
4323 
4324   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4325   return true;
4326 }
4327 
4328 static void do_resume(OSThread* osthread) {
4329   assert(osthread->sr.is_suspended(), "thread should be suspended");
4330   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4331 
4332   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4333     // failed to switch to WAKEUP_REQUEST
4334     ShouldNotReachHere();
4335     return;
4336   }
4337 
4338   while (true) {
4339     if (sr_notify(osthread) == 0) {
4340       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4341         if (osthread->sr.is_running()) {
4342           return;
4343         }
4344       }
4345     } else {
4346       ShouldNotReachHere();
4347     }
4348   }
4349 
4350   guarantee(osthread->sr.is_running(), "Must be running!");
4351 }
4352 
4353 ///////////////////////////////////////////////////////////////////////////////////
4354 // signal handling (except suspend/resume)
4355 
4356 // This routine may be used by user applications as a "hook" to catch signals.
4357 // The user-defined signal handler must pass unrecognized signals to this
4358 // routine, and if it returns true (non-zero), then the signal handler must
4359 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4360 // routine will never retun false (zero), but instead will execute a VM panic
4361 // routine kill the process.
4362 //
4363 // If this routine returns false, it is OK to call it again.  This allows
4364 // the user-defined signal handler to perform checks either before or after
4365 // the VM performs its own checks.  Naturally, the user code would be making
4366 // a serious error if it tried to handle an exception (such as a null check
4367 // or breakpoint) that the VM was generating for its own correct operation.
4368 //
4369 // This routine may recognize any of the following kinds of signals:
4370 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4371 // It should be consulted by handlers for any of those signals.
4372 //
4373 // The caller of this routine must pass in the three arguments supplied
4374 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4375 // field of the structure passed to sigaction().  This routine assumes that
4376 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4377 //
4378 // Note that the VM will print warnings if it detects conflicting signal
4379 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4380 //
4381 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4382                                                  siginfo_t* siginfo,
4383                                                  void* ucontext,
4384                                                  int abort_if_unrecognized);
4385 
4386 void signalHandler(int sig, siginfo_t* info, void* uc) {
4387   assert(info != NULL && uc != NULL, "it must be old kernel");
4388   int orig_errno = errno;  // Preserve errno value over signal handler.
4389   JVM_handle_linux_signal(sig, info, uc, true);
4390   errno = orig_errno;
4391 }
4392 
4393 
4394 // This boolean allows users to forward their own non-matching signals
4395 // to JVM_handle_linux_signal, harmlessly.
4396 bool os::Linux::signal_handlers_are_installed = false;
4397 
4398 // For signal-chaining
4399 struct sigaction sigact[NSIG];
4400 uint64_t sigs = 0;
4401 #if (64 < NSIG-1)
4402 #error "Not all signals can be encoded in sigs. Adapt its type!"
4403 #endif
4404 bool os::Linux::libjsig_is_loaded = false;
4405 typedef struct sigaction *(*get_signal_t)(int);
4406 get_signal_t os::Linux::get_signal_action = NULL;
4407 
4408 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4409   struct sigaction *actp = NULL;
4410 
4411   if (libjsig_is_loaded) {
4412     // Retrieve the old signal handler from libjsig
4413     actp = (*get_signal_action)(sig);
4414   }
4415   if (actp == NULL) {
4416     // Retrieve the preinstalled signal handler from jvm
4417     actp = get_preinstalled_handler(sig);
4418   }
4419 
4420   return actp;
4421 }
4422 
4423 static bool call_chained_handler(struct sigaction *actp, int sig,
4424                                  siginfo_t *siginfo, void *context) {
4425   // Call the old signal handler
4426   if (actp->sa_handler == SIG_DFL) {
4427     // It's more reasonable to let jvm treat it as an unexpected exception
4428     // instead of taking the default action.
4429     return false;
4430   } else if (actp->sa_handler != SIG_IGN) {
4431     if ((actp->sa_flags & SA_NODEFER) == 0) {
4432       // automaticlly block the signal
4433       sigaddset(&(actp->sa_mask), sig);
4434     }
4435 
4436     sa_handler_t hand = NULL;
4437     sa_sigaction_t sa = NULL;
4438     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4439     // retrieve the chained handler
4440     if (siginfo_flag_set) {
4441       sa = actp->sa_sigaction;
4442     } else {
4443       hand = actp->sa_handler;
4444     }
4445 
4446     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4447       actp->sa_handler = SIG_DFL;
4448     }
4449 
4450     // try to honor the signal mask
4451     sigset_t oset;
4452     sigemptyset(&oset);
4453     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4454 
4455     // call into the chained handler
4456     if (siginfo_flag_set) {
4457       (*sa)(sig, siginfo, context);
4458     } else {
4459       (*hand)(sig);
4460     }
4461 
4462     // restore the signal mask
4463     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4464   }
4465   // Tell jvm's signal handler the signal is taken care of.
4466   return true;
4467 }
4468 
4469 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4470   bool chained = false;
4471   // signal-chaining
4472   if (UseSignalChaining) {
4473     struct sigaction *actp = get_chained_signal_action(sig);
4474     if (actp != NULL) {
4475       chained = call_chained_handler(actp, sig, siginfo, context);
4476     }
4477   }
4478   return chained;
4479 }
4480 
4481 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4482   if ((((uint64_t)1 << (sig-1)) & sigs) != 0) {
4483     return &sigact[sig];
4484   }
4485   return NULL;
4486 }
4487 
4488 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4489   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4490   sigact[sig] = oldAct;
4491   sigs |= (uint64_t)1 << (sig-1);
4492 }
4493 
4494 // for diagnostic
4495 int sigflags[NSIG];
4496 
4497 int os::Linux::get_our_sigflags(int sig) {
4498   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4499   return sigflags[sig];
4500 }
4501 
4502 void os::Linux::set_our_sigflags(int sig, int flags) {
4503   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4504   if (sig > 0 && sig < NSIG) {
4505     sigflags[sig] = flags;
4506   }
4507 }
4508 
4509 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4510   // Check for overwrite.
4511   struct sigaction oldAct;
4512   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4513 
4514   void* oldhand = oldAct.sa_sigaction
4515                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4516                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4517   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4518       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4519       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4520     if (AllowUserSignalHandlers || !set_installed) {
4521       // Do not overwrite; user takes responsibility to forward to us.
4522       return;
4523     } else if (UseSignalChaining) {
4524       // save the old handler in jvm
4525       save_preinstalled_handler(sig, oldAct);
4526       // libjsig also interposes the sigaction() call below and saves the
4527       // old sigaction on it own.
