

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

The Lean, Mean... OpenJDK?

Claes Redestad
Java SE Performance
Oracle

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for
information purposes only, and may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality, and should not be relied upon
in making purchasing decisions. The development, release, and timing of any features or
functionality described for Oracle’s products remains at the sole discretion of Oracle.

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Lean, Mean... OpenJDK?

Who am I?

● Performance engineer at Oracle since 2012
● OpenJDK: redestad
● Blog: https://cl4es.github.io
● Twitter: @cl4es

https://cl4es.github.io/
https://twitter.com/cl4es

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is OpenJDK?

● The OpenJDK project started in 2006 as an open
sourcing effort of the Sun JDK

● OpenJDK has been the basis of all Sun/Oracle
proprietary JDK distributions since then

● Starting with JDK 11, OpenJDK and the proprietary
Oracle JDK have fully converged: proprietary and/or
commercial features that were only in the Oracle JDK
are now freely available and part of the OpenJDK

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Did you say free?

Yes! Oracle provides OpenJDK builds for free here:

https://jdk.java.net/

The latest release will continue to be free and
unrestricted

https://blogs.oracle.com/java-platform-group/

http://https//jdk.java.net/
https://blogs.oracle.com/java-platform-group/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

What is performance?

● Throughput

– The total amount of work a system can do in
some given time

● Latency

– The time it takes to do some unit of work

● Footprint

– Memory and storage requirements

● Startup

– The time and resources needed to get ready
for action

Startup

Footprint

Throughput

Latency0

0.5

1

Imaginary Ideal

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Trade-offs and the ergonomic JDK
Startup

Footprint

Throughput

Latency0

0.5

1

OpenJDK Imaginary Ideal

● Out-of-the-box we ergonomically seek to strike a
good balance between all performance concerns

● Historically the JDK has favored peak throughput

– Some industry shift towards favoring low latency,
especially as workloads scale up

– To some extent tuning allow users to choose
different trade-offs

... goal to make (most) tuning unnecessary
Source: Data and qualified guesses

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Where to start?

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The modular JDK

JDK 9 modularized the JDK

Modules enable better control for developers to encapsulate internals

Consolidate embedded JDKs projects into the mainline

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The modular JDK allows us to scale down...

$ bin/jlink --add-modules java.se,jdk.jfr --module-path jmods --output my_jre

$ bin/jlink --compress=2 --add-modules java.base --module-path jmods --output base_jre

jlink can be used to build custom JRE images from a subset of JDK modules, down to
the bare minimum

jdk my_jre base_jre
0

50

100

150

200

250

300

350

S
iz

e
 (

M
b

)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hello World(s)!

Hello World:

 System.out.println("Hello World!");

● Out of the box, the module system
caused some bootstrap regressions in
JDK 9

● Especially running on a JRE with all JDK
modules

8 9
0

10

20

30

40

50

60

70

80

90

Hello World

tim
e

 (
m

s)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hello World(s)!

Hello World:

 System.out.println("Hello World!");

● We fixed many of those regressions...

● ... and kept on fixing
– 120+ startup-related enhancements

resolved in JDK 10 through JDK 13

8 9 10 11 12 13
0

10

20

30

40

50

60

70

80

90

Hello World

tim
e

 (
m

s)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Hello World(s)!

Hello World:

 System.out.println("Hello World!");

● Bonus: slightly better when leaving out
unneeded modules

8 11 14
0

10

20

30

40

50

60

Hello World - JDK Hello World - java.base only

tim
e

 (
m

s)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Bootstraps, all the way up!

Hello Lambda:

 Consumer<String> println =
 System.out::println;
 println.accept("Hello World!");

● In JDK 8, bootstrapping the first lambda
expression took longer time than starting
up the entire JVM(!)

● Early prototypes of the module system
saw use of lambdas during bootstrap

● It seemed prudent to deal with this to
avoid even larger regressions

8
0

20

40

60

80

100

120

140

Hello World Hello Lambda

tim
e

 (
m

s)

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Bootstraps, all the way up!

Hello Lambda:

 Consumer<String> println =
 System.out::println;
 println.accept("Hello World!");

● For JDK 9, we spent some time cleaning things
up
– Just removing a few unnecessary things and making various

things initialize more lazily got us quite far

● With the new jlink tool in the works we have a
new means to move work from runtime to link
time
– A jlink plugin to generate some commonly used classes cut

the overhead of lambda bootstrap roughly in half

8 9
0

20

40

60

80

100

120

140

Hello World Hello Lambda

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

... and all the way down...

