1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/moduleEntry.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileTask.hpp"
  35 #include "gc/shared/gcId.hpp"
  36 #include "gc/shared/gcLocker.inline.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/linkResolver.hpp"
  40 #include "interpreter/oopMapCache.hpp"
  41 #include "jvmtifiles/jvmtiEnv.hpp"
  42 #include "logging/log.hpp"
  43 #include "logging/logConfiguration.hpp"
  44 #include "memory/metaspaceShared.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "memory/universe.inline.hpp"
  48 #include "oops/instanceKlass.hpp"
  49 #include "oops/objArrayOop.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/symbol.hpp"
  52 #include "oops/verifyOopClosure.hpp"
  53 #include "prims/jvm.h"
  54 #include "prims/jvm_misc.hpp"
  55 #include "prims/jvmtiExport.hpp"
  56 #include "prims/jvmtiThreadState.hpp"
  57 #include "prims/privilegedStack.hpp"
  58 #include "runtime/arguments.hpp"
  59 #include "runtime/atomic.hpp"
  60 #include "runtime/biasedLocking.hpp"
  61 #include "runtime/commandLineFlagConstraintList.hpp"
  62 #include "runtime/commandLineFlagWriteableList.hpp"
  63 #include "runtime/commandLineFlagRangeList.hpp"
  64 #include "runtime/deoptimization.hpp"
  65 #include "runtime/fprofiler.hpp"
  66 #include "runtime/frame.inline.hpp"
  67 #include "runtime/globals.hpp"
  68 #include "runtime/init.hpp"
  69 #include "runtime/interfaceSupport.hpp"
  70 #include "runtime/java.hpp"
  71 #include "runtime/javaCalls.hpp"
  72 #include "runtime/jniPeriodicChecker.hpp"
  73 #include "runtime/timerTrace.hpp"
  74 #include "runtime/memprofiler.hpp"
  75 #include "runtime/mutexLocker.hpp"
  76 #include "runtime/objectMonitor.hpp"
  77 #include "runtime/orderAccess.inline.hpp"
  78 #include "runtime/osThread.hpp"
  79 #include "runtime/safepoint.hpp"
  80 #include "runtime/sharedRuntime.hpp"
  81 #include "runtime/statSampler.hpp"
  82 #include "runtime/stubRoutines.hpp"
  83 #include "runtime/sweeper.hpp"
  84 #include "runtime/task.hpp"
  85 #include "runtime/thread.inline.hpp"
  86 #include "runtime/threadCritical.hpp"
  87 #include "runtime/vframe.hpp"
  88 #include "runtime/vframeArray.hpp"
  89 #include "runtime/vframe_hp.hpp"
  90 #include "runtime/vmThread.hpp"
  91 #include "runtime/vm_operations.hpp"
  92 #include "runtime/vm_version.hpp"
  93 #include "services/attachListener.hpp"
  94 #include "services/management.hpp"
  95 #include "services/memTracker.hpp"
  96 #include "services/threadService.hpp"
  97 #include "trace/traceMacros.hpp"
  98 #include "trace/tracing.hpp"
  99 #include "utilities/defaultStream.hpp"
 100 #include "utilities/dtrace.hpp"
 101 #include "utilities/events.hpp"
 102 #include "utilities/macros.hpp"
 103 #include "utilities/preserveException.hpp"
 104 #include "utilities/vmError.hpp"
 105 #if INCLUDE_ALL_GCS
 106 #include "gc/cms/concurrentMarkSweepThread.hpp"
 107 #include "gc/g1/concurrentMarkThread.inline.hpp"
 108 #include "gc/parallel/pcTasks.hpp"
 109 #endif // INCLUDE_ALL_GCS
 110 #if INCLUDE_JVMCI
 111 #include "jvmci/jvmciCompiler.hpp"
 112 #include "jvmci/jvmciRuntime.hpp"
 113 #endif
 114 #ifdef COMPILER1
 115 #include "c1/c1_Compiler.hpp"
 116 #endif
 117 #ifdef COMPILER2
 118 #include "opto/c2compiler.hpp"
 119 #include "opto/idealGraphPrinter.hpp"
 120 #endif
 121 #if INCLUDE_RTM_OPT
 122 #include "runtime/rtmLocking.hpp"
 123 #endif
 124 
 125 // Initialization after module runtime initialization
 126 void universe_post_module_init();  // must happen after call_initPhase2
 127 
 128 #ifdef DTRACE_ENABLED
 129 
 130 // Only bother with this argument setup if dtrace is available
 131 
 132   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 133   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 134 
 135   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 136     {                                                                      \
 137       ResourceMark rm(this);                                               \
 138       int len = 0;                                                         \
 139       const char* name = (javathread)->get_thread_name();                  \
 140       len = strlen(name);                                                  \
 141       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 142         (char *) name, len,                                                \
 143         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 144         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 145         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 146     }
 147 
 148 #else //  ndef DTRACE_ENABLED
 149 
 150   #define DTRACE_THREAD_PROBE(probe, javathread)
 151 
 152 #endif // ndef DTRACE_ENABLED
 153 
 154 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 155 // Current thread is maintained as a thread-local variable
 156 THREAD_LOCAL_DECL Thread* Thread::_thr_current = NULL;
 157 #endif
 158 // Class hierarchy
 159 // - Thread
 160 //   - VMThread
 161 //   - WatcherThread
 162 //   - ConcurrentMarkSweepThread
 163 //   - JavaThread
 164 //     - CompilerThread
 165 
 166 // ======= Thread ========
 167 // Support for forcing alignment of thread objects for biased locking
 168 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 169   if (UseBiasedLocking) {
 170     const int alignment = markOopDesc::biased_lock_alignment;
 171     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 172     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 173                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 174                                                          AllocFailStrategy::RETURN_NULL);
 175     void* aligned_addr     = align_up(real_malloc_addr, alignment);
 176     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 177            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 178            "JavaThread alignment code overflowed allocated storage");
 179     if (aligned_addr != real_malloc_addr) {
 180       log_info(biasedlocking)("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 181                               p2i(real_malloc_addr),
 182                               p2i(aligned_addr));
 183     }
 184     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 185     return aligned_addr;
 186   } else {
 187     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 188                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 189   }
 190 }
 191 
 192 void Thread::operator delete(void* p) {
 193   if (UseBiasedLocking) {
 194     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 195     FreeHeap(real_malloc_addr);
 196   } else {
 197     FreeHeap(p);
 198   }
 199 }
 200 
 201 
 202 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 203 // JavaThread
 204 
 205 
 206 Thread::Thread() {
 207   // stack and get_thread
 208   set_stack_base(NULL);
 209   set_stack_size(0);
 210   set_self_raw_id(0);
 211   set_lgrp_id(-1);
 212   DEBUG_ONLY(clear_suspendible_thread();)
 213 
 214   // allocated data structures
 215   set_osthread(NULL);
 216   set_resource_area(new (mtThread)ResourceArea());
 217   DEBUG_ONLY(_current_resource_mark = NULL;)
 218   set_handle_area(new (mtThread) HandleArea(NULL));
 219   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 220   set_active_handles(NULL);
 221   set_free_handle_block(NULL);
 222   set_last_handle_mark(NULL);
 223 
 224   // This initial value ==> never claimed.
 225   _oops_do_parity = 0;
 226 
 227   // the handle mark links itself to last_handle_mark
 228   new HandleMark(this);
 229 
 230   // plain initialization
 231   debug_only(_owned_locks = NULL;)
 232   debug_only(_allow_allocation_count = 0;)
 233   NOT_PRODUCT(_allow_safepoint_count = 0;)
 234   NOT_PRODUCT(_skip_gcalot = false;)
 235   _jvmti_env_iteration_count = 0;
 236   set_allocated_bytes(0);
 237   _vm_operation_started_count = 0;
 238   _vm_operation_completed_count = 0;
 239   _current_pending_monitor = NULL;
 240   _current_pending_monitor_is_from_java = true;
 241   _current_waiting_monitor = NULL;
 242   _num_nested_signal = 0;
 243   omFreeList = NULL;
 244   omFreeCount = 0;
 245   omFreeProvision = 32;
 246   omInUseList = NULL;
 247   omInUseCount = 0;
 248 
 249 #ifdef ASSERT
 250   _visited_for_critical_count = false;
 251 #endif
 252 
 253   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true,
 254                          Monitor::_safepoint_check_sometimes);
 255   _suspend_flags = 0;
 256 
 257   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 258   _hashStateX = os::random();
 259   _hashStateY = 842502087;
 260   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 261   _hashStateW = 273326509;
 262 
 263   _OnTrap   = 0;
 264   _schedctl = NULL;
 265   _Stalled  = 0;
 266   _TypeTag  = 0x2BAD;
 267 
 268   // Many of the following fields are effectively final - immutable
 269   // Note that nascent threads can't use the Native Monitor-Mutex
 270   // construct until the _MutexEvent is initialized ...
 271   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 272   // we might instead use a stack of ParkEvents that we could provision on-demand.
 273   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 274   // and ::Release()
 275   _ParkEvent   = ParkEvent::Allocate(this);
 276   _SleepEvent  = ParkEvent::Allocate(this);
 277   _MutexEvent  = ParkEvent::Allocate(this);
 278   _MuxEvent    = ParkEvent::Allocate(this);
 279 
 280 #ifdef CHECK_UNHANDLED_OOPS
 281   if (CheckUnhandledOops) {
 282     _unhandled_oops = new UnhandledOops(this);
 283   }
 284 #endif // CHECK_UNHANDLED_OOPS
 285 #ifdef ASSERT
 286   if (UseBiasedLocking) {
 287     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 288     assert(this == _real_malloc_address ||
 289            this == align_up(_real_malloc_address, (int)markOopDesc::biased_lock_alignment),
 290            "bug in forced alignment of thread objects");
 291   }
 292 #endif // ASSERT
 293 }
 294 
 295 void Thread::initialize_thread_current() {
 296 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 297   assert(_thr_current == NULL, "Thread::current already initialized");
 298   _thr_current = this;
 299 #endif
 300   assert(ThreadLocalStorage::thread() == NULL, "ThreadLocalStorage::thread already initialized");
 301   ThreadLocalStorage::set_thread(this);
 302   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 303 }
 304 
 305 void Thread::clear_thread_current() {
 306   assert(Thread::current() == ThreadLocalStorage::thread(), "TLS mismatch!");
 307 #ifndef USE_LIBRARY_BASED_TLS_ONLY
 308   _thr_current = NULL;
 309 #endif
 310   ThreadLocalStorage::set_thread(NULL);
 311 }
 312 
 313 void Thread::record_stack_base_and_size() {
 314   set_stack_base(os::current_stack_base());
 315   set_stack_size(os::current_stack_size());
 316   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 317   // in initialize_thread(). Without the adjustment, stack size is
 318   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 319   // So far, only Solaris has real implementation of initialize_thread().
 320   //
 321   // set up any platform-specific state.
 322   os::initialize_thread(this);
 323 
 324   // Set stack limits after thread is initialized.
 325   if (is_Java_thread()) {
 326     ((JavaThread*) this)->set_stack_overflow_limit();
 327     ((JavaThread*) this)->set_reserved_stack_activation(stack_base());
 328   }
 329 #if INCLUDE_NMT
 330   // record thread's native stack, stack grows downward
 331   MemTracker::record_thread_stack(stack_end(), stack_size());
 332 #endif // INCLUDE_NMT
 333   log_debug(os, thread)("Thread " UINTX_FORMAT " stack dimensions: "
 334     PTR_FORMAT "-" PTR_FORMAT " (" SIZE_FORMAT "k).",
 335     os::current_thread_id(), p2i(stack_base() - stack_size()),
 336     p2i(stack_base()), stack_size()/1024);
 337 }
 338 
 339 
 340 Thread::~Thread() {
 341   EVENT_THREAD_DESTRUCT(this);
 342 
 343   // stack_base can be NULL if the thread is never started or exited before
 344   // record_stack_base_and_size called. Although, we would like to ensure
 345   // that all started threads do call record_stack_base_and_size(), there is
 346   // not proper way to enforce that.
