1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "libo4.hpp"
  42 #include "libperfstat_aix.hpp"
  43 #include "libodm_aix.hpp"
  44 #include "loadlib_aix.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/filemap.hpp"
  47 #include "misc_aix.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "os_aix.inline.hpp"
  50 #include "os_share_aix.hpp"
  51 #include "porting_aix.hpp"
  52 #include "prims/jniFastGetField.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/extendedPC.hpp"
  57 #include "runtime/globals.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.hpp"
  64 #include "runtime/os.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/perfMemory.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/thread.inline.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/runtimeService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/decoder.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/growableArray.hpp"
  81 #include "utilities/vmError.hpp"
  82 
  83 // put OS-includes here (sorted alphabetically)
  84 #include <errno.h>
  85 #include <fcntl.h>
  86 #include <inttypes.h>
  87 #include <poll.h>
  88 #include <procinfo.h>
  89 #include <pthread.h>
  90 #include <pwd.h>
  91 #include <semaphore.h>
  92 #include <signal.h>
  93 #include <stdint.h>
  94 #include <stdio.h>
  95 #include <string.h>
  96 #include <unistd.h>
  97 #include <sys/ioctl.h>
  98 #include <sys/ipc.h>
  99 #include <sys/mman.h>
 100 #include <sys/resource.h>
 101 #include <sys/select.h>
 102 #include <sys/shm.h>
 103 #include <sys/socket.h>
 104 #include <sys/stat.h>
 105 #include <sys/sysinfo.h>
 106 #include <sys/systemcfg.h>
 107 #include <sys/time.h>
 108 #include <sys/times.h>
 109 #include <sys/types.h>
 110 #include <sys/utsname.h>
 111 #include <sys/vminfo.h>
 112 #include <sys/wait.h>
 113 
 114 // Missing prototypes for various system APIs.
 115 extern "C"
 116 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 117 
 118 #if !defined(_AIXVERSION_610)
 119 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 120 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 121 extern "C" int getargs(procsinfo*, int, char*, int);
 122 #endif
 123 
 124 #define MAX_PATH (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 // for multipage initialization error analysis (in 'g_multipage_error')
 129 #define ERROR_MP_OS_TOO_OLD                          100
 130 #define ERROR_MP_EXTSHM_ACTIVE                       101
 131 #define ERROR_MP_VMGETINFO_FAILED                    102
 132 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 133 
 134 // excerpts from systemcfg.h that might be missing on older os levels
 135 #ifndef PV_7
 136   #define PV_7 0x200000          /* Power PC 7 */
 137 #endif
 138 #ifndef PV_7_Compat
 139   #define PV_7_Compat 0x208000   /* Power PC 7 */
 140 #endif
 141 #ifndef PV_8
 142   #define PV_8 0x300000          /* Power PC 8 */
 143 #endif
 144 #ifndef PV_8_Compat
 145   #define PV_8_Compat 0x308000   /* Power PC 8 */
 146 #endif
 147 #ifndef PV_9
 148   #define PV_9 0x400000          /* Power PC 9 */
 149 #endif
 150 #ifndef PV_9_Compat
 151   #define PV_9_Compat  0x408000  /* Power PC 9 */
 152 #endif
 153 
 154 
 155 static address resolve_function_descriptor_to_code_pointer(address p);
 156 
 157 static void vmembk_print_on(outputStream* os);
 158 
 159 ////////////////////////////////////////////////////////////////////////////////
 160 // global variables (for a description see os_aix.hpp)
 161 
 162 julong    os::Aix::_physical_memory = 0;
 163 
 164 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 165 int       os::Aix::_page_size = -1;
 166 
 167 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 168 int       os::Aix::_on_pase = -1;
 169 
 170 // 0 = uninitialized, otherwise 32 bit number:
 171 //  0xVVRRTTSS
 172 //  VV - major version
 173 //  RR - minor version
 174 //  TT - tech level, if known, 0 otherwise
 175 //  SS - service pack, if known, 0 otherwise
 176 uint32_t  os::Aix::_os_version = 0;
 177 
 178 // -1 = uninitialized, 0 - no, 1 - yes
 179 int       os::Aix::_xpg_sus_mode = -1;
 180 
 181 // -1 = uninitialized, 0 - no, 1 - yes
 182 int       os::Aix::_extshm = -1;
 183 
 184 ////////////////////////////////////////////////////////////////////////////////
 185 // local variables
 186 
 187 static volatile jlong max_real_time = 0;
 188 static jlong    initial_time_count = 0;
 189 static int      clock_tics_per_sec = 100;
 190 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 191 static bool     check_signals      = true;
 192 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 193 static sigset_t SR_sigset;
 194 
 195 // Process break recorded at startup.
 196 static address g_brk_at_startup = NULL;
 197 
 198 // This describes the state of multipage support of the underlying
 199 // OS. Note that this is of no interest to the outsize world and
 200 // therefore should not be defined in AIX class.
 201 //
 202 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 203 // latter two (16M "large" resp. 16G "huge" pages) require special
 204 // setup and are normally not available.
 205 //
 206 // AIX supports multiple page sizes per process, for:
 207 //  - Stack (of the primordial thread, so not relevant for us)
 208 //  - Data - data, bss, heap, for us also pthread stacks
 209 //  - Text - text code
 210 //  - shared memory
 211 //
 212 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 213 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 214 //
 215 // For shared memory, page size can be set dynamically via
 216 // shmctl(). Different shared memory regions can have different page
 217 // sizes.
 218 //
 219 // More information can be found at AIBM info center:
 220 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 221 //
 222 static struct {
 223   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 224   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 225   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 226   size_t pthr_stack_pagesize; // stack page size of pthread threads
 227   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 228   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 229   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 230   int error;                  // Error describing if something went wrong at multipage init.
 231 } g_multipage_support = {
 232   (size_t) -1,
 233   (size_t) -1,
 234   (size_t) -1,
 235   (size_t) -1,
 236   (size_t) -1,
 237   false, false,
 238   0
 239 };
 240 
 241 // We must not accidentally allocate memory close to the BRK - even if
 242 // that would work - because then we prevent the BRK segment from
 243 // growing which may result in a malloc OOM even though there is
 244 // enough memory. The problem only arises if we shmat() or mmap() at
 245 // a specific wish address, e.g. to place the heap in a
 246 // compressed-oops-friendly way.
 247 static bool is_close_to_brk(address a) {
 248   assert0(g_brk_at_startup != NULL);
 249   if (a >= g_brk_at_startup &&
 250       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 251     return true;
 252   }
 253   return false;
 254 }
 255 
 256 julong os::available_memory() {
 257   return Aix::available_memory();
 258 }
 259 
 260 julong os::Aix::available_memory() {
 261   // Avoid expensive API call here, as returned value will always be null.
 262   if (os::Aix::on_pase()) {
 263     return 0x0LL;
 264   }
 265   os::Aix::meminfo_t mi;
 266   if (os::Aix::get_meminfo(&mi)) {
 267     return mi.real_free;
 268   } else {
 269     return ULONG_MAX;
 270   }
 271 }
 272 
 273 julong os::physical_memory() {
 274   return Aix::physical_memory();
 275 }
 276 
 277 // Return true if user is running as root.
 278 
 279 bool os::have_special_privileges() {
 280   static bool init = false;
 281   static bool privileges = false;
 282   if (!init) {
 283     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 284     init = true;
 285   }
 286   return privileges;
 287 }
 288 
 289 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 290 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 291 static bool my_disclaim64(char* addr, size_t size) {
 292 
 293   if (size == 0) {
 294     return true;
 295   }
 296 
 297   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 298   const unsigned int maxDisclaimSize = 0x40000000;
 299 
 300   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 301   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 302 
 303   char* p = addr;
 304 
 305   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 306     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 307       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 308       return false;
 309     }
 310     p += maxDisclaimSize;
 311   }
 312 
 313   if (lastDisclaimSize > 0) {
 314     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 315       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 316       return false;
 317     }
 318   }
 319 
 320   return true;
 321 }
 322 
 323 // Cpu architecture string
 324 #if defined(PPC32)
 325 static char cpu_arch[] = "ppc";
 326 #elif defined(PPC64)
 327 static char cpu_arch[] = "ppc64";
 328 #else
 329 #error Add appropriate cpu_arch setting
 330 #endif
 331 
 332 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 333 static int checked_vmgetinfo(void *out, int command, int arg) {
 334   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 335     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 336   }
 337   return ::vmgetinfo(out, command, arg);
 338 }
 339 
 340 // Given an address, returns the size of the page backing that address.
 341 size_t os::Aix::query_pagesize(void* addr) {
 342 
 343   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 344     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 345     return 4*K;
 346   }
 347 
 348   vm_page_info pi;
 349   pi.addr = (uint64_t)addr;
 350   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 351     return pi.pagesize;
 352   } else {
 353     assert(false, "vmgetinfo failed to retrieve page size");
 354     return 4*K;
 355   }
 356 }
 357 
 358 void os::Aix::initialize_system_info() {
 359 
 360   // Get the number of online(logical) cpus instead of configured.
 361   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 362   assert(_processor_count > 0, "_processor_count must be > 0");
 363 
 364   // Retrieve total physical storage.
 365   os::Aix::meminfo_t mi;
 366   if (!os::Aix::get_meminfo(&mi)) {
 367     assert(false, "os::Aix::get_meminfo failed.");
 368   }
 369   _physical_memory = (julong) mi.real_total;
 370 }
 371 
 372 // Helper function for tracing page sizes.
 373 static const char* describe_pagesize(size_t pagesize) {
 374   switch (pagesize) {
 375     case 4*K : return "4K";
 376     case 64*K: return "64K";
 377     case 16*M: return "16M";
 378     case 16*G: return "16G";
 379     default:
 380       assert(false, "surprise");
 381       return "??";
 382   }
 383 }
 384 
 385 // Probe OS for multipage support.
 386 // Will fill the global g_multipage_support structure.
 387 // Must be called before calling os::large_page_init().
 388 static void query_multipage_support() {
 389 
 390   guarantee(g_multipage_support.pagesize == -1,
 391             "do not call twice");
 392 
 393   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 394 
 395   // This really would surprise me.
 396   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 397 
 398   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 399   // Default data page size is defined either by linker options (-bdatapsize)
 400   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 401   // default should be 4K.
 402   {
 403     void* p = ::malloc(16*M);
 404     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 405     ::free(p);
 406   }
 407 
 408   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 409   // Note that this is pure curiosity. We do not rely on default page size but set
 410   // our own page size after allocated.
 411   {
 412     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 413     guarantee(shmid != -1, "shmget failed");
 414     void* p = ::shmat(shmid, NULL, 0);
 415     ::shmctl(shmid, IPC_RMID, NULL);
 416     guarantee(p != (void*) -1, "shmat failed");
 417     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 418     ::shmdt(p);
 419   }
 420 
 421   // Before querying the stack page size, make sure we are not running as primordial
 422   // thread (because primordial thread's stack may have different page size than
 423   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 424   // number of reasons so we may just as well guarantee it here.
 425   guarantee0(!os::is_primordial_thread());
 426 
 427   // Query pthread stack page size. Should be the same as data page size because
 428   // pthread stacks are allocated from C-Heap.
 429   {
 430     int dummy = 0;
 431     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 432   }
 433 
 434   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 435   {
 436     address any_function =
 437       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 438     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 439   }
 440 
 441   // Now probe for support of 64K pages and 16M pages.
 442 
 443   // Before OS/400 V6R1, there is no support for pages other than 4K.
 444   if (os::Aix::on_pase_V5R4_or_older()) {
 445     trcVerbose("OS/400 < V6R1 - no large page support.");
 446     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 447     goto query_multipage_support_end;
 448   }
 449 
 450   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 451   {
 452     const int MAX_PAGE_SIZES = 4;
 453     psize_t sizes[MAX_PAGE_SIZES];
 454     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 455     if (num_psizes == -1) {
 456       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 457       trcVerbose("disabling multipage support.");
 458       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 459       goto query_multipage_support_end;
 460     }
 461     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 462     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 463     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 464     for (int i = 0; i < num_psizes; i ++) {
 465       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 466     }
 467 
 468     // Can we use 64K, 16M pages?
 469     for (int i = 0; i < num_psizes; i ++) {
 470       const size_t pagesize = sizes[i];
 471       if (pagesize != 64*K && pagesize != 16*M) {
 472         continue;
 473       }
 474       bool can_use = false;
 475       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 476       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 477         IPC_CREAT | S_IRUSR | S_IWUSR);
 478       guarantee0(shmid != -1); // Should always work.
 479       // Try to set pagesize.
 480       struct shmid_ds shm_buf = { 0 };
 481       shm_buf.shm_pagesize = pagesize;
 482       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 483         const int en = errno;
 484         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 485         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%d", errno);
 486       } else {
 487         // Attach and double check pageisze.
 488         void* p = ::shmat(shmid, NULL, 0);
 489         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 490         guarantee0(p != (void*) -1); // Should always work.
 491         const size_t real_pagesize = os::Aix::query_pagesize(p);
 492         if (real_pagesize != pagesize) {
 493           trcVerbose("real page size (" SIZE_FORMAT_HEX ") differs.", real_pagesize);
 494         } else {
 495           can_use = true;
 496         }
 497         ::shmdt(p);
 498       }
 499       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 500       if (pagesize == 64*K) {
 501         g_multipage_support.can_use_64K_pages = can_use;
 502       } else if (pagesize == 16*M) {
 503         g_multipage_support.can_use_16M_pages = can_use;
 504       }
 505     }
 506 
 507   } // end: check which pages can be used for shared memory
 508 
 509 query_multipage_support_end:
 510 
 511   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 512       describe_pagesize(g_multipage_support.pagesize));
 513   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 514       describe_pagesize(g_multipage_support.datapsize));
 515   trcVerbose("Text page size: %s",
 516       describe_pagesize(g_multipage_support.textpsize));
 517   trcVerbose("Thread stack page size (pthread): %s",
 518       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 519   trcVerbose("Default shared memory page size: %s",
 520       describe_pagesize(g_multipage_support.shmpsize));
 521   trcVerbose("Can use 64K pages dynamically with shared memory: %s",
 522       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 523   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 524       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 525   trcVerbose("Multipage error details: %d",
 526       g_multipage_support.error);
 527 
 528   // sanity checks
 529   assert0(g_multipage_support.pagesize == 4*K);
 530   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 531   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 532   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 533   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 534 
 535 }
 536 
 537 void os::init_system_properties_values() {
 538 
 539 #ifndef OVERRIDE_LIBPATH
 540   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 541 #else
 542   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 543 #endif
 544 #define EXTENSIONS_DIR  "/lib/ext"
 545 
 546   // Buffer that fits several sprintfs.
 547   // Note that the space for the trailing null is provided
 548   // by the nulls included by the sizeof operator.
 549   const size_t bufsize =
 550     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 551          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 552   char *buf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 553 
 554   // sysclasspath, java_home, dll_dir
 555   {
 556     char *pslash;
 557     os::jvm_path(buf, bufsize);
 558 
 559     // Found the full path to libjvm.so.
 560     // Now cut the path to <java_home>/jre if we can.
 561     pslash = strrchr(buf, '/');
 562     if (pslash != NULL) {
 563       *pslash = '\0';            // Get rid of /libjvm.so.
 564     }
 565     pslash = strrchr(buf, '/');
 566     if (pslash != NULL) {
 567       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 568     }
 569     Arguments::set_dll_dir(buf);
 570 
 571     if (pslash != NULL) {
 572       pslash = strrchr(buf, '/');
 573       if (pslash != NULL) {
 574         *pslash = '\0';        // Get rid of /lib.
 575       }
 576     }
 577     Arguments::set_java_home(buf);
 578     if (!set_boot_path('/', ':')) {
 579       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 580     }
 581   }
 582 
 583   // Where to look for native libraries.
 584 
 585   // On Aix we get the user setting of LIBPATH.
 586   // Eventually, all the library path setting will be done here.
 587   // Get the user setting of LIBPATH.
 588   const char *v = ::getenv("LIBPATH");
 589   const char *v_colon = ":";
 590   if (v == NULL) { v = ""; v_colon = ""; }
 591 
 592   // Concatenate user and invariant part of ld_library_path.
 593   // That's +1 for the colon and +1 for the trailing '\0'.
