1 /*
   2  * Copyright (c) 1994, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 
  28 import java.io.ObjectStreamField;
  29 import java.io.UnsupportedEncodingException;
  30 import java.lang.annotation.Native;
  31 import java.lang.invoke.MethodHandles;
  32 import java.lang.constant.Constable;
  33 import java.lang.constant.ConstantDesc;
  34 import java.nio.charset.Charset;
  35 import java.util.ArrayList;
  36 import java.util.Arrays;
  37 import java.util.Comparator;
  38 import java.util.Formatter;
  39 import java.util.Locale;
  40 import java.util.Objects;
  41 import java.util.Optional;
  42 import java.util.Spliterator;
  43 import java.util.StringJoiner;
  44 import java.util.function.Function;
  45 import java.util.regex.Matcher;
  46 import java.util.regex.Pattern;
  47 import java.util.regex.PatternSyntaxException;
  48 import java.util.stream.Collectors;
  49 import java.util.stream.IntStream;
  50 import java.util.stream.Stream;
  51 import java.util.stream.StreamSupport;
  52 import jdk.internal.HotSpotIntrinsicCandidate;
  53 import jdk.internal.vm.annotation.Stable;
  54 
  55 import static java.util.function.Predicate.not;
  56 
  57 /**
  58  * The {@code String} class represents character strings. All
  59  * string literals in Java programs, such as {@code "abc"}, are
  60  * implemented as instances of this class.
  61  * <p>
  62  * Strings are constant; their values cannot be changed after they
  63  * are created. String buffers support mutable strings.
  64  * Because String objects are immutable they can be shared. For example:
  65  * <blockquote><pre>
  66  *     String str = "abc";
  67  * </pre></blockquote><p>
  68  * is equivalent to:
  69  * <blockquote><pre>
  70  *     char data[] = {'a', 'b', 'c'};
  71  *     String str = new String(data);
  72  * </pre></blockquote><p>
  73  * Here are some more examples of how strings can be used:
  74  * <blockquote><pre>
  75  *     System.out.println("abc");
  76  *     String cde = "cde";
  77  *     System.out.println("abc" + cde);
  78  *     String c = "abc".substring(2,3);
  79  *     String d = cde.substring(1, 2);
  80  * </pre></blockquote>
  81  * <p>
  82  * The class {@code String} includes methods for examining
  83  * individual characters of the sequence, for comparing strings, for
  84  * searching strings, for extracting substrings, and for creating a
  85  * copy of a string with all characters translated to uppercase or to
  86  * lowercase. Case mapping is based on the Unicode Standard version
  87  * specified by the {@link java.lang.Character Character} class.
  88  * <p>
  89  * The Java language provides special support for the string
  90  * concatenation operator (&nbsp;+&nbsp;), and for conversion of
  91  * other objects to strings. For additional information on string
  92  * concatenation and conversion, see <i>The Java&trade; Language Specification</i>.
  93  *
  94  * <p> Unless otherwise noted, passing a {@code null} argument to a constructor
  95  * or method in this class will cause a {@link NullPointerException} to be
  96  * thrown.
  97  *
  98  * <p>A {@code String} represents a string in the UTF-16 format
  99  * in which <em>supplementary characters</em> are represented by <em>surrogate
 100  * pairs</em> (see the section <a href="Character.html#unicode">Unicode
 101  * Character Representations</a> in the {@code Character} class for
 102  * more information).
 103  * Index values refer to {@code char} code units, so a supplementary
 104  * character uses two positions in a {@code String}.
 105  * <p>The {@code String} class provides methods for dealing with
 106  * Unicode code points (i.e., characters), in addition to those for
 107  * dealing with Unicode code units (i.e., {@code char} values).
 108  *
 109  * <p>Unless otherwise noted, methods for comparing Strings do not take locale
 110  * into account.  The {@link java.text.Collator} class provides methods for
 111  * finer-grain, locale-sensitive String comparison.
 112  *
 113  * @implNote The implementation of the string concatenation operator is left to
 114  * the discretion of a Java compiler, as long as the compiler ultimately conforms
 115  * to <i>The Java&trade; Language Specification</i>. For example, the {@code javac} compiler
 116  * may implement the operator with {@code StringBuffer}, {@code StringBuilder},
 117  * or {@code java.lang.invoke.StringConcatFactory} depending on the JDK version. The
 118  * implementation of string conversion is typically through the method {@code toString},
 119  * defined by {@code Object} and inherited by all classes in Java.
 120  *
 121  * @author  Lee Boynton
 122  * @author  Arthur van Hoff
 123  * @author  Martin Buchholz
 124  * @author  Ulf Zibis
 125  * @see     java.lang.Object#toString()
 126  * @see     java.lang.StringBuffer
 127  * @see     java.lang.StringBuilder
 128  * @see     java.nio.charset.Charset
 129  * @since   1.0
 130  * @jls     15.18.1 String Concatenation Operator +
 131  */
 132 
 133 public final class String
 134     implements java.io.Serializable, Comparable<String>, CharSequence,
 135                Constable, ConstantDesc {
 136 
 137     /**
 138      * The value is used for character storage.
 139      *
 140      * @implNote This field is trusted by the VM, and is a subject to
 141      * constant folding if String instance is constant. Overwriting this
 142      * field after construction will cause problems.
 143      *
 144      * Additionally, it is marked with {@link Stable} to trust the contents
 145      * of the array. No other facility in JDK provides this functionality (yet).
 146      * {@link Stable} is safe here, because value is never null.
 147      */
 148     @Stable
 149     private final byte[] value;
 150 
 151     /**
 152      * The identifier of the encoding used to encode the bytes in
 153      * {@code value}. The supported values in this implementation are
 154      *
 155      * LATIN1
 156      * UTF16
 157      *
 158      * @implNote This field is trusted by the VM, and is a subject to
 159      * constant folding if String instance is constant. Overwriting this
 160      * field after construction will cause problems.
 161      */
 162     private final byte coder;
 163 
 164     /** Cache the hash code for the string */
 165     private int hash; // Default to 0
 166 
 167     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 168     private static final long serialVersionUID = -6849794470754667710L;
 169 
 170     /**
 171      * If String compaction is disabled, the bytes in {@code value} are
 172      * always encoded in UTF16.
 173      *
 174      * For methods with several possible implementation paths, when String
 175      * compaction is disabled, only one code path is taken.
 176      *
 177      * The instance field value is generally opaque to optimizing JIT
 178      * compilers. Therefore, in performance-sensitive place, an explicit
 179      * check of the static boolean {@code COMPACT_STRINGS} is done first
 180      * before checking the {@code coder} field since the static boolean
 181      * {@code COMPACT_STRINGS} would be constant folded away by an
 182      * optimizing JIT compiler. The idioms for these cases are as follows.
 183      *
 184      * For code such as:
 185      *
 186      *    if (coder == LATIN1) { ... }
 187      *
 188      * can be written more optimally as
 189      *
 190      *    if (coder() == LATIN1) { ... }
 191      *
 192      * or:
 193      *
 194      *    if (COMPACT_STRINGS && coder == LATIN1) { ... }
 195      *
 196      * An optimizing JIT compiler can fold the above conditional as:
 197      *
 198      *    COMPACT_STRINGS == true  => if (coder == LATIN1) { ... }
 199      *    COMPACT_STRINGS == false => if (false)           { ... }
 200      *
 201      * @implNote
 202      * The actual value for this field is injected by JVM. The static
 203      * initialization block is used to set the value here to communicate
 204      * that this static final field is not statically foldable, and to
 205      * avoid any possible circular dependency during vm initialization.
 206      */
 207     static final boolean COMPACT_STRINGS;
 208 
 209     static {
 210         COMPACT_STRINGS = true;
 211     }
 212 
 213     /**
 214      * Class String is special cased within the Serialization Stream Protocol.
 215      *
 216      * A String instance is written into an ObjectOutputStream according to
 217      * <a href="{@docRoot}/../specs/serialization/protocol.html#stream-elements">
 218      * Object Serialization Specification, Section 6.2, "Stream Elements"</a>
 219      */
 220     private static final ObjectStreamField[] serialPersistentFields =
 221         new ObjectStreamField[0];
 222 
 223     /**
 224      * Initializes a newly created {@code String} object so that it represents
 225      * an empty character sequence.  Note that use of this constructor is
 226      * unnecessary since Strings are immutable.
 227      */
 228     public String() {
 229         this.value = "".value;
 230         this.coder = "".coder;
 231     }
 232 
 233     /**
 234      * Initializes a newly created {@code String} object so that it represents
 235      * the same sequence of characters as the argument; in other words, the
 236      * newly created string is a copy of the argument string. Unless an
 237      * explicit copy of {@code original} is needed, use of this constructor is
 238      * unnecessary since Strings are immutable.
 239      *
 240      * @param  original
 241      *         A {@code String}
 242      */
 243     @HotSpotIntrinsicCandidate
 244     public String(String original) {
 245         this.value = original.value;
 246         this.coder = original.coder;
 247         this.hash = original.hash;
 248     }
 249 
 250     /**
 251      * Allocates a new {@code String} so that it represents the sequence of
 252      * characters currently contained in the character array argument. The
 253      * contents of the character array are copied; subsequent modification of
 254      * the character array does not affect the newly created string.
 255      *
 256      * @param  value
 257      *         The initial value of the string
 258      */
 259     public String(char value[]) {
 260         this(value, 0, value.length, null);
 261     }
 262 
 263     /**
 264      * Allocates a new {@code String} that contains characters from a subarray
 265      * of the character array argument. The {@code offset} argument is the
 266      * index of the first character of the subarray and the {@code count}
 267      * argument specifies the length of the subarray. The contents of the
 268      * subarray are copied; subsequent modification of the character array does
 269      * not affect the newly created string.
 270      *
 271      * @param  value
 272      *         Array that is the source of characters
 273      *
 274      * @param  offset
 275      *         The initial offset
 276      *
 277      * @param  count
 278      *         The length
 279      *
 280      * @throws  IndexOutOfBoundsException
 281      *          If {@code offset} is negative, {@code count} is negative, or
 282      *          {@code offset} is greater than {@code value.length - count}
 283      */
 284     public String(char value[], int offset, int count) {
 285         this(value, offset, count, rangeCheck(value, offset, count));
 286     }
 287 
 288     private static Void rangeCheck(char[] value, int offset, int count) {
 289         checkBoundsOffCount(offset, count, value.length);
 290         return null;
 291     }
 292 
 293     /**
 294      * Allocates a new {@code String} that contains characters from a subarray
 295      * of the <a href="Character.html#unicode">Unicode code point</a> array
 296      * argument.  The {@code offset} argument is the index of the first code
 297      * point of the subarray and the {@code count} argument specifies the
 298      * length of the subarray.  The contents of the subarray are converted to
 299      * {@code char}s; subsequent modification of the {@code int} array does not
 300      * affect the newly created string.
 301      *
 302      * @param  codePoints
 303      *         Array that is the source of Unicode code points
 304      *
 305      * @param  offset
 306      *         The initial offset
 307      *
 308      * @param  count
 309      *         The length
 310      *
 311      * @throws  IllegalArgumentException
 312      *          If any invalid Unicode code point is found in {@code
 313      *          codePoints}
 314      *
 315      * @throws  IndexOutOfBoundsException
 316      *          If {@code offset} is negative, {@code count} is negative, or
 317      *          {@code offset} is greater than {@code codePoints.length - count}
 318      *
 319      * @since  1.5
 320      */
 321     public String(int[] codePoints, int offset, int count) {
 322         checkBoundsOffCount(offset, count, codePoints.length);
 323         if (count == 0) {
 324             this.value = "".value;
 325             this.coder = "".coder;
 326             return;
 327         }
 328         if (COMPACT_STRINGS) {
 329             byte[] val = StringLatin1.toBytes(codePoints, offset, count);
 330             if (val != null) {
 331                 this.coder = LATIN1;
 332                 this.value = val;
 333                 return;
 334             }
 335         }
 336         this.coder = UTF16;
 337         this.value = StringUTF16.toBytes(codePoints, offset, count);
 338     }
 339 
 340     /**
 341      * Allocates a new {@code String} constructed from a subarray of an array
 342      * of 8-bit integer values.
 343      *
 344      * <p> The {@code offset} argument is the index of the first byte of the
 345      * subarray, and the {@code count} argument specifies the length of the
 346      * subarray.
 347      *
 348      * <p> Each {@code byte} in the subarray is converted to a {@code char} as
 349      * specified in the {@link #String(byte[],int) String(byte[],int)} constructor.
 350      *
 351      * @deprecated This method does not properly convert bytes into characters.
 352      * As of JDK&nbsp;1.1, the preferred way to do this is via the
 353      * {@code String} constructors that take a {@link
 354      * java.nio.charset.Charset}, charset name, or that use the platform's
 355      * default charset.
 356      *
 357      * @param  ascii
 358      *         The bytes to be converted to characters
 359      *
 360      * @param  hibyte
 361      *         The top 8 bits of each 16-bit Unicode code unit
 362      *
 363      * @param  offset
 364      *         The initial offset
 365      * @param  count
 366      *         The length
 367      *
 368      * @throws  IndexOutOfBoundsException
 369      *          If {@code offset} is negative, {@code count} is negative, or
 370      *          {@code offset} is greater than {@code ascii.length - count}
 371      *
 372      * @see  #String(byte[], int)
 373      * @see  #String(byte[], int, int, java.lang.String)
 374      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 375      * @see  #String(byte[], int, int)
 376      * @see  #String(byte[], java.lang.String)
 377      * @see  #String(byte[], java.nio.charset.Charset)
 378      * @see  #String(byte[])
 379      */
 380     @Deprecated(since="1.1")
 381     public String(byte ascii[], int hibyte, int offset, int count) {
 382         checkBoundsOffCount(offset, count, ascii.length);
 383         if (count == 0) {
 384             this.value = "".value;
 385             this.coder = "".coder;
 386             return;
 387         }
 388         if (COMPACT_STRINGS && (byte)hibyte == 0) {
 389             this.value = Arrays.copyOfRange(ascii, offset, offset + count);
 390             this.coder = LATIN1;
 391         } else {
 392             hibyte <<= 8;
 393             byte[] val = StringUTF16.newBytesFor(count);
 394             for (int i = 0; i < count; i++) {
 395                 StringUTF16.putChar(val, i, hibyte | (ascii[offset++] & 0xff));
 396             }
 397             this.value = val;
 398             this.coder = UTF16;
 399         }
 400     }
 401 
 402     /**
 403      * Allocates a new {@code String} containing characters constructed from
 404      * an array of 8-bit integer values. Each character <i>c</i> in the
 405      * resulting string is constructed from the corresponding component
 406      * <i>b</i> in the byte array such that:
 407      *
 408      * <blockquote><pre>
 409      *     <b><i>c</i></b> == (char)(((hibyte &amp; 0xff) &lt;&lt; 8)
 410      *                         | (<b><i>b</i></b> &amp; 0xff))
 411      * </pre></blockquote>
 412      *
 413      * @deprecated  This method does not properly convert bytes into
 414      * characters.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 415      * {@code String} constructors that take a {@link
 416      * java.nio.charset.Charset}, charset name, or that use the platform's
 417      * default charset.
 418      *
 419      * @param  ascii
 420      *         The bytes to be converted to characters
 421      *
 422      * @param  hibyte
 423      *         The top 8 bits of each 16-bit Unicode code unit
 424      *
 425      * @see  #String(byte[], int, int, java.lang.String)
 426      * @see  #String(byte[], int, int, java.nio.charset.Charset)
 427      * @see  #String(byte[], int, int)
 428      * @see  #String(byte[], java.lang.String)
 429      * @see  #String(byte[], java.nio.charset.Charset)
 430      * @see  #String(byte[])
 431      */
 432     @Deprecated(since="1.1")
 433     public String(byte ascii[], int hibyte) {
 434         this(ascii, hibyte, 0, ascii.length);
 435     }
 436 
 437     /**
 438      * Constructs a new {@code String} by decoding the specified subarray of
 439      * bytes using the specified charset.  The length of the new {@code String}
 440      * is a function of the charset, and hence may not be equal to the length
 441      * of the subarray.
 442      *
 443      * <p> The behavior of this constructor when the given bytes are not valid
 444      * in the given charset is unspecified.  The {@link
 445      * java.nio.charset.CharsetDecoder} class should be used when more control
 446      * over the decoding process is required.