● In JDK 11 we got rid of most of the
one-off overheads

● "Hello Lambda" now faster than
"Hello World" was on JDK 8

Great success! But lambdas aren't
the only thing that might require
expensive bootstrapping...

8 9 10 11 12 13
0

20

40

60

80

100

120

140

Hello World Hello Lambda

tim
e

 (
m

s)

JDK-8198418

https://bugs.openjdk.java.net/browse/JDK-8198418

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

But first... Compact Strings!

H a l l å

H la l å

你 好
 你 好

Latin 1

UTF 16

Before

After

After

Before

● Enable denser storage of Strings

– Internal storage changed from
char[] to byte[]

– Any string that can be encoded using
Latin 1 will use one byte per
character instead of two

– Other strings will encode their chars
into two bytes as before

● Obvious footprint wins

– Most applications have a significant
number of Latin 1 encodable strings

● Surprising(?) throughput improvements
https://openjdk.java.net/jeps/254

https://openjdk.java.net/jeps/254

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Indified String concatenation
● JEP 280 introduced indified String

concatenation, ISC

– Use dynamic bootstrapping of String
concatenation expressions

● Large throughput and latency wins

● "Most optimal ISC strategies do 2.9x
better, and 6.4x less garbage"

– Aleksey Shipilëv, JFokus 2016

@Param("4711")
public int intValue;

@Benchmark
public String concat() {
 return "string" + intValue +
 "string" + intValue;
}

 time alloc

JDK 8 44.0ns/op 80B/op
JDK 13 24.5ns/op 64B/op

https://openjdk.java.net/jeps/280

https://shipilev.net/talks/jfokus-Feb2016-lord-of-the-strings.pdf
https://openjdk.java.net/jeps/280

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

String Concat Redux
● ISC is cause for some bootstrap overheads

of string concatenation expressions in JDK 9

● Some work done before JDK 9 release to
lessen the startup blow

– The jlink plugin that helped lambda
bootstrapping plays a large role here

Hello Concat:

 String foo = ...
 System.out.println("Hello 1: " + foo);
 System.out.println("Hello 2: " + foo);
 ...
 System.out.println("Hello 10: " + foo);

8 9
0

20

40

60

80

100

120

140

Hello World Hello Concat

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

String Concat Redux
● There were some improvements in JDK 10

through 12 for specific cases

● Speeding up bootstrapping of ISC
expressions in general proved harder than
expected

● Not until JDK 13 did we manage to cut
down the overheads more generally

But we now have a robust framework for
building more of these dynamic and
performant things into Java (and other JVM
languages) while only paying a small price
for them up front

https://cl4es.github.io/2019/05/14/String-Concat-Redux.html

8 9 10 11 12 13
0

20

40

60

80

100

120

140

Hello World Hello Concat

https://cl4es.github.io/2019/05/14/String-Concat-Redux.html

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

And now for something completely different...

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The G1 garbage collector saw a lot of improvements

SPECjbb®2005 is a registered trademark of the Standard Performance Evaluation Corporation (
spec.org). The actual results are not represented as compliant because the SUT may not meet SPEC's
requirements for general availability.

● G1 was still lagging behind ParallelGC
– At least on throughput-oriented

benchmarks!

● Over the course of 8 updates and more
recent releases, the gap has been
shrinking

● Just being a few percent behind on
throughput is great for a GC that is meant
to optimize more for latency! 8 GA 8u231 13

0

0.2

0.4

0.6

0.8

1

1.2

1.4

SPECjbb2005 G1 SPECjbb2005 Parallel GC

R
e

la
tiv

e
 s

co
re

 (
h

ig
h

e
r

is
 b

e
tte

r)

http://spec.org/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The G1 garbage collector saw a lot of improvements

8u221 13
0

50

100

150

200

250

Startup Time

Hello World G1 Hello World Parallel GC

tim
e

 (
m

s)

● A great number of issues affecting startup
time in G1 was addressed

– Getting parity on out-of-the-box with
simpler GCs

– Cutting minutes off of startup in
extremer cases (> 1TB heap)

The numbers shown may somewhat exaggerate the
startup overhead when running G1 on 8, since some
of it was related to an issue with unnecessary delays
when shutting down the JVM

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

... and was made default in JDK 9

https://openjdk.java.net/jeps/248

● Throughput penalties around 3-10% are
common

● More extreme corner cases exist

● Still a good trade-off
– Trade some raw throughput to reduce

risk of really long pauses
Mode: Composite Heap Size: 128G OS: Oracle Linux 7.5
HW: Intel Xeon E5-2690 2.9GHz 2 sockets, 16 cores (32 hw-threads)

SPECjbb®2015 is a registered trademark of the Standard Performance Evaluation Corporation (
spec.org). The actual results are not represented as compliant because the SUT may not meet SPEC's
requirements for general availability.