 347 #if INCLUDE_NMT
 348   if (_stack_base != NULL) {
 349     MemTracker::release_thread_stack(stack_end(), stack_size());
 350 #ifdef ASSERT
 351     set_stack_base(NULL);
 352 #endif
 353   }
 354 #endif // INCLUDE_NMT
 355 
 356   // deallocate data structures
 357   delete resource_area();
 358   // since the handle marks are using the handle area, we have to deallocated the root
 359   // handle mark before deallocating the thread's handle area,
 360   assert(last_handle_mark() != NULL, "check we have an element");
 361   delete last_handle_mark();
 362   assert(last_handle_mark() == NULL, "check we have reached the end");
 363 
 364   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 365   // We NULL out the fields for good hygiene.
 366   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 367   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 368   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 369   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 370 
 371   delete handle_area();
 372   delete metadata_handles();
 373 
 374   // SR_handler uses this as a termination indicator -
 375   // needs to happen before os::free_thread()
 376   delete _SR_lock;
 377   _SR_lock = NULL;
 378 
 379   // osthread() can be NULL, if creation of thread failed.
 380   if (osthread() != NULL) os::free_thread(osthread());
 381 
 382   // clear Thread::current if thread is deleting itself.
 383   // Needed to ensure JNI correctly detects non-attached threads.
 384   if (this == Thread::current()) {
 385     clear_thread_current();
 386   }
 387 
 388   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 389 }
 390 
 391 // NOTE: dummy function for assertion purpose.
 392 void Thread::run() {
 393   ShouldNotReachHere();
 394 }
 395 
 396 #ifdef ASSERT
 397 // Private method to check for dangling thread pointer
 398 void check_for_dangling_thread_pointer(Thread *thread) {
 399   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 400          "possibility of dangling Thread pointer");
 401 }
 402 #endif
 403 
 404 ThreadPriority Thread::get_priority(const Thread* const thread) {
 405   ThreadPriority priority;
 406   // Can return an error!
 407   (void)os::get_priority(thread, priority);
 408   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 409   return priority;
 410 }
 411 
 412 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 413   debug_only(check_for_dangling_thread_pointer(thread);)
 414   // Can return an error!
 415   (void)os::set_priority(thread, priority);
 416 }
 417 
 418 
 419 void Thread::start(Thread* thread) {
 420   // Start is different from resume in that its safety is guaranteed by context or
 421   // being called from a Java method synchronized on the Thread object.
 422   if (!DisableStartThread) {
 423     if (thread->is_Java_thread()) {
 424       // Initialize the thread state to RUNNABLE before starting this thread.
 425       // Can not set it after the thread started because we do not know the
 426       // exact thread state at that time. It could be in MONITOR_WAIT or
 427       // in SLEEPING or some other state.
 428       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 429                                           java_lang_Thread::RUNNABLE);
 430     }
 431     os::start_thread(thread);
 432   }
 433 }
 434 
 435 // Enqueue a VM_Operation to do the job for us - sometime later
 436 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 437   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 438   VMThread::execute(vm_stop);
 439 }
 440 
 441 
 442 // Check if an external suspend request has completed (or has been
 443 // cancelled). Returns true if the thread is externally suspended and
 444 // false otherwise.
 445 //
 446 // The bits parameter returns information about the code path through
 447 // the routine. Useful for debugging:
 448 //
 449 // set in is_ext_suspend_completed():
 450 // 0x00000001 - routine was entered
 451 // 0x00000010 - routine return false at end
 452 // 0x00000100 - thread exited (return false)
 453 // 0x00000200 - suspend request cancelled (return false)
 454 // 0x00000400 - thread suspended (return true)
 455 // 0x00001000 - thread is in a suspend equivalent state (return true)
 456 // 0x00002000 - thread is native and walkable (return true)
 457 // 0x00004000 - thread is native_trans and walkable (needed retry)
 458 //
 459 // set in wait_for_ext_suspend_completion():
 460 // 0x00010000 - routine was entered
 461 // 0x00020000 - suspend request cancelled before loop (return false)
 462 // 0x00040000 - thread suspended before loop (return true)
 463 // 0x00080000 - suspend request cancelled in loop (return false)
 464 // 0x00100000 - thread suspended in loop (return true)
 465 // 0x00200000 - suspend not completed during retry loop (return false)
 466 
 467 // Helper class for tracing suspend wait debug bits.
 468 //
 469 // 0x00000100 indicates that the target thread exited before it could
 470 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 471 // 0x00080000 each indicate a cancelled suspend request so they don't
 472 // count as wait failures either.
 473 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 474 
 475 class TraceSuspendDebugBits : public StackObj {
 476  private:
 477   JavaThread * jt;
 478   bool         is_wait;
 479   bool         called_by_wait;  // meaningful when !is_wait
 480   uint32_t *   bits;
 481 
 482  public:
 483   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 484                         uint32_t *_bits) {
 485     jt             = _jt;
 486     is_wait        = _is_wait;
 487     called_by_wait = _called_by_wait;
 488     bits           = _bits;
 489   }
 490 
 491   ~TraceSuspendDebugBits() {
 492     if (!is_wait) {
 493 #if 1
 494       // By default, don't trace bits for is_ext_suspend_completed() calls.
 495       // That trace is very chatty.
 496       return;
 497 #else
 498       if (!called_by_wait) {
 499         // If tracing for is_ext_suspend_completed() is enabled, then only
 500         // trace calls to it from wait_for_ext_suspend_completion()
 501         return;
 502       }
 503 #endif
 504     }
 505 
 506     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 507       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 508         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 509         ResourceMark rm;
 510 
 511         tty->print_cr(
 512                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 513                       jt->get_thread_name(), *bits);
 514 
 515         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 516       }
 517     }
 518   }
 519 };
 520 #undef DEBUG_FALSE_BITS
 521 
 522 
 523 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 524                                           uint32_t *bits) {
 525   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 526 
 527   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 528   bool do_trans_retry;           // flag to force the retry
 529 
 530   *bits |= 0x00000001;
 531 
 532   do {
 533     do_trans_retry = false;
 534 
 535     if (is_exiting()) {
 536       // Thread is in the process of exiting. This is always checked
 537       // first to reduce the risk of dereferencing a freed JavaThread.
 538       *bits |= 0x00000100;
 539       return false;
 540     }
 541 
 542     if (!is_external_suspend()) {
 543       // Suspend request is cancelled. This is always checked before
 544       // is_ext_suspended() to reduce the risk of a rogue resume
 545       // confusing the thread that made the suspend request.
 546       *bits |= 0x00000200;
 547       return false;
 548     }
 549 
 550     if (is_ext_suspended()) {
 551       // thread is suspended
 552       *bits |= 0x00000400;
 553       return true;
 554     }
 555 
 556     // Now that we no longer do hard suspends of threads running
 557     // native code, the target thread can be changing thread state
 558     // while we are in this routine:
 559     //
 560     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 561     //
 562     // We save a copy of the thread state as observed at this moment
 563     // and make our decision about suspend completeness based on the
 564     // copy. This closes the race where the thread state is seen as
 565     // _thread_in_native_trans in the if-thread_blocked check, but is
 566     // seen as _thread_blocked in if-thread_in_native_trans check.
 567     JavaThreadState save_state = thread_state();
 568 
 569     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 570       // If the thread's state is _thread_blocked and this blocking
 571       // condition is known to be equivalent to a suspend, then we can
 572       // consider the thread to be externally suspended. This means that
 573       // the code that sets _thread_blocked has been modified to do
 574       // self-suspension if the blocking condition releases. We also
 575       // used to check for CONDVAR_WAIT here, but that is now covered by
 576       // the _thread_blocked with self-suspension check.
 577       //
 578       // Return true since we wouldn't be here unless there was still an
 579       // external suspend request.
 580       *bits |= 0x00001000;
 581       return true;
 582     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 583       // Threads running native code will self-suspend on native==>VM/Java
 584       // transitions. If its stack is walkable (should always be the case
 585       // unless this function is called before the actual java_suspend()
 586       // call), then the wait is done.
 587       *bits |= 0x00002000;
 588       return true;
 589     } else if (!called_by_wait && !did_trans_retry &&
 590                save_state == _thread_in_native_trans &&
 591                frame_anchor()->walkable()) {
 592       // The thread is transitioning from thread_in_native to another
 593       // thread state. check_safepoint_and_suspend_for_native_trans()
 594       // will force the thread to self-suspend. If it hasn't gotten
 595       // there yet we may have caught the thread in-between the native
 596       // code check above and the self-suspend. Lucky us. If we were
 597       // called by wait_for_ext_suspend_completion(), then it
 598       // will be doing the retries so we don't have to.
 599       //
 600       // Since we use the saved thread state in the if-statement above,
 601       // there is a chance that the thread has already transitioned to
 602       // _thread_blocked by the time we get here. In that case, we will
 603       // make a single unnecessary pass through the logic below. This
 604       // doesn't hurt anything since we still do the trans retry.
 605 
 606       *bits |= 0x00004000;
 607 
 608       // Once the thread leaves thread_in_native_trans for another
 609       // thread state, we break out of this retry loop. We shouldn't
 610       // need this flag to prevent us from getting back here, but
 611       // sometimes paranoia is good.
 612       did_trans_retry = true;
 613 
 614       // We wait for the thread to transition to a more usable state.
 615       for (int i = 1; i <= SuspendRetryCount; i++) {
 616         // We used to do an "os::yield_all(i)" call here with the intention
 617         // that yielding would increase on each retry. However, the parameter
 618         // is ignored on Linux which means the yield didn't scale up. Waiting
 619         // on the SR_lock below provides a much more predictable scale up for
 620         // the delay. It also provides a simple/direct point to check for any
 621         // safepoint requests from the VMThread
 622 
 623         // temporarily drops SR_lock while doing wait with safepoint check
 624         // (if we're a JavaThread - the WatcherThread can also call this)
 625         // and increase delay with each retry
 626         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 627 
 628         // check the actual thread state instead of what we saved above
 629         if (thread_state() != _thread_in_native_trans) {
 630           // the thread has transitioned to another thread state so
 631           // try all the checks (except this one) one more time.
 632           do_trans_retry = true;
 633           break;
 634         }
 635       } // end retry loop
 636 
 637 
 638     }
 639   } while (do_trans_retry);
 640 
 641   *bits |= 0x00000010;
 642   return false;
 643 }
 644 
 645 // Wait for an external suspend request to complete (or be cancelled).
 646 // Returns true if the thread is externally suspended and false otherwise.
 647 //
 648 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 649                                                  uint32_t *bits) {
 650   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 651                              false /* !called_by_wait */, bits);
 652 
 653   // local flag copies to minimize SR_lock hold time
 654   bool is_suspended;
 655   bool pending;
 656   uint32_t reset_bits;
 657 
 658   // set a marker so is_ext_suspend_completed() knows we are the caller
 659   *bits |= 0x00010000;
 660 
 661   // We use reset_bits to reinitialize the bits value at the top of
 662   // each retry loop. This allows the caller to make use of any
 663   // unused bits for their own marking purposes.
 664   reset_bits = *bits;
 665 
 666   {
 667     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 668     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 669                                             delay, bits);
 670     pending = is_external_suspend();
 671   }
 672   // must release SR_lock to allow suspension to complete
 673 
 674   if (!pending) {
 675     // A cancelled suspend request is the only false return from
 676     // is_ext_suspend_completed() that keeps us from entering the
 677     // retry loop.
