1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_posix.inline.hpp"
  42 #include "os_share_linux.hpp"
  43 #include "osContainer_linux.hpp"
  44 #include "prims/jniFastGetField.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/atomic.hpp"
  48 #include "runtime/extendedPC.hpp"
  49 #include "runtime/globals.hpp"
  50 #include "runtime/interfaceSupport.inline.hpp"
  51 #include "runtime/init.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/javaCalls.hpp"
  54 #include "runtime/mutexLocker.hpp"
  55 #include "runtime/objectMonitor.hpp"
  56 #include "runtime/orderAccess.hpp"
  57 #include "runtime/osThread.hpp"
  58 #include "runtime/perfMemory.hpp"
  59 #include "runtime/sharedRuntime.hpp"
  60 #include "runtime/statSampler.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/thread.inline.hpp"
  63 #include "runtime/threadCritical.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/timer.hpp"
  66 #include "runtime/vm_version.hpp"
  67 #include "semaphore_posix.hpp"
  68 #include "services/attachListener.hpp"
  69 #include "services/memTracker.hpp"
  70 #include "services/runtimeService.hpp"
  71 #include "utilities/align.hpp"
  72 #include "utilities/decoder.hpp"
  73 #include "utilities/defaultStream.hpp"
  74 #include "utilities/events.hpp"
  75 #include "utilities/elfFile.hpp"
  76 #include "utilities/growableArray.hpp"
  77 #include "utilities/macros.hpp"
  78 #include "utilities/vmError.hpp"
  79 
  80 // put OS-includes here
  81 # include <sys/types.h>
  82 # include <sys/mman.h>
  83 # include <sys/stat.h>
  84 # include <sys/select.h>
  85 # include <pthread.h>
  86 # include <signal.h>
  87 # include <endian.h>
  88 # include <errno.h>
  89 # include <dlfcn.h>
  90 # include <stdio.h>
  91 # include <unistd.h>
  92 # include <sys/resource.h>
  93 # include <pthread.h>
  94 # include <sys/stat.h>
  95 # include <sys/time.h>
  96 # include <sys/times.h>
  97 # include <sys/utsname.h>
  98 # include <sys/socket.h>
  99 # include <sys/wait.h>
 100 # include <pwd.h>
 101 # include <poll.h>
 102 # include <fcntl.h>
 103 # include <string.h>
 104 # include <syscall.h>
 105 # include <sys/sysinfo.h>
 106 # include <gnu/libc-version.h>
 107 # include <sys/ipc.h>
 108 # include <sys/shm.h>
 109 # include <link.h>
 110 # include <stdint.h>
 111 # include <inttypes.h>
 112 # include <sys/ioctl.h>
 113 
 114 #ifndef _GNU_SOURCE
 115   #define _GNU_SOURCE
 116   #include <sched.h>
 117   #undef _GNU_SOURCE
 118 #else
 119   #include <sched.h>
 120 #endif
 121 
 122 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 123 // getrusage() is prepared to handle the associated failure.
 124 #ifndef RUSAGE_THREAD
 125   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 126 #endif
 127 
 128 #define MAX_PATH    (2 * K)
 129 
 130 #define MAX_SECS 100000000
 131 
 132 // for timer info max values which include all bits
 133 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 134 
 135 enum CoredumpFilterBit {
 136   FILE_BACKED_PVT_BIT = 1 << 2,
 137   FILE_BACKED_SHARED_BIT = 1 << 3,
 138   LARGEPAGES_BIT = 1 << 6,
 139   DAX_SHARED_BIT = 1 << 8
 140 };
 141 
 142 ////////////////////////////////////////////////////////////////////////////////
 143 // global variables
 144 julong os::Linux::_physical_memory = 0;
 145 
 146 address   os::Linux::_initial_thread_stack_bottom = NULL;
 147 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 148 
 149 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 150 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 151 Mutex* os::Linux::_createThread_lock = NULL;
 152 pthread_t os::Linux::_main_thread;
 153 int os::Linux::_page_size = -1;
 154 bool os::Linux::_supports_fast_thread_cpu_time = false;
 155 uint32_t os::Linux::_os_version = 0;
 156 const char * os::Linux::_glibc_version = NULL;
 157 const char * os::Linux::_libpthread_version = NULL;
 158 
 159 static jlong initial_time_count=0;
 160 
 161 static int clock_tics_per_sec = 100;
 162 
 163 // If the VM might have been created on the primordial thread, we need to resolve the
 164 // primordial thread stack bounds and check if the current thread might be the
 165 // primordial thread in places. If we know that the primordial thread is never used,
 166 // such as when the VM was created by one of the standard java launchers, we can
 167 // avoid this
 168 static bool suppress_primordial_thread_resolution = false;
 169 
 170 // For diagnostics to print a message once. see run_periodic_checks
 171 static sigset_t check_signal_done;
 172 static bool check_signals = true;
 173 
 174 // Signal number used to suspend/resume a thread
 175 
 176 // do not use any signal number less than SIGSEGV, see 4355769
 177 static int SR_signum = SIGUSR2;
 178 sigset_t SR_sigset;
 179 
 180 // utility functions
 181 
 182 static int SR_initialize();
 183 
 184 julong os::available_memory() {
 185   return Linux::available_memory();
 186 }
 187 
 188 julong os::Linux::available_memory() {
 189   // values in struct sysinfo are "unsigned long"
 190   struct sysinfo si;
 191   julong avail_mem;
 192 
 193   if (OSContainer::is_containerized()) {
 194     jlong mem_limit, mem_usage;
 195     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 196       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 197                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 198     }
 199     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 200       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 201     }
 202     if (mem_limit > 0 && mem_usage > 0 ) {
 203       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 204       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 205       return avail_mem;
 206     }
 207   }
 208 
 209   sysinfo(&si);
 210   avail_mem = (julong)si.freeram * si.mem_unit;
 211   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 212   return avail_mem;
 213 }
 214 
 215 julong os::physical_memory() {
 216   jlong phys_mem = 0;
 217   if (OSContainer::is_containerized()) {
 218     jlong mem_limit;
 219     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 220       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 221       return mem_limit;
 222     }
 223     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 224                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 225   }
 226 
 227   phys_mem = Linux::physical_memory();
 228   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 229   return phys_mem;
 230 }
 231 
 232 static uint64_t initial_total_ticks = 0;
 233 static uint64_t initial_steal_ticks = 0;
 234 static bool     has_initial_tick_info = false;
 235 
 236 static void next_line(FILE *f) {
 237   int c;
 238   do {
 239     c = fgetc(f);
 240   } while (c != '\n' && c != EOF);
 241 }
 242 
 243 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 244   FILE*         fh;
 245   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 246   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 247   // irq: time  servicing interrupts; softirq: time servicing softirqs
 248   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 249   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 250   uint64_t      stealTicks = 0;
 251   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 252   // control of the Linux kernel
 253   uint64_t      guestNiceTicks = 0;
 254   int           logical_cpu = -1;
 255   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 256   int           n;
 257 
 258   memset(pticks, 0, sizeof(CPUPerfTicks));
 259 
 260   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 261     return false;
 262   }
 263 
 264   if (which_logical_cpu == -1) {
 265     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 267             UINT64_FORMAT " " UINT64_FORMAT " ",
 268             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 269             &iowTicks, &irqTicks, &sirqTicks,
 270             &stealTicks, &guestNiceTicks);
 271   } else {
 272     // Move to next line
 273     next_line(fh);
 274 
 275     // find the line for requested cpu faster to just iterate linefeeds?
 276     for (int i = 0; i < which_logical_cpu; i++) {
 277       next_line(fh);
 278     }
 279 
 280     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 282                UINT64_FORMAT " " UINT64_FORMAT " ",
 283                &logical_cpu, &userTicks, &niceTicks,
 284                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 285                &stealTicks, &guestNiceTicks);
 286   }
 287 
 288   fclose(fh);
 289   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 290     return false;
 291   }
 292   pticks->used       = userTicks + niceTicks;
 293   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 294   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 295                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 296 
 297   if (n > required_tickinfo_count + 3) {
 298     pticks->steal = stealTicks;
 299     pticks->has_steal_ticks = true;
 300   } else {
 301     pticks->steal = 0;
 302     pticks->has_steal_ticks = false;
 303   }
 304 
 305   return true;
 306 }
 307 
 308 // Return true if user is running as root.
 309 
 310 bool os::have_special_privileges() {
 311   static bool init = false;
 312   static bool privileges = false;
 313   if (!init) {
 314     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 315     init = true;
 316   }
 317   return privileges;
 318 }
 319 
 320 
 321 #ifndef SYS_gettid
 322 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 323   #ifdef __ia64__
 324     #define SYS_gettid 1105
 325   #else
 326     #ifdef __i386__
 327       #define SYS_gettid 224
 328     #else
 329       #ifdef __amd64__
 330         #define SYS_gettid 186
 331       #else
 332         #ifdef __sparc__
 333           #define SYS_gettid 143
 334         #else
 335           #error define gettid for the arch
 336         #endif
 337       #endif
 338     #endif
 339   #endif
 340 #endif
 341 
 342 
 343 // pid_t gettid()
 344 //
 345 // Returns the kernel thread id of the currently running thread. Kernel
 346 // thread id is used to access /proc.
 347 pid_t os::Linux::gettid() {
 348   int rslt = syscall(SYS_gettid);
 349   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 350   return (pid_t)rslt;
 351 }
 352 
 353 // Most versions of linux have a bug where the number of processors are
 354 // determined by looking at the /proc file system.  In a chroot environment,
 355 // the system call returns 1.
 356 static bool unsafe_chroot_detected = false;
 357 static const char *unstable_chroot_error = "/proc file system not found.\n"
 358                      "Java may be unstable running multithreaded in a chroot "
 359                      "environment on Linux when /proc filesystem is not mounted.";
 360 
 361 void os::Linux::initialize_system_info() {
 362   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 363   if (processor_count() == 1) {
 364     pid_t pid = os::Linux::gettid();
 365     char fname[32];
 366     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 367     FILE *fp = fopen(fname, "r");
 368     if (fp == NULL) {
 369       unsafe_chroot_detected = true;
 370     } else {
 371       fclose(fp);
 372     }
 373   }
 374   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 375   assert(processor_count() > 0, "linux error");
 376 }
 377 
 378 void os::init_system_properties_values() {
 379   // The next steps are taken in the product version:
 380   //
 381   // Obtain the JAVA_HOME value from the location of libjvm.so.
 382   // This library should be located at:
 383   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 384   //
 385   // If "/jre/lib/" appears at the right place in the path, then we
 386   // assume libjvm.so is installed in a JDK and we use this path.
 387   //
 388   // Otherwise exit with message: "Could not create the Java virtual machine."
 389   //
 390   // The following extra steps are taken in the debugging version:
 391   //
 392   // If "/jre/lib/" does NOT appear at the right place in the path
 393   // instead of exit check for $JAVA_HOME environment variable.
 394   //
 395   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 396   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 397   // it looks like libjvm.so is installed there
 398   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 399   //
 400   // Otherwise exit.
 401   //
 402   // Important note: if the location of libjvm.so changes this
 403   // code needs to be changed accordingly.
 404 
 405   // See ld(1):
 406   //      The linker uses the following search paths to locate required
 407   //      shared libraries:
 408   //        1: ...
 409   //        ...
 410   //        7: The default directories, normally /lib and /usr/lib.
 411 #ifndef OVERRIDE_LIBPATH
 412   #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 413     #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 414   #else
 415     #define DEFAULT_LIBPATH "/lib:/usr/lib"
 416   #endif
 417 #else
 418   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 419 #endif
 420 
 421 // Base path of extensions installed on the system.
 422 #define SYS_EXT_DIR     "/usr/java/packages"
 423 #define EXTENSIONS_DIR  "/lib/ext"
 424 
 425   // Buffer that fits several sprintfs.
 426   // Note that the space for the colon and the trailing null are provided
 427   // by the nulls included by the sizeof operator.
 428   const size_t bufsize =
 429     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 430          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 431   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 432 
 433   // sysclasspath, java_home, dll_dir
 434   {
 435     char *pslash;
 436     os::jvm_path(buf, bufsize);
 437 
 438     // Found the full path to libjvm.so.
 439     // Now cut the path to <java_home>/jre if we can.
 440     pslash = strrchr(buf, '/');
 441     if (pslash != NULL) {
 442       *pslash = '\0';            // Get rid of /libjvm.so.
 443     }
 444     pslash = strrchr(buf, '/');
 445     if (pslash != NULL) {
 446       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 447     }
 448     Arguments::set_dll_dir(buf);
 449 
 450     if (pslash != NULL) {
 451       pslash = strrchr(buf, '/');
 452       if (pslash != NULL) {
 453         *pslash = '\0';        // Get rid of /lib.
 454       }
 455     }
 456     Arguments::set_java_home(buf);
 457     if (!set_boot_path('/', ':')) {
 458       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 459     }
 460   }
 461 
 462   // Where to look for native libraries.
 463   //
 464   // Note: Due to a legacy implementation, most of the library path
 465   // is set in the launcher. This was to accomodate linking restrictions
 466   // on legacy Linux implementations (which are no longer supported).
 467   // Eventually, all the library path setting will be done here.
 468   //
 469   // However, to prevent the proliferation of improperly built native
 470   // libraries, the new path component /usr/java/packages is added here.
 471   // Eventually, all the library path setting will be done here.
 472   {
 473     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 474     // should always exist (until the legacy problem cited above is
 475     // addressed).
 476     const char *v = ::getenv("LD_LIBRARY_PATH");
 477     const char *v_colon = ":";
 478     if (v == NULL) { v = ""; v_colon = ""; }
 479     // That's +1 for the colon and +1 for the trailing '\0'.
 480     char *ld_library_path = NEW_C_HEAP_ARRAY(char,
 481                                              strlen(v) + 1 +
 482                                              sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 483                                              mtInternal);
 484     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 485     Arguments::set_library_path(ld_library_path);
 486     FREE_C_HEAP_ARRAY(char, ld_library_path);
 487   }
 488 
 489   // Extensions directories.
 490   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 491   Arguments::set_ext_dirs(buf);
 492 
 493   FREE_C_HEAP_ARRAY(char, buf);
 494 
 495 #undef DEFAULT_LIBPATH
 496 #undef SYS_EXT_DIR
 497 #undef EXTENSIONS_DIR
 498 }
 499 
 500 ////////////////////////////////////////////////////////////////////////////////
 501 // breakpoint support
 502 
 503 void os::breakpoint() {
 504   BREAKPOINT;
 505 }
 506 
 507 extern "C" void breakpoint() {
 508   // use debugger to set breakpoint here
 509 }
 510 
 511 ////////////////////////////////////////////////////////////////////////////////
 512 // signal support
 513 
 514 debug_only(static bool signal_sets_initialized = false);
 515 static sigset_t unblocked_sigs, vm_sigs;
 516 
 517 void os::Linux::signal_sets_init() {
 518   // Should also have an assertion stating we are still single-threaded.
 519   assert(!signal_sets_initialized, "Already initialized");
 520   // Fill in signals that are necessarily unblocked for all threads in
 521   // the VM. Currently, we unblock the following signals:
 522   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 523   //                         by -Xrs (=ReduceSignalUsage));
 524   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 525   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 526   // the dispositions or masks wrt these signals.
 527   // Programs embedding the VM that want to use the above signals for their
 528   // own purposes must, at this time, use the "-Xrs" option to prevent
 529   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 530   // (See bug 4345157, and other related bugs).
 531   // In reality, though, unblocking these signals is really a nop, since
 532   // these signals are not blocked by default.
 533   sigemptyset(&unblocked_sigs);
 534   sigaddset(&unblocked_sigs, SIGILL);
 535   sigaddset(&unblocked_sigs, SIGSEGV);
 536   sigaddset(&unblocked_sigs, SIGBUS);
 537   sigaddset(&unblocked_sigs, SIGFPE);
 538 #if defined(PPC64)
 539   sigaddset(&unblocked_sigs, SIGTRAP);
 540 #endif
 541   sigaddset(&unblocked_sigs, SR_signum);
 542 
 543   if (!ReduceSignalUsage) {
 544     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 545       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 546     }
 547     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 548       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 549     }
 550     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 551       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 552     }
 553   }
 554   // Fill in signals that are blocked by all but the VM thread.
 555   sigemptyset(&vm_sigs);
 556   if (!ReduceSignalUsage) {
 557     sigaddset(&vm_sigs, BREAK_SIGNAL);
 558   }
 559   debug_only(signal_sets_initialized = true);
 560 
 561 }
 562 
 563 // These are signals that are unblocked while a thread is running Java.
 564 // (For some reason, they get blocked by default.)
 565 sigset_t* os::Linux::unblocked_signals() {
 566   assert(signal_sets_initialized, "Not initialized");
 567   return &unblocked_sigs;
 568 }
 569 
 570 // These are the signals that are blocked while a (non-VM) thread is
 571 // running Java. Only the VM thread handles these signals.
 572 sigset_t* os::Linux::vm_signals() {
 573   assert(signal_sets_initialized, "Not initialized");
 574   return &vm_sigs;
 575 }
 576 
 577 void os::Linux::hotspot_sigmask(Thread* thread) {
 578 
 579   //Save caller's signal mask before setting VM signal mask
 580   sigset_t caller_sigmask;
 581   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 582 
 583   OSThread* osthread = thread->osthread();
 584   osthread->set_caller_sigmask(caller_sigmask);
 585 
 586   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 587 
 588   if (!ReduceSignalUsage) {
 589     if (thread->is_VM_thread()) {
 590       // Only the VM thread handles BREAK_SIGNAL ...
 591       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 592     } else {
 593       // ... all other threads block BREAK_SIGNAL
 594       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 595     }
 596   }
 597 }
 598 
 599 //////////////////////////////////////////////////////////////////////////////
 600 // detecting pthread library
 601 
 602 void os::Linux::libpthread_init() {
 603   // Save glibc and pthread version strings.
 604 #if !defined(_CS_GNU_LIBC_VERSION) || \
 605     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 606   #error "glibc too old (< 2.3.2)"
 607 #endif
 608 
 609   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 610   assert(n > 0, "cannot retrieve glibc version");
 611   char *str = (char *)malloc(n, mtInternal);
 612   confstr(_CS_GNU_LIBC_VERSION, str, n);
 613   os::Linux::set_glibc_version(str);
 614 
 615   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 616   assert(n > 0, "cannot retrieve pthread version");
 617   str = (char *)malloc(n, mtInternal);
 618   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 619   os::Linux::set_libpthread_version(str);
 620 }
 621 
 622 /////////////////////////////////////////////////////////////////////////////
 623 // thread stack expansion
 624 
 625 // os::Linux::manually_expand_stack() takes care of expanding the thread
 626 // stack. Note that this is normally not needed: pthread stacks allocate
 627 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 628 // committed. Therefore it is not necessary to expand the stack manually.
 629 //
 630 // Manually expanding the stack was historically needed on LinuxThreads
 631 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 632 // it is kept to deal with very rare corner cases:
 633 //
 634 // For one, user may run the VM on an own implementation of threads
 635 // whose stacks are - like the old LinuxThreads - implemented using
 636 // mmap(MAP_GROWSDOWN).
 637 //
 638 // Also, this coding may be needed if the VM is running on the primordial
 639 // thread. Normally we avoid running on the primordial thread; however,
 640 // user may still invoke the VM on the primordial thread.
 641 //
 642 // The following historical comment describes the details about running
 643 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 644 
 645 
 646 // Force Linux kernel to expand current thread stack. If "bottom" is close
 647 // to the stack guard, caller should block all signals.
 648 //
 649 // MAP_GROWSDOWN:
 650 //   A special mmap() flag that is used to implement thread stacks. It tells
 651 //   kernel that the memory region should extend downwards when needed. This
 652 //   allows early versions of LinuxThreads to only mmap the first few pages
 653 //   when creating a new thread. Linux kernel will automatically expand thread
 654 //   stack as needed (on page faults).
 655 //
 656 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 657 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 658 //   region, it's hard to tell if the fault is due to a legitimate stack
 659 //   access or because of reading/writing non-exist memory (e.g. buffer
 660 //   overrun). As a rule, if the fault happens below current stack pointer,
 661 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 662 //   application (see Linux kernel fault.c).
 663 //
 664 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 665 //   stack overflow detection.
 666 //
 667 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 668 //   not use MAP_GROWSDOWN.
 669 //
 670 // To get around the problem and allow stack banging on Linux, we need to
 671 // manually expand thread stack after receiving the SIGSEGV.
 672 //
 673 // There are two ways to expand thread stack to address "bottom", we used
 674 // both of them in JVM before 1.5:
 675 //   1. adjust stack pointer first so that it is below "bottom", and then
 676 //      touch "bottom"
 677 //   2. mmap() the page in question
 678 //
 679 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 680 // if current sp is already near the lower end of page 101, and we need to
 681 // call mmap() to map page 100, it is possible that part of the mmap() frame
 682 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 683 // That will destroy the mmap() frame and cause VM to crash.
 684 //
 685 // The following code works by adjusting sp first, then accessing the "bottom"
 686 // page to force a page fault. Linux kernel will then automatically expand the
 687 // stack mapping.
 688 //
 689 // _expand_stack_to() assumes its frame size is less than page size, which
 690 // should always be true if the function is not inlined.
 691 
 692 static void NOINLINE _expand_stack_to(address bottom) {
 693   address sp;
 694   size_t size;
 695   volatile char *p;
 696 
 697   // Adjust bottom to point to the largest address within the same page, it
 698   // gives us a one-page buffer if alloca() allocates slightly more memory.
 699   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 700   bottom += os::Linux::page_size() - 1;
 701 
 702   // sp might be slightly above current stack pointer; if that's the case, we
 703   // will alloca() a little more space than necessary, which is OK. Don't use
 704   // os::current_stack_pointer(), as its result can be slightly below current
 705   // stack pointer, causing us to not alloca enough to reach "bottom".
 706   sp = (address)&sp;
 707 
 708   if (sp > bottom) {
 709     size = sp - bottom;
 710     p = (volatile char *)alloca(size);
 711     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 712     p[0] = '\0';
 713   }
 714 }
 715 
 716 void os::Linux::expand_stack_to(address bottom) {
 717   _expand_stack_to(bottom);
 718 }
 719 
 720 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 721   assert(t!=NULL, "just checking");
 722   assert(t->osthread()->expanding_stack(), "expand should be set");
 723   assert(t->stack_base() != NULL, "stack_base was not initialized");
 724 
 725   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 726     sigset_t mask_all, old_sigset;
 727     sigfillset(&mask_all);
 728     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 729     _expand_stack_to(addr);
 730     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 731     return true;
 732   }
 733   return false;
 734 }
 735 
 736 //////////////////////////////////////////////////////////////////////////////
 737 // create new thread
 738 
 739 // Thread start routine for all newly created threads
 740 static void *thread_native_entry(Thread *thread) {
 741 
 742   thread->record_stack_base_and_size();
 743 
 744   // Try to randomize the cache line index of hot stack frames.
 745   // This helps when threads of the same stack traces evict each other's
 746   // cache lines. The threads can be either from the same JVM instance, or
 747   // from different JVM instances. The benefit is especially true for
 748   // processors with hyperthreading technology.
 749   static int counter = 0;
 750   int pid = os::current_process_id();
 751   alloca(((pid ^ counter++) & 7) * 128);
 752 
 753   thread->initialize_thread_current();
 754 
 755   OSThread* osthread = thread->osthread();
 756   Monitor* sync = osthread->startThread_lock();
 757 
 758   osthread->set_thread_id(os::current_thread_id());
 759 
 760   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 761     os::current_thread_id(), (uintx) pthread_self());
 762 
 763   if (UseNUMA) {
 764     int lgrp_id = os::numa_get_group_id();
 765     if (lgrp_id != -1) {
 766       thread->set_lgrp_id(lgrp_id);
 767     }
 768   }
 769   // initialize signal mask for this thread
 770   os::Linux::hotspot_sigmask(thread);
 771 
 772   // initialize floating point control register
 773   os::Linux::init_thread_fpu_state();
 774 
 775   // handshaking with parent thread
 776   {
 777     MutexLocker ml(sync, Mutex::_no_safepoint_check_flag);
 778 
 779     // notify parent thread
 780     osthread->set_state(INITIALIZED);
 781     sync->notify_all();
 782 
 783     // wait until os::start_thread()
 784     while (osthread->get_state() == INITIALIZED) {
 785       sync->wait_without_safepoint_check();
 786     }
 787   }
 788 
 789   assert(osthread->pthread_id() != 0, "pthread_id was not set as expected");
 790 
 791   // call one more level start routine
 792   thread->call_run();
 793 
 794   // Note: at this point the thread object may already have deleted itself.