 447      *
 448      * @param  bytes
 449      *         The bytes to be decoded into characters
 450      *
 451      * @param  offset
 452      *         The index of the first byte to decode
 453      *
 454      * @param  length
 455      *         The number of bytes to decode
 456 
 457      * @param  charsetName
 458      *         The name of a supported {@linkplain java.nio.charset.Charset
 459      *         charset}
 460      *
 461      * @throws  UnsupportedEncodingException
 462      *          If the named charset is not supported
 463      *
 464      * @throws  IndexOutOfBoundsException
 465      *          If {@code offset} is negative, {@code length} is negative, or
 466      *          {@code offset} is greater than {@code bytes.length - length}
 467      *
 468      * @since  1.1
 469      */
 470     public String(byte bytes[], int offset, int length, String charsetName)
 471             throws UnsupportedEncodingException {
 472         if (charsetName == null)
 473             throw new NullPointerException("charsetName");
 474         checkBoundsOffCount(offset, length, bytes.length);
 475         StringCoding.Result ret =
 476             StringCoding.decode(charsetName, bytes, offset, length);
 477         this.value = ret.value;
 478         this.coder = ret.coder;
 479     }
 480 
 481     /**
 482      * Constructs a new {@code String} by decoding the specified subarray of
 483      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 484      * The length of the new {@code String} is a function of the charset, and
 485      * hence may not be equal to the length of the subarray.
 486      *
 487      * <p> This method always replaces malformed-input and unmappable-character
 488      * sequences with this charset's default replacement string.  The {@link
 489      * java.nio.charset.CharsetDecoder} class should be used when more control
 490      * over the decoding process is required.
 491      *
 492      * @param  bytes
 493      *         The bytes to be decoded into characters
 494      *
 495      * @param  offset
 496      *         The index of the first byte to decode
 497      *
 498      * @param  length
 499      *         The number of bytes to decode
 500      *
 501      * @param  charset
 502      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 503      *         decode the {@code bytes}
 504      *
 505      * @throws  IndexOutOfBoundsException
 506      *          If {@code offset} is negative, {@code length} is negative, or
 507      *          {@code offset} is greater than {@code bytes.length - length}
 508      *
 509      * @since  1.6
 510      */
 511     public String(byte bytes[], int offset, int length, Charset charset) {
 512         if (charset == null)
 513             throw new NullPointerException("charset");
 514         checkBoundsOffCount(offset, length, bytes.length);
 515         StringCoding.Result ret =
 516             StringCoding.decode(charset, bytes, offset, length);
 517         this.value = ret.value;
 518         this.coder = ret.coder;
 519     }
 520 
 521     /**
 522      * Constructs a new {@code String} by decoding the specified array of bytes
 523      * using the specified {@linkplain java.nio.charset.Charset charset}.  The
 524      * length of the new {@code String} is a function of the charset, and hence
 525      * may not be equal to the length of the byte array.
 526      *
 527      * <p> The behavior of this constructor when the given bytes are not valid
 528      * in the given charset is unspecified.  The {@link
 529      * java.nio.charset.CharsetDecoder} class should be used when more control
 530      * over the decoding process is required.
 531      *
 532      * @param  bytes
 533      *         The bytes to be decoded into characters
 534      *
 535      * @param  charsetName
 536      *         The name of a supported {@linkplain java.nio.charset.Charset
 537      *         charset}
 538      *
 539      * @throws  UnsupportedEncodingException
 540      *          If the named charset is not supported
 541      *
 542      * @since  1.1
 543      */
 544     public String(byte bytes[], String charsetName)
 545             throws UnsupportedEncodingException {
 546         this(bytes, 0, bytes.length, charsetName);
 547     }
 548 
 549     /**
 550      * Constructs a new {@code String} by decoding the specified array of
 551      * bytes using the specified {@linkplain java.nio.charset.Charset charset}.
 552      * The length of the new {@code String} is a function of the charset, and
 553      * hence may not be equal to the length of the byte array.
 554      *
 555      * <p> This method always replaces malformed-input and unmappable-character
 556      * sequences with this charset's default replacement string.  The {@link
 557      * java.nio.charset.CharsetDecoder} class should be used when more control
 558      * over the decoding process is required.
 559      *
 560      * @param  bytes
 561      *         The bytes to be decoded into characters
 562      *
 563      * @param  charset
 564      *         The {@linkplain java.nio.charset.Charset charset} to be used to
 565      *         decode the {@code bytes}
 566      *
 567      * @since  1.6
 568      */
 569     public String(byte bytes[], Charset charset) {
 570         this(bytes, 0, bytes.length, charset);
 571     }
 572 
 573     /**
 574      * Constructs a new {@code String} by decoding the specified subarray of
 575      * bytes using the platform's default charset.  The length of the new
 576      * {@code String} is a function of the charset, and hence may not be equal
 577      * to the length of the subarray.
 578      *
 579      * <p> The behavior of this constructor when the given bytes are not valid
 580      * in the default charset is unspecified.  The {@link
 581      * java.nio.charset.CharsetDecoder} class should be used when more control
 582      * over the decoding process is required.
 583      *
 584      * @param  bytes
 585      *         The bytes to be decoded into characters
 586      *
 587      * @param  offset
 588      *         The index of the first byte to decode
 589      *
 590      * @param  length
 591      *         The number of bytes to decode
 592      *
 593      * @throws  IndexOutOfBoundsException
 594      *          If {@code offset} is negative, {@code length} is negative, or
 595      *          {@code offset} is greater than {@code bytes.length - length}
 596      *
 597      * @since  1.1
 598      */
 599     public String(byte bytes[], int offset, int length) {
 600         checkBoundsOffCount(offset, length, bytes.length);
 601         StringCoding.Result ret = StringCoding.decode(bytes, offset, length);
 602         this.value = ret.value;
 603         this.coder = ret.coder;
 604     }
 605 
 606     /**
 607      * Constructs a new {@code String} by decoding the specified array of bytes
 608      * using the platform's default charset.  The length of the new {@code
 609      * String} is a function of the charset, and hence may not be equal to the
 610      * length of the byte array.
 611      *
 612      * <p> The behavior of this constructor when the given bytes are not valid
 613      * in the default charset is unspecified.  The {@link
 614      * java.nio.charset.CharsetDecoder} class should be used when more control
 615      * over the decoding process is required.
 616      *
 617      * @param  bytes
 618      *         The bytes to be decoded into characters
 619      *
 620      * @since  1.1
 621      */
 622     public String(byte[] bytes) {
 623         this(bytes, 0, bytes.length);
 624     }
 625 
 626     /**
 627      * Allocates a new string that contains the sequence of characters
 628      * currently contained in the string buffer argument. The contents of the
 629      * string buffer are copied; subsequent modification of the string buffer
 630      * does not affect the newly created string.
 631      *
 632      * @param  buffer
 633      *         A {@code StringBuffer}
 634      */
 635     public String(StringBuffer buffer) {
 636         this(buffer.toString());
 637     }
 638 
 639     /**
 640      * Allocates a new string that contains the sequence of characters
 641      * currently contained in the string builder argument. The contents of the
 642      * string builder are copied; subsequent modification of the string builder
 643      * does not affect the newly created string.
 644      *
 645      * <p> This constructor is provided to ease migration to {@code
 646      * StringBuilder}. Obtaining a string from a string builder via the {@code
 647      * toString} method is likely to run faster and is generally preferred.
 648      *
 649      * @param   builder
 650      *          A {@code StringBuilder}
 651      *
 652      * @since  1.5
 653      */
 654     public String(StringBuilder builder) {
 655         this(builder, null);
 656     }
 657 
 658     /**
 659      * Returns the length of this string.
 660      * The length is equal to the number of <a href="Character.html#unicode">Unicode
 661      * code units</a> in the string.
 662      *
 663      * @return  the length of the sequence of characters represented by this
 664      *          object.
 665      */
 666     public int length() {
 667         return value.length >> coder();
 668     }
 669 
 670     /**
 671      * Returns {@code true} if, and only if, {@link #length()} is {@code 0}.
 672      *
 673      * @return {@code true} if {@link #length()} is {@code 0}, otherwise
 674      * {@code false}
 675      *
 676      * @since 1.6
 677      */
 678     public boolean isEmpty() {
 679         return value.length == 0;
 680     }
 681 
 682     /**
 683      * Returns the {@code char} value at the
 684      * specified index. An index ranges from {@code 0} to
 685      * {@code length() - 1}. The first {@code char} value of the sequence
 686      * is at index {@code 0}, the next at index {@code 1},
 687      * and so on, as for array indexing.
 688      *
 689      * <p>If the {@code char} value specified by the index is a
 690      * <a href="Character.html#unicode">surrogate</a>, the surrogate
 691      * value is returned.
 692      *
 693      * @param      index   the index of the {@code char} value.
 694      * @return     the {@code char} value at the specified index of this string.
 695      *             The first {@code char} value is at index {@code 0}.
 696      * @exception  IndexOutOfBoundsException  if the {@code index}
 697      *             argument is negative or not less than the length of this
 698      *             string.
 699      */
 700     public char charAt(int index) {
 701         if (isLatin1()) {
 702             return StringLatin1.charAt(value, index);
 703         } else {
 704             return StringUTF16.charAt(value, index);
 705         }
 706     }
 707 
 708     /**
 709      * Returns the character (Unicode code point) at the specified
 710      * index. The index refers to {@code char} values
 711      * (Unicode code units) and ranges from {@code 0} to
 712      * {@link #length()}{@code  - 1}.
 713      *
 714      * <p> If the {@code char} value specified at the given index
 715      * is in the high-surrogate range, the following index is less
 716      * than the length of this {@code String}, and the
 717      * {@code char} value at the following index is in the
 718      * low-surrogate range, then the supplementary code point
 719      * corresponding to this surrogate pair is returned. Otherwise,
 720      * the {@code char} value at the given index is returned.
 721      *
 722      * @param      index the index to the {@code char} values
 723      * @return     the code point value of the character at the
 724      *             {@code index}
 725      * @exception  IndexOutOfBoundsException  if the {@code index}
 726      *             argument is negative or not less than the length of this
 727      *             string.
 728      * @since      1.5
 729      */
 730     public int codePointAt(int index) {
 731         if (isLatin1()) {
 732             checkIndex(index, value.length);
 733             return value[index] & 0xff;
 734         }
 735         int length = value.length >> 1;
 736         checkIndex(index, length);
 737         return StringUTF16.codePointAt(value, index, length);
 738     }
 739 
 740     /**
 741      * Returns the character (Unicode code point) before the specified
 742      * index. The index refers to {@code char} values
 743      * (Unicode code units) and ranges from {@code 1} to {@link
 744      * CharSequence#length() length}.
 745      *
 746      * <p> If the {@code char} value at {@code (index - 1)}
 747      * is in the low-surrogate range, {@code (index - 2)} is not
 748      * negative, and the {@code char} value at {@code (index -
 749      * 2)} is in the high-surrogate range, then the
 750      * supplementary code point value of the surrogate pair is
 751      * returned. If the {@code char} value at {@code index -
 752      * 1} is an unpaired low-surrogate or a high-surrogate, the
 753      * surrogate value is returned.
 754      *
 755      * @param     index the index following the code point that should be returned
 756      * @return    the Unicode code point value before the given index.
 757      * @exception IndexOutOfBoundsException if the {@code index}
 758      *            argument is less than 1 or greater than the length
 759      *            of this string.
 760      * @since     1.5
 761      */
 762     public int codePointBefore(int index) {
 763         int i = index - 1;
 764         if (i < 0 || i >= length()) {
 765             throw new StringIndexOutOfBoundsException(index);
 766         }
 767         if (isLatin1()) {
 768             return (value[i] & 0xff);
 769         }
 770         return StringUTF16.codePointBefore(value, index);
 771     }
 772 
 773     /**
 774      * Returns the number of Unicode code points in the specified text
 775      * range of this {@code String}. The text range begins at the
 776      * specified {@code beginIndex} and extends to the
 777      * {@code char} at index {@code endIndex - 1}. Thus the
 778      * length (in {@code char}s) of the text range is
 779      * {@code endIndex-beginIndex}. Unpaired surrogates within
 780      * the text range count as one code point each.
 781      *
 782      * @param beginIndex the index to the first {@code char} of
 783      * the text range.
 784      * @param endIndex the index after the last {@code char} of
 785      * the text range.
 786      * @return the number of Unicode code points in the specified text
 787      * range
 788      * @exception IndexOutOfBoundsException if the
 789      * {@code beginIndex} is negative, or {@code endIndex}
 790      * is larger than the length of this {@code String}, or
 791      * {@code beginIndex} is larger than {@code endIndex}.
 792      * @since  1.5
 793      */
 794     public int codePointCount(int beginIndex, int endIndex) {
 795         if (beginIndex < 0 || beginIndex > endIndex ||
 796             endIndex > length()) {
 797             throw new IndexOutOfBoundsException();
 798         }
 799         if (isLatin1()) {
 800             return endIndex - beginIndex;
 801         }
 802         return StringUTF16.codePointCount(value, beginIndex, endIndex);
 803     }
 804 
 805     /**
 806      * Returns the index within this {@code String} that is
 807      * offset from the given {@code index} by
 808      * {@code codePointOffset} code points. Unpaired surrogates
 809      * within the text range given by {@code index} and
 810      * {@code codePointOffset} count as one code point each.
 811      *
 812      * @param index the index to be offset
 813      * @param codePointOffset the offset in code points
 814      * @return the index within this {@code String}
 815      * @exception IndexOutOfBoundsException if {@code index}
 816      *   is negative or larger then the length of this
 817      *   {@code String}, or if {@code codePointOffset} is positive
 818      *   and the substring starting with {@code index} has fewer
 819      *   than {@code codePointOffset} code points,
 820      *   or if {@code codePointOffset} is negative and the substring
 821      *   before {@code index} has fewer than the absolute value
 822      *   of {@code codePointOffset} code points.
 823      * @since 1.5
 824      */
 825     public int offsetByCodePoints(int index, int codePointOffset) {
 826         if (index < 0 || index > length()) {
 827             throw new IndexOutOfBoundsException();
 828         }
 829         return Character.offsetByCodePoints(this, index, codePointOffset);
 830     }
 831 
 832     /**
 833      * Copies characters from this string into the destination character
 834      * array.
 835      * <p>
 836      * The first character to be copied is at index {@code srcBegin};
 837      * the last character to be copied is at index {@code srcEnd-1}
 838      * (thus the total number of characters to be copied is
 839      * {@code srcEnd-srcBegin}). The characters are copied into the
 840      * subarray of {@code dst} starting at index {@code dstBegin}
 841      * and ending at index:
 842      * <blockquote><pre>
 843      *     dstBegin + (srcEnd-srcBegin) - 1
 844      * </pre></blockquote>
 845      *
 846      * @param      srcBegin   index of the first character in the string
 847      *                        to copy.
 848      * @param      srcEnd     index after the last character in the string
 849      *                        to copy.
 850      * @param      dst        the destination array.
 851      * @param      dstBegin   the start offset in the destination array.
 852      * @exception IndexOutOfBoundsException If any of the following
 853      *            is true:
 854      *            <ul><li>{@code srcBegin} is negative.
 855      *            <li>{@code srcBegin} is greater than {@code srcEnd}
 856      *            <li>{@code srcEnd} is greater than the length of this
 857      *                string
 858      *            <li>{@code dstBegin} is negative
 859      *            <li>{@code dstBegin+(srcEnd-srcBegin)} is larger than
 860      *                {@code dst.length}</ul>
 861      */
 862     public void getChars(int srcBegin, int srcEnd, char dst[], int dstBegin) {
 863         checkBoundsBeginEnd(srcBegin, srcEnd, length());
 864         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
 865         if (isLatin1()) {
 866             StringLatin1.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 867         } else {
 868             StringUTF16.getChars(value, srcBegin, srcEnd, dst, dstBegin);
 869         }
 870     }
 871 
 872     /**
 873      * Copies characters from this string into the destination byte array. Each
 874      * byte receives the 8 low-order bits of the corresponding character. The
 875      * eight high-order bits of each character are not copied and do not
 876      * participate in the transfer in any way.
 877      *
 878      * <p> The first character to be copied is at index {@code srcBegin}; the
 879      * last character to be copied is at index {@code srcEnd-1}.  The total
 880      * number of characters to be copied is {@code srcEnd-srcBegin}. The
 881      * characters, converted to bytes, are copied into the subarray of {@code
 882      * dst} starting at index {@code dstBegin} and ending at index:
 883      *
 884      * <blockquote><pre>
 885      *     dstBegin + (srcEnd-srcBegin) - 1
 886      * </pre></blockquote>
 887      *
 888      * @deprecated  This method does not properly convert characters into
 889      * bytes.  As of JDK&nbsp;1.1, the preferred way to do this is via the
 890      * {@link #getBytes()} method, which uses the platform's default charset.