 678     *bits |= 0x00020000;
 679     return false;
 680   }
 681 
 682   if (is_suspended) {
 683     *bits |= 0x00040000;
 684     return true;
 685   }
 686 
 687   for (int i = 1; i <= retries; i++) {
 688     *bits = reset_bits;  // reinit to only track last retry
 689 
 690     // We used to do an "os::yield_all(i)" call here with the intention
 691     // that yielding would increase on each retry. However, the parameter
 692     // is ignored on Linux which means the yield didn't scale up. Waiting
 693     // on the SR_lock below provides a much more predictable scale up for
 694     // the delay. It also provides a simple/direct point to check for any
 695     // safepoint requests from the VMThread
 696 
 697     {
 698       MutexLocker ml(SR_lock());
 699       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 700       // can also call this)  and increase delay with each retry
 701       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 702 
 703       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 704                                               delay, bits);
 705 
 706       // It is possible for the external suspend request to be cancelled
 707       // (by a resume) before the actual suspend operation is completed.
 708       // Refresh our local copy to see if we still need to wait.
 709       pending = is_external_suspend();
 710     }
 711 
 712     if (!pending) {
 713       // A cancelled suspend request is the only false return from
 714       // is_ext_suspend_completed() that keeps us from staying in the
 715       // retry loop.
 716       *bits |= 0x00080000;
 717       return false;
 718     }
 719 
 720     if (is_suspended) {
 721       *bits |= 0x00100000;
 722       return true;
 723     }
 724   } // end retry loop
 725 
 726   // thread did not suspend after all our retries
 727   *bits |= 0x00200000;
 728   return false;
 729 }
 730 
 731 #ifndef PRODUCT
 732 void JavaThread::record_jump(address target, address instr, const char* file,
 733                              int line) {
 734 
 735   // This should not need to be atomic as the only way for simultaneous
 736   // updates is via interrupts. Even then this should be rare or non-existent
 737   // and we don't care that much anyway.
 738 
 739   int index = _jmp_ring_index;
 740   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 741   _jmp_ring[index]._target = (intptr_t) target;
 742   _jmp_ring[index]._instruction = (intptr_t) instr;
 743   _jmp_ring[index]._file = file;
 744   _jmp_ring[index]._line = line;
 745 }
 746 #endif // PRODUCT
 747 
 748 // Called by flat profiler
 749 // Callers have already called wait_for_ext_suspend_completion
 750 // The assertion for that is currently too complex to put here:
 751 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 752   bool gotframe = false;
 753   // self suspension saves needed state.
 754   if (has_last_Java_frame() && _anchor.walkable()) {
 755     *_fr = pd_last_frame();
 756     gotframe = true;
 757   }
 758   return gotframe;
 759 }
 760 
 761 void Thread::interrupt(Thread* thread) {
 762   debug_only(check_for_dangling_thread_pointer(thread);)
 763   os::interrupt(thread);
 764 }
 765 
 766 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 767   debug_only(check_for_dangling_thread_pointer(thread);)
 768   // Note:  If clear_interrupted==false, this simply fetches and
 769   // returns the value of the field osthread()->interrupted().
 770   return os::is_interrupted(thread, clear_interrupted);
 771 }
 772 
 773 
 774 // GC Support
 775 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 776   jint thread_parity = _oops_do_parity;
 777   if (thread_parity != strong_roots_parity) {
 778     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 779     if (res == thread_parity) {
 780       return true;
 781     } else {
 782       guarantee(res == strong_roots_parity, "Or else what?");
 783       return false;
 784     }
 785   }
 786   return false;
 787 }
 788 
 789 void Thread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
 790   active_handles()->oops_do(f);
 791   // Do oop for ThreadShadow
 792   f->do_oop((oop*)&_pending_exception);
 793   handle_area()->oops_do(f);
 794 
 795   if (MonitorInUseLists) {
 796     // When using thread local monitor lists, we scan them here,
 797     // and the remaining global monitors in ObjectSynchronizer::oops_do().
 798     ObjectSynchronizer::thread_local_used_oops_do(this, f);
 799   }
 800 }
 801 
 802 void Thread::metadata_handles_do(void f(Metadata*)) {
 803   // Only walk the Handles in Thread.
 804   if (metadata_handles() != NULL) {
 805     for (int i = 0; i< metadata_handles()->length(); i++) {
 806       f(metadata_handles()->at(i));
 807     }
 808   }
 809 }
 810 
 811 void Thread::print_on(outputStream* st) const {
 812   // get_priority assumes osthread initialized
 813   if (osthread() != NULL) {
 814     int os_prio;
 815     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 816       st->print("os_prio=%d ", os_prio);
 817     }
 818     st->print("tid=" INTPTR_FORMAT " ", p2i(this));
 819     ext().print_on(st);
 820     osthread()->print_on(st);
 821   }
 822   debug_only(if (WizardMode) print_owned_locks_on(st);)
 823 }
 824 
 825 // Thread::print_on_error() is called by fatal error handler. Don't use
 826 // any lock or allocate memory.
 827 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 828   assert(!(is_Compiler_thread() || is_Java_thread()), "Can't call name() here if it allocates");
 829 
 830   if (is_VM_thread())                 { st->print("VMThread"); }
 831   else if (is_GC_task_thread())       { st->print("GCTaskThread"); }
 832   else if (is_Watcher_thread())       { st->print("WatcherThread"); }
 833   else if (is_ConcurrentGC_thread())  { st->print("ConcurrentGCThread"); }
 834   else                                { st->print("Thread"); }
 835 
 836   if (is_Named_thread()) {
 837     st->print(" \"%s\"", name());
 838   }
 839 
 840   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 841             p2i(stack_end()), p2i(stack_base()));
 842 
 843   if (osthread()) {
 844     st->print(" [id=%d]", osthread()->thread_id());
 845   }
 846 }
 847 
 848 #ifdef ASSERT
 849 void Thread::print_owned_locks_on(outputStream* st) const {
 850   Monitor *cur = _owned_locks;
 851   if (cur == NULL) {
 852     st->print(" (no locks) ");
 853   } else {
 854     st->print_cr(" Locks owned:");
 855     while (cur) {
 856       cur->print_on(st);
 857       cur = cur->next();
 858     }
 859   }
 860 }
 861 
 862 static int ref_use_count  = 0;
 863 
 864 bool Thread::owns_locks_but_compiled_lock() const {
 865   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 866     if (cur != Compile_lock) return true;
 867   }
 868   return false;
 869 }
 870 
 871 
 872 #endif
 873 
 874 #ifndef PRODUCT
 875 
 876 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 877 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 878 // no threads which allow_vm_block's are held
 879 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 880   // Check if current thread is allowed to block at a safepoint
 881   if (!(_allow_safepoint_count == 0)) {
 882     fatal("Possible safepoint reached by thread that does not allow it");
 883   }
 884   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 885     fatal("LEAF method calling lock?");
 886   }
 887 
 888 #ifdef ASSERT
 889   if (potential_vm_operation && is_Java_thread()
 890       && !Universe::is_bootstrapping()) {
 891     // Make sure we do not hold any locks that the VM thread also uses.
 892     // This could potentially lead to deadlocks
 893     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 894       // Threads_lock is special, since the safepoint synchronization will not start before this is
 895       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 896       // since it is used to transfer control between JavaThreads and the VMThread
 897       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 898       if ((cur->allow_vm_block() &&
 899            cur != Threads_lock &&
 900            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 901            cur != VMOperationRequest_lock &&
 902            cur != VMOperationQueue_lock) ||
 903            cur->rank() == Mutex::special) {
 904         fatal("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 905       }
 906     }
 907   }
 908 
 909   if (GCALotAtAllSafepoints) {
 910     // We could enter a safepoint here and thus have a gc
 911     InterfaceSupport::check_gc_alot();
 912   }
 913 #endif
 914 }
 915 #endif
 916 
 917 bool Thread::is_in_stack(address adr) const {
 918   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 919   address end = os::current_stack_pointer();
 920   // Allow non Java threads to call this without stack_base
 921   if (_stack_base == NULL) return true;
 922   if (stack_base() >= adr && adr >= end) return true;
 923 
 924   return false;
 925 }
 926 
 927 bool Thread::is_in_usable_stack(address adr) const {
 928   size_t stack_guard_size = os::uses_stack_guard_pages() ? JavaThread::stack_guard_zone_size() : 0;
 929   size_t usable_stack_size = _stack_size - stack_guard_size;
 930 
 931   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 932 }
 933 
 934 
 935 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 936 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 937 // used for compilation in the future. If that change is made, the need for these methods
 938 // should be revisited, and they should be removed if possible.
 939 
 940 bool Thread::is_lock_owned(address adr) const {
 941   return on_local_stack(adr);
 942 }
 943 
 944 bool Thread::set_as_starting_thread() {
 945   // NOTE: this must be called inside the main thread.
 946   return os::create_main_thread((JavaThread*)this);
 947 }
 948 
 949 static void initialize_class(Symbol* class_name, TRAPS) {
 950   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 951   InstanceKlass::cast(klass)->initialize(CHECK);
 952 }
 953 
 954 
 955 // Creates the initial ThreadGroup
 956 static Handle create_initial_thread_group(TRAPS) {
 957   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 958   InstanceKlass* ik = InstanceKlass::cast(k);
 959 
 960   Handle system_instance = ik->allocate_instance_handle(CHECK_NH);
 961   {
 962     JavaValue result(T_VOID);
 963     JavaCalls::call_special(&result,
 964                             system_instance,
 965                             ik,
 966                             vmSymbols::object_initializer_name(),
 967                             vmSymbols::void_method_signature(),
 968                             CHECK_NH);
 969   }
 970   Universe::set_system_thread_group(system_instance());
 971 
 972   Handle main_instance = ik->allocate_instance_handle(CHECK_NH);
 973   {
 974     JavaValue result(T_VOID);
 975     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 976     JavaCalls::call_special(&result,
 977                             main_instance,
 978                             ik,
 979                             vmSymbols::object_initializer_name(),
 980                             vmSymbols::threadgroup_string_void_signature(),
 981                             system_instance,
 982                             string,
 983                             CHECK_NH);
 984   }
 985   return main_instance;
 986 }
 987 
 988 // Creates the initial Thread
 989 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 990                                  TRAPS) {
 991   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
 992   InstanceKlass* ik = InstanceKlass::cast(k);
 993   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK_NULL);
 994 
 995   java_lang_Thread::set_thread(thread_oop(), thread);
 996   java_lang_Thread::set_priority(thread_oop(), NormPriority);
 997   thread->set_threadObj(thread_oop());
 998 
 999   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1000 
1001   JavaValue result(T_VOID);
1002   JavaCalls::call_special(&result, thread_oop,
1003                           ik,
1004                           vmSymbols::object_initializer_name(),
1005                           vmSymbols::threadgroup_string_void_signature(),
1006                           thread_group,
1007                           string,
1008                           CHECK_NULL);
1009   return thread_oop();
1010 }
1011 
1012 char java_runtime_name[128] = "";
1013 char java_runtime_version[128] = "";
1014 
1015 // extract the JRE name from java.lang.VersionProps.java_runtime_name
1016 static const char* get_java_runtime_name(TRAPS) {
1017   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1018                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1019   fieldDescriptor fd;
1020   bool found = k != NULL &&
1021                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1022                                                         vmSymbols::string_signature(), &fd);
1023   if (found) {
1024     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1025     if (name_oop == NULL) {
1026       return NULL;
1027     }
1028     const char* name = java_lang_String::as_utf8_string(name_oop,
1029                                                         java_runtime_name,
1030                                                         sizeof(java_runtime_name));
1031     return name;
1032   } else {
1033     return NULL;
1034   }
1035 }
1036 
1037 // extract the JRE version from java.lang.VersionProps.java_runtime_version
1038 static const char* get_java_runtime_version(TRAPS) {
1039   Klass* k = SystemDictionary::find(vmSymbols::java_lang_VersionProps(),
1040                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1041   fieldDescriptor fd;
1042   bool found = k != NULL &&
1043                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1044                                                         vmSymbols::string_signature(), &fd);
1045   if (found) {
1046     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1047     if (name_oop == NULL) {
1048       return NULL;
1049     }
1050     const char* name = java_lang_String::as_utf8_string(name_oop,
1051                                                         java_runtime_version,
1052                                                         sizeof(java_runtime_version));
1053     return name;
1054   } else {
1055     return NULL;
1056   }
1057 }
1058 
1059 // General purpose hook into Java code, run once when the VM is initialized.