 594   char *ld_library_path = NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 595   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 596   Arguments::set_library_path(ld_library_path);
 597   FREE_C_HEAP_ARRAY(char, ld_library_path);
 598 
 599   // Extensions directories.
 600   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 601   Arguments::set_ext_dirs(buf);
 602 
 603   FREE_C_HEAP_ARRAY(char, buf);
 604 
 605 #undef DEFAULT_LIBPATH
 606 #undef EXTENSIONS_DIR
 607 }
 608 
 609 ////////////////////////////////////////////////////////////////////////////////
 610 // breakpoint support
 611 
 612 void os::breakpoint() {
 613   BREAKPOINT;
 614 }
 615 
 616 extern "C" void breakpoint() {
 617   // use debugger to set breakpoint here
 618 }
 619 
 620 ////////////////////////////////////////////////////////////////////////////////
 621 // signal support
 622 
 623 debug_only(static bool signal_sets_initialized = false);
 624 static sigset_t unblocked_sigs, vm_sigs;
 625 
 626 void os::Aix::signal_sets_init() {
 627   // Should also have an assertion stating we are still single-threaded.
 628   assert(!signal_sets_initialized, "Already initialized");
 629   // Fill in signals that are necessarily unblocked for all threads in
 630   // the VM. Currently, we unblock the following signals:
 631   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 632   //                         by -Xrs (=ReduceSignalUsage));
 633   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 634   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 635   // the dispositions or masks wrt these signals.
 636   // Programs embedding the VM that want to use the above signals for their
 637   // own purposes must, at this time, use the "-Xrs" option to prevent
 638   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 639   // (See bug 4345157, and other related bugs).
 640   // In reality, though, unblocking these signals is really a nop, since
 641   // these signals are not blocked by default.
 642   sigemptyset(&unblocked_sigs);
 643   sigaddset(&unblocked_sigs, SIGILL);
 644   sigaddset(&unblocked_sigs, SIGSEGV);
 645   sigaddset(&unblocked_sigs, SIGBUS);
 646   sigaddset(&unblocked_sigs, SIGFPE);
 647   sigaddset(&unblocked_sigs, SIGTRAP);
 648   sigaddset(&unblocked_sigs, SR_signum);
 649 
 650   if (!ReduceSignalUsage) {
 651    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 652      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 653    }
 654    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 655      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 656    }
 657    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 658      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 659    }
 660   }
 661   // Fill in signals that are blocked by all but the VM thread.
 662   sigemptyset(&vm_sigs);
 663   if (!ReduceSignalUsage)
 664     sigaddset(&vm_sigs, BREAK_SIGNAL);
 665   debug_only(signal_sets_initialized = true);
 666 }
 667 
 668 // These are signals that are unblocked while a thread is running Java.
 669 // (For some reason, they get blocked by default.)
 670 sigset_t* os::Aix::unblocked_signals() {
 671   assert(signal_sets_initialized, "Not initialized");
 672   return &unblocked_sigs;
 673 }
 674 
 675 // These are the signals that are blocked while a (non-VM) thread is
 676 // running Java. Only the VM thread handles these signals.
 677 sigset_t* os::Aix::vm_signals() {
 678   assert(signal_sets_initialized, "Not initialized");
 679   return &vm_sigs;
 680 }
 681 
 682 void os::Aix::hotspot_sigmask(Thread* thread) {
 683 
 684   //Save caller's signal mask before setting VM signal mask
 685   sigset_t caller_sigmask;
 686   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 687 
 688   OSThread* osthread = thread->osthread();
 689   osthread->set_caller_sigmask(caller_sigmask);
 690 
 691   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 692 
 693   if (!ReduceSignalUsage) {
 694     if (thread->is_VM_thread()) {
 695       // Only the VM thread handles BREAK_SIGNAL ...
 696       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 697     } else {
 698       // ... all other threads block BREAK_SIGNAL
 699       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 700     }
 701   }
 702 }
 703 
 704 // retrieve memory information.
 705 // Returns false if something went wrong;
 706 // content of pmi undefined in this case.
 707 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 708 
 709   assert(pmi, "get_meminfo: invalid parameter");
 710 
 711   memset(pmi, 0, sizeof(meminfo_t));
 712 
 713   if (os::Aix::on_pase()) {
 714     // On PASE, use the libo4 porting library.
 715 
 716     unsigned long long virt_total = 0;
 717     unsigned long long real_total = 0;
 718     unsigned long long real_free = 0;
 719     unsigned long long pgsp_total = 0;
 720     unsigned long long pgsp_free = 0;
 721     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 722       pmi->virt_total = virt_total;
 723       pmi->real_total = real_total;
 724       pmi->real_free = real_free;
 725       pmi->pgsp_total = pgsp_total;
 726       pmi->pgsp_free = pgsp_free;
 727       return true;
 728     }
 729     return false;
 730 
 731   } else {
 732 
 733     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 734     // See:
 735     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 736     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 737     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 738     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 739 
 740     perfstat_memory_total_t psmt;
 741     memset (&psmt, '\0', sizeof(psmt));
 742     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 743     if (rc == -1) {
 744       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 745       assert(0, "perfstat_memory_total() failed");
 746       return false;
 747     }
 748 
 749     assert(rc == 1, "perfstat_memory_total() - weird return code");
 750 
 751     // excerpt from
 752     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 753     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 754     // The fields of perfstat_memory_total_t:
 755     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 756     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 757     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 758     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 759     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 760 
 761     pmi->virt_total = psmt.virt_total * 4096;
 762     pmi->real_total = psmt.real_total * 4096;
 763     pmi->real_free = psmt.real_free * 4096;
 764     pmi->pgsp_total = psmt.pgsp_total * 4096;
 765     pmi->pgsp_free = psmt.pgsp_free * 4096;
 766 
 767     return true;
 768 
 769   }
 770 } // end os::Aix::get_meminfo
 771 
 772 //////////////////////////////////////////////////////////////////////////////
 773 // create new thread
 774 
 775 // Thread start routine for all newly created threads
 776 static void *thread_native_entry(Thread *thread) {
 777 
 778   thread->record_stack_base_and_size();
 779 
 780   const pthread_t pthread_id = ::pthread_self();
 781   const tid_t kernel_thread_id = ::thread_self();
 782 
 783   LogTarget(Info, os, thread) lt;
 784   if (lt.is_enabled()) {
 785     address low_address = thread->stack_end();
 786     address high_address = thread->stack_base();
 787     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 788              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 789              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 790              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 791   }
 792 
 793   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 794   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 795   // tools hook pthread_create(). In this case, we may run into problems establishing
 796   // guard pages on those stacks, because the stacks may reside in memory which is not
 797   // protectable (shmated).
 798   if (thread->stack_base() > ::sbrk(0)) {
 799     log_warning(os, thread)("Thread stack not in data segment.");
 800   }
 801 
 802   // Try to randomize the cache line index of hot stack frames.
 803   // This helps when threads of the same stack traces evict each other's
 804   // cache lines. The threads can be either from the same JVM instance, or
 805   // from different JVM instances. The benefit is especially true for
 806   // processors with hyperthreading technology.
 807 
 808   static int counter = 0;
 809   int pid = os::current_process_id();
 810   alloca(((pid ^ counter++) & 7) * 128);
 811 
 812   thread->initialize_thread_current();
 813 
 814   OSThread* osthread = thread->osthread();
 815 
 816   // Thread_id is pthread id.
 817   osthread->set_thread_id(pthread_id);
 818 
 819   // .. but keep kernel thread id too for diagnostics
 820   osthread->set_kernel_thread_id(kernel_thread_id);
 821 
 822   // Initialize signal mask for this thread.
 823   os::Aix::hotspot_sigmask(thread);
 824 
 825   // Initialize floating point control register.
 826   os::Aix::init_thread_fpu_state();
 827 
 828   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 829 
 830   // Call one more level start routine.
 831   thread->call_run();
 832 
 833   // Note: at this point the thread object may already have deleted itself.
 834   // Prevent dereferencing it from here on out.
 835   thread = NULL;
 836 
 837   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 838     os::current_thread_id(), (uintx) kernel_thread_id);
 839 
 840   return 0;
 841 }
 842 
 843 bool os::create_thread(Thread* thread, ThreadType thr_type,
 844                        size_t req_stack_size) {
 845 
 846   assert(thread->osthread() == NULL, "caller responsible");
 847 
 848   // Allocate the OSThread object.
 849   OSThread* osthread = new OSThread(NULL, NULL);
 850   if (osthread == NULL) {
 851     return false;
 852   }
 853 
 854   // Set the correct thread state.
 855   osthread->set_thread_type(thr_type);
 856 
 857   // Initial state is ALLOCATED but not INITIALIZED
 858   osthread->set_state(ALLOCATED);
 859 
 860   thread->set_osthread(osthread);
 861 
 862   // Init thread attributes.
 863   pthread_attr_t attr;
 864   pthread_attr_init(&attr);
 865   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 866 
 867   // Make sure we run in 1:1 kernel-user-thread mode.
 868   if (os::Aix::on_aix()) {
 869     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 870     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 871   }
 872 
 873   // Start in suspended state, and in os::thread_start, wake the thread up.
 874   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 875 
 876   // Calculate stack size if it's not specified by caller.
 877   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 878 
 879   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 880   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 881   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 882   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 883   if (stack_size < 4096 * K) {
 884     stack_size += 64 * K;
 885   }
 886 
 887   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 888   // thread size in attr unchanged. If this is the minimal stack size as set
 889   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 890   // guard pages might not fit on the tiny stack created.
 891   int ret = pthread_attr_setstacksize(&attr, stack_size);
 892   if (ret != 0) {
 893     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 894                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 895                             stack_size / K);
 896     thread->set_osthread(NULL);
 897     delete osthread;
 898     return false;
 899   }
 900 
 901   // Save some cycles and a page by disabling OS guard pages where we have our own
 902   // VM guard pages (in java threads). For other threads, keep system default guard
 903   // pages in place.
 904   if (thr_type == java_thread || thr_type == compiler_thread) {
 905     ret = pthread_attr_setguardsize(&attr, 0);
 906   }
 907 
 908   pthread_t tid = 0;
 909   if (ret == 0) {
 910     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 911   }
 912 
 913   if (ret == 0) {
 914     char buf[64];
 915     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 916       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 917   } else {
 918     char buf[64];
 919     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 920       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 921     // Log some OS information which might explain why creating the thread failed.
 922     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 923     LogStream st(Log(os, thread)::info());
 924     os::Posix::print_rlimit_info(&st);
 925     os::print_memory_info(&st);
 926   }
 927 
 928   pthread_attr_destroy(&attr);
 929 
 930   if (ret != 0) {
 931     // Need to clean up stuff we've allocated so far.
 932     thread->set_osthread(NULL);
 933     delete osthread;
 934     return false;
 935   }
 936 
 937   // OSThread::thread_id is the pthread id.
 938   osthread->set_thread_id(tid);
 939 
 940   return true;
 941 }
 942 
 943 /////////////////////////////////////////////////////////////////////////////
 944 // attach existing thread
 945 
 946 // bootstrap the main thread
 947 bool os::create_main_thread(JavaThread* thread) {
 948   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 949   return create_attached_thread(thread);
 950 }
 951 
 952 bool os::create_attached_thread(JavaThread* thread) {
 953 #ifdef ASSERT
 954     thread->verify_not_published();
 955 #endif
 956 
 957   // Allocate the OSThread object
 958   OSThread* osthread = new OSThread(NULL, NULL);
 959 
 960   if (osthread == NULL) {
 961     return false;
 962   }
 963 
 964   const pthread_t pthread_id = ::pthread_self();
 965   const tid_t kernel_thread_id = ::thread_self();
 966 
 967   // OSThread::thread_id is the pthread id.
 968   osthread->set_thread_id(pthread_id);
 969 
 970   // .. but keep kernel thread id too for diagnostics
 971   osthread->set_kernel_thread_id(kernel_thread_id);
 972 
 973   // initialize floating point control register
 974   os::Aix::init_thread_fpu_state();
 975 
 976   // Initial thread state is RUNNABLE
 977   osthread->set_state(RUNNABLE);
 978 
 979   thread->set_osthread(osthread);
 980 
 981   if (UseNUMA) {
 982     int lgrp_id = os::numa_get_group_id();
 983     if (lgrp_id != -1) {
 984       thread->set_lgrp_id(lgrp_id);
 985     }
 986   }
 987 
 988   // initialize signal mask for this thread
 989   // and save the caller's signal mask
 990   os::Aix::hotspot_sigmask(thread);
 991 
 992   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 993     os::current_thread_id(), (uintx) kernel_thread_id);
 994 
 995   return true;
 996 }
 997 
 998 void os::pd_start_thread(Thread* thread) {
 999   int status = pthread_continue_np(thread->osthread()->pthread_id());
1000   assert(status == 0, "thr_continue failed");
1001 }
1002 
1003 // Free OS resources related to the OSThread
1004 void os::free_thread(OSThread* osthread) {
1005   assert(osthread != NULL, "osthread not set");
1006 
1007   // We are told to free resources of the argument thread,
1008   // but we can only really operate on the current thread.
1009   assert(Thread::current()->osthread() == osthread,
1010          "os::free_thread but not current thread");
1011 
1012   // Restore caller's signal mask
1013   sigset_t sigmask = osthread->caller_sigmask();
1014   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1015 
1016   delete osthread;
1017 }
1018 
1019 ////////////////////////////////////////////////////////////////////////////////
1020 // time support
1021 
1022 // Time since start-up in seconds to a fine granularity.
1023 // Used by VMSelfDestructTimer and the MemProfiler.
1024 double os::elapsedTime() {
1025   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1026 }
1027 
1028 jlong os::elapsed_counter() {
1029   return javaTimeNanos() - initial_time_count;
1030 }
1031 
1032 jlong os::elapsed_frequency() {
1033   return NANOSECS_PER_SEC; // nanosecond resolution
1034 }
1035 
1036 bool os::supports_vtime() { return true; }
1037 bool os::enable_vtime()   { return false; }
1038 bool os::vtime_enabled()  { return false; }
1039 
1040 double os::elapsedVTime() {
1041   struct rusage usage;
1042   int retval = getrusage(RUSAGE_THREAD, &usage);
1043   if (retval == 0) {
1044     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1045   } else {
1046     // better than nothing, but not much
1047     return elapsedTime();
1048   }
1049 }
1050 
1051 jlong os::javaTimeMillis() {
1052   timeval time;
1053   int status = gettimeofday(&time, NULL);
1054   assert(status != -1, "aix error at gettimeofday()");
1055   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1056 }
1057 
1058 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1059   timeval time;
1060   int status = gettimeofday(&time, NULL);
1061   assert(status != -1, "aix error at gettimeofday()");
1062   seconds = jlong(time.tv_sec);
1063   nanos = jlong(time.tv_usec) * 1000;
1064 }
1065 
1066 // We use mread_real_time here.
1067 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1068 // it has to be converted to real time. AIX documentations suggests to do
1069 // this unconditionally, so we do it.
1070 //
1071 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1072 //
1073 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1074 // conversion is necessary. However, mread_real_time will not return
1075 // monotonic results but merely matches read_real_time. So we need a tweak
1076 // to ensure monotonic results.
1077 //
1078 // For PASE no public documentation exists, just word by IBM
1079 jlong os::javaTimeNanos() {
1080   timebasestruct_t time;
1081   int rc = mread_real_time(&time, TIMEBASE_SZ);
1082   if (os::Aix::on_pase()) {
1083     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1084     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1085     jlong prev = max_real_time;
1086     if (now <= prev) {
1087       return prev;   // same or retrograde time;
1088     }
1089     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1090     assert(obsv >= prev, "invariant");   // Monotonicity
1091     // If the CAS succeeded then we're done and return "now".
1092     // If the CAS failed and the observed value "obsv" is >= now then
1093     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1094     // some other thread raced this thread and installed a new value, in which case
1095     // we could either (a) retry the entire operation, (b) retry trying to install now
1096     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1097     // we might discard a higher "now" value in deference to a slightly lower but freshly
1098     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1099     // to (a) or (b) -- and greatly reduces coherence traffic.
1100     // We might also condition (c) on the magnitude of the delta between obsv and now.
1101     // Avoiding excessive CAS operations to hot RW locations is critical.