 891      *
 892      * @param  srcBegin
 893      *         Index of the first character in the string to copy
 894      *
 895      * @param  srcEnd
 896      *         Index after the last character in the string to copy
 897      *
 898      * @param  dst
 899      *         The destination array
 900      *
 901      * @param  dstBegin
 902      *         The start offset in the destination array
 903      *
 904      * @throws  IndexOutOfBoundsException
 905      *          If any of the following is true:
 906      *          <ul>
 907      *            <li> {@code srcBegin} is negative
 908      *            <li> {@code srcBegin} is greater than {@code srcEnd}
 909      *            <li> {@code srcEnd} is greater than the length of this String
 910      *            <li> {@code dstBegin} is negative
 911      *            <li> {@code dstBegin+(srcEnd-srcBegin)} is larger than {@code
 912      *                 dst.length}
 913      *          </ul>
 914      */
 915     @Deprecated(since="1.1")
 916     public void getBytes(int srcBegin, int srcEnd, byte dst[], int dstBegin) {
 917         checkBoundsBeginEnd(srcBegin, srcEnd, length());
 918         Objects.requireNonNull(dst);
 919         checkBoundsOffCount(dstBegin, srcEnd - srcBegin, dst.length);
 920         if (isLatin1()) {
 921             StringLatin1.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
 922         } else {
 923             StringUTF16.getBytes(value, srcBegin, srcEnd, dst, dstBegin);
 924         }
 925     }
 926 
 927     /**
 928      * Encodes this {@code String} into a sequence of bytes using the named
 929      * charset, storing the result into a new byte array.
 930      *
 931      * <p> The behavior of this method when this string cannot be encoded in
 932      * the given charset is unspecified.  The {@link
 933      * java.nio.charset.CharsetEncoder} class should be used when more control
 934      * over the encoding process is required.
 935      *
 936      * @param  charsetName
 937      *         The name of a supported {@linkplain java.nio.charset.Charset
 938      *         charset}
 939      *
 940      * @return  The resultant byte array
 941      *
 942      * @throws  UnsupportedEncodingException
 943      *          If the named charset is not supported
 944      *
 945      * @since  1.1
 946      */
 947     public byte[] getBytes(String charsetName)
 948             throws UnsupportedEncodingException {
 949         if (charsetName == null) throw new NullPointerException();
 950         return StringCoding.encode(charsetName, coder(), value);
 951     }
 952 
 953     /**
 954      * Encodes this {@code String} into a sequence of bytes using the given
 955      * {@linkplain java.nio.charset.Charset charset}, storing the result into a
 956      * new byte array.
 957      *
 958      * <p> This method always replaces malformed-input and unmappable-character
 959      * sequences with this charset's default replacement byte array.  The
 960      * {@link java.nio.charset.CharsetEncoder} class should be used when more
 961      * control over the encoding process is required.
 962      *
 963      * @param  charset
 964      *         The {@linkplain java.nio.charset.Charset} to be used to encode
 965      *         the {@code String}
 966      *
 967      * @return  The resultant byte array
 968      *
 969      * @since  1.6
 970      */
 971     public byte[] getBytes(Charset charset) {
 972         if (charset == null) throw new NullPointerException();
 973         return StringCoding.encode(charset, coder(), value);
 974      }
 975 
 976     /**
 977      * Encodes this {@code String} into a sequence of bytes using the
 978      * platform's default charset, storing the result into a new byte array.
 979      *
 980      * <p> The behavior of this method when this string cannot be encoded in
 981      * the default charset is unspecified.  The {@link
 982      * java.nio.charset.CharsetEncoder} class should be used when more control
 983      * over the encoding process is required.
 984      *
 985      * @return  The resultant byte array
 986      *
 987      * @since      1.1
 988      */
 989     public byte[] getBytes() {
 990         return StringCoding.encode(coder(), value);
 991     }
 992 
 993     /**
 994      * Compares this string to the specified object.  The result is {@code
 995      * true} if and only if the argument is not {@code null} and is a {@code
 996      * String} object that represents the same sequence of characters as this
 997      * object.
 998      *
 999      * <p>For finer-grained String comparison, refer to
1000      * {@link java.text.Collator}.
1001      *
1002      * @param  anObject
1003      *         The object to compare this {@code String} against
1004      *
1005      * @return  {@code true} if the given object represents a {@code String}
1006      *          equivalent to this string, {@code false} otherwise
1007      *
1008      * @see  #compareTo(String)
1009      * @see  #equalsIgnoreCase(String)
1010      */
1011     public boolean equals(Object anObject) {
1012         if (this == anObject) {
1013             return true;
1014         }
1015         if (anObject instanceof String) {
1016             String aString = (String)anObject;
1017             if (coder() == aString.coder()) {
1018                 return isLatin1() ? StringLatin1.equals(value, aString.value)
1019                                   : StringUTF16.equals(value, aString.value);
1020             }
1021         }
1022         return false;
1023     }
1024 
1025     /**
1026      * Compares this string to the specified {@code StringBuffer}.  The result
1027      * is {@code true} if and only if this {@code String} represents the same
1028      * sequence of characters as the specified {@code StringBuffer}. This method
1029      * synchronizes on the {@code StringBuffer}.
1030      *
1031      * <p>For finer-grained String comparison, refer to
1032      * {@link java.text.Collator}.
1033      *
1034      * @param  sb
1035      *         The {@code StringBuffer} to compare this {@code String} against
1036      *
1037      * @return  {@code true} if this {@code String} represents the same
1038      *          sequence of characters as the specified {@code StringBuffer},
1039      *          {@code false} otherwise
1040      *
1041      * @since  1.4
1042      */
1043     public boolean contentEquals(StringBuffer sb) {
1044         return contentEquals((CharSequence)sb);
1045     }
1046 
1047     private boolean nonSyncContentEquals(AbstractStringBuilder sb) {
1048         int len = length();
1049         if (len != sb.length()) {
1050             return false;
1051         }
1052         byte v1[] = value;
1053         byte v2[] = sb.getValue();
1054         if (coder() == sb.getCoder()) {
1055             int n = v1.length;
1056             for (int i = 0; i < n; i++) {
1057                 if (v1[i] != v2[i]) {
1058                     return false;
1059                 }
1060             }
1061         } else {
1062             if (!isLatin1()) {  // utf16 str and latin1 abs can never be "equal"
1063                 return false;
1064             }
1065             return StringUTF16.contentEquals(v1, v2, len);
1066         }
1067         return true;
1068     }
1069 
1070     /**
1071      * Compares this string to the specified {@code CharSequence}.  The
1072      * result is {@code true} if and only if this {@code String} represents the
1073      * same sequence of char values as the specified sequence. Note that if the
1074      * {@code CharSequence} is a {@code StringBuffer} then the method
1075      * synchronizes on it.
1076      *
1077      * <p>For finer-grained String comparison, refer to
1078      * {@link java.text.Collator}.
1079      *
1080      * @param  cs
1081      *         The sequence to compare this {@code String} against
1082      *
1083      * @return  {@code true} if this {@code String} represents the same
1084      *          sequence of char values as the specified sequence, {@code
1085      *          false} otherwise
1086      *
1087      * @since  1.5
1088      */
1089     public boolean contentEquals(CharSequence cs) {
1090         // Argument is a StringBuffer, StringBuilder
1091         if (cs instanceof AbstractStringBuilder) {
1092             if (cs instanceof StringBuffer) {
1093                 synchronized(cs) {
1094                    return nonSyncContentEquals((AbstractStringBuilder)cs);
1095                 }
1096             } else {
1097                 return nonSyncContentEquals((AbstractStringBuilder)cs);
1098             }
1099         }
1100         // Argument is a String
1101         if (cs instanceof String) {
1102             return equals(cs);
1103         }
1104         // Argument is a generic CharSequence
1105         int n = cs.length();
1106         if (n != length()) {
1107             return false;
1108         }
1109         byte[] val = this.value;
1110         if (isLatin1()) {
1111             for (int i = 0; i < n; i++) {
1112                 if ((val[i] & 0xff) != cs.charAt(i)) {
1113                     return false;
1114                 }
1115             }
1116         } else {
1117             if (!StringUTF16.contentEquals(val, cs, n)) {
1118                 return false;
1119             }
1120         }
1121         return true;
1122     }
1123 
1124     /**
1125      * Compares this {@code String} to another {@code String}, ignoring case
1126      * considerations.  Two strings are considered equal ignoring case if they
1127      * are of the same length and corresponding characters in the two strings
1128      * are equal ignoring case.
1129      *
1130      * <p> Two characters {@code c1} and {@code c2} are considered the same
1131      * ignoring case if at least one of the following is true:
1132      * <ul>
1133      *   <li> The two characters are the same (as compared by the
1134      *        {@code ==} operator)
1135      *   <li> Calling {@code Character.toLowerCase(Character.toUpperCase(char))}
1136      *        on each character produces the same result
1137      * </ul>
1138      *
1139      * <p>Note that this method does <em>not</em> take locale into account, and
1140      * will result in unsatisfactory results for certain locales.  The
1141      * {@link java.text.Collator} class provides locale-sensitive comparison.
1142      *
1143      * @param  anotherString
1144      *         The {@code String} to compare this {@code String} against
1145      *
1146      * @return  {@code true} if the argument is not {@code null} and it
1147      *          represents an equivalent {@code String} ignoring case; {@code
1148      *          false} otherwise
1149      *
1150      * @see  #equals(Object)
1151      */
1152     public boolean equalsIgnoreCase(String anotherString) {
1153         return (this == anotherString) ? true
1154                 : (anotherString != null)
1155                 && (anotherString.length() == length())
1156                 && regionMatches(true, 0, anotherString, 0, length());
1157     }
1158 
1159     /**
1160      * Compares two strings lexicographically.
1161      * The comparison is based on the Unicode value of each character in
1162      * the strings. The character sequence represented by this
1163      * {@code String} object is compared lexicographically to the
1164      * character sequence represented by the argument string. The result is
1165      * a negative integer if this {@code String} object
1166      * lexicographically precedes the argument string. The result is a
1167      * positive integer if this {@code String} object lexicographically
1168      * follows the argument string. The result is zero if the strings
1169      * are equal; {@code compareTo} returns {@code 0} exactly when
1170      * the {@link #equals(Object)} method would return {@code true}.
1171      * <p>
1172      * This is the definition of lexicographic ordering. If two strings are
1173      * different, then either they have different characters at some index
1174      * that is a valid index for both strings, or their lengths are different,
1175      * or both. If they have different characters at one or more index
1176      * positions, let <i>k</i> be the smallest such index; then the string
1177      * whose character at position <i>k</i> has the smaller value, as
1178      * determined by using the {@code <} operator, lexicographically precedes the
1179      * other string. In this case, {@code compareTo} returns the
1180      * difference of the two character values at position {@code k} in
1181      * the two string -- that is, the value:
1182      * <blockquote><pre>
1183      * this.charAt(k)-anotherString.charAt(k)
1184      * </pre></blockquote>
1185      * If there is no index position at which they differ, then the shorter
1186      * string lexicographically precedes the longer string. In this case,
1187      * {@code compareTo} returns the difference of the lengths of the
1188      * strings -- that is, the value:
1189      * <blockquote><pre>
1190      * this.length()-anotherString.length()
1191      * </pre></blockquote>
1192      *
1193      * <p>For finer-grained String comparison, refer to
1194      * {@link java.text.Collator}.
1195      *
1196      * @param   anotherString   the {@code String} to be compared.
1197      * @return  the value {@code 0} if the argument string is equal to
1198      *          this string; a value less than {@code 0} if this string
1199      *          is lexicographically less than the string argument; and a
1200      *          value greater than {@code 0} if this string is
1201      *          lexicographically greater than the string argument.
1202      */
1203     public int compareTo(String anotherString) {
1204         byte v1[] = value;
1205         byte v2[] = anotherString.value;
1206         if (coder() == anotherString.coder()) {
1207             return isLatin1() ? StringLatin1.compareTo(v1, v2)
1208                               : StringUTF16.compareTo(v1, v2);
1209         }
1210         return isLatin1() ? StringLatin1.compareToUTF16(v1, v2)
1211                           : StringUTF16.compareToLatin1(v1, v2);
1212      }
1213 
1214     /**
1215      * A Comparator that orders {@code String} objects as by
1216      * {@code compareToIgnoreCase}. This comparator is serializable.
1217      * <p>
1218      * Note that this Comparator does <em>not</em> take locale into account,
1219      * and will result in an unsatisfactory ordering for certain locales.
1220      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1221      *
1222      * @see     java.text.Collator
1223      * @since   1.2
1224      */
1225     public static final Comparator<String> CASE_INSENSITIVE_ORDER
1226                                          = new CaseInsensitiveComparator();
1227     private static class CaseInsensitiveComparator
1228             implements Comparator<String>, java.io.Serializable {
1229         // use serialVersionUID from JDK 1.2.2 for interoperability
1230         private static final long serialVersionUID = 8575799808933029326L;
1231 
1232         public int compare(String s1, String s2) {
1233             byte v1[] = s1.value;
1234             byte v2[] = s2.value;
1235             if (s1.coder() == s2.coder()) {
1236                 return s1.isLatin1() ? StringLatin1.compareToCI(v1, v2)
1237                                      : StringUTF16.compareToCI(v1, v2);
1238             }
1239             return s1.isLatin1() ? StringLatin1.compareToCI_UTF16(v1, v2)
1240                                  : StringUTF16.compareToCI_Latin1(v1, v2);
1241         }
1242 
1243         /** Replaces the de-serialized object. */
1244         private Object readResolve() { return CASE_INSENSITIVE_ORDER; }
1245     }
1246 
1247     /**
1248      * Compares two strings lexicographically, ignoring case
1249      * differences. This method returns an integer whose sign is that of
1250      * calling {@code compareTo} with normalized versions of the strings
1251      * where case differences have been eliminated by calling
1252      * {@code Character.toLowerCase(Character.toUpperCase(character))} on
1253      * each character.
1254      * <p>
1255      * Note that this method does <em>not</em> take locale into account,
1256      * and will result in an unsatisfactory ordering for certain locales.
1257      * The {@link java.text.Collator} class provides locale-sensitive comparison.
1258      *
1259      * @param   str   the {@code String} to be compared.
1260      * @return  a negative integer, zero, or a positive integer as the
1261      *          specified String is greater than, equal to, or less
1262      *          than this String, ignoring case considerations.
1263      * @see     java.text.Collator
1264      * @since   1.2
1265      */
1266     public int compareToIgnoreCase(String str) {
1267         return CASE_INSENSITIVE_ORDER.compare(this, str);
1268     }
1269 
1270     /**
1271      * Tests if two string regions are equal.
1272      * <p>
1273      * A substring of this {@code String} object is compared to a substring
1274      * of the argument other. The result is true if these substrings
1275      * represent identical character sequences. The substring of this
1276      * {@code String} object to be compared begins at index {@code toffset}
1277      * and has length {@code len}. The substring of other to be compared
1278      * begins at index {@code ooffset} and has length {@code len}. The
1279      * result is {@code false} if and only if at least one of the following
1280      * is true:
1281      * <ul><li>{@code toffset} is negative.
1282      * <li>{@code ooffset} is negative.
1283      * <li>{@code toffset+len} is greater than the length of this
1284      * {@code String} object.
1285      * <li>{@code ooffset+len} is greater than the length of the other
1286      * argument.
1287      * <li>There is some nonnegative integer <i>k</i> less than {@code len}
1288      * such that:
1289      * {@code this.charAt(toffset + }<i>k</i>{@code ) != other.charAt(ooffset + }
1290      * <i>k</i>{@code )}
1291      * </ul>
1292      *
1293      * <p>Note that this method does <em>not</em> take locale into account.  The
1294      * {@link java.text.Collator} class provides locale-sensitive comparison.
1295      *
1296      * @param   toffset   the starting offset of the subregion in this string.
1297      * @param   other     the string argument.
1298      * @param   ooffset   the starting offset of the subregion in the string
1299      *                    argument.
1300      * @param   len       the number of characters to compare.
1301      * @return  {@code true} if the specified subregion of this string
1302      *          exactly matches the specified subregion of the string argument;
1303      *          {@code false} otherwise.
1304      */
1305     public boolean regionMatches(int toffset, String other, int ooffset, int len) {
1306         byte tv[] = value;
1307         byte ov[] = other.value;
1308         // Note: toffset, ooffset, or len might be near -1>>>1.