1060 // The Java library method itself may be changed independently from the VM.
1061 static void call_postVMInitHook(TRAPS) {
1062   Klass* klass = SystemDictionary::resolve_or_null(vmSymbols::jdk_internal_vm_PostVMInitHook(), THREAD);
1063   if (klass != NULL) {
1064     JavaValue result(T_VOID);
1065     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1066                            vmSymbols::void_method_signature(),
1067                            CHECK);
1068   }
1069 }
1070 
1071 static void reset_vm_info_property(TRAPS) {
1072   // the vm info string
1073   ResourceMark rm(THREAD);
1074   const char *vm_info = VM_Version::vm_info_string();
1075 
1076   // java.lang.System class
1077   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1078 
1079   // setProperty arguments
1080   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1081   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1082 
1083   // return value
1084   JavaValue r(T_OBJECT);
1085 
1086   // public static String setProperty(String key, String value);
1087   JavaCalls::call_static(&r,
1088                          klass,
1089                          vmSymbols::setProperty_name(),
1090                          vmSymbols::string_string_string_signature(),
1091                          key_str,
1092                          value_str,
1093                          CHECK);
1094 }
1095 
1096 
1097 void JavaThread::allocate_threadObj(Handle thread_group, const char* thread_name,
1098                                     bool daemon, TRAPS) {
1099   assert(thread_group.not_null(), "thread group should be specified");
1100   assert(threadObj() == NULL, "should only create Java thread object once");
1101 
1102   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1103   InstanceKlass* ik = InstanceKlass::cast(k);
1104   instanceHandle thread_oop = ik->allocate_instance_handle(CHECK);
1105 
1106   java_lang_Thread::set_thread(thread_oop(), this);
1107   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1108   set_threadObj(thread_oop());
1109 
1110   JavaValue result(T_VOID);
1111   if (thread_name != NULL) {
1112     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1113     // Thread gets assigned specified name and null target
1114     JavaCalls::call_special(&result,
1115                             thread_oop,
1116                             ik,
1117                             vmSymbols::object_initializer_name(),
1118                             vmSymbols::threadgroup_string_void_signature(),
1119                             thread_group, // Argument 1
1120                             name,         // Argument 2
1121                             THREAD);
1122   } else {
1123     // Thread gets assigned name "Thread-nnn" and null target
1124     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1125     JavaCalls::call_special(&result,
1126                             thread_oop,
1127                             ik,
1128                             vmSymbols::object_initializer_name(),
1129                             vmSymbols::threadgroup_runnable_void_signature(),
1130                             thread_group, // Argument 1
1131                             Handle(),     // Argument 2
1132                             THREAD);
1133   }
1134 
1135 
1136   if (daemon) {
1137     java_lang_Thread::set_daemon(thread_oop());
1138   }
1139 
1140   if (HAS_PENDING_EXCEPTION) {
1141     return;
1142   }
1143 
1144   Klass* group =  SystemDictionary::ThreadGroup_klass();
1145   Handle threadObj(THREAD, this->threadObj());
1146 
1147   JavaCalls::call_special(&result,
1148                           thread_group,
1149                           group,
1150                           vmSymbols::add_method_name(),
1151                           vmSymbols::thread_void_signature(),
1152                           threadObj,          // Arg 1
1153                           THREAD);
1154 }
1155 
1156 // NamedThread --  non-JavaThread subclasses with multiple
1157 // uniquely named instances should derive from this.
1158 NamedThread::NamedThread() : Thread() {
1159   _name = NULL;
1160   _processed_thread = NULL;
1161   _gc_id = GCId::undefined();
1162 }
1163 
1164 NamedThread::~NamedThread() {
1165   if (_name != NULL) {
1166     FREE_C_HEAP_ARRAY(char, _name);
1167     _name = NULL;
1168   }
1169 }
1170 
1171 void NamedThread::set_name(const char* format, ...) {
1172   guarantee(_name == NULL, "Only get to set name once.");
1173   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1174   guarantee(_name != NULL, "alloc failure");
1175   va_list ap;
1176   va_start(ap, format);
1177   jio_vsnprintf(_name, max_name_len, format, ap);
1178   va_end(ap);
1179 }
1180 
1181 void NamedThread::initialize_named_thread() {
1182   set_native_thread_name(name());
1183 }
1184 
1185 void NamedThread::print_on(outputStream* st) const {
1186   st->print("\"%s\" ", name());
1187   Thread::print_on(st);
1188   st->cr();
1189 }
1190 
1191 
1192 // ======= WatcherThread ========
1193 
1194 // The watcher thread exists to simulate timer interrupts.  It should
1195 // be replaced by an abstraction over whatever native support for
1196 // timer interrupts exists on the platform.
1197 
1198 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1199 bool WatcherThread::_startable = false;
1200 volatile bool  WatcherThread::_should_terminate = false;
1201 
1202 WatcherThread::WatcherThread() : Thread() {
1203   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1204   if (os::create_thread(this, os::watcher_thread)) {
1205     _watcher_thread = this;
1206 
1207     // Set the watcher thread to the highest OS priority which should not be
1208     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1209     // is created. The only normal thread using this priority is the reference
1210     // handler thread, which runs for very short intervals only.
1211     // If the VMThread's priority is not lower than the WatcherThread profiling
1212     // will be inaccurate.
1213     os::set_priority(this, MaxPriority);
1214     if (!DisableStartThread) {
1215       os::start_thread(this);
1216     }
1217   }
1218 }
1219 
1220 int WatcherThread::sleep() const {
1221   // The WatcherThread does not participate in the safepoint protocol
1222   // for the PeriodicTask_lock because it is not a JavaThread.
1223   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1224 
1225   if (_should_terminate) {
1226     // check for termination before we do any housekeeping or wait
1227     return 0;  // we did not sleep.
1228   }
1229 
1230   // remaining will be zero if there are no tasks,
1231   // causing the WatcherThread to sleep until a task is
1232   // enrolled
1233   int remaining = PeriodicTask::time_to_wait();
1234   int time_slept = 0;
1235 
1236   // we expect this to timeout - we only ever get unparked when
1237   // we should terminate or when a new task has been enrolled
1238   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1239 
1240   jlong time_before_loop = os::javaTimeNanos();
1241 
1242   while (true) {
1243     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag,
1244                                             remaining);
1245     jlong now = os::javaTimeNanos();
1246 
1247     if (remaining == 0) {
1248       // if we didn't have any tasks we could have waited for a long time
1249       // consider the time_slept zero and reset time_before_loop
1250       time_slept = 0;
1251       time_before_loop = now;
1252     } else {
1253       // need to recalculate since we might have new tasks in _tasks
1254       time_slept = (int) ((now - time_before_loop) / 1000000);
1255     }
1256 
1257     // Change to task list or spurious wakeup of some kind
1258     if (timedout || _should_terminate) {
1259       break;
1260     }
1261 
1262     remaining = PeriodicTask::time_to_wait();
1263     if (remaining == 0) {
1264       // Last task was just disenrolled so loop around and wait until
1265       // another task gets enrolled
1266       continue;
1267     }
1268 
1269     remaining -= time_slept;
1270     if (remaining <= 0) {
1271       break;
1272     }
1273   }
1274 
1275   return time_slept;
1276 }
1277 
1278 void WatcherThread::run() {
1279   assert(this == watcher_thread(), "just checking");
1280 
1281   this->record_stack_base_and_size();
1282   this->set_native_thread_name(this->name());
1283   this->set_active_handles(JNIHandleBlock::allocate_block());
1284   while (true) {
1285     assert(watcher_thread() == Thread::current(), "thread consistency check");
1286     assert(watcher_thread() == this, "thread consistency check");
1287 
1288     // Calculate how long it'll be until the next PeriodicTask work
1289     // should be done, and sleep that amount of time.
1290     int time_waited = sleep();
1291 
1292     if (VMError::is_error_reported()) {
1293       // A fatal error has happened, the error handler(VMError::report_and_die)
1294       // should abort JVM after creating an error log file. However in some
1295       // rare cases, the error handler itself might deadlock. Here periodically
1296       // check for error reporting timeouts, and if it happens, just proceed to
1297       // abort the VM.
1298 
1299       // This code is in WatcherThread because WatcherThread wakes up
1300       // periodically so the fatal error handler doesn't need to do anything;
1301       // also because the WatcherThread is less likely to crash than other
1302       // threads.
1303 
1304       for (;;) {
1305         // Note: we use naked sleep in this loop because we want to avoid using
1306         // any kind of VM infrastructure which may be broken at this point.
1307         if (VMError::check_timeout()) {
1308           // We hit error reporting timeout. Error reporting was interrupted and
1309           // will be wrapping things up now (closing files etc). Give it some more
1310           // time, then quit the VM.
1311           os::naked_short_sleep(200);
1312           // Print a message to stderr.
1313           fdStream err(defaultStream::output_fd());
1314           err.print_raw_cr("# [ timer expired, abort... ]");
1315           // skip atexit/vm_exit/vm_abort hooks
1316           os::die();
1317         }
1318 
1319         // Wait a second, then recheck for timeout.
1320         os::naked_short_sleep(999);
1321       }
1322     }
1323 
1324     if (_should_terminate) {
1325       // check for termination before posting the next tick
1326       break;
1327     }
1328 
1329     PeriodicTask::real_time_tick(time_waited);
1330   }
1331 
1332   // Signal that it is terminated
1333   {
1334     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1335     _watcher_thread = NULL;
1336     Terminator_lock->notify();
1337   }
1338 }
1339 
1340 void WatcherThread::start() {
1341   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1342 
1343   if (watcher_thread() == NULL && _startable) {
1344     _should_terminate = false;
1345     // Create the single instance of WatcherThread
1346     new WatcherThread();
1347   }
1348 }
1349 
1350 void WatcherThread::make_startable() {
1351   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1352   _startable = true;
1353 }
1354 
1355 void WatcherThread::stop() {
1356   {
1357     // Follow normal safepoint aware lock enter protocol since the
1358     // WatcherThread is stopped by another JavaThread.
1359     MutexLocker ml(PeriodicTask_lock);
1360     _should_terminate = true;
1361 
1362     WatcherThread* watcher = watcher_thread();
1363     if (watcher != NULL) {
1364       // unpark the WatcherThread so it can see that it should terminate
1365       watcher->unpark();
1366     }
1367   }
1368 
1369   MutexLocker mu(Terminator_lock);
1370 
1371   while (watcher_thread() != NULL) {
1372     // This wait should make safepoint checks, wait without a timeout,
1373     // and wait as a suspend-equivalent condition.
1374     //
1375     // Note: If the FlatProfiler is running, then this thread is waiting
1376     // for the WatcherThread to terminate and the WatcherThread, via the
1377     // FlatProfiler task, is waiting for the external suspend request on
1378     // this thread to complete. wait_for_ext_suspend_completion() will
1379     // eventually timeout, but that takes time. Making this wait a
1380     // suspend-equivalent condition solves that timeout problem.