4528     } else {
4529       fatal("Encountered unexpected pre-existing sigaction handler "
4530             "%#lx for signal %d.", (long)oldhand, sig);
4531     }
4532   }
4533 
4534   struct sigaction sigAct;
4535   sigfillset(&(sigAct.sa_mask));
4536   sigAct.sa_handler = SIG_DFL;
4537   if (!set_installed) {
4538     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4539   } else {
4540     sigAct.sa_sigaction = signalHandler;
4541     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4542   }
4543   // Save flags, which are set by ours
4544   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4545   sigflags[sig] = sigAct.sa_flags;
4546 
4547   int ret = sigaction(sig, &sigAct, &oldAct);
4548   assert(ret == 0, "check");
4549 
4550   void* oldhand2  = oldAct.sa_sigaction
4551                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4552                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4553   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4554 }
4555 
4556 // install signal handlers for signals that HotSpot needs to
4557 // handle in order to support Java-level exception handling.
4558 
4559 void os::Linux::install_signal_handlers() {
4560   if (!signal_handlers_are_installed) {
4561     signal_handlers_are_installed = true;
4562 
4563     // signal-chaining
4564     typedef void (*signal_setting_t)();
4565     signal_setting_t begin_signal_setting = NULL;
4566     signal_setting_t end_signal_setting = NULL;
4567     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4568                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4569     if (begin_signal_setting != NULL) {
4570       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4571                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4572       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4573                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4574       libjsig_is_loaded = true;
4575       assert(UseSignalChaining, "should enable signal-chaining");
4576     }
4577     if (libjsig_is_loaded) {
4578       // Tell libjsig jvm is setting signal handlers
4579       (*begin_signal_setting)();
4580     }
4581 
4582     set_signal_handler(SIGSEGV, true);
4583     set_signal_handler(SIGPIPE, true);
4584     set_signal_handler(SIGBUS, true);
4585     set_signal_handler(SIGILL, true);
4586     set_signal_handler(SIGFPE, true);
4587 #if defined(PPC64)
4588     set_signal_handler(SIGTRAP, true);
4589 #endif
4590     set_signal_handler(SIGXFSZ, true);
4591 
4592     if (libjsig_is_loaded) {
4593       // Tell libjsig jvm finishes setting signal handlers
4594       (*end_signal_setting)();
4595     }
4596 
4597     // We don't activate signal checker if libjsig is in place, we trust ourselves
4598     // and if UserSignalHandler is installed all bets are off.
4599     // Log that signal checking is off only if -verbose:jni is specified.
4600     if (CheckJNICalls) {
4601       if (libjsig_is_loaded) {
4602         if (PrintJNIResolving) {
4603           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4604         }
4605         check_signals = false;
4606       }
4607       if (AllowUserSignalHandlers) {
4608         if (PrintJNIResolving) {
4609           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4610         }
4611         check_signals = false;
4612       }
4613     }
4614   }
4615 }
4616 
4617 // This is the fastest way to get thread cpu time on Linux.
4618 // Returns cpu time (user+sys) for any thread, not only for current.
4619 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4620 // It might work on 2.6.10+ with a special kernel/glibc patch.
4621 // For reference, please, see IEEE Std 1003.1-2004:
4622 //   http://www.unix.org/single_unix_specification
4623 
4624 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4625   struct timespec tp;
4626   int rc = os::Linux::clock_gettime(clockid, &tp);
4627   assert(rc == 0, "clock_gettime is expected to return 0 code");
4628 
4629   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4630 }
4631 
4632 void os::Linux::initialize_os_info() {
4633   assert(_os_version == 0, "OS info already initialized");
4634 
4635   struct utsname _uname;
4636 
4637   uint32_t major;
4638   uint32_t minor;
4639   uint32_t fix;
4640 
4641   int rc;
4642 
4643   // Kernel version is unknown if
4644   // verification below fails.
4645   _os_version = 0x01000000;
4646 
4647   rc = uname(&_uname);
4648   if (rc != -1) {
4649 
4650     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4651     if (rc == 3) {
4652 
4653       if (major < 256 && minor < 256 && fix < 256) {
4654         // Kernel version format is as expected,
4655         // set it overriding unknown state.
4656         _os_version = (major << 16) |
4657                       (minor << 8 ) |
4658                       (fix   << 0 ) ;
4659       }
4660     }
4661   }
4662 }
4663 
4664 uint32_t os::Linux::os_version() {
4665   assert(_os_version != 0, "not initialized");
4666   return _os_version & 0x00FFFFFF;
4667 }
4668 
4669 bool os::Linux::os_version_is_known() {
4670   assert(_os_version != 0, "not initialized");
4671   return _os_version & 0x01000000 ? false : true;
4672 }
4673 
4674 /////
4675 // glibc on Linux platform uses non-documented flag
4676 // to indicate, that some special sort of signal
4677 // trampoline is used.
4678 // We will never set this flag, and we should
4679 // ignore this flag in our diagnostic
4680 #ifdef SIGNIFICANT_SIGNAL_MASK
4681   #undef SIGNIFICANT_SIGNAL_MASK
4682 #endif
4683 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4684 
4685 static const char* get_signal_handler_name(address handler,
4686                                            char* buf, int buflen) {
4687   int offset = 0;
4688   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4689   if (found) {
4690     // skip directory names
4691     const char *p1, *p2;
4692     p1 = buf;
4693     size_t len = strlen(os::file_separator());
4694     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4695     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4696   } else {
4697     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4698   }
4699   return buf;
4700 }
4701 
4702 static void print_signal_handler(outputStream* st, int sig,
4703                                  char* buf, size_t buflen) {
4704   struct sigaction sa;
4705 
4706   sigaction(sig, NULL, &sa);
4707 
4708   // See comment for SIGNIFICANT_SIGNAL_MASK define
4709   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4710 
4711   st->print("%s: ", os::exception_name(sig, buf, buflen));
4712 
4713   address handler = (sa.sa_flags & SA_SIGINFO)
4714     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4715     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4716 
4717   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4718     st->print("SIG_DFL");
4719   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4720     st->print("SIG_IGN");
4721   } else {
4722     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4723   }
4724 
4725   st->print(", sa_mask[0]=");
4726   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4727 
4728   address rh = VMError::get_resetted_sighandler(sig);
4729   // May be, handler was resetted by VMError?
4730   if (rh != NULL) {
4731     handler = rh;
4732     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4733   }
4734 
4735   st->print(", sa_flags=");
4736   os::Posix::print_sa_flags(st, sa.sa_flags);
4737 
4738   // Check: is it our handler?
4739   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4740       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4741     // It is our signal handler
4742     // check for flags, reset system-used one!