 795   // Prevent dereferencing it from here on out.
 796   thread = NULL;
 797 
 798   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 799     os::current_thread_id(), (uintx) pthread_self());
 800 
 801   return 0;
 802 }
 803 
 804 // On Linux, glibc places static TLS blocks (for __thread variables) on
 805 // the thread stack. This decreases the stack size actually available
 806 // to threads.
 807 //
 808 // For large static TLS sizes, this may cause threads to malfunction due
 809 // to insufficient stack space. This is a well-known issue in glibc:
 810 // http://sourceware.org/bugzilla/show_bug.cgi?id=11787.
 811 //
 812 // As a workaround, we call a private but assumed-stable glibc function,
 813 // __pthread_get_minstack() to obtain the minstack size and derive the
 814 // static TLS size from it. We then increase the user requested stack
 815 // size by this TLS size.
 816 //
 817 // Due to compatibility concerns, this size adjustment is opt-in and
 818 // controlled via AdjustStackSizeForTLS.
 819 typedef size_t (*GetMinStack)(const pthread_attr_t *attr);
 820 
 821 GetMinStack _get_minstack_func = NULL;
 822 
 823 static void get_minstack_init() {
 824   _get_minstack_func =
 825         (GetMinStack)dlsym(RTLD_DEFAULT, "__pthread_get_minstack");
 826   log_info(os, thread)("Lookup of __pthread_get_minstack %s",
 827                        _get_minstack_func == NULL ? "failed" : "succeeded");
 828 }
 829 
 830 // Returns the size of the static TLS area glibc puts on thread stacks.
 831 // The value is cached on first use, which occurs when the first thread
 832 // is created during VM initialization.
 833 static size_t get_static_tls_area_size(const pthread_attr_t *attr) {
 834   size_t tls_size = 0;
 835   if (_get_minstack_func != NULL) {
 836     // Obtain the pthread minstack size by calling __pthread_get_minstack.
 837     size_t minstack_size = _get_minstack_func(attr);
 838 
 839     // Remove non-TLS area size included in minstack size returned
 840     // by __pthread_get_minstack() to get the static TLS size.
 841     // In glibc before 2.27, minstack size includes guard_size.
 842     // In glibc 2.27 and later, guard_size is automatically added
 843     // to the stack size by pthread_create and is no longer included
 844     // in minstack size. In both cases, the guard_size is taken into
 845     // account, so there is no need to adjust the result for that.
 846     //
 847     // Although __pthread_get_minstack() is a private glibc function,
 848     // it is expected to have a stable behavior across future glibc
 849     // versions while glibc still allocates the static TLS blocks off
 850     // the stack. Following is glibc 2.28 __pthread_get_minstack():
 851     //
 852     // size_t
 853     // __pthread_get_minstack (const pthread_attr_t *attr)
 854     // {
 855     //   return GLRO(dl_pagesize) + __static_tls_size + PTHREAD_STACK_MIN;
 856     // }
 857     //
 858     //
 859     // The following 'minstack_size > os::vm_page_size() + PTHREAD_STACK_MIN'
 860     // if check is done for precaution.
 861     if (minstack_size > (size_t)os::vm_page_size() + PTHREAD_STACK_MIN) {
 862       tls_size = minstack_size - os::vm_page_size() - PTHREAD_STACK_MIN;
 863     }
 864   }
 865 
 866   log_info(os, thread)("Stack size adjustment for TLS is " SIZE_FORMAT,
 867                        tls_size);
 868   return tls_size;
 869 }
 870 
 871 bool os::create_thread(Thread* thread, ThreadType thr_type,
 872                        size_t req_stack_size) {
 873   assert(thread->osthread() == NULL, "caller responsible");
 874 
 875   // Allocate the OSThread object
 876   OSThread* osthread = new OSThread(NULL, NULL);
 877   if (osthread == NULL) {
 878     return false;
 879   }
 880 
 881   // set the correct thread state
 882   osthread->set_thread_type(thr_type);
 883 
 884   // Initial state is ALLOCATED but not INITIALIZED
 885   osthread->set_state(ALLOCATED);
 886 
 887   thread->set_osthread(osthread);
 888 
 889   // init thread attributes
 890   pthread_attr_t attr;
 891   pthread_attr_init(&attr);
 892   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 893 
 894   // Calculate stack size if it's not specified by caller.
 895   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 896   // In glibc versions prior to 2.7 the guard size mechanism
 897   // is not implemented properly. The posix standard requires adding
 898   // the size of the guard pages to the stack size, instead Linux
 899   // takes the space out of 'stacksize'. Thus we adapt the requested
 900   // stack_size by the size of the guard pages to mimick proper
 901   // behaviour. However, be careful not to end up with a size
 902   // of zero due to overflow. Don't add the guard page in that case.
 903   size_t guard_size = os::Linux::default_guard_size(thr_type);
 904   // Configure glibc guard page. Must happen before calling
 905   // get_static_tls_area_size(), which uses the guard_size.
 906   pthread_attr_setguardsize(&attr, guard_size);
 907 
 908   size_t stack_adjust_size = 0;
 909   if (AdjustStackSizeForTLS) {
 910     // Adjust the stack_size for on-stack TLS - see get_static_tls_area_size().
 911     stack_adjust_size += get_static_tls_area_size(&attr);
 912   } else {
 913     stack_adjust_size += guard_size;
 914   }
 915 
 916   stack_adjust_size = align_up(stack_adjust_size, os::vm_page_size());
 917   if (stack_size <= SIZE_MAX - stack_adjust_size) {
 918     stack_size += stack_adjust_size;
 919   }
 920   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 921 
 922   int status = pthread_attr_setstacksize(&attr, stack_size);
 923   assert_status(status == 0, status, "pthread_attr_setstacksize");
 924 
 925   ThreadState state;
 926 
 927   {
 928     pthread_t tid;
 929     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 930 
 931     char buf[64];
 932     if (ret == 0) {
 933       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 934         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 935     } else {
 936       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 937         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 938       // Log some OS information which might explain why creating the thread failed.
 939       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 940       LogStream st(Log(os, thread)::info());
 941       os::Posix::print_rlimit_info(&st);
 942       os::print_memory_info(&st);
 943       os::Linux::print_proc_sys_info(&st);
 944       os::Linux::print_container_info(&st);
 945     }
 946 
 947     pthread_attr_destroy(&attr);
 948 
 949     if (ret != 0) {
 950       // Need to clean up stuff we've allocated so far
 951       thread->set_osthread(NULL);
 952       delete osthread;
 953       return false;
 954     }
 955 
 956     // Store pthread info into the OSThread
 957     osthread->set_pthread_id(tid);
 958 
 959     // Wait until child thread is either initialized or aborted
 960     {
 961       Monitor* sync_with_child = osthread->startThread_lock();
 962       MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 963       while ((state = osthread->get_state()) == ALLOCATED) {
 964         sync_with_child->wait_without_safepoint_check();
 965       }
 966     }
 967   }
 968 
 969   // Aborted due to thread limit being reached
 970   if (state == ZOMBIE) {
 971     thread->set_osthread(NULL);
 972     delete osthread;
 973     return false;
 974   }
 975 
 976   // The thread is returned suspended (in state INITIALIZED),
 977   // and is started higher up in the call chain
 978   assert(state == INITIALIZED, "race condition");
 979   return true;
 980 }
 981 
 982 /////////////////////////////////////////////////////////////////////////////
 983 // attach existing thread
 984 
 985 // bootstrap the main thread
 986 bool os::create_main_thread(JavaThread* thread) {
 987   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 988   return create_attached_thread(thread);
 989 }
 990 
 991 bool os::create_attached_thread(JavaThread* thread) {
 992 #ifdef ASSERT
 993   thread->verify_not_published();
 994 #endif
 995 
 996   // Allocate the OSThread object
 997   OSThread* osthread = new OSThread(NULL, NULL);
 998 
 999   if (osthread == NULL) {
1000     return false;
1001   }
1002 
1003   // Store pthread info into the OSThread
1004   osthread->set_thread_id(os::Linux::gettid());
1005   osthread->set_pthread_id(::pthread_self());
1006 
1007   // initialize floating point control register
1008   os::Linux::init_thread_fpu_state();
1009 
1010   // Initial thread state is RUNNABLE
1011   osthread->set_state(RUNNABLE);
1012 
1013   thread->set_osthread(osthread);
1014 
1015   if (UseNUMA) {
1016     int lgrp_id = os::numa_get_group_id();
1017     if (lgrp_id != -1) {
1018       thread->set_lgrp_id(lgrp_id);
1019     }
1020   }
1021 
1022   if (os::is_primordial_thread()) {
1023     // If current thread is primordial thread, its stack is mapped on demand,
1024     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1025     // the entire stack region to avoid SEGV in stack banging.
1026     // It is also useful to get around the heap-stack-gap problem on SuSE
1027     // kernel (see 4821821 for details). We first expand stack to the top
1028     // of yellow zone, then enable stack yellow zone (order is significant,
1029     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1030     // is no gap between the last two virtual memory regions.
1031 
1032     JavaThread *jt = (JavaThread *)thread;
1033     address addr = jt->stack_reserved_zone_base();
1034     assert(addr != NULL, "initialization problem?");
1035     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1036 
1037     osthread->set_expanding_stack();
1038     os::Linux::manually_expand_stack(jt, addr);
1039     osthread->clear_expanding_stack();
1040   }
1041 
1042   // initialize signal mask for this thread
1043   // and save the caller's signal mask
1044   os::Linux::hotspot_sigmask(thread);
1045 
1046   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
1047     os::current_thread_id(), (uintx) pthread_self());
1048 
1049   return true;
1050 }
1051 
1052 void os::pd_start_thread(Thread* thread) {
1053   OSThread * osthread = thread->osthread();
1054   assert(osthread->get_state() != INITIALIZED, "just checking");
1055   Monitor* sync_with_child = osthread->startThread_lock();
1056   MutexLocker ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1057   sync_with_child->notify();
1058 }
1059 
1060 // Free Linux resources related to the OSThread
1061 void os::free_thread(OSThread* osthread) {
1062   assert(osthread != NULL, "osthread not set");
1063 
1064   // We are told to free resources of the argument thread,
1065   // but we can only really operate on the current thread.
1066   assert(Thread::current()->osthread() == osthread,
1067          "os::free_thread but not current thread");
1068 
1069 #ifdef ASSERT
1070   sigset_t current;
1071   sigemptyset(&current);
1072   pthread_sigmask(SIG_SETMASK, NULL, &current);
1073   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
1074 #endif
1075 
1076   // Restore caller's signal mask
1077   sigset_t sigmask = osthread->caller_sigmask();
1078   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1079 
1080   delete osthread;
1081 }
1082 
1083 //////////////////////////////////////////////////////////////////////////////
1084 // primordial thread
1085 
1086 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1087 bool os::is_primordial_thread(void) {
1088   if (suppress_primordial_thread_resolution) {
1089     return false;
1090   }
1091   char dummy;
1092   // If called before init complete, thread stack bottom will be null.
1093   // Can be called if fatal error occurs before initialization.
1094   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1095   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1096          os::Linux::initial_thread_stack_size()   != 0,
1097          "os::init did not locate primordial thread's stack region");
1098   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1099       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1100                         os::Linux::initial_thread_stack_size()) {
1101     return true;
1102   } else {
1103     return false;
1104   }
1105 }
1106 
1107 // Find the virtual memory area that contains addr
1108 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1109   FILE *fp = fopen("/proc/self/maps", "r");
1110   if (fp) {
1111     address low, high;
1112     while (!feof(fp)) {
1113       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1114         if (low <= addr && addr < high) {
1115           if (vma_low)  *vma_low  = low;
1116           if (vma_high) *vma_high = high;
1117           fclose(fp);
1118           return true;
1119         }
1120       }
1121       for (;;) {
1122         int ch = fgetc(fp);
1123         if (ch == EOF || ch == (int)'\n') break;
1124       }
1125     }
1126     fclose(fp);
1127   }
1128   return false;
1129 }
1130 
1131 // Locate primordial thread stack. This special handling of primordial thread stack
1132 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1133 // bogus value for the primordial process thread. While the launcher has created
1134 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1135 // JNI invocation API from a primordial thread.
1136 void os::Linux::capture_initial_stack(size_t max_size) {
1137 
1138   // max_size is either 0 (which means accept OS default for thread stacks) or
1139   // a user-specified value known to be at least the minimum needed. If we
1140   // are actually on the primordial thread we can make it appear that we have a
1141   // smaller max_size stack by inserting the guard pages at that location. But we
1142   // cannot do anything to emulate a larger stack than what has been provided by
1143   // the OS or threading library. In fact if we try to use a stack greater than
1144   // what is set by rlimit then we will crash the hosting process.
1145 
1146   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1147   // If this is "unlimited" then it will be a huge value.
1148   struct rlimit rlim;
1149   getrlimit(RLIMIT_STACK, &rlim);
1150   size_t stack_size = rlim.rlim_cur;
1151 
1152   // 6308388: a bug in ld.so will relocate its own .data section to the
1153   //   lower end of primordial stack; reduce ulimit -s value a little bit
1154   //   so we won't install guard page on ld.so's data section.
1155   //   But ensure we don't underflow the stack size - allow 1 page spare
1156   if (stack_size >= (size_t)(3 * page_size())) {
1157     stack_size -= 2 * page_size();
1158   }
1159 
1160   // Try to figure out where the stack base (top) is. This is harder.
1161   //
1162   // When an application is started, glibc saves the initial stack pointer in
1163   // a global variable "__libc_stack_end", which is then used by system
1164   // libraries. __libc_stack_end should be pretty close to stack top. The
1165   // variable is available since the very early days. However, because it is
1166   // a private interface, it could disappear in the future.
1167   //
1168   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1169   // to __libc_stack_end, it is very close to stack top, but isn't the real
1170   // stack top. Note that /proc may not exist if VM is running as a chroot
1171   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1172   // /proc/<pid>/stat could change in the future (though unlikely).
1173   //
1174   // We try __libc_stack_end first. If that doesn't work, look for
1175   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1176   // as a hint, which should work well in most cases.
1177 
1178   uintptr_t stack_start;
1179 
1180   // try __libc_stack_end first
1181   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1182   if (p && *p) {
1183     stack_start = *p;
1184   } else {
1185     // see if we can get the start_stack field from /proc/self/stat
1186     FILE *fp;
1187     int pid;
1188     char state;
1189     int ppid;
1190     int pgrp;
1191     int session;
1192     int nr;
1193     int tpgrp;
1194     unsigned long flags;
1195     unsigned long minflt;
1196     unsigned long cminflt;
1197     unsigned long majflt;
1198     unsigned long cmajflt;
1199     unsigned long utime;
1200     unsigned long stime;
1201     long cutime;
1202     long cstime;
1203     long prio;
1204     long nice;
1205     long junk;
1206     long it_real;
1207     uintptr_t start;
1208     uintptr_t vsize;
1209     intptr_t rss;
1210     uintptr_t rsslim;
1211     uintptr_t scodes;
1212     uintptr_t ecode;
1213     int i;
1214 
1215     // Figure what the primordial thread stack base is. Code is inspired
1216     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1217     // followed by command name surrounded by parentheses, state, etc.
1218     char stat[2048];
1219     int statlen;
1220 
1221     fp = fopen("/proc/self/stat", "r");
1222     if (fp) {
1223       statlen = fread(stat, 1, 2047, fp);
1224       stat[statlen] = '\0';
1225       fclose(fp);
1226 
1227       // Skip pid and the command string. Note that we could be dealing with
1228       // weird command names, e.g. user could decide to rename java launcher
1229       // to "java 1.4.2 :)", then the stat file would look like
1230       //                1234 (java 1.4.2 :)) R ... ...
1231       // We don't really need to know the command string, just find the last
1232       // occurrence of ")" and then start parsing from there. See bug 4726580.
1233       char * s = strrchr(stat, ')');
1234 
1235       i = 0;
1236       if (s) {
1237         // Skip blank chars
1238         do { s++; } while (s && isspace(*s));
1239 
1240 #define _UFM UINTX_FORMAT
1241 #define _DFM INTX_FORMAT
1242 
1243         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1244         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1245         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1246                    &state,          // 3  %c
1247                    &ppid,           // 4  %d
1248                    &pgrp,           // 5  %d
1249                    &session,        // 6  %d
1250                    &nr,             // 7  %d
1251                    &tpgrp,          // 8  %d
1252                    &flags,          // 9  %lu
1253                    &minflt,         // 10 %lu
1254                    &cminflt,        // 11 %lu
1255                    &majflt,         // 12 %lu
1256                    &cmajflt,        // 13 %lu
1257                    &utime,          // 14 %lu
1258                    &stime,          // 15 %lu
1259                    &cutime,         // 16 %ld
1260                    &cstime,         // 17 %ld
1261                    &prio,           // 18 %ld
1262                    &nice,           // 19 %ld
1263                    &junk,           // 20 %ld
1264                    &it_real,        // 21 %ld
1265                    &start,          // 22 UINTX_FORMAT
1266                    &vsize,          // 23 UINTX_FORMAT
1267                    &rss,            // 24 INTX_FORMAT
1268                    &rsslim,         // 25 UINTX_FORMAT
1269                    &scodes,         // 26 UINTX_FORMAT
1270                    &ecode,          // 27 UINTX_FORMAT
1271                    &stack_start);   // 28 UINTX_FORMAT
1272       }
1273 
1274 #undef _UFM
1275 #undef _DFM
1276 
1277       if (i != 28 - 2) {
1278         assert(false, "Bad conversion from /proc/self/stat");
1279         // product mode - assume we are the primordial thread, good luck in the
1280         // embedded case.
1281         warning("Can't detect primordial thread stack location - bad conversion");
1282         stack_start = (uintptr_t) &rlim;
1283       }
1284     } else {
1285       // For some reason we can't open /proc/self/stat (for example, running on
1286       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1287       // most cases, so don't abort:
1288       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1289       stack_start = (uintptr_t) &rlim;
1290     }
1291   }
1292 
1293   // Now we have a pointer (stack_start) very close to the stack top, the
1294   // next thing to do is to figure out the exact location of stack top. We
1295   // can find out the virtual memory area that contains stack_start by
1296   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1297   // and its upper limit is the real stack top. (again, this would fail if
1298   // running inside chroot, because /proc may not exist.)
1299 
1300   uintptr_t stack_top;
1301   address low, high;
1302   if (find_vma((address)stack_start, &low, &high)) {
1303     // success, "high" is the true stack top. (ignore "low", because initial
1304     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1305     stack_top = (uintptr_t)high;
1306   } else {
1307     // failed, likely because /proc/self/maps does not exist
1308     warning("Can't detect primordial thread stack location - find_vma failed");
1309     // best effort: stack_start is normally within a few pages below the real
1310     // stack top, use it as stack top, and reduce stack size so we won't put
1311     // guard page outside stack.
1312     stack_top = stack_start;
1313     stack_size -= 16 * page_size();
1314   }
1315 
1316   // stack_top could be partially down the page so align it
1317   stack_top = align_up(stack_top, page_size());
1318 
1319   // Allowed stack value is minimum of max_size and what we derived from rlimit
1320   if (max_size > 0) {
1321     _initial_thread_stack_size = MIN2(max_size, stack_size);
1322   } else {
1323     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1324     // clamp it at 8MB as we do on Solaris
1325     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1326   }
1327   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1328   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1329 
1330   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1331 
1332   if (log_is_enabled(Info, os, thread)) {
1333     // See if we seem to be on primordial process thread
1334     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1335                       uintptr_t(&rlim) < stack_top;
1336 
1337     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1338                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1339                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1340                          stack_top, intptr_t(_initial_thread_stack_bottom));
1341   }
1342 }
1343 
1344 ////////////////////////////////////////////////////////////////////////////////
1345 // time support
1346 
1347 #ifndef SUPPORTS_CLOCK_MONOTONIC
1348 #error "Build platform doesn't support clock_gettime and related functionality"
1349 #endif
1350 
1351 // Time since start-up in seconds to a fine granularity.
1352 // Used by VMSelfDestructTimer and the MemProfiler.
1353 double os::elapsedTime() {
1354 
1355   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1356 }
1357 
1358 jlong os::elapsed_counter() {
1359   return javaTimeNanos() - initial_time_count;
1360 }
1361 
1362 jlong os::elapsed_frequency() {
1363   return NANOSECS_PER_SEC; // nanosecond resolution
1364 }
1365 
1366 bool os::supports_vtime() { return true; }
1367 
1368 double os::elapsedVTime() {
1369   struct rusage usage;
1370   int retval = getrusage(RUSAGE_THREAD, &usage);
1371   if (retval == 0) {
1372     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1373   } else {
1374     // better than nothing, but not much
1375     return elapsedTime();
1376   }
1377 }
1378 
1379 jlong os::javaTimeMillis() {
1380   timeval time;
1381   int status = gettimeofday(&time, NULL);
1382   assert(status != -1, "linux error");
1383   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1384 }
1385 
1386 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1387   timeval time;
1388   int status = gettimeofday(&time, NULL);
1389   assert(status != -1, "linux error");
1390   seconds = jlong(time.tv_sec);
1391   nanos = jlong(time.tv_usec) * 1000;
1392 }
1393 
1394 void os::Linux::fast_thread_clock_init() {
1395   if (!UseLinuxPosixThreadCPUClocks) {
1396     return;
1397   }
1398   clockid_t clockid;
1399   struct timespec tp;
1400   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1401       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1402 
1403   // Switch to using fast clocks for thread cpu time if
1404   // the clock_getres() returns 0 error code.
1405   // Note, that some kernels may support the current thread
1406   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1407   // returned by the pthread_getcpuclockid().
1408   // If the fast Posix clocks are supported then the clock_getres()
1409   // must return at least tp.tv_sec == 0 which means a resolution
1410   // better than 1 sec. This is extra check for reliability.
1411 
1412   if (pthread_getcpuclockid_func &&
1413       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1414       os::Posix::clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1415     _supports_fast_thread_cpu_time = true;
1416     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1417   }
1418 }
1419 
1420 jlong os::javaTimeNanos() {
1421   if (os::supports_monotonic_clock()) {
1422     struct timespec tp;
1423     int status = os::Posix::clock_gettime(CLOCK_MONOTONIC, &tp);
1424     assert(status == 0, "gettime error");
1425     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1426     return result;
1427   } else {
1428     timeval time;
1429     int status = gettimeofday(&time, NULL);
1430     assert(status != -1, "linux error");
1431     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1432     return 1000 * usecs;
1433   }
1434 }
1435 
1436 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1437   if (os::supports_monotonic_clock()) {
1438     info_ptr->max_value = ALL_64_BITS;
1439 
1440     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1441     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1442     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1443   } else {
1444     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1445     info_ptr->max_value = ALL_64_BITS;
1446 
1447     // gettimeofday is a real time clock so it skips
1448     info_ptr->may_skip_backward = true;
1449     info_ptr->may_skip_forward = true;
1450   }
1451 
1452   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1453 }
1454 
1455 // Return the real, user, and system times in seconds from an
1456 // arbitrary fixed point in the past.
1457 bool os::getTimesSecs(double* process_real_time,
1458                       double* process_user_time,
1459                       double* process_system_time) {
1460   struct tms ticks;
1461   clock_t real_ticks = times(&ticks);
1462 
1463   if (real_ticks == (clock_t) (-1)) {
1464     return false;
1465   } else {
1466     double ticks_per_second = (double) clock_tics_per_sec;
1467     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1468     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1469     *process_real_time = ((double) real_ticks) / ticks_per_second;
1470 
1471     return true;
1472   }
1473 }
1474 
1475 
1476 char * os::local_time_string(char *buf, size_t buflen) {
1477   struct tm t;
1478   time_t long_time;
1479   time(&long_time);
1480   localtime_r(&long_time, &t);
1481   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1482                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1483                t.tm_hour, t.tm_min, t.tm_sec);
1484   return buf;
1485 }
1486 
1487 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1488   return localtime_r(clock, res);
1489 }
1490 
1491 ////////////////////////////////////////////////////////////////////////////////
1492 // runtime exit support
1493 
1494 // Note: os::shutdown() might be called very early during initialization, or
1495 // called from signal handler. Before adding something to os::shutdown(), make
1496 // sure it is async-safe and can handle partially initialized VM.
1497 void os::shutdown() {
1498 
1499   // allow PerfMemory to attempt cleanup of any persistent resources
1500   perfMemory_exit();
1501 
1502   // needs to remove object in file system
1503   AttachListener::abort();
1504 
1505   // flush buffered output, finish log files
1506   ostream_abort();
1507 
1508   // Check for abort hook
1509   abort_hook_t abort_hook = Arguments::abort_hook();
1510   if (abort_hook != NULL) {
1511     abort_hook();
1512   }
1513 
1514 }
1515 
1516 // Note: os::abort() might be called very early during initialization, or
1517 // called from signal handler. Before adding something to os::abort(), make
1518 // sure it is async-safe and can handle partially initialized VM.