1102     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1103     return (prev == obsv) ? now : obsv;
1104   } else {
1105     if (rc != RTC_POWER) {
1106       rc = time_base_to_time(&time, TIMEBASE_SZ);
1107       assert(rc != -1, "error calling time_base_to_time()");
1108     }
1109     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1110   }
1111 }
1112 
1113 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1114   info_ptr->max_value = ALL_64_BITS;
1115   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1116   info_ptr->may_skip_backward = false;
1117   info_ptr->may_skip_forward = false;
1118   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1119 }
1120 
1121 // Return the real, user, and system times in seconds from an
1122 // arbitrary fixed point in the past.
1123 bool os::getTimesSecs(double* process_real_time,
1124                       double* process_user_time,
1125                       double* process_system_time) {
1126   struct tms ticks;
1127   clock_t real_ticks = times(&ticks);
1128 
1129   if (real_ticks == (clock_t) (-1)) {
1130     return false;
1131   } else {
1132     double ticks_per_second = (double) clock_tics_per_sec;
1133     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1134     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1135     *process_real_time = ((double) real_ticks) / ticks_per_second;
1136 
1137     return true;
1138   }
1139 }
1140 
1141 char * os::local_time_string(char *buf, size_t buflen) {
1142   struct tm t;
1143   time_t long_time;
1144   time(&long_time);
1145   localtime_r(&long_time, &t);
1146   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1147                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1148                t.tm_hour, t.tm_min, t.tm_sec);
1149   return buf;
1150 }
1151 
1152 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1153   return localtime_r(clock, res);
1154 }
1155 
1156 ////////////////////////////////////////////////////////////////////////////////
1157 // runtime exit support
1158 
1159 // Note: os::shutdown() might be called very early during initialization, or
1160 // called from signal handler. Before adding something to os::shutdown(), make
1161 // sure it is async-safe and can handle partially initialized VM.
1162 void os::shutdown() {
1163 
1164   // allow PerfMemory to attempt cleanup of any persistent resources
1165   perfMemory_exit();
1166 
1167   // needs to remove object in file system
1168   AttachListener::abort();
1169 
1170   // flush buffered output, finish log files
1171   ostream_abort();
1172 
1173   // Check for abort hook
1174   abort_hook_t abort_hook = Arguments::abort_hook();
1175   if (abort_hook != NULL) {
1176     abort_hook();
1177   }
1178 }
1179 
1180 // Note: os::abort() might be called very early during initialization, or
1181 // called from signal handler. Before adding something to os::abort(), make
1182 // sure it is async-safe and can handle partially initialized VM.
1183 void os::abort(bool dump_core, void* siginfo, const void* context) {
1184   os::shutdown();
1185   if (dump_core) {
1186 #ifndef PRODUCT
1187     fdStream out(defaultStream::output_fd());
1188     out.print_raw("Current thread is ");
1189     char buf[16];
1190     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1191     out.print_raw_cr(buf);
1192     out.print_raw_cr("Dumping core ...");
1193 #endif
1194     ::abort(); // dump core
1195   }
1196 
1197   ::exit(1);
1198 }
1199 
1200 // Die immediately, no exit hook, no abort hook, no cleanup.
1201 // Dump a core file, if possible, for debugging.
1202 void os::die() {
1203   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1204     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1205     // and don't take the time to generate a core file.
1206     os::signal_raise(SIGKILL);
1207   } else {
1208     ::abort();
1209   }
1210 }
1211 
1212 intx os::current_thread_id() {
1213   return (intx)pthread_self();
1214 }
1215 
1216 int os::current_process_id() {
1217   return getpid();
1218 }
1219 
1220 // DLL functions
1221 
1222 const char* os::dll_file_extension() { return ".so"; }
1223 
1224 // This must be hard coded because it's the system's temporary
1225 // directory not the java application's temp directory, ala java.io.tmpdir.
1226 const char* os::get_temp_directory() { return "/tmp"; }
1227 
1228 // Check if addr is inside libjvm.so.
1229 bool os::address_is_in_vm(address addr) {
1230 
1231   // Input could be a real pc or a function pointer literal. The latter
1232   // would be a function descriptor residing in the data segment of a module.
1233   loaded_module_t lm;
1234   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1235     return lm.is_in_vm;
1236   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1237     return lm.is_in_vm;
1238   } else {
1239     return false;
1240   }
1241 
1242 }
1243 
1244 // Resolve an AIX function descriptor literal to a code pointer.
1245 // If the input is a valid code pointer to a text segment of a loaded module,
1246 //   it is returned unchanged.
1247 // If the input is a valid AIX function descriptor, it is resolved to the
1248 //   code entry point.
1249 // If the input is neither a valid function descriptor nor a valid code pointer,
1250 //   NULL is returned.
1251 static address resolve_function_descriptor_to_code_pointer(address p) {
1252 
1253   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1254     // It is a real code pointer.
1255     return p;
1256   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1257     // Pointer to data segment, potential function descriptor.
1258     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1259     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1260       // It is a function descriptor.
1261       return code_entry;
1262     }
1263   }
1264 
1265   return NULL;
1266 }
1267 
1268 bool os::dll_address_to_function_name(address addr, char *buf,
1269                                       int buflen, int *offset,
1270                                       bool demangle) {
1271   if (offset) {
1272     *offset = -1;
1273   }
1274   // Buf is not optional, but offset is optional.
1275   assert(buf != NULL, "sanity check");
1276   buf[0] = '\0';
1277 
1278   // Resolve function ptr literals first.
1279   addr = resolve_function_descriptor_to_code_pointer(addr);
1280   if (!addr) {
1281     return false;
1282   }
1283 
1284   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1285 }
1286 
1287 bool os::dll_address_to_library_name(address addr, char* buf,
1288                                      int buflen, int* offset) {
1289   if (offset) {
1290     *offset = -1;
1291   }
1292   // Buf is not optional, but offset is optional.
1293   assert(buf != NULL, "sanity check");
1294   buf[0] = '\0';
1295 
1296   // Resolve function ptr literals first.
1297   addr = resolve_function_descriptor_to_code_pointer(addr);
1298   if (!addr) {
1299     return false;
1300   }
1301 
1302   return AixSymbols::get_module_name(addr, buf, buflen);
1303 }
1304 
1305 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1306 // for the same architecture as Hotspot is running on.
1307 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1308 
1309   log_info(os)("attempting shared library load of %s", filename);
1310 
1311   if (ebuf && ebuflen > 0) {
1312     ebuf[0] = '\0';
1313     ebuf[ebuflen - 1] = '\0';
1314   }
1315 
1316   if (!filename || strlen(filename) == 0) {
1317     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1318     return NULL;
1319   }
1320 
1321   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1322   void * result= ::dlopen(filename, RTLD_LAZY);
1323   if (result != NULL) {
1324     Events::log(NULL, "Loaded shared library %s", filename);
1325     // Reload dll cache. Don't do this in signal handling.
1326     LoadedLibraries::reload();
1327     log_info(os)("shared library load of %s was successful", filename);
1328     return result;
1329   } else {
1330     // error analysis when dlopen fails
1331     const char* error_report = ::dlerror();
1332     if (error_report == NULL) {
1333       error_report = "dlerror returned no error description";
1334     }
1335     if (ebuf != NULL && ebuflen > 0) {
1336       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1337                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1338     }
1339     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1340     log_info(os)("shared library load of %s failed, %s", filename, error_report);
1341   }
1342   return NULL;
1343 }
1344 
1345 void* os::dll_lookup(void* handle, const char* name) {
1346   void* res = dlsym(handle, name);
1347   return res;
1348 }
1349 
1350 void* os::get_default_process_handle() {
1351   return (void*)::dlopen(NULL, RTLD_LAZY);
1352 }
1353 
1354 void os::print_dll_info(outputStream *st) {
1355   st->print_cr("Dynamic libraries:");
1356   LoadedLibraries::print(st);
1357 }
1358 
1359 void os::get_summary_os_info(char* buf, size_t buflen) {
1360   // There might be something more readable than uname results for AIX.
1361   struct utsname name;
1362   uname(&name);
1363   snprintf(buf, buflen, "%s %s", name.release, name.version);
1364 }
1365 
1366 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1367   // Not yet implemented.
1368   return 0;
1369 }
1370 
1371 void os::print_os_info_brief(outputStream* st) {
1372   uint32_t ver = os::Aix::os_version();
1373   st->print_cr("AIX kernel version %u.%u.%u.%u",
1374                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1375 
1376   os::Posix::print_uname_info(st);
1377 
1378   // Linux uses print_libversion_info(st); here.
1379 }
1380 
1381 void os::print_os_info(outputStream* st) {
1382   st->print("OS:");
1383 
1384   os::Posix::print_uname_info(st);
1385 
1386   uint32_t ver = os::Aix::os_version();
1387   st->print_cr("AIX kernel version %u.%u.%u.%u",
1388                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1389 
1390   os::Posix::print_rlimit_info(st);
1391 
1392   os::Posix::print_load_average(st);
1393 
1394   // _SC_THREAD_THREADS_MAX is the maximum number of threads within a process.
1395   long tmax = sysconf(_SC_THREAD_THREADS_MAX);
1396   st->print_cr("maximum #threads within a process:%ld", tmax);
1397 
1398   // print wpar info
1399   libperfstat::wparinfo_t wi;
1400   if (libperfstat::get_wparinfo(&wi)) {
1401     st->print_cr("wpar info");
1402     st->print_cr("name: %s", wi.name);
1403     st->print_cr("id:   %d", wi.wpar_id);
1404     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1405   }
1406 
1407   VM_Version::print_platform_virtualization_info(st);
1408 }
1409 
1410 void os::print_memory_info(outputStream* st) {
1411 
1412   st->print_cr("Memory:");
1413 
1414   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1415     describe_pagesize(g_multipage_support.pagesize));
1416   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1417     describe_pagesize(g_multipage_support.datapsize));
1418   st->print_cr("  Text page size:                         %s",
1419     describe_pagesize(g_multipage_support.textpsize));
1420   st->print_cr("  Thread stack page size (pthread):       %s",
1421     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1422   st->print_cr("  Default shared memory page size:        %s",
1423     describe_pagesize(g_multipage_support.shmpsize));
1424   st->print_cr("  Can use 64K pages dynamically with shared memory:  %s",
1425     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1426   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1427     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1428   st->print_cr("  Multipage error: %d",
1429     g_multipage_support.error);
1430   st->cr();
1431   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1432 
1433   // print out LDR_CNTRL because it affects the default page sizes
1434   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1435   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1436 
1437   // Print out EXTSHM because it is an unsupported setting.
1438   const char* const extshm = ::getenv("EXTSHM");
1439   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1440   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1441     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1442   }
1443 
1444   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1445   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1446   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1447       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1448   st->cr();
1449 
1450   os::Aix::meminfo_t mi;
1451   if (os::Aix::get_meminfo(&mi)) {
1452     if (os::Aix::on_aix()) {
1453       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1454       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1455       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1456       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1457     } else {
1458       // PASE - Numbers are result of QWCRSSTS; they mean:
1459       // real_total: Sum of all system pools
1460       // real_free: always 0
1461       // pgsp_total: we take the size of the system ASP
1462       // pgsp_free: size of system ASP times percentage of system ASP unused
1463       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1464       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1465       st->print_cr("%% system asp used : %.2f",
1466         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1467     }
1468   }
1469   st->cr();
1470 
1471   // Print program break.
1472   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1473   address brk_now = (address)::sbrk(0);
1474   if (brk_now != (address)-1) {
1475     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1476                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1477   }
1478   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1479   st->cr();
1480 
1481   // Print segments allocated with os::reserve_memory.
1482   st->print_cr("internal virtual memory regions used by vm:");
1483   vmembk_print_on(st);
1484 }
1485 
1486 // Get a string for the cpuinfo that is a summary of the cpu type
1487 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1488   // read _system_configuration.version
1489   switch (_system_configuration.version) {
1490   case PV_9:
1491     strncpy(buf, "Power PC 9", buflen);
1492     break;
1493   case PV_8:
1494     strncpy(buf, "Power PC 8", buflen);
1495     break;
1496   case PV_7:
1497     strncpy(buf, "Power PC 7", buflen);
1498     break;
1499   case PV_6_1:
1500     strncpy(buf, "Power PC 6 DD1.x", buflen);
1501     break;
1502   case PV_6:
1503     strncpy(buf, "Power PC 6", buflen);
1504     break;
1505   case PV_5:
1506     strncpy(buf, "Power PC 5", buflen);
1507     break;
1508   case PV_5_2:
1509     strncpy(buf, "Power PC 5_2", buflen);
1510     break;
1511   case PV_5_3:
1512     strncpy(buf, "Power PC 5_3", buflen);
1513     break;
1514   case PV_5_Compat:
1515     strncpy(buf, "PV_5_Compat", buflen);
1516     break;
1517   case PV_6_Compat:
1518     strncpy(buf, "PV_6_Compat", buflen);
1519     break;
1520   case PV_7_Compat:
1521     strncpy(buf, "PV_7_Compat", buflen);
1522     break;
1523   case PV_8_Compat:
1524     strncpy(buf, "PV_8_Compat", buflen);
1525     break;
1526   case PV_9_Compat:
1527     strncpy(buf, "PV_9_Compat", buflen);
1528     break;
1529   default:
1530     strncpy(buf, "unknown", buflen);
1531   }
1532 }
1533 
1534 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1535   // Nothing to do beyond of what os::print_cpu_info() does.
1536 }
1537 
1538 static void print_signal_handler(outputStream* st, int sig,
1539                                  char* buf, size_t buflen);
1540 
1541 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1542   st->print_cr("Signal Handlers:");
1543   print_signal_handler(st, SIGSEGV, buf, buflen);
1544   print_signal_handler(st, SIGBUS , buf, buflen);
1545   print_signal_handler(st, SIGFPE , buf, buflen);
1546   print_signal_handler(st, SIGPIPE, buf, buflen);
1547   print_signal_handler(st, SIGXFSZ, buf, buflen);
1548   print_signal_handler(st, SIGILL , buf, buflen);
1549   print_signal_handler(st, SR_signum, buf, buflen);
1550   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1551   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1552   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1553   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1554   print_signal_handler(st, SIGTRAP, buf, buflen);
1555   // We also want to know if someone else adds a SIGDANGER handler because
1556   // that will interfere with OOM killling.
1557   print_signal_handler(st, SIGDANGER, buf, buflen);
1558 }
1559 
1560 static char saved_jvm_path[MAXPATHLEN] = {0};
1561 
1562 // Find the full path to the current module, libjvm.so.
1563 void os::jvm_path(char *buf, jint buflen) {
1564   // Error checking.
1565   if (buflen < MAXPATHLEN) {
1566     assert(false, "must use a large-enough buffer");
1567     buf[0] = '\0';
1568     return;
1569   }
1570   // Lazy resolve the path to current module.
1571   if (saved_jvm_path[0] != 0) {
1572     strcpy(buf, saved_jvm_path);
1573     return;
1574   }
1575 
1576   Dl_info dlinfo;
1577   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1578   assert(ret != 0, "cannot locate libjvm");
1579   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1580   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1581 
1582   if (Arguments::sun_java_launcher_is_altjvm()) {
1583     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1584     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1585     // If "/jre/lib/" appears at the right place in the string, then
1586     // assume we are installed in a JDK and we're done. Otherwise, check
1587     // for a JAVA_HOME environment variable and fix up the path so it
1588     // looks like libjvm.so is installed there (append a fake suffix
1589     // hotspot/libjvm.so).
1590     const char *p = buf + strlen(buf) - 1;
1591     for (int count = 0; p > buf && count < 4; ++count) {
1592       for (--p; p > buf && *p != '/'; --p)
1593         /* empty */ ;
1594     }
1595 
1596     if (strncmp(p, "/jre/lib/", 9) != 0) {
1597       // Look for JAVA_HOME in the environment.
1598       char* java_home_var = ::getenv("JAVA_HOME");
1599       if (java_home_var != NULL && java_home_var[0] != 0) {
1600         char* jrelib_p;
1601         int len;
1602 
1603         // Check the current module name "libjvm.so".