4743     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4744       st->print(
4745                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4746                 os::Linux::get_our_sigflags(sig));
4747     }
4748   }
4749   st->cr();
4750 }
4751 
4752 
4753 #define DO_SIGNAL_CHECK(sig)                      \
4754   do {                                            \
4755     if (!sigismember(&check_signal_done, sig)) {  \
4756       os::Linux::check_signal_handler(sig);       \
4757     }                                             \
4758   } while (0)
4759 
4760 // This method is a periodic task to check for misbehaving JNI applications
4761 // under CheckJNI, we can add any periodic checks here
4762 
4763 void os::run_periodic_checks() {
4764   if (check_signals == false) return;
4765 
4766   // SEGV and BUS if overridden could potentially prevent
4767   // generation of hs*.log in the event of a crash, debugging
4768   // such a case can be very challenging, so we absolutely
4769   // check the following for a good measure:
4770   DO_SIGNAL_CHECK(SIGSEGV);
4771   DO_SIGNAL_CHECK(SIGILL);
4772   DO_SIGNAL_CHECK(SIGFPE);
4773   DO_SIGNAL_CHECK(SIGBUS);
4774   DO_SIGNAL_CHECK(SIGPIPE);
4775   DO_SIGNAL_CHECK(SIGXFSZ);
4776 #if defined(PPC64)
4777   DO_SIGNAL_CHECK(SIGTRAP);
4778 #endif
4779 
4780   // ReduceSignalUsage allows the user to override these handlers
4781   // see comments at the very top and jvm_md.h
4782   if (!ReduceSignalUsage) {
4783     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4784     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4785     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4786     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4787   }
4788 
4789   DO_SIGNAL_CHECK(SR_signum);
4790 }
4791 
4792 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4793 
4794 static os_sigaction_t os_sigaction = NULL;
4795 
4796 void os::Linux::check_signal_handler(int sig) {
4797   char buf[O_BUFLEN];
4798   address jvmHandler = NULL;
4799 
4800 
4801   struct sigaction act;
4802   if (os_sigaction == NULL) {
4803     // only trust the default sigaction, in case it has been interposed
4804     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4805     if (os_sigaction == NULL) return;
4806   }
4807 
4808   os_sigaction(sig, (struct sigaction*)NULL, &act);
4809 
4810 
4811   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4812 
4813   address thisHandler = (act.sa_flags & SA_SIGINFO)
4814     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4815     : CAST_FROM_FN_PTR(address, act.sa_handler);
4816 
4817 
4818   switch (sig) {
4819   case SIGSEGV:
4820   case SIGBUS:
4821   case SIGFPE:
4822   case SIGPIPE:
4823   case SIGILL:
4824   case SIGXFSZ:
4825     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4826     break;
4827 
4828   case SHUTDOWN1_SIGNAL:
4829   case SHUTDOWN2_SIGNAL:
4830   case SHUTDOWN3_SIGNAL:
4831   case BREAK_SIGNAL:
4832     jvmHandler = (address)user_handler();
4833     break;
4834 
4835   default:
4836     if (sig == SR_signum) {
4837       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4838     } else {
4839       return;
4840     }
4841     break;
4842   }
4843 
4844   if (thisHandler != jvmHandler) {
4845     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4846     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4847     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4848     // No need to check this sig any longer
4849     sigaddset(&check_signal_done, sig);
4850     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4851     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4852       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4853                     exception_name(sig, buf, O_BUFLEN));
4854     }
4855   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4856     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4857     tty->print("expected:");
4858     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
4859     tty->cr();
4860     tty->print("  found:");
4861     os::Posix::print_sa_flags(tty, act.sa_flags);
4862     tty->cr();
4863     // No need to check this sig any longer
4864     sigaddset(&check_signal_done, sig);
4865   }
4866 
4867   // Dump all the signal
4868   if (sigismember(&check_signal_done, sig)) {
4869     print_signal_handlers(tty, buf, O_BUFLEN);
4870   }
4871 }
4872 
4873 extern void report_error(char* file_name, int line_no, char* title,
4874                          char* format, ...);
4875 
4876 // this is called _before_ most of the global arguments have been parsed
4877 void os::init(void) {
4878   char dummy;   // used to get a guess on initial stack address
4879 
4880   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4881 
4882   init_random(1234567);
4883 
4884   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4885   if (Linux::page_size() == -1) {
4886     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
4887           os::strerror(errno));
4888   }
4889   init_page_sizes((size_t) Linux::page_size());
4890 
4891   Linux::initialize_system_info();
4892 
4893   Linux::initialize_os_info();
4894 
4895   // _main_thread points to the thread that created/loaded the JVM.
4896   Linux::_main_thread = pthread_self();
4897 
4898   Linux::clock_init();
4899   initial_time_count = javaTimeNanos();
4900 
4901   // retrieve entry point for pthread_setname_np
4902   Linux::_pthread_setname_np =
4903     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
4904 
4905   os::Posix::init();
4906 }
4907 
4908 // To install functions for atexit system call
4909 extern "C" {
4910   static void perfMemory_exit_helper() {
4911     perfMemory_exit();
4912   }
4913 }
4914 
4915 void os::pd_init_container_support() {
4916   OSContainer::init();
4917 }
4918 
4919 // this is called _after_ the global arguments have been parsed
4920 jint os::init_2(void) {
4921 
4922   os::Posix::init_2();
4923 
4924   Linux::fast_thread_clock_init();
4925 
4926   // initialize suspend/resume support - must do this before signal_sets_init()
4927   if (SR_initialize() != 0) {
4928     perror("SR_initialize failed");
4929     return JNI_ERR;
4930   }
4931 
4932   Linux::signal_sets_init();
4933   Linux::install_signal_handlers();
4934 
4935   // Check and sets minimum stack sizes against command line options
4936   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
4937     return JNI_ERR;
4938   }
4939   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4940 
4941 #if defined(IA32)
4942   workaround_expand_exec_shield_cs_limit();
4943 #endif
4944 
4945   Linux::libpthread_init();
4946   Linux::sched_getcpu_init();
4947   log_info(os)("HotSpot is running with %s, %s",
4948                Linux::glibc_version(), Linux::libpthread_version());
4949 
4950   if (UseNUMA) {
4951     if (!Linux::libnuma_init()) {
4952       UseNUMA = false;
4953     } else {
4954       if ((Linux::numa_max_node() < 1)) {
4955         // There's only one node(they start from 0), disable NUMA.
4956         UseNUMA = false;
4957       }
4958     }
4959 
4960     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4961       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4962       // we can make the adaptive lgrp chunk resizing work. If the user specified both
4963       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
4964       // and disable adaptive resizing.
4965       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
4966         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
4967                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
4968         UseAdaptiveSizePolicy = false;
4969         UseAdaptiveNUMAChunkSizing = false;
4970       }
4971     }
4972 
4973     if (!UseNUMA && ForceNUMA) {
4974       UseNUMA = true;
4975     }
4976   }
4977 
4978   if (MaxFDLimit) {
4979     // set the number of file descriptors to max. print out error
4980     // if getrlimit/setrlimit fails but continue regardless.