1381     //
1382     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1383                           Mutex::_as_suspend_equivalent_flag);
1384   }
1385 }
1386 
1387 void WatcherThread::unpark() {
1388   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1389   PeriodicTask_lock->notify();
1390 }
1391 
1392 void WatcherThread::print_on(outputStream* st) const {
1393   st->print("\"%s\" ", name());
1394   Thread::print_on(st);
1395   st->cr();
1396 }
1397 
1398 // ======= JavaThread ========
1399 
1400 #if INCLUDE_JVMCI
1401 
1402 jlong* JavaThread::_jvmci_old_thread_counters;
1403 
1404 bool jvmci_counters_include(JavaThread* thread) {
1405   oop threadObj = thread->threadObj();
1406   return !JVMCICountersExcludeCompiler || !thread->is_Compiler_thread();
1407 }
1408 
1409 void JavaThread::collect_counters(typeArrayOop array) {
1410   if (JVMCICounterSize > 0) {
1411     MutexLocker tl(Threads_lock);
1412     for (int i = 0; i < array->length(); i++) {
1413       array->long_at_put(i, _jvmci_old_thread_counters[i]);
1414     }
1415     for (JavaThread* tp = Threads::first(); tp != NULL; tp = tp->next()) {
1416       if (jvmci_counters_include(tp)) {
1417         for (int i = 0; i < array->length(); i++) {
1418           array->long_at_put(i, array->long_at(i) + tp->_jvmci_counters[i]);
1419         }
1420       }
1421     }
1422   }
1423 }
1424 
1425 #endif // INCLUDE_JVMCI
1426 
1427 // A JavaThread is a normal Java thread
1428 
1429 void JavaThread::initialize() {
1430   // Initialize fields
1431 
1432   set_saved_exception_pc(NULL);
1433   set_threadObj(NULL);
1434   _anchor.clear();
1435   set_entry_point(NULL);
1436   set_jni_functions(jni_functions());
1437   set_callee_target(NULL);
1438   set_vm_result(NULL);
1439   set_vm_result_2(NULL);
1440   set_vframe_array_head(NULL);
1441   set_vframe_array_last(NULL);
1442   set_deferred_locals(NULL);
1443   set_deopt_mark(NULL);
1444   set_deopt_compiled_method(NULL);
1445   clear_must_deopt_id();
1446   set_monitor_chunks(NULL);
1447   set_next(NULL);
1448   set_thread_state(_thread_new);
1449   _terminated = _not_terminated;
1450   _privileged_stack_top = NULL;
1451   _array_for_gc = NULL;
1452   _suspend_equivalent = false;
1453   _in_deopt_handler = 0;
1454   _doing_unsafe_access = false;
1455   _stack_guard_state = stack_guard_unused;
1456 #if INCLUDE_JVMCI
1457   _pending_monitorenter = false;
1458   _pending_deoptimization = -1;
1459   _pending_failed_speculation = NULL;
1460   _pending_transfer_to_interpreter = false;
1461   _adjusting_comp_level = false;
1462   _jvmci._alternate_call_target = NULL;
1463   assert(_jvmci._implicit_exception_pc == NULL, "must be");
1464   if (JVMCICounterSize > 0) {
1465     _jvmci_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
1466     memset(_jvmci_counters, 0, sizeof(jlong) * JVMCICounterSize);
1467   } else {
1468     _jvmci_counters = NULL;
1469   }
1470 #endif // INCLUDE_JVMCI
1471   _reserved_stack_activation = NULL;  // stack base not known yet
1472   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1473   _exception_pc  = 0;
1474   _exception_handler_pc = 0;
1475   _is_method_handle_return = 0;
1476   _jvmti_thread_state= NULL;
1477   _should_post_on_exceptions_flag = JNI_FALSE;
1478   _jvmti_get_loaded_classes_closure = NULL;
1479   _interp_only_mode    = 0;
1480   _special_runtime_exit_condition = _no_async_condition;
1481   _pending_async_exception = NULL;
1482   _thread_stat = NULL;
1483   _thread_stat = new ThreadStatistics();
1484   _blocked_on_compilation = false;
1485   _jni_active_critical = 0;
1486   _pending_jni_exception_check_fn = NULL;
1487   _do_not_unlock_if_synchronized = false;
1488   _cached_monitor_info = NULL;
1489   _parker = Parker::Allocate(this);
1490 
1491 #ifndef PRODUCT
1492   _jmp_ring_index = 0;
1493   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1494     record_jump(NULL, NULL, NULL, 0);
1495   }
1496 #endif // PRODUCT
1497 
1498   set_thread_profiler(NULL);
1499   if (FlatProfiler::is_active()) {
1500     // This is where we would decide to either give each thread it's own profiler
1501     // or use one global one from FlatProfiler,
1502     // or up to some count of the number of profiled threads, etc.
1503     ThreadProfiler* pp = new ThreadProfiler();
1504     pp->engage();
1505     set_thread_profiler(pp);
1506   }
1507 
1508   // Setup safepoint state info for this thread
1509   ThreadSafepointState::create(this);
1510 
1511   debug_only(_java_call_counter = 0);
1512 
1513   // JVMTI PopFrame support
1514   _popframe_condition = popframe_inactive;
1515   _popframe_preserved_args = NULL;
1516   _popframe_preserved_args_size = 0;
1517   _frames_to_pop_failed_realloc = 0;
1518 
1519   pd_initialize();
1520 }
1521 
1522 #if INCLUDE_ALL_GCS
1523 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1524 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1525 #endif // INCLUDE_ALL_GCS
1526 
1527 JavaThread::JavaThread(bool is_attaching_via_jni) :
1528                        Thread()
1529 #if INCLUDE_ALL_GCS
1530                        , _satb_mark_queue(&_satb_mark_queue_set),
1531                        _dirty_card_queue(&_dirty_card_queue_set)
1532 #endif // INCLUDE_ALL_GCS
1533 {
1534   initialize();
1535   if (is_attaching_via_jni) {
1536     _jni_attach_state = _attaching_via_jni;
1537   } else {
1538     _jni_attach_state = _not_attaching_via_jni;
1539   }
1540   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1541 }
1542 
1543 bool JavaThread::reguard_stack(address cur_sp) {
1544   if (_stack_guard_state != stack_guard_yellow_reserved_disabled
1545       && _stack_guard_state != stack_guard_reserved_disabled) {
1546     return true; // Stack already guarded or guard pages not needed.
1547   }
1548 
1549   if (register_stack_overflow()) {
1550     // For those architectures which have separate register and
1551     // memory stacks, we must check the register stack to see if
1552     // it has overflowed.
1553     return false;
1554   }
1555 
1556   // Java code never executes within the yellow zone: the latter is only
1557   // there to provoke an exception during stack banging.  If java code
1558   // is executing there, either StackShadowPages should be larger, or
1559   // some exception code in c1, c2 or the interpreter isn't unwinding
1560   // when it should.
1561   guarantee(cur_sp > stack_reserved_zone_base(),
1562             "not enough space to reguard - increase StackShadowPages");
1563   if (_stack_guard_state == stack_guard_yellow_reserved_disabled) {
1564     enable_stack_yellow_reserved_zone();
1565     if (reserved_stack_activation() != stack_base()) {
1566       set_reserved_stack_activation(stack_base());
1567     }
1568   } else if (_stack_guard_state == stack_guard_reserved_disabled) {
1569     set_reserved_stack_activation(stack_base());
1570     enable_stack_reserved_zone();
1571   }
1572   return true;
1573 }
1574 
1575 bool JavaThread::reguard_stack(void) {
1576   return reguard_stack(os::current_stack_pointer());
1577 }
1578 
1579 
1580 void JavaThread::block_if_vm_exited() {
1581   if (_terminated == _vm_exited) {
1582     // _vm_exited is set at safepoint, and Threads_lock is never released
1583     // we will block here forever
1584     Threads_lock->lock_without_safepoint_check();
1585     ShouldNotReachHere();
1586   }
1587 }
1588 
1589 
1590 // Remove this ifdef when C1 is ported to the compiler interface.
1591 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1592 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1593 
1594 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1595                        Thread()
1596 #if INCLUDE_ALL_GCS
1597                        , _satb_mark_queue(&_satb_mark_queue_set),
1598                        _dirty_card_queue(&_dirty_card_queue_set)
1599 #endif // INCLUDE_ALL_GCS
1600 {
1601   initialize();
1602   _jni_attach_state = _not_attaching_via_jni;
1603   set_entry_point(entry_point);
1604   // Create the native thread itself.
1605   // %note runtime_23
1606   os::ThreadType thr_type = os::java_thread;
1607   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1608                                                      os::java_thread;
1609   os::create_thread(this, thr_type, stack_sz);
1610   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1611   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1612   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1613   // the exception consists of creating the exception object & initializing it, initialization
1614   // will leave the VM via a JavaCall and then all locks must be unlocked).
1615   //
1616   // The thread is still suspended when we reach here. Thread must be explicit started
1617   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1618   // by calling Threads:add. The reason why this is not done here, is because the thread
1619   // object must be fully initialized (take a look at JVM_Start)
1620 }
1621 
1622 JavaThread::~JavaThread() {
1623 
1624   // JSR166 -- return the parker to the free list
1625   Parker::Release(_parker);
1626   _parker = NULL;
1627 
1628   // Free any remaining  previous UnrollBlock
1629   vframeArray* old_array = vframe_array_last();
1630 
1631   if (old_array != NULL) {
1632     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1633     old_array->set_unroll_block(NULL);
1634     delete old_info;
1635     delete old_array;
1636   }
1637 
1638   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1639   if (deferred != NULL) {
1640     // This can only happen if thread is destroyed before deoptimization occurs.
1641     assert(deferred->length() != 0, "empty array!");
1642     do {
1643       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1644       deferred->remove_at(0);
1645       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1646       delete dlv;
1647     } while (deferred->length() != 0);
1648     delete deferred;
1649   }
1650 
1651   // All Java related clean up happens in exit
1652   ThreadSafepointState::destroy(this);
1653   if (_thread_profiler != NULL) delete _thread_profiler;
1654   if (_thread_stat != NULL) delete _thread_stat;
1655 
1656 #if INCLUDE_JVMCI
1657   if (JVMCICounterSize > 0) {
1658     if (jvmci_counters_include(this)) {
1659       for (int i = 0; i < JVMCICounterSize; i++) {
1660         _jvmci_old_thread_counters[i] += _jvmci_counters[i];
1661       }
1662     }
1663     FREE_C_HEAP_ARRAY(jlong, _jvmci_counters);
1664   }
1665 #endif // INCLUDE_JVMCI
1666 }
1667 
1668 
1669 // The first routine called by a new Java thread
1670 void JavaThread::run() {
1671   // initialize thread-local alloc buffer related fields
1672   this->initialize_tlab();
1673 
1674   // used to test validity of stack trace backs
1675   this->record_base_of_stack_pointer();
1676 
1677   // Record real stack base and size.
1678   this->record_stack_base_and_size();
1679 
1680   this->create_stack_guard_pages();
1681 
1682   this->cache_global_variables();
1683 
1684   // Thread is now sufficient initialized to be handled by the safepoint code as being
1685   // in the VM. Change thread state from _thread_new to _thread_in_vm
1686   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1687 
1688   assert(JavaThread::current() == this, "sanity check");
1689   assert(!Thread::current()->owns_locks(), "sanity check");
1690 
1691   DTRACE_THREAD_PROBE(start, this);
1692 
1693   // This operation might block. We call that after all safepoint checks for a new thread has
1694   // been completed.
1695   this->set_active_handles(JNIHandleBlock::allocate_block());
1696 
1697   if (JvmtiExport::should_post_thread_life()) {
1698     JvmtiExport::post_thread_start(this);
1699   }
1700 
1701   EventThreadStart event;
1702   if (event.should_commit()) {
1703     event.set_thread(THREAD_TRACE_ID(this));
1704     event.commit();
1705   }
1706 
1707   // We call another function to do the rest so we are sure that the stack addresses used
1708   // from there will be lower than the stack base just computed
1709   thread_main_inner();
1710 
1711   // Note, thread is no longer valid at this point!
1712 }
1713 
1714 
1715 void JavaThread::thread_main_inner() {
1716   assert(JavaThread::current() == this, "sanity check");
1717   assert(this->threadObj() != NULL, "just checking");
1718 
1719   // Execute thread entry point unless this thread has a pending exception
1720   // or has been stopped before starting.
1721   // Note: Due to JVM_StopThread we can have pending exceptions already!