1604         p = strrchr(buf, '/');
1605         if (p == NULL) {
1606           return;
1607         }
1608         assert(strstr(p, "/libjvm") == p, "invalid library name");
1609 
1610         rp = os::Posix::realpath(java_home_var, buf, buflen);
1611         if (rp == NULL) {
1612           return;
1613         }
1614 
1615         // determine if this is a legacy image or modules image
1616         // modules image doesn't have "jre" subdirectory
1617         len = strlen(buf);
1618         assert(len < buflen, "Ran out of buffer room");
1619         jrelib_p = buf + len;
1620         snprintf(jrelib_p, buflen-len, "/jre/lib");
1621         if (0 != access(buf, F_OK)) {
1622           snprintf(jrelib_p, buflen-len, "/lib");
1623         }
1624 
1625         if (0 == access(buf, F_OK)) {
1626           // Use current module name "libjvm.so"
1627           len = strlen(buf);
1628           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1629         } else {
1630           // Go back to path of .so
1631           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1632           if (rp == NULL) {
1633             return;
1634           }
1635         }
1636       }
1637     }
1638   }
1639 
1640   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1641   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1642 }
1643 
1644 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1645   // no prefix required, not even "_"
1646 }
1647 
1648 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1649   // no suffix required
1650 }
1651 
1652 ////////////////////////////////////////////////////////////////////////////////
1653 // sun.misc.Signal support
1654 
1655 static void
1656 UserHandler(int sig, void *siginfo, void *context) {
1657   // Ctrl-C is pressed during error reporting, likely because the error
1658   // handler fails to abort. Let VM die immediately.
1659   if (sig == SIGINT && VMError::is_error_reported()) {
1660     os::die();
1661   }
1662 
1663   os::signal_notify(sig);
1664 }
1665 
1666 void* os::user_handler() {
1667   return CAST_FROM_FN_PTR(void*, UserHandler);
1668 }
1669 
1670 extern "C" {
1671   typedef void (*sa_handler_t)(int);
1672   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1673 }
1674 
1675 void* os::signal(int signal_number, void* handler) {
1676   struct sigaction sigAct, oldSigAct;
1677 
1678   sigfillset(&(sigAct.sa_mask));
1679 
1680   // Do not block out synchronous signals in the signal handler.
1681   // Blocking synchronous signals only makes sense if you can really
1682   // be sure that those signals won't happen during signal handling,
1683   // when the blocking applies. Normal signal handlers are lean and
1684   // do not cause signals. But our signal handlers tend to be "risky"
1685   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1686   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1687   // by a SIGILL, which was blocked due to the signal mask. The process
1688   // just hung forever. Better to crash from a secondary signal than to hang.
1689   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1690   sigdelset(&(sigAct.sa_mask), SIGBUS);
1691   sigdelset(&(sigAct.sa_mask), SIGILL);
1692   sigdelset(&(sigAct.sa_mask), SIGFPE);
1693   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1694 
1695   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1696 
1697   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1698 
1699   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1700     // -1 means registration failed
1701     return (void *)-1;
1702   }
1703 
1704   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1705 }
1706 
1707 void os::signal_raise(int signal_number) {
1708   ::raise(signal_number);
1709 }
1710 
1711 //
1712 // The following code is moved from os.cpp for making this
1713 // code platform specific, which it is by its very nature.
1714 //
1715 
1716 // Will be modified when max signal is changed to be dynamic
1717 int os::sigexitnum_pd() {
1718   return NSIG;
1719 }
1720 
1721 // a counter for each possible signal value
1722 static volatile jint pending_signals[NSIG+1] = { 0 };
1723 
1724 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1725 // On AIX, we use sem_init(), sem_post(), sem_wait()
1726 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1727 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1728 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1729 // on AIX, msem_..() calls are suspected of causing problems.
1730 static sem_t sig_sem;
1731 static msemaphore* p_sig_msem = 0;
1732 
1733 static void local_sem_init() {
1734   if (os::Aix::on_aix()) {
1735     int rc = ::sem_init(&sig_sem, 0, 0);
1736     guarantee(rc != -1, "sem_init failed");
1737   } else {
1738     // Memory semaphores must live in shared mem.
1739     guarantee0(p_sig_msem == NULL);
1740     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1741     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1742     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1743   }
1744 }
1745 
1746 static void local_sem_post() {
1747   static bool warn_only_once = false;
1748   if (os::Aix::on_aix()) {
1749     int rc = ::sem_post(&sig_sem);
1750     if (rc == -1 && !warn_only_once) {
1751       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1752       warn_only_once = true;
1753     }
1754   } else {
1755     guarantee0(p_sig_msem != NULL);
1756     int rc = ::msem_unlock(p_sig_msem, 0);
1757     if (rc == -1 && !warn_only_once) {
1758       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1759       warn_only_once = true;
1760     }
1761   }
1762 }
1763 
1764 static void local_sem_wait() {
1765   static bool warn_only_once = false;
1766   if (os::Aix::on_aix()) {
1767     int rc = ::sem_wait(&sig_sem);
1768     if (rc == -1 && !warn_only_once) {
1769       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1770       warn_only_once = true;
1771     }
1772   } else {
1773     guarantee0(p_sig_msem != NULL); // must init before use
1774     int rc = ::msem_lock(p_sig_msem, 0);
1775     if (rc == -1 && !warn_only_once) {
1776       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1777       warn_only_once = true;
1778     }
1779   }
1780 }
1781 
1782 static void jdk_misc_signal_init() {
1783   // Initialize signal structures
1784   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1785 
1786   // Initialize signal semaphore
1787   local_sem_init();
1788 }
1789 
1790 void os::signal_notify(int sig) {
1791   Atomic::inc(&pending_signals[sig]);
1792   local_sem_post();
1793 }
1794 
1795 static int check_pending_signals() {
1796   for (;;) {
1797     for (int i = 0; i < NSIG + 1; i++) {
1798       jint n = pending_signals[i];
1799       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1800         return i;
1801       }
1802     }
1803     JavaThread *thread = JavaThread::current();
1804     ThreadBlockInVM tbivm(thread);
1805 
1806     bool threadIsSuspended;
1807     do {
1808       thread->set_suspend_equivalent();
1809       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1810 
1811       local_sem_wait();
1812 
1813       // were we externally suspended while we were waiting?
1814       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1815       if (threadIsSuspended) {
1816         //
1817         // The semaphore has been incremented, but while we were waiting
1818         // another thread suspended us. We don't want to continue running
1819         // while suspended because that would surprise the thread that
1820         // suspended us.
1821         //
1822 
1823         local_sem_post();
1824 
1825         thread->java_suspend_self();
1826       }
1827     } while (threadIsSuspended);
1828   }
1829 }
1830 
1831 int os::signal_wait() {
1832   return check_pending_signals();
1833 }
1834 
1835 ////////////////////////////////////////////////////////////////////////////////
1836 // Virtual Memory
1837 
1838 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1839 
1840 #define VMEM_MAPPED  1
1841 #define VMEM_SHMATED 2
1842 
1843 struct vmembk_t {
1844   int type;         // 1 - mmap, 2 - shmat
1845   char* addr;
1846   size_t size;      // Real size, may be larger than usersize.
1847   size_t pagesize;  // page size of area
1848   vmembk_t* next;
1849 
1850   bool contains_addr(char* p) const {
1851     return p >= addr && p < (addr + size);
1852   }
1853 
1854   bool contains_range(char* p, size_t s) const {
1855     return contains_addr(p) && contains_addr(p + s - 1);
1856   }
1857 
1858   void print_on(outputStream* os) const {
1859     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1860       " bytes, %d %s pages), %s",
1861       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1862       (type == VMEM_SHMATED ? "shmat" : "mmap")
1863     );
1864   }
1865 
1866   // Check that range is a sub range of memory block (or equal to memory block);
1867   // also check that range is fully page aligned to the page size if the block.
1868   void assert_is_valid_subrange(char* p, size_t s) const {
1869     if (!contains_range(p, s)) {
1870       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1871               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1872               p2i(p), p2i(p + s), p2i(addr), p2i(addr + size));
1873       guarantee0(false);
1874     }
1875     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1876       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1877               " aligned to pagesize (%lu)", p2i(p), p2i(p + s), (unsigned long) pagesize);
1878       guarantee0(false);
1879     }
1880   }
1881 };
1882 
1883 static struct {
1884   vmembk_t* first;
1885   MiscUtils::CritSect cs;
1886 } vmem;
1887 
1888 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1889   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1890   assert0(p);
1891   if (p) {
1892     MiscUtils::AutoCritSect lck(&vmem.cs);
1893     p->addr = addr; p->size = size;
1894     p->pagesize = pagesize;
1895     p->type = type;
1896     p->next = vmem.first;
1897     vmem.first = p;
1898   }
1899 }
1900 
1901 static vmembk_t* vmembk_find(char* addr) {
1902   MiscUtils::AutoCritSect lck(&vmem.cs);
1903   for (vmembk_t* p = vmem.first; p; p = p->next) {
1904     if (p->addr <= addr && (p->addr + p->size) > addr) {
1905       return p;
1906     }
1907   }
1908   return NULL;
1909 }
1910 
1911 static void vmembk_remove(vmembk_t* p0) {
1912   MiscUtils::AutoCritSect lck(&vmem.cs);
1913   assert0(p0);
1914   assert0(vmem.first); // List should not be empty.
1915   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1916     if (*pp == p0) {
1917       *pp = p0->next;
1918       ::free(p0);
1919       return;
1920     }
1921   }
1922   assert0(false); // Not found?
1923 }
1924 
1925 static void vmembk_print_on(outputStream* os) {
1926   MiscUtils::AutoCritSect lck(&vmem.cs);
1927   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1928     vmi->print_on(os);
1929     os->cr();
1930   }
1931 }
1932 
1933 // Reserve and attach a section of System V memory.
1934 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1935 // address. Failing that, it will attach the memory anywhere.
1936 // If <requested_addr> is NULL, function will attach the memory anywhere.
1937 //
1938 // <alignment_hint> is being ignored by this function. It is very probable however that the
1939 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1940 // Should this be not enogh, we can put more work into it.
1941 static char* reserve_shmated_memory (
1942   size_t bytes,
1943   char* requested_addr,
1944   size_t alignment_hint) {
1945 
1946   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1947     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1948     bytes, p2i(requested_addr), alignment_hint);
1949 
1950   // Either give me wish address or wish alignment but not both.
1951   assert0(!(requested_addr != NULL && alignment_hint != 0));
1952 
1953   // We must prevent anyone from attaching too close to the
1954   // BRK because that may cause malloc OOM.
1955   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1956     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1957       "Will attach anywhere.", p2i(requested_addr));
1958     // Act like the OS refused to attach there.
1959     requested_addr = NULL;
1960   }
1961 
1962   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1963   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1964   if (os::Aix::on_pase_V5R4_or_older()) {
1965     ShouldNotReachHere();
1966   }
1967 
1968   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1969   const size_t size = align_up(bytes, 64*K);
1970 
1971   // Reserve the shared segment.
1972   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1973   if (shmid == -1) {
1974     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1975     return NULL;
1976   }
1977 
1978   // Important note:
1979   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1980   // We must right after attaching it remove it from the system. System V shm segments are global and
1981   // survive the process.
1982   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
1983 
1984   struct shmid_ds shmbuf;
1985   memset(&shmbuf, 0, sizeof(shmbuf));
1986   shmbuf.shm_pagesize = 64*K;
1987   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
1988     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
1989                size / (64*K), errno);
1990     // I want to know if this ever happens.
1991     assert(false, "failed to set page size for shmat");
1992   }
1993 
1994   // Now attach the shared segment.
1995   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
1996   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
1997   // were not a segment boundary.
1998   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
1999   const int errno_shmat = errno;
2000 
2001   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2002   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2003     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2004     assert(false, "failed to remove shared memory segment!");
2005   }
2006 
2007   // Handle shmat error. If we failed to attach, just return.
2008   if (addr == (char*)-1) {
2009     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", p2i(requested_addr), errno_shmat);
2010     return NULL;
2011   }
2012 
2013   // Just for info: query the real page size. In case setting the page size did not
2014   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2015   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2016   if (real_pagesize != shmbuf.shm_pagesize) {
2017     trcVerbose("pagesize is, surprisingly, " SIZE_FORMAT, real_pagesize);
2018   }
2019 
2020   if (addr) {
2021     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2022       p2i(addr), p2i(addr + size - 1), size, size/real_pagesize, describe_pagesize(real_pagesize));
2023   } else {
2024     if (requested_addr != NULL) {
2025       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, p2i(requested_addr));
2026     } else {
2027       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2028     }
2029   }
2030 
2031   // book-keeping
2032   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2033   assert0(is_aligned_to(addr, os::vm_page_size()));
2034 
2035   return addr;
2036 }
2037 
2038 static bool release_shmated_memory(char* addr, size_t size) {
2039 
2040   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2041     p2i(addr), p2i(addr + size - 1));
2042 
2043   bool rc = false;
2044 
2045   // TODO: is there a way to verify shm size without doing bookkeeping?
2046   if (::shmdt(addr) != 0) {
2047     trcVerbose("error (%d).", errno);
2048   } else {
2049     trcVerbose("ok.");
2050     rc = true;
2051   }
2052   return rc;
2053 }
2054 
2055 static bool uncommit_shmated_memory(char* addr, size_t size) {
2056   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2057     p2i(addr), p2i(addr + size - 1));
2058 
2059   const bool rc = my_disclaim64(addr, size);
2060 
2061   if (!rc) {
2062     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", p2i(addr), size);
2063     return false;
2064   }
2065   return true;
2066 }
2067 
2068 ////////////////////////////////  mmap-based routines /////////////////////////////////
2069 
2070 // Reserve memory via mmap.
2071 // If <requested_addr> is given, an attempt is made to attach at the given address.
2072 // Failing that, memory is allocated at any address.
2073 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2074 // allocate at an address aligned with the given alignment. Failing that, memory
2075 // is aligned anywhere.
2076 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2077   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2078     "alignment_hint " UINTX_FORMAT "...",
2079     bytes, p2i(requested_addr), alignment_hint);
2080 
2081   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2082   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2083     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", p2i(requested_addr));
2084     return NULL;
2085   }
2086 
2087   // We must prevent anyone from attaching too close to the
2088   // BRK because that may cause malloc OOM.
2089   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2090     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2091       "Will attach anywhere.", p2i(requested_addr));
2092     // Act like the OS refused to attach there.
2093     requested_addr = NULL;
2094   }
2095 
2096   // Specify one or the other but not both.
2097   assert0(!(requested_addr != NULL && alignment_hint > 0));
2098 
2099   // In 64K mode, we claim the global page size (os::vm_page_size())
2100   // is 64K. This is one of the few points where that illusion may
2101   // break, because mmap() will always return memory aligned to 4K. So
2102   // we must ensure we only ever return memory aligned to 64k.
2103   if (alignment_hint) {
2104     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2105   } else {
2106     alignment_hint = os::vm_page_size();
2107   }
2108 
2109   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2110   const size_t size = align_up(bytes, os::vm_page_size());
2111 
2112   // alignment: Allocate memory large enough to include an aligned range of the right size and
2113   // cut off the leading and trailing waste pages.
2114   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2115   const size_t extra_size = size + alignment_hint;
2116 
2117   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2118   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2119   int flags = MAP_ANONYMOUS | MAP_SHARED;
2120 
2121   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2122   // it means if wishaddress is given but MAP_FIXED is not set.
2123   //
2124   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2125   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2126   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2127   // get clobbered.
2128   if (requested_addr != NULL) {
2129     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2130       flags |= MAP_FIXED;
2131     }
2132   }
2133 
2134   char* addr = (char*)::mmap(requested_addr, extra_size,
2135       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2136 
2137   if (addr == MAP_FAILED) {
2138     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", p2i(requested_addr), size, errno);
2139     return NULL;
2140   }
2141 
2142   // Handle alignment.
2143   char* const addr_aligned = align_up(addr, alignment_hint);
2144   const size_t waste_pre = addr_aligned - addr;
2145   char* const addr_aligned_end = addr_aligned + size;
2146   const size_t waste_post = extra_size - waste_pre - size;
2147   if (waste_pre > 0) {
2148     ::munmap(addr, waste_pre);
2149   }
2150   if (waste_post > 0) {
2151     ::munmap(addr_aligned_end, waste_post);
2152   }
2153   addr = addr_aligned;
2154 
2155   if (addr) {
2156     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2157       p2i(addr), p2i(addr + bytes), bytes);
2158   } else {
2159     if (requested_addr != NULL) {
2160       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, p2i(requested_addr));
2161     } else {
2162       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2163     }
2164   }
2165 
2166   // bookkeeping
2167   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2168 
2169   // Test alignment, see above.