4981     struct rlimit nbr_files;
4982     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4983     if (status != 0) {
4984       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
4985     } else {
4986       nbr_files.rlim_cur = nbr_files.rlim_max;
4987       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4988       if (status != 0) {
4989         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
4990       }
4991     }
4992   }
4993 
4994   // Initialize lock used to serialize thread creation (see os::create_thread)
4995   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4996 
4997   // at-exit methods are called in the reverse order of their registration.
4998   // atexit functions are called on return from main or as a result of a
4999   // call to exit(3C). There can be only 32 of these functions registered
5000   // and atexit() does not set errno.
5001 
5002   if (PerfAllowAtExitRegistration) {
5003     // only register atexit functions if PerfAllowAtExitRegistration is set.
5004     // atexit functions can be delayed until process exit time, which
5005     // can be problematic for embedded VM situations. Embedded VMs should
5006     // call DestroyJavaVM() to assure that VM resources are released.
5007 
5008     // note: perfMemory_exit_helper atexit function may be removed in
5009     // the future if the appropriate cleanup code can be added to the
5010     // VM_Exit VMOperation's doit method.
5011     if (atexit(perfMemory_exit_helper) != 0) {
5012       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5013     }
5014   }
5015 
5016   // initialize thread priority policy
5017   prio_init();
5018 
5019   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5020     set_coredump_filter(false /*largepages*/, true /*dax_shared*/);
5021   }
5022   return JNI_OK;
5023 }
5024 
5025 // Mark the polling page as unreadable
5026 void os::make_polling_page_unreadable(void) {
5027   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5028     fatal("Could not disable polling page");
5029   }
5030 }
5031 
5032 // Mark the polling page as readable
5033 void os::make_polling_page_readable(void) {
5034   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5035     fatal("Could not enable polling page");
5036   }
5037 }
5038 
5039 // older glibc versions don't have this macro (which expands to
5040 // an optimized bit-counting function) so we have to roll our own
5041 #ifndef CPU_COUNT
5042 
5043 static int _cpu_count(const cpu_set_t* cpus) {
5044   int count = 0;
5045   // only look up to the number of configured processors
5046   for (int i = 0; i < os::processor_count(); i++) {
5047     if (CPU_ISSET(i, cpus)) {
5048       count++;
5049     }
5050   }
5051   return count;
5052 }
5053 
5054 #define CPU_COUNT(cpus) _cpu_count(cpus)
5055 
5056 #endif // CPU_COUNT
5057 
5058 // Get the current number of available processors for this process.
5059 // This value can change at any time during a process's lifetime.
5060 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5061 // If it appears there may be more than 1024 processors then we do a
5062 // dynamic check - see 6515172 for details.
5063 // If anything goes wrong we fallback to returning the number of online
5064 // processors - which can be greater than the number available to the process.
5065 int os::Linux::active_processor_count() {
5066   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5067   cpu_set_t* cpus_p = &cpus;
5068   int cpus_size = sizeof(cpu_set_t);
5069 
5070   int configured_cpus = os::processor_count();  // upper bound on available cpus
5071   int cpu_count = 0;
5072 
5073 // old build platforms may not support dynamic cpu sets
5074 #ifdef CPU_ALLOC
5075 
5076   // To enable easy testing of the dynamic path on different platforms we
5077   // introduce a diagnostic flag: UseCpuAllocPath
5078   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5079     // kernel may use a mask bigger than cpu_set_t
5080     log_trace(os)("active_processor_count: using dynamic path %s"
5081                   "- configured processors: %d",
5082                   UseCpuAllocPath ? "(forced) " : "",
5083                   configured_cpus);
5084     cpus_p = CPU_ALLOC(configured_cpus);
5085     if (cpus_p != NULL) {
5086       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5087       // zero it just to be safe
5088       CPU_ZERO_S(cpus_size, cpus_p);
5089     }
5090     else {
5091        // failed to allocate so fallback to online cpus
5092        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5093        log_trace(os)("active_processor_count: "
5094                      "CPU_ALLOC failed (%s) - using "
5095                      "online processor count: %d",
5096                      os::strerror(errno), online_cpus);
5097        return online_cpus;
5098     }
5099   }
5100   else {
5101     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5102                   configured_cpus);
5103   }
5104 #else // CPU_ALLOC
5105 // these stubs won't be executed
5106 #define CPU_COUNT_S(size, cpus) -1
5107 #define CPU_FREE(cpus)
5108 
5109   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5110                 configured_cpus);
5111 #endif // CPU_ALLOC
5112 
5113   // pid 0 means the current thread - which we have to assume represents the process
5114   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5115     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5116       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5117     }
5118     else {
5119       cpu_count = CPU_COUNT(cpus_p);
5120     }
5121     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5122   }
5123   else {
5124     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5125     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5126             "which may exceed available processors", os::strerror(errno), cpu_count);
5127   }
5128 
5129   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5130     CPU_FREE(cpus_p);
5131   }
5132 
5133   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5134   return cpu_count;
5135 }
5136 
5137 // Determine the active processor count from one of
5138 // three different sources:
5139 //
5140 // 1. User option -XX:ActiveProcessorCount
5141 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5142 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5143 //
5144 // Option 1, if specified, will always override.
5145 // If the cgroup subsystem is active and configured, we
5146 // will return the min of the cgroup and option 2 results.
5147 // This is required since tools, such as numactl, that
5148 // alter cpu affinity do not update cgroup subsystem
5149 // cpuset configuration files.
5150 int os::active_processor_count() {
5151   // User has overridden the number of active processors
5152   if (ActiveProcessorCount > 0) {
5153     log_trace(os)("active_processor_count: "
5154                   "active processor count set by user : %d",
5155                   ActiveProcessorCount);
5156     return ActiveProcessorCount;
5157   }
5158 
5159   int active_cpus;
5160   if (OSContainer::is_containerized()) {
5161     active_cpus = OSContainer::active_processor_count();
5162     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5163                    active_cpus);
5164   } else {
5165     active_cpus = os::Linux::active_processor_count();
5166   }
5167 
5168   return active_cpus;
5169 }
5170 
5171 void os::set_native_thread_name(const char *name) {
5172   if (Linux::_pthread_setname_np) {
5173     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5174     snprintf(buf, sizeof(buf), "%s", name);
5175     buf[sizeof(buf) - 1] = '\0';
5176     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5177     // ERANGE should not happen; all other errors should just be ignored.