1722   if (!this->has_pending_exception() &&
1723       !java_lang_Thread::is_stillborn(this->threadObj())) {
1724     {
1725       ResourceMark rm(this);
1726       this->set_native_thread_name(this->get_thread_name());
1727     }
1728     HandleMark hm(this);
1729     this->entry_point()(this, this);
1730   }
1731 
1732   DTRACE_THREAD_PROBE(stop, this);
1733 
1734   this->exit(false);
1735   delete this;
1736 }
1737 
1738 
1739 static void ensure_join(JavaThread* thread) {
1740   // We do not need to grap the Threads_lock, since we are operating on ourself.
1741   Handle threadObj(thread, thread->threadObj());
1742   assert(threadObj.not_null(), "java thread object must exist");
1743   ObjectLocker lock(threadObj, thread);
1744   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1745   thread->clear_pending_exception();
1746   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1747   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1748   // Clear the native thread instance - this makes isAlive return false and allows the join()
1749   // to complete once we've done the notify_all below
1750   java_lang_Thread::set_thread(threadObj(), NULL);
1751   lock.notify_all(thread);
1752   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1753   thread->clear_pending_exception();
1754 }
1755 
1756 
1757 // For any new cleanup additions, please check to see if they need to be applied to
1758 // cleanup_failed_attach_current_thread as well.
1759 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1760   assert(this == JavaThread::current(), "thread consistency check");
1761 
1762   HandleMark hm(this);
1763   Handle uncaught_exception(this, this->pending_exception());
1764   this->clear_pending_exception();
1765   Handle threadObj(this, this->threadObj());
1766   assert(threadObj.not_null(), "Java thread object should be created");
1767 
1768   if (get_thread_profiler() != NULL) {
1769     get_thread_profiler()->disengage();
1770     ResourceMark rm;
1771     get_thread_profiler()->print(get_thread_name());
1772   }
1773 
1774 
1775   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1776   {
1777     EXCEPTION_MARK;
1778 
1779     CLEAR_PENDING_EXCEPTION;
1780   }
1781   if (!destroy_vm) {
1782     if (uncaught_exception.not_null()) {
1783       EXCEPTION_MARK;
1784       // Call method Thread.dispatchUncaughtException().
1785       Klass* thread_klass = SystemDictionary::Thread_klass();
1786       JavaValue result(T_VOID);
1787       JavaCalls::call_virtual(&result,
1788                               threadObj, thread_klass,
1789                               vmSymbols::dispatchUncaughtException_name(),
1790                               vmSymbols::throwable_void_signature(),
1791                               uncaught_exception,
1792                               THREAD);
1793       if (HAS_PENDING_EXCEPTION) {
1794         ResourceMark rm(this);
1795         jio_fprintf(defaultStream::error_stream(),
1796                     "\nException: %s thrown from the UncaughtExceptionHandler"
1797                     " in thread \"%s\"\n",
1798                     pending_exception()->klass()->external_name(),
1799                     get_thread_name());
1800         CLEAR_PENDING_EXCEPTION;
1801       }
1802     }
1803 
1804     // Called before the java thread exit since we want to read info
1805     // from java_lang_Thread object
1806     EventThreadEnd event;
1807     if (event.should_commit()) {
1808       event.set_thread(THREAD_TRACE_ID(this));
1809       event.commit();
1810     }
1811 
1812     // Call after last event on thread
1813     EVENT_THREAD_EXIT(this);
1814 
1815     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1816     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1817     // is deprecated anyhow.
1818     if (!is_Compiler_thread()) {
1819       int count = 3;
1820       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1821         EXCEPTION_MARK;
1822         JavaValue result(T_VOID);
1823         Klass* thread_klass = SystemDictionary::Thread_klass();
1824         JavaCalls::call_virtual(&result,
1825                                 threadObj, thread_klass,
1826                                 vmSymbols::exit_method_name(),
1827                                 vmSymbols::void_method_signature(),
1828                                 THREAD);
1829         CLEAR_PENDING_EXCEPTION;
1830       }
1831     }
1832     // notify JVMTI
1833     if (JvmtiExport::should_post_thread_life()) {
1834       JvmtiExport::post_thread_end(this);
1835     }
1836 
1837     // We have notified the agents that we are exiting, before we go on,
1838     // we must check for a pending external suspend request and honor it
1839     // in order to not surprise the thread that made the suspend request.
1840     while (true) {
1841       {
1842         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1843         if (!is_external_suspend()) {
1844           set_terminated(_thread_exiting);
1845           ThreadService::current_thread_exiting(this);
1846           break;
1847         }
1848         // Implied else:
1849         // Things get a little tricky here. We have a pending external
1850         // suspend request, but we are holding the SR_lock so we
1851         // can't just self-suspend. So we temporarily drop the lock
1852         // and then self-suspend.
1853       }
1854 
1855       ThreadBlockInVM tbivm(this);
1856       java_suspend_self();
1857 
1858       // We're done with this suspend request, but we have to loop around
1859       // and check again. Eventually we will get SR_lock without a pending
1860       // external suspend request and will be able to mark ourselves as
1861       // exiting.
1862     }
1863     // no more external suspends are allowed at this point
1864   } else {
1865     // before_exit() has already posted JVMTI THREAD_END events
1866   }
1867 
1868   // Notify waiters on thread object. This has to be done after exit() is called
1869   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1870   // group should have the destroyed bit set before waiters are notified).
1871   ensure_join(this);
1872   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1873 
1874   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1875   // held by this thread must be released. The spec does not distinguish
1876   // between JNI-acquired and regular Java monitors. We can only see
1877   // regular Java monitors here if monitor enter-exit matching is broken.
1878   //
1879   // Optionally release any monitors for regular JavaThread exits. This
1880   // is provided as a work around for any bugs in monitor enter-exit
1881   // matching. This can be expensive so it is not enabled by default.
1882   //
1883   // ensure_join() ignores IllegalThreadStateExceptions, and so does
1884   // ObjectSynchronizer::release_monitors_owned_by_thread().
1885   if (exit_type == jni_detach || ObjectMonitor::Knob_ExitRelease) {
1886     // Sanity check even though JNI DetachCurrentThread() would have
1887     // returned JNI_ERR if there was a Java frame. JavaThread exit
1888     // should be done executing Java code by the time we get here.
1889     assert(!this->has_last_Java_frame(),
1890            "should not have a Java frame when detaching or exiting");
1891     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1892     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1893   }
1894 
1895   // These things needs to be done while we are still a Java Thread. Make sure that thread
1896   // is in a consistent state, in case GC happens
1897   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1898 
1899   if (active_handles() != NULL) {
1900     JNIHandleBlock* block = active_handles();
1901     set_active_handles(NULL);
1902     JNIHandleBlock::release_block(block);
1903   }
1904 
1905   if (free_handle_block() != NULL) {
1906     JNIHandleBlock* block = free_handle_block();
1907     set_free_handle_block(NULL);
1908     JNIHandleBlock::release_block(block);
1909   }
1910 
1911   // These have to be removed while this is still a valid thread.
1912   remove_stack_guard_pages();
1913 
1914   if (UseTLAB) {
1915     tlab().make_parsable(true);  // retire TLAB
1916   }
1917 
1918   if (JvmtiEnv::environments_might_exist()) {
1919     JvmtiExport::cleanup_thread(this);
1920   }
1921 
1922   // We must flush any deferred card marks before removing a thread from
1923   // the list of active threads.
1924   Universe::heap()->flush_deferred_store_barrier(this);
1925   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1926 
1927 #if INCLUDE_ALL_GCS
1928   // We must flush the G1-related buffers before removing a thread
1929   // from the list of active threads. We must do this after any deferred
1930   // card marks have been flushed (above) so that any entries that are
1931   // added to the thread's dirty card queue as a result are not lost.
1932   if (UseG1GC) {
1933     flush_barrier_queues();
1934   }
1935 #endif // INCLUDE_ALL_GCS
1936 
1937   log_info(os, thread)("JavaThread %s (tid: " UINTX_FORMAT ").",
1938     exit_type == JavaThread::normal_exit ? "exiting" : "detaching",
1939     os::current_thread_id());
1940 
1941   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1942   Threads::remove(this);
1943 }
1944 
1945 #if INCLUDE_ALL_GCS
1946 // Flush G1-related queues.
1947 void JavaThread::flush_barrier_queues() {
1948   satb_mark_queue().flush();
1949   dirty_card_queue().flush();
1950 }
1951 
1952 void JavaThread::initialize_queues() {
1953   assert(!SafepointSynchronize::is_at_safepoint(),
1954          "we should not be at a safepoint");
1955 
1956   SATBMarkQueue& satb_queue = satb_mark_queue();
1957   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1958   // The SATB queue should have been constructed with its active
1959   // field set to false.
1960   assert(!satb_queue.is_active(), "SATB queue should not be active");
1961   assert(satb_queue.is_empty(), "SATB queue should be empty");
1962   // If we are creating the thread during a marking cycle, we should
1963   // set the active field of the SATB queue to true.
1964   if (satb_queue_set.is_active()) {
1965     satb_queue.set_active(true);
1966   }
1967 
1968   DirtyCardQueue& dirty_queue = dirty_card_queue();
1969   // The dirty card queue should have been constructed with its
1970   // active field set to true.
1971   assert(dirty_queue.is_active(), "dirty card queue should be active");
1972 }
1973 #endif // INCLUDE_ALL_GCS
1974 
1975 void JavaThread::cleanup_failed_attach_current_thread() {
1976   if (get_thread_profiler() != NULL) {
1977     get_thread_profiler()->disengage();
1978     ResourceMark rm;
1979     get_thread_profiler()->print(get_thread_name());
1980   }
1981 
1982   if (active_handles() != NULL) {
1983     JNIHandleBlock* block = active_handles();
1984     set_active_handles(NULL);
1985     JNIHandleBlock::release_block(block);
1986   }
1987 
1988   if (free_handle_block() != NULL) {
1989     JNIHandleBlock* block = free_handle_block();
1990     set_free_handle_block(NULL);
1991     JNIHandleBlock::release_block(block);
1992   }
1993 
1994   // These have to be removed while this is still a valid thread.
1995   remove_stack_guard_pages();
1996 
1997   if (UseTLAB) {
1998     tlab().make_parsable(true);  // retire TLAB, if any
1999   }
2000 
2001 #if INCLUDE_ALL_GCS
2002   if (UseG1GC) {
2003     flush_barrier_queues();
2004   }
2005 #endif // INCLUDE_ALL_GCS
2006 
2007   Threads::remove(this);
2008   delete this;
2009 }
2010 
2011 
2012 
2013 
2014 JavaThread* JavaThread::active() {
2015   Thread* thread = Thread::current();
2016   if (thread->is_Java_thread()) {
2017     return (JavaThread*) thread;
2018   } else {
2019     assert(thread->is_VM_thread(), "this must be a vm thread");
2020     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2021     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2022     assert(ret->is_Java_thread(), "must be a Java thread");
2023     return ret;
2024   }
2025 }
2026 
2027 bool JavaThread::is_lock_owned(address adr) const {
2028   if (Thread::is_lock_owned(adr)) return true;
2029 
2030   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2031     if (chunk->contains(adr)) return true;
2032   }
2033 
2034   return false;
2035 }
2036 
2037 
2038 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2039   chunk->set_next(monitor_chunks());
2040   set_monitor_chunks(chunk);
2041 }
2042 
2043 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2044   guarantee(monitor_chunks() != NULL, "must be non empty");
2045   if (monitor_chunks() == chunk) {
2046     set_monitor_chunks(chunk->next());
2047   } else {
2048     MonitorChunk* prev = monitor_chunks();
2049     while (prev->next() != chunk) prev = prev->next();
2050     prev->set_next(chunk->next());
2051   }
2052 }
2053 
2054 // JVM support.
2055 
2056 // Note: this function shouldn't block if it's called in
2057 // _thread_in_native_trans state (such as from
2058 // check_special_condition_for_native_trans()).