2170   assert0(is_aligned_to(addr, os::vm_page_size()));
2171 
2172   return addr;
2173 }
2174 
2175 static bool release_mmaped_memory(char* addr, size_t size) {
2176   assert0(is_aligned_to(addr, os::vm_page_size()));
2177   assert0(is_aligned_to(size, os::vm_page_size()));
2178 
2179   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2180     p2i(addr), p2i(addr + size - 1));
2181   bool rc = false;
2182 
2183   if (::munmap(addr, size) != 0) {
2184     trcVerbose("failed (%d)\n", errno);
2185     rc = false;
2186   } else {
2187     trcVerbose("ok.");
2188     rc = true;
2189   }
2190 
2191   return rc;
2192 }
2193 
2194 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2195 
2196   assert0(is_aligned_to(addr, os::vm_page_size()));
2197   assert0(is_aligned_to(size, os::vm_page_size()));
2198 
2199   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2200     p2i(addr), p2i(addr + size - 1));
2201   bool rc = false;
2202 
2203   // Uncommit mmap memory with msync MS_INVALIDATE.
2204   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2205     trcVerbose("failed (%d)\n", errno);
2206     rc = false;
2207   } else {
2208     trcVerbose("ok.");
2209     rc = true;
2210   }
2211 
2212   return rc;
2213 }
2214 
2215 int os::vm_page_size() {
2216   // Seems redundant as all get out.
2217   assert(os::Aix::page_size() != -1, "must call os::init");
2218   return os::Aix::page_size();
2219 }
2220 
2221 // Aix allocates memory by pages.
2222 int os::vm_allocation_granularity() {
2223   assert(os::Aix::page_size() != -1, "must call os::init");
2224   return os::Aix::page_size();
2225 }
2226 
2227 #ifdef PRODUCT
2228 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2229                                     int err) {
2230   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2231           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2232           os::errno_name(err), err);
2233 }
2234 #endif
2235 
2236 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2237                                   const char* mesg) {
2238   assert(mesg != NULL, "mesg must be specified");
2239   if (!pd_commit_memory(addr, size, exec)) {
2240     // Add extra info in product mode for vm_exit_out_of_memory():
2241     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2242     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2243   }
2244 }
2245 
2246 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2247 
2248   assert(is_aligned_to(addr, os::vm_page_size()),
2249     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2250     p2i(addr), os::vm_page_size());
2251   assert(is_aligned_to(size, os::vm_page_size()),
2252     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2253     size, os::vm_page_size());
2254 
2255   vmembk_t* const vmi = vmembk_find(addr);
2256   guarantee0(vmi);
2257   vmi->assert_is_valid_subrange(addr, size);
2258 
2259   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", p2i(addr), p2i(addr + size - 1));
2260 
2261   if (UseExplicitCommit) {
2262     // AIX commits memory on touch. So, touch all pages to be committed.
2263     for (char* p = addr; p < (addr + size); p += 4*K) {
2264       *p = '\0';
2265     }
2266   }
2267 
2268   return true;
2269 }
2270 
2271 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2272   return pd_commit_memory(addr, size, exec);
2273 }
2274 
2275 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2276                                   size_t alignment_hint, bool exec,
2277                                   const char* mesg) {
2278   // Alignment_hint is ignored on this OS.
2279   pd_commit_memory_or_exit(addr, size, exec, mesg);
2280 }
2281 
2282 bool os::pd_uncommit_memory(char* addr, size_t size) {
2283   assert(is_aligned_to(addr, os::vm_page_size()),
2284     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2285     p2i(addr), os::vm_page_size());
2286   assert(is_aligned_to(size, os::vm_page_size()),
2287     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2288     size, os::vm_page_size());
2289 
2290   // Dynamically do different things for mmap/shmat.
2291   const vmembk_t* const vmi = vmembk_find(addr);
2292   guarantee0(vmi);
2293   vmi->assert_is_valid_subrange(addr, size);
2294 
2295   if (vmi->type == VMEM_SHMATED) {
2296     return uncommit_shmated_memory(addr, size);
2297   } else {
2298     return uncommit_mmaped_memory(addr, size);
2299   }
2300 }
2301 
2302 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2303   // Do not call this; no need to commit stack pages on AIX.
2304   ShouldNotReachHere();
2305   return true;
2306 }
2307 
2308 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2309   // Do not call this; no need to commit stack pages on AIX.
2310   ShouldNotReachHere();
2311   return true;
2312 }
2313 
2314 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2315 }
2316 
2317 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2318 }
2319 
2320 void os::numa_make_global(char *addr, size_t bytes) {
2321 }
2322 
2323 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2324 }
2325 
2326 bool os::numa_topology_changed() {
2327   return false;
2328 }
2329 
2330 size_t os::numa_get_groups_num() {
2331   return 1;
2332 }
2333 
2334 int os::numa_get_group_id() {
2335   return 0;
2336 }
2337 
2338 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2339   if (size > 0) {
2340     ids[0] = 0;
2341     return 1;
2342   }
2343   return 0;
2344 }
2345 
2346 bool os::get_page_info(char *start, page_info* info) {
2347   return false;
2348 }
2349 
2350 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2351   return end;
2352 }
2353 
2354 // Reserves and attaches a shared memory segment.
2355 // Will assert if a wish address is given and could not be obtained.
2356 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2357 
2358   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2359   // thereby clobbering old mappings at that place. That is probably
2360   // not intended, never used and almost certainly an error were it
2361   // ever be used this way (to try attaching at a specified address
2362   // without clobbering old mappings an alternate API exists,
2363   // os::attempt_reserve_memory_at()).
2364   // Instead of mimicking the dangerous coding of the other platforms, here I
2365   // just ignore the request address (release) or assert(debug).
2366   assert0(requested_addr == NULL);
2367 
2368   // Always round to os::vm_page_size(), which may be larger than 4K.
2369   bytes = align_up(bytes, os::vm_page_size());
2370   const size_t alignment_hint0 =
2371     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2372 
2373   // In 4K mode always use mmap.
2374   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2375   if (os::vm_page_size() == 4*K) {
2376     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2377   } else {
2378     if (bytes >= Use64KPagesThreshold) {
2379       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2380     } else {
2381       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2382     }
2383   }
2384 }
2385 
2386 bool os::pd_release_memory(char* addr, size_t size) {
2387 
2388   // Dynamically do different things for mmap/shmat.
2389   vmembk_t* const vmi = vmembk_find(addr);
2390   guarantee0(vmi);
2391 
2392   // Always round to os::vm_page_size(), which may be larger than 4K.
2393   size = align_up(size, os::vm_page_size());
2394   addr = align_up(addr, os::vm_page_size());
2395 
2396   bool rc = false;
2397   bool remove_bookkeeping = false;
2398   if (vmi->type == VMEM_SHMATED) {
2399     // For shmatted memory, we do:
2400     // - If user wants to release the whole range, release the memory (shmdt).
2401     // - If user only wants to release a partial range, uncommit (disclaim) that
2402     //   range. That way, at least, we do not use memory anymore (bust still page
2403     //   table space).
2404     vmi->assert_is_valid_subrange(addr, size);
2405     if (addr == vmi->addr && size == vmi->size) {
2406       rc = release_shmated_memory(addr, size);
2407       remove_bookkeeping = true;
2408     } else {
2409       rc = uncommit_shmated_memory(addr, size);
2410     }
2411   } else {
2412     // User may unmap partial regions but region has to be fully contained.
2413 #ifdef ASSERT
2414     vmi->assert_is_valid_subrange(addr, size);
2415 #endif
2416     rc = release_mmaped_memory(addr, size);
2417     remove_bookkeeping = true;
2418   }
2419 
2420   // update bookkeeping
2421   if (rc && remove_bookkeeping) {
2422     vmembk_remove(vmi);
2423   }
2424 
2425   return rc;
2426 }
2427 
2428 static bool checked_mprotect(char* addr, size_t size, int prot) {
2429 
2430   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2431   // not tell me if protection failed when trying to protect an un-protectable range.
2432   //
2433   // This means if the memory was allocated using shmget/shmat, protection wont work
2434   // but mprotect will still return 0:
2435   //
2436   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2437 
2438   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2439   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2440 
2441   if (!rc) {
2442     const char* const s_errno = os::errno_name(errno);
2443     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2444     return false;
2445   }
2446 
2447   // mprotect success check
2448   //
2449   // Mprotect said it changed the protection but can I believe it?
2450   //
2451   // To be sure I need to check the protection afterwards. Try to
2452   // read from protected memory and check whether that causes a segfault.
2453   //
2454   if (!os::Aix::xpg_sus_mode()) {
2455 
2456     if (CanUseSafeFetch32()) {
2457 
2458       const bool read_protected =
2459         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2460          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2461 
2462       if (prot & PROT_READ) {
2463         rc = !read_protected;
2464       } else {
2465         rc = read_protected;
2466       }
2467 
2468       if (!rc) {
2469         if (os::Aix::on_pase()) {
2470           // There is an issue on older PASE systems where mprotect() will return success but the
2471           // memory will not be protected.
2472           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2473           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2474           // a stack. It is an OS error.
2475           //
2476           // A valid strategy is just to try again. This usually works. :-/
2477 
2478           ::usleep(1000);
2479           Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2480           if (::mprotect(addr, size, prot) == 0) {
2481             const bool read_protected_2 =
2482               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2483               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2484             rc = true;
2485           }
2486         }
2487       }
2488     }
2489   }
2490 
2491   assert(rc == true, "mprotect failed.");
2492 
2493   return rc;
2494 }
2495 
2496 // Set protections specified
2497 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2498   unsigned int p = 0;
2499   switch (prot) {
2500   case MEM_PROT_NONE: p = PROT_NONE; break;
2501   case MEM_PROT_READ: p = PROT_READ; break;
2502   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2503   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2504   default:
2505     ShouldNotReachHere();
2506   }
2507   // is_committed is unused.
2508   return checked_mprotect(addr, size, p);
2509 }
2510 
2511 bool os::guard_memory(char* addr, size_t size) {
2512   return checked_mprotect(addr, size, PROT_NONE);
2513 }
2514 
2515 bool os::unguard_memory(char* addr, size_t size) {
2516   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2517 }
2518 
2519 // Large page support
2520 
2521 static size_t _large_page_size = 0;
2522 
2523 // Enable large page support if OS allows that.
2524 void os::large_page_init() {
2525   return; // Nothing to do. See query_multipage_support and friends.
2526 }
2527 
2528 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2529   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2530   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2531   // so this is not needed.
2532   assert(false, "should not be called on AIX");
2533   return NULL;
2534 }
2535 
2536 bool os::release_memory_special(char* base, size_t bytes) {
2537   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2538   Unimplemented();
2539   return false;
2540 }
2541 
2542 size_t os::large_page_size() {
2543   return _large_page_size;
2544 }
2545 
2546 bool os::can_commit_large_page_memory() {
2547   // Does not matter, we do not support huge pages.
2548   return false;
2549 }
2550 
2551 bool os::can_execute_large_page_memory() {
2552   // Does not matter, we do not support huge pages.
2553   return false;
2554 }
2555 
2556 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2557   assert(file_desc >= 0, "file_desc is not valid");
2558   char* result = NULL;
2559 
2560   // Always round to os::vm_page_size(), which may be larger than 4K.
2561   bytes = align_up(bytes, os::vm_page_size());
2562   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2563 
2564   if (result != NULL) {
2565     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2566       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2567     }
2568   }
2569   return result;
2570 }
2571 
2572 // Reserve memory at an arbitrary address, only if that area is
2573 // available (and not reserved for something else).
2574 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2575   char* addr = NULL;
2576 
2577   // Always round to os::vm_page_size(), which may be larger than 4K.
2578   bytes = align_up(bytes, os::vm_page_size());
2579 
2580   // In 4K mode always use mmap.
2581   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2582   if (os::vm_page_size() == 4*K) {
2583     return reserve_mmaped_memory(bytes, requested_addr, 0);
2584   } else {
2585     if (bytes >= Use64KPagesThreshold) {
2586       return reserve_shmated_memory(bytes, requested_addr, 0);
2587     } else {
2588       return reserve_mmaped_memory(bytes, requested_addr, 0);
2589     }
2590   }
2591 
2592   return addr;
2593 }
2594 
2595 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2596 void os::infinite_sleep() {
2597   while (true) {    // sleep forever ...
2598     ::sleep(100);   // ... 100 seconds at a time
2599   }
2600 }
2601 
2602 // Used to convert frequent JVM_Yield() to nops
2603 bool os::dont_yield() {
2604   return DontYieldALot;
2605 }
2606 
2607 void os::naked_yield() {
2608   sched_yield();
2609 }
2610 
2611 ////////////////////////////////////////////////////////////////////////////////
2612 // thread priority support
2613 
2614 // From AIX manpage to pthread_setschedparam
2615 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2616 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2617 //
2618 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2619 // range from 40 to 80, where 40 is the least favored priority and 80
2620 // is the most favored."
2621 //
2622 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2623 // scheduling there; however, this still leaves iSeries.)
2624 //
2625 // We use the same values for AIX and PASE.
2626 int os::java_to_os_priority[CriticalPriority + 1] = {
2627   54,             // 0 Entry should never be used
2628 
2629   55,             // 1 MinPriority
2630   55,             // 2
2631   56,             // 3
2632 
2633   56,             // 4
2634   57,             // 5 NormPriority
2635   57,             // 6
2636 
2637   58,             // 7
2638   58,             // 8
2639   59,             // 9 NearMaxPriority
2640 
2641   60,             // 10 MaxPriority
2642 
2643   60              // 11 CriticalPriority
2644 };
2645 
2646 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2647   if (!UseThreadPriorities) return OS_OK;
2648   pthread_t thr = thread->osthread()->pthread_id();
2649   int policy = SCHED_OTHER;
2650   struct sched_param param;
2651   param.sched_priority = newpri;
2652   int ret = pthread_setschedparam(thr, policy, &param);
2653 
2654   if (ret != 0) {
2655     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2656         (int)thr, newpri, ret, os::errno_name(ret));
2657   }
2658   return (ret == 0) ? OS_OK : OS_ERR;
2659 }
2660 
2661 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2662   if (!UseThreadPriorities) {
2663     *priority_ptr = java_to_os_priority[NormPriority];
2664     return OS_OK;
2665   }
2666   pthread_t thr = thread->osthread()->pthread_id();
2667   int policy = SCHED_OTHER;
2668   struct sched_param param;
2669   int ret = pthread_getschedparam(thr, &policy, &param);
2670   *priority_ptr = param.sched_priority;
2671 
2672   return (ret == 0) ? OS_OK : OS_ERR;
2673 }
2674 
2675 ////////////////////////////////////////////////////////////////////////////////
2676 // suspend/resume support
2677 
2678 //  The low-level signal-based suspend/resume support is a remnant from the
2679 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2680 //  within hotspot. Currently used by JFR's OSThreadSampler
2681 //
2682 //  The remaining code is greatly simplified from the more general suspension
2683 //  code that used to be used.
2684 //
2685 //  The protocol is quite simple:
2686 //  - suspend:
2687 //      - sends a signal to the target thread
2688 //      - polls the suspend state of the osthread using a yield loop
2689 //      - target thread signal handler (SR_handler) sets suspend state
2690 //        and blocks in sigsuspend until continued
2691 //  - resume:
2692 //      - sets target osthread state to continue
2693 //      - sends signal to end the sigsuspend loop in the SR_handler
2694 //
2695 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2696 //  but is checked for NULL in SR_handler as a thread termination indicator.
2697 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2698 //
2699 //  Note that resume_clear_context() and suspend_save_context() are needed
2700 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2701 //  which in part is used by:
2702 //    - Forte Analyzer: AsyncGetCallTrace()
2703 //    - StackBanging: get_frame_at_stack_banging_point()
2704 
2705 static void resume_clear_context(OSThread *osthread) {
2706   osthread->set_ucontext(NULL);
2707   osthread->set_siginfo(NULL);
2708 }
2709 
2710 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2711   osthread->set_ucontext(context);
2712   osthread->set_siginfo(siginfo);
2713 }
2714 
2715 //
2716 // Handler function invoked when a thread's execution is suspended or
2717 // resumed. We have to be careful that only async-safe functions are
2718 // called here (Note: most pthread functions are not async safe and
2719 // should be avoided.)