1519 void os::abort(bool dump_core, void* siginfo, const void* context) {
1520   os::shutdown();
1521   if (dump_core) {
1522     if (DumpPrivateMappingsInCore) {
1523       ClassLoader::close_jrt_image();
1524     }
1525 #ifndef PRODUCT
1526     fdStream out(defaultStream::output_fd());
1527     out.print_raw("Current thread is ");
1528     char buf[16];
1529     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1530     out.print_raw_cr(buf);
1531     out.print_raw_cr("Dumping core ...");
1532 #endif
1533     ::abort(); // dump core
1534   }
1535 
1536   ::exit(1);
1537 }
1538 
1539 // Die immediately, no exit hook, no abort hook, no cleanup.
1540 // Dump a core file, if possible, for debugging.
1541 void os::die() {
1542   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1543     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1544     // and don't take the time to generate a core file.
1545     os::signal_raise(SIGKILL);
1546   } else {
1547     ::abort();
1548   }
1549 }
1550 
1551 // thread_id is kernel thread id (similar to Solaris LWP id)
1552 intx os::current_thread_id() { return os::Linux::gettid(); }
1553 int os::current_process_id() {
1554   return ::getpid();
1555 }
1556 
1557 // DLL functions
1558 
1559 const char* os::dll_file_extension() { return ".so"; }
1560 
1561 // This must be hard coded because it's the system's temporary
1562 // directory not the java application's temp directory, ala java.io.tmpdir.
1563 const char* os::get_temp_directory() { return "/tmp"; }
1564 
1565 static bool file_exists(const char* filename) {
1566   struct stat statbuf;
1567   if (filename == NULL || strlen(filename) == 0) {
1568     return false;
1569   }
1570   return os::stat(filename, &statbuf) == 0;
1571 }
1572 
1573 // check if addr is inside libjvm.so
1574 bool os::address_is_in_vm(address addr) {
1575   static address libjvm_base_addr;
1576   Dl_info dlinfo;
1577 
1578   if (libjvm_base_addr == NULL) {
1579     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1580       libjvm_base_addr = (address)dlinfo.dli_fbase;
1581     }
1582     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1583   }
1584 
1585   if (dladdr((void *)addr, &dlinfo) != 0) {
1586     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1587   }
1588 
1589   return false;
1590 }
1591 
1592 bool os::dll_address_to_function_name(address addr, char *buf,
1593                                       int buflen, int *offset,
1594                                       bool demangle) {
1595   // buf is not optional, but offset is optional
1596   assert(buf != NULL, "sanity check");
1597 
1598   Dl_info dlinfo;
1599 
1600   if (dladdr((void*)addr, &dlinfo) != 0) {
1601     // see if we have a matching symbol
1602     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1603       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1604         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1605       }
1606       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1607       return true;
1608     }
1609     // no matching symbol so try for just file info
1610     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1611       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1612                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1613         return true;
1614       }
1615     }
1616   }
1617 
1618   buf[0] = '\0';
1619   if (offset != NULL) *offset = -1;
1620   return false;
1621 }
1622 
1623 struct _address_to_library_name {
1624   address addr;          // input : memory address
1625   size_t  buflen;        //         size of fname
1626   char*   fname;         // output: library name
1627   address base;          //         library base addr
1628 };
1629 
1630 static int address_to_library_name_callback(struct dl_phdr_info *info,
1631                                             size_t size, void *data) {
1632   int i;
1633   bool found = false;
1634   address libbase = NULL;
1635   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1636 
1637   // iterate through all loadable segments
1638   for (i = 0; i < info->dlpi_phnum; i++) {
1639     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1640     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1641       // base address of a library is the lowest address of its loaded
1642       // segments.
1643       if (libbase == NULL || libbase > segbase) {
1644         libbase = segbase;
1645       }
1646       // see if 'addr' is within current segment
1647       if (segbase <= d->addr &&
1648           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1649         found = true;
1650       }
1651     }
1652   }
1653 
1654   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1655   // so dll_address_to_library_name() can fall through to use dladdr() which
1656   // can figure out executable name from argv[0].
1657   if (found && info->dlpi_name && info->dlpi_name[0]) {
1658     d->base = libbase;
1659     if (d->fname) {
1660       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1661     }
1662     return 1;
1663   }
1664   return 0;
1665 }
1666 
1667 bool os::dll_address_to_library_name(address addr, char* buf,
1668                                      int buflen, int* offset) {
1669   // buf is not optional, but offset is optional
1670   assert(buf != NULL, "sanity check");
1671 
1672   Dl_info dlinfo;
1673   struct _address_to_library_name data;
1674 
1675   // There is a bug in old glibc dladdr() implementation that it could resolve
1676   // to wrong library name if the .so file has a base address != NULL. Here
1677   // we iterate through the program headers of all loaded libraries to find
1678   // out which library 'addr' really belongs to. This workaround can be
1679   // removed once the minimum requirement for glibc is moved to 2.3.x.
1680   data.addr = addr;
1681   data.fname = buf;
1682   data.buflen = buflen;
1683   data.base = NULL;
1684   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1685 
1686   if (rslt) {
1687     // buf already contains library name
1688     if (offset) *offset = addr - data.base;
1689     return true;
1690   }
1691   if (dladdr((void*)addr, &dlinfo) != 0) {
1692     if (dlinfo.dli_fname != NULL) {
1693       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1694     }
1695     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1696       *offset = addr - (address)dlinfo.dli_fbase;
1697     }
1698     return true;
1699   }
1700 
1701   buf[0] = '\0';
1702   if (offset) *offset = -1;
1703   return false;
1704 }
1705 
1706 // Loads .dll/.so and
1707 // in case of error it checks if .dll/.so was built for the
1708 // same architecture as Hotspot is running on
1709 
1710 
1711 // Remember the stack's state. The Linux dynamic linker will change
1712 // the stack to 'executable' at most once, so we must safepoint only once.
1713 bool os::Linux::_stack_is_executable = false;
1714 
1715 // VM operation that loads a library.  This is necessary if stack protection
1716 // of the Java stacks can be lost during loading the library.  If we
1717 // do not stop the Java threads, they can stack overflow before the stacks
1718 // are protected again.
1719 class VM_LinuxDllLoad: public VM_Operation {
1720  private:
1721   const char *_filename;
1722   char *_ebuf;
1723   int _ebuflen;
1724   void *_lib;
1725  public:
1726   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1727     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1728   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1729   void doit() {
1730     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1731     os::Linux::_stack_is_executable = true;
1732   }
1733   void* loaded_library() { return _lib; }
1734 };
1735 
1736 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1737   void * result = NULL;
1738   bool load_attempted = false;
1739 
1740   log_info(os)("attempting shared library load of %s", filename);
1741 
1742   // Check whether the library to load might change execution rights
1743   // of the stack. If they are changed, the protection of the stack
1744   // guard pages will be lost. We need a safepoint to fix this.
1745   //
1746   // See Linux man page execstack(8) for more info.
1747   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1748     if (!ElfFile::specifies_noexecstack(filename)) {
1749       if (!is_init_completed()) {
1750         os::Linux::_stack_is_executable = true;
1751         // This is OK - No Java threads have been created yet, and hence no
1752         // stack guard pages to fix.
1753         //
1754         // Dynamic loader will make all stacks executable after
1755         // this function returns, and will not do that again.
1756         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1757       } else {
1758         warning("You have loaded library %s which might have disabled stack guard. "
1759                 "The VM will try to fix the stack guard now.\n"
1760                 "It's highly recommended that you fix the library with "
1761                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1762                 filename);
1763 
1764         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1765         JavaThread *jt = JavaThread::current();
1766         if (jt->thread_state() != _thread_in_native) {
1767           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1768           // that requires ExecStack. Cannot enter safe point. Let's give up.
1769           warning("Unable to fix stack guard. Giving up.");
1770         } else {
1771           if (!LoadExecStackDllInVMThread) {
1772             // This is for the case where the DLL has an static
1773             // constructor function that executes JNI code. We cannot
1774             // load such DLLs in the VMThread.
1775             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1776           }
1777 
1778           ThreadInVMfromNative tiv(jt);
1779           debug_only(VMNativeEntryWrapper vew;)
1780 
1781           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1782           VMThread::execute(&op);
1783           if (LoadExecStackDllInVMThread) {
1784             result = op.loaded_library();
1785           }
1786           load_attempted = true;
1787         }
1788       }
1789     }
1790   }
1791 
1792   if (!load_attempted) {
1793     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1794   }
1795 
1796   if (result != NULL) {
1797     // Successful loading
1798     return result;
1799   }
1800 
1801   Elf32_Ehdr elf_head;
1802   int diag_msg_max_length=ebuflen-strlen(ebuf);
1803   char* diag_msg_buf=ebuf+strlen(ebuf);
1804 
1805   if (diag_msg_max_length==0) {
1806     // No more space in ebuf for additional diagnostics message
1807     return NULL;
1808   }
1809 
1810 
1811   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1812 
1813   if (file_descriptor < 0) {
1814     // Can't open library, report dlerror() message
1815     return NULL;
1816   }
1817 
1818   bool failed_to_read_elf_head=
1819     (sizeof(elf_head)!=
1820      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1821 
1822   ::close(file_descriptor);
1823   if (failed_to_read_elf_head) {
1824     // file i/o error - report dlerror() msg
1825     return NULL;
1826   }
1827 
1828   if (elf_head.e_ident[EI_DATA] != LITTLE_ENDIAN_ONLY(ELFDATA2LSB) BIG_ENDIAN_ONLY(ELFDATA2MSB)) {
1829     // handle invalid/out of range endianness values
1830     if (elf_head.e_ident[EI_DATA] == 0 || elf_head.e_ident[EI_DATA] > 2) {
1831       return NULL;
1832     }
1833 
1834 #if defined(VM_LITTLE_ENDIAN)
1835     // VM is LE, shared object BE
1836     elf_head.e_machine = be16toh(elf_head.e_machine);
1837 #else
1838     // VM is BE, shared object LE
1839     elf_head.e_machine = le16toh(elf_head.e_machine);
1840 #endif
1841   }
1842 
1843   typedef struct {
1844     Elf32_Half    code;         // Actual value as defined in elf.h
1845     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1846     unsigned char elf_class;    // 32 or 64 bit
1847     unsigned char endianness;   // MSB or LSB
1848     char*         name;         // String representation
1849   } arch_t;
1850 
1851 #ifndef EM_486
1852   #define EM_486          6               /* Intel 80486 */
1853 #endif
1854 #ifndef EM_AARCH64
1855   #define EM_AARCH64    183               /* ARM AARCH64 */
1856 #endif
1857 
1858   static const arch_t arch_array[]={
1859     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1860     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1861     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1862     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1863     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1864     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1865     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1866     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1867 #if defined(VM_LITTLE_ENDIAN)
1868     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1869     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1870 #else
1871     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1872     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1873 #endif
1874     {EM_ARM,         EM_ARM,     ELFCLASS32, ELFDATA2LSB, (char*)"ARM"},
1875     // we only support 64 bit z architecture
1876     {EM_S390,        EM_S390,    ELFCLASS64, ELFDATA2MSB, (char*)"IBM System/390"},
1877     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1878     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1879     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1880     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1881     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1882     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1883   };
1884 
1885 #if  (defined IA32)
1886   static  Elf32_Half running_arch_code=EM_386;
1887 #elif   (defined AMD64) || (defined X32)
1888   static  Elf32_Half running_arch_code=EM_X86_64;
1889 #elif  (defined IA64)
1890   static  Elf32_Half running_arch_code=EM_IA_64;
1891 #elif  (defined __sparc) && (defined _LP64)
1892   static  Elf32_Half running_arch_code=EM_SPARCV9;
1893 #elif  (defined __sparc) && (!defined _LP64)
1894   static  Elf32_Half running_arch_code=EM_SPARC;
1895 #elif  (defined __powerpc64__)
1896   static  Elf32_Half running_arch_code=EM_PPC64;
1897 #elif  (defined __powerpc__)
1898   static  Elf32_Half running_arch_code=EM_PPC;
1899 #elif  (defined AARCH64)
1900   static  Elf32_Half running_arch_code=EM_AARCH64;
1901 #elif  (defined ARM)
1902   static  Elf32_Half running_arch_code=EM_ARM;
1903 #elif  (defined S390)
1904   static  Elf32_Half running_arch_code=EM_S390;
1905 #elif  (defined ALPHA)
1906   static  Elf32_Half running_arch_code=EM_ALPHA;
1907 #elif  (defined MIPSEL)
1908   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1909 #elif  (defined PARISC)
1910   static  Elf32_Half running_arch_code=EM_PARISC;
1911 #elif  (defined MIPS)
1912   static  Elf32_Half running_arch_code=EM_MIPS;
1913 #elif  (defined M68K)
1914   static  Elf32_Half running_arch_code=EM_68K;
1915 #elif  (defined SH)
1916   static  Elf32_Half running_arch_code=EM_SH;
1917 #else
1918     #error Method os::dll_load requires that one of following is defined:\
1919         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1920 #endif
1921 
1922   // Identify compatibility class for VM's architecture and library's architecture
1923   // Obtain string descriptions for architectures
1924 
1925   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1926   int running_arch_index=-1;
1927 
1928   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1929     if (running_arch_code == arch_array[i].code) {
1930       running_arch_index    = i;
1931     }
1932     if (lib_arch.code == arch_array[i].code) {
1933       lib_arch.compat_class = arch_array[i].compat_class;
1934       lib_arch.name         = arch_array[i].name;
1935     }
1936   }
1937 
1938   assert(running_arch_index != -1,
1939          "Didn't find running architecture code (running_arch_code) in arch_array");
1940   if (running_arch_index == -1) {
1941     // Even though running architecture detection failed
1942     // we may still continue with reporting dlerror() message
1943     return NULL;
1944   }
1945 
1946   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1947     if (lib_arch.name != NULL) {
1948       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1949                  " (Possible cause: can't load %s .so on a %s platform)",
1950                  lib_arch.name, arch_array[running_arch_index].name);
1951     } else {
1952       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1953                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s platform)",
1954                  lib_arch.code, arch_array[running_arch_index].name);
1955     }
1956     return NULL;
1957   }
1958 
1959   if (lib_arch.endianness != arch_array[running_arch_index].endianness) {
1960     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: endianness mismatch)");
1961     return NULL;
1962   }
1963 
1964   // ELF file class/capacity : 0 - invalid, 1 - 32bit, 2 - 64bit
1965   if (lib_arch.elf_class > 2 || lib_arch.elf_class < 1) {
1966     ::snprintf(diag_msg_buf, diag_msg_max_length-1, " (Possible cause: invalid ELF file class)");
1967     return NULL;
1968   }
1969 
1970   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1971     ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1972                " (Possible cause: architecture word width mismatch, can't load %d-bit .so on a %d-bit platform)",
1973                (int) lib_arch.elf_class * 32, arch_array[running_arch_index].elf_class * 32);
1974     return NULL;
1975   }
1976 
1977   return NULL;
1978 }
1979 
1980 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1981                                 int ebuflen) {
1982   void * result = ::dlopen(filename, RTLD_LAZY);
1983   if (result == NULL) {
1984     const char* error_report = ::dlerror();
1985     if (error_report == NULL) {
1986       error_report = "dlerror returned no error description";
1987     }
1988     if (ebuf != NULL && ebuflen > 0) {
1989       ::strncpy(ebuf, error_report, ebuflen-1);
1990       ebuf[ebuflen-1]='\0';
1991     }
1992     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1993     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1994   } else {
1995     Events::log(NULL, "Loaded shared library %s", filename);
1996     log_info(os)("shared library load of %s was successful", filename);
1997   }
1998   return result;
1999 }
2000 
2001 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
2002                                        int ebuflen) {
2003   void * result = NULL;
2004   if (LoadExecStackDllInVMThread) {
2005     result = dlopen_helper(filename, ebuf, ebuflen);
2006   }
2007 
2008   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2009   // library that requires an executable stack, or which does not have this
2010   // stack attribute set, dlopen changes the stack attribute to executable. The
2011   // read protection of the guard pages gets lost.
2012   //
2013   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2014   // may have been queued at the same time.
2015 
2016   if (!_stack_is_executable) {
2017     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
2018       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
2019           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
2020         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
2021           warning("Attempt to reguard stack yellow zone failed.");
2022         }
2023       }
2024     }
2025   }
2026 
2027   return result;
2028 }
2029 
2030 void* os::dll_lookup(void* handle, const char* name) {
2031   void* res = dlsym(handle, name);
2032   return res;
2033 }
2034 
2035 void* os::get_default_process_handle() {
2036   return (void*)::dlopen(NULL, RTLD_LAZY);
2037 }
2038 
2039 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
2040   int fd = ::open(filename, O_RDONLY);
2041   if (fd == -1) {
2042     return false;
2043   }
2044 
2045   if (hdr != NULL) {
2046     st->print_cr("%s", hdr);
2047   }
2048 
2049   char buf[33];
2050   int bytes;
2051   buf[32] = '\0';
2052   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
2053     st->print_raw(buf, bytes);
2054   }
2055 
2056   ::close(fd);
2057 
2058   return true;
2059 }
2060 
2061 void os::print_dll_info(outputStream *st) {
2062   st->print_cr("Dynamic libraries:");
2063 
2064   char fname[32];
2065   pid_t pid = os::Linux::gettid();
2066 
2067   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2068 
2069   if (!_print_ascii_file(fname, st)) {
2070     st->print("Can not get library information for pid = %d\n", pid);
2071   }
2072 }
2073 
2074 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2075   FILE *procmapsFile = NULL;
2076 
2077   // Open the procfs maps file for the current process
2078   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2079     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2080     char line[PATH_MAX + 100];
2081 
2082     // Read line by line from 'file'
2083     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2084       u8 base, top, offset, inode;
2085       char permissions[5];
2086       char device[6];
2087       char name[PATH_MAX + 1];
2088 
2089       // Parse fields from line
2090       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s",
2091              &base, &top, permissions, &offset, device, &inode, name);
2092 
2093       // Filter by device id '00:00' so that we only get file system mapped files.
2094       if (strcmp(device, "00:00") != 0) {
2095 
2096         // Call callback with the fields of interest
2097         if(callback(name, (address)base, (address)top, param)) {
2098           // Oops abort, callback aborted
2099           fclose(procmapsFile);
2100           return 1;
2101         }
2102       }
2103     }
2104     fclose(procmapsFile);
2105   }
2106   return 0;
2107 }
2108 
2109 void os::print_os_info_brief(outputStream* st) {
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   os::Linux::print_libversion_info(st);
2115 
2116 }
2117 
2118 void os::print_os_info(outputStream* st) {
2119   st->print("OS:");
2120 
2121   os::Linux::print_distro_info(st);
2122 
2123   os::Posix::print_uname_info(st);
2124 
2125   // Print warning if unsafe chroot environment detected
2126   if (unsafe_chroot_detected) {
2127     st->print("WARNING!! ");
2128     st->print_cr("%s", unstable_chroot_error);
2129   }
2130 
2131   os::Linux::print_libversion_info(st);
2132 
2133   os::Posix::print_rlimit_info(st);
2134 
2135   os::Posix::print_load_average(st);
2136 
2137   os::Linux::print_full_memory_info(st);
2138 
2139   os::Linux::print_proc_sys_info(st);
2140 
2141   os::Linux::print_ld_preload_file(st);
2142 
2143   os::Linux::print_container_info(st);
2144 
2145   VM_Version::print_platform_virtualization_info(st);
2146 
2147   os::Linux::print_steal_info(st);
2148 }
2149 
2150 // Try to identify popular distros.
2151 // Most Linux distributions have a /etc/XXX-release file, which contains
2152 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2153 // file that also contains the OS version string. Some have more than one
2154 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2155 // /etc/redhat-release.), so the order is important.
2156 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2157 // their own specific XXX-release file as well as a redhat-release file.
2158 // Because of this the XXX-release file needs to be searched for before the
2159 // redhat-release file.
2160 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2161 // search for redhat-release / SuSE-release needs to be before lsb-release.
2162 // Since the lsb-release file is the new standard it needs to be searched
2163 // before the older style release files.
2164 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2165 // next to last resort.  The os-release file is a new standard that contains
2166 // distribution information and the system-release file seems to be an old
2167 // standard that has been replaced by the lsb-release and os-release files.
2168 // Searching for the debian_version file is the last resort.  It contains
2169 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2170 // "Debian " is printed before the contents of the debian_version file.
2171 
2172 const char* distro_files[] = {
2173   "/etc/oracle-release",
2174   "/etc/mandriva-release",
2175   "/etc/mandrake-release",
2176   "/etc/sun-release",
2177   "/etc/redhat-release",
2178   "/etc/SuSE-release",
2179   "/etc/lsb-release",
2180   "/etc/turbolinux-release",
2181   "/etc/gentoo-release",
2182   "/etc/ltib-release",
2183   "/etc/angstrom-version",
2184   "/etc/system-release",
2185   "/etc/os-release",
2186   NULL };
2187 
2188 void os::Linux::print_distro_info(outputStream* st) {
2189   for (int i = 0;; i++) {
2190     const char* file = distro_files[i];
2191     if (file == NULL) {
2192       break;  // done
2193     }
2194     // If file prints, we found it.