5178     assert(rc != ERANGE, "pthread_setname_np failed");
5179   }
5180 }
5181 
5182 bool os::distribute_processes(uint length, uint* distribution) {
5183   // Not yet implemented.
5184   return false;
5185 }
5186 
5187 bool os::bind_to_processor(uint processor_id) {
5188   // Not yet implemented.
5189   return false;
5190 }
5191 
5192 ///
5193 
5194 void os::SuspendedThreadTask::internal_do_task() {
5195   if (do_suspend(_thread->osthread())) {
5196     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5197     do_task(context);
5198     do_resume(_thread->osthread());
5199   }
5200 }
5201 
5202 ////////////////////////////////////////////////////////////////////////////////
5203 // debug support
5204 
5205 bool os::find(address addr, outputStream* st) {
5206   Dl_info dlinfo;
5207   memset(&dlinfo, 0, sizeof(dlinfo));
5208   if (dladdr(addr, &dlinfo) != 0) {
5209     st->print(PTR_FORMAT ": ", p2i(addr));
5210     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5211       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5212                 p2i(addr) - p2i(dlinfo.dli_saddr));
5213     } else if (dlinfo.dli_fbase != NULL) {
5214       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5215     } else {
5216       st->print("<absolute address>");
5217     }
5218     if (dlinfo.dli_fname != NULL) {
5219       st->print(" in %s", dlinfo.dli_fname);
5220     }
5221     if (dlinfo.dli_fbase != NULL) {
5222       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5223     }
5224     st->cr();
5225 
5226     if (Verbose) {
5227       // decode some bytes around the PC
5228       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5229       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5230       address       lowest = (address) dlinfo.dli_sname;
5231       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5232       if (begin < lowest)  begin = lowest;
5233       Dl_info dlinfo2;
5234       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5235           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5236         end = (address) dlinfo2.dli_saddr;
5237       }
5238       Disassembler::decode(begin, end, st);
5239     }
5240     return true;
5241   }
5242   return false;
5243 }
5244 
5245 ////////////////////////////////////////////////////////////////////////////////
5246 // misc
5247 
5248 // This does not do anything on Linux. This is basically a hook for being
5249 // able to use structured exception handling (thread-local exception filters)
5250 // on, e.g., Win32.
5251 void
5252 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5253                          JavaCallArguments* args, Thread* thread) {
5254   f(value, method, args, thread);
5255 }
5256 
5257 void os::print_statistics() {
5258 }
5259 
5260 bool os::message_box(const char* title, const char* message) {
5261   int i;
5262   fdStream err(defaultStream::error_fd());
5263   for (i = 0; i < 78; i++) err.print_raw("=");
5264   err.cr();
5265   err.print_raw_cr(title);
5266   for (i = 0; i < 78; i++) err.print_raw("-");
5267   err.cr();
5268   err.print_raw_cr(message);
5269   for (i = 0; i < 78; i++) err.print_raw("=");
5270   err.cr();
5271 
5272   char buf[16];
5273   // Prevent process from exiting upon "read error" without consuming all CPU
5274   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5275 
5276   return buf[0] == 'y' || buf[0] == 'Y';
5277 }
5278 
5279 int os::stat(const char *path, struct stat *sbuf) {
5280   char pathbuf[MAX_PATH];
5281   if (strlen(path) > MAX_PATH - 1) {
5282     errno = ENAMETOOLONG;
5283     return -1;
5284   }
5285   os::native_path(strcpy(pathbuf, path));
5286   return ::stat(pathbuf, sbuf);
5287 }
5288 
5289 // Is a (classpath) directory empty?
5290 bool os::dir_is_empty(const char* path) {
5291   DIR *dir = NULL;
5292   struct dirent *ptr;
5293 
5294   dir = opendir(path);
5295   if (dir == NULL) return true;
5296 
5297   // Scan the directory
5298   bool result = true;
5299   char buf[sizeof(struct dirent) + MAX_PATH];
5300   while (result && (ptr = ::readdir(dir)) != NULL) {
5301     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5302       result = false;
5303     }
5304   }
5305   closedir(dir);
5306   return result;
5307 }
5308 
5309 // This code originates from JDK's sysOpen and open64_w
5310 // from src/solaris/hpi/src/system_md.c
5311 
5312 int os::open(const char *path, int oflag, int mode) {
5313   if (strlen(path) > MAX_PATH - 1) {
5314     errno = ENAMETOOLONG;
5315     return -1;
5316   }
5317 
5318   // All file descriptors that are opened in the Java process and not
5319   // specifically destined for a subprocess should have the close-on-exec
5320   // flag set.  If we don't set it, then careless 3rd party native code
5321   // might fork and exec without closing all appropriate file descriptors
5322   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5323   // turn might:
5324   //
5325   // - cause end-of-file to fail to be detected on some file
5326   //   descriptors, resulting in mysterious hangs, or
5327   //
5328   // - might cause an fopen in the subprocess to fail on a system
5329   //   suffering from bug 1085341.
5330   //
5331   // (Yes, the default setting of the close-on-exec flag is a Unix
5332   // design flaw)
5333   //
5334   // See:
5335   // 1085341: 32-bit stdio routines should support file descriptors >255
5336   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5337   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5338   //
5339   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5340   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5341   // because it saves a system call and removes a small window where the flag
5342   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5343   // and we fall back to using FD_CLOEXEC (see below).
5344 #ifdef O_CLOEXEC
5345   oflag |= O_CLOEXEC;
5346 #endif
5347 
5348   int fd = ::open64(path, oflag, mode);
5349   if (fd == -1) return -1;
5350 
5351   //If the open succeeded, the file might still be a directory
5352   {
5353     struct stat64 buf64;
5354     int ret = ::fstat64(fd, &buf64);
5355     int st_mode = buf64.st_mode;
5356 
5357     if (ret != -1) {
5358       if ((st_mode & S_IFMT) == S_IFDIR) {
5359         errno = EISDIR;
5360         ::close(fd);
5361         return -1;
5362       }
5363     } else {
5364       ::close(fd);
5365       return -1;
5366     }
5367   }
5368 
5369 #ifdef FD_CLOEXEC
5370   // Validate that the use of the O_CLOEXEC flag on open above worked.
5371   // With recent kernels, we will perform this check exactly once.
