1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "oops/constMethod.hpp"
  28 #include "oops/method.hpp"
  29 #include "runtime/arguments.hpp"
  30 #include "runtime/frame.inline.hpp"
  31 #include "runtime/synchronizer.hpp"
  32 #include "utilities/align.hpp"
  33 #include "utilities/macros.hpp"
  34 
  35 
  36 int AbstractInterpreter::BasicType_as_index(BasicType type) {
  37   int i = 0;
  38   switch (type) {
  39     case T_BOOLEAN: i = 0; break;
  40     case T_CHAR   : i = 1; break;
  41     case T_BYTE   : i = 2; break;
  42     case T_SHORT  : i = 3; break;
  43     case T_INT    : i = 4; break;
  44     case T_LONG   : i = 5; break;
  45     case T_VOID   : i = 6; break;
  46     case T_FLOAT  : i = 7; break;
  47     case T_DOUBLE : i = 8; break;
  48     case T_OBJECT : i = 9; break;
  49     case T_ARRAY  : i = 9; break;
  50     default       : ShouldNotReachHere();
  51   }
  52   assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers, "index out of bounds");
  53   return i;
  54 }
  55 
  56 static int size_activation_helper(int callee_extra_locals, int max_stack, int monitor_size) {
  57 
  58   // Figure out the size of an interpreter frame (in words) given that we have a fully allocated
  59   // expression stack, the callee will have callee_extra_locals (so we can account for
  60   // frame extension) and monitor_size for monitors. Basically we need to calculate
  61   // this exactly like generate_fixed_frame/generate_compute_interpreter_state.
  62   //
  63   //
  64   // The big complicating thing here is that we must ensure that the stack stays properly
  65   // aligned. This would be even uglier if monitor size wasn't modulo what the stack
  66   // needs to be aligned for). We are given that the sp (fp) is already aligned by
  67   // the caller so we must ensure that it is properly aligned for our callee.
  68   //
  69   const int rounded_vm_local_words =
  70       align_up((int)frame::interpreter_frame_vm_local_words,WordsPerLong);
  71   // callee_locals and max_stack are counts, not the size in frame.
  72   const int locals_size =
  73       align_up(callee_extra_locals * Interpreter::stackElementWords, WordsPerLong);
  74   const int max_stack_words = max_stack * Interpreter::stackElementWords;
  75   return (align_up((max_stack_words
  76                    + rounded_vm_local_words
  77                    + frame::memory_parameter_word_sp_offset), WordsPerLong)
  78                    // already rounded
  79                    + locals_size + monitor_size);
  80 }
  81 
  82 // How much stack a method top interpreter activation needs in words.
  83 int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
  84 
  85   // See call_stub code
  86   int call_stub_size  = align_up(7 + frame::memory_parameter_word_sp_offset,
  87                                  WordsPerLong);    // 7 + register save area
  88 
  89   // Save space for one monitor to get into the interpreted method in case
  90   // the method is synchronized
  91   int monitor_size    = method->is_synchronized() ?
  92                                 1*frame::interpreter_frame_monitor_size() : 0;
  93   return size_activation_helper(method->max_locals(), method->max_stack(),
  94                                 monitor_size) + call_stub_size;
  95 }
  96 
  97 int AbstractInterpreter::size_activation(int max_stack,
  98                                          int temps,
  99                                          int extra_args,
 100                                          int monitors,
 101                                          int callee_params,
 102                                          int callee_locals,
 103                                          bool is_top_frame) {
 104   // Note: This calculation must exactly parallel the frame setup
 105   // in TemplateInterpreterGenerator::generate_fixed_frame.
 106 
 107   int monitor_size           = monitors * frame::interpreter_frame_monitor_size();
 108 
 109   assert(is_aligned(monitor_size, WordsPerLong), "must align");
 110 
 111   //
 112   // Note: if you look closely this appears to be doing something much different
 113   // than generate_fixed_frame. What is happening is this. On sparc we have to do
 114   // this dance with interpreter_sp_adjustment because the window save area would
 115   // appear just below the bottom (tos) of the caller's java expression stack. Because
 116   // the interpreter want to have the locals completely contiguous generate_fixed_frame
 117   // will adjust the caller's sp for the "extra locals" (max_locals - parameter_size).
 118   // Now in generate_fixed_frame the extension of the caller's sp happens in the callee.
 119   // In this code the opposite occurs the caller adjusts it's own stack base on the callee.