2195     if (_print_ascii_file(file, st)) {
2196       return;
2197     }
2198   }
2199 
2200   if (file_exists("/etc/debian_version")) {
2201     st->print("Debian ");
2202     _print_ascii_file("/etc/debian_version", st);
2203   } else {
2204     st->print("Linux");
2205   }
2206   st->cr();
2207 }
2208 
2209 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2210   char buf[256];
2211   while (fgets(buf, sizeof(buf), fp)) {
2212     // Edit out extra stuff in expected format
2213     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2214       char* ptr = strstr(buf, "\"");  // the name is in quotes
2215       if (ptr != NULL) {
2216         ptr++; // go beyond first quote
2217         char* nl = strchr(ptr, '\"');
2218         if (nl != NULL) *nl = '\0';
2219         strncpy(distro, ptr, length);
2220       } else {
2221         ptr = strstr(buf, "=");
2222         ptr++; // go beyond equals then
2223         char* nl = strchr(ptr, '\n');
2224         if (nl != NULL) *nl = '\0';
2225         strncpy(distro, ptr, length);
2226       }
2227       return;
2228     } else if (get_first_line) {
2229       char* nl = strchr(buf, '\n');
2230       if (nl != NULL) *nl = '\0';
2231       strncpy(distro, buf, length);
2232       return;
2233     }
2234   }
2235   // print last line and close
2236   char* nl = strchr(buf, '\n');
2237   if (nl != NULL) *nl = '\0';
2238   strncpy(distro, buf, length);
2239 }
2240 
2241 static void parse_os_info(char* distro, size_t length, const char* file) {
2242   FILE* fp = fopen(file, "r");
2243   if (fp != NULL) {
2244     // if suse format, print out first line
2245     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2246     parse_os_info_helper(fp, distro, length, get_first_line);
2247     fclose(fp);
2248   }
2249 }
2250 
2251 void os::get_summary_os_info(char* buf, size_t buflen) {
2252   for (int i = 0;; i++) {
2253     const char* file = distro_files[i];
2254     if (file == NULL) {
2255       break; // ran out of distro_files
2256     }
2257     if (file_exists(file)) {
2258       parse_os_info(buf, buflen, file);
2259       return;
2260     }
2261   }
2262   // special case for debian
2263   if (file_exists("/etc/debian_version")) {
2264     strncpy(buf, "Debian ", buflen);
2265     if (buflen > 7) {
2266       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2267     }
2268   } else {
2269     strncpy(buf, "Linux", buflen);
2270   }
2271 }
2272 
2273 void os::Linux::print_libversion_info(outputStream* st) {
2274   // libc, pthread
2275   st->print("libc:");
2276   st->print("%s ", os::Linux::glibc_version());
2277   st->print("%s ", os::Linux::libpthread_version());
2278   st->cr();
2279 }
2280 
2281 void os::Linux::print_proc_sys_info(outputStream* st) {
2282   st->cr();
2283   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2284   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2285   st->cr();
2286   st->cr();
2287 
2288   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2289   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2290   st->cr();
2291   st->cr();
2292 
2293   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2294   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2295   st->cr();
2296   st->cr();
2297 }
2298 
2299 void os::Linux::print_full_memory_info(outputStream* st) {
2300   st->print("\n/proc/meminfo:\n");
2301   _print_ascii_file("/proc/meminfo", st);
2302   st->cr();
2303 }
2304 
2305 void os::Linux::print_ld_preload_file(outputStream* st) {
2306   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2307   st->cr();
2308 }
2309 
2310 void os::Linux::print_container_info(outputStream* st) {
2311   if (!OSContainer::is_containerized()) {
2312     return;
2313   }
2314 
2315   st->print("container (cgroup) information:\n");
2316 
2317   const char *p_ct = OSContainer::container_type();
2318   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "not supported");
2319 
2320   char *p = OSContainer::cpu_cpuset_cpus();
2321   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "not supported");
2322   free(p);
2323 
2324   p = OSContainer::cpu_cpuset_memory_nodes();
2325   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "not supported");
2326   free(p);
2327 
2328   int i = OSContainer::active_processor_count();
2329   st->print("active_processor_count: ");
2330   if (i > 0) {
2331     st->print("%d\n", i);
2332   } else {
2333     st->print("not supported\n");
2334   }
2335 
2336   i = OSContainer::cpu_quota();
2337   st->print("cpu_quota: ");
2338   if (i > 0) {
2339     st->print("%d\n", i);
2340   } else {
2341     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no quota");
2342   }
2343 
2344   i = OSContainer::cpu_period();
2345   st->print("cpu_period: ");
2346   if (i > 0) {
2347     st->print("%d\n", i);
2348   } else {
2349     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no period");
2350   }
2351 
2352   i = OSContainer::cpu_shares();
2353   st->print("cpu_shares: ");
2354   if (i > 0) {
2355     st->print("%d\n", i);
2356   } else {
2357     st->print("%s\n", i == OSCONTAINER_ERROR ? "not supported" : "no shares");
2358   }
2359 
2360   jlong j = OSContainer::memory_limit_in_bytes();
2361   st->print("memory_limit_in_bytes: ");
2362   if (j > 0) {
2363     st->print(JLONG_FORMAT "\n", j);
2364   } else {
2365     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2366   }
2367 
2368   j = OSContainer::memory_and_swap_limit_in_bytes();
2369   st->print("memory_and_swap_limit_in_bytes: ");
2370   if (j > 0) {
2371     st->print(JLONG_FORMAT "\n", j);
2372   } else {
2373     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2374   }
2375 
2376   j = OSContainer::memory_soft_limit_in_bytes();
2377   st->print("memory_soft_limit_in_bytes: ");
2378   if (j > 0) {
2379     st->print(JLONG_FORMAT "\n", j);
2380   } else {
2381     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2382   }
2383 
2384   j = OSContainer::OSContainer::memory_usage_in_bytes();
2385   st->print("memory_usage_in_bytes: ");
2386   if (j > 0) {
2387     st->print(JLONG_FORMAT "\n", j);
2388   } else {
2389     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2390   }
2391 
2392   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2393   st->print("memory_max_usage_in_bytes: ");
2394   if (j > 0) {
2395     st->print(JLONG_FORMAT "\n", j);
2396   } else {
2397     st->print("%s\n", j == OSCONTAINER_ERROR ? "not supported" : "unlimited");
2398   }
2399   st->cr();
2400 }
2401 
2402 void os::Linux::print_steal_info(outputStream* st) {
2403   if (has_initial_tick_info) {
2404     CPUPerfTicks pticks;
2405     bool res = os::Linux::get_tick_information(&pticks, -1);
2406 
2407     if (res && pticks.has_steal_ticks) {
2408       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2409       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2410       double steal_ticks_perc = 0.0;
2411       if (total_ticks_difference != 0) {
2412         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2413       }
2414       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2415       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2416     }
2417   }
2418 }
2419 
2420 void os::print_memory_info(outputStream* st) {
2421 
2422   st->print("Memory:");
2423   st->print(" %dk page", os::vm_page_size()>>10);
2424 
2425   // values in struct sysinfo are "unsigned long"
2426   struct sysinfo si;
2427   sysinfo(&si);
2428 
2429   st->print(", physical " UINT64_FORMAT "k",
2430             os::physical_memory() >> 10);
2431   st->print("(" UINT64_FORMAT "k free)",
2432             os::available_memory() >> 10);
2433   st->print(", swap " UINT64_FORMAT "k",
2434             ((jlong)si.totalswap * si.mem_unit) >> 10);
2435   st->print("(" UINT64_FORMAT "k free)",
2436             ((jlong)si.freeswap * si.mem_unit) >> 10);
2437   st->cr();
2438 }
2439 
2440 // Print the first "model name" line and the first "flags" line
2441 // that we find and nothing more. We assume "model name" comes
2442 // before "flags" so if we find a second "model name", then the
2443 // "flags" field is considered missing.
2444 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2445 #if defined(IA32) || defined(AMD64)
2446   // Other platforms have less repetitive cpuinfo files
2447   FILE *fp = fopen("/proc/cpuinfo", "r");
2448   if (fp) {
2449     while (!feof(fp)) {
2450       if (fgets(buf, buflen, fp)) {
2451         // Assume model name comes before flags
2452         bool model_name_printed = false;
2453         if (strstr(buf, "model name") != NULL) {
2454           if (!model_name_printed) {
2455             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2456             st->print_raw(buf);
2457             model_name_printed = true;
2458           } else {
2459             // model name printed but not flags?  Odd, just return
2460             fclose(fp);
2461             return true;
2462           }
2463         }
2464         // print the flags line too
2465         if (strstr(buf, "flags") != NULL) {
2466           st->print_raw(buf);
2467           fclose(fp);
2468           return true;
2469         }
2470       }
2471     }
2472     fclose(fp);
2473   }
2474 #endif // x86 platforms
2475   return false;
2476 }
2477 
2478 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2479   // Only print the model name if the platform provides this as a summary
2480   if (!print_model_name_and_flags(st, buf, buflen)) {
2481     st->print("\n/proc/cpuinfo:\n");
2482     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2483       st->print_cr("  <Not Available>");
2484     }
2485   }
2486 }
2487 
2488 #if defined(AMD64) || defined(IA32) || defined(X32)
2489 const char* search_string = "model name";
2490 #elif defined(M68K)
2491 const char* search_string = "CPU";
2492 #elif defined(PPC64)
2493 const char* search_string = "cpu";
2494 #elif defined(S390)
2495 const char* search_string = "machine =";
2496 #elif defined(SPARC)
2497 const char* search_string = "cpu";
2498 #else
2499 const char* search_string = "Processor";
2500 #endif
2501 
2502 // Parses the cpuinfo file for string representing the model name.
2503 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2504   FILE* fp = fopen("/proc/cpuinfo", "r");
2505   if (fp != NULL) {
2506     while (!feof(fp)) {
2507       char buf[256];
2508       if (fgets(buf, sizeof(buf), fp)) {
2509         char* start = strstr(buf, search_string);
2510         if (start != NULL) {
2511           char *ptr = start + strlen(search_string);
2512           char *end = buf + strlen(buf);
2513           while (ptr != end) {
2514              // skip whitespace and colon for the rest of the name.
2515              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2516                break;
2517              }
2518              ptr++;
2519           }
2520           if (ptr != end) {
2521             // reasonable string, get rid of newline and keep the rest
2522             char* nl = strchr(buf, '\n');
2523             if (nl != NULL) *nl = '\0';
2524             strncpy(cpuinfo, ptr, length);
2525             fclose(fp);
2526             return;
2527           }
2528         }
2529       }
2530     }
2531     fclose(fp);
2532   }
2533   // cpuinfo not found or parsing failed, just print generic string.  The entire
2534   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2535 #if   defined(AARCH64)
2536   strncpy(cpuinfo, "AArch64", length);
2537 #elif defined(AMD64)
2538   strncpy(cpuinfo, "x86_64", length);
2539 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2540   strncpy(cpuinfo, "ARM", length);
2541 #elif defined(IA32)
2542   strncpy(cpuinfo, "x86_32", length);
2543 #elif defined(IA64)
2544   strncpy(cpuinfo, "IA64", length);
2545 #elif defined(PPC)
2546   strncpy(cpuinfo, "PPC64", length);
2547 #elif defined(S390)
2548   strncpy(cpuinfo, "S390", length);
2549 #elif defined(SPARC)
2550   strncpy(cpuinfo, "sparcv9", length);
2551 #elif defined(ZERO_LIBARCH)
2552   strncpy(cpuinfo, ZERO_LIBARCH, length);
2553 #else
2554   strncpy(cpuinfo, "unknown", length);
2555 #endif
2556 }
2557 
2558 static void print_signal_handler(outputStream* st, int sig,
2559                                  char* buf, size_t buflen);
2560 
2561 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2562   st->print_cr("Signal Handlers:");
2563   print_signal_handler(st, SIGSEGV, buf, buflen);
2564   print_signal_handler(st, SIGBUS , buf, buflen);
2565   print_signal_handler(st, SIGFPE , buf, buflen);
2566   print_signal_handler(st, SIGPIPE, buf, buflen);
2567   print_signal_handler(st, SIGXFSZ, buf, buflen);
2568   print_signal_handler(st, SIGILL , buf, buflen);
2569   print_signal_handler(st, SR_signum, buf, buflen);
2570   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2571   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2572   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2573   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2574 #if defined(PPC64)
2575   print_signal_handler(st, SIGTRAP, buf, buflen);
2576 #endif
2577 }
2578 
2579 static char saved_jvm_path[MAXPATHLEN] = {0};
2580 
2581 // Find the full path to the current module, libjvm.so
2582 void os::jvm_path(char *buf, jint buflen) {
2583   // Error checking.
2584   if (buflen < MAXPATHLEN) {
2585     assert(false, "must use a large-enough buffer");
2586     buf[0] = '\0';
2587     return;
2588   }
2589   // Lazy resolve the path to current module.
2590   if (saved_jvm_path[0] != 0) {
2591     strcpy(buf, saved_jvm_path);
2592     return;
2593   }
2594 
2595   char dli_fname[MAXPATHLEN];
2596   bool ret = dll_address_to_library_name(
2597                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2598                                          dli_fname, sizeof(dli_fname), NULL);
2599   assert(ret, "cannot locate libjvm");
2600   char *rp = NULL;
2601   if (ret && dli_fname[0] != '\0') {
2602     rp = os::Posix::realpath(dli_fname, buf, buflen);
2603   }
2604   if (rp == NULL) {
2605     return;
2606   }
2607 
2608   if (Arguments::sun_java_launcher_is_altjvm()) {
2609     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2610     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2611     // If "/jre/lib/" appears at the right place in the string, then
2612     // assume we are installed in a JDK and we're done. Otherwise, check
2613     // for a JAVA_HOME environment variable and fix up the path so it
2614     // looks like libjvm.so is installed there (append a fake suffix
2615     // hotspot/libjvm.so).
2616     const char *p = buf + strlen(buf) - 1;
2617     for (int count = 0; p > buf && count < 5; ++count) {
2618       for (--p; p > buf && *p != '/'; --p)
2619         /* empty */ ;
2620     }
2621 
2622     if (strncmp(p, "/jre/lib/", 9) != 0) {
2623       // Look for JAVA_HOME in the environment.
2624       char* java_home_var = ::getenv("JAVA_HOME");
2625       if (java_home_var != NULL && java_home_var[0] != 0) {
2626         char* jrelib_p;
2627         int len;
2628 
2629         // Check the current module name "libjvm.so".
2630         p = strrchr(buf, '/');
2631         if (p == NULL) {
2632           return;
2633         }
2634         assert(strstr(p, "/libjvm") == p, "invalid library name");
2635 
2636         rp = os::Posix::realpath(java_home_var, buf, buflen);
2637         if (rp == NULL) {
2638           return;
2639         }
2640 
2641         // determine if this is a legacy image or modules image
2642         // modules image doesn't have "jre" subdirectory
2643         len = strlen(buf);
2644         assert(len < buflen, "Ran out of buffer room");
2645         jrelib_p = buf + len;
2646         snprintf(jrelib_p, buflen-len, "/jre/lib");
2647         if (0 != access(buf, F_OK)) {
2648           snprintf(jrelib_p, buflen-len, "/lib");
2649         }
2650 
2651         if (0 == access(buf, F_OK)) {
2652           // Use current module name "libjvm.so"
2653           len = strlen(buf);
2654           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2655         } else {
2656           // Go back to path of .so
2657           rp = os::Posix::realpath(dli_fname, buf, buflen);
2658           if (rp == NULL) {
2659             return;
2660           }
2661         }
2662       }
2663     }
2664   }
2665 
2666   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2667   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2668 }
2669 
2670 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2671   // no prefix required, not even "_"
2672 }
2673 
2674 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2675   // no suffix required
2676 }
2677 
2678 ////////////////////////////////////////////////////////////////////////////////
2679 // sun.misc.Signal support
2680 
2681 static void UserHandler(int sig, void *siginfo, void *context) {
2682   // Ctrl-C is pressed during error reporting, likely because the error
2683   // handler fails to abort. Let VM die immediately.
2684   if (sig == SIGINT && VMError::is_error_reported()) {
2685     os::die();
2686   }
2687 
2688   os::signal_notify(sig);
2689 }
2690 
2691 void* os::user_handler() {
2692   return CAST_FROM_FN_PTR(void*, UserHandler);
2693 }
2694 
2695 extern "C" {
2696   typedef void (*sa_handler_t)(int);
2697   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2698 }
2699 
2700 void* os::signal(int signal_number, void* handler) {
2701   struct sigaction sigAct, oldSigAct;
2702 
2703   sigfillset(&(sigAct.sa_mask));
2704   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2705   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2706 
2707   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2708     // -1 means registration failed
2709     return (void *)-1;
2710   }
2711 
2712   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2713 }
2714 
2715 void os::signal_raise(int signal_number) {
2716   ::raise(signal_number);
2717 }
2718 
2719 // The following code is moved from os.cpp for making this
2720 // code platform specific, which it is by its very nature.
2721 
2722 // Will be modified when max signal is changed to be dynamic
2723 int os::sigexitnum_pd() {
2724   return NSIG;
2725 }
2726 
2727 // a counter for each possible signal value
2728 static volatile jint pending_signals[NSIG+1] = { 0 };
2729 
2730 // Linux(POSIX) specific hand shaking semaphore.
2731 static Semaphore* sig_sem = NULL;
2732 static PosixSemaphore sr_semaphore;
2733 
2734 static void jdk_misc_signal_init() {
2735   // Initialize signal structures
2736   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2737 
2738   // Initialize signal semaphore
2739   sig_sem = new Semaphore();
2740 }
2741 
2742 void os::signal_notify(int sig) {
2743   if (sig_sem != NULL) {
2744     Atomic::inc(&pending_signals[sig]);
2745     sig_sem->signal();
2746   } else {
2747     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2748     // initialization isn't called.
2749     assert(ReduceSignalUsage, "signal semaphore should be created");
2750   }
2751 }
2752 
2753 static int check_pending_signals() {
2754   for (;;) {
2755     for (int i = 0; i < NSIG + 1; i++) {
2756       jint n = pending_signals[i];
2757       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2758         return i;
2759       }
2760     }
2761     JavaThread *thread = JavaThread::current();
2762     ThreadBlockInVM tbivm(thread);
2763 
2764     bool threadIsSuspended;
2765     do {
2766       thread->set_suspend_equivalent();
2767       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2768       sig_sem->wait();
2769 
2770       // were we externally suspended while we were waiting?
2771       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2772       if (threadIsSuspended) {
2773         // The semaphore has been incremented, but while we were waiting
2774         // another thread suspended us. We don't want to continue running
2775         // while suspended because that would surprise the thread that
2776         // suspended us.
2777         sig_sem->signal();
2778 
2779         thread->java_suspend_self();
2780       }
2781     } while (threadIsSuspended);
2782   }
2783 }
2784 
2785 int os::signal_wait() {
2786   return check_pending_signals();
2787 }
2788 
2789 ////////////////////////////////////////////////////////////////////////////////
2790 // Virtual Memory
2791 
2792 int os::vm_page_size() {
2793   // Seems redundant as all get out
2794   assert(os::Linux::page_size() != -1, "must call os::init");
2795   return os::Linux::page_size();
2796 }
2797 
2798 // Solaris allocates memory by pages.
2799 int os::vm_allocation_granularity() {
2800   assert(os::Linux::page_size() != -1, "must call os::init");
2801   return os::Linux::page_size();
2802 }
2803 
2804 // Rationale behind this function:
2805 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2806 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2807 //  samples for JITted code. Here we create private executable mapping over the code cache
2808 //  and then we can use standard (well, almost, as mapping can change) way to provide
2809 //  info for the reporting script by storing timestamp and location of symbol
2810 void linux_wrap_code(char* base, size_t size) {
2811   static volatile jint cnt = 0;
2812 
2813   if (!UseOprofile) {
2814     return;
2815   }
2816 
2817   char buf[PATH_MAX+1];
2818   int num = Atomic::add(1, &cnt);
2819 
2820   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2821            os::get_temp_directory(), os::current_process_id(), num);
2822   unlink(buf);
2823 
2824   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2825 
2826   if (fd != -1) {
2827     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2828     if (rv != (off_t)-1) {
2829       if (::write(fd, "", 1) == 1) {
2830         mmap(base, size,
2831              PROT_READ|PROT_WRITE|PROT_EXEC,
2832              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2833       }
2834     }
2835     ::close(fd);
2836     unlink(buf);
2837   }
2838 }
2839 
2840 static bool recoverable_mmap_error(int err) {
2841   // See if the error is one we can let the caller handle. This
2842   // list of errno values comes from JBS-6843484. I can't find a
2843   // Linux man page that documents this specific set of errno
2844   // values so while this list currently matches Solaris, it may
2845   // change as we gain experience with this failure mode.
2846   switch (err) {
2847   case EBADF:
2848   case EINVAL:
2849   case ENOTSUP:
2850     // let the caller deal with these errors
2851     return true;
2852 
2853   default:
2854     // Any remaining errors on this OS can cause our reserved mapping
2855     // to be lost. That can cause confusion where different data
2856     // structures think they have the same memory mapped. The worst
2857     // scenario is if both the VM and a library think they have the
2858     // same memory mapped.
2859     return false;
2860   }
2861 }
2862 
2863 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2864                                     int err) {
2865   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2866           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2867           os::strerror(err), err);
2868 }
2869 
2870 static void warn_fail_commit_memory(char* addr, size_t size,
2871                                     size_t alignment_hint, bool exec,
2872                                     int err) {
2873   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2874           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2875           alignment_hint, exec, os::strerror(err), err);
2876 }
2877 
2878 // NOTE: Linux kernel does not really reserve the pages for us.
2879 //       All it does is to check if there are enough free pages
2880 //       left at the time of mmap(). This could be a potential
2881 //       problem.
2882 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2883   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2884   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2885                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2886   if (res != (uintptr_t) MAP_FAILED) {
2887     if (UseNUMAInterleaving) {
2888       numa_make_global(addr, size);
2889     }
2890     return 0;
2891   }
2892 
2893   int err = errno;  // save errno from mmap() call above
2894 
2895   if (!recoverable_mmap_error(err)) {
2896     warn_fail_commit_memory(addr, size, exec, err);
2897     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2898   }
2899 
2900   return err;
2901 }
2902 
2903 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2904   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2905 }
2906 
2907 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2908                                   const char* mesg) {
2909   assert(mesg != NULL, "mesg must be specified");
2910   int err = os::Linux::commit_memory_impl(addr, size, exec);
2911   if (err != 0) {
2912     // the caller wants all commit errors to exit with the specified mesg:
2913     warn_fail_commit_memory(addr, size, exec, err);
2914     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2915   }
2916 }
2917 
2918 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2919 #ifndef MAP_HUGETLB
2920   #define MAP_HUGETLB 0x40000
2921 #endif
2922 
2923 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2924 #ifndef MADV_HUGEPAGE
2925   #define MADV_HUGEPAGE 14
2926 #endif
2927 
2928 int os::Linux::commit_memory_impl(char* addr, size_t size,
2929                                   size_t alignment_hint, bool exec) {
2930   int err = os::Linux::commit_memory_impl(addr, size, exec);
2931   if (err == 0) {
2932     realign_memory(addr, size, alignment_hint);
2933   }
2934   return err;
2935 }
2936 
2937 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2938                           bool exec) {
2939   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2940 }
2941 
2942 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2943                                   size_t alignment_hint, bool exec,
2944                                   const char* mesg) {
2945   assert(mesg != NULL, "mesg must be specified");
2946   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2947   if (err != 0) {
2948     // the caller wants all commit errors to exit with the specified mesg:
2949     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2950     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2951   }
2952 }
2953 
2954 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2955   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2956     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2957     // be supported or the memory may already be backed by huge pages.
2958     ::madvise(addr, bytes, MADV_HUGEPAGE);
2959   }
2960 }
2961 
2962 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2963   // This method works by doing an mmap over an existing mmaping and effectively discarding
2964   // the existing pages. However it won't work for SHM-based large pages that cannot be
2965   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2966   // small pages on top of the SHM segment. This method always works for small pages, so we
2967   // allow that in any case.
2968   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2969     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2970   }
2971 }
2972 
2973 void os::numa_make_global(char *addr, size_t bytes) {
2974   Linux::numa_interleave_memory(addr, bytes);
2975 }
2976 
2977 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2978 // bind policy to MPOL_PREFERRED for the current thread.
2979 #define USE_MPOL_PREFERRED 0
2980 
2981 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2982   // To make NUMA and large pages more robust when both enabled, we need to ease
2983   // the requirements on where the memory should be allocated. MPOL_BIND is the
2984   // default policy and it will force memory to be allocated on the specified
2985   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2986   // the specified node, but will not force it. Using this policy will prevent
2987   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2988   // free large pages.
2989   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2990   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2991 }
2992 
2993 bool os::numa_topology_changed() { return false; }
2994 
2995 size_t os::numa_get_groups_num() {
2996   // Return just the number of nodes in which it's possible to allocate memory
2997   // (in numa terminology, configured nodes).
2998   return Linux::numa_num_configured_nodes();
2999 }
3000 
3001 int os::numa_get_group_id() {
3002   int cpu_id = Linux::sched_getcpu();
3003   if (cpu_id != -1) {
3004     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
3005     if (lgrp_id != -1) {
3006       return lgrp_id;
3007     }
3008   }
3009   return 0;
3010 }
3011 
3012 int os::Linux::get_existing_num_nodes() {
3013   int node;
3014   int highest_node_number = Linux::numa_max_node();
3015   int num_nodes = 0;
3016 
3017   // Get the total number of nodes in the system including nodes without memory.
3018   for (node = 0; node <= highest_node_number; node++) {
3019     if (is_node_in_existing_nodes(node)) {
3020       num_nodes++;
3021     }
3022   }
3023   return num_nodes;
3024 }
3025 
3026 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3027   int highest_node_number = Linux::numa_max_node();
3028   size_t i = 0;
3029 
3030   // Map all node ids in which it is possible to allocate memory. Also nodes are
3031   // not always consecutively available, i.e. available from 0 to the highest
3032   // node number. If the nodes have been bound explicitly using numactl membind,
3033   // then allocate memory from those nodes only.
3034   for (int node = 0; node <= highest_node_number; node++) {
3035     if (Linux::is_node_in_bound_nodes((unsigned int)node)) {
3036       ids[i++] = node;
3037     }
3038   }
3039   return i;
3040 }
3041 
3042 bool os::get_page_info(char *start, page_info* info) {
3043   return false;
3044 }
3045 
3046 char *os::scan_pages(char *start, char* end, page_info* page_expected,
3047                      page_info* page_found) {
3048   return end;
3049 }
3050 
3051 
3052 int os::Linux::sched_getcpu_syscall(void) {
3053   unsigned int cpu = 0;
3054   int retval = -1;
3055 
3056 #if defined(IA32)
3057   #ifndef SYS_getcpu
3058     #define SYS_getcpu 318
3059   #endif
3060   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
3061 #elif defined(AMD64)
3062 // Unfortunately we have to bring all these macros here from vsyscall.h
3063 // to be able to compile on old linuxes.
3064   #define __NR_vgetcpu 2
3065   #define VSYSCALL_START (-10UL << 20)
3066   #define VSYSCALL_SIZE 1024
3067   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3068   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3069   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3070   retval = vgetcpu(&cpu, NULL, NULL);
3071 #endif
3072 
3073   return (retval == -1) ? retval : cpu;
3074 }
3075 
3076 void os::Linux::sched_getcpu_init() {
3077   // sched_getcpu() should be in libc.
3078   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3079                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3080 
3081   // If it's not, try a direct syscall.
3082   if (sched_getcpu() == -1) {
3083     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3084                                     (void*)&sched_getcpu_syscall));
3085   }
3086 
3087   if (sched_getcpu() == -1) {
3088     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3089   }
3090 }
3091 
3092 // Something to do with the numa-aware allocator needs these symbols
3093 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3094 extern "C" JNIEXPORT void numa_error(char *where) { }
3095 
3096 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3097 // load symbol from base version instead.