1309         if ((ooffset < 0) || (toffset < 0) ||
1310              (toffset > (long)length() - len) ||
1311              (ooffset > (long)other.length() - len)) {
1312             return false;
1313         }
1314         if (coder() == other.coder()) {
1315             if (!isLatin1() && (len > 0)) {
1316                 toffset = toffset << 1;
1317                 ooffset = ooffset << 1;
1318                 len = len << 1;
1319             }
1320             while (len-- > 0) {
1321                 if (tv[toffset++] != ov[ooffset++]) {
1322                     return false;
1323                 }
1324             }
1325         } else {
1326             if (coder() == LATIN1) {
1327                 while (len-- > 0) {
1328                     if (StringLatin1.getChar(tv, toffset++) !=
1329                         StringUTF16.getChar(ov, ooffset++)) {
1330                         return false;
1331                     }
1332                 }
1333             } else {
1334                 while (len-- > 0) {
1335                     if (StringUTF16.getChar(tv, toffset++) !=
1336                         StringLatin1.getChar(ov, ooffset++)) {
1337                         return false;
1338                     }
1339                 }
1340             }
1341         }
1342         return true;
1343     }
1344 
1345     /**
1346      * Tests if two string regions are equal.
1347      * <p>
1348      * A substring of this {@code String} object is compared to a substring
1349      * of the argument {@code other}. The result is {@code true} if these
1350      * substrings represent character sequences that are the same, ignoring
1351      * case if and only if {@code ignoreCase} is true. The substring of
1352      * this {@code String} object to be compared begins at index
1353      * {@code toffset} and has length {@code len}. The substring of
1354      * {@code other} to be compared begins at index {@code ooffset} and
1355      * has length {@code len}. The result is {@code false} if and only if
1356      * at least one of the following is true:
1357      * <ul><li>{@code toffset} is negative.
1358      * <li>{@code ooffset} is negative.
1359      * <li>{@code toffset+len} is greater than the length of this
1360      * {@code String} object.
1361      * <li>{@code ooffset+len} is greater than the length of the other
1362      * argument.
1363      * <li>{@code ignoreCase} is {@code false} and there is some nonnegative
1364      * integer <i>k</i> less than {@code len} such that:
1365      * <blockquote><pre>
1366      * this.charAt(toffset+k) != other.charAt(ooffset+k)
1367      * </pre></blockquote>
1368      * <li>{@code ignoreCase} is {@code true} and there is some nonnegative
1369      * integer <i>k</i> less than {@code len} such that:
1370      * <blockquote><pre>
1371      * Character.toLowerCase(Character.toUpperCase(this.charAt(toffset+k))) !=
1372      Character.toLowerCase(Character.toUpperCase(other.charAt(ooffset+k)))
1373      * </pre></blockquote>
1374      * </ul>
1375      *
1376      * <p>Note that this method does <em>not</em> take locale into account,
1377      * and will result in unsatisfactory results for certain locales when
1378      * {@code ignoreCase} is {@code true}.  The {@link java.text.Collator} class
1379      * provides locale-sensitive comparison.
1380      *
1381      * @param   ignoreCase   if {@code true}, ignore case when comparing
1382      *                       characters.
1383      * @param   toffset      the starting offset of the subregion in this
1384      *                       string.
1385      * @param   other        the string argument.
1386      * @param   ooffset      the starting offset of the subregion in the string
1387      *                       argument.
1388      * @param   len          the number of characters to compare.
1389      * @return  {@code true} if the specified subregion of this string
1390      *          matches the specified subregion of the string argument;
1391      *          {@code false} otherwise. Whether the matching is exact
1392      *          or case insensitive depends on the {@code ignoreCase}
1393      *          argument.
1394      */
1395     public boolean regionMatches(boolean ignoreCase, int toffset,
1396             String other, int ooffset, int len) {
1397         if (!ignoreCase) {
1398             return regionMatches(toffset, other, ooffset, len);
1399         }
1400         // Note: toffset, ooffset, or len might be near -1>>>1.
1401         if ((ooffset < 0) || (toffset < 0)
1402                 || (toffset > (long)length() - len)
1403                 || (ooffset > (long)other.length() - len)) {
1404             return false;
1405         }
1406         byte tv[] = value;
1407         byte ov[] = other.value;
1408         if (coder() == other.coder()) {
1409             return isLatin1()
1410               ? StringLatin1.regionMatchesCI(tv, toffset, ov, ooffset, len)
1411               : StringUTF16.regionMatchesCI(tv, toffset, ov, ooffset, len);
1412         }
1413         return isLatin1()
1414               ? StringLatin1.regionMatchesCI_UTF16(tv, toffset, ov, ooffset, len)
1415               : StringUTF16.regionMatchesCI_Latin1(tv, toffset, ov, ooffset, len);
1416     }
1417 
1418     /**
1419      * Tests if the substring of this string beginning at the
1420      * specified index starts with the specified prefix.
1421      *
1422      * @param   prefix    the prefix.
1423      * @param   toffset   where to begin looking in this string.
1424      * @return  {@code true} if the character sequence represented by the
1425      *          argument is a prefix of the substring of this object starting
1426      *          at index {@code toffset}; {@code false} otherwise.
1427      *          The result is {@code false} if {@code toffset} is
1428      *          negative or greater than the length of this
1429      *          {@code String} object; otherwise the result is the same
1430      *          as the result of the expression
1431      *          <pre>
1432      *          this.substring(toffset).startsWith(prefix)
1433      *          </pre>
1434      */
1435     public boolean startsWith(String prefix, int toffset) {
1436         // Note: toffset might be near -1>>>1.
1437         if (toffset < 0 || toffset > length() - prefix.length()) {
1438             return false;
1439         }
1440         byte ta[] = value;
1441         byte pa[] = prefix.value;
1442         int po = 0;
1443         int pc = pa.length;
1444         if (coder() == prefix.coder()) {
1445             int to = isLatin1() ? toffset : toffset << 1;
1446             while (po < pc) {
1447                 if (ta[to++] != pa[po++]) {
1448                     return false;
1449                 }
1450             }
1451         } else {
1452             if (isLatin1()) {  // && pcoder == UTF16
1453                 return false;
1454             }
1455             // coder == UTF16 && pcoder == LATIN1)
1456             while (po < pc) {
1457                 if (StringUTF16.getChar(ta, toffset++) != (pa[po++] & 0xff)) {
1458                     return false;
1459                }
1460             }
1461         }
1462         return true;
1463     }
1464 
1465     /**
1466      * Tests if this string starts with the specified prefix.
1467      *
1468      * @param   prefix   the prefix.
1469      * @return  {@code true} if the character sequence represented by the
1470      *          argument is a prefix of the character sequence represented by
1471      *          this string; {@code false} otherwise.
1472      *          Note also that {@code true} will be returned if the
1473      *          argument is an empty string or is equal to this
1474      *          {@code String} object as determined by the
1475      *          {@link #equals(Object)} method.
1476      * @since   1.0
1477      */
1478     public boolean startsWith(String prefix) {
1479         return startsWith(prefix, 0);
1480     }
1481 
1482     /**
1483      * Tests if this string ends with the specified suffix.
1484      *
1485      * @param   suffix   the suffix.
1486      * @return  {@code true} if the character sequence represented by the
1487      *          argument is a suffix of the character sequence represented by
1488      *          this object; {@code false} otherwise. Note that the
1489      *          result will be {@code true} if the argument is the
1490      *          empty string or is equal to this {@code String} object
1491      *          as determined by the {@link #equals(Object)} method.
1492      */
1493     public boolean endsWith(String suffix) {
1494         return startsWith(suffix, length() - suffix.length());
1495     }
1496 
1497     /**
1498      * Returns a hash code for this string. The hash code for a
1499      * {@code String} object is computed as
1500      * <blockquote><pre>
1501      * s[0]*31^(n-1) + s[1]*31^(n-2) + ... + s[n-1]
1502      * </pre></blockquote>
1503      * using {@code int} arithmetic, where {@code s[i]} is the
1504      * <i>i</i>th character of the string, {@code n} is the length of
1505      * the string, and {@code ^} indicates exponentiation.
1506      * (The hash value of the empty string is zero.)
1507      *
1508      * @return  a hash code value for this object.
1509      */
1510     public int hashCode() {
1511         int h = hash;
1512         if (h == 0 && value.length > 0) {
1513             h = isLatin1() ? StringLatin1.hashCode(value)
1514                            : StringUTF16.hashCode(value);
1515             // Avoid issuing a store if the calculated value is also zero:
1516             // in addition to a minor performance benefit, this allows storing
1517             // Strings with zero hash code in read-only memory.
1518             if (h != 0) {
1519                 hash = h;
1520             }
1521         }
1522         return h;
1523     }
1524 
1525     /**
1526      * Returns the index within this string of the first occurrence of
1527      * the specified character. If a character with value
1528      * {@code ch} occurs in the character sequence represented by
1529      * this {@code String} object, then the index (in Unicode
1530      * code units) of the first such occurrence is returned. For
1531      * values of {@code ch} in the range from 0 to 0xFFFF
1532      * (inclusive), this is the smallest value <i>k</i> such that:
1533      * <blockquote><pre>
1534      * this.charAt(<i>k</i>) == ch
1535      * </pre></blockquote>
1536      * is true. For other values of {@code ch}, it is the
1537      * smallest value <i>k</i> such that:
1538      * <blockquote><pre>
1539      * this.codePointAt(<i>k</i>) == ch
1540      * </pre></blockquote>
1541      * is true. In either case, if no such character occurs in this
1542      * string, then {@code -1} is returned.
1543      *
1544      * @param   ch   a character (Unicode code point).
1545      * @return  the index of the first occurrence of the character in the
1546      *          character sequence represented by this object, or
1547      *          {@code -1} if the character does not occur.
1548      */
1549     public int indexOf(int ch) {
1550         return indexOf(ch, 0);
1551     }
1552 
1553     /**
1554      * Returns the index within this string of the first occurrence of the
1555      * specified character, starting the search at the specified index.
1556      * <p>
1557      * If a character with value {@code ch} occurs in the
1558      * character sequence represented by this {@code String}
1559      * object at an index no smaller than {@code fromIndex}, then
1560      * the index of the first such occurrence is returned. For values
1561      * of {@code ch} in the range from 0 to 0xFFFF (inclusive),
1562      * this is the smallest value <i>k</i> such that:
1563      * <blockquote><pre>
1564      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1565      * </pre></blockquote>
1566      * is true. For other values of {@code ch}, it is the
1567      * smallest value <i>k</i> such that:
1568      * <blockquote><pre>
1569      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &gt;= fromIndex)
1570      * </pre></blockquote>
1571      * is true. In either case, if no such character occurs in this
1572      * string at or after position {@code fromIndex}, then
1573      * {@code -1} is returned.
1574      *
1575      * <p>
1576      * There is no restriction on the value of {@code fromIndex}. If it
1577      * is negative, it has the same effect as if it were zero: this entire
1578      * string may be searched. If it is greater than the length of this
1579      * string, it has the same effect as if it were equal to the length of
1580      * this string: {@code -1} is returned.
1581      *
1582      * <p>All indices are specified in {@code char} values
1583      * (Unicode code units).
1584      *
1585      * @param   ch          a character (Unicode code point).
1586      * @param   fromIndex   the index to start the search from.
1587      * @return  the index of the first occurrence of the character in the
1588      *          character sequence represented by this object that is greater
1589      *          than or equal to {@code fromIndex}, or {@code -1}
1590      *          if the character does not occur.
1591      */
1592     public int indexOf(int ch, int fromIndex) {
1593         return isLatin1() ? StringLatin1.indexOf(value, ch, fromIndex)
1594                           : StringUTF16.indexOf(value, ch, fromIndex);
1595     }
1596 
1597     /**
1598      * Returns the index within this string of the last occurrence of
1599      * the specified character. For values of {@code ch} in the
1600      * range from 0 to 0xFFFF (inclusive), the index (in Unicode code
1601      * units) returned is the largest value <i>k</i> such that:
1602      * <blockquote><pre>
1603      * this.charAt(<i>k</i>) == ch
1604      * </pre></blockquote>
1605      * is true. For other values of {@code ch}, it is the
1606      * largest value <i>k</i> such that:
1607      * <blockquote><pre>
1608      * this.codePointAt(<i>k</i>) == ch
1609      * </pre></blockquote>
1610      * is true.  In either case, if no such character occurs in this
1611      * string, then {@code -1} is returned.  The
1612      * {@code String} is searched backwards starting at the last
1613      * character.
1614      *
1615      * @param   ch   a character (Unicode code point).
1616      * @return  the index of the last occurrence of the character in the
1617      *          character sequence represented by this object, or
1618      *          {@code -1} if the character does not occur.
1619      */
1620     public int lastIndexOf(int ch) {
1621         return lastIndexOf(ch, length() - 1);
1622     }
1623 
1624     /**
1625      * Returns the index within this string of the last occurrence of
1626      * the specified character, searching backward starting at the
1627      * specified index. For values of {@code ch} in the range
1628      * from 0 to 0xFFFF (inclusive), the index returned is the largest
1629      * value <i>k</i> such that:
1630      * <blockquote><pre>
1631      * (this.charAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1632      * </pre></blockquote>
1633      * is true. For other values of {@code ch}, it is the
1634      * largest value <i>k</i> such that:
1635      * <blockquote><pre>
1636      * (this.codePointAt(<i>k</i>) == ch) {@code &&} (<i>k</i> &lt;= fromIndex)
1637      * </pre></blockquote>
1638      * is true. In either case, if no such character occurs in this
1639      * string at or before position {@code fromIndex}, then
1640      * {@code -1} is returned.
1641      *
1642      * <p>All indices are specified in {@code char} values
1643      * (Unicode code units).
1644      *
1645      * @param   ch          a character (Unicode code point).
1646      * @param   fromIndex   the index to start the search from. There is no
1647      *          restriction on the value of {@code fromIndex}. If it is
1648      *          greater than or equal to the length of this string, it has
1649      *          the same effect as if it were equal to one less than the
1650      *          length of this string: this entire string may be searched.
1651      *          If it is negative, it has the same effect as if it were -1:
1652      *          -1 is returned.
1653      * @return  the index of the last occurrence of the character in the
1654      *          character sequence represented by this object that is less
1655      *          than or equal to {@code fromIndex}, or {@code -1}
1656      *          if the character does not occur before that point.
1657      */
1658     public int lastIndexOf(int ch, int fromIndex) {
1659         return isLatin1() ? StringLatin1.lastIndexOf(value, ch, fromIndex)
1660                           : StringUTF16.lastIndexOf(value, ch, fromIndex);
1661     }
1662 
1663     /**
1664      * Returns the index within this string of the first occurrence of the
1665      * specified substring.
1666      *
1667      * <p>The returned index is the smallest value {@code k} for which:
1668      * <pre>{@code
1669      * this.startsWith(str, k)
1670      * }</pre>
1671      * If no such value of {@code k} exists, then {@code -1} is returned.
1672      *
1673      * @param   str   the substring to search for.
1674      * @return  the index of the first occurrence of the specified substring,
1675      *          or {@code -1} if there is no such occurrence.
1676      */
1677     public int indexOf(String str) {
1678         if (coder() == str.coder()) {
1679             return isLatin1() ? StringLatin1.indexOf(value, str.value)
1680                               : StringUTF16.indexOf(value, str.value);
1681         }
1682         if (coder() == LATIN1) {  // str.coder == UTF16
1683             return -1;
1684         }
1685         return StringUTF16.indexOfLatin1(value, str.value);
1686     }
1687 
1688     /**
1689      * Returns the index within this string of the first occurrence of the
1690      * specified substring, starting at the specified index.
1691      *
1692      * <p>The returned index is the smallest value {@code k} for which:
1693      * <pre>{@code
1694      *     k >= Math.min(fromIndex, this.length()) &&
1695      *                   this.startsWith(str, k)
1696      * }</pre>
1697      * If no such value of {@code k} exists, then {@code -1} is returned.
1698      *
1699      * @param   str         the substring to search for.
1700      * @param   fromIndex   the index from which to start the search.
1701      * @return  the index of the first occurrence of the specified substring,
1702      *          starting at the specified index,
1703      *          or {@code -1} if there is no such occurrence.
1704      */
1705     public int indexOf(String str, int fromIndex) {
1706         return indexOf(value, coder(), length(), str, fromIndex);
1707     }
1708 
1709     /**
1710      * Code shared by String and AbstractStringBuilder to do searches. The
1711      * source is the character array being searched, and the target
1712      * is the string being searched for.
1713      *
1714      * @param   src       the characters being searched.
1715      * @param   srcCoder  the coder of the source string.
1716      * @param   srcCount  length of the source string.
1717      * @param   tgtStr    the characters being searched for.
1718      * @param   fromIndex the index to begin searching from.