5372   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5373   if (!O_CLOEXEC_is_known_to_work) {
5374     int flags = ::fcntl(fd, F_GETFD);
5375     if (flags != -1) {
5376       if ((flags & FD_CLOEXEC) != 0)
5377         O_CLOEXEC_is_known_to_work = 1;
5378       else
5379         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5380     }
5381   }
5382 #endif
5383 
5384   return fd;
5385 }
5386 
5387 
5388 // create binary file, rewriting existing file if required
5389 int os::create_binary_file(const char* path, bool rewrite_existing) {
5390   int oflags = O_WRONLY | O_CREAT;
5391   if (!rewrite_existing) {
5392     oflags |= O_EXCL;
5393   }
5394   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5395 }
5396 
5397 // return current position of file pointer
5398 jlong os::current_file_offset(int fd) {
5399   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5400 }
5401 
5402 // move file pointer to the specified offset
5403 jlong os::seek_to_file_offset(int fd, jlong offset) {
5404   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5405 }
5406 
5407 // This code originates from JDK's sysAvailable
5408 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5409 
5410 int os::available(int fd, jlong *bytes) {
5411   jlong cur, end;
5412   int mode;
5413   struct stat64 buf64;
5414 
5415   if (::fstat64(fd, &buf64) >= 0) {
5416     mode = buf64.st_mode;
5417     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5418       int n;
5419       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5420         *bytes = n;
5421         return 1;
5422       }
5423     }
5424   }
5425   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5426     return 0;
5427   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5428     return 0;
5429   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5430     return 0;
5431   }
5432   *bytes = end - cur;
5433   return 1;
5434 }
5435 
5436 // Map a block of memory.
5437 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5438                         char *addr, size_t bytes, bool read_only,
5439                         bool allow_exec) {
5440   int prot;
5441   int flags = MAP_PRIVATE;
5442 
5443   if (read_only) {
5444     prot = PROT_READ;
5445   } else {
5446     prot = PROT_READ | PROT_WRITE;
5447   }
5448 
5449   if (allow_exec) {
5450     prot |= PROT_EXEC;
5451   }
5452 
5453   if (addr != NULL) {
5454     flags |= MAP_FIXED;
5455   }
5456 
5457   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5458                                      fd, file_offset);
5459   if (mapped_address == MAP_FAILED) {
5460     return NULL;
5461   }
5462   return mapped_address;
5463 }
5464 
5465 
5466 // Remap a block of memory.
5467 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5468                           char *addr, size_t bytes, bool read_only,
5469                           bool allow_exec) {
5470   // same as map_memory() on this OS
5471   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5472                         allow_exec);
5473 }
5474 
5475 
5476 // Unmap a block of memory.
5477 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5478   return munmap(addr, bytes) == 0;
5479 }
5480 
5481 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5482 
5483 static clockid_t thread_cpu_clockid(Thread* thread) {
5484   pthread_t tid = thread->osthread()->pthread_id();
5485   clockid_t clockid;
5486 
5487   // Get thread clockid
5488   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5489   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5490   return clockid;
5491 }
5492 
5493 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5494 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5495 // of a thread.
5496 //
5497 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5498 // the fast estimate available on the platform.
5499 
5500 jlong os::current_thread_cpu_time() {
5501   if (os::Linux::supports_fast_thread_cpu_time()) {
5502     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5503   } else {
5504     // return user + sys since the cost is the same
5505     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5506   }
5507 }
5508 
5509 jlong os::thread_cpu_time(Thread* thread) {
5510   // consistent with what current_thread_cpu_time() returns
5511   if (os::Linux::supports_fast_thread_cpu_time()) {
5512     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5513   } else {
5514     return slow_thread_cpu_time(thread, true /* user + sys */);
5515   }
5516 }
5517 
5518 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5519   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5520     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5521   } else {
5522     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5523   }
5524 }
5525 
5526 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5527   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5528     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5529   } else {
5530     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5531   }
5532 }
5533 
5534 //  -1 on error.
5535 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5536   pid_t  tid = thread->osthread()->thread_id();
5537   char *s;
5538   char stat[2048];
5539   int statlen;
5540   char proc_name[64];
5541   int count;
5542   long sys_time, user_time;
5543   char cdummy;
5544   int idummy;
5545   long ldummy;
5546   FILE *fp;
5547 
5548   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5549   fp = fopen(proc_name, "r");
5550   if (fp == NULL) return -1;
5551   statlen = fread(stat, 1, 2047, fp);
5552   stat[statlen] = '\0';
5553   fclose(fp);
5554 
5555   // Skip pid and the command string. Note that we could be dealing with
5556   // weird command names, e.g. user could decide to rename java launcher
5557   // to "java 1.4.2 :)", then the stat file would look like
5558   //                1234 (java 1.4.2 :)) R ... ...
5559   // We don't really need to know the command string, just find the last
5560   // occurrence of ")" and then start parsing from there. See bug 4726580.
5561   s = strrchr(stat, ')');
5562   if (s == NULL) return -1;
5563 
5564   // Skip blank chars
5565   do { s++; } while (s && isspace(*s));
5566 
5567   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5568                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5569                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5570                  &user_time, &sys_time);
5571   if (count != 13) return -1;
5572   if (user_sys_cpu_time) {
5573     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5574   } else {
5575     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5576   }
5577 }
5578 
5579 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5580   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5581   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5582   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5583   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5584 }
5585 
5586 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5587   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5588   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5589   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5590   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5591 }
5592 
5593 bool os::is_thread_cpu_time_supported() {
5594   return true;
5595 }
5596 
5597 // System loadavg support.  Returns -1 if load average cannot be obtained.
5598 // Linux doesn't yet have a (official) notion of processor sets,
5599 // so just return the system wide load average.
5600 int os::loadavg(double loadavg[], int nelem) {
5601   return ::getloadavg(loadavg, nelem);
5602 }
5603 
5604 void os::pause() {
5605   char filename[MAX_PATH];
5606   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5607     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5608   } else {
5609     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5610   }
5611 
5612   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5613   if (fd != -1) {
5614     struct stat buf;
5615     ::close(fd);
5616     while (::stat(filename, &buf) == 0) {
5617       (void)::poll(NULL, 0, 100);
5618     }
5619   } else {
5620     jio_fprintf(stderr,
5621                 "Could not open pause file '%s', continuing immediately.\n", filename);
5622   }
5623 }
5624 
5625 extern char** environ;
5626 
5627 // Run the specified command in a separate process. Return its exit value,
5628 // or -1 on failure (e.g. can't fork a new process).
5629 // Unlike system(), this function can be called from signal handler. It
5630 // doesn't block SIGINT et al.
5631 int os::fork_and_exec(char* cmd) {
5632   const char * argv[4] = {"sh", "-c", cmd, NULL};
5633 
5634   pid_t pid = fork();
5635 
5636   if (pid < 0) {
5637     // fork failed
5638     return -1;
5639 
5640   } else if (pid == 0) {
5641     // child process
5642 
5643     execve("/bin/sh", (char* const*)argv, environ);
5644 
5645     // execve failed
5646     _exit(-1);
5647 
5648   } else  {
5649     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5650     // care about the actual exit code, for now.