2059 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2060 
2061   if (has_last_Java_frame() && has_async_condition()) {
2062     // If we are at a polling page safepoint (not a poll return)
2063     // then we must defer async exception because live registers
2064     // will be clobbered by the exception path. Poll return is
2065     // ok because the call we a returning from already collides
2066     // with exception handling registers and so there is no issue.
2067     // (The exception handling path kills call result registers but
2068     //  this is ok since the exception kills the result anyway).
2069 
2070     if (is_at_poll_safepoint()) {
2071       // if the code we are returning to has deoptimized we must defer
2072       // the exception otherwise live registers get clobbered on the
2073       // exception path before deoptimization is able to retrieve them.
2074       //
2075       RegisterMap map(this, false);
2076       frame caller_fr = last_frame().sender(&map);
2077       assert(caller_fr.is_compiled_frame(), "what?");
2078       if (caller_fr.is_deoptimized_frame()) {
2079         log_info(exceptions)("deferred async exception at compiled safepoint");
2080         return;
2081       }
2082     }
2083   }
2084 
2085   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2086   if (condition == _no_async_condition) {
2087     // Conditions have changed since has_special_runtime_exit_condition()
2088     // was called:
2089     // - if we were here only because of an external suspend request,
2090     //   then that was taken care of above (or cancelled) so we are done
2091     // - if we were here because of another async request, then it has
2092     //   been cleared between the has_special_runtime_exit_condition()
2093     //   and now so again we are done
2094     return;
2095   }
2096 
2097   // Check for pending async. exception
2098   if (_pending_async_exception != NULL) {
2099     // Only overwrite an already pending exception, if it is not a threadDeath.
2100     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2101 
2102       // We cannot call Exceptions::_throw(...) here because we cannot block
2103       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2104 
2105       if (log_is_enabled(Info, exceptions)) {
2106         ResourceMark rm;
2107         outputStream* logstream = Log(exceptions)::info_stream();
2108         logstream->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", p2i(this));
2109           if (has_last_Java_frame()) {
2110             frame f = last_frame();
2111            logstream->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", p2i(f.pc()), p2i(f.sp()));
2112           }
2113         logstream->print_cr(" of type: %s", _pending_async_exception->klass()->external_name());
2114       }
2115       _pending_async_exception = NULL;
2116       clear_has_async_exception();
2117     }
2118   }
2119 
2120   if (check_unsafe_error &&
2121       condition == _async_unsafe_access_error && !has_pending_exception()) {
2122     condition = _no_async_condition;  // done
2123     switch (thread_state()) {
2124     case _thread_in_vm: {
2125       JavaThread* THREAD = this;
2126       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2127     }
2128     case _thread_in_native: {
2129       ThreadInVMfromNative tiv(this);
2130       JavaThread* THREAD = this;
2131       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2132     }
2133     case _thread_in_Java: {
2134       ThreadInVMfromJava tiv(this);
2135       JavaThread* THREAD = this;
2136       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2137     }
2138     default:
2139       ShouldNotReachHere();
2140     }
2141   }
2142 
2143   assert(condition == _no_async_condition || has_pending_exception() ||
2144          (!check_unsafe_error && condition == _async_unsafe_access_error),
2145          "must have handled the async condition, if no exception");
2146 }
2147 
2148 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2149   //
2150   // Check for pending external suspend. Internal suspend requests do
2151   // not use handle_special_runtime_exit_condition().
2152   // If JNIEnv proxies are allowed, don't self-suspend if the target
2153   // thread is not the current thread. In older versions of jdbx, jdbx
2154   // threads could call into the VM with another thread's JNIEnv so we
2155   // can be here operating on behalf of a suspended thread (4432884).
2156   bool do_self_suspend = is_external_suspend_with_lock();
2157   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2158     //
2159     // Because thread is external suspended the safepoint code will count
2160     // thread as at a safepoint. This can be odd because we can be here
2161     // as _thread_in_Java which would normally transition to _thread_blocked
2162     // at a safepoint. We would like to mark the thread as _thread_blocked
2163     // before calling java_suspend_self like all other callers of it but
2164     // we must then observe proper safepoint protocol. (We can't leave
2165     // _thread_blocked with a safepoint in progress). However we can be
2166     // here as _thread_in_native_trans so we can't use a normal transition
2167     // constructor/destructor pair because they assert on that type of
2168     // transition. We could do something like:
2169     //
2170     // JavaThreadState state = thread_state();
2171     // set_thread_state(_thread_in_vm);
2172     // {
2173     //   ThreadBlockInVM tbivm(this);
2174     //   java_suspend_self()
2175     // }
2176     // set_thread_state(_thread_in_vm_trans);
2177     // if (safepoint) block;
2178     // set_thread_state(state);
2179     //
2180     // but that is pretty messy. Instead we just go with the way the
2181     // code has worked before and note that this is the only path to
2182     // java_suspend_self that doesn't put the thread in _thread_blocked
2183     // mode.
2184 
2185     frame_anchor()->make_walkable(this);
2186     java_suspend_self();
2187 
2188     // We might be here for reasons in addition to the self-suspend request
2189     // so check for other async requests.
2190   }
2191 
2192   if (check_asyncs) {
2193     check_and_handle_async_exceptions();
2194   }
2195 #if INCLUDE_TRACE
2196   if (is_trace_suspend()) {
2197     TRACE_SUSPEND_THREAD(this);
2198   }
2199 #endif
2200 }
2201 
2202 void JavaThread::send_thread_stop(oop java_throwable)  {
2203   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2204   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2205   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2206 
2207   // Do not throw asynchronous exceptions against the compiler thread
2208   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2209   if (!can_call_java()) return;
2210 
2211   {
2212     // Actually throw the Throwable against the target Thread - however
2213     // only if there is no thread death exception installed already.
2214     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2215       // If the topmost frame is a runtime stub, then we are calling into
2216       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2217       // must deoptimize the caller before continuing, as the compiled  exception handler table
2218       // may not be valid
2219       if (has_last_Java_frame()) {
2220         frame f = last_frame();
2221         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2222           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2223           RegisterMap reg_map(this, UseBiasedLocking);
2224           frame compiled_frame = f.sender(&reg_map);
2225           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2226             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2227           }
2228         }
2229       }
2230 
2231       // Set async. pending exception in thread.
2232       set_pending_async_exception(java_throwable);
2233 
2234       if (log_is_enabled(Info, exceptions)) {
2235          ResourceMark rm;
2236         log_info(exceptions)("Pending Async. exception installed of type: %s",
2237                              InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2238       }
2239       // for AbortVMOnException flag
2240       Exceptions::debug_check_abort(_pending_async_exception->klass()->external_name());
2241     }
2242   }
2243 
2244 
2245   // Interrupt thread so it will wake up from a potential wait()
2246   Thread::interrupt(this);
2247 }
2248 
2249 // External suspension mechanism.
2250 //
2251 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2252 // to any VM_locks and it is at a transition
2253 // Self-suspension will happen on the transition out of the vm.
2254 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2255 //
2256 // Guarantees on return:
2257 //   + Target thread will not execute any new bytecode (that's why we need to
2258 //     force a safepoint)
2259 //   + Target thread will not enter any new monitors
2260 //
2261 void JavaThread::java_suspend() {
2262   { MutexLocker mu(Threads_lock);
2263     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2264       return;
2265     }
2266   }
2267 
2268   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2269     if (!is_external_suspend()) {
2270       // a racing resume has cancelled us; bail out now
2271       return;
2272     }
2273 
2274     // suspend is done
2275     uint32_t debug_bits = 0;
2276     // Warning: is_ext_suspend_completed() may temporarily drop the
2277     // SR_lock to allow the thread to reach a stable thread state if
2278     // it is currently in a transient thread state.
2279     if (is_ext_suspend_completed(false /* !called_by_wait */,
2280                                  SuspendRetryDelay, &debug_bits)) {
2281       return;
2282     }
2283   }
2284 
2285   VM_ThreadSuspend vm_suspend;
2286   VMThread::execute(&vm_suspend);
2287 }
2288 
2289 // Part II of external suspension.
2290 // A JavaThread self suspends when it detects a pending external suspend
2291 // request. This is usually on transitions. It is also done in places
2292 // where continuing to the next transition would surprise the caller,
2293 // e.g., monitor entry.
2294 //
2295 // Returns the number of times that the thread self-suspended.
2296 //
2297 // Note: DO NOT call java_suspend_self() when you just want to block current
2298 //       thread. java_suspend_self() is the second stage of cooperative
2299 //       suspension for external suspend requests and should only be used
2300 //       to complete an external suspend request.
2301 //
2302 int JavaThread::java_suspend_self() {
2303   int ret = 0;
2304 
2305   // we are in the process of exiting so don't suspend
2306   if (is_exiting()) {
2307     clear_external_suspend();
2308     return ret;
2309   }
2310 
2311   assert(_anchor.walkable() ||
2312          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2313          "must have walkable stack");
2314 
2315   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2316 
2317   assert(!this->is_ext_suspended(),
2318          "a thread trying to self-suspend should not already be suspended");
2319 
2320   if (this->is_suspend_equivalent()) {
2321     // If we are self-suspending as a result of the lifting of a
2322     // suspend equivalent condition, then the suspend_equivalent
2323     // flag is not cleared until we set the ext_suspended flag so
2324     // that wait_for_ext_suspend_completion() returns consistent
2325     // results.
2326     this->clear_suspend_equivalent();
2327   }
2328 
2329   // A racing resume may have cancelled us before we grabbed SR_lock
2330   // above. Or another external suspend request could be waiting for us
2331   // by the time we return from SR_lock()->wait(). The thread
2332   // that requested the suspension may already be trying to walk our
2333   // stack and if we return now, we can change the stack out from under
2334   // it. This would be a "bad thing (TM)" and cause the stack walker
2335   // to crash. We stay self-suspended until there are no more pending
2336   // external suspend requests.
2337   while (is_external_suspend()) {
2338     ret++;
2339     this->set_ext_suspended();
2340 
2341     // _ext_suspended flag is cleared by java_resume()
2342     while (is_ext_suspended()) {
2343       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2344     }
2345   }
2346 
2347   return ret;
2348 }
2349 
2350 #ifdef ASSERT
2351 // verify the JavaThread has not yet been published in the Threads::list, and
2352 // hence doesn't need protection from concurrent access at this stage
2353 void JavaThread::verify_not_published() {
2354   if (!Threads_lock->owned_by_self()) {
2355     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2356     assert(!Threads::includes(this),
2357            "java thread shouldn't have been published yet!");
2358   } else {
2359     assert(!Threads::includes(this),
2360            "java thread shouldn't have been published yet!");
2361   }
2362 }
2363 #endif
2364 
2365 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2366 // progress or when _suspend_flags is non-zero.
2367 // Current thread needs to self-suspend if there is a suspend request and/or
2368 // block if a safepoint is in progress.
2369 // Async exception ISN'T checked.
2370 // Note only the ThreadInVMfromNative transition can call this function
2371 // directly and when thread state is _thread_in_native_trans
2372 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2373   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2374 
2375   JavaThread *curJT = JavaThread::current();
2376   bool do_self_suspend = thread->is_external_suspend();
2377 
2378   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2379 
2380   // If JNIEnv proxies are allowed, don't self-suspend if the target
2381   // thread is not the current thread. In older versions of jdbx, jdbx
2382   // threads could call into the VM with another thread's JNIEnv so we
2383   // can be here operating on behalf of a suspended thread (4432884).
2384   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2385     JavaThreadState state = thread->thread_state();
2386 
2387     // We mark this thread_blocked state as a suspend-equivalent so
2388     // that a caller to is_ext_suspend_completed() won't be confused.
2389     // The suspend-equivalent state is cleared by java_suspend_self().