 120   // This is mostly ok but it does cause a problem when we get to the initial frame (the oldest)
 121   // because the oldest frame would have adjust its callers frame and yet that frame
 122   // already exists and isn't part of this array of frames we are unpacking. So at first
 123   // glance this would seem to mess up that frame. However Deoptimization::fetch_unroll_info_helper()
 124   // will after it calculates all of the frame's on_stack_size()'s will then figure out the
 125   // amount to adjust the caller of the initial (oldest) frame and the calculation will all
 126   // add up. It does seem like it simpler to account for the adjustment here (and remove the
 127   // callee... parameters here). However this would mean that this routine would have to take
 128   // the caller frame as input so we could adjust its sp (and set it's interpreter_sp_adjustment)
 129   // and run the calling loop in the reverse order. This would also would appear to mean making
 130   // this code aware of what the interactions are when that initial caller fram was an osr or
 131   // other adapter frame. deoptimization is complicated enough and  hard enough to debug that
 132   // there is no sense in messing working code.
 133   //
 134 
 135   int rounded_cls = align_up((callee_locals - callee_params), WordsPerLong);
 136   assert(is_aligned(rounded_cls, WordsPerLong), "must align");
 137 
 138   int raw_frame_size = size_activation_helper(rounded_cls, max_stack, monitor_size);
 139 
 140   return raw_frame_size;
 141 }
 142 
 143 void AbstractInterpreter::layout_activation(Method* method,
 144                                             int tempcount,
 145                                             int popframe_extra_args,
 146                                             int moncount,
 147                                             int caller_actual_parameters,
 148                                             int callee_param_count,
 149                                             int callee_local_count,
 150                                             frame* caller,
 151                                             frame* interpreter_frame,
 152                                             bool is_top_frame,
 153                                             bool is_bottom_frame) {
 154   // Set up the following variables:
 155   //   - Lmethod
 156   //   - Llocals
 157   //   - Lmonitors (to the indicated number of monitors)
 158   //   - Lesp (to the indicated number of temps)
 159   // The frame caller on entry is a description of the caller of the
 160   // frame we are about to layout. We are guaranteed that we will be
 161   // able to fill in a new interpreter frame as its callee (i.e. the
 162   // stack space is allocated and the amount was determined by an
 163   // earlier call to the size_activation() method).  On return caller
 164   // while describe the interpreter frame we just layed out.
 165 
 166   // The skeleton frame must already look like an interpreter frame
 167   // even if not fully filled out.
 168   assert(interpreter_frame->is_interpreted_frame(), "Must be interpreted frame");
 169 
 170   int rounded_vm_local_words = align_up((int)frame::interpreter_frame_vm_local_words,WordsPerLong);
 171   int monitor_size           = moncount * frame::interpreter_frame_monitor_size();
 172   assert(is_aligned(monitor_size, WordsPerLong), "must align");
 173 
 174   intptr_t* fp = interpreter_frame->fp();
 175 
 176   JavaThread* thread = JavaThread::current();
 177   RegisterMap map(thread, false);
 178   // More verification that skeleton frame is properly walkable
 179   assert(fp == caller->sp(), "fp must match");
 180 
 181   intptr_t* montop     = fp - rounded_vm_local_words;
 182 
 183   // preallocate monitors (cf. __ add_monitor_to_stack)
 184   intptr_t* monitors = montop - monitor_size;
 185 
 186   // preallocate stack space
 187   intptr_t*  esp = monitors - 1 -
 188     (tempcount * Interpreter::stackElementWords) -
 189     popframe_extra_args;
 190 
 191   int local_words = method->max_locals() * Interpreter::stackElementWords;
 192   NEEDS_CLEANUP;
 193   intptr_t* locals;
 194   if (caller->is_interpreted_frame()) {
 195     // Can force the locals area to end up properly overlapping the top of the expression stack.
 196     intptr_t* Lesp_ptr = caller->interpreter_frame_tos_address() - 1;
 197     // Note that this computation means we replace size_of_parameters() values from the caller
 198     // interpreter frame's expression stack with our argument locals
 199     int parm_words  = caller_actual_parameters * Interpreter::stackElementWords;
 200     locals = Lesp_ptr + parm_words;
 201     int delta = local_words - parm_words;
 202     int computed_sp_adjustment = (delta > 0) ? align_up(delta, WordsPerLong) : 0;
 203     *interpreter_frame->register_addr(I5_savedSP)    = (intptr_t) (fp + computed_sp_adjustment) - STACK_BIAS;
 204     if (!is_bottom_frame) {
 205       // Llast_SP is set below for the current frame to SP (with the
 206       // extra space for the callee's locals). Here we adjust
 207       // Llast_SP for the caller's frame, removing the extra space
 208       // for the current method's locals.
 209       *caller->register_addr(Llast_SP) = *interpreter_frame->register_addr(I5_savedSP);
 210     } else {
 211       assert(*caller->register_addr(Llast_SP) >= *interpreter_frame->register_addr(I5_savedSP), "strange Llast_SP");
 212     }
 213   } else {
 214     assert(caller->is_compiled_frame() || caller->is_entry_frame(), "only possible cases");
 215     // Don't have Lesp available; lay out locals block in the caller
 216     // adjacent to the register window save area.
 217     //
 218     // Compiled frames do not allocate a varargs area which is why this if
 219     // statement is needed.