2720 //
2721 // Note: sigwait() is a more natural fit than sigsuspend() from an
2722 // interface point of view, but sigwait() prevents the signal hander
2723 // from being run. libpthread would get very confused by not having
2724 // its signal handlers run and prevents sigwait()'s use with the
2725 // mutex granting granting signal.
2726 //
2727 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2728 //
2729 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2730   // Save and restore errno to avoid confusing native code with EINTR
2731   // after sigsuspend.
2732   int old_errno = errno;
2733 
2734   Thread* thread = Thread::current_or_null_safe();
2735   assert(thread != NULL, "Missing current thread in SR_handler");
2736 
2737   // On some systems we have seen signal delivery get "stuck" until the signal
2738   // mask is changed as part of thread termination. Check that the current thread
2739   // has not already terminated (via SR_lock()) - else the following assertion
2740   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2741   // destructor has completed.
2742 
2743   if (thread->SR_lock() == NULL) {
2744     return;
2745   }
2746 
2747   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2748 
2749   OSThread* osthread = thread->osthread();
2750 
2751   os::SuspendResume::State current = osthread->sr.state();
2752   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2753     suspend_save_context(osthread, siginfo, context);
2754 
2755     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2756     os::SuspendResume::State state = osthread->sr.suspended();
2757     if (state == os::SuspendResume::SR_SUSPENDED) {
2758       sigset_t suspend_set;  // signals for sigsuspend()
2759       sigemptyset(&suspend_set);
2760       // get current set of blocked signals and unblock resume signal
2761       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2762       sigdelset(&suspend_set, SR_signum);
2763 
2764       // wait here until we are resumed
2765       while (1) {
2766         sigsuspend(&suspend_set);
2767 
2768         os::SuspendResume::State result = osthread->sr.running();
2769         if (result == os::SuspendResume::SR_RUNNING) {
2770           break;
2771         }
2772       }
2773 
2774     } else if (state == os::SuspendResume::SR_RUNNING) {
2775       // request was cancelled, continue
2776     } else {
2777       ShouldNotReachHere();
2778     }
2779 
2780     resume_clear_context(osthread);
2781   } else if (current == os::SuspendResume::SR_RUNNING) {
2782     // request was cancelled, continue
2783   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2784     // ignore
2785   } else {
2786     ShouldNotReachHere();
2787   }
2788 
2789   errno = old_errno;
2790 }
2791 
2792 static int SR_initialize() {
2793   struct sigaction act;
2794   char *s;
2795   // Get signal number to use for suspend/resume
2796   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2797     int sig = ::strtol(s, 0, 10);
2798     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2799         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2800       SR_signum = sig;
2801     } else {
2802       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2803               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2804     }
2805   }
2806 
2807   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2808         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2809 
2810   sigemptyset(&SR_sigset);
2811   sigaddset(&SR_sigset, SR_signum);
2812 
2813   // Set up signal handler for suspend/resume.
2814   act.sa_flags = SA_RESTART|SA_SIGINFO;
2815   act.sa_handler = (void (*)(int)) SR_handler;
2816 
2817   // SR_signum is blocked by default.
2818   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2819 
2820   if (sigaction(SR_signum, &act, 0) == -1) {
2821     return -1;
2822   }
2823 
2824   // Save signal flag
2825   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2826   return 0;
2827 }
2828 
2829 static int SR_finalize() {
2830   return 0;
2831 }
2832 
2833 static int sr_notify(OSThread* osthread) {
2834   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2835   assert_status(status == 0, status, "pthread_kill");
2836   return status;
2837 }
2838 
2839 // "Randomly" selected value for how long we want to spin
2840 // before bailing out on suspending a thread, also how often
2841 // we send a signal to a thread we want to resume
2842 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2843 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2844 
2845 // returns true on success and false on error - really an error is fatal
2846 // but this seems the normal response to library errors
2847 static bool do_suspend(OSThread* osthread) {
2848   assert(osthread->sr.is_running(), "thread should be running");
2849   // mark as suspended and send signal
2850 
2851   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2852     // failed to switch, state wasn't running?
2853     ShouldNotReachHere();
2854     return false;
2855   }
2856 
2857   if (sr_notify(osthread) != 0) {
2858     // try to cancel, switch to running
2859 
2860     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2861     if (result == os::SuspendResume::SR_RUNNING) {
2862       // cancelled
2863       return false;
2864     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2865       // somehow managed to suspend
2866       return true;
2867     } else {
2868       ShouldNotReachHere();
2869       return false;
2870     }
2871   }
2872 
2873   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2874 
2875   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2876     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2877       os::naked_yield();
2878     }
2879 
2880     // timeout, try to cancel the request
2881     if (n >= RANDOMLY_LARGE_INTEGER) {
2882       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2883       if (cancelled == os::SuspendResume::SR_RUNNING) {
2884         return false;
2885       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2886         return true;
2887       } else {
2888         ShouldNotReachHere();
2889         return false;
2890       }
2891     }
2892   }
2893 
2894   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2895   return true;
2896 }
2897 
2898 static void do_resume(OSThread* osthread) {
2899   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2900 
2901   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2902     // failed to switch to WAKEUP_REQUEST
2903     ShouldNotReachHere();
2904     return;
2905   }
2906 
2907   while (!osthread->sr.is_running()) {
2908     if (sr_notify(osthread) == 0) {
2909       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2910         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2911           os::naked_yield();
2912         }
2913       }
2914     } else {
2915       ShouldNotReachHere();
2916     }
2917   }
2918 
2919   guarantee(osthread->sr.is_running(), "Must be running!");
2920 }
2921 
2922 ///////////////////////////////////////////////////////////////////////////////////
2923 // signal handling (except suspend/resume)
2924 
2925 // This routine may be used by user applications as a "hook" to catch signals.
2926 // The user-defined signal handler must pass unrecognized signals to this
2927 // routine, and if it returns true (non-zero), then the signal handler must
2928 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2929 // routine will never retun false (zero), but instead will execute a VM panic
2930 // routine kill the process.
2931 //
2932 // If this routine returns false, it is OK to call it again. This allows
2933 // the user-defined signal handler to perform checks either before or after
2934 // the VM performs its own checks. Naturally, the user code would be making
2935 // a serious error if it tried to handle an exception (such as a null check
2936 // or breakpoint) that the VM was generating for its own correct operation.
2937 //
2938 // This routine may recognize any of the following kinds of signals:
2939 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2940 // It should be consulted by handlers for any of those signals.
2941 //
2942 // The caller of this routine must pass in the three arguments supplied
2943 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2944 // field of the structure passed to sigaction(). This routine assumes that
2945 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2946 //
2947 // Note that the VM will print warnings if it detects conflicting signal
2948 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2949 //
2950 extern "C" JNIEXPORT int
2951 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2952 
2953 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2954 // to be the thing to call; documentation is not terribly clear about whether
2955 // pthread_sigmask also works, and if it does, whether it does the same.
2956 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2957   const int rc = ::pthread_sigmask(how, set, oset);
2958   // return value semantics differ slightly for error case:
2959   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2960   // (so, pthread_sigmask is more theadsafe for error handling)
2961   // But success is always 0.
2962   return rc == 0 ? true : false;
2963 }
2964 
2965 // Function to unblock all signals which are, according
2966 // to POSIX, typical program error signals. If they happen while being blocked,
2967 // they typically will bring down the process immediately.
2968 bool unblock_program_error_signals() {
2969   sigset_t set;
2970   ::sigemptyset(&set);
2971   ::sigaddset(&set, SIGILL);
2972   ::sigaddset(&set, SIGBUS);
2973   ::sigaddset(&set, SIGFPE);
2974   ::sigaddset(&set, SIGSEGV);
2975   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2976 }
2977 
2978 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2979 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2980   assert(info != NULL && uc != NULL, "it must be old kernel");
2981 
2982   // Never leave program error signals blocked;
2983   // on all our platforms they would bring down the process immediately when
2984   // getting raised while being blocked.
2985   unblock_program_error_signals();
2986 
2987   int orig_errno = errno;  // Preserve errno value over signal handler.
2988   JVM_handle_aix_signal(sig, info, uc, true);
2989   errno = orig_errno;
2990 }
2991 
2992 // This boolean allows users to forward their own non-matching signals
2993 // to JVM_handle_aix_signal, harmlessly.
2994 bool os::Aix::signal_handlers_are_installed = false;
2995 
2996 // For signal-chaining
2997 bool os::Aix::libjsig_is_loaded = false;
2998 typedef struct sigaction *(*get_signal_t)(int);
2999 get_signal_t os::Aix::get_signal_action = NULL;
3000 
3001 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3002   struct sigaction *actp = NULL;
3003 
3004   if (libjsig_is_loaded) {
3005     // Retrieve the old signal handler from libjsig
3006     actp = (*get_signal_action)(sig);
3007   }
3008   if (actp == NULL) {
3009     // Retrieve the preinstalled signal handler from jvm
3010     actp = os::Posix::get_preinstalled_handler(sig);
3011   }
3012 
3013   return actp;
3014 }
3015 
3016 static bool call_chained_handler(struct sigaction *actp, int sig,
3017                                  siginfo_t *siginfo, void *context) {
3018   // Call the old signal handler
3019   if (actp->sa_handler == SIG_DFL) {
3020     // It's more reasonable to let jvm treat it as an unexpected exception
3021     // instead of taking the default action.
3022     return false;
3023   } else if (actp->sa_handler != SIG_IGN) {
3024     if ((actp->sa_flags & SA_NODEFER) == 0) {
3025       // automaticlly block the signal
3026       sigaddset(&(actp->sa_mask), sig);
3027     }
3028 
3029     sa_handler_t hand = NULL;
3030     sa_sigaction_t sa = NULL;
3031     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3032     // retrieve the chained handler
3033     if (siginfo_flag_set) {
3034       sa = actp->sa_sigaction;
3035     } else {
3036       hand = actp->sa_handler;
3037     }
3038 
3039     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3040       actp->sa_handler = SIG_DFL;
3041     }
3042 
3043     // try to honor the signal mask
3044     sigset_t oset;
3045     sigemptyset(&oset);
3046     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3047 
3048     // call into the chained handler
3049     if (siginfo_flag_set) {
3050       (*sa)(sig, siginfo, context);
3051     } else {
3052       (*hand)(sig);
3053     }
3054 
3055     // restore the signal mask
3056     pthread_sigmask(SIG_SETMASK, &oset, NULL);
3057   }
3058   // Tell jvm's signal handler the signal is taken care of.
3059   return true;
3060 }
3061 
3062 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3063   bool chained = false;
3064   // signal-chaining
3065   if (UseSignalChaining) {
3066     struct sigaction *actp = get_chained_signal_action(sig);
3067     if (actp != NULL) {
3068       chained = call_chained_handler(actp, sig, siginfo, context);
3069     }
3070   }
3071   return chained;
3072 }
3073 
3074 // for diagnostic
3075 int sigflags[NSIG];
3076 
3077 int os::Aix::get_our_sigflags(int sig) {
3078   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3079   return sigflags[sig];
3080 }
3081 
3082 void os::Aix::set_our_sigflags(int sig, int flags) {
3083   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3084   if (sig > 0 && sig < NSIG) {
3085     sigflags[sig] = flags;
3086   }
3087 }
3088 
3089 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3090   // Check for overwrite.
3091   struct sigaction oldAct;
3092   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3093 
3094   void* oldhand = oldAct.sa_sigaction
3095     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3096     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3097   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3098       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3099       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3100     if (AllowUserSignalHandlers || !set_installed) {
3101       // Do not overwrite; user takes responsibility to forward to us.
3102       return;
3103     } else if (UseSignalChaining) {
3104       // save the old handler in jvm
3105       os::Posix::save_preinstalled_handler(sig, oldAct);
3106       // libjsig also interposes the sigaction() call below and saves the
3107       // old sigaction on it own.
3108     } else {
3109       fatal("Encountered unexpected pre-existing sigaction handler "
3110             "%#lx for signal %d.", (long)oldhand, sig);
3111     }
3112   }
3113 
3114   struct sigaction sigAct;
3115   sigfillset(&(sigAct.sa_mask));
3116   if (!set_installed) {
3117     sigAct.sa_handler = SIG_DFL;
3118     sigAct.sa_flags = SA_RESTART;
3119   } else {
3120     sigAct.sa_sigaction = javaSignalHandler;
3121     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3122   }
3123   // Save flags, which are set by ours
3124   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3125   sigflags[sig] = sigAct.sa_flags;
3126 
3127   int ret = sigaction(sig, &sigAct, &oldAct);
3128   assert(ret == 0, "check");
3129 
3130   void* oldhand2 = oldAct.sa_sigaction
3131                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3132                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3133   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3134 }
3135 
3136 // install signal handlers for signals that HotSpot needs to
3137 // handle in order to support Java-level exception handling.
3138 void os::Aix::install_signal_handlers() {
3139   if (!signal_handlers_are_installed) {
3140     signal_handlers_are_installed = true;
3141 
3142     // signal-chaining
3143     typedef void (*signal_setting_t)();
3144     signal_setting_t begin_signal_setting = NULL;
3145     signal_setting_t end_signal_setting = NULL;
3146     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3147                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3148     if (begin_signal_setting != NULL) {
3149       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3150                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3151       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3152                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3153       libjsig_is_loaded = true;
3154       assert(UseSignalChaining, "should enable signal-chaining");
3155     }
3156     if (libjsig_is_loaded) {
3157       // Tell libjsig jvm is setting signal handlers.
3158       (*begin_signal_setting)();
3159     }
3160 
3161     set_signal_handler(SIGSEGV, true);
3162     set_signal_handler(SIGPIPE, true);
3163     set_signal_handler(SIGBUS, true);
3164     set_signal_handler(SIGILL, true);
3165     set_signal_handler(SIGFPE, true);
3166     set_signal_handler(SIGTRAP, true);
3167     set_signal_handler(SIGXFSZ, true);
3168 
3169     if (libjsig_is_loaded) {
3170       // Tell libjsig jvm finishes setting signal handlers.
3171       (*end_signal_setting)();
3172     }
3173 
3174     // We don't activate signal checker if libjsig is in place, we trust ourselves
3175     // and if UserSignalHandler is installed all bets are off.
3176     // Log that signal checking is off only if -verbose:jni is specified.
3177     if (CheckJNICalls) {
3178       if (libjsig_is_loaded) {
3179         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3180         check_signals = false;
3181       }
3182       if (AllowUserSignalHandlers) {
3183         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3184         check_signals = false;
3185       }
3186       // Need to initialize check_signal_done.
3187       ::sigemptyset(&check_signal_done);
3188     }
3189   }
3190 }
3191 
3192 static const char* get_signal_handler_name(address handler,
3193                                            char* buf, int buflen) {
3194   int offset;
3195   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3196   if (found) {
3197     // skip directory names
3198     const char *p1, *p2;
3199     p1 = buf;
3200     size_t len = strlen(os::file_separator());
3201     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3202     // The way os::dll_address_to_library_name is implemented on Aix
3203     // right now, it always returns -1 for the offset which is not
3204     // terribly informative.
3205     // Will fix that. For now, omit the offset.
3206     jio_snprintf(buf, buflen, "%s", p1);
3207   } else {
3208     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3209   }
3210   return buf;
3211 }
3212 
3213 static void print_signal_handler(outputStream* st, int sig,
3214                                  char* buf, size_t buflen) {
3215   struct sigaction sa;
3216   sigaction(sig, NULL, &sa);
3217 
3218   st->print("%s: ", os::exception_name(sig, buf, buflen));
3219 
3220   address handler = (sa.sa_flags & SA_SIGINFO)
3221     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3222     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3223 
3224   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3225     st->print("SIG_DFL");
3226   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3227     st->print("SIG_IGN");
3228   } else {
3229     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3230   }
3231 
3232   // Print readable mask.
3233   st->print(", sa_mask[0]=");
3234   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3235 
3236   address rh = VMError::get_resetted_sighandler(sig);
3237   // May be, handler was resetted by VMError?
3238   if (rh != NULL) {
3239     handler = rh;
3240     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3241   }
3242 
3243   // Print textual representation of sa_flags.
3244   st->print(", sa_flags=");
3245   os::Posix::print_sa_flags(st, sa.sa_flags);
3246 
3247   // Check: is it our handler?
3248   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3249       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3250     // It is our signal handler.