1719      */
1720     static int indexOf(byte[] src, byte srcCoder, int srcCount,
1721                        String tgtStr, int fromIndex) {
1722         byte[] tgt    = tgtStr.value;
1723         byte tgtCoder = tgtStr.coder();
1724         int tgtCount  = tgtStr.length();
1725 
1726         if (fromIndex >= srcCount) {
1727             return (tgtCount == 0 ? srcCount : -1);
1728         }
1729         if (fromIndex < 0) {
1730             fromIndex = 0;
1731         }
1732         if (tgtCount == 0) {
1733             return fromIndex;
1734         }
1735         if (tgtCount > srcCount) {
1736             return -1;
1737         }
1738         if (srcCoder == tgtCoder) {
1739             return srcCoder == LATIN1
1740                 ? StringLatin1.indexOf(src, srcCount, tgt, tgtCount, fromIndex)
1741                 : StringUTF16.indexOf(src, srcCount, tgt, tgtCount, fromIndex);
1742         }
1743         if (srcCoder == LATIN1) {    //  && tgtCoder == UTF16
1744             return -1;
1745         }
1746         // srcCoder == UTF16 && tgtCoder == LATIN1) {
1747         return StringUTF16.indexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1748     }
1749 
1750     /**
1751      * Returns the index within this string of the last occurrence of the
1752      * specified substring.  The last occurrence of the empty string ""
1753      * is considered to occur at the index value {@code this.length()}.
1754      *
1755      * <p>The returned index is the largest value {@code k} for which:
1756      * <pre>{@code
1757      * this.startsWith(str, k)
1758      * }</pre>
1759      * If no such value of {@code k} exists, then {@code -1} is returned.
1760      *
1761      * @param   str   the substring to search for.
1762      * @return  the index of the last occurrence of the specified substring,
1763      *          or {@code -1} if there is no such occurrence.
1764      */
1765     public int lastIndexOf(String str) {
1766         return lastIndexOf(str, length());
1767     }
1768 
1769     /**
1770      * Returns the index within this string of the last occurrence of the
1771      * specified substring, searching backward starting at the specified index.
1772      *
1773      * <p>The returned index is the largest value {@code k} for which:
1774      * <pre>{@code
1775      *     k <= Math.min(fromIndex, this.length()) &&
1776      *                   this.startsWith(str, k)
1777      * }</pre>
1778      * If no such value of {@code k} exists, then {@code -1} is returned.
1779      *
1780      * @param   str         the substring to search for.
1781      * @param   fromIndex   the index to start the search from.
1782      * @return  the index of the last occurrence of the specified substring,
1783      *          searching backward from the specified index,
1784      *          or {@code -1} if there is no such occurrence.
1785      */
1786     public int lastIndexOf(String str, int fromIndex) {
1787         return lastIndexOf(value, coder(), length(), str, fromIndex);
1788     }
1789 
1790     /**
1791      * Code shared by String and AbstractStringBuilder to do searches. The
1792      * source is the character array being searched, and the target
1793      * is the string being searched for.
1794      *
1795      * @param   src         the characters being searched.
1796      * @param   srcCoder    coder handles the mapping between bytes/chars
1797      * @param   srcCount    count of the source string.
1798      * @param   tgt         the characters being searched for.
1799      * @param   fromIndex   the index to begin searching from.
1800      */
1801     static int lastIndexOf(byte[] src, byte srcCoder, int srcCount,
1802                            String tgtStr, int fromIndex) {
1803         byte[] tgt = tgtStr.value;
1804         byte tgtCoder = tgtStr.coder();
1805         int tgtCount = tgtStr.length();
1806         /*
1807          * Check arguments; return immediately where possible. For
1808          * consistency, don't check for null str.
1809          */
1810         int rightIndex = srcCount - tgtCount;
1811         if (fromIndex > rightIndex) {
1812             fromIndex = rightIndex;
1813         }
1814         if (fromIndex < 0) {
1815             return -1;
1816         }
1817         /* Empty string always matches. */
1818         if (tgtCount == 0) {
1819             return fromIndex;
1820         }
1821         if (srcCoder == tgtCoder) {
1822             return srcCoder == LATIN1
1823                 ? StringLatin1.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex)
1824                 : StringUTF16.lastIndexOf(src, srcCount, tgt, tgtCount, fromIndex);
1825         }
1826         if (srcCoder == LATIN1) {    // && tgtCoder == UTF16
1827             return -1;
1828         }
1829         // srcCoder == UTF16 && tgtCoder == LATIN1
1830         return StringUTF16.lastIndexOfLatin1(src, srcCount, tgt, tgtCount, fromIndex);
1831     }
1832 
1833     /**
1834      * Returns a string that is a substring of this string. The
1835      * substring begins with the character at the specified index and
1836      * extends to the end of this string. <p>
1837      * Examples:
1838      * <blockquote><pre>
1839      * "unhappy".substring(2) returns "happy"
1840      * "Harbison".substring(3) returns "bison"
1841      * "emptiness".substring(9) returns "" (an empty string)
1842      * </pre></blockquote>
1843      *
1844      * @param      beginIndex   the beginning index, inclusive.
1845      * @return     the specified substring.
1846      * @exception  IndexOutOfBoundsException  if
1847      *             {@code beginIndex} is negative or larger than the
1848      *             length of this {@code String} object.
1849      */
1850     public String substring(int beginIndex) {
1851         if (beginIndex < 0) {
1852             throw new StringIndexOutOfBoundsException(beginIndex);
1853         }
1854         int subLen = length() - beginIndex;
1855         if (subLen < 0) {
1856             throw new StringIndexOutOfBoundsException(subLen);
1857         }
1858         if (beginIndex == 0) {
1859             return this;
1860         }
1861         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1862                           : StringUTF16.newString(value, beginIndex, subLen);
1863     }
1864 
1865     /**
1866      * Returns a string that is a substring of this string. The
1867      * substring begins at the specified {@code beginIndex} and
1868      * extends to the character at index {@code endIndex - 1}.
1869      * Thus the length of the substring is {@code endIndex-beginIndex}.
1870      * <p>
1871      * Examples:
1872      * <blockquote><pre>
1873      * "hamburger".substring(4, 8) returns "urge"
1874      * "smiles".substring(1, 5) returns "mile"
1875      * </pre></blockquote>
1876      *
1877      * @param      beginIndex   the beginning index, inclusive.
1878      * @param      endIndex     the ending index, exclusive.
1879      * @return     the specified substring.
1880      * @exception  IndexOutOfBoundsException  if the
1881      *             {@code beginIndex} is negative, or
1882      *             {@code endIndex} is larger than the length of
1883      *             this {@code String} object, or
1884      *             {@code beginIndex} is larger than
1885      *             {@code endIndex}.
1886      */
1887     public String substring(int beginIndex, int endIndex) {
1888         int length = length();
1889         checkBoundsBeginEnd(beginIndex, endIndex, length);
1890         int subLen = endIndex - beginIndex;
1891         if (beginIndex == 0 && endIndex == length) {
1892             return this;
1893         }
1894         return isLatin1() ? StringLatin1.newString(value, beginIndex, subLen)
1895                           : StringUTF16.newString(value, beginIndex, subLen);
1896     }
1897 
1898     /**
1899      * Returns a character sequence that is a subsequence of this sequence.
1900      *
1901      * <p> An invocation of this method of the form
1902      *
1903      * <blockquote><pre>
1904      * str.subSequence(begin,&nbsp;end)</pre></blockquote>
1905      *
1906      * behaves in exactly the same way as the invocation
1907      *
1908      * <blockquote><pre>
1909      * str.substring(begin,&nbsp;end)</pre></blockquote>
1910      *
1911      * @apiNote
1912      * This method is defined so that the {@code String} class can implement
1913      * the {@link CharSequence} interface.
1914      *
1915      * @param   beginIndex   the begin index, inclusive.
1916      * @param   endIndex     the end index, exclusive.
1917      * @return  the specified subsequence.
1918      *
1919      * @throws  IndexOutOfBoundsException
1920      *          if {@code beginIndex} or {@code endIndex} is negative,
1921      *          if {@code endIndex} is greater than {@code length()},
1922      *          or if {@code beginIndex} is greater than {@code endIndex}
1923      *
1924      * @since 1.4
1925      * @spec JSR-51
1926      */
1927     public CharSequence subSequence(int beginIndex, int endIndex) {
1928         return this.substring(beginIndex, endIndex);
1929     }
1930 
1931     /**
1932      * Concatenates the specified string to the end of this string.
1933      * <p>
1934      * If the length of the argument string is {@code 0}, then this
1935      * {@code String} object is returned. Otherwise, a
1936      * {@code String} object is returned that represents a character
1937      * sequence that is the concatenation of the character sequence
1938      * represented by this {@code String} object and the character
1939      * sequence represented by the argument string.<p>
1940      * Examples:
1941      * <blockquote><pre>
1942      * "cares".concat("s") returns "caress"
1943      * "to".concat("get").concat("her") returns "together"
1944      * </pre></blockquote>
1945      *
1946      * @param   str   the {@code String} that is concatenated to the end
1947      *                of this {@code String}.
1948      * @return  a string that represents the concatenation of this object's
1949      *          characters followed by the string argument's characters.
1950      */
1951     public String concat(String str) {
1952         if (str.isEmpty()) {
1953             return this;
1954         }
1955         if (coder() == str.coder()) {
1956             byte[] val = this.value;
1957             byte[] oval = str.value;
1958             int len = val.length + oval.length;
1959             byte[] buf = Arrays.copyOf(val, len);
1960             System.arraycopy(oval, 0, buf, val.length, oval.length);
1961             return new String(buf, coder);
1962         }
1963         int len = length();
1964         int olen = str.length();
1965         byte[] buf = StringUTF16.newBytesFor(len + olen);
1966         getBytes(buf, 0, UTF16);
1967         str.getBytes(buf, len, UTF16);
1968         return new String(buf, UTF16);
1969     }
1970 
1971     /**
1972      * Returns a string resulting from replacing all occurrences of
1973      * {@code oldChar} in this string with {@code newChar}.
1974      * <p>
1975      * If the character {@code oldChar} does not occur in the
1976      * character sequence represented by this {@code String} object,
1977      * then a reference to this {@code String} object is returned.
1978      * Otherwise, a {@code String} object is returned that
1979      * represents a character sequence identical to the character sequence
1980      * represented by this {@code String} object, except that every
1981      * occurrence of {@code oldChar} is replaced by an occurrence
1982      * of {@code newChar}.
1983      * <p>
1984      * Examples:
1985      * <blockquote><pre>
1986      * "mesquite in your cellar".replace('e', 'o')
1987      *         returns "mosquito in your collar"
1988      * "the war of baronets".replace('r', 'y')
1989      *         returns "the way of bayonets"
1990      * "sparring with a purple porpoise".replace('p', 't')
1991      *         returns "starring with a turtle tortoise"
1992      * "JonL".replace('q', 'x') returns "JonL" (no change)
1993      * </pre></blockquote>
1994      *
1995      * @param   oldChar   the old character.
1996      * @param   newChar   the new character.
1997      * @return  a string derived from this string by replacing every
1998      *          occurrence of {@code oldChar} with {@code newChar}.
1999      */
2000     public String replace(char oldChar, char newChar) {
2001         if (oldChar != newChar) {
2002             String ret = isLatin1() ? StringLatin1.replace(value, oldChar, newChar)
2003                                     : StringUTF16.replace(value, oldChar, newChar);
2004             if (ret != null) {
2005                 return ret;
2006             }
2007         }
2008         return this;
2009     }
2010 
2011     /**
2012      * Tells whether or not this string matches the given <a
2013      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2014      *
2015      * <p> An invocation of this method of the form
2016      * <i>str</i>{@code .matches(}<i>regex</i>{@code )} yields exactly the
2017      * same result as the expression
2018      *
2019      * <blockquote>
2020      * {@link java.util.regex.Pattern}.{@link java.util.regex.Pattern#matches(String,CharSequence)
2021      * matches(<i>regex</i>, <i>str</i>)}
2022      * </blockquote>
2023      *
2024      * @param   regex
2025      *          the regular expression to which this string is to be matched
2026      *
2027      * @return  {@code true} if, and only if, this string matches the
2028      *          given regular expression
2029      *
2030      * @throws  PatternSyntaxException
2031      *          if the regular expression's syntax is invalid
2032      *
2033      * @see java.util.regex.Pattern
2034      *
2035      * @since 1.4
2036      * @spec JSR-51
2037      */
2038     public boolean matches(String regex) {
2039         return Pattern.matches(regex, this);
2040     }
2041 
2042     /**
2043      * Returns true if and only if this string contains the specified
2044      * sequence of char values.
2045      *
2046      * @param s the sequence to search for
2047      * @return true if this string contains {@code s}, false otherwise
2048      * @since 1.5
2049      */
2050     public boolean contains(CharSequence s) {
2051         return indexOf(s.toString()) >= 0;
2052     }
2053 
2054     /**
2055      * Replaces the first substring of this string that matches the given <a
2056      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2057      * given replacement.
2058      *
2059      * <p> An invocation of this method of the form
2060      * <i>str</i>{@code .replaceFirst(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2061      * yields exactly the same result as the expression
2062      *
2063      * <blockquote>
2064      * <code>
2065      * {@link java.util.regex.Pattern}.{@link
2066      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2067      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2068      * java.util.regex.Matcher#replaceFirst replaceFirst}(<i>repl</i>)
2069      * </code>
2070      * </blockquote>
2071      *
2072      *<p>
2073      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2074      * replacement string may cause the results to be different than if it were
2075      * being treated as a literal replacement string; see
2076      * {@link java.util.regex.Matcher#replaceFirst}.
2077      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2078      * meaning of these characters, if desired.
2079      *
2080      * @param   regex
2081      *          the regular expression to which this string is to be matched
2082      * @param   replacement
2083      *          the string to be substituted for the first match
2084      *
2085      * @return  The resulting {@code String}
2086      *
2087      * @throws  PatternSyntaxException
2088      *          if the regular expression's syntax is invalid
2089      *
2090      * @see java.util.regex.Pattern
2091      *
2092      * @since 1.4
2093      * @spec JSR-51
2094      */
2095     public String replaceFirst(String regex, String replacement) {
2096         return Pattern.compile(regex).matcher(this).replaceFirst(replacement);
2097     }
2098 
2099     /**
2100      * Replaces each substring of this string that matches the given <a
2101      * href="../util/regex/Pattern.html#sum">regular expression</a> with the
2102      * given replacement.
2103      *
2104      * <p> An invocation of this method of the form
2105      * <i>str</i>{@code .replaceAll(}<i>regex</i>{@code ,} <i>repl</i>{@code )}
2106      * yields exactly the same result as the expression
2107      *
2108      * <blockquote>
2109      * <code>
2110      * {@link java.util.regex.Pattern}.{@link
2111      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2112      * java.util.regex.Pattern#matcher(java.lang.CharSequence) matcher}(<i>str</i>).{@link
2113      * java.util.regex.Matcher#replaceAll replaceAll}(<i>repl</i>)
2114      * </code>
2115      * </blockquote>
2116      *
2117      *<p>
2118      * Note that backslashes ({@code \}) and dollar signs ({@code $}) in the
2119      * replacement string may cause the results to be different than if it were
2120      * being treated as a literal replacement string; see
2121      * {@link java.util.regex.Matcher#replaceAll Matcher.replaceAll}.
2122      * Use {@link java.util.regex.Matcher#quoteReplacement} to suppress the special
2123      * meaning of these characters, if desired.
2124      *
2125      * @param   regex
2126      *          the regular expression to which this string is to be matched
2127      * @param   replacement
2128      *          the string to be substituted for each match
2129      *
2130      * @return  The resulting {@code String}
2131      *
2132      * @throws  PatternSyntaxException
2133      *          if the regular expression's syntax is invalid
2134      *
2135      * @see java.util.regex.Pattern
2136      *
2137      * @since 1.4
2138      * @spec JSR-51
2139      */
2140     public String replaceAll(String regex, String replacement) {
2141         return Pattern.compile(regex).matcher(this).replaceAll(replacement);
2142     }
2143 
2144     /**
2145      * Replaces each substring of this string that matches the literal target
2146      * sequence with the specified literal replacement sequence. The
2147      * replacement proceeds from the beginning of the string to the end, for
2148      * example, replacing "aa" with "b" in the string "aaa" will result in
2149      * "ba" rather than "ab".