5651 
5652     int status;
5653 
5654     // Wait for the child process to exit.  This returns immediately if
5655     // the child has already exited. */
5656     while (waitpid(pid, &status, 0) < 0) {
5657       switch (errno) {
5658       case ECHILD: return 0;
5659       case EINTR: break;
5660       default: return -1;
5661       }
5662     }
5663 
5664     if (WIFEXITED(status)) {
5665       // The child exited normally; get its exit code.
5666       return WEXITSTATUS(status);
5667     } else if (WIFSIGNALED(status)) {
5668       // The child exited because of a signal
5669       // The best value to return is 0x80 + signal number,
5670       // because that is what all Unix shells do, and because
5671       // it allows callers to distinguish between process exit and
5672       // process death by signal.
5673       return 0x80 + WTERMSIG(status);
5674     } else {
5675       // Unknown exit code; pass it through
5676       return status;
5677     }
5678   }
5679 }
5680 
5681 // Get the default path to the core file
5682 // Returns the length of the string
5683 int os::get_core_path(char* buffer, size_t bufferSize) {
5684   /*
5685    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5686    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5687    */
5688   const int core_pattern_len = 129;
5689   char core_pattern[core_pattern_len] = {0};
5690 
5691   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5692   if (core_pattern_file == -1) {
5693     return -1;
5694   }
5695 
5696   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5697   ::close(core_pattern_file);
5698   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5699     return -1;
5700   }
5701   if (core_pattern[ret-1] == '\n') {
5702     core_pattern[ret-1] = '\0';
5703   } else {
5704     core_pattern[ret] = '\0';
5705   }
5706 
5707   char *pid_pos = strstr(core_pattern, "%p");
5708   int written;
5709 
5710   if (core_pattern[0] == '/') {
5711     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5712   } else {
5713     char cwd[PATH_MAX];
5714 
5715     const char* p = get_current_directory(cwd, PATH_MAX);
5716     if (p == NULL) {
5717       return -1;
5718     }
5719 
5720     if (core_pattern[0] == '|') {
5721       written = jio_snprintf(buffer, bufferSize,
5722                              "\"%s\" (or dumping to %s/core.%d)",
5723                              &core_pattern[1], p, current_process_id());
5724     } else {
5725       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5726     }
5727   }
5728 
5729   if (written < 0) {
5730     return -1;
5731   }
5732 
5733   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5734     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5735 
5736     if (core_uses_pid_file != -1) {
5737       char core_uses_pid = 0;
5738       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5739       ::close(core_uses_pid_file);
5740 
5741       if (core_uses_pid == '1') {
5742         jio_snprintf(buffer + written, bufferSize - written,
5743                                           ".%d", current_process_id());
5744       }
5745     }
5746   }
5747 
5748   return strlen(buffer);
5749 }
5750 
5751 bool os::start_debugging(char *buf, int buflen) {
5752   int len = (int)strlen(buf);
5753   char *p = &buf[len];
5754 
5755   jio_snprintf(p, buflen-len,
5756                "\n\n"
5757                "Do you want to debug the problem?\n\n"
5758                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5759                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5760                "Otherwise, press RETURN to abort...",
5761                os::current_process_id(), os::current_process_id(),
5762                os::current_thread_id(), os::current_thread_id());
5763 
5764   bool yes = os::message_box("Unexpected Error", buf);
5765 
5766   if (yes) {
5767     // yes, user asked VM to launch debugger
5768     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5769                  os::current_process_id(), os::current_process_id());
5770 
5771     os::fork_and_exec(buf);
5772     yes = false;
5773   }
5774   return yes;
5775 }
5776 
5777 
5778 // Java/Compiler thread:
5779 //
5780 //   Low memory addresses
5781 // P0 +------------------------+
5782 //    |                        |\  Java thread created by VM does not have glibc
5783 //    |    glibc guard page    | - guard page, attached Java thread usually has
5784 //    |                        |/  1 glibc guard page.
5785 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5786 //    |                        |\
5787 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
5788 //    |                        |/
5789 //    +------------------------+ JavaThread::stack_reserved_zone_base()
5790 //    |                        |\
5791 //    |      Normal Stack      | -
5792 //    |                        |/
5793 // P2 +------------------------+ Thread::stack_base()
5794 //
5795 // Non-Java thread:
5796 //
5797 //   Low memory addresses
5798 // P0 +------------------------+
5799 //    |                        |\
5800 //    |  glibc guard page      | - usually 1 page
5801 //    |                        |/
5802 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
5803 //    |                        |\
5804 //    |      Normal Stack      | -
5805 //    |                        |/
5806 // P2 +------------------------+ Thread::stack_base()
5807 //
5808 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
5809 //    returned from pthread_attr_getstack().
5810 // ** Due to NPTL implementation error, linux takes the glibc guard page out
5811 //    of the stack size given in pthread_attr. We work around this for
5812 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
5813 //
5814 #ifndef ZERO
5815 static void current_stack_region(address * bottom, size_t * size) {
5816   if (os::is_primordial_thread()) {
5817     // primordial thread needs special handling because pthread_getattr_np()
5818     // may return bogus value.
5819     *bottom = os::Linux::initial_thread_stack_bottom();
5820     *size   = os::Linux::initial_thread_stack_size();
5821   } else {
5822     pthread_attr_t attr;
5823 
5824     int rslt = pthread_getattr_np(pthread_self(), &attr);
5825 
5826     // JVM needs to know exact stack location, abort if it fails
5827     if (rslt != 0) {
5828       if (rslt == ENOMEM) {
5829         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
5830       } else {
5831         fatal("pthread_getattr_np failed with error = %d", rslt);
5832       }
5833     }
5834 
5835     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
5836       fatal("Cannot locate current stack attributes!");
5837     }
5838 
5839     // Work around NPTL stack guard error.
5840     size_t guard_size = 0;
5841     rslt = pthread_attr_getguardsize(&attr, &guard_size);
5842     if (rslt != 0) {
5843       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
5844     }
5845     *bottom += guard_size;
5846     *size   -= guard_size;
5847 
5848     pthread_attr_destroy(&attr);
5849 
5850   }
5851   assert(os::current_stack_pointer() >= *bottom &&
5852          os::current_stack_pointer() < *bottom + *size, "just checking");
5853 }
5854 
5855 address os::current_stack_base() {
5856   address bottom;
5857   size_t size;
5858   current_stack_region(&bottom, &size);
5859   return (bottom + size);
5860 }
5861 
5862 size_t os::current_stack_size() {
5863   // This stack size includes the usable stack and HotSpot guard pages
5864   // (for the threads that have Hotspot guard pages).