 220     //
 221     if (caller->is_compiled_frame()) {
 222       locals = fp + frame::register_save_words + local_words - 1;
 223     } else {
 224       locals = fp + frame::memory_parameter_word_sp_offset + local_words - 1;
 225     }
 226     if (!caller->is_entry_frame()) {
 227       // Caller wants his own SP back
 228       int caller_frame_size = caller->cb()->frame_size();
 229       *interpreter_frame->register_addr(I5_savedSP) = (intptr_t)(caller->fp() - caller_frame_size) - STACK_BIAS;
 230     }
 231   }
 232   if (TraceDeoptimization) {
 233     if (caller->is_entry_frame()) {
 234       // make sure I5_savedSP and the entry frames notion of saved SP
 235       // agree.  This assertion duplicate a check in entry frame code
 236       // but catches the failure earlier.
 237       assert(*caller->register_addr(Lscratch) == *interpreter_frame->register_addr(I5_savedSP),
 238              "would change callers SP");
 239     }
 240     if (caller->is_entry_frame()) {
 241       tty->print("entry ");
 242     }
 243     if (caller->is_compiled_frame()) {
 244       tty->print("compiled ");
 245       if (caller->is_deoptimized_frame()) {
 246         tty->print("(deopt) ");
 247       }
 248     }
 249     if (caller->is_interpreted_frame()) {
 250       tty->print("interpreted ");
 251     }
 252     tty->print_cr("caller fp=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->sp()));
 253     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->sp()), p2i(caller->sp() + 16));
 254     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(caller->fp()), p2i(caller->fp() + 16));
 255     tty->print_cr("interpreter fp=" INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->sp()));
 256     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->sp()), p2i(interpreter_frame->sp() + 16));
 257     tty->print_cr("save area = " INTPTR_FORMAT ", " INTPTR_FORMAT, p2i(interpreter_frame->fp()), p2i(interpreter_frame->fp() + 16));
 258     tty->print_cr("Llocals = " INTPTR_FORMAT, p2i(locals));
 259     tty->print_cr("Lesp = " INTPTR_FORMAT, p2i(esp));
 260     tty->print_cr("Lmonitors = " INTPTR_FORMAT, p2i(monitors));
 261   }
 262 
 263   if (method->max_locals() > 0) {
 264     assert(locals < caller->sp() || locals >= (caller->sp() + 16), "locals in save area");
 265     assert(locals < caller->fp() || locals > (caller->fp() + 16), "locals in save area");
 266     assert(locals < interpreter_frame->sp() || locals > (interpreter_frame->sp() + 16), "locals in save area");
 267     assert(locals < interpreter_frame->fp() || locals >= (interpreter_frame->fp() + 16), "locals in save area");
 268   }
 269   assert(*interpreter_frame->register_addr(I5_savedSP) & 1, "must be odd");
 270 
 271   *interpreter_frame->register_addr(Lmethod)     = (intptr_t) method;
 272   *interpreter_frame->register_addr(Llocals)     = (intptr_t) locals;
 273   *interpreter_frame->register_addr(Lmonitors)   = (intptr_t) monitors;
 274   *interpreter_frame->register_addr(Lesp)        = (intptr_t) esp;
 275   // Llast_SP will be same as SP as there is no adapter space
 276   *interpreter_frame->register_addr(Llast_SP)    = (intptr_t) interpreter_frame->sp() - STACK_BIAS;
 277   *interpreter_frame->register_addr(LcpoolCache) = (intptr_t) method->constants()->cache();
 278   // save the mirror in the interpreter frame
 279   *interpreter_frame->interpreter_frame_mirror_addr() = method->method_holder()->java_mirror();
 280 
 281 #ifdef ASSERT
 282   BasicObjectLock* mp = (BasicObjectLock*)monitors;
 283 
 284   assert(interpreter_frame->interpreter_frame_method() == method, "method matches");
 285   assert(interpreter_frame->interpreter_frame_local_at(9) == (intptr_t *)((intptr_t)locals - (9 * Interpreter::stackElementSize)), "locals match");
 286   assert(interpreter_frame->interpreter_frame_monitor_end()   == mp, "monitor_end matches");
 287   assert(((intptr_t *)interpreter_frame->interpreter_frame_monitor_begin()) == ((intptr_t *)mp)+monitor_size, "monitor_begin matches");
 288   assert(interpreter_frame->interpreter_frame_tos_address()-1 == esp, "esp matches");
 289 
 290   // check bounds
 291   intptr_t* lo = interpreter_frame->sp() + (frame::memory_parameter_word_sp_offset - 1);
 292   intptr_t* hi = interpreter_frame->fp() - rounded_vm_local_words;
 293   assert(lo < monitors && montop <= hi, "monitors in bounds");
 294   assert(lo <= esp && esp < monitors, "esp in bounds");
 295 #endif // ASSERT
 296 }