3098 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3099   void *f = dlvsym(handle, name, "libnuma_1.1");
3100   if (f == NULL) {
3101     f = dlsym(handle, name);
3102   }
3103   return f;
3104 }
3105 
3106 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3107 // Return NULL if the symbol is not defined in this particular version.
3108 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3109   return dlvsym(handle, name, "libnuma_1.2");
3110 }
3111 
3112 bool os::Linux::libnuma_init() {
3113   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3114     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3115     if (handle != NULL) {
3116       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3117                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3118       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3119                                        libnuma_dlsym(handle, "numa_max_node")));
3120       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3121                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3122       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3123                                         libnuma_dlsym(handle, "numa_available")));
3124       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3125                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3126       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3127                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3128       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3129                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3130       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3131                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3132       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3133                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3134       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3135                                        libnuma_dlsym(handle, "numa_distance")));
3136       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3137                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3138       set_numa_get_interleave_mask(CAST_TO_FN_PTR(numa_get_interleave_mask_func_t,
3139                                                   libnuma_v2_dlsym(handle, "numa_get_interleave_mask")));
3140 
3141       if (numa_available() != -1) {
3142         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3143         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3144         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3145         set_numa_interleave_bitmask(_numa_get_interleave_mask());
3146         set_numa_membind_bitmask(_numa_get_membind());
3147         // Create an index -> node mapping, since nodes are not always consecutive
3148         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3149         rebuild_nindex_to_node_map();
3150         // Create a cpu -> node mapping
3151         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3152         rebuild_cpu_to_node_map();
3153         return true;
3154       }
3155     }
3156   }
3157   return false;
3158 }
3159 
3160 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3161   // Creating guard page is very expensive. Java thread has HotSpot
3162   // guard pages, only enable glibc guard page for non-Java threads.
3163   // (Remember: compiler thread is a Java thread, too!)
3164   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3165 }
3166 
3167 void os::Linux::rebuild_nindex_to_node_map() {
3168   int highest_node_number = Linux::numa_max_node();
3169 
3170   nindex_to_node()->clear();
3171   for (int node = 0; node <= highest_node_number; node++) {
3172     if (Linux::is_node_in_existing_nodes(node)) {
3173       nindex_to_node()->append(node);
3174     }
3175   }
3176 }
3177 
3178 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3179 // The table is later used in get_node_by_cpu().
3180 void os::Linux::rebuild_cpu_to_node_map() {
3181   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3182                               // in libnuma (possible values are starting from 16,
3183                               // and continuing up with every other power of 2, but less
3184                               // than the maximum number of CPUs supported by kernel), and
3185                               // is a subject to change (in libnuma version 2 the requirements
3186                               // are more reasonable) we'll just hardcode the number they use
3187                               // in the library.
3188   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3189 
3190   size_t cpu_num = processor_count();
3191   size_t cpu_map_size = NCPUS / BitsPerCLong;
3192   size_t cpu_map_valid_size =
3193     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3194 
3195   cpu_to_node()->clear();
3196   cpu_to_node()->at_grow(cpu_num - 1);
3197 
3198   size_t node_num = get_existing_num_nodes();
3199 
3200   int distance = 0;
3201   int closest_distance = INT_MAX;
3202   int closest_node = 0;
3203   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3204   for (size_t i = 0; i < node_num; i++) {
3205     // Check if node is configured (not a memory-less node). If it is not, find
3206     // the closest configured node. Check also if node is bound, i.e. it's allowed
3207     // to allocate memory from the node. If it's not allowed, map cpus in that node
3208     // to the closest node from which memory allocation is allowed.
3209     if (!is_node_in_configured_nodes(nindex_to_node()->at(i)) ||
3210         !is_node_in_bound_nodes(nindex_to_node()->at(i))) {
3211       closest_distance = INT_MAX;
3212       // Check distance from all remaining nodes in the system. Ignore distance
3213       // from itself, from another non-configured node, and from another non-bound
3214       // node.
3215       for (size_t m = 0; m < node_num; m++) {
3216         if (m != i &&
3217             is_node_in_configured_nodes(nindex_to_node()->at(m)) &&
3218             is_node_in_bound_nodes(nindex_to_node()->at(m))) {
3219           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3220           // If a closest node is found, update. There is always at least one
3221           // configured and bound node in the system so there is always at least
3222           // one node close.
3223           if (distance != 0 && distance < closest_distance) {
3224             closest_distance = distance;
3225             closest_node = nindex_to_node()->at(m);
3226           }
3227         }
3228       }
3229      } else {
3230        // Current node is already a configured node.
3231        closest_node = nindex_to_node()->at(i);
3232      }
3233 
3234     // Get cpus from the original node and map them to the closest node. If node
3235     // is a configured node (not a memory-less node), then original node and
3236     // closest node are the same.
3237     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3238       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3239         if (cpu_map[j] != 0) {
3240           for (size_t k = 0; k < BitsPerCLong; k++) {
3241             if (cpu_map[j] & (1UL << k)) {
3242               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3243             }
3244           }
3245         }
3246       }
3247     }
3248   }
3249   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3250 }
3251 
3252 int os::Linux::get_node_by_cpu(int cpu_id) {
3253   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3254     return cpu_to_node()->at(cpu_id);
3255   }
3256   return -1;
3257 }
3258 
3259 GrowableArray<int>* os::Linux::_cpu_to_node;
3260 GrowableArray<int>* os::Linux::_nindex_to_node;
3261 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3262 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3263 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3264 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3265 os::Linux::numa_available_func_t os::Linux::_numa_available;
3266 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3267 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3268 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3269 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3270 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3271 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3272 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3273 os::Linux::numa_get_interleave_mask_func_t os::Linux::_numa_get_interleave_mask;
3274 os::Linux::NumaAllocationPolicy os::Linux::_current_numa_policy;
3275 unsigned long* os::Linux::_numa_all_nodes;
3276 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3277 struct bitmask* os::Linux::_numa_nodes_ptr;
3278 struct bitmask* os::Linux::_numa_interleave_bitmask;
3279 struct bitmask* os::Linux::_numa_membind_bitmask;
3280 
3281 bool os::pd_uncommit_memory(char* addr, size_t size) {
3282   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3283                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3284   return res  != (uintptr_t) MAP_FAILED;
3285 }
3286 
3287 static address get_stack_commited_bottom(address bottom, size_t size) {
3288   address nbot = bottom;
3289   address ntop = bottom + size;
3290 
3291   size_t page_sz = os::vm_page_size();
3292   unsigned pages = size / page_sz;
3293 
3294   unsigned char vec[1];
3295   unsigned imin = 1, imax = pages + 1, imid;
3296   int mincore_return_value = 0;
3297 
3298   assert(imin <= imax, "Unexpected page size");
3299 
3300   while (imin < imax) {
3301     imid = (imax + imin) / 2;
3302     nbot = ntop - (imid * page_sz);
3303 
3304     // Use a trick with mincore to check whether the page is mapped or not.
3305     // mincore sets vec to 1 if page resides in memory and to 0 if page
3306     // is swapped output but if page we are asking for is unmapped
3307     // it returns -1,ENOMEM
3308     mincore_return_value = mincore(nbot, page_sz, vec);
3309 
3310     if (mincore_return_value == -1) {
3311       // Page is not mapped go up
3312       // to find first mapped page
3313       if (errno != EAGAIN) {
3314         assert(errno == ENOMEM, "Unexpected mincore errno");
3315         imax = imid;
3316       }
3317     } else {
3318       // Page is mapped go down
3319       // to find first not mapped page
3320       imin = imid + 1;
3321     }
3322   }
3323 
3324   nbot = nbot + page_sz;
3325 
3326   // Adjust stack bottom one page up if last checked page is not mapped
3327   if (mincore_return_value == -1) {
3328     nbot = nbot + page_sz;
3329   }
3330 
3331   return nbot;
3332 }
3333 
3334 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3335   int mincore_return_value;
3336   const size_t stripe = 1024;  // query this many pages each time
3337   unsigned char vec[stripe + 1];
3338   // set a guard
3339   vec[stripe] = 'X';
3340 
3341   const size_t page_sz = os::vm_page_size();
3342   size_t pages = size / page_sz;
3343 
3344   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3345   assert(is_aligned(size, page_sz), "Size must be page aligned");
3346 
3347   committed_start = NULL;
3348 
3349   int loops = (pages + stripe - 1) / stripe;
3350   int committed_pages = 0;
3351   address loop_base = start;
3352   bool found_range = false;
3353 
3354   for (int index = 0; index < loops && !found_range; index ++) {
3355     assert(pages > 0, "Nothing to do");
3356     int pages_to_query = (pages >= stripe) ? stripe : pages;
3357     pages -= pages_to_query;
3358 
3359     // Get stable read
3360     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3361 
3362     // During shutdown, some memory goes away without properly notifying NMT,
3363     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3364     // Bailout and return as not committed for now.
3365     if (mincore_return_value == -1 && errno == ENOMEM) {
3366       return false;
3367     }
3368 
3369     assert(vec[stripe] == 'X', "overflow guard");
3370     assert(mincore_return_value == 0, "Range must be valid");
3371     // Process this stripe
3372     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3373       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3374         // End of current contiguous region
3375         if (committed_start != NULL) {
3376           found_range = true;
3377           break;
3378         }
3379       } else { // committed
3380         // Start of region
3381         if (committed_start == NULL) {
3382           committed_start = loop_base + page_sz * vecIdx;
3383         }
3384         committed_pages ++;
3385       }
3386     }
3387 
3388     loop_base += pages_to_query * page_sz;
3389   }
3390 
3391   if (committed_start != NULL) {
3392     assert(committed_pages > 0, "Must have committed region");
3393     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3394     assert(committed_start >= start && committed_start < start + size, "Out of range");
3395     committed_size = page_sz * committed_pages;
3396     return true;
3397   } else {
3398     assert(committed_pages == 0, "Should not have committed region");
3399     return false;
3400   }
3401 }
3402 
3403 
3404 // Linux uses a growable mapping for the stack, and if the mapping for
3405 // the stack guard pages is not removed when we detach a thread the
3406 // stack cannot grow beyond the pages where the stack guard was
3407 // mapped.  If at some point later in the process the stack expands to
3408 // that point, the Linux kernel cannot expand the stack any further
3409 // because the guard pages are in the way, and a segfault occurs.
3410 //
3411 // However, it's essential not to split the stack region by unmapping
3412 // a region (leaving a hole) that's already part of the stack mapping,
3413 // so if the stack mapping has already grown beyond the guard pages at
3414 // the time we create them, we have to truncate the stack mapping.
3415 // So, we need to know the extent of the stack mapping when
3416 // create_stack_guard_pages() is called.
3417 
3418 // We only need this for stacks that are growable: at the time of
3419 // writing thread stacks don't use growable mappings (i.e. those
3420 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3421 // only applies to the main thread.
3422 
3423 // If the (growable) stack mapping already extends beyond the point
3424 // where we're going to put our guard pages, truncate the mapping at
3425 // that point by munmap()ping it.  This ensures that when we later
3426 // munmap() the guard pages we don't leave a hole in the stack
3427 // mapping. This only affects the main/primordial thread
3428 
3429 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3430   if (os::is_primordial_thread()) {
3431     // As we manually grow stack up to bottom inside create_attached_thread(),
3432     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3433     // we don't need to do anything special.
3434     // Check it first, before calling heavy function.
3435     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3436     unsigned char vec[1];
3437 
3438     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3439       // Fallback to slow path on all errors, including EAGAIN
3440       stack_extent = (uintptr_t) get_stack_commited_bottom(
3441                                                            os::Linux::initial_thread_stack_bottom(),
3442                                                            (size_t)addr - stack_extent);
3443     }
3444 
3445     if (stack_extent < (uintptr_t)addr) {
3446       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3447     }
3448   }
3449 
3450   return os::commit_memory(addr, size, !ExecMem);
3451 }
3452 
3453 // If this is a growable mapping, remove the guard pages entirely by
3454 // munmap()ping them.  If not, just call uncommit_memory(). This only
3455 // affects the main/primordial thread, but guard against future OS changes.
3456 // It's safe to always unmap guard pages for primordial thread because we
3457 // always place it right after end of the mapped region.
3458 
3459 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3460   uintptr_t stack_extent, stack_base;
3461 
3462   if (os::is_primordial_thread()) {
3463     return ::munmap(addr, size) == 0;
3464   }
3465 
3466   return os::uncommit_memory(addr, size);
3467 }
3468 
3469 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3470 // at 'requested_addr'. If there are existing memory mappings at the same
3471 // location, however, they will be overwritten. If 'fixed' is false,
3472 // 'requested_addr' is only treated as a hint, the return value may or
3473 // may not start from the requested address. Unlike Linux mmap(), this
3474 // function returns NULL to indicate failure.
3475 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3476   char * addr;
3477   int flags;
3478 
3479   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3480   if (fixed) {
3481     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3482     flags |= MAP_FIXED;
3483   }
3484 
3485   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3486   // touch an uncommitted page. Otherwise, the read/write might
3487   // succeed if we have enough swap space to back the physical page.
3488   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3489                        flags, -1, 0);
3490 
3491   return addr == MAP_FAILED ? NULL : addr;
3492 }
3493 
3494 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3495 //   (req_addr != NULL) or with a given alignment.
3496 //  - bytes shall be a multiple of alignment.
3497 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3498 //  - alignment sets the alignment at which memory shall be allocated.
3499 //     It must be a multiple of allocation granularity.
3500 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3501 //  req_addr or NULL.
3502 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3503 
3504   size_t extra_size = bytes;
3505   if (req_addr == NULL && alignment > 0) {
3506     extra_size += alignment;
3507   }
3508 
3509   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3510     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3511     -1, 0);
3512   if (start == MAP_FAILED) {
3513     start = NULL;
3514   } else {
3515     if (req_addr != NULL) {
3516       if (start != req_addr) {
3517         ::munmap(start, extra_size);
3518         start = NULL;
3519       }
3520     } else {
3521       char* const start_aligned = align_up(start, alignment);
3522       char* const end_aligned = start_aligned + bytes;
3523       char* const end = start + extra_size;
3524       if (start_aligned > start) {
3525         ::munmap(start, start_aligned - start);
3526       }
3527       if (end_aligned < end) {
3528         ::munmap(end_aligned, end - end_aligned);
3529       }
3530       start = start_aligned;
3531     }
3532   }
3533   return start;
3534 }
3535 
3536 static int anon_munmap(char * addr, size_t size) {
3537   return ::munmap(addr, size) == 0;
3538 }
3539 
3540 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3541                             size_t alignment_hint) {
3542   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3543 }
3544 
3545 bool os::pd_release_memory(char* addr, size_t size) {
3546   return anon_munmap(addr, size);
3547 }
3548 
3549 static bool linux_mprotect(char* addr, size_t size, int prot) {
3550   // Linux wants the mprotect address argument to be page aligned.
3551   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3552 
3553   // According to SUSv3, mprotect() should only be used with mappings
3554   // established by mmap(), and mmap() always maps whole pages. Unaligned
3555   // 'addr' likely indicates problem in the VM (e.g. trying to change
3556   // protection of malloc'ed or statically allocated memory). Check the
3557   // caller if you hit this assert.
3558   assert(addr == bottom, "sanity check");
3559 
3560   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3561   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(bottom), p2i(bottom+size), prot);
3562   return ::mprotect(bottom, size, prot) == 0;
3563 }
3564 
3565 // Set protections specified
3566 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3567                         bool is_committed) {
3568   unsigned int p = 0;
3569   switch (prot) {
3570   case MEM_PROT_NONE: p = PROT_NONE; break;
3571   case MEM_PROT_READ: p = PROT_READ; break;
3572   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3573   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3574   default:
3575     ShouldNotReachHere();
3576   }
3577   // is_committed is unused.
3578   return linux_mprotect(addr, bytes, p);
3579 }
3580 
3581 bool os::guard_memory(char* addr, size_t size) {
3582   return linux_mprotect(addr, size, PROT_NONE);
3583 }
3584 
3585 bool os::unguard_memory(char* addr, size_t size) {
3586   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3587 }
3588 
3589 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3590                                                     size_t page_size) {
3591   bool result = false;
3592   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3593                  MAP_ANONYMOUS|MAP_PRIVATE,
3594                  -1, 0);
3595   if (p != MAP_FAILED) {
3596     void *aligned_p = align_up(p, page_size);
3597 
3598     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3599 
3600     munmap(p, page_size * 2);
3601   }
3602 
3603   if (warn && !result) {
3604     warning("TransparentHugePages is not supported by the operating system.");
3605   }
3606 
3607   return result;
3608 }
3609 
3610 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3611   bool result = false;
3612   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3613                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3614                  -1, 0);
3615 
3616   if (p != MAP_FAILED) {
3617     // We don't know if this really is a huge page or not.
3618     FILE *fp = fopen("/proc/self/maps", "r");
3619     if (fp) {
3620       while (!feof(fp)) {
3621         char chars[257];
3622         long x = 0;
3623         if (fgets(chars, sizeof(chars), fp)) {
3624           if (sscanf(chars, "%lx-%*x", &x) == 1
3625               && x == (long)p) {
3626             if (strstr (chars, "hugepage")) {
3627               result = true;
3628               break;
3629             }
3630           }
3631         }
3632       }
3633       fclose(fp);
3634     }
3635     munmap(p, page_size);
3636   }
3637 
3638   if (warn && !result) {
3639     warning("HugeTLBFS is not supported by the operating system.");
3640   }
3641 
3642   return result;
3643 }
3644 
3645 // From the coredump_filter documentation:
3646 //
3647 // - (bit 0) anonymous private memory
3648 // - (bit 1) anonymous shared memory
3649 // - (bit 2) file-backed private memory
3650 // - (bit 3) file-backed shared memory
3651 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3652 //           effective only if the bit 2 is cleared)
3653 // - (bit 5) hugetlb private memory
3654 // - (bit 6) hugetlb shared memory
3655 // - (bit 7) dax private memory
3656 // - (bit 8) dax shared memory
3657 //
3658 static void set_coredump_filter(CoredumpFilterBit bit) {
3659   FILE *f;
3660   long cdm;
3661 
3662   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3663     return;
3664   }
3665 
3666   if (fscanf(f, "%lx", &cdm) != 1) {
3667     fclose(f);
3668     return;
3669   }
3670 
3671   long saved_cdm = cdm;
3672   rewind(f);
3673   cdm |= bit;
3674 
3675   if (cdm != saved_cdm) {
3676     fprintf(f, "%#lx", cdm);
3677   }
3678 
3679   fclose(f);
3680 }
3681 
3682 // Large page support
3683 
3684 static size_t _large_page_size = 0;
3685 
3686 size_t os::Linux::find_large_page_size() {
3687   size_t large_page_size = 0;
3688 
3689   // large_page_size on Linux is used to round up heap size. x86 uses either
3690   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3691   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3692   // page as large as 256M.
3693   //
3694   // Here we try to figure out page size by parsing /proc/meminfo and looking
3695   // for a line with the following format:
3696   //    Hugepagesize:     2048 kB
3697   //
3698   // If we can't determine the value (e.g. /proc is not mounted, or the text
3699   // format has been changed), we'll use the largest page size supported by
3700   // the processor.
3701 
3702 #ifndef ZERO
3703   large_page_size =
3704     AARCH64_ONLY(2 * M)
3705     AMD64_ONLY(2 * M)
3706     ARM32_ONLY(2 * M)
3707     IA32_ONLY(4 * M)
3708     IA64_ONLY(256 * M)
3709     PPC_ONLY(4 * M)
3710     S390_ONLY(1 * M)
3711     SPARC_ONLY(4 * M);
3712 #endif // ZERO
3713 
3714   FILE *fp = fopen("/proc/meminfo", "r");
3715   if (fp) {
3716     while (!feof(fp)) {
3717       int x = 0;
3718       char buf[16];
3719       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3720         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3721           large_page_size = x * K;
3722           break;
3723         }
3724       } else {
3725         // skip to next line
3726         for (;;) {
3727           int ch = fgetc(fp);
3728           if (ch == EOF || ch == (int)'\n') break;
3729         }
3730       }
3731     }
3732     fclose(fp);
3733   }
3734 
3735   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3736     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3737             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3738             proper_unit_for_byte_size(large_page_size));
3739   }
3740 
3741   return large_page_size;
3742 }
3743 
3744 size_t os::Linux::setup_large_page_size() {
3745   _large_page_size = Linux::find_large_page_size();
3746   const size_t default_page_size = (size_t)Linux::page_size();
3747   if (_large_page_size > default_page_size) {
3748     _page_sizes[0] = _large_page_size;
3749     _page_sizes[1] = default_page_size;
3750     _page_sizes[2] = 0;
3751   }
3752 
3753   return _large_page_size;
3754 }
3755 
3756 bool os::Linux::setup_large_page_type(size_t page_size) {
3757   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3758       FLAG_IS_DEFAULT(UseSHM) &&
3759       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3760 
3761     // The type of large pages has not been specified by the user.
3762 
3763     // Try UseHugeTLBFS and then UseSHM.
3764     UseHugeTLBFS = UseSHM = true;
3765 
3766     // Don't try UseTransparentHugePages since there are known
3767     // performance issues with it turned on. This might change in the future.
3768     UseTransparentHugePages = false;
3769   }
3770 
3771   if (UseTransparentHugePages) {
3772     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3773     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3774       UseHugeTLBFS = false;
3775       UseSHM = false;
3776       return true;
3777     }
3778     UseTransparentHugePages = false;
3779   }
3780 
3781   if (UseHugeTLBFS) {
3782     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3783     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3784       UseSHM = false;
3785       return true;
3786     }
3787     UseHugeTLBFS = false;
3788   }
3789 
3790   return UseSHM;
3791 }
3792 
3793 void os::large_page_init() {
3794   if (!UseLargePages &&
3795       !UseTransparentHugePages &&
3796       !UseHugeTLBFS &&
3797       !UseSHM) {
3798     // Not using large pages.
3799     return;
3800   }
3801 
3802   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3803     // The user explicitly turned off large pages.
3804     // Ignore the rest of the large pages flags.
3805     UseTransparentHugePages = false;
3806     UseHugeTLBFS = false;
3807     UseSHM = false;
3808     return;
3809   }
3810 
3811   size_t large_page_size = Linux::setup_large_page_size();
3812   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3813 
3814   set_coredump_filter(LARGEPAGES_BIT);
3815 }
3816 
3817 #ifndef SHM_HUGETLB
3818   #define SHM_HUGETLB 04000
3819 #endif
3820 
3821 #define shm_warning_format(format, ...)              \
3822   do {                                               \
3823     if (UseLargePages &&                             \
3824         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3825          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3826          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3827       warning(format, __VA_ARGS__);                  \
3828     }                                                \
3829   } while (0)
3830 
3831 #define shm_warning(str) shm_warning_format("%s", str)
3832 
3833 #define shm_warning_with_errno(str)                \
3834   do {                                             \
3835     int err = errno;                               \
3836     shm_warning_format(str " (error = %d)", err);  \
3837   } while (0)
3838 
3839 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3840   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3841 
3842   if (!is_aligned(alignment, SHMLBA)) {
3843     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3844     return NULL;
3845   }
3846 
3847   // To ensure that we get 'alignment' aligned memory from shmat,
3848   // we pre-reserve aligned virtual memory and then attach to that.
3849 
3850   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3851   if (pre_reserved_addr == NULL) {
3852     // Couldn't pre-reserve aligned memory.
3853     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3854     return NULL;
3855   }
3856 
3857   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3858   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3859 
3860   if ((intptr_t)addr == -1) {
3861     int err = errno;
3862     shm_warning_with_errno("Failed to attach shared memory.");
3863 
3864     assert(err != EACCES, "Unexpected error");
3865     assert(err != EIDRM,  "Unexpected error");
3866     assert(err != EINVAL, "Unexpected error");
3867 
3868     // Since we don't know if the kernel unmapped the pre-reserved memory area
3869     // we can't unmap it, since that would potentially unmap memory that was
3870     // mapped from other threads.
3871     return NULL;
3872   }
3873 
3874   return addr;
3875 }
3876 
3877 static char* shmat_at_address(int shmid, char* req_addr) {
3878   if (!is_aligned(req_addr, SHMLBA)) {
3879     assert(false, "Requested address needs to be SHMLBA aligned");
3880     return NULL;
3881   }
3882 
3883   char* addr = (char*)shmat(shmid, req_addr, 0);
3884 
3885   if ((intptr_t)addr == -1) {
3886     shm_warning_with_errno("Failed to attach shared memory.");
3887     return NULL;
3888   }
3889 
3890   return addr;
3891 }
3892 
3893 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3894   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3895   if (req_addr != NULL) {
3896     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3897     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3898     return shmat_at_address(shmid, req_addr);
3899   }
3900 
3901   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3902   // return large page size aligned memory addresses when req_addr == NULL.