5865   address bottom;
5866   size_t size;
5867   current_stack_region(&bottom, &size);
5868   return size;
5869 }
5870 #endif
5871 
5872 static inline struct timespec get_mtime(const char* filename) {
5873   struct stat st;
5874   int ret = os::stat(filename, &st);
5875   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
5876   return st.st_mtim;
5877 }
5878 
5879 int os::compare_file_modified_times(const char* file1, const char* file2) {
5880   struct timespec filetime1 = get_mtime(file1);
5881   struct timespec filetime2 = get_mtime(file2);
5882   int diff = filetime1.tv_sec - filetime2.tv_sec;
5883   if (diff == 0) {
5884     return filetime1.tv_nsec - filetime2.tv_nsec;
5885   }
5886   return diff;
5887 }
5888 
5889 /////////////// Unit tests ///////////////
5890 
5891 #ifndef PRODUCT
5892 
5893 #define test_log(...)              \
5894   do {                             \
5895     if (VerboseInternalVMTests) {  \
5896       tty->print_cr(__VA_ARGS__);  \
5897       tty->flush();                \
5898     }                              \
5899   } while (false)
5900 
5901 class TestReserveMemorySpecial : AllStatic {
5902  public:
5903   static void small_page_write(void* addr, size_t size) {
5904     size_t page_size = os::vm_page_size();
5905 
5906     char* end = (char*)addr + size;
5907     for (char* p = (char*)addr; p < end; p += page_size) {
5908       *p = 1;
5909     }
5910   }
5911 
5912   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
5913     if (!UseHugeTLBFS) {
5914       return;
5915     }
5916 
5917     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
5918 
5919     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
5920 
5921     if (addr != NULL) {
5922       small_page_write(addr, size);
5923 
5924       os::Linux::release_memory_special_huge_tlbfs(addr, size);
5925     }
5926   }
5927 
5928   static void test_reserve_memory_special_huge_tlbfs_only() {
5929     if (!UseHugeTLBFS) {
5930       return;
5931     }
5932 
5933     size_t lp = os::large_page_size();
5934 
5935     for (size_t size = lp; size <= lp * 10; size += lp) {
5936       test_reserve_memory_special_huge_tlbfs_only(size);
5937     }
5938   }
5939 
5940   static void test_reserve_memory_special_huge_tlbfs_mixed() {
5941     size_t lp = os::large_page_size();
5942     size_t ag = os::vm_allocation_granularity();
5943 
5944     // sizes to test
5945     const size_t sizes[] = {
5946       lp, lp + ag, lp + lp / 2, lp * 2,
5947       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
5948       lp * 10, lp * 10 + lp / 2
5949     };
5950     const int num_sizes = sizeof(sizes) / sizeof(size_t);
5951 
5952     // For each size/alignment combination, we test three scenarios:
5953     // 1) with req_addr == NULL
5954     // 2) with a non-null req_addr at which we expect to successfully allocate
5955     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
5956     //    expect the allocation to either fail or to ignore req_addr
5957 
5958     // Pre-allocate two areas; they shall be as large as the largest allocation
5959     //  and aligned to the largest alignment we will be testing.
5960     const size_t mapping_size = sizes[num_sizes - 1] * 2;
5961     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
5962       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5963       -1, 0);
5964     assert(mapping1 != MAP_FAILED, "should work");
5965 
5966     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
5967       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
5968       -1, 0);
5969     assert(mapping2 != MAP_FAILED, "should work");
5970 
5971     // Unmap the first mapping, but leave the second mapping intact: the first
5972     // mapping will serve as a value for a "good" req_addr (case 2). The second
5973     // mapping, still intact, as "bad" req_addr (case 3).
5974     ::munmap(mapping1, mapping_size);
5975 
5976     // Case 1
5977     test_log("%s, req_addr NULL:", __FUNCTION__);
5978     test_log("size            align           result");
5979 
5980     for (int i = 0; i < num_sizes; i++) {
5981       const size_t size = sizes[i];
5982       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
5983         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
5984         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
5985                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
5986         if (p != NULL) {
5987           assert(is_aligned(p, alignment), "must be");
5988           small_page_write(p, size);
5989           os::Linux::release_memory_special_huge_tlbfs(p, size);
5990         }
5991       }
5992     }
5993 
5994     // Case 2
5995     test_log("%s, req_addr non-NULL:", __FUNCTION__);
5996     test_log("size            align           req_addr         result");
5997 
5998     for (int i = 0; i < num_sizes; i++) {
5999       const size_t size = sizes[i];
6000       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6001         char* const req_addr = align_up(mapping1, alignment);
6002         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6003         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6004                  size, alignment, p2i(req_addr), p2i(p),
6005                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6006         if (p != NULL) {
6007           assert(p == req_addr, "must be");
6008           small_page_write(p, size);
6009           os::Linux::release_memory_special_huge_tlbfs(p, size);
6010         }
6011       }
6012     }
6013 
6014     // Case 3
6015     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6016     test_log("size            align           req_addr         result");
6017 
6018     for (int i = 0; i < num_sizes; i++) {
6019       const size_t size = sizes[i];
6020       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6021         char* const req_addr = align_up(mapping2, alignment);
6022         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6023         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6024                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6025         // as the area around req_addr contains already existing mappings, the API should always
6026         // return NULL (as per contract, it cannot return another address)
6027         assert(p == NULL, "must be");
6028       }
6029     }
6030 
6031     ::munmap(mapping2, mapping_size);
6032 
6033   }
6034 
6035   static void test_reserve_memory_special_huge_tlbfs() {
6036     if (!UseHugeTLBFS) {
6037       return;
6038     }
6039 
6040     test_reserve_memory_special_huge_tlbfs_only();
6041     test_reserve_memory_special_huge_tlbfs_mixed();
6042   }
6043 
6044   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6045     if (!UseSHM) {
6046       return;
6047     }
6048 
6049     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6050 
6051     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6052 
6053     if (addr != NULL) {
6054       assert(is_aligned(addr, alignment), "Check");
6055       assert(is_aligned(addr, os::large_page_size()), "Check");
6056 
6057       small_page_write(addr, size);
6058 
6059       os::Linux::release_memory_special_shm(addr, size);
6060     }
6061   }
6062 
6063   static void test_reserve_memory_special_shm() {
6064     size_t lp = os::large_page_size();
6065     size_t ag = os::vm_allocation_granularity();
6066 
6067     for (size_t size = ag; size < lp * 3; size += ag) {
6068       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6069         test_reserve_memory_special_shm(size, alignment);
6070       }
6071     }
6072   }
6073 
6074   static void test() {
6075     test_reserve_memory_special_huge_tlbfs();
6076     test_reserve_memory_special_shm();
6077   }
6078 };
6079 
6080 void TestReserveMemorySpecial_test() {
6081   TestReserveMemorySpecial::test();
6082 }
6083 
6084 #endif