2150      *
2151      * @param  target The sequence of char values to be replaced
2152      * @param  replacement The replacement sequence of char values
2153      * @return  The resulting string
2154      * @since 1.5
2155      */
2156     public String replace(CharSequence target, CharSequence replacement) {
2157         String tgtStr = target.toString();
2158         String replStr = replacement.toString();
2159         int j = indexOf(tgtStr);
2160         if (j < 0) {
2161             return this;
2162         }
2163         int tgtLen = tgtStr.length();
2164         int tgtLen1 = Math.max(tgtLen, 1);
2165         int thisLen = length();
2166 
2167         int newLenHint = thisLen - tgtLen + replStr.length();
2168         if (newLenHint < 0) {
2169             throw new OutOfMemoryError();
2170         }
2171         StringBuilder sb = new StringBuilder(newLenHint);
2172         int i = 0;
2173         do {
2174             sb.append(this, i, j).append(replStr);
2175             i = j + tgtLen;
2176         } while (j < thisLen && (j = indexOf(tgtStr, j + tgtLen1)) > 0);
2177         return sb.append(this, i, thisLen).toString();
2178     }
2179 
2180     /**
2181      * Splits this string around matches of the given
2182      * <a href="../util/regex/Pattern.html#sum">regular expression</a>.
2183      *
2184      * <p> The array returned by this method contains each substring of this
2185      * string that is terminated by another substring that matches the given
2186      * expression or is terminated by the end of the string.  The substrings in
2187      * the array are in the order in which they occur in this string.  If the
2188      * expression does not match any part of the input then the resulting array
2189      * has just one element, namely this string.
2190      *
2191      * <p> When there is a positive-width match at the beginning of this
2192      * string then an empty leading substring is included at the beginning
2193      * of the resulting array. A zero-width match at the beginning however
2194      * never produces such empty leading substring.
2195      *
2196      * <p> The {@code limit} parameter controls the number of times the
2197      * pattern is applied and therefore affects the length of the resulting
2198      * array.
2199      * <ul>
2200      *    <li><p>
2201      *    If the <i>limit</i> is positive then the pattern will be applied
2202      *    at most <i>limit</i>&nbsp;-&nbsp;1 times, the array's length will be
2203      *    no greater than <i>limit</i>, and the array's last entry will contain
2204      *    all input beyond the last matched delimiter.</p></li>
2205      *
2206      *    <li><p>
2207      *    If the <i>limit</i> is zero then the pattern will be applied as
2208      *    many times as possible, the array can have any length, and trailing
2209      *    empty strings will be discarded.</p></li>
2210      *
2211      *    <li><p>
2212      *    If the <i>limit</i> is negative then the pattern will be applied
2213      *    as many times as possible and the array can have any length.</p></li>
2214      * </ul>
2215      *
2216      * <p> The string {@code "boo:and:foo"}, for example, yields the
2217      * following results with these parameters:
2218      *
2219      * <blockquote><table class="plain">
2220      * <caption style="display:none">Split example showing regex, limit, and result</caption>
2221      * <thead>
2222      * <tr>
2223      *     <th scope="col">Regex</th>
2224      *     <th scope="col">Limit</th>
2225      *     <th scope="col">Result</th>
2226      * </tr>
2227      * </thead>
2228      * <tbody>
2229      * <tr><th scope="row" rowspan="3" style="font-weight:normal">:</th>
2230      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">2</th>
2231      *     <td>{@code { "boo", "and:foo" }}</td></tr>
2232      * <tr><!-- : -->
2233      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2234      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2235      * <tr><!-- : -->
2236      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2237      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2238      * <tr><th scope="row" rowspan="3" style="font-weight:normal">o</th>
2239      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">5</th>
2240      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2241      * <tr><!-- o -->
2242      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">-2</th>
2243      *     <td>{@code { "b", "", ":and:f", "", "" }}</td></tr>
2244      * <tr><!-- o -->
2245      *     <th scope="row" style="font-weight:normal; text-align:right; padding-right:1em">0</th>
2246      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2247      * </tbody>
2248      * </table></blockquote>
2249      *
2250      * <p> An invocation of this method of the form
2251      * <i>str.</i>{@code split(}<i>regex</i>{@code ,}&nbsp;<i>n</i>{@code )}
2252      * yields the same result as the expression
2253      *
2254      * <blockquote>
2255      * <code>
2256      * {@link java.util.regex.Pattern}.{@link
2257      * java.util.regex.Pattern#compile compile}(<i>regex</i>).{@link
2258      * java.util.regex.Pattern#split(java.lang.CharSequence,int) split}(<i>str</i>,&nbsp;<i>n</i>)
2259      * </code>
2260      * </blockquote>
2261      *
2262      *
2263      * @param  regex
2264      *         the delimiting regular expression
2265      *
2266      * @param  limit
2267      *         the result threshold, as described above
2268      *
2269      * @return  the array of strings computed by splitting this string
2270      *          around matches of the given regular expression
2271      *
2272      * @throws  PatternSyntaxException
2273      *          if the regular expression's syntax is invalid
2274      *
2275      * @see java.util.regex.Pattern
2276      *
2277      * @since 1.4
2278      * @spec JSR-51
2279      */
2280     public String[] split(String regex, int limit) {
2281         /* fastpath if the regex is a
2282          (1)one-char String and this character is not one of the
2283             RegEx's meta characters ".$|()[{^?*+\\", or
2284          (2)two-char String and the first char is the backslash and
2285             the second is not the ascii digit or ascii letter.
2286          */
2287         char ch = 0;
2288         if (((regex.length() == 1 &&
2289              ".$|()[{^?*+\\".indexOf(ch = regex.charAt(0)) == -1) ||
2290              (regex.length() == 2 &&
2291               regex.charAt(0) == '\\' &&
2292               (((ch = regex.charAt(1))-'0')|('9'-ch)) < 0 &&
2293               ((ch-'a')|('z'-ch)) < 0 &&
2294               ((ch-'A')|('Z'-ch)) < 0)) &&
2295             (ch < Character.MIN_HIGH_SURROGATE ||
2296              ch > Character.MAX_LOW_SURROGATE))
2297         {
2298             int off = 0;
2299             int next = 0;
2300             boolean limited = limit > 0;
2301             ArrayList<String> list = new ArrayList<>();
2302             while ((next = indexOf(ch, off)) != -1) {
2303                 if (!limited || list.size() < limit - 1) {
2304                     list.add(substring(off, next));
2305                     off = next + 1;
2306                 } else {    // last one
2307                     //assert (list.size() == limit - 1);
2308                     int last = length();
2309                     list.add(substring(off, last));
2310                     off = last;
2311                     break;
2312                 }
2313             }
2314             // If no match was found, return this
2315             if (off == 0)
2316                 return new String[]{this};
2317 
2318             // Add remaining segment
2319             if (!limited || list.size() < limit)
2320                 list.add(substring(off, length()));
2321 
2322             // Construct result
2323             int resultSize = list.size();
2324             if (limit == 0) {
2325                 while (resultSize > 0 && list.get(resultSize - 1).isEmpty()) {
2326                     resultSize--;
2327                 }
2328             }
2329             String[] result = new String[resultSize];
2330             return list.subList(0, resultSize).toArray(result);
2331         }
2332         return Pattern.compile(regex).split(this, limit);
2333     }
2334 
2335     /**
2336      * Splits this string around matches of the given <a
2337      * href="../util/regex/Pattern.html#sum">regular expression</a>.
2338      *
2339      * <p> This method works as if by invoking the two-argument {@link
2340      * #split(String, int) split} method with the given expression and a limit
2341      * argument of zero.  Trailing empty strings are therefore not included in
2342      * the resulting array.
2343      *
2344      * <p> The string {@code "boo:and:foo"}, for example, yields the following
2345      * results with these expressions:
2346      *
2347      * <blockquote><table class="plain">
2348      * <caption style="display:none">Split examples showing regex and result</caption>
2349      * <thead>
2350      * <tr>
2351      *  <th scope="col">Regex</th>
2352      *  <th scope="col">Result</th>
2353      * </tr>
2354      * </thead>
2355      * <tbody>
2356      * <tr><th scope="row" style="text-weight:normal">:</th>
2357      *     <td>{@code { "boo", "and", "foo" }}</td></tr>
2358      * <tr><th scope="row" style="text-weight:normal">o</th>
2359      *     <td>{@code { "b", "", ":and:f" }}</td></tr>
2360      * </tbody>
2361      * </table></blockquote>
2362      *
2363      *
2364      * @param  regex
2365      *         the delimiting regular expression
2366      *
2367      * @return  the array of strings computed by splitting this string
2368      *          around matches of the given regular expression
2369      *
2370      * @throws  PatternSyntaxException
2371      *          if the regular expression's syntax is invalid
2372      *
2373      * @see java.util.regex.Pattern
2374      *
2375      * @since 1.4
2376      * @spec JSR-51
2377      */
2378     public String[] split(String regex) {
2379         return split(regex, 0);
2380     }
2381 
2382     /**
2383      * Returns a new String composed of copies of the
2384      * {@code CharSequence elements} joined together with a copy of
2385      * the specified {@code delimiter}.
2386      *
2387      * <blockquote>For example,
2388      * <pre>{@code
2389      *     String message = String.join("-", "Java", "is", "cool");
2390      *     // message returned is: "Java-is-cool"
2391      * }</pre></blockquote>
2392      *
2393      * Note that if an element is null, then {@code "null"} is added.
2394      *
2395      * @param  delimiter the delimiter that separates each element
2396      * @param  elements the elements to join together.
2397      *
2398      * @return a new {@code String} that is composed of the {@code elements}
2399      *         separated by the {@code delimiter}
2400      *
2401      * @throws NullPointerException If {@code delimiter} or {@code elements}
2402      *         is {@code null}
2403      *
2404      * @see java.util.StringJoiner
2405      * @since 1.8
2406      */
2407     public static String join(CharSequence delimiter, CharSequence... elements) {
2408         Objects.requireNonNull(delimiter);
2409         Objects.requireNonNull(elements);
2410         // Number of elements not likely worth Arrays.stream overhead.
2411         StringJoiner joiner = new StringJoiner(delimiter);
2412         for (CharSequence cs: elements) {
2413             joiner.add(cs);
2414         }
2415         return joiner.toString();
2416     }
2417 
2418     /**
2419      * Returns a new {@code String} composed of copies of the
2420      * {@code CharSequence elements} joined together with a copy of the
2421      * specified {@code delimiter}.
2422      *
2423      * <blockquote>For example,
2424      * <pre>{@code
2425      *     List<String> strings = List.of("Java", "is", "cool");
2426      *     String message = String.join(" ", strings);
2427      *     //message returned is: "Java is cool"
2428      *
2429      *     Set<String> strings =
2430      *         new LinkedHashSet<>(List.of("Java", "is", "very", "cool"));
2431      *     String message = String.join("-", strings);
2432      *     //message returned is: "Java-is-very-cool"
2433      * }</pre></blockquote>
2434      *
2435      * Note that if an individual element is {@code null}, then {@code "null"} is added.
2436      *
2437      * @param  delimiter a sequence of characters that is used to separate each
2438      *         of the {@code elements} in the resulting {@code String}
2439      * @param  elements an {@code Iterable} that will have its {@code elements}
2440      *         joined together.
2441      *
2442      * @return a new {@code String} that is composed from the {@code elements}
2443      *         argument
2444      *
2445      * @throws NullPointerException If {@code delimiter} or {@code elements}
2446      *         is {@code null}
2447      *
2448      * @see    #join(CharSequence,CharSequence...)
2449      * @see    java.util.StringJoiner
2450      * @since 1.8
2451      */
2452     public static String join(CharSequence delimiter,
2453             Iterable<? extends CharSequence> elements) {
2454         Objects.requireNonNull(delimiter);
2455         Objects.requireNonNull(elements);
2456         StringJoiner joiner = new StringJoiner(delimiter);
2457         for (CharSequence cs: elements) {
2458             joiner.add(cs);
2459         }
2460         return joiner.toString();
2461     }
2462 
2463     /**
2464      * Converts all of the characters in this {@code String} to lower
2465      * case using the rules of the given {@code Locale}.  Case mapping is based
2466      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2467      * class. Since case mappings are not always 1:1 char mappings, the resulting
2468      * {@code String} may be a different length than the original {@code String}.
2469      * <p>
2470      * Examples of lowercase  mappings are in the following table:
2471      * <table class="plain">
2472      * <caption style="display:none">Lowercase mapping examples showing language code of locale, upper case, lower case, and description</caption>
2473      * <thead>
2474      * <tr>
2475      *   <th scope="col">Language Code of Locale</th>
2476      *   <th scope="col">Upper Case</th>
2477      *   <th scope="col">Lower Case</th>
2478      *   <th scope="col">Description</th>
2479      * </tr>
2480      * </thead>
2481      * <tbody>
2482      * <tr>
2483      *   <td>tr (Turkish)</td>
2484      *   <th scope="row" style="font-weight:normal; text-align:left">\u0130</th>
2485      *   <td>\u0069</td>
2486      *   <td>capital letter I with dot above -&gt; small letter i</td>
2487      * </tr>
2488      * <tr>
2489      *   <td>tr (Turkish)</td>
2490      *   <th scope="row" style="font-weight:normal; text-align:left">\u0049</th>
2491      *   <td>\u0131</td>
2492      *   <td>capital letter I -&gt; small letter dotless i </td>
2493      * </tr>
2494      * <tr>
2495      *   <td>(all)</td>
2496      *   <th scope="row" style="font-weight:normal; text-align:left">French Fries</th>
2497      *   <td>french fries</td>
2498      *   <td>lowercased all chars in String</td>
2499      * </tr>
2500      * <tr>
2501      *   <td>(all)</td>
2502      *   <th scope="row" style="font-weight:normal; text-align:left">
2503      *       &Iota;&Chi;&Theta;&Upsilon;&Sigma;</th>
2504      *   <td>&iota;&chi;&theta;&upsilon;&sigma;</td>
2505      *   <td>lowercased all chars in String</td>
2506      * </tr>
2507      * </tbody>
2508      * </table>
2509      *
2510      * @param locale use the case transformation rules for this locale
2511      * @return the {@code String}, converted to lowercase.
2512      * @see     java.lang.String#toLowerCase()
2513      * @see     java.lang.String#toUpperCase()
2514      * @see     java.lang.String#toUpperCase(Locale)
2515      * @since   1.1
2516      */
2517     public String toLowerCase(Locale locale) {
2518         return isLatin1() ? StringLatin1.toLowerCase(this, value, locale)
2519                           : StringUTF16.toLowerCase(this, value, locale);
2520     }
2521 
2522     /**
2523      * Converts all of the characters in this {@code String} to lower
2524      * case using the rules of the default locale. This is equivalent to calling
2525      * {@code toLowerCase(Locale.getDefault())}.
2526      * <p>
2527      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2528      * results if used for strings that are intended to be interpreted locale
2529      * independently.
2530      * Examples are programming language identifiers, protocol keys, and HTML
2531      * tags.
2532      * For instance, {@code "TITLE".toLowerCase()} in a Turkish locale
2533      * returns {@code "t\u005Cu0131tle"}, where '\u005Cu0131' is the
2534      * LATIN SMALL LETTER DOTLESS I character.
2535      * To obtain correct results for locale insensitive strings, use
2536      * {@code toLowerCase(Locale.ROOT)}.
2537      *
2538      * @return  the {@code String}, converted to lowercase.
2539      * @see     java.lang.String#toLowerCase(Locale)
2540      */
2541     public String toLowerCase() {
2542         return toLowerCase(Locale.getDefault());
2543     }
2544 
2545     /**
2546      * Converts all of the characters in this {@code String} to upper
2547      * case using the rules of the given {@code Locale}. Case mapping is based
2548      * on the Unicode Standard version specified by the {@link java.lang.Character Character}
2549      * class. Since case mappings are not always 1:1 char mappings, the resulting
2550      * {@code String} may be a different length than the original {@code String}.
2551      * <p>
2552      * Examples of locale-sensitive and 1:M case mappings are in the following table.
2553      *
2554      * <table class="plain">
2555      * <caption style="display:none">Examples of locale-sensitive and 1:M case mappings. Shows Language code of locale, lower case, upper case, and description.</caption>
2556      * <thead>
2557      * <tr>
2558      *   <th scope="col">Language Code of Locale</th>
2559      *   <th scope="col">Lower Case</th>
2560      *   <th scope="col">Upper Case</th>
2561      *   <th scope="col">Description</th>
2562      * </tr>
2563      * </thead>
2564      * <tbody>
2565      * <tr>
2566      *   <td>tr (Turkish)</td>
2567      *   <th scope="row" style="font-weight:normal; text-align:left">\u0069</th>
2568      *   <td>\u0130</td>
2569      *   <td>small letter i -&gt; capital letter I with dot above</td>
2570      * </tr>
2571      * <tr>
2572      *   <td>tr (Turkish)</td>
2573      *   <th scope="row" style="font-weight:normal; text-align:left">\u0131</th>
2574      *   <td>\u0049</td>
2575      *   <td>small letter dotless i -&gt; capital letter I</td>
2576      * </tr>
2577      * <tr>
2578      *   <td>(all)</td>
2579      *   <th scope="row" style="font-weight:normal; text-align:left">\u00df</th>
2580      *   <td>\u0053 \u0053</td>
2581      *   <td>small letter sharp s -&gt; two letters: SS</td>
2582      * </tr>
2583      * <tr>
2584      *   <td>(all)</td>
2585      *   <th scope="row" style="font-weight:normal; text-align:left">Fahrvergn&uuml;gen</th>
2586      *   <td>FAHRVERGN&Uuml;GEN</td>
2587      *   <td></td>
2588      * </tr>
2589      * </tbody>
2590      * </table>
2591      * @param locale use the case transformation rules for this locale
2592      * @return the {@code String}, converted to uppercase.