3903   // However, if the alignment is larger than the large page size, we have
3904   // to manually ensure that the memory returned is 'alignment' aligned.
3905   if (alignment > os::large_page_size()) {
3906     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3907     return shmat_with_alignment(shmid, bytes, alignment);
3908   } else {
3909     return shmat_at_address(shmid, NULL);
3910   }
3911 }
3912 
3913 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3914                                             char* req_addr, bool exec) {
3915   // "exec" is passed in but not used.  Creating the shared image for
3916   // the code cache doesn't have an SHM_X executable permission to check.
3917   assert(UseLargePages && UseSHM, "only for SHM large pages");
3918   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3919   assert(is_aligned(req_addr, alignment), "Unaligned address");
3920 
3921   if (!is_aligned(bytes, os::large_page_size())) {
3922     return NULL; // Fallback to small pages.
3923   }
3924 
3925   // Create a large shared memory region to attach to based on size.
3926   // Currently, size is the total size of the heap.
3927   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3928   if (shmid == -1) {
3929     // Possible reasons for shmget failure:
3930     // 1. shmmax is too small for Java heap.
3931     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3932     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3933     // 2. not enough large page memory.
3934     //    > check available large pages: cat /proc/meminfo
3935     //    > increase amount of large pages:
3936     //          echo new_value > /proc/sys/vm/nr_hugepages
3937     //      Note 1: different Linux may use different name for this property,
3938     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3939     //      Note 2: it's possible there's enough physical memory available but
3940     //            they are so fragmented after a long run that they can't
3941     //            coalesce into large pages. Try to reserve large pages when
3942     //            the system is still "fresh".
3943     shm_warning_with_errno("Failed to reserve shared memory.");
3944     return NULL;
3945   }
3946 
3947   // Attach to the region.
3948   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3949 
3950   // Remove shmid. If shmat() is successful, the actual shared memory segment
3951   // will be deleted when it's detached by shmdt() or when the process
3952   // terminates. If shmat() is not successful this will remove the shared
3953   // segment immediately.
3954   shmctl(shmid, IPC_RMID, NULL);
3955 
3956   return addr;
3957 }
3958 
3959 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3960                                         int error) {
3961   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3962 
3963   bool warn_on_failure = UseLargePages &&
3964       (!FLAG_IS_DEFAULT(UseLargePages) ||
3965        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3966        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3967 
3968   if (warn_on_failure) {
3969     char msg[128];
3970     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3971                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3972     warning("%s", msg);
3973   }
3974 }
3975 
3976 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3977                                                         char* req_addr,
3978                                                         bool exec) {
3979   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3980   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3981   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3982 
3983   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3984   char* addr = (char*)::mmap(req_addr, bytes, prot,
3985                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3986                              -1, 0);
3987 
3988   if (addr == MAP_FAILED) {
3989     warn_on_large_pages_failure(req_addr, bytes, errno);
3990     return NULL;
3991   }
3992 
3993   assert(is_aligned(addr, os::large_page_size()), "Must be");
3994 
3995   return addr;
3996 }
3997 
3998 // Reserve memory using mmap(MAP_HUGETLB).
3999 //  - bytes shall be a multiple of alignment.
4000 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
4001 //  - alignment sets the alignment at which memory shall be allocated.
4002 //     It must be a multiple of allocation granularity.
4003 // Returns address of memory or NULL. If req_addr was not NULL, will only return
4004 //  req_addr or NULL.
4005 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
4006                                                          size_t alignment,
4007                                                          char* req_addr,
4008                                                          bool exec) {
4009   size_t large_page_size = os::large_page_size();
4010   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
4011 
4012   assert(is_aligned(req_addr, alignment), "Must be");
4013   assert(is_aligned(bytes, alignment), "Must be");
4014 
4015   // First reserve - but not commit - the address range in small pages.
4016   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
4017 
4018   if (start == NULL) {
4019     return NULL;
4020   }
4021 
4022   assert(is_aligned(start, alignment), "Must be");
4023 
4024   char* end = start + bytes;
4025 
4026   // Find the regions of the allocated chunk that can be promoted to large pages.
4027   char* lp_start = align_up(start, large_page_size);
4028   char* lp_end   = align_down(end, large_page_size);
4029 
4030   size_t lp_bytes = lp_end - lp_start;
4031 
4032   assert(is_aligned(lp_bytes, large_page_size), "Must be");
4033 
4034   if (lp_bytes == 0) {
4035     // The mapped region doesn't even span the start and the end of a large page.
4036     // Fall back to allocate a non-special area.
4037     ::munmap(start, end - start);
4038     return NULL;
4039   }
4040 
4041   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
4042 
4043   void* result;
4044 
4045   // Commit small-paged leading area.
4046   if (start != lp_start) {
4047     result = ::mmap(start, lp_start - start, prot,
4048                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4049                     -1, 0);
4050     if (result == MAP_FAILED) {
4051       ::munmap(lp_start, end - lp_start);
4052       return NULL;
4053     }
4054   }
4055 
4056   // Commit large-paged area.
4057   result = ::mmap(lp_start, lp_bytes, prot,
4058                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
4059                   -1, 0);
4060   if (result == MAP_FAILED) {
4061     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
4062     // If the mmap above fails, the large pages region will be unmapped and we
4063     // have regions before and after with small pages. Release these regions.
4064     //
4065     // |  mapped  |  unmapped  |  mapped  |
4066     // ^          ^            ^          ^
4067     // start      lp_start     lp_end     end
4068     //
4069     ::munmap(start, lp_start - start);
4070     ::munmap(lp_end, end - lp_end);
4071     return NULL;
4072   }
4073 
4074   // Commit small-paged trailing area.
4075   if (lp_end != end) {
4076     result = ::mmap(lp_end, end - lp_end, prot,
4077                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4078                     -1, 0);
4079     if (result == MAP_FAILED) {
4080       ::munmap(start, lp_end - start);
4081       return NULL;
4082     }
4083   }
4084 
4085   return start;
4086 }
4087 
4088 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4089                                                    size_t alignment,
4090                                                    char* req_addr,
4091                                                    bool exec) {
4092   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4093   assert(is_aligned(req_addr, alignment), "Must be");
4094   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4095   assert(is_power_of_2(os::large_page_size()), "Must be");
4096   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4097 
4098   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4099     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4100   } else {
4101     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4102   }
4103 }
4104 
4105 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4106                                  char* req_addr, bool exec) {
4107   assert(UseLargePages, "only for large pages");
4108 
4109   char* addr;
4110   if (UseSHM) {
4111     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4112   } else {
4113     assert(UseHugeTLBFS, "must be");
4114     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4115   }
4116 
4117   if (addr != NULL) {
4118     if (UseNUMAInterleaving) {
4119       numa_make_global(addr, bytes);
4120     }
4121 
4122     // The memory is committed
4123     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4124   }
4125 
4126   return addr;
4127 }
4128 
4129 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4130   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4131   return shmdt(base) == 0;
4132 }
4133 
4134 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4135   return pd_release_memory(base, bytes);
4136 }
4137 
4138 bool os::release_memory_special(char* base, size_t bytes) {
4139   bool res;
4140   if (MemTracker::tracking_level() > NMT_minimal) {
4141     Tracker tkr(Tracker::release);
4142     res = os::Linux::release_memory_special_impl(base, bytes);
4143     if (res) {
4144       tkr.record((address)base, bytes);
4145     }
4146 
4147   } else {
4148     res = os::Linux::release_memory_special_impl(base, bytes);
4149   }
4150   return res;
4151 }
4152 
4153 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4154   assert(UseLargePages, "only for large pages");
4155   bool res;
4156 
4157   if (UseSHM) {
4158     res = os::Linux::release_memory_special_shm(base, bytes);
4159   } else {
4160     assert(UseHugeTLBFS, "must be");
4161     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4162   }
4163   return res;
4164 }
4165 
4166 size_t os::large_page_size() {
4167   return _large_page_size;
4168 }
4169 
4170 // With SysV SHM the entire memory region must be allocated as shared
4171 // memory.
4172 // HugeTLBFS allows application to commit large page memory on demand.
4173 // However, when committing memory with HugeTLBFS fails, the region
4174 // that was supposed to be committed will lose the old reservation
4175 // and allow other threads to steal that memory region. Because of this
4176 // behavior we can't commit HugeTLBFS memory.
4177 bool os::can_commit_large_page_memory() {
4178   return UseTransparentHugePages;
4179 }
4180 
4181 bool os::can_execute_large_page_memory() {
4182   return UseTransparentHugePages || UseHugeTLBFS;
4183 }
4184 
4185 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4186   assert(file_desc >= 0, "file_desc is not valid");
4187   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4188   if (result != NULL) {
4189     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4190       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4191     }
4192   }
4193   return result;
4194 }
4195 
4196 // Reserve memory at an arbitrary address, only if that area is
4197 // available (and not reserved for something else).
4198 
4199 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4200   // Assert only that the size is a multiple of the page size, since
4201   // that's all that mmap requires, and since that's all we really know
4202   // about at this low abstraction level.  If we need higher alignment,
4203   // we can either pass an alignment to this method or verify alignment
4204   // in one of the methods further up the call chain.  See bug 5044738.
4205   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4206 
4207   // Repeatedly allocate blocks until the block is allocated at the
4208   // right spot.
4209 
4210   // Linux mmap allows caller to pass an address as hint; give it a try first,
4211   // if kernel honors the hint then we can return immediately.
4212   char * addr = anon_mmap(requested_addr, bytes, false);
4213   if (addr == requested_addr) {
4214     return requested_addr;
4215   }
4216 
4217   if (addr != NULL) {
4218     // mmap() is successful but it fails to reserve at the requested address
4219     anon_munmap(addr, bytes);
4220   }
4221 
4222   return NULL;
4223 }
4224 
4225 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4226 void os::infinite_sleep() {
4227   while (true) {    // sleep forever ...
4228     ::sleep(100);   // ... 100 seconds at a time
4229   }
4230 }
4231 
4232 // Used to convert frequent JVM_Yield() to nops
4233 bool os::dont_yield() {
4234   return DontYieldALot;
4235 }
4236 
4237 // Linux CFS scheduler (since 2.6.23) does not guarantee sched_yield(2) will
4238 // actually give up the CPU. Since skip buddy (v2.6.28):
4239 //
4240 // * Sets the yielding task as skip buddy for current CPU's run queue.
4241 // * Picks next from run queue, if empty, picks a skip buddy (can be the yielding task).
4242 // * Clears skip buddies for this run queue (yielding task no longer a skip buddy).
4243 //
4244 // An alternative is calling os::naked_short_nanosleep with a small number to avoid
4245 // getting re-scheduled immediately.
4246 //
4247 void os::naked_yield() {
4248   sched_yield();
4249 }
4250 
4251 ////////////////////////////////////////////////////////////////////////////////
4252 // thread priority support
4253 
4254 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4255 // only supports dynamic priority, static priority must be zero. For real-time
4256 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4257 // However, for large multi-threaded applications, SCHED_RR is not only slower
4258 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4259 // of 5 runs - Sep 2005).
4260 //
4261 // The following code actually changes the niceness of kernel-thread/LWP. It
4262 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4263 // not the entire user process, and user level threads are 1:1 mapped to kernel
4264 // threads. It has always been the case, but could change in the future. For
4265 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4266 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4267 // (e.g., root privilege or CAP_SYS_NICE capability).
4268 
4269 int os::java_to_os_priority[CriticalPriority + 1] = {
4270   19,              // 0 Entry should never be used
4271 
4272    4,              // 1 MinPriority
4273    3,              // 2
4274    2,              // 3
4275 
4276    1,              // 4
4277    0,              // 5 NormPriority
4278   -1,              // 6
4279 
4280   -2,              // 7
4281   -3,              // 8
4282   -4,              // 9 NearMaxPriority
4283 
4284   -5,              // 10 MaxPriority
4285 
4286   -5               // 11 CriticalPriority
4287 };
4288 
4289 static int prio_init() {
4290   if (ThreadPriorityPolicy == 1) {
4291     if (geteuid() != 0) {
4292       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4293         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4294                 "e.g., being the root user. If the necessary permission is not " \
4295                 "possessed, changes to priority will be silently ignored.");
4296       }
4297     }
4298   }
4299   if (UseCriticalJavaThreadPriority) {
4300     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4301   }
4302   return 0;
4303 }
4304 
4305 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4306   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4307 
4308   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4309   return (ret == 0) ? OS_OK : OS_ERR;
4310 }
4311 
4312 OSReturn os::get_native_priority(const Thread* const thread,
4313                                  int *priority_ptr) {
4314   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4315     *priority_ptr = java_to_os_priority[NormPriority];
4316     return OS_OK;
4317   }
4318 
4319   errno = 0;
4320   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4321   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4322 }
4323 
4324 ////////////////////////////////////////////////////////////////////////////////
4325 // suspend/resume support
4326 
4327 //  The low-level signal-based suspend/resume support is a remnant from the
4328 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4329 //  within hotspot. Currently used by JFR's OSThreadSampler
4330 //
4331 //  The remaining code is greatly simplified from the more general suspension
4332 //  code that used to be used.
4333 //
4334 //  The protocol is quite simple:
4335 //  - suspend:
4336 //      - sends a signal to the target thread
4337 //      - polls the suspend state of the osthread using a yield loop
4338 //      - target thread signal handler (SR_handler) sets suspend state
4339 //        and blocks in sigsuspend until continued
4340 //  - resume:
4341 //      - sets target osthread state to continue
4342 //      - sends signal to end the sigsuspend loop in the SR_handler
4343 //
4344 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4345 //  but is checked for NULL in SR_handler as a thread termination indicator.
4346 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4347 //
4348 //  Note that resume_clear_context() and suspend_save_context() are needed
4349 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4350 //  which in part is used by:
4351 //    - Forte Analyzer: AsyncGetCallTrace()
4352 //    - StackBanging: get_frame_at_stack_banging_point()
4353 
4354 static void resume_clear_context(OSThread *osthread) {
4355   osthread->set_ucontext(NULL);
4356   osthread->set_siginfo(NULL);
4357 }
4358 
4359 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4360                                  ucontext_t* context) {
4361   osthread->set_ucontext(context);
4362   osthread->set_siginfo(siginfo);
4363 }
4364 
4365 // Handler function invoked when a thread's execution is suspended or
4366 // resumed. We have to be careful that only async-safe functions are
4367 // called here (Note: most pthread functions are not async safe and
4368 // should be avoided.)
4369 //
4370 // Note: sigwait() is a more natural fit than sigsuspend() from an
4371 // interface point of view, but sigwait() prevents the signal hander
4372 // from being run. libpthread would get very confused by not having
4373 // its signal handlers run and prevents sigwait()'s use with the
4374 // mutex granting granting signal.
4375 //
4376 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4377 //
4378 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4379   // Save and restore errno to avoid confusing native code with EINTR
4380   // after sigsuspend.
4381   int old_errno = errno;
4382 
4383   Thread* thread = Thread::current_or_null_safe();
4384   assert(thread != NULL, "Missing current thread in SR_handler");
4385 
4386   // On some systems we have seen signal delivery get "stuck" until the signal
4387   // mask is changed as part of thread termination. Check that the current thread
4388   // has not already terminated (via SR_lock()) - else the following assertion
4389   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4390   // destructor has completed.
4391 
4392   if (thread->SR_lock() == NULL) {
4393     return;
4394   }
4395 
4396   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4397 
4398   OSThread* osthread = thread->osthread();
4399 
4400   os::SuspendResume::State current = osthread->sr.state();
4401   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4402     suspend_save_context(osthread, siginfo, context);
4403 
4404     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4405     os::SuspendResume::State state = osthread->sr.suspended();
4406     if (state == os::SuspendResume::SR_SUSPENDED) {
4407       sigset_t suspend_set;  // signals for sigsuspend()
4408       sigemptyset(&suspend_set);
4409       // get current set of blocked signals and unblock resume signal
4410       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4411       sigdelset(&suspend_set, SR_signum);
4412 
4413       sr_semaphore.signal();
4414       // wait here until we are resumed
4415       while (1) {
4416         sigsuspend(&suspend_set);
4417 
4418         os::SuspendResume::State result = osthread->sr.running();
4419         if (result == os::SuspendResume::SR_RUNNING) {
4420           sr_semaphore.signal();
4421           break;
4422         }
4423       }
4424 
4425     } else if (state == os::SuspendResume::SR_RUNNING) {
4426       // request was cancelled, continue
4427     } else {
4428       ShouldNotReachHere();
4429     }
4430 
4431     resume_clear_context(osthread);
4432   } else if (current == os::SuspendResume::SR_RUNNING) {
4433     // request was cancelled, continue
4434   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4435     // ignore
4436   } else {
4437     // ignore
4438   }
4439 
4440   errno = old_errno;
4441 }
4442 
4443 static int SR_initialize() {
4444   struct sigaction act;
4445   char *s;
4446 
4447   // Get signal number to use for suspend/resume
4448   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4449     int sig = ::strtol(s, 0, 10);
4450     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4451         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4452       SR_signum = sig;
4453     } else {
4454       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4455               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4456     }
4457   }
4458 
4459   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4460          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4461 
4462   sigemptyset(&SR_sigset);
4463   sigaddset(&SR_sigset, SR_signum);
4464 
4465   // Set up signal handler for suspend/resume
4466   act.sa_flags = SA_RESTART|SA_SIGINFO;
4467   act.sa_handler = (void (*)(int)) SR_handler;
4468 
4469   // SR_signum is blocked by default.
4470   // 4528190 - We also need to block pthread restart signal (32 on all
4471   // supported Linux platforms). Note that LinuxThreads need to block
4472   // this signal for all threads to work properly. So we don't have
4473   // to use hard-coded signal number when setting up the mask.
4474   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4475 
4476   if (sigaction(SR_signum, &act, 0) == -1) {
4477     return -1;
4478   }
4479 
4480   // Save signal flag
4481   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4482   return 0;
4483 }
4484 
4485 static int sr_notify(OSThread* osthread) {
4486   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4487   assert_status(status == 0, status, "pthread_kill");
4488   return status;
4489 }
4490 
4491 // "Randomly" selected value for how long we want to spin
4492 // before bailing out on suspending a thread, also how often
4493 // we send a signal to a thread we want to resume
4494 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4495 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4496 
4497 // returns true on success and false on error - really an error is fatal
4498 // but this seems the normal response to library errors
4499 static bool do_suspend(OSThread* osthread) {
4500   assert(osthread->sr.is_running(), "thread should be running");
4501   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4502 
4503   // mark as suspended and send signal
4504   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4505     // failed to switch, state wasn't running?
4506     ShouldNotReachHere();
4507     return false;
4508   }
4509 
4510   if (sr_notify(osthread) != 0) {
4511     ShouldNotReachHere();
4512   }
4513 
4514   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4515   while (true) {
4516     if (sr_semaphore.timedwait(2)) {
4517       break;
4518     } else {
4519       // timeout
4520       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4521       if (cancelled == os::SuspendResume::SR_RUNNING) {
4522         return false;
4523       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4524         // make sure that we consume the signal on the semaphore as well
4525         sr_semaphore.wait();
4526         break;
4527       } else {
4528         ShouldNotReachHere();
4529         return false;
4530       }
4531     }
4532   }
4533 
4534   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4535   return true;
4536 }
4537 
4538 static void do_resume(OSThread* osthread) {
4539   assert(osthread->sr.is_suspended(), "thread should be suspended");
4540   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4541 
4542   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4543     // failed to switch to WAKEUP_REQUEST
4544     ShouldNotReachHere();
4545     return;
4546   }
4547 
4548   while (true) {
4549     if (sr_notify(osthread) == 0) {
4550       if (sr_semaphore.timedwait(2)) {
4551         if (osthread->sr.is_running()) {
4552           return;
4553         }
4554       }
4555     } else {
4556       ShouldNotReachHere();
4557     }
4558   }
4559 
4560   guarantee(osthread->sr.is_running(), "Must be running!");
4561 }
4562 
4563 ///////////////////////////////////////////////////////////////////////////////////
4564 // signal handling (except suspend/resume)
4565 
4566 // This routine may be used by user applications as a "hook" to catch signals.
4567 // The user-defined signal handler must pass unrecognized signals to this
4568 // routine, and if it returns true (non-zero), then the signal handler must
4569 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4570 // routine will never retun false (zero), but instead will execute a VM panic
4571 // routine kill the process.
4572 //
4573 // If this routine returns false, it is OK to call it again.  This allows
4574 // the user-defined signal handler to perform checks either before or after
4575 // the VM performs its own checks.  Naturally, the user code would be making
4576 // a serious error if it tried to handle an exception (such as a null check
4577 // or breakpoint) that the VM was generating for its own correct operation.
4578 //
4579 // This routine may recognize any of the following kinds of signals:
4580 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4581 // It should be consulted by handlers for any of those signals.
4582 //
4583 // The caller of this routine must pass in the three arguments supplied
4584 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4585 // field of the structure passed to sigaction().  This routine assumes that
4586 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4587 //
4588 // Note that the VM will print warnings if it detects conflicting signal
4589 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4590 //
4591 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4592                                                  siginfo_t* siginfo,
4593                                                  void* ucontext,
4594                                                  int abort_if_unrecognized);
4595 
4596 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4597   assert(info != NULL && uc != NULL, "it must be old kernel");
4598   int orig_errno = errno;  // Preserve errno value over signal handler.
4599   JVM_handle_linux_signal(sig, info, uc, true);
4600   errno = orig_errno;
4601 }
4602 
4603 
4604 // This boolean allows users to forward their own non-matching signals
4605 // to JVM_handle_linux_signal, harmlessly.
4606 bool os::Linux::signal_handlers_are_installed = false;
4607 
4608 // For signal-chaining
4609 bool os::Linux::libjsig_is_loaded = false;
4610 typedef struct sigaction *(*get_signal_t)(int);
4611 get_signal_t os::Linux::get_signal_action = NULL;
4612 
4613 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4614   struct sigaction *actp = NULL;
4615 
4616   if (libjsig_is_loaded) {
4617     // Retrieve the old signal handler from libjsig
4618     actp = (*get_signal_action)(sig);
4619   }
4620   if (actp == NULL) {
4621     // Retrieve the preinstalled signal handler from jvm
4622     actp = os::Posix::get_preinstalled_handler(sig);
4623   }
4624 
4625   return actp;
4626 }
4627 
4628 static bool call_chained_handler(struct sigaction *actp, int sig,
4629                                  siginfo_t *siginfo, void *context) {
4630   // Call the old signal handler
4631   if (actp->sa_handler == SIG_DFL) {
4632     // It's more reasonable to let jvm treat it as an unexpected exception
4633     // instead of taking the default action.
4634     return false;
4635   } else if (actp->sa_handler != SIG_IGN) {
4636     if ((actp->sa_flags & SA_NODEFER) == 0) {
4637       // automaticlly block the signal
4638       sigaddset(&(actp->sa_mask), sig);
4639     }
4640 
4641     sa_handler_t hand = NULL;
4642     sa_sigaction_t sa = NULL;
4643     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4644     // retrieve the chained handler
4645     if (siginfo_flag_set) {
4646       sa = actp->sa_sigaction;
4647     } else {
4648       hand = actp->sa_handler;
4649     }
4650 
4651     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4652       actp->sa_handler = SIG_DFL;
4653     }
4654 
4655     // try to honor the signal mask
4656     sigset_t oset;
4657     sigemptyset(&oset);
4658     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4659 
4660     // call into the chained handler
4661     if (siginfo_flag_set) {
4662       (*sa)(sig, siginfo, context);
4663     } else {
4664       (*hand)(sig);
4665     }
4666 
4667     // restore the signal mask
4668     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4669   }
4670   // Tell jvm's signal handler the signal is taken care of.
4671   return true;
4672 }
4673 
4674 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4675   bool chained = false;
4676   // signal-chaining
4677   if (UseSignalChaining) {
4678     struct sigaction *actp = get_chained_signal_action(sig);
4679     if (actp != NULL) {
4680       chained = call_chained_handler(actp, sig, siginfo, context);
4681     }
4682   }
4683   return chained;
4684 }
4685 
4686 // for diagnostic
4687 int sigflags[NSIG];
4688 
4689 int os::Linux::get_our_sigflags(int sig) {
4690   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4691   return sigflags[sig];
4692 }
4693 
4694 void os::Linux::set_our_sigflags(int sig, int flags) {
4695   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4696   if (sig > 0 && sig < NSIG) {
4697     sigflags[sig] = flags;
4698   }
4699 }
4700 
4701 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4702   // Check for overwrite.