Parallel G1
0

0.5

1

1.5

2

2.5

critical-Jops (with latency requirements) max-Jops (throughput)

R
e

la
tiv

e
 s

co
re

 (
h

ig
h

e
r

is
 b

e
tte

r)

https://openjdk.java.net/jeps/248
http://spec.org/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Z Garbage Collector

https://wiki.openjdk.java.net/display/zgc

● Scalable, concurrent low-latency GC

● Pause times below 10ms - often below 1 ms

● Scale from hundreds of Mb to 16* terabytes (* from JDK 13)

● Experimental: -XX:+UnlockExperimentalVMOptions -XX:+UseZGC
● Goal is to complement the other GCs:

– Parallel GC optimizes for throughput
– G1 strives for a balance between throughput and low pause times
– ZGC spares no expense to attain as low pause times as possible

https://wiki.openjdk.java.net/display/zgc

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Z Garbage Collector

Mode: Composite Heap Size: 128G OS: Oracle Linux 7.5
HW: Intel Xeon E5-2690 2.9GHz 2 sockets, 16 cores (32 hw-threads)

SPECjbb®2015 is a registered trademark of the Standard Performance Evaluation Corporation (
spec.org). The actual results are not represented as compliant because the SUT may not meet SPEC's
requirements for general availability.

Parallel G1 ZGC
0

0.5

1

1.5

2

2.5

critical-Jops (with latency requirements) max-Jops (throughput)

R
e

la
tiv

e
 s

co
re

 (
h

ig
h

e
r

is
 b

e
tte

r)

http://spec.org/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

https://cr.openjdk.java.net/~pliden/slides/ZGC-PLMeetup-2019.pdf

The Z Garbage Collector

https://cr.openjdk.java.net/~pliden/slides/ZGC-PLMeetup-2019.pdf

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Some ZGC caveats
Startup

Footprint

Throughput

Latency0

0.5

1

G1 Parallel ZGC

- Support: Linux only, x64 and AArch64

- Mostly feature complete in 13, but still experimental

- No compressed pointers

- Higher footprint on smaller heaps

- Potentially heavy startup cost

- No CDS support

- Memory initialization overheads on larger heaps

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

"CDS?"
● Class-Data Sharing

– Turns class loading from a time-
consuming task into a simple matter of
mapping in memory

– Support for archiving part of the heap

● Run java -Xshare:dump once to enable

● Since JDK 12 CDS enabled and prepared out
of the box

https://openjdk.java.net/jeps/341

8 9 10 11 12 13
0

20

40

60

80

100

120

140

Hello World

CDS enabled Out-of-the-box

tim
e

 (
m

s)

https://openjdk.java.net/jeps/341

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Bring your own SharedArchiveFile
● Application Class-Data Sharing - AppCDS - was

contributed to the OpenJDK in JDK 10

● Typically cuts 20-50% off startup numbers

● Gradually improved since inception

● Dynamic CDS (JDK 13) makes it easy to use:

https://openjdk.java.net/jeps/350

Generate archive with a training run
java -XX:ArchiveClassesOnExit=MyApp.jsa MyApp

Ship it!
java -XX:SharedArchiveFile=MyApp.jsa MyApp https://openjdk.java.net/jeps/310

8 9 11 13 14*
0

500

1000

1500

2000

2500

Micronaut .. with AppCDS

https://openjdk.java.net/jeps/350
https://openjdk.java.net/jeps/310

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Footprint improvements to boot!

● Startup improvements/features often go
hand in hand with footprint
improvements

● AppCDS helps, too, partly by removing
the need to do bytecode verification at
runtime

8 9 11 13 14*
0

50000

100000

150000

200000

250000

300000

Micronaut

... with AppCDS

M
a

x
m

e
m

o
ry

 (
R

S
S

)
-

K
b

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The Story So Far... from JDK 8 to 13
● Numerous startup and footprint

improvements to the out-of-the-box
experience

● Performance features like Compact
Strings have potential to improve
performance in general

● While still experimental, work on ZGC
already benefit production GCs like G1
and Parallel GC

Startup

Footprint

Throughput

Latency0

0.5

1

OpenJDK 8 OpenJDK 13YMMV

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

"The best feature pipeline ever!"
● Project Valhalla

– Value types for the JVM

– Enable "flattening" objects, which improves density, which speeds up throughput

● Project Loom
– Make it simple to write highly concurrent applications

● Project Amber
– Umbrella for adding smaller productivity-oriented features to the java language

– var delivered in 11

– Switch expressions, text blocks being previewed in 13 - much more coming!