2593      * @see     java.lang.String#toUpperCase()
2594      * @see     java.lang.String#toLowerCase()
2595      * @see     java.lang.String#toLowerCase(Locale)
2596      * @since   1.1
2597      */
2598     public String toUpperCase(Locale locale) {
2599         return isLatin1() ? StringLatin1.toUpperCase(this, value, locale)
2600                           : StringUTF16.toUpperCase(this, value, locale);
2601     }
2602 
2603     /**
2604      * Converts all of the characters in this {@code String} to upper
2605      * case using the rules of the default locale. This method is equivalent to
2606      * {@code toUpperCase(Locale.getDefault())}.
2607      * <p>
2608      * <b>Note:</b> This method is locale sensitive, and may produce unexpected
2609      * results if used for strings that are intended to be interpreted locale
2610      * independently.
2611      * Examples are programming language identifiers, protocol keys, and HTML
2612      * tags.
2613      * For instance, {@code "title".toUpperCase()} in a Turkish locale
2614      * returns {@code "T\u005Cu0130TLE"}, where '\u005Cu0130' is the
2615      * LATIN CAPITAL LETTER I WITH DOT ABOVE character.
2616      * To obtain correct results for locale insensitive strings, use
2617      * {@code toUpperCase(Locale.ROOT)}.
2618      *
2619      * @return  the {@code String}, converted to uppercase.
2620      * @see     java.lang.String#toUpperCase(Locale)
2621      */
2622     public String toUpperCase() {
2623         return toUpperCase(Locale.getDefault());
2624     }
2625 
2626     /**
2627      * Returns a string whose value is this string, with all leading
2628      * and trailing space removed, where space is defined
2629      * as any character whose codepoint is less than or equal to
2630      * {@code 'U+0020'} (the space character).
2631      * <p>
2632      * If this {@code String} object represents an empty character
2633      * sequence, or the first and last characters of character sequence
2634      * represented by this {@code String} object both have codes
2635      * that are not space (as defined above), then a
2636      * reference to this {@code String} object is returned.
2637      * <p>
2638      * Otherwise, if all characters in this string are space (as
2639      * defined above), then a  {@code String} object representing an
2640      * empty string is returned.
2641      * <p>
2642      * Otherwise, let <i>k</i> be the index of the first character in the
2643      * string whose code is not a space (as defined above) and let
2644      * <i>m</i> be the index of the last character in the string whose code
2645      * is not a space (as defined above). A {@code String}
2646      * object is returned, representing the substring of this string that
2647      * begins with the character at index <i>k</i> and ends with the
2648      * character at index <i>m</i>-that is, the result of
2649      * {@code this.substring(k, m + 1)}.
2650      * <p>
2651      * This method may be used to trim space (as defined above) from
2652      * the beginning and end of a string.
2653      *
2654      * @return  a string whose value is this string, with all leading
2655      *          and trailing space removed, or this string if it
2656      *          has no leading or trailing space.
2657      */
2658     public String trim() {
2659         String ret = isLatin1() ? StringLatin1.trim(value)
2660                                 : StringUTF16.trim(value);
2661         return ret == null ? this : ret;
2662     }
2663 
2664     /**
2665      * Returns a string whose value is this string, with all leading
2666      * and trailing {@link Character#isWhitespace(int) white space}
2667      * removed.
2668      * <p>
2669      * If this {@code String} object represents an empty string,
2670      * or if all code points in this string are
2671      * {@link Character#isWhitespace(int) white space}, then an empty string
2672      * is returned.
2673      * <p>
2674      * Otherwise, returns a substring of this string beginning with the first
2675      * code point that is not a {@link Character#isWhitespace(int) white space}
2676      * up to and including the last code point that is not a
2677      * {@link Character#isWhitespace(int) white space}.
2678      * <p>
2679      * This method may be used to strip
2680      * {@link Character#isWhitespace(int) white space} from
2681      * the beginning and end of a string.
2682      *
2683      * @return  a string whose value is this string, with all leading
2684      *          and trailing white space removed
2685      *
2686      * @see Character#isWhitespace(int)
2687      *
2688      * @since 11
2689      */
2690     public String strip() {
2691         String ret = isLatin1() ? StringLatin1.strip(value)
2692                                 : StringUTF16.strip(value);
2693         return ret == null ? this : ret;
2694     }
2695 
2696     /**
2697      * Returns a string whose value is this string, with all leading
2698      * {@link Character#isWhitespace(int) white space} removed.
2699      * <p>
2700      * If this {@code String} object represents an empty string,
2701      * or if all code points in this string are
2702      * {@link Character#isWhitespace(int) white space}, then an empty string
2703      * is returned.
2704      * <p>
2705      * Otherwise, returns a substring of this string beginning with the first
2706      * code point that is not a {@link Character#isWhitespace(int) white space}
2707      * up to and including the last code point of this string.
2708      * <p>
2709      * This method may be used to trim
2710      * {@link Character#isWhitespace(int) white space} from
2711      * the beginning of a string.
2712      *
2713      * @return  a string whose value is this string, with all leading white
2714      *          space removed
2715      *
2716      * @see Character#isWhitespace(int)
2717      *
2718      * @since 11
2719      */
2720     public String stripLeading() {
2721         String ret = isLatin1() ? StringLatin1.stripLeading(value)
2722                                 : StringUTF16.stripLeading(value);
2723         return ret == null ? this : ret;
2724     }
2725 
2726     /**
2727      * Returns a string whose value is this string, with all trailing
2728      * {@link Character#isWhitespace(int) white space} removed.
2729      * <p>
2730      * If this {@code String} object represents an empty string,
2731      * or if all characters in this string are
2732      * {@link Character#isWhitespace(int) white space}, then an empty string
2733      * is returned.
2734      * <p>
2735      * Otherwise, returns a substring of this string beginning with the first
2736      * code point of this string up to and including the last code point
2737      * that is not a {@link Character#isWhitespace(int) white space}.
2738      * <p>
2739      * This method may be used to trim
2740      * {@link Character#isWhitespace(int) white space} from
2741      * the end of a string.
2742      *
2743      * @return  a string whose value is this string, with all trailing white
2744      *          space removed
2745      *
2746      * @see Character#isWhitespace(int)
2747      *
2748      * @since 11
2749      */
2750     public String stripTrailing() {
2751         String ret = isLatin1() ? StringLatin1.stripTrailing(value)
2752                                 : StringUTF16.stripTrailing(value);
2753         return ret == null ? this : ret;
2754     }
2755 
2756     /**
2757      * Returns {@code true} if the string is empty or contains only
2758      * {@link Character#isWhitespace(int) white space} codepoints,
2759      * otherwise {@code false}.
2760      *
2761      * @return {@code true} if the string is empty or contains only
2762      *         {@link Character#isWhitespace(int) white space} codepoints,
2763      *         otherwise {@code false}
2764      *
2765      * @see Character#isWhitespace(int)
2766      *
2767      * @since 11
2768      */
2769     public boolean isBlank() {
2770         return indexOfNonWhitespace() == length();
2771     }
2772 
2773     private Stream<String> lines(int maxLeading, int maxTrailing) {
2774         return isLatin1() ? StringLatin1.lines(value, maxLeading, maxTrailing)
2775                           : StringUTF16.lines(value, maxLeading, maxTrailing);
2776     }
2777 
2778     /**
2779      * Returns a stream of lines extracted from this string,
2780      * separated by line terminators.
2781      * <p>
2782      * A <i>line terminator</i> is one of the following:
2783      * a line feed character {@code "\n"} (U+000A),
2784      * a carriage return character {@code "\r"} (U+000D),
2785      * or a carriage return followed immediately by a line feed
2786      * {@code "\r\n"} (U+000D U+000A).
2787      * <p>
2788      * A <i>line</i> is either a sequence of zero or more characters
2789      * followed by a line terminator, or it is a sequence of one or
2790      * more characters followed by the end of the string. A
2791      * line does not include the line terminator.
2792      * <p>
2793      * The stream returned by this method contains the lines from
2794      * this string in the order in which they occur.
2795      *
2796      * @apiNote This definition of <i>line</i> implies that an empty
2797      *          string has zero lines and that there is no empty line
2798      *          following a line terminator at the end of a string.
2799      *
2800      * @implNote This method provides better performance than
2801      *           split("\R") by supplying elements lazily and
2802      *           by faster search of new line terminators.
2803      *
2804      * @return  the stream of lines extracted from this string
2805      *
2806      * @since 11
2807      */
2808     public Stream<String> lines() {
2809         return lines(0, 0);
2810     }
2811 
2812     /**
2813      * Adjusts the indentation of each line of this string based on the value of
2814      * {@code n}, and normalizes line termination characters.
2815      * <p>
2816      * This string is conceptually separated into lines using
2817      * {@link String#lines()}. Each line is then adjusted as described below
2818      * and then suffixed with a line feed {@code "\n"} (U+000A). The resulting
2819      * lines are then concatenated and returned.
2820      * <p>
2821      * If {@code n > 0} then {@code n} spaces (U+0020) are inserted at the
2822      * beginning of each line.
2823      * <p>
2824      * If {@code n < 0} then up to {@code n}
2825      * {@link Character#isWhitespace(int) white space characters} are removed
2826      * from the beginning of each line. If a given line does not contain
2827      * sufficient white space then all leading
2828      * {@link Character#isWhitespace(int) white space characters} are removed.
2829      * Each white space character is treated as a single character. In
2830      * particular, the tab character {@code "\t"} (U+0009) is considered a
2831      * single character; it is not expanded.
2832      * <p>
2833      * If {@code n == 0} then the line remains unchanged. However, line
2834      * terminators are still normalized.
2835      *
2836      * @param n  number of leading
2837      *           {@link Character#isWhitespace(int) white space characters}
2838      *           to add or remove
2839      *
2840      * @return string with indentation adjusted and line endings normalized
2841      *
2842      * @see String#lines()
2843      * @see String#isBlank()
2844      * @see Character#isWhitespace(int)
2845      *
2846      * @since 12
2847      */
2848     public String indent(int n) {
2849         return isEmpty() ? "" :  indent(n, false);
2850     }
2851 
2852     private String indent(int n, boolean removeBlanks) {
2853         Stream<String> stream = removeBlanks ? lines(Integer.MAX_VALUE, Integer.MAX_VALUE)
2854                                              : lines();
2855         if (n > 0) {
2856             final String spaces = " ".repeat(n);
2857             stream = stream.map(s -> spaces + s);
2858         } else if (n == Integer.MIN_VALUE) {
2859             stream = stream.map(s -> s.stripLeading());
2860         } else if (n < 0) {
2861             stream = stream.map(s -> s.substring(Math.min(-n, s.indexOfNonWhitespace())));
2862         }
2863         return stream.collect(Collectors.joining("\n", "", "\n"));
2864     }
2865 
2866     private int indexOfNonWhitespace() {
2867         return isLatin1() ? StringLatin1.indexOfNonWhitespace(value)
2868                           : StringUTF16.indexOfNonWhitespace(value);
2869     }
2870 
2871     private int lastIndexOfNonWhitespace() {
2872         return isLatin1() ? StringLatin1.lastIndexOfNonWhitespace(value)
2873                           : StringUTF16.lastIndexOfNonWhitespace(value);
2874     }
2875 
2876     /**
2877      * This method allows the application of a function to {@code this}
2878      * string. The function should expect a single String argument
2879      * and produce an {@code R} result.
2880      * <p>
2881      * Any exception thrown by {@code f()} will be propagated to the
2882      * caller.
2883      *
2884      * @param f    functional interface to a apply
2885      *
2886      * @param <R>  class of the result
2887      *
2888      * @return     the result of applying the function to this string
2889      *
2890      * @see java.util.function.Function
2891      *
2892      * @since 12
2893      */
2894     public <R> R transform(Function<? super String, ? extends R> f) {
2895         return f.apply(this);
2896     }
2897 
2898     /**
2899      * This object (which is already a string!) is itself returned.
2900      *
2901      * @return  the string itself.
2902      */
2903     public String toString() {
2904         return this;
2905     }
2906 
2907     /**
2908      * Returns a stream of {@code int} zero-extending the {@code char} values
2909      * from this sequence.  Any char which maps to a <a
2910      * href="{@docRoot}/java.base/java/lang/Character.html#unicode">surrogate code
2911      * point</a> is passed through uninterpreted.
2912      *
2913      * @return an IntStream of char values from this sequence
2914      * @since 9
2915      */
2916     @Override
2917     public IntStream chars() {
2918         return StreamSupport.intStream(
2919             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2920                        : new StringUTF16.CharsSpliterator(value, Spliterator.IMMUTABLE),
2921             false);
2922     }
2923 
2924 
2925     /**
2926      * Returns a stream of code point values from this sequence.  Any surrogate
2927      * pairs encountered in the sequence are combined as if by {@linkplain
2928      * Character#toCodePoint Character.toCodePoint} and the result is passed
2929      * to the stream. Any other code units, including ordinary BMP characters,
2930      * unpaired surrogates, and undefined code units, are zero-extended to
2931      * {@code int} values which are then passed to the stream.
2932      *
2933      * @return an IntStream of Unicode code points from this sequence
2934      * @since 9
2935      */
2936     @Override
2937     public IntStream codePoints() {
2938         return StreamSupport.intStream(
2939             isLatin1() ? new StringLatin1.CharsSpliterator(value, Spliterator.IMMUTABLE)
2940                        : new StringUTF16.CodePointsSpliterator(value, Spliterator.IMMUTABLE),
2941             false);
2942     }
2943 
2944     /**
2945      * Converts this string to a new character array.
2946      *
2947      * @return  a newly allocated character array whose length is the length
2948      *          of this string and whose contents are initialized to contain
2949      *          the character sequence represented by this string.
2950      */
2951     public char[] toCharArray() {
2952         return isLatin1() ? StringLatin1.toChars(value)
2953                           : StringUTF16.toChars(value);
2954     }
2955 
2956     /**
2957      * Returns a formatted string using the specified format string and
2958      * arguments.
2959      *
2960      * <p> The locale always used is the one returned by {@link
2961      * java.util.Locale#getDefault(java.util.Locale.Category)
2962      * Locale.getDefault(Locale.Category)} with
2963      * {@link java.util.Locale.Category#FORMAT FORMAT} category specified.
2964      *
2965      * @param  format
2966      *         A <a href="../util/Formatter.html#syntax">format string</a>
2967      *
2968      * @param  args
2969      *         Arguments referenced by the format specifiers in the format
2970      *         string.  If there are more arguments than format specifiers, the
2971      *         extra arguments are ignored.  The number of arguments is
2972      *         variable and may be zero.  The maximum number of arguments is
2973      *         limited by the maximum dimension of a Java array as defined by
2974      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
2975      *         The behaviour on a
2976      *         {@code null} argument depends on the <a
2977      *         href="../util/Formatter.html#syntax">conversion</a>.
2978      *
2979      * @throws  java.util.IllegalFormatException
2980      *          If a format string contains an illegal syntax, a format
2981      *          specifier that is incompatible with the given arguments,
2982      *          insufficient arguments given the format string, or other
2983      *          illegal conditions.  For specification of all possible
2984      *          formatting errors, see the <a
2985      *          href="../util/Formatter.html#detail">Details</a> section of the
2986      *          formatter class specification.
2987      *
2988      * @return  A formatted string
2989      *
2990      * @see  java.util.Formatter
2991      * @since  1.5
2992      */
2993     public static String format(String format, Object... args) {
2994         return new Formatter().format(format, args).toString();
2995     }
2996 
2997     /**
2998      * Returns a formatted string using the specified locale, format string,
2999      * and arguments.
3000      *
3001      * @param  l
3002      *         The {@linkplain java.util.Locale locale} to apply during
3003      *         formatting.  If {@code l} is {@code null} then no localization
3004      *         is applied.