3251     // Check for flags, reset system-used one!
3252     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3253       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3254                 os::Aix::get_our_sigflags(sig));
3255     }
3256   }
3257   st->cr();
3258 }
3259 
3260 #define DO_SIGNAL_CHECK(sig) \
3261   if (!sigismember(&check_signal_done, sig)) \
3262     os::Aix::check_signal_handler(sig)
3263 
3264 // This method is a periodic task to check for misbehaving JNI applications
3265 // under CheckJNI, we can add any periodic checks here
3266 
3267 void os::run_periodic_checks() {
3268 
3269   if (check_signals == false) return;
3270 
3271   // SEGV and BUS if overridden could potentially prevent
3272   // generation of hs*.log in the event of a crash, debugging
3273   // such a case can be very challenging, so we absolutely
3274   // check the following for a good measure:
3275   DO_SIGNAL_CHECK(SIGSEGV);
3276   DO_SIGNAL_CHECK(SIGILL);
3277   DO_SIGNAL_CHECK(SIGFPE);
3278   DO_SIGNAL_CHECK(SIGBUS);
3279   DO_SIGNAL_CHECK(SIGPIPE);
3280   DO_SIGNAL_CHECK(SIGXFSZ);
3281   if (UseSIGTRAP) {
3282     DO_SIGNAL_CHECK(SIGTRAP);
3283   }
3284 
3285   // ReduceSignalUsage allows the user to override these handlers
3286   // see comments at the very top and jvm_md.h
3287   if (!ReduceSignalUsage) {
3288     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3289     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3290     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3291     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3292   }
3293 
3294   DO_SIGNAL_CHECK(SR_signum);
3295 }
3296 
3297 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3298 
3299 static os_sigaction_t os_sigaction = NULL;
3300 
3301 void os::Aix::check_signal_handler(int sig) {
3302   char buf[O_BUFLEN];
3303   address jvmHandler = NULL;
3304 
3305   struct sigaction act;
3306   if (os_sigaction == NULL) {
3307     // only trust the default sigaction, in case it has been interposed
3308     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3309     if (os_sigaction == NULL) return;
3310   }
3311 
3312   os_sigaction(sig, (struct sigaction*)NULL, &act);
3313 
3314   address thisHandler = (act.sa_flags & SA_SIGINFO)
3315     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3316     : CAST_FROM_FN_PTR(address, act.sa_handler);
3317 
3318   switch(sig) {
3319   case SIGSEGV:
3320   case SIGBUS:
3321   case SIGFPE:
3322   case SIGPIPE:
3323   case SIGILL:
3324   case SIGXFSZ:
3325     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3326     break;
3327 
3328   case SHUTDOWN1_SIGNAL:
3329   case SHUTDOWN2_SIGNAL:
3330   case SHUTDOWN3_SIGNAL:
3331   case BREAK_SIGNAL:
3332     jvmHandler = (address)user_handler();
3333     break;
3334 
3335   default:
3336     if (sig == SR_signum) {
3337       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3338     } else {
3339       return;
3340     }
3341     break;
3342   }
3343 
3344   if (thisHandler != jvmHandler) {
3345     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3346     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3347     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3348     // No need to check this sig any longer
3349     sigaddset(&check_signal_done, sig);
3350     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3351     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3352       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3353                     exception_name(sig, buf, O_BUFLEN));
3354     }
3355   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3356     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3357     tty->print("expected:");
3358     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3359     tty->cr();
3360     tty->print("  found:");
3361     os::Posix::print_sa_flags(tty, act.sa_flags);
3362     tty->cr();
3363     // No need to check this sig any longer
3364     sigaddset(&check_signal_done, sig);
3365   }
3366 
3367   // Dump all the signal
3368   if (sigismember(&check_signal_done, sig)) {
3369     print_signal_handlers(tty, buf, O_BUFLEN);
3370   }
3371 }
3372 
3373 // To install functions for atexit system call
3374 extern "C" {
3375   static void perfMemory_exit_helper() {
3376     perfMemory_exit();
3377   }
3378 }
3379 
3380 // This is called _before_ the most of global arguments have been parsed.
3381 void os::init(void) {
3382   // This is basic, we want to know if that ever changes.
3383   // (Shared memory boundary is supposed to be a 256M aligned.)
3384   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3385 
3386   // Record process break at startup.
3387   g_brk_at_startup = (address) ::sbrk(0);
3388   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3389 
3390   // First off, we need to know whether we run on AIX or PASE, and
3391   // the OS level we run on.
3392   os::Aix::initialize_os_info();
3393 
3394   // Scan environment (SPEC1170 behaviour, etc).
3395   os::Aix::scan_environment();
3396 
3397   // Probe multipage support.
3398   query_multipage_support();
3399 
3400   // Act like we only have one page size by eliminating corner cases which
3401   // we did not support very well anyway.
3402   // We have two input conditions:
3403   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3404   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3405   //    setting.
3406   //    Data segment page size is important for us because it defines the thread stack page
3407   //    size, which is needed for guard page handling, stack banging etc.
3408   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3409   //    and should be allocated with 64k pages.
3410   //
3411   // So, we do the following:
3412   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3413   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3414   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3415   // 64k          no              --- AIX 5.2 ? ---
3416   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3417 
3418   // We explicitly leave no option to change page size, because only upgrading would work,
3419   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3420 
3421   if (g_multipage_support.datapsize == 4*K) {
3422     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3423     if (g_multipage_support.can_use_64K_pages) {
3424       // .. but we are able to use 64K pages dynamically.
3425       // This would be typical for java launchers which are not linked
3426       // with datapsize=64K (like, any other launcher but our own).
3427       //
3428       // In this case it would be smart to allocate the java heap with 64K
3429       // to get the performance benefit, and to fake 64k pages for the
3430       // data segment (when dealing with thread stacks).
3431       //
3432       // However, leave a possibility to downgrade to 4K, using
3433       // -XX:-Use64KPages.
3434       if (Use64KPages) {
3435         trcVerbose("64K page mode (faked for data segment)");
3436         Aix::_page_size = 64*K;
3437       } else {
3438         trcVerbose("4K page mode (Use64KPages=off)");
3439         Aix::_page_size = 4*K;
3440       }
3441     } else {
3442       // .. and not able to allocate 64k pages dynamically. Here, just
3443       // fall back to 4K paged mode and use mmap for everything.
3444       trcVerbose("4K page mode");
3445       Aix::_page_size = 4*K;
3446       FLAG_SET_ERGO(Use64KPages, false);
3447     }
3448   } else {
3449     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3450     // This normally means that we can allocate 64k pages dynamically.
3451     // (There is one special case where this may be false: EXTSHM=on.
3452     // but we decided to not support that mode).
3453     assert0(g_multipage_support.can_use_64K_pages);
3454     Aix::_page_size = 64*K;
3455     trcVerbose("64K page mode");
3456     FLAG_SET_ERGO(Use64KPages, true);
3457   }
3458 
3459   // For now UseLargePages is just ignored.
3460   FLAG_SET_ERGO(UseLargePages, false);
3461   _page_sizes[0] = 0;
3462 
3463   // debug trace
3464   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3465 
3466   // Next, we need to initialize libo4 and libperfstat libraries.
3467   if (os::Aix::on_pase()) {
3468     os::Aix::initialize_libo4();
3469   } else {
3470     os::Aix::initialize_libperfstat();
3471   }
3472 
3473   // Reset the perfstat information provided by ODM.
3474   if (os::Aix::on_aix()) {
3475     libperfstat::perfstat_reset();
3476   }
3477 
3478   // Now initialze basic system properties. Note that for some of the values we
3479   // need libperfstat etc.
3480   os::Aix::initialize_system_info();
3481 
3482   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3483 
3484   init_random(1234567);
3485 
3486   // _main_thread points to the thread that created/loaded the JVM.
3487   Aix::_main_thread = pthread_self();
3488 
3489   initial_time_count = javaTimeNanos();
3490 
3491   os::Posix::init();
3492 }
3493 
3494 // This is called _after_ the global arguments have been parsed.
3495 jint os::init_2(void) {
3496 
3497   // This could be set after os::Posix::init() but all platforms
3498   // have to set it the same so we have to mirror Solaris.
3499   DEBUG_ONLY(os::set_mutex_init_done();)
3500 
3501   os::Posix::init_2();
3502 
3503   if (os::Aix::on_pase()) {
3504     trcVerbose("Running on PASE.");
3505   } else {
3506     trcVerbose("Running on AIX (not PASE).");
3507   }
3508 
3509   trcVerbose("processor count: %d", os::_processor_count);
3510   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3511 
3512   // Initially build up the loaded dll map.
3513   LoadedLibraries::reload();
3514   if (Verbose) {
3515     trcVerbose("Loaded Libraries: ");
3516     LoadedLibraries::print(tty);
3517   }
3518 
3519   // initialize suspend/resume support - must do this before signal_sets_init()
3520   if (SR_initialize() != 0) {
3521     perror("SR_initialize failed");
3522     return JNI_ERR;
3523   }
3524 
3525   Aix::signal_sets_init();
3526   Aix::install_signal_handlers();
3527   // Initialize data for jdk.internal.misc.Signal
3528   if (!ReduceSignalUsage) {
3529     jdk_misc_signal_init();
3530   }
3531 
3532   // Check and sets minimum stack sizes against command line options
3533   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3534     return JNI_ERR;
3535   }
3536 
3537   if (UseNUMA) {
3538     UseNUMA = false;
3539     warning("NUMA optimizations are not available on this OS.");
3540   }
3541 
3542   if (MaxFDLimit) {
3543     // Set the number of file descriptors to max. print out error
3544     // if getrlimit/setrlimit fails but continue regardless.
3545     struct rlimit nbr_files;
3546     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3547     if (status != 0) {
3548       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3549     } else {
3550       nbr_files.rlim_cur = nbr_files.rlim_max;
3551       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3552       if (status != 0) {
3553         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3554       }
3555     }
3556   }
3557 
3558   if (PerfAllowAtExitRegistration) {
3559     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3560     // At exit functions can be delayed until process exit time, which
3561     // can be problematic for embedded VM situations. Embedded VMs should
3562     // call DestroyJavaVM() to assure that VM resources are released.
3563 
3564     // Note: perfMemory_exit_helper atexit function may be removed in
3565     // the future if the appropriate cleanup code can be added to the
3566     // VM_Exit VMOperation's doit method.
3567     if (atexit(perfMemory_exit_helper) != 0) {
3568       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3569     }
3570   }
3571 
3572   return JNI_OK;
3573 }
3574 
3575 // Mark the polling page as unreadable
3576 void os::make_polling_page_unreadable(void) {
3577   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3578     fatal("Could not disable polling page");
3579   }
3580 };
3581 
3582 // Mark the polling page as readable
3583 void os::make_polling_page_readable(void) {
3584   // Changed according to os_linux.cpp.
3585   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3586     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3587   }
3588 };
3589 
3590 int os::active_processor_count() {
3591   // User has overridden the number of active processors
3592   if (ActiveProcessorCount > 0) {
3593     log_trace(os)("active_processor_count: "
3594                   "active processor count set by user : %d",
3595                   ActiveProcessorCount);
3596     return ActiveProcessorCount;
3597   }
3598 
3599   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3600   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3601   return online_cpus;
3602 }
3603 
3604 void os::set_native_thread_name(const char *name) {
3605   // Not yet implemented.
3606   return;
3607 }
3608 
3609 bool os::distribute_processes(uint length, uint* distribution) {
3610   // Not yet implemented.
3611   return false;
3612 }
3613 
3614 bool os::bind_to_processor(uint processor_id) {
3615   // Not yet implemented.
3616   return false;
3617 }
3618 
3619 void os::SuspendedThreadTask::internal_do_task() {
3620   if (do_suspend(_thread->osthread())) {
3621     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3622     do_task(context);
3623     do_resume(_thread->osthread());
3624   }
3625 }
3626 
3627 ////////////////////////////////////////////////////////////////////////////////
3628 // debug support
3629 
3630 bool os::find(address addr, outputStream* st) {
3631 
3632   st->print(PTR_FORMAT ": ", addr);
3633 
3634   loaded_module_t lm;
3635   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3636       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3637     st->print_cr("%s", lm.path);
3638     return true;
3639   }
3640 
3641   return false;
3642 }
3643 
3644 ////////////////////////////////////////////////////////////////////////////////
3645 // misc
3646 
3647 // This does not do anything on Aix. This is basically a hook for being
3648 // able to use structured exception handling (thread-local exception filters)
3649 // on, e.g., Win32.
3650 void
3651 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3652                          JavaCallArguments* args, Thread* thread) {
3653   f(value, method, args, thread);
3654 }
3655 
3656 void os::print_statistics() {
3657 }
3658 
3659 bool os::message_box(const char* title, const char* message) {
3660   int i;
3661   fdStream err(defaultStream::error_fd());
3662   for (i = 0; i < 78; i++) err.print_raw("=");
3663   err.cr();
3664   err.print_raw_cr(title);
3665   for (i = 0; i < 78; i++) err.print_raw("-");
3666   err.cr();
3667   err.print_raw_cr(message);
3668   for (i = 0; i < 78; i++) err.print_raw("=");
3669   err.cr();
3670 
3671   char buf[16];
3672   // Prevent process from exiting upon "read error" without consuming all CPU
3673   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3674 
3675   return buf[0] == 'y' || buf[0] == 'Y';
3676 }
3677 
3678 // Is a (classpath) directory empty?
3679 bool os::dir_is_empty(const char* path) {
3680   DIR *dir = NULL;
3681   struct dirent *ptr;
3682 
3683   dir = opendir(path);
3684   if (dir == NULL) return true;
3685 
3686   /* Scan the directory */
3687   bool result = true;
3688   while (result && (ptr = readdir(dir)) != NULL) {
3689     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3690       result = false;
3691     }
3692   }
3693   closedir(dir);
3694   return result;
3695 }
3696 
3697 // This code originates from JDK's sysOpen and open64_w
3698 // from src/solaris/hpi/src/system_md.c
3699 
3700 int os::open(const char *path, int oflag, int mode) {
3701 
3702   if (strlen(path) > MAX_PATH - 1) {
3703     errno = ENAMETOOLONG;
3704     return -1;
3705   }
3706   int fd;
3707 
3708   fd = ::open64(path, oflag, mode);
3709   if (fd == -1) return -1;
3710 
3711   // If the open succeeded, the file might still be a directory.
3712   {
3713     struct stat64 buf64;
3714     int ret = ::fstat64(fd, &buf64);
3715     int st_mode = buf64.st_mode;
3716 
3717     if (ret != -1) {
3718       if ((st_mode & S_IFMT) == S_IFDIR) {
3719         errno = EISDIR;
3720         ::close(fd);
3721         return -1;
3722       }
3723     } else {
3724       ::close(fd);
3725       return -1;
3726     }
3727   }
3728 
3729   // All file descriptors that are opened in the JVM and not
3730   // specifically destined for a subprocess should have the
3731   // close-on-exec flag set. If we don't set it, then careless 3rd
3732   // party native code might fork and exec without closing all
3733   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3734   // UNIXProcess.c), and this in turn might:
3735   //
3736   // - cause end-of-file to fail to be detected on some file
3737   //   descriptors, resulting in mysterious hangs, or
3738   //
3739   // - might cause an fopen in the subprocess to fail on a system
3740   //   suffering from bug 1085341.
3741   //
3742   // (Yes, the default setting of the close-on-exec flag is a Unix
3743   // design flaw.)
3744   //
3745   // See:
3746   // 1085341: 32-bit stdio routines should support file descriptors >255
3747   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3748   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3749 #ifdef FD_CLOEXEC
3750   {
3751     int flags = ::fcntl(fd, F_GETFD);
3752     if (flags != -1)
3753       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3754   }
3755 #endif
3756 
3757   return fd;
3758 }
3759 
3760 // create binary file, rewriting existing file if required
3761 int os::create_binary_file(const char* path, bool rewrite_existing) {
3762   int oflags = O_WRONLY | O_CREAT;
3763   if (!rewrite_existing) {
3764     oflags |= O_EXCL;
3765   }
3766   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3767 }
3768 
3769 // return current position of file pointer
3770 jlong os::current_file_offset(int fd) {
3771   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3772 }
3773 
3774 // move file pointer to the specified offset
3775 jlong os::seek_to_file_offset(int fd, jlong offset) {
3776   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3777 }
3778 
3779 // This code originates from JDK's sysAvailable
3780 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3781 
3782 int os::available(int fd, jlong *bytes) {
3783   jlong cur, end;
3784   int mode;
3785   struct stat64 buf64;
3786 
3787   if (::fstat64(fd, &buf64) >= 0) {
3788     mode = buf64.st_mode;
3789     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3790       int n;
3791       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3792         *bytes = n;
3793         return 1;
3794       }
3795     }
3796   }
3797   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3798     return 0;
3799   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3800     return 0;
3801   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3802     return 0;
3803   }
3804   *bytes = end - cur;
3805   return 1;
3806 }
3807 
3808 // Map a block of memory.