● Project Panama
– Better (faster) and simpler native code interaction

https://wiki.openjdk.java.net/display/valhalla/Main
https://wiki.openjdk.java.net/display/loom/Main
https://wiki.openjdk.java.net/display/amber
https://openjdk.java.net/projects/panama/

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Potential startup plays
● JWarmup: https://openjdk.java.net/jeps/8203832

– Record profiling information in one execution

– Feed profile information into JVM during subsequent executions

– Shortens the "warmup" phase by enabling JITs to do the Right Thing up front

● Constant folding, lazy finals, etc...
– Language level support could enable (javac) compile time constant folding

https://www.youtube.com/watch?v=iSEjlLFCS3E

– VM support for dynamic creation of constants could enable lazy finals

https://openjdk.java.net/jeps/8209964

● CRIU

● AOT?

https://openjdk.java.net/jeps/8203832
https://www.youtube.com/watch?v=iSEjlLFCS3E
https://openjdk.java.net/jeps/8209964

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

AOT vs. JIT
● An Ahead-of-Time compiler compiles source code into some

target binary form

● The OpenJDK primarily uses Just-In-Time compilers to
optimize the bytecode it executes at runtime

● JIT compilers solve three problems:
– Not knowing exactly what hardware you're going to run on

– Not knowing exactly what OS you're going to run on

– Not knowing how your code is going to run

● JIT compilation can consume a lot of memory and CPU

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

Experiments in AOT

8 9 11 13 14*
0

500

1000

1500

2000

2500

Micronaut .. with AppCDS ... with AOT

● JDK 9 added the jaotc tool to enable AOT
compilation

● Startup improvements...?
– Main gain is reducing CPU and memory overhead of early JIT

activity

– Noticeable improvements for sufficiently complex
applications

● Rough edges
– Need to --compile-for-tiered to not cause

substantial throughput penalty

– Hard to fine-tune what to AOT to get good results

– Relatively large binary sizes

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

The GraalVM compiler - your next JIT?
● Since JDK 9, OpenJDK contains a version of the GraalVM

compiler

● Used to implement the jaotc tool

● Can be used as a replacement for the C2 compiler today:
-XX:+UnlockExperimentalVMOptions -XX:+UseJVMCICompiler

● Outperforms C2 on some workloads

● Written in Java

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

GraalVM native-image
● "Substrate VM is a framework that allows ahead-

of-time (AOT) compilation of Java applications
under closed-world assumption into executable
images or shared objects"

● In short: programs/shared libraries that
start/load really fast

– Not having a JIT also means tiny footprint
compared to a HotSpot JVM

https://github.com/oracle/graal/tree/master/substratevm

native-image

13 with AppCDS

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Micronaut

Time (ms)

https://github.com/oracle/graal/tree/master/substratevm

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

GraalVM native-image

Startup

Footprint

Throughput

Latency0

0.5

1

OpenJDK 13 native-image

● Closed-world assumption means that everything
must be given up front to the compiler

– Makes reflection, indy, condy... complicated

– Native binaries, not a JVM
● No JIT, limited GC, debugging and

monitoring options, ...

● Compiling the GraalVM compiler itself as a
shared library resolve most startup and footprint
issues when used as a JIT by HotSpot

– Implemented in GraalVM, but not yet in
OpenJDK mainline

https://www.youtube.com/watch?v=RMtukctD220

https://www.youtube.com/watch?v=RMtukctD220

Copyright © 2019, Oracle and/or its affiliates. All rights reserved. |

In conclusion
● OpenJDK 13 is great!

– ... but it's just a bit better than OpenJDK 12

– ... which in turn is just a bit better than OpenJDK 11

● It will keep getting better!

● (Opinion) Releasing a new feature release every six
months has revitalized the OpenJDK project
– Projects delivered when done, and in smaller increments

– Minimal risk of something holding up the release

– This means less stress

– More opportunities for smaller enhancements to actually get done

Copyright © 2018, Oracle and/or its affiliates. All rights reserved. |

Q & A

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