3005      *
3006      * @param  format
3007      *         A <a href="../util/Formatter.html#syntax">format string</a>
3008      *
3009      * @param  args
3010      *         Arguments referenced by the format specifiers in the format
3011      *         string.  If there are more arguments than format specifiers, the
3012      *         extra arguments are ignored.  The number of arguments is
3013      *         variable and may be zero.  The maximum number of arguments is
3014      *         limited by the maximum dimension of a Java array as defined by
3015      *         <cite>The Java&trade; Virtual Machine Specification</cite>.
3016      *         The behaviour on a
3017      *         {@code null} argument depends on the
3018      *         <a href="../util/Formatter.html#syntax">conversion</a>.
3019      *
3020      * @throws  java.util.IllegalFormatException
3021      *          If a format string contains an illegal syntax, a format
3022      *          specifier that is incompatible with the given arguments,
3023      *          insufficient arguments given the format string, or other
3024      *          illegal conditions.  For specification of all possible
3025      *          formatting errors, see the <a
3026      *          href="../util/Formatter.html#detail">Details</a> section of the
3027      *          formatter class specification
3028      *
3029      * @return  A formatted string
3030      *
3031      * @see  java.util.Formatter
3032      * @since  1.5
3033      */
3034     public static String format(Locale l, String format, Object... args) {
3035         return new Formatter(l).format(format, args).toString();
3036     }
3037 
3038     /**
3039      * Returns the string representation of the {@code Object} argument.
3040      *
3041      * @param   obj   an {@code Object}.
3042      * @return  if the argument is {@code null}, then a string equal to
3043      *          {@code "null"}; otherwise, the value of
3044      *          {@code obj.toString()} is returned.
3045      * @see     java.lang.Object#toString()
3046      */
3047     public static String valueOf(Object obj) {
3048         return (obj == null) ? "null" : obj.toString();
3049     }
3050 
3051     /**
3052      * Returns the string representation of the {@code char} array
3053      * argument. The contents of the character array are copied; subsequent
3054      * modification of the character array does not affect the returned
3055      * string.
3056      *
3057      * @param   data     the character array.
3058      * @return  a {@code String} that contains the characters of the
3059      *          character array.
3060      */
3061     public static String valueOf(char data[]) {
3062         return new String(data);
3063     }
3064 
3065     /**
3066      * Returns the string representation of a specific subarray of the
3067      * {@code char} array argument.
3068      * <p>
3069      * The {@code offset} argument is the index of the first
3070      * character of the subarray. The {@code count} argument
3071      * specifies the length of the subarray. The contents of the subarray
3072      * are copied; subsequent modification of the character array does not
3073      * affect the returned string.
3074      *
3075      * @param   data     the character array.
3076      * @param   offset   initial offset of the subarray.
3077      * @param   count    length of the subarray.
3078      * @return  a {@code String} that contains the characters of the
3079      *          specified subarray of the character array.
3080      * @exception IndexOutOfBoundsException if {@code offset} is
3081      *          negative, or {@code count} is negative, or
3082      *          {@code offset+count} is larger than
3083      *          {@code data.length}.
3084      */
3085     public static String valueOf(char data[], int offset, int count) {
3086         return new String(data, offset, count);
3087     }
3088 
3089     /**
3090      * Equivalent to {@link #valueOf(char[], int, int)}.
3091      *
3092      * @param   data     the character array.
3093      * @param   offset   initial offset of the subarray.
3094      * @param   count    length of the subarray.
3095      * @return  a {@code String} that contains the characters of the
3096      *          specified subarray of the character array.
3097      * @exception IndexOutOfBoundsException if {@code offset} is
3098      *          negative, or {@code count} is negative, or
3099      *          {@code offset+count} is larger than
3100      *          {@code data.length}.
3101      */
3102     public static String copyValueOf(char data[], int offset, int count) {
3103         return new String(data, offset, count);
3104     }
3105 
3106     /**
3107      * Equivalent to {@link #valueOf(char[])}.
3108      *
3109      * @param   data   the character array.
3110      * @return  a {@code String} that contains the characters of the
3111      *          character array.
3112      */
3113     public static String copyValueOf(char data[]) {
3114         return new String(data);
3115     }
3116 
3117     /**
3118      * Returns the string representation of the {@code boolean} argument.
3119      *
3120      * @param   b   a {@code boolean}.
3121      * @return  if the argument is {@code true}, a string equal to
3122      *          {@code "true"} is returned; otherwise, a string equal to
3123      *          {@code "false"} is returned.
3124      */
3125     public static String valueOf(boolean b) {
3126         return b ? "true" : "false";
3127     }
3128 
3129     /**
3130      * Returns the string representation of the {@code char}
3131      * argument.
3132      *
3133      * @param   c   a {@code char}.
3134      * @return  a string of length {@code 1} containing
3135      *          as its single character the argument {@code c}.
3136      */
3137     public static String valueOf(char c) {
3138         if (COMPACT_STRINGS && StringLatin1.canEncode(c)) {
3139             return new String(StringLatin1.toBytes(c), LATIN1);
3140         }
3141         return new String(StringUTF16.toBytes(c), UTF16);
3142     }
3143 
3144     /**
3145      * Returns the string representation of the {@code int} argument.
3146      * <p>
3147      * The representation is exactly the one returned by the
3148      * {@code Integer.toString} method of one argument.
3149      *
3150      * @param   i   an {@code int}.
3151      * @return  a string representation of the {@code int} argument.
3152      * @see     java.lang.Integer#toString(int, int)
3153      */
3154     public static String valueOf(int i) {
3155         return Integer.toString(i);
3156     }
3157 
3158     /**
3159      * Returns the string representation of the {@code long} argument.
3160      * <p>
3161      * The representation is exactly the one returned by the
3162      * {@code Long.toString} method of one argument.
3163      *
3164      * @param   l   a {@code long}.
3165      * @return  a string representation of the {@code long} argument.
3166      * @see     java.lang.Long#toString(long)
3167      */
3168     public static String valueOf(long l) {
3169         return Long.toString(l);
3170     }
3171 
3172     /**
3173      * Returns the string representation of the {@code float} argument.
3174      * <p>
3175      * The representation is exactly the one returned by the
3176      * {@code Float.toString} method of one argument.
3177      *
3178      * @param   f   a {@code float}.
3179      * @return  a string representation of the {@code float} argument.
3180      * @see     java.lang.Float#toString(float)
3181      */
3182     public static String valueOf(float f) {
3183         return Float.toString(f);
3184     }
3185 
3186     /**
3187      * Returns the string representation of the {@code double} argument.
3188      * <p>
3189      * The representation is exactly the one returned by the
3190      * {@code Double.toString} method of one argument.
3191      *
3192      * @param   d   a {@code double}.
3193      * @return  a  string representation of the {@code double} argument.
3194      * @see     java.lang.Double#toString(double)
3195      */
3196     public static String valueOf(double d) {
3197         return Double.toString(d);
3198     }
3199 
3200     /**
3201      * Returns a canonical representation for the string object.
3202      * <p>
3203      * A pool of strings, initially empty, is maintained privately by the
3204      * class {@code String}.
3205      * <p>
3206      * When the intern method is invoked, if the pool already contains a
3207      * string equal to this {@code String} object as determined by
3208      * the {@link #equals(Object)} method, then the string from the pool is
3209      * returned. Otherwise, this {@code String} object is added to the
3210      * pool and a reference to this {@code String} object is returned.
3211      * <p>
3212      * It follows that for any two strings {@code s} and {@code t},
3213      * {@code s.intern() == t.intern()} is {@code true}
3214      * if and only if {@code s.equals(t)} is {@code true}.
3215      * <p>
3216      * All literal strings and string-valued constant expressions are
3217      * interned. String literals are defined in section 3.10.5 of the
3218      * <cite>The Java&trade; Language Specification</cite>.
3219      *
3220      * @return  a string that has the same contents as this string, but is
3221      *          guaranteed to be from a pool of unique strings.
3222      * @jls 3.10.5 String Literals
3223      */
3224     public native String intern();
3225 
3226     /**
3227      * Returns a string whose value is the concatenation of this
3228      * string repeated {@code count} times.
3229      * <p>
3230      * If this string is empty or count is zero then the empty
3231      * string is returned.
3232      *
3233      * @param   count number of times to repeat
3234      *
3235      * @return  A string composed of this string repeated
3236      *          {@code count} times or the empty string if this
3237      *          string is empty or count is zero
3238      *
3239      * @throws  IllegalArgumentException if the {@code count} is
3240      *          negative.
3241      *
3242      * @since 11
3243      */
3244     public String repeat(int count) {
3245         if (count < 0) {
3246             throw new IllegalArgumentException("count is negative: " + count);
3247         }
3248         if (count == 1) {
3249             return this;
3250         }
3251         final int len = value.length;
3252         if (len == 0 || count == 0) {
3253             return "";
3254         }
3255         if (len == 1) {
3256             final byte[] single = new byte[count];
3257             Arrays.fill(single, value[0]);
3258             return new String(single, coder);
3259         }
3260         if (Integer.MAX_VALUE / count < len) {
3261             throw new OutOfMemoryError("Repeating " + len + " bytes String " + count +
3262                     " times will produce a String exceeding maximum size.");
3263         }
3264         final int limit = len * count;
3265         final byte[] multiple = new byte[limit];
3266         System.arraycopy(value, 0, multiple, 0, len);
3267         int copied = len;
3268         for (; copied < limit - copied; copied <<= 1) {
3269             System.arraycopy(multiple, 0, multiple, copied, copied);
3270         }
3271         System.arraycopy(multiple, 0, multiple, copied, limit - copied);
3272         return new String(multiple, coder);
3273     }
3274 
3275     ////////////////////////////////////////////////////////////////
3276 
3277     /**
3278      * Copy character bytes from this string into dst starting at dstBegin.
3279      * This method doesn't perform any range checking.
3280      *
3281      * Invoker guarantees: dst is in UTF16 (inflate itself for asb), if two
3282      * coders are different, and dst is big enough (range check)
3283      *
3284      * @param dstBegin  the char index, not offset of byte[]
3285      * @param coder     the coder of dst[]
3286      */
3287     void getBytes(byte dst[], int dstBegin, byte coder) {
3288         if (coder() == coder) {
3289             System.arraycopy(value, 0, dst, dstBegin << coder, value.length);
3290         } else {    // this.coder == LATIN && coder == UTF16
3291             StringLatin1.inflate(value, 0, dst, dstBegin, value.length);
3292         }
3293     }
3294 
3295     /*
3296      * Package private constructor. Trailing Void argument is there for
3297      * disambiguating it against other (public) constructors.
3298      *
3299      * Stores the char[] value into a byte[] that each byte represents
3300      * the8 low-order bits of the corresponding character, if the char[]
3301      * contains only latin1 character. Or a byte[] that stores all
3302      * characters in their byte sequences defined by the {@code StringUTF16}.
3303      */
3304     String(char[] value, int off, int len, Void sig) {
3305         if (len == 0) {
3306             this.value = "".value;
3307             this.coder = "".coder;
3308             return;
3309         }
3310         if (COMPACT_STRINGS) {
3311             byte[] val = StringUTF16.compress(value, off, len);
3312             if (val != null) {
3313                 this.value = val;
3314                 this.coder = LATIN1;
3315                 return;
3316             }
3317         }
3318         this.coder = UTF16;
3319         this.value = StringUTF16.toBytes(value, off, len);
3320     }
3321 
3322     /*
3323      * Package private constructor. Trailing Void argument is there for
3324      * disambiguating it against other (public) constructors.
3325      */
3326     String(AbstractStringBuilder asb, Void sig) {
3327         byte[] val = asb.getValue();
3328         int length = asb.length();
3329         if (asb.isLatin1()) {
3330             this.coder = LATIN1;
3331             this.value = Arrays.copyOfRange(val, 0, length);
3332         } else {
3333             if (COMPACT_STRINGS) {
3334                 byte[] buf = StringUTF16.compress(val, 0, length);
3335                 if (buf != null) {
3336                     this.coder = LATIN1;
3337                     this.value = buf;
3338                     return;
3339                 }
3340             }
3341             this.coder = UTF16;
3342             this.value = Arrays.copyOfRange(val, 0, length << 1);
3343         }
3344     }
3345 
3346    /*
3347     * Package private constructor which shares value array for speed.
3348     */
3349     String(byte[] value, byte coder) {
3350         this.value = value;
3351         this.coder = coder;
3352     }
3353 
3354     byte coder() {
3355         return COMPACT_STRINGS ? coder : UTF16;
3356     }
3357 
3358     byte[] value() {
3359         return value;
3360     }
3361 
3362     private boolean isLatin1() {
3363         return COMPACT_STRINGS && coder == LATIN1;
3364     }
3365 
3366     @Native static final byte LATIN1 = 0;
3367     @Native static final byte UTF16  = 1;
3368 
3369     /*
3370      * StringIndexOutOfBoundsException  if {@code index} is
3371      * negative or greater than or equal to {@code length}.
3372      */
3373     static void checkIndex(int index, int length) {
3374         if (index < 0 || index >= length) {
3375             throw new StringIndexOutOfBoundsException("index " + index +
3376                                                       ",length " + length);
3377         }
3378     }
3379 
3380     /*
3381      * StringIndexOutOfBoundsException  if {@code offset}
3382      * is negative or greater than {@code length}.
3383      */
3384     static void checkOffset(int offset, int length) {
3385         if (offset < 0 || offset > length) {
3386             throw new StringIndexOutOfBoundsException("offset " + offset +
3387                                                       ",length " + length);
3388         }
3389     }
3390 
3391     /*
3392      * Check {@code offset}, {@code count} against {@code 0} and {@code length}
3393      * bounds.
3394      *
3395      * @throws  StringIndexOutOfBoundsException
3396      *          If {@code offset} is negative, {@code count} is negative,
3397      *          or {@code offset} is greater than {@code length - count}
3398      */
3399     static void checkBoundsOffCount(int offset, int count, int length) {
3400         if (offset < 0 || count < 0 || offset > length - count) {
3401             throw new StringIndexOutOfBoundsException(
3402                 "offset " + offset + ", count " + count + ", length " + length);
3403         }
3404     }
3405 
3406     /*
3407      * Check {@code begin}, {@code end} against {@code 0} and {@code length}
3408      * bounds.
3409      *
3410      * @throws  StringIndexOutOfBoundsException
3411      *          If {@code begin} is negative, {@code begin} is greater than
3412      *          {@code end}, or {@code end} is greater than {@code length}.
3413      */
3414     static void checkBoundsBeginEnd(int begin, int end, int length) {
3415         if (begin < 0 || begin > end || end > length) {
3416             throw new StringIndexOutOfBoundsException(
3417                 "begin " + begin + ", end " + end + ", length " + length);
3418         }
3419     }
3420 
3421     /**
3422      * Returns the string representation of the {@code codePoint}
3423      * argument.
3424      *
3425      * @param   codePoint a {@code codePoint}.
3426      * @return  a string of length {@code 1} or {@code 2} containing
3427      *          as its single character the argument {@code codePoint}.
3428      * @throws IllegalArgumentException if the specified
3429      *          {@code codePoint} is not a {@linkplain Character#isValidCodePoint
3430      *          valid Unicode code point}.
3431      */
3432     static String valueOfCodePoint(int codePoint) {
3433         if (COMPACT_STRINGS && StringLatin1.canEncode(codePoint)) {
3434             return new String(StringLatin1.toBytes((char)codePoint), LATIN1);
3435         } else if (Character.isBmpCodePoint(codePoint)) {
3436             return new String(StringUTF16.toBytes((char)codePoint), UTF16);
3437         } else if (Character.isSupplementaryCodePoint(codePoint)) {
3438             return new String(StringUTF16.toBytesSupplementary(codePoint), UTF16);
3439         }
3440 
3441         throw new IllegalArgumentException(
3442             format("Not a valid Unicode code point: 0x%X", codePoint));
3443     }
3444 
3445     /**
3446      * Returns an {@link Optional} containing the nominal descriptor for this
3447      * instance, which is the instance itself.
3448      *
3449      * @return an {@link Optional} describing the {@linkplain String} instance
3450      * @since 12
3451      */
3452     @Override
3453     public Optional<String> describeConstable() {
3454         return Optional.of(this);
3455     }
3456 
3457     /**
3458      * Resolves this instance as a {@link ConstantDesc}, the result of which is
3459      * the instance itself.
3460      *
3461      * @param lookup ignored
3462      * @return the {@linkplain String} instance
3463      * @since 12
3464      */
3465     @Override
3466     public String resolveConstantDesc(MethodHandles.Lookup lookup) {
3467         return this;
3468     }
3469 
3470 }