3809 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3810                         char *addr, size_t bytes, bool read_only,
3811                         bool allow_exec) {
3812   int prot;
3813   int flags = MAP_PRIVATE;
3814 
3815   if (read_only) {
3816     prot = PROT_READ;
3817     flags = MAP_SHARED;
3818   } else {
3819     prot = PROT_READ | PROT_WRITE;
3820     flags = MAP_PRIVATE;
3821   }
3822 
3823   if (allow_exec) {
3824     prot |= PROT_EXEC;
3825   }
3826 
3827   if (addr != NULL) {
3828     flags |= MAP_FIXED;
3829   }
3830 
3831   // Allow anonymous mappings if 'fd' is -1.
3832   if (fd == -1) {
3833     flags |= MAP_ANONYMOUS;
3834   }
3835 
3836   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3837                                      fd, file_offset);
3838   if (mapped_address == MAP_FAILED) {
3839     return NULL;
3840   }
3841   return mapped_address;
3842 }
3843 
3844 // Remap a block of memory.
3845 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3846                           char *addr, size_t bytes, bool read_only,
3847                           bool allow_exec) {
3848   // same as map_memory() on this OS
3849   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3850                         allow_exec);
3851 }
3852 
3853 // Unmap a block of memory.
3854 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3855   return munmap(addr, bytes) == 0;
3856 }
3857 
3858 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3859 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3860 // of a thread.
3861 //
3862 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3863 // the fast estimate available on the platform.
3864 
3865 jlong os::current_thread_cpu_time() {
3866   // return user + sys since the cost is the same
3867   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3868   assert(n >= 0, "negative CPU time");
3869   return n;
3870 }
3871 
3872 jlong os::thread_cpu_time(Thread* thread) {
3873   // consistent with what current_thread_cpu_time() returns
3874   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3875   assert(n >= 0, "negative CPU time");
3876   return n;
3877 }
3878 
3879 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3880   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3881   assert(n >= 0, "negative CPU time");
3882   return n;
3883 }
3884 
3885 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3886   bool error = false;
3887 
3888   jlong sys_time = 0;
3889   jlong user_time = 0;
3890 
3891   // Reimplemented using getthrds64().
3892   //
3893   // Works like this:
3894   // For the thread in question, get the kernel thread id. Then get the
3895   // kernel thread statistics using that id.
3896   //
3897   // This only works of course when no pthread scheduling is used,
3898   // i.e. there is a 1:1 relationship to kernel threads.
3899   // On AIX, see AIXTHREAD_SCOPE variable.
3900 
3901   pthread_t pthtid = thread->osthread()->pthread_id();
3902 
3903   // retrieve kernel thread id for the pthread:
3904   tid64_t tid = 0;
3905   struct __pthrdsinfo pinfo;
3906   // I just love those otherworldly IBM APIs which force me to hand down
3907   // dummy buffers for stuff I dont care for...
3908   char dummy[1];
3909   int dummy_size = sizeof(dummy);
3910   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3911                           dummy, &dummy_size) == 0) {
3912     tid = pinfo.__pi_tid;
3913   } else {
3914     tty->print_cr("pthread_getthrds_np failed.");
3915     error = true;
3916   }
3917 
3918   // retrieve kernel timing info for that kernel thread
3919   if (!error) {
3920     struct thrdentry64 thrdentry;
3921     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3922       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3923       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3924     } else {
3925       tty->print_cr("pthread_getthrds_np failed.");
3926       error = true;
3927     }
3928   }
3929 
3930   if (p_sys_time) {
3931     *p_sys_time = sys_time;
3932   }
3933 
3934   if (p_user_time) {
3935     *p_user_time = user_time;
3936   }
3937 
3938   if (error) {
3939     return false;
3940   }
3941 
3942   return true;
3943 }
3944 
3945 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3946   jlong sys_time;
3947   jlong user_time;
3948 
3949   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3950     return -1;
3951   }
3952 
3953   return user_sys_cpu_time ? sys_time + user_time : user_time;
3954 }
3955 
3956 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3957   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3958   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3959   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3960   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3961 }
3962 
3963 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3964   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3965   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3966   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3967   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3968 }
3969 
3970 bool os::is_thread_cpu_time_supported() {
3971   return true;
3972 }
3973 
3974 // System loadavg support. Returns -1 if load average cannot be obtained.
3975 // For now just return the system wide load average (no processor sets).
3976 int os::loadavg(double values[], int nelem) {
3977 
3978   guarantee(nelem >= 0 && nelem <= 3, "argument error");
3979   guarantee(values, "argument error");
3980 
3981   if (os::Aix::on_pase()) {
3982 
3983     // AS/400 PASE: use libo4 porting library
3984     double v[3] = { 0.0, 0.0, 0.0 };
3985 
3986     if (libo4::get_load_avg(v, v + 1, v + 2)) {
3987       for (int i = 0; i < nelem; i ++) {
3988         values[i] = v[i];
3989       }
3990       return nelem;
3991     } else {
3992       return -1;
3993     }
3994 
3995   } else {
3996 
3997     // AIX: use libperfstat
3998     libperfstat::cpuinfo_t ci;
3999     if (libperfstat::get_cpuinfo(&ci)) {
4000       for (int i = 0; i < nelem; i++) {
4001         values[i] = ci.loadavg[i];
4002       }
4003     } else {
4004       return -1;
4005     }
4006     return nelem;
4007   }
4008 }
4009 
4010 void os::pause() {
4011   char filename[MAX_PATH];
4012   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4013     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
4014   } else {
4015     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4016   }
4017 
4018   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4019   if (fd != -1) {
4020     struct stat buf;
4021     ::close(fd);
4022     while (::stat(filename, &buf) == 0) {
4023       (void)::poll(NULL, 0, 100);
4024     }
4025   } else {
4026     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4027   }
4028 }
4029 
4030 bool os::is_primordial_thread(void) {
4031   if (pthread_self() == (pthread_t)1) {
4032     return true;
4033   } else {
4034     return false;
4035   }
4036 }
4037 
4038 // OS recognitions (PASE/AIX, OS level) call this before calling any
4039 // one of Aix::on_pase(), Aix::os_version() static
4040 void os::Aix::initialize_os_info() {
4041 
4042   assert(_on_pase == -1 && _os_version == 0, "already called.");
4043 
4044   struct utsname uts;
4045   memset(&uts, 0, sizeof(uts));
4046   strcpy(uts.sysname, "?");
4047   if (::uname(&uts) == -1) {
4048     trcVerbose("uname failed (%d)", errno);
4049     guarantee(0, "Could not determine whether we run on AIX or PASE");
4050   } else {
4051     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4052                "node \"%s\" machine \"%s\"\n",
4053                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4054     const int major = atoi(uts.version);
4055     assert(major > 0, "invalid OS version");
4056     const int minor = atoi(uts.release);
4057     assert(minor > 0, "invalid OS release");
4058     _os_version = (major << 24) | (minor << 16);
4059     char ver_str[20] = {0};
4060     const char* name_str = "unknown OS";
4061     if (strcmp(uts.sysname, "OS400") == 0) {
4062       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4063       _on_pase = 1;
4064       if (os_version_short() < 0x0504) {
4065         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4066         assert(false, "OS/400 release too old.");
4067       }
4068       name_str = "OS/400 (pase)";
4069       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4070     } else if (strcmp(uts.sysname, "AIX") == 0) {
4071       // We run on AIX. We do not support versions older than AIX 7.1.
4072       _on_pase = 0;
4073       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4074       odmWrapper::determine_os_kernel_version(&_os_version);
4075       if (os_version_short() < 0x0701) {
4076         trcVerbose("AIX releases older than AIX 7.1 are not supported.");
4077         assert(false, "AIX release too old.");
4078       }
4079       name_str = "AIX";
4080       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4081                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4082     } else {
4083       assert(false, "%s", name_str);
4084     }
4085     trcVerbose("We run on %s %s", name_str, ver_str);
4086   }
4087 
4088   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4089 } // end: os::Aix::initialize_os_info()
4090 
4091 // Scan environment for important settings which might effect the VM.
4092 // Trace out settings. Warn about invalid settings and/or correct them.
4093 //
4094 // Must run after os::Aix::initialue_os_info().
4095 void os::Aix::scan_environment() {
4096 
4097   char* p;
4098   int rc;
4099 
4100   // Warn explicity if EXTSHM=ON is used. That switch changes how
4101   // System V shared memory behaves. One effect is that page size of
4102   // shared memory cannot be change dynamically, effectivly preventing
4103   // large pages from working.
4104   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4105   // recommendation is (in OSS notes) to switch it off.
4106   p = ::getenv("EXTSHM");
4107   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4108   if (p && strcasecmp(p, "ON") == 0) {
4109     _extshm = 1;
4110     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4111     if (!AllowExtshm) {
4112       // We allow under certain conditions the user to continue. However, we want this
4113       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4114       // that the VM is not able to allocate 64k pages for the heap.
4115       // We do not want to run with reduced performance.
4116       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4117     }
4118   } else {
4119     _extshm = 0;
4120   }
4121 
4122   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4123   // Not tested, not supported.
4124   //
4125   // Note that it might be worth the trouble to test and to require it, if only to
4126   // get useful return codes for mprotect.
4127   //
4128   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4129   // exec() ? before loading the libjvm ? ....)
4130   p = ::getenv("XPG_SUS_ENV");
4131   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4132   if (p && strcmp(p, "ON") == 0) {
4133     _xpg_sus_mode = 1;
4134     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4135     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4136     // clobber address ranges. If we ever want to support that, we have to do some
4137     // testing first.
4138     guarantee(false, "XPG_SUS_ENV=ON not supported");
4139   } else {
4140     _xpg_sus_mode = 0;
4141   }
4142 
4143   if (os::Aix::on_pase()) {
4144     p = ::getenv("QIBM_MULTI_THREADED");
4145     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4146   }
4147 
4148   p = ::getenv("LDR_CNTRL");
4149   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4150   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4151     if (p && ::strstr(p, "TEXTPSIZE")) {
4152       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4153         "you may experience hangs or crashes on OS/400 V7R1.");
4154     }
4155   }
4156 
4157   p = ::getenv("AIXTHREAD_GUARDPAGES");
4158   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4159 
4160 } // end: os::Aix::scan_environment()
4161 
4162 // PASE: initialize the libo4 library (PASE porting library).
4163 void os::Aix::initialize_libo4() {
4164   guarantee(os::Aix::on_pase(), "OS/400 only.");
4165   if (!libo4::init()) {
4166     trcVerbose("libo4 initialization failed.");
4167     assert(false, "libo4 initialization failed");
4168   } else {
4169     trcVerbose("libo4 initialized.");
4170   }
4171 }
4172 
4173 // AIX: initialize the libperfstat library.
4174 void os::Aix::initialize_libperfstat() {
4175   assert(os::Aix::on_aix(), "AIX only");
4176   if (!libperfstat::init()) {
4177     trcVerbose("libperfstat initialization failed.");
4178     assert(false, "libperfstat initialization failed");
4179   } else {
4180     trcVerbose("libperfstat initialized.");
4181   }
4182 }
4183 
4184 /////////////////////////////////////////////////////////////////////////////
4185 // thread stack
4186 
4187 // Get the current stack base from the OS (actually, the pthread library).
4188 // Note: usually not page aligned.
4189 address os::current_stack_base() {
4190   AixMisc::stackbounds_t bounds;
4191   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4192   guarantee(rc, "Unable to retrieve stack bounds.");
4193   return bounds.base;
4194 }
4195 
4196 // Get the current stack size from the OS (actually, the pthread library).
4197 // Returned size is such that (base - size) is always aligned to page size.
4198 size_t os::current_stack_size() {
4199   AixMisc::stackbounds_t bounds;
4200   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4201   guarantee(rc, "Unable to retrieve stack bounds.");
4202   // Align the returned stack size such that the stack low address
4203   // is aligned to page size (Note: base is usually not and we do not care).
4204   // We need to do this because caller code will assume stack low address is
4205   // page aligned and will place guard pages without checking.
4206   address low = bounds.base - bounds.size;
4207   address low_aligned = (address)align_up(low, os::vm_page_size());
4208   size_t s = bounds.base - low_aligned;
4209   return s;
4210 }
4211 
4212 extern char** environ;
4213 
4214 // Run the specified command in a separate process. Return its exit value,
4215 // or -1 on failure (e.g. can't fork a new process).
4216 // Unlike system(), this function can be called from signal handler. It
4217 // doesn't block SIGINT et al.
4218 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
4219   char* argv[4] = { (char*)"sh", (char*)"-c", cmd, NULL};
4220 
4221   pid_t pid = fork();
4222 
4223   if (pid < 0) {
4224     // fork failed
4225     return -1;
4226 
4227   } else if (pid == 0) {
4228     // child process
4229 
4230     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4231     execve("/usr/bin/sh", argv, environ);
4232 
4233     // execve failed
4234     _exit(-1);
4235 
4236   } else {
4237     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4238     // care about the actual exit code, for now.
4239 
4240     int status;
4241 
4242     // Wait for the child process to exit. This returns immediately if
4243     // the child has already exited. */
4244     while (waitpid(pid, &status, 0) < 0) {
4245       switch (errno) {
4246         case ECHILD: return 0;
4247         case EINTR: break;
4248         default: return -1;
4249       }
4250     }
4251 
4252     if (WIFEXITED(status)) {
4253       // The child exited normally; get its exit code.
4254       return WEXITSTATUS(status);
4255     } else if (WIFSIGNALED(status)) {
4256       // The child exited because of a signal.
4257       // The best value to return is 0x80 + signal number,
4258       // because that is what all Unix shells do, and because
4259       // it allows callers to distinguish between process exit and
4260       // process death by signal.
4261       return 0x80 + WTERMSIG(status);
4262     } else {
4263       // Unknown exit code; pass it through.
4264       return status;
4265     }
4266   }
4267   return -1;
4268 }
4269 
4270 // Get the default path to the core file
4271 // Returns the length of the string
4272 int os::get_core_path(char* buffer, size_t bufferSize) {
4273   const char* p = get_current_directory(buffer, bufferSize);
4274 
4275   if (p == NULL) {
4276     assert(p != NULL, "failed to get current directory");
4277     return 0;
4278   }
4279 
4280   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4281                                                p, current_process_id());
4282 
4283   return strlen(buffer);
4284 }
4285 
4286 #ifndef PRODUCT
4287 void TestReserveMemorySpecial_test() {
4288   // No tests available for this platform
4289 }
4290 #endif
4291 
4292 bool os::start_debugging(char *buf, int buflen) {
4293   int len = (int)strlen(buf);
4294   char *p = &buf[len];
4295 
4296   jio_snprintf(p, buflen -len,
4297                  "\n\n"
4298                  "Do you want to debug the problem?\n\n"
4299                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4300                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4301                  "Otherwise, press RETURN to abort...",
4302                  os::current_process_id(),
4303                  os::current_thread_id(), thread_self());
4304 
4305   bool yes = os::message_box("Unexpected Error", buf);
4306 
4307   if (yes) {
4308     // yes, user asked VM to launch debugger
4309     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4310 
4311     os::fork_and_exec(buf);
4312     yes = false;
4313   }
4314   return yes;
4315 }
4316 
4317 static inline time_t get_mtime(const char* filename) {
4318   struct stat st;
4319   int ret = os::stat(filename, &st);
4320   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
4321   return st.st_mtime;
4322 }
4323 
4324 int os::compare_file_modified_times(const char* file1, const char* file2) {
4325   time_t t1 = get_mtime(file1);
4326   time_t t2 = get_mtime(file2);
4327   return t1 - t2;
4328 }
4329 
4330 bool os::supports_map_sync() {
4331   return false;
4332 }