4703   struct sigaction oldAct;
4704   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4705 
4706   void* oldhand = oldAct.sa_sigaction
4707                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4708                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4709   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4710       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4711       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4712     if (AllowUserSignalHandlers || !set_installed) {
4713       // Do not overwrite; user takes responsibility to forward to us.
4714       return;
4715     } else if (UseSignalChaining) {
4716       // save the old handler in jvm
4717       os::Posix::save_preinstalled_handler(sig, oldAct);
4718       // libjsig also interposes the sigaction() call below and saves the
4719       // old sigaction on it own.
4720     } else {
4721       fatal("Encountered unexpected pre-existing sigaction handler "
4722             "%#lx for signal %d.", (long)oldhand, sig);
4723     }
4724   }
4725 
4726   struct sigaction sigAct;
4727   sigfillset(&(sigAct.sa_mask));
4728   sigAct.sa_handler = SIG_DFL;
4729   if (!set_installed) {
4730     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4731   } else {
4732     sigAct.sa_sigaction = signalHandler;
4733     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4734   }
4735   // Save flags, which are set by ours
4736   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4737   sigflags[sig] = sigAct.sa_flags;
4738 
4739   int ret = sigaction(sig, &sigAct, &oldAct);
4740   assert(ret == 0, "check");
4741 
4742   void* oldhand2  = oldAct.sa_sigaction
4743                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4744                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4745   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4746 }
4747 
4748 // install signal handlers for signals that HotSpot needs to
4749 // handle in order to support Java-level exception handling.
4750 
4751 void os::Linux::install_signal_handlers() {
4752   if (!signal_handlers_are_installed) {
4753     signal_handlers_are_installed = true;
4754 
4755     // signal-chaining
4756     typedef void (*signal_setting_t)();
4757     signal_setting_t begin_signal_setting = NULL;
4758     signal_setting_t end_signal_setting = NULL;
4759     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4760                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4761     if (begin_signal_setting != NULL) {
4762       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4763                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4764       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4765                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4766       libjsig_is_loaded = true;
4767       assert(UseSignalChaining, "should enable signal-chaining");
4768     }
4769     if (libjsig_is_loaded) {
4770       // Tell libjsig jvm is setting signal handlers
4771       (*begin_signal_setting)();
4772     }
4773 
4774     set_signal_handler(SIGSEGV, true);
4775     set_signal_handler(SIGPIPE, true);
4776     set_signal_handler(SIGBUS, true);
4777     set_signal_handler(SIGILL, true);
4778     set_signal_handler(SIGFPE, true);
4779 #if defined(PPC64)
4780     set_signal_handler(SIGTRAP, true);
4781 #endif
4782     set_signal_handler(SIGXFSZ, true);
4783 
4784     if (libjsig_is_loaded) {
4785       // Tell libjsig jvm finishes setting signal handlers
4786       (*end_signal_setting)();
4787     }
4788 
4789     // We don't activate signal checker if libjsig is in place, we trust ourselves
4790     // and if UserSignalHandler is installed all bets are off.
4791     // Log that signal checking is off only if -verbose:jni is specified.
4792     if (CheckJNICalls) {
4793       if (libjsig_is_loaded) {
4794         if (PrintJNIResolving) {
4795           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4796         }
4797         check_signals = false;
4798       }
4799       if (AllowUserSignalHandlers) {
4800         if (PrintJNIResolving) {
4801           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4802         }
4803         check_signals = false;
4804       }
4805     }
4806   }
4807 }
4808 
4809 // This is the fastest way to get thread cpu time on Linux.
4810 // Returns cpu time (user+sys) for any thread, not only for current.
4811 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4812 // It might work on 2.6.10+ with a special kernel/glibc patch.
4813 // For reference, please, see IEEE Std 1003.1-2004:
4814 //   http://www.unix.org/single_unix_specification
4815 
4816 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4817   struct timespec tp;
4818   int rc = os::Posix::clock_gettime(clockid, &tp);
4819   assert(rc == 0, "clock_gettime is expected to return 0 code");
4820 
4821   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4822 }
4823 
4824 void os::Linux::initialize_os_info() {
4825   assert(_os_version == 0, "OS info already initialized");
4826 
4827   struct utsname _uname;
4828 
4829   uint32_t major;
4830   uint32_t minor;
4831   uint32_t fix;
4832 
4833   int rc;
4834 
4835   // Kernel version is unknown if
4836   // verification below fails.
4837   _os_version = 0x01000000;
4838 
4839   rc = uname(&_uname);
4840   if (rc != -1) {
4841 
4842     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4843     if (rc == 3) {
4844 
4845       if (major < 256 && minor < 256 && fix < 256) {
4846         // Kernel version format is as expected,
4847         // set it overriding unknown state.
4848         _os_version = (major << 16) |
4849                       (minor << 8 ) |
4850                       (fix   << 0 ) ;
4851       }
4852     }
4853   }
4854 }
4855 
4856 uint32_t os::Linux::os_version() {
4857   assert(_os_version != 0, "not initialized");
4858   return _os_version & 0x00FFFFFF;
4859 }
4860 
4861 /////
4862 // glibc on Linux platform uses non-documented flag
4863 // to indicate, that some special sort of signal
4864 // trampoline is used.
4865 // We will never set this flag, and we should
4866 // ignore this flag in our diagnostic
4867 #ifdef SIGNIFICANT_SIGNAL_MASK
4868   #undef SIGNIFICANT_SIGNAL_MASK
4869 #endif
4870 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4871 
4872 static const char* get_signal_handler_name(address handler,
4873                                            char* buf, int buflen) {
4874   int offset = 0;
4875   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4876   if (found) {
4877     // skip directory names
4878     const char *p1, *p2;
4879     p1 = buf;
4880     size_t len = strlen(os::file_separator());
4881     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4882     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4883   } else {
4884     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4885   }
4886   return buf;
4887 }
4888 
4889 static void print_signal_handler(outputStream* st, int sig,
4890                                  char* buf, size_t buflen) {
4891   struct sigaction sa;
4892 
4893   sigaction(sig, NULL, &sa);
4894 
4895   // See comment for SIGNIFICANT_SIGNAL_MASK define
4896   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4897 
4898   st->print("%s: ", os::exception_name(sig, buf, buflen));
4899 
4900   address handler = (sa.sa_flags & SA_SIGINFO)
4901     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4902     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4903 
4904   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4905     st->print("SIG_DFL");
4906   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4907     st->print("SIG_IGN");
4908   } else {
4909     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4910   }
4911 
4912   st->print(", sa_mask[0]=");
4913   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4914 
4915   address rh = VMError::get_resetted_sighandler(sig);
4916   // May be, handler was resetted by VMError?
4917   if (rh != NULL) {
4918     handler = rh;
4919     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4920   }
4921 
4922   st->print(", sa_flags=");
4923   os::Posix::print_sa_flags(st, sa.sa_flags);
4924 
4925   // Check: is it our handler?
4926   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4927       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4928     // It is our signal handler
4929     // check for flags, reset system-used one!
4930     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4931       st->print(
4932                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4933                 os::Linux::get_our_sigflags(sig));
4934     }
4935   }
4936   st->cr();
4937 }
4938 
4939 
4940 #define DO_SIGNAL_CHECK(sig)                      \
4941   do {                                            \
4942     if (!sigismember(&check_signal_done, sig)) {  \
4943       os::Linux::check_signal_handler(sig);       \
4944     }                                             \
4945   } while (0)
4946 
4947 // This method is a periodic task to check for misbehaving JNI applications
4948 // under CheckJNI, we can add any periodic checks here
4949 
4950 void os::run_periodic_checks() {
4951   if (check_signals == false) return;
4952 
4953   // SEGV and BUS if overridden could potentially prevent
4954   // generation of hs*.log in the event of a crash, debugging
4955   // such a case can be very challenging, so we absolutely
4956   // check the following for a good measure:
4957   DO_SIGNAL_CHECK(SIGSEGV);
4958   DO_SIGNAL_CHECK(SIGILL);
4959   DO_SIGNAL_CHECK(SIGFPE);
4960   DO_SIGNAL_CHECK(SIGBUS);
4961   DO_SIGNAL_CHECK(SIGPIPE);
4962   DO_SIGNAL_CHECK(SIGXFSZ);
4963 #if defined(PPC64)
4964   DO_SIGNAL_CHECK(SIGTRAP);
4965 #endif
4966 
4967   // ReduceSignalUsage allows the user to override these handlers
4968   // see comments at the very top and jvm_md.h
4969   if (!ReduceSignalUsage) {
4970     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4971     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4972     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4973     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4974   }
4975 
4976   DO_SIGNAL_CHECK(SR_signum);
4977 }
4978 
4979 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4980 
4981 static os_sigaction_t os_sigaction = NULL;
4982 
4983 void os::Linux::check_signal_handler(int sig) {
4984   char buf[O_BUFLEN];
4985   address jvmHandler = NULL;
4986 
4987 
4988   struct sigaction act;
4989   if (os_sigaction == NULL) {
4990     // only trust the default sigaction, in case it has been interposed
4991     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4992     if (os_sigaction == NULL) return;
4993   }
4994 
4995   os_sigaction(sig, (struct sigaction*)NULL, &act);
4996 
4997 
4998   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4999 
5000   address thisHandler = (act.sa_flags & SA_SIGINFO)
5001     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5002     : CAST_FROM_FN_PTR(address, act.sa_handler);
5003 
5004 
5005   switch (sig) {
5006   case SIGSEGV:
5007   case SIGBUS:
5008   case SIGFPE:
5009   case SIGPIPE:
5010   case SIGILL:
5011   case SIGXFSZ:
5012     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5013     break;
5014 
5015   case SHUTDOWN1_SIGNAL:
5016   case SHUTDOWN2_SIGNAL:
5017   case SHUTDOWN3_SIGNAL:
5018   case BREAK_SIGNAL:
5019     jvmHandler = (address)user_handler();
5020     break;
5021 
5022   default:
5023     if (sig == SR_signum) {
5024       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5025     } else {
5026       return;
5027     }
5028     break;
5029   }
5030 
5031   if (thisHandler != jvmHandler) {
5032     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5033     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5034     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5035     // No need to check this sig any longer
5036     sigaddset(&check_signal_done, sig);
5037     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5038     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5039       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5040                     exception_name(sig, buf, O_BUFLEN));
5041     }
5042   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5043     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5044     tty->print("expected:");
5045     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5046     tty->cr();
5047     tty->print("  found:");
5048     os::Posix::print_sa_flags(tty, act.sa_flags);
5049     tty->cr();
5050     // No need to check this sig any longer
5051     sigaddset(&check_signal_done, sig);
5052   }
5053 
5054   // Dump all the signal
5055   if (sigismember(&check_signal_done, sig)) {
5056     print_signal_handlers(tty, buf, O_BUFLEN);
5057   }
5058 }
5059 
5060 extern void report_error(char* file_name, int line_no, char* title,
5061                          char* format, ...);
5062 
5063 // this is called _before_ most of the global arguments have been parsed
5064 void os::init(void) {
5065   char dummy;   // used to get a guess on initial stack address
5066 
5067   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5068 
5069   init_random(1234567);
5070 
5071   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5072   if (Linux::page_size() == -1) {
5073     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5074           os::strerror(errno));
5075   }
5076   init_page_sizes((size_t) Linux::page_size());
5077 
5078   Linux::initialize_system_info();
5079 
5080   Linux::initialize_os_info();
5081 
5082   os::Linux::CPUPerfTicks pticks;
5083   bool res = os::Linux::get_tick_information(&pticks, -1);
5084 
5085   if (res && pticks.has_steal_ticks) {
5086     has_initial_tick_info = true;
5087     initial_total_ticks = pticks.total;
5088     initial_steal_ticks = pticks.steal;
5089   }
5090 
5091   // _main_thread points to the thread that created/loaded the JVM.
5092   Linux::_main_thread = pthread_self();
5093 
5094   // retrieve entry point for pthread_setname_np
5095   Linux::_pthread_setname_np =
5096     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5097 
5098   os::Posix::init();
5099 
5100   initial_time_count = javaTimeNanos();
5101 
5102   // Always warn if no monotonic clock available
5103   if (!os::Posix::supports_monotonic_clock()) {
5104     warning("No monotonic clock was available - timed services may "    \
5105             "be adversely affected if the time-of-day clock changes");
5106   }
5107 }
5108 
5109 // To install functions for atexit system call
5110 extern "C" {
5111   static void perfMemory_exit_helper() {
5112     perfMemory_exit();
5113   }
5114 }
5115 
5116 void os::pd_init_container_support() {
5117   OSContainer::init();
5118 }
5119 
5120 void os::Linux::numa_init() {
5121 
5122   // Java can be invoked as
5123   // 1. Without numactl and heap will be allocated/configured on all nodes as
5124   //    per the system policy.
5125   // 2. With numactl --interleave:
5126   //      Use numa_get_interleave_mask(v2) API to get nodes bitmask. The same
5127   //      API for membind case bitmask is reset.
5128   //      Interleave is only hint and Kernel can fallback to other nodes if
5129   //      no memory is available on the target nodes.
5130   // 3. With numactl --membind:
5131   //      Use numa_get_membind(v2) API to get nodes bitmask. The same API for
5132   //      interleave case returns bitmask of all nodes.
5133   // numa_all_nodes_ptr holds bitmask of all nodes.
5134   // numa_get_interleave_mask(v2) and numa_get_membind(v2) APIs returns correct
5135   // bitmask when externally configured to run on all or fewer nodes.
5136 
5137   if (!Linux::libnuma_init()) {
5138     UseNUMA = false;
5139   } else {
5140     if ((Linux::numa_max_node() < 1) || Linux::is_bound_to_single_node()) {
5141       // If there's only one node (they start from 0) or if the process
5142       // is bound explicitly to a single node using membind, disable NUMA.
5143       UseNUMA = false;
5144     } else {
5145 
5146       LogTarget(Info,os) log;
5147       LogStream ls(log);
5148 
5149       Linux::set_configured_numa_policy(Linux::identify_numa_policy());
5150 
5151       struct bitmask* bmp = Linux::_numa_membind_bitmask;
5152       const char* numa_mode = "membind";
5153 
5154       if (Linux::is_running_in_interleave_mode()) {
5155         bmp = Linux::_numa_interleave_bitmask;
5156         numa_mode = "interleave";
5157       }
5158 
5159       ls.print("UseNUMA is enabled and invoked in '%s' mode."
5160                " Heap will be configured using NUMA memory nodes:", numa_mode);
5161 
5162       for (int node = 0; node <= Linux::numa_max_node(); node++) {
5163         if (Linux::_numa_bitmask_isbitset(bmp, node)) {
5164           ls.print(" %d", node);
5165         }
5166       }
5167     }
5168   }
5169 
5170   if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5171     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5172     // we can make the adaptive lgrp chunk resizing work. If the user specified both
5173     // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5174     // and disable adaptive resizing.
5175     if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5176       warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5177               "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5178       UseAdaptiveSizePolicy = false;
5179       UseAdaptiveNUMAChunkSizing = false;
5180     }
5181   }
5182 
5183   if (!UseNUMA && ForceNUMA) {
5184     UseNUMA = true;
5185   }
5186 }
5187 
5188 // this is called _after_ the global arguments have been parsed
5189 jint os::init_2(void) {
5190 
5191   // This could be set after os::Posix::init() but all platforms
5192   // have to set it the same so we have to mirror Solaris.
5193   DEBUG_ONLY(os::set_mutex_init_done();)
5194 
5195   os::Posix::init_2();
5196 
5197   Linux::fast_thread_clock_init();
5198 
5199   // initialize suspend/resume support - must do this before signal_sets_init()
5200   if (SR_initialize() != 0) {
5201     perror("SR_initialize failed");
5202     return JNI_ERR;
5203   }
5204 
5205   Linux::signal_sets_init();
5206   Linux::install_signal_handlers();
5207   // Initialize data for jdk.internal.misc.Signal
5208   if (!ReduceSignalUsage) {
5209     jdk_misc_signal_init();
5210   }
5211 
5212   if (AdjustStackSizeForTLS) {
5213     get_minstack_init();
5214   }
5215 
5216   // Check and sets minimum stack sizes against command line options
5217   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5218     return JNI_ERR;
5219   }
5220 
5221 #if defined(IA32)
5222   // Need to ensure we've determined the process's initial stack to
5223   // perform the workaround
5224   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5225   workaround_expand_exec_shield_cs_limit();
5226 #else
5227   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5228   if (!suppress_primordial_thread_resolution) {
5229     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5230   }
5231 #endif
5232 
5233   Linux::libpthread_init();
5234   Linux::sched_getcpu_init();
5235   log_info(os)("HotSpot is running with %s, %s",
5236                Linux::glibc_version(), Linux::libpthread_version());
5237 
5238   if (UseNUMA) {
5239     Linux::numa_init();
5240   }
5241 
5242   if (MaxFDLimit) {
5243     // set the number of file descriptors to max. print out error
5244     // if getrlimit/setrlimit fails but continue regardless.
5245     struct rlimit nbr_files;
5246     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5247     if (status != 0) {
5248       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5249     } else {
5250       nbr_files.rlim_cur = nbr_files.rlim_max;
5251       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5252       if (status != 0) {
5253         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5254       }
5255     }
5256   }
5257 
5258   // Initialize lock used to serialize thread creation (see os::create_thread)
5259   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5260 
5261   // at-exit methods are called in the reverse order of their registration.
5262   // atexit functions are called on return from main or as a result of a
5263   // call to exit(3C). There can be only 32 of these functions registered
5264   // and atexit() does not set errno.
5265 
5266   if (PerfAllowAtExitRegistration) {
5267     // only register atexit functions if PerfAllowAtExitRegistration is set.
5268     // atexit functions can be delayed until process exit time, which
5269     // can be problematic for embedded VM situations. Embedded VMs should
5270     // call DestroyJavaVM() to assure that VM resources are released.
5271 
5272     // note: perfMemory_exit_helper atexit function may be removed in
5273     // the future if the appropriate cleanup code can be added to the
5274     // VM_Exit VMOperation's doit method.
5275     if (atexit(perfMemory_exit_helper) != 0) {
5276       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5277     }
5278   }
5279 
5280   // initialize thread priority policy
5281   prio_init();
5282 
5283   if (!FLAG_IS_DEFAULT(AllocateHeapAt) || !FLAG_IS_DEFAULT(AllocateOldGenAt)) {
5284     set_coredump_filter(DAX_SHARED_BIT);
5285   }
5286 
5287   if (DumpPrivateMappingsInCore) {
5288     set_coredump_filter(FILE_BACKED_PVT_BIT);
5289   }
5290 
5291   if (DumpSharedMappingsInCore) {
5292     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5293   }
5294 
5295   return JNI_OK;
5296 }
5297 
5298 // Mark the polling page as unreadable
5299 void os::make_polling_page_unreadable(void) {
5300   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5301     fatal("Could not disable polling page");
5302   }
5303 }
5304 
5305 // Mark the polling page as readable
5306 void os::make_polling_page_readable(void) {
5307   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5308     fatal("Could not enable polling page");
5309   }
5310 }
5311 
5312 // older glibc versions don't have this macro (which expands to
5313 // an optimized bit-counting function) so we have to roll our own
5314 #ifndef CPU_COUNT
5315 
5316 static int _cpu_count(const cpu_set_t* cpus) {
5317   int count = 0;
5318   // only look up to the number of configured processors
5319   for (int i = 0; i < os::processor_count(); i++) {
5320     if (CPU_ISSET(i, cpus)) {
5321       count++;
5322     }
5323   }
5324   return count;
5325 }
5326 
5327 #define CPU_COUNT(cpus) _cpu_count(cpus)
5328 
5329 #endif // CPU_COUNT
5330 
5331 // Get the current number of available processors for this process.
5332 // This value can change at any time during a process's lifetime.
5333 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5334 // If it appears there may be more than 1024 processors then we do a
5335 // dynamic check - see 6515172 for details.
5336 // If anything goes wrong we fallback to returning the number of online
5337 // processors - which can be greater than the number available to the process.
5338 int os::Linux::active_processor_count() {
5339   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5340   cpu_set_t* cpus_p = &cpus;
5341   int cpus_size = sizeof(cpu_set_t);
5342 
5343   int configured_cpus = os::processor_count();  // upper bound on available cpus
5344   int cpu_count = 0;
5345 
5346 // old build platforms may not support dynamic cpu sets
5347 #ifdef CPU_ALLOC
5348 
5349   // To enable easy testing of the dynamic path on different platforms we
5350   // introduce a diagnostic flag: UseCpuAllocPath
5351   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5352     // kernel may use a mask bigger than cpu_set_t
5353     log_trace(os)("active_processor_count: using dynamic path %s"
5354                   "- configured processors: %d",
5355                   UseCpuAllocPath ? "(forced) " : "",
5356                   configured_cpus);
5357     cpus_p = CPU_ALLOC(configured_cpus);
5358     if (cpus_p != NULL) {
5359       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5360       // zero it just to be safe
5361       CPU_ZERO_S(cpus_size, cpus_p);
5362     }
5363     else {
5364        // failed to allocate so fallback to online cpus
5365        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5366        log_trace(os)("active_processor_count: "
5367                      "CPU_ALLOC failed (%s) - using "
5368                      "online processor count: %d",
5369                      os::strerror(errno), online_cpus);
5370        return online_cpus;
5371     }
5372   }
5373   else {
5374     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5375                   configured_cpus);
5376   }
5377 #else // CPU_ALLOC
5378 // these stubs won't be executed
5379 #define CPU_COUNT_S(size, cpus) -1
5380 #define CPU_FREE(cpus)
5381 
5382   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5383                 configured_cpus);
5384 #endif // CPU_ALLOC
5385 
5386   // pid 0 means the current thread - which we have to assume represents the process
5387   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5388     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5389       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5390     }
5391     else {
5392       cpu_count = CPU_COUNT(cpus_p);
5393     }
5394     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5395   }
5396   else {
5397     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5398     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5399             "which may exceed available processors", os::strerror(errno), cpu_count);
5400   }
5401 
5402   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5403     CPU_FREE(cpus_p);
5404   }
5405 
5406   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5407   return cpu_count;
5408 }
5409 
5410 // Determine the active processor count from one of
5411 // three different sources:
5412 //
5413 // 1. User option -XX:ActiveProcessorCount
5414 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5415 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5416 //
5417 // Option 1, if specified, will always override.
5418 // If the cgroup subsystem is active and configured, we
5419 // will return the min of the cgroup and option 2 results.
5420 // This is required since tools, such as numactl, that
5421 // alter cpu affinity do not update cgroup subsystem
5422 // cpuset configuration files.
5423 int os::active_processor_count() {
5424   // User has overridden the number of active processors
5425   if (ActiveProcessorCount > 0) {
5426     log_trace(os)("active_processor_count: "
5427                   "active processor count set by user : %d",
5428                   ActiveProcessorCount);
5429     return ActiveProcessorCount;
5430   }
5431 
5432   int active_cpus;
5433   if (OSContainer::is_containerized()) {
5434     active_cpus = OSContainer::active_processor_count();
5435     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5436                    active_cpus);
5437   } else {
5438     active_cpus = os::Linux::active_processor_count();
5439   }
5440 
5441   return active_cpus;
5442 }
5443 
5444 uint os::processor_id() {
5445   const int id = Linux::sched_getcpu();
5446   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5447   return (uint)id;
5448 }
5449 
5450 void os::set_native_thread_name(const char *name) {
5451   if (Linux::_pthread_setname_np) {
5452     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5453     snprintf(buf, sizeof(buf), "%s", name);
5454     buf[sizeof(buf) - 1] = '\0';
5455     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5456     // ERANGE should not happen; all other errors should just be ignored.
5457     assert(rc != ERANGE, "pthread_setname_np failed");
5458   }
5459 }
5460 
5461 bool os::bind_to_processor(uint processor_id) {
5462   // Not yet implemented.
5463   return false;
5464 }
5465 
5466 ///
5467 
5468 void os::SuspendedThreadTask::internal_do_task() {
5469   if (do_suspend(_thread->osthread())) {
5470     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5471     do_task(context);
5472     do_resume(_thread->osthread());
5473   }
5474 }
5475 
5476 ////////////////////////////////////////////////////////////////////////////////
5477 // debug support
5478 
5479 bool os::find(address addr, outputStream* st) {
5480   Dl_info dlinfo;
5481   memset(&dlinfo, 0, sizeof(dlinfo));
5482   if (dladdr(addr, &dlinfo) != 0) {
5483     st->print(PTR_FORMAT ": ", p2i(addr));
5484     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5485       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5486                 p2i(addr) - p2i(dlinfo.dli_saddr));
5487     } else if (dlinfo.dli_fbase != NULL) {
5488       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5489     } else {
5490       st->print("<absolute address>");
5491     }
5492     if (dlinfo.dli_fname != NULL) {
5493       st->print(" in %s", dlinfo.dli_fname);
5494     }
5495     if (dlinfo.dli_fbase != NULL) {
5496       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5497     }
5498     st->cr();
5499 
5500     if (Verbose) {
5501       // decode some bytes around the PC
5502       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5503       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5504       address       lowest = (address) dlinfo.dli_sname;
5505       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5506       if (begin < lowest)  begin = lowest;
5507       Dl_info dlinfo2;
5508       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5509           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5510         end = (address) dlinfo2.dli_saddr;
5511       }
5512       Disassembler::decode(begin, end, st);
5513     }
5514     return true;
5515   }
5516   return false;
5517 }
5518 
5519 ////////////////////////////////////////////////////////////////////////////////
5520 // misc
5521 
5522 // This does not do anything on Linux. This is basically a hook for being
5523 // able to use structured exception handling (thread-local exception filters)
5524 // on, e.g., Win32.
5525 void
5526 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5527                          JavaCallArguments* args, Thread* thread) {
5528   f(value, method, args, thread);
5529 }
5530 
5531 void os::print_statistics() {
5532 }
5533 
5534 bool os::message_box(const char* title, const char* message) {
5535   int i;
5536   fdStream err(defaultStream::error_fd());
5537   for (i = 0; i < 78; i++) err.print_raw("=");
5538   err.cr();
5539   err.print_raw_cr(title);
5540   for (i = 0; i < 78; i++) err.print_raw("-");
5541   err.cr();
5542   err.print_raw_cr(message);
5543   for (i = 0; i < 78; i++) err.print_raw("=");
5544   err.cr();
5545 
5546   char buf[16];
5547   // Prevent process from exiting upon "read error" without consuming all CPU
5548   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5549 
5550   return buf[0] == 'y' || buf[0] == 'Y';
5551 }
5552 
5553 // Is a (classpath) directory empty?
5554 bool os::dir_is_empty(const char* path) {
5555   DIR *dir = NULL;
5556   struct dirent *ptr;
5557 
5558   dir = opendir(path);
5559   if (dir == NULL) return true;
5560 
5561   // Scan the directory
5562   bool result = true;
5563   while (result && (ptr = readdir(dir)) != NULL) {
5564     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5565       result = false;
5566     }
5567   }
5568   closedir(dir);
5569   return result;
5570 }
5571 
5572 // This code originates from JDK's sysOpen and open64_w
5573 // from src/solaris/hpi/src/system_md.c
5574 
5575 int os::open(const char *path, int oflag, int mode) {
5576   if (strlen(path) > MAX_PATH - 1) {
5577     errno = ENAMETOOLONG;
5578     return -1;
5579   }
5580 
5581   // All file descriptors that are opened in the Java process and not
5582   // specifically destined for a subprocess should have the close-on-exec
5583   // flag set.  If we don't set it, then careless 3rd party native code
5584   // might fork and exec without closing all appropriate file descriptors
5585   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5586   // turn might:
5587   //
5588   // - cause end-of-file to fail to be detected on some file
5589   //   descriptors, resulting in mysterious hangs, or
5590   //
5591   // - might cause an fopen in the subprocess to fail on a system
5592   //   suffering from bug 1085341.
5593   //
5594   // (Yes, the default setting of the close-on-exec flag is a Unix
5595   // design flaw)
5596   //
5597   // See:
5598   // 1085341: 32-bit stdio routines should support file descriptors >255
5599   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5600   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5601   //
5602   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5603   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5604   // because it saves a system call and removes a small window where the flag
5605   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5606   // and we fall back to using FD_CLOEXEC (see below).
5607 #ifdef O_CLOEXEC
5608   oflag |= O_CLOEXEC;
5609 #endif
5610 
5611   int fd = ::open64(path, oflag, mode);
5612   if (fd == -1) return -1;
5613 
5614   //If the open succeeded, the file might still be a directory
5615   {
5616     struct stat64 buf64;
5617     int ret = ::fstat64(fd, &buf64);
5618     int st_mode = buf64.st_mode;
5619 
5620     if (ret != -1) {
5621       if ((st_mode & S_IFMT) == S_IFDIR) {
5622         errno = EISDIR;
5623         ::close(fd);
5624         return -1;
5625       }
5626     } else {
5627       ::close(fd);
5628       return -1;
5629     }
5630   }
5631 
5632 #ifdef FD_CLOEXEC
5633   // Validate that the use of the O_CLOEXEC flag on open above worked.
5634   // With recent kernels, we will perform this check exactly once.
5635   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5636   if (!O_CLOEXEC_is_known_to_work) {
5637     int flags = ::fcntl(fd, F_GETFD);
5638     if (flags != -1) {
5639       if ((flags & FD_CLOEXEC) != 0)
5640         O_CLOEXEC_is_known_to_work = 1;
5641       else
5642         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5643     }
5644   }
5645 #endif
5646 
5647   return fd;
5648 }
5649 
5650 
5651 // create binary file, rewriting existing file if required
5652 int os::create_binary_file(const char* path, bool rewrite_existing) {
5653   int oflags = O_WRONLY | O_CREAT;
5654   if (!rewrite_existing) {
5655     oflags |= O_EXCL;
5656   }
5657   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5658 }
5659 
5660 // return current position of file pointer
5661 jlong os::current_file_offset(int fd) {
5662   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5663 }
5664 
5665 // move file pointer to the specified offset
5666 jlong os::seek_to_file_offset(int fd, jlong offset) {
5667   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5668 }
5669 
5670 // This code originates from JDK's sysAvailable
5671 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5672 
5673 int os::available(int fd, jlong *bytes) {
5674   jlong cur, end;
5675   int mode;
5676   struct stat64 buf64;
5677 
5678   if (::fstat64(fd, &buf64) >= 0) {
5679     mode = buf64.st_mode;
5680     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5681       int n;
5682       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5683         *bytes = n;
5684         return 1;
5685       }
5686     }
5687   }
5688   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5689     return 0;
5690   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5691     return 0;
5692   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5693     return 0;
5694   }
5695   *bytes = end - cur;
5696   return 1;
5697 }
5698 
5699 // Map a block of memory.
5700 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5701                         char *addr, size_t bytes, bool read_only,
5702                         bool allow_exec) {
5703   int prot;
5704   int flags = MAP_PRIVATE;
5705 
5706   if (read_only) {
5707     prot = PROT_READ;
5708   } else {
5709     prot = PROT_READ | PROT_WRITE;
5710   }
5711 
5712   if (allow_exec) {
5713     prot |= PROT_EXEC;
5714   }
5715 
5716   if (addr != NULL) {
5717     flags |= MAP_FIXED;
5718   }
5719 
5720   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5721                                      fd, file_offset);
5722   if (mapped_address == MAP_FAILED) {
5723     return NULL;
5724   }
5725   return mapped_address;
5726 }
5727 
5728 
5729 // Remap a block of memory.
5730 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5731                           char *addr, size_t bytes, bool read_only,
5732                           bool allow_exec) {
5733   // same as map_memory() on this OS
5734   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5735                         allow_exec);
5736 }
5737 
5738 
5739 // Unmap a block of memory.
5740 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5741   return munmap(addr, bytes) == 0;
5742 }
5743 
5744 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5745 
5746 static jlong fast_cpu_time(Thread *thread) {
5747     clockid_t clockid;
5748     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5749                                               &clockid);
5750     if (rc == 0) {
5751       return os::Linux::fast_thread_cpu_time(clockid);
5752     } else {
5753       // It's possible to encounter a terminated native thread that failed
5754       // to detach itself from the VM - which should result in ESRCH.
5755       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5756       return -1;
5757     }
5758 }
5759 
5760 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5761 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5762 // of a thread.
5763 //
5764 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5765 // the fast estimate available on the platform.
5766 
5767 jlong os::current_thread_cpu_time() {
5768   if (os::Linux::supports_fast_thread_cpu_time()) {
5769     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5770   } else {
5771     // return user + sys since the cost is the same
5772     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5773   }
5774 }
5775 
5776 jlong os::thread_cpu_time(Thread* thread) {
5777   // consistent with what current_thread_cpu_time() returns
5778   if (os::Linux::supports_fast_thread_cpu_time()) {
5779     return fast_cpu_time(thread);
5780   } else {
5781     return slow_thread_cpu_time(thread, true /* user + sys */);
5782   }
5783 }
5784 
5785 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5786   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5787     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5788   } else {
5789     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5790   }
5791 }
5792 
5793 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5794   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5795     return fast_cpu_time(thread);
5796   } else {
5797     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5798   }
5799 }
5800 
5801 //  -1 on error.
5802 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5803   pid_t  tid = thread->osthread()->thread_id();
5804   char *s;
5805   char stat[2048];
5806   int statlen;
5807   char proc_name[64];
5808   int count;
5809   long sys_time, user_time;
5810   char cdummy;
5811   int idummy;
5812   long ldummy;
5813   FILE *fp;
5814 
5815   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5816   fp = fopen(proc_name, "r");
5817   if (fp == NULL) return -1;
5818   statlen = fread(stat, 1, 2047, fp);
5819   stat[statlen] = '\0';
5820   fclose(fp);
5821 
5822   // Skip pid and the command string. Note that we could be dealing with
5823   // weird command names, e.g. user could decide to rename java launcher
5824   // to "java 1.4.2 :)", then the stat file would look like
5825   //                1234 (java 1.4.2 :)) R ... ...
5826   // We don't really need to know the command string, just find the last
5827   // occurrence of ")" and then start parsing from there. See bug 4726580.
5828   s = strrchr(stat, ')');
5829   if (s == NULL) return -1;
5830 
5831   // Skip blank chars
5832   do { s++; } while (s && isspace(*s));
5833 
5834   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5835                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5836                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5837                  &user_time, &sys_time);
5838   if (count != 13) return -1;
5839   if (user_sys_cpu_time) {
5840     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5841   } else {
5842     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5843   }
5844 }
5845 
5846 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5847   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5848   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5849   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5850   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5851 }
5852 
5853 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5854   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5855   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5856   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5857   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5858 }
5859 
5860 bool os::is_thread_cpu_time_supported() {
5861   return true;
5862 }
5863 
5864 // System loadavg support.  Returns -1 if load average cannot be obtained.
5865 // Linux doesn't yet have a (official) notion of processor sets,
5866 // so just return the system wide load average.
5867 int os::loadavg(double loadavg[], int nelem) {
5868   return ::getloadavg(loadavg, nelem);
5869 }
5870 
5871 void os::pause() {
5872   char filename[MAX_PATH];
5873   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5874     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5875   } else {
5876     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5877   }
5878 
5879   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5880   if (fd != -1) {
5881     struct stat buf;
5882     ::close(fd);
5883     while (::stat(filename, &buf) == 0) {
5884       (void)::poll(NULL, 0, 100);
5885     }
5886   } else {
5887     jio_fprintf(stderr,
5888                 "Could not open pause file '%s', continuing immediately.\n", filename);
5889   }
5890 }
5891 
5892 extern char** environ;
5893 
5894 // Run the specified command in a separate process. Return its exit value,
5895 // or -1 on failure (e.g. can't fork a new process).
5896 // Unlike system(), this function can be called from signal handler. It
5897 // doesn't block SIGINT et al.
5898 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5899   const char * argv[4] = {"sh", "-c", cmd, NULL};
5900 
5901   pid_t pid ;
5902 
5903   if (use_vfork_if_available) {
5904     pid = vfork();
5905   } else {
5906     pid = fork();
5907   }
5908 
5909   if (pid < 0) {
5910     // fork failed
5911     return -1;
5912 
5913   } else if (pid == 0) {
5914     // child process
5915 
5916     execve("/bin/sh", (char* const*)argv, environ);
5917 
5918     // execve failed
5919     _exit(-1);
5920 
5921   } else  {
5922     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5923     // care about the actual exit code, for now.
5924 
5925     int status;
5926 
5927     // Wait for the child process to exit.  This returns immediately if
5928     // the child has already exited. */
5929     while (waitpid(pid, &status, 0) < 0) {
5930       switch (errno) {
5931       case ECHILD: return 0;
5932       case EINTR: break;
5933       default: return -1;
5934       }
5935     }
5936 
5937     if (WIFEXITED(status)) {
5938       // The child exited normally; get its exit code.
5939       return WEXITSTATUS(status);
5940     } else if (WIFSIGNALED(status)) {
5941       // The child exited because of a signal
5942       // The best value to return is 0x80 + signal number,
5943       // because that is what all Unix shells do, and because
5944       // it allows callers to distinguish between process exit and
5945       // process death by signal.
5946       return 0x80 + WTERMSIG(status);
5947     } else {
5948       // Unknown exit code; pass it through
5949       return status;
5950     }
5951   }
5952 }
5953 
5954 // Get the default path to the core file
5955 // Returns the length of the string
5956 int os::get_core_path(char* buffer, size_t bufferSize) {
5957   /*
5958    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5959    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5960    */
5961   const int core_pattern_len = 129;
5962   char core_pattern[core_pattern_len] = {0};
5963 
5964   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5965   if (core_pattern_file == -1) {
5966     return -1;
5967   }
5968 
5969   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5970   ::close(core_pattern_file);
5971   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5972     return -1;
5973   }
5974   if (core_pattern[ret-1] == '\n') {
5975     core_pattern[ret-1] = '\0';
5976   } else {
5977     core_pattern[ret] = '\0';
5978   }
5979 
5980   // Replace the %p in the core pattern with the process id. NOTE: we do this
5981   // only if the pattern doesn't start with "|", and we support only one %p in
5982   // the pattern.
5983   char *pid_pos = strstr(core_pattern, "%p");
5984   const char* tail = (pid_pos != NULL) ? (pid_pos + 2) : "";  // skip over the "%p"
5985   int written;
5986 
5987   if (core_pattern[0] == '/') {
5988     if (pid_pos != NULL) {
5989       *pid_pos = '\0';
5990       written = jio_snprintf(buffer, bufferSize, "%s%d%s", core_pattern,
5991                              current_process_id(), tail);
5992     } else {
5993       written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5994     }
5995   } else {
5996     char cwd[PATH_MAX];
5997 
5998     const char* p = get_current_directory(cwd, PATH_MAX);
5999     if (p == NULL) {
6000       return -1;
6001     }
6002 
6003     if (core_pattern[0] == '|') {
6004       written = jio_snprintf(buffer, bufferSize,
6005                              "\"%s\" (or dumping to %s/core.%d)",
6006                              &core_pattern[1], p, current_process_id());
6007     } else if (pid_pos != NULL) {
6008       *pid_pos = '\0';
6009       written = jio_snprintf(buffer, bufferSize, "%s/%s%d%s", p, core_pattern,
6010                              current_process_id(), tail);
6011     } else {
6012       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
6013     }
6014   }
6015 
6016   if (written < 0) {
6017     return -1;
6018   }
6019 
6020   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
6021     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
6022 
6023     if (core_uses_pid_file != -1) {
6024       char core_uses_pid = 0;
6025       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
6026       ::close(core_uses_pid_file);
6027 
6028       if (core_uses_pid == '1') {
6029         jio_snprintf(buffer + written, bufferSize - written,
6030                                           ".%d", current_process_id());
6031       }
6032     }
6033   }
6034 
6035   return strlen(buffer);
6036 }
6037 
6038 bool os::start_debugging(char *buf, int buflen) {
6039   int len = (int)strlen(buf);
6040   char *p = &buf[len];
6041 
6042   jio_snprintf(p, buflen-len,
6043                "\n\n"
6044                "Do you want to debug the problem?\n\n"
6045                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
6046                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
6047                "Otherwise, press RETURN to abort...",
6048                os::current_process_id(), os::current_process_id(),
6049                os::current_thread_id(), os::current_thread_id());
6050 
6051   bool yes = os::message_box("Unexpected Error", buf);
6052 
6053   if (yes) {
6054     // yes, user asked VM to launch debugger
6055     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
6056                  os::current_process_id(), os::current_process_id());
6057 
6058     os::fork_and_exec(buf);
6059     yes = false;
6060   }
6061   return yes;
6062 }
6063 
6064 
6065 // Java/Compiler thread:
6066 //
6067 //   Low memory addresses
6068 // P0 +------------------------+
6069 //    |                        |\  Java thread created by VM does not have glibc
6070 //    |    glibc guard page    | - guard page, attached Java thread usually has
6071 //    |                        |/  1 glibc guard page.
6072 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6073 //    |                        |\
6074 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6075 //    |                        |/
6076 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6077 //    |                        |\
6078 //    |      Normal Stack      | -
6079 //    |                        |/
6080 // P2 +------------------------+ Thread::stack_base()
6081 //
6082 // Non-Java thread:
6083 //
6084 //   Low memory addresses
6085 // P0 +------------------------+
6086 //    |                        |\
6087 //    |  glibc guard page      | - usually 1 page
6088 //    |                        |/
6089 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6090 //    |                        |\
6091 //    |      Normal Stack      | -
6092 //    |                        |/
6093 // P2 +------------------------+ Thread::stack_base()
6094 //
6095 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6096 //    returned from pthread_attr_getstack().
6097 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6098 //    of the stack size given in pthread_attr. We work around this for
6099 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6100 //
6101 #ifndef ZERO
6102 static void current_stack_region(address * bottom, size_t * size) {
6103   if (os::is_primordial_thread()) {
6104     // primordial thread needs special handling because pthread_getattr_np()
6105     // may return bogus value.
6106     *bottom = os::Linux::initial_thread_stack_bottom();
6107     *size   = os::Linux::initial_thread_stack_size();
6108   } else {
6109     pthread_attr_t attr;
6110 
6111     int rslt = pthread_getattr_np(pthread_self(), &attr);
6112 
6113     // JVM needs to know exact stack location, abort if it fails
6114     if (rslt != 0) {
6115       if (rslt == ENOMEM) {
6116         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6117       } else {
6118         fatal("pthread_getattr_np failed with error = %d", rslt);
6119       }
6120     }
6121 
6122     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6123       fatal("Cannot locate current stack attributes!");
6124     }
6125 
6126     // Work around NPTL stack guard error.
6127     size_t guard_size = 0;
6128     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6129     if (rslt != 0) {
6130       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6131     }
6132     *bottom += guard_size;
6133     *size   -= guard_size;
6134 
6135     pthread_attr_destroy(&attr);
6136 
6137   }
6138   assert(os::current_stack_pointer() >= *bottom &&
6139          os::current_stack_pointer() < *bottom + *size, "just checking");
6140 }
6141 
6142 address os::current_stack_base() {
6143   address bottom;
6144   size_t size;
6145   current_stack_region(&bottom, &size);
6146   return (bottom + size);
6147 }
6148 
6149 size_t os::current_stack_size() {
6150   // This stack size includes the usable stack and HotSpot guard pages
6151   // (for the threads that have Hotspot guard pages).
6152   address bottom;
6153   size_t size;
6154   current_stack_region(&bottom, &size);
6155   return size;
6156 }
6157 #endif
6158 
6159 static inline struct timespec get_mtime(const char* filename) {
6160   struct stat st;
6161   int ret = os::stat(filename, &st);
6162   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
6163   return st.st_mtim;
6164 }
6165 
6166 int os::compare_file_modified_times(const char* file1, const char* file2) {
6167   struct timespec filetime1 = get_mtime(file1);
6168   struct timespec filetime2 = get_mtime(file2);
6169   int diff = filetime1.tv_sec - filetime2.tv_sec;
6170   if (diff == 0) {
6171     return filetime1.tv_nsec - filetime2.tv_nsec;
6172   }
6173   return diff;
6174 }
6175 
6176 bool os::supports_map_sync() {
6177   return true;
6178 }
6179 
6180 /////////////// Unit tests ///////////////
6181 
6182 #ifndef PRODUCT
6183 
6184 class TestReserveMemorySpecial : AllStatic {
6185  public:
6186   static void small_page_write(void* addr, size_t size) {
6187     size_t page_size = os::vm_page_size();
6188 
6189     char* end = (char*)addr + size;
6190     for (char* p = (char*)addr; p < end; p += page_size) {
6191       *p = 1;
6192     }
6193   }
6194 
6195   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6196     if (!UseHugeTLBFS) {
6197       return;
6198     }
6199 
6200     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6201 
6202     if (addr != NULL) {
6203       small_page_write(addr, size);
6204 
6205       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6206     }
6207   }
6208 
6209   static void test_reserve_memory_special_huge_tlbfs_only() {
6210     if (!UseHugeTLBFS) {
6211       return;
6212     }
6213 
6214     size_t lp = os::large_page_size();
6215 
6216     for (size_t size = lp; size <= lp * 10; size += lp) {
6217       test_reserve_memory_special_huge_tlbfs_only(size);
6218     }
6219   }
6220 
6221   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6222     size_t lp = os::large_page_size();
6223     size_t ag = os::vm_allocation_granularity();
6224 
6225     // sizes to test
6226     const size_t sizes[] = {
6227       lp, lp + ag, lp + lp / 2, lp * 2,
6228       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6229       lp * 10, lp * 10 + lp / 2
6230     };
6231     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6232 
6233     // For each size/alignment combination, we test three scenarios:
6234     // 1) with req_addr == NULL
6235     // 2) with a non-null req_addr at which we expect to successfully allocate
6236     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6237     //    expect the allocation to either fail or to ignore req_addr
6238 
6239     // Pre-allocate two areas; they shall be as large as the largest allocation
6240     //  and aligned to the largest alignment we will be testing.
6241     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6242     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6243       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6244       -1, 0);
6245     assert(mapping1 != MAP_FAILED, "should work");
6246 
6247     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6248       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6249       -1, 0);
6250     assert(mapping2 != MAP_FAILED, "should work");
6251 
6252     // Unmap the first mapping, but leave the second mapping intact: the first
6253     // mapping will serve as a value for a "good" req_addr (case 2). The second
6254     // mapping, still intact, as "bad" req_addr (case 3).
6255     ::munmap(mapping1, mapping_size);
6256 
6257     // Case 1
6258     for (int i = 0; i < num_sizes; i++) {
6259       const size_t size = sizes[i];
6260       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6261         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6262         if (p != NULL) {
6263           assert(is_aligned(p, alignment), "must be");
6264           small_page_write(p, size);
6265           os::Linux::release_memory_special_huge_tlbfs(p, size);
6266         }
6267       }
6268     }
6269 
6270     // Case 2
6271     for (int i = 0; i < num_sizes; i++) {
6272       const size_t size = sizes[i];
6273       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6274         char* const req_addr = align_up(mapping1, alignment);
6275         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6276         if (p != NULL) {
6277           assert(p == req_addr, "must be");
6278           small_page_write(p, size);
6279           os::Linux::release_memory_special_huge_tlbfs(p, size);
6280         }
6281       }
6282     }
6283 
6284     // Case 3
6285     for (int i = 0; i < num_sizes; i++) {
6286       const size_t size = sizes[i];
6287       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6288         char* const req_addr = align_up(mapping2, alignment);
6289         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6290         // as the area around req_addr contains already existing mappings, the API should always
6291         // return NULL (as per contract, it cannot return another address)
6292         assert(p == NULL, "must be");
6293       }
6294     }
6295 
6296     ::munmap(mapping2, mapping_size);
6297 
6298   }
6299 
6300   static void test_reserve_memory_special_huge_tlbfs() {
6301     if (!UseHugeTLBFS) {
6302       return;
6303     }
6304 
6305     test_reserve_memory_special_huge_tlbfs_only();
6306     test_reserve_memory_special_huge_tlbfs_mixed();
6307   }
6308 
6309   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6310     if (!UseSHM) {
6311       return;
6312     }
6313 
6314     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6315 
6316     if (addr != NULL) {
6317       assert(is_aligned(addr, alignment), "Check");
6318       assert(is_aligned(addr, os::large_page_size()), "Check");
6319 
6320       small_page_write(addr, size);
6321 
6322       os::Linux::release_memory_special_shm(addr, size);
6323     }
6324   }
6325 
6326   static void test_reserve_memory_special_shm() {
6327     size_t lp = os::large_page_size();
6328     size_t ag = os::vm_allocation_granularity();
6329 
6330     for (size_t size = ag; size < lp * 3; size += ag) {
6331       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6332         test_reserve_memory_special_shm(size, alignment);
6333       }
6334     }
6335   }
6336 
6337   static void test() {
6338     test_reserve_memory_special_huge_tlbfs();
6339     test_reserve_memory_special_shm();
6340   }
6341 };
6342 
6343 void TestReserveMemorySpecial_test() {
6344   TestReserveMemorySpecial::test();
6345 }
6346 
6347 #endif