2390     thread->set_suspend_equivalent();
2391 
2392     // If the safepoint code sees the _thread_in_native_trans state, it will
2393     // wait until the thread changes to other thread state. There is no
2394     // guarantee on how soon we can obtain the SR_lock and complete the
2395     // self-suspend request. It would be a bad idea to let safepoint wait for
2396     // too long. Temporarily change the state to _thread_blocked to
2397     // let the VM thread know that this thread is ready for GC. The problem
2398     // of changing thread state is that safepoint could happen just after
2399     // java_suspend_self() returns after being resumed, and VM thread will
2400     // see the _thread_blocked state. We must check for safepoint
2401     // after restoring the state and make sure we won't leave while a safepoint
2402     // is in progress.
2403     thread->set_thread_state(_thread_blocked);
2404     thread->java_suspend_self();
2405     thread->set_thread_state(state);
2406 
2407     InterfaceSupport::serialize_thread_state_with_handler(thread);
2408   }
2409 
2410   if (SafepointSynchronize::do_call_back()) {
2411     // If we are safepointing, then block the caller which may not be
2412     // the same as the target thread (see above).
2413     SafepointSynchronize::block(curJT);
2414   }
2415 
2416   if (thread->is_deopt_suspend()) {
2417     thread->clear_deopt_suspend();
2418     RegisterMap map(thread, false);
2419     frame f = thread->last_frame();
2420     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2421       f = f.sender(&map);
2422     }
2423     if (f.id() == thread->must_deopt_id()) {
2424       thread->clear_must_deopt_id();
2425       f.deoptimize(thread);
2426     } else {
2427       fatal("missed deoptimization!");
2428     }
2429   }
2430 #if INCLUDE_TRACE
2431   if (thread->is_trace_suspend()) {
2432     TRACE_SUSPEND_THREAD(thread);
2433   }
2434 #endif
2435 }
2436 
2437 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2438 // progress or when _suspend_flags is non-zero.
2439 // Current thread needs to self-suspend if there is a suspend request and/or
2440 // block if a safepoint is in progress.
2441 // Also check for pending async exception (not including unsafe access error).
2442 // Note only the native==>VM/Java barriers can call this function and when
2443 // thread state is _thread_in_native_trans.
2444 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2445   check_safepoint_and_suspend_for_native_trans(thread);
2446 
2447   if (thread->has_async_exception()) {
2448     // We are in _thread_in_native_trans state, don't handle unsafe
2449     // access error since that may block.
2450     thread->check_and_handle_async_exceptions(false);
2451   }
2452 }
2453 
2454 // This is a variant of the normal
2455 // check_special_condition_for_native_trans with slightly different
2456 // semantics for use by critical native wrappers.  It does all the
2457 // normal checks but also performs the transition back into
2458 // thread_in_Java state.  This is required so that critical natives
2459 // can potentially block and perform a GC if they are the last thread
2460 // exiting the GCLocker.
2461 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2462   check_special_condition_for_native_trans(thread);
2463 
2464   // Finish the transition
2465   thread->set_thread_state(_thread_in_Java);
2466 
2467   if (thread->do_critical_native_unlock()) {
2468     ThreadInVMfromJavaNoAsyncException tiv(thread);
2469     GCLocker::unlock_critical(thread);
2470     thread->clear_critical_native_unlock();
2471   }
2472 }
2473 
2474 // We need to guarantee the Threads_lock here, since resumes are not
2475 // allowed during safepoint synchronization
2476 // Can only resume from an external suspension
2477 void JavaThread::java_resume() {
2478   assert_locked_or_safepoint(Threads_lock);
2479 
2480   // Sanity check: thread is gone, has started exiting or the thread
2481   // was not externally suspended.
2482   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2483     return;
2484   }
2485 
2486   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2487 
2488   clear_external_suspend();
2489 
2490   if (is_ext_suspended()) {
2491     clear_ext_suspended();
2492     SR_lock()->notify_all();
2493   }
2494 }
2495 
2496 size_t JavaThread::_stack_red_zone_size = 0;
2497 size_t JavaThread::_stack_yellow_zone_size = 0;
2498 size_t JavaThread::_stack_reserved_zone_size = 0;
2499 size_t JavaThread::_stack_shadow_zone_size = 0;
2500 
2501 void JavaThread::create_stack_guard_pages() {
2502   if (!os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) { return; }
2503   address low_addr = stack_end();
2504   size_t len = stack_guard_zone_size();
2505 
2506   int must_commit = os::must_commit_stack_guard_pages();
2507   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2508 
2509   if (must_commit && !os::create_stack_guard_pages((char *) low_addr, len)) {
2510     log_warning(os, thread)("Attempt to allocate stack guard pages failed.");
2511     return;
2512   }
2513 
2514   if (os::guard_memory((char *) low_addr, len)) {
2515     _stack_guard_state = stack_guard_enabled;
2516   } else {
2517     log_warning(os, thread)("Attempt to protect stack guard pages failed ("
2518       PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2519     if (os::uncommit_memory((char *) low_addr, len)) {
2520       log_warning(os, thread)("Attempt to deallocate stack guard pages failed.");
2521     }
2522     return;
2523   }
2524 
2525   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages activated: "
2526     PTR_FORMAT "-" PTR_FORMAT ".",
2527     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2528 }
2529 
2530 void JavaThread::remove_stack_guard_pages() {
2531   assert(Thread::current() == this, "from different thread");
2532   if (_stack_guard_state == stack_guard_unused) return;
2533   address low_addr = stack_end();
2534   size_t len = stack_guard_zone_size();
2535 
2536   if (os::must_commit_stack_guard_pages()) {
2537     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2538       _stack_guard_state = stack_guard_unused;
2539     } else {
2540       log_warning(os, thread)("Attempt to deallocate stack guard pages failed ("
2541         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2542       return;
2543     }
2544   } else {
2545     if (_stack_guard_state == stack_guard_unused) return;
2546     if (os::unguard_memory((char *) low_addr, len)) {
2547       _stack_guard_state = stack_guard_unused;
2548     } else {
2549       log_warning(os, thread)("Attempt to unprotect stack guard pages failed ("
2550         PTR_FORMAT "-" PTR_FORMAT ").", p2i(low_addr), p2i(low_addr + len));
2551       return;
2552     }
2553   }
2554 
2555   log_debug(os, thread)("Thread " UINTX_FORMAT " stack guard pages removed: "
2556     PTR_FORMAT "-" PTR_FORMAT ".",
2557     os::current_thread_id(), p2i(low_addr), p2i(low_addr + len));
2558 }
2559 
2560 void JavaThread::enable_stack_reserved_zone() {
2561   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2562   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2563 
2564   // The base notation is from the stack's point of view, growing downward.
2565   // We need to adjust it to work correctly with guard_memory()
2566   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2567 
2568   guarantee(base < stack_base(),"Error calculating stack reserved zone");
2569   guarantee(base < os::current_stack_pointer(),"Error calculating stack reserved zone");
2570 
2571   if (os::guard_memory((char *) base, stack_reserved_zone_size())) {
2572     _stack_guard_state = stack_guard_enabled;
2573   } else {
2574     warning("Attempt to guard stack reserved zone failed.");
2575   }
2576   enable_register_stack_guard();
2577 }
2578 
2579 void JavaThread::disable_stack_reserved_zone() {
2580   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2581   assert(_stack_guard_state != stack_guard_reserved_disabled, "already disabled");
2582 
2583   // Simply return if called for a thread that does not use guard pages.
2584   if (_stack_guard_state == stack_guard_unused) return;
2585 
2586   // The base notation is from the stack's point of view, growing downward.
2587   // We need to adjust it to work correctly with guard_memory()
2588   address base = stack_reserved_zone_base() - stack_reserved_zone_size();
2589 
2590   if (os::unguard_memory((char *)base, stack_reserved_zone_size())) {
2591     _stack_guard_state = stack_guard_reserved_disabled;
2592   } else {
2593     warning("Attempt to unguard stack reserved zone failed.");
2594   }
2595   disable_register_stack_guard();
2596 }
2597 
2598 void JavaThread::enable_stack_yellow_reserved_zone() {
2599   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2600   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2601 
2602   // The base notation is from the stacks point of view, growing downward.
2603   // We need to adjust it to work correctly with guard_memory()
2604   address base = stack_red_zone_base();
2605 
2606   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2607   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2608 
2609   if (os::guard_memory((char *) base, stack_yellow_reserved_zone_size())) {
2610     _stack_guard_state = stack_guard_enabled;
2611   } else {
2612     warning("Attempt to guard stack yellow zone failed.");
2613   }
2614   enable_register_stack_guard();
2615 }
2616 
2617 void JavaThread::disable_stack_yellow_reserved_zone() {
2618   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2619   assert(_stack_guard_state != stack_guard_yellow_reserved_disabled, "already disabled");
2620 
2621   // Simply return if called for a thread that does not use guard pages.
2622   if (_stack_guard_state == stack_guard_unused) return;
2623 
2624   // The base notation is from the stacks point of view, growing downward.
2625   // We need to adjust it to work correctly with guard_memory()
2626   address base = stack_red_zone_base();
2627 
2628   if (os::unguard_memory((char *)base, stack_yellow_reserved_zone_size())) {
2629     _stack_guard_state = stack_guard_yellow_reserved_disabled;
2630   } else {
2631     warning("Attempt to unguard stack yellow zone failed.");
2632   }
2633   disable_register_stack_guard();
2634 }
2635 
2636 void JavaThread::enable_stack_red_zone() {
2637   // The base notation is from the stacks point of view, growing downward.
2638   // We need to adjust it to work correctly with guard_memory()
2639   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2640   address base = stack_red_zone_base() - stack_red_zone_size();
2641 
2642   guarantee(base < stack_base(), "Error calculating stack red zone");
2643   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2644 
2645   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2646     warning("Attempt to guard stack red zone failed.");
2647   }
2648 }
2649 
2650 void JavaThread::disable_stack_red_zone() {
2651   // The base notation is from the stacks point of view, growing downward.
2652   // We need to adjust it to work correctly with guard_memory()
2653   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2654   address base = stack_red_zone_base() - stack_red_zone_size();
2655   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2656     warning("Attempt to unguard stack red zone failed.");
2657   }
2658 }
2659 
2660 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2661   // ignore is there is no stack
2662   if (!has_last_Java_frame()) return;
2663   // traverse the stack frames. Starts from top frame.
2664   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2665     frame* fr = fst.current();
2666     f(fr, fst.register_map());
2667   }
2668 }
2669 
2670 
2671 #ifndef PRODUCT
2672 // Deoptimization
2673 // Function for testing deoptimization
2674 void JavaThread::deoptimize() {
2675   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2676   StackFrameStream fst(this, UseBiasedLocking);
2677   bool deopt = false;           // Dump stack only if a deopt actually happens.
2678   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2679   // Iterate over all frames in the thread and deoptimize
2680   for (; !fst.is_done(); fst.next()) {
2681     if (fst.current()->can_be_deoptimized()) {
2682 
2683       if (only_at) {
2684         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2685         // consists of comma or carriage return separated numbers so
2686         // search for the current bci in that string.
2687         address pc = fst.current()->pc();
2688         nmethod* nm =  (nmethod*) fst.current()->cb();
2689         ScopeDesc* sd = nm->scope_desc_at(pc);
2690         char buffer[8];
2691         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2692         size_t len = strlen(buffer);
2693         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2694         while (found != NULL) {
2695           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2696               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2697             // Check that the bci found is bracketed by terminators.
2698             break;
2699           }
2700           found = strstr(found + 1, buffer);
2701         }
2702         if (!found) {
2703           continue;
2704         }
2705       }
2706 
2707       if (DebugDeoptimization && !deopt) {
2708         deopt = true; // One-time only print before deopt
2709         tty->print_cr("[BEFORE Deoptimization]");
2710         trace_frames();
2711         trace_stack();
2712       }
2713       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2714     }
2715   }
2716 
2717   if (DebugDeoptimization && deopt) {
2718     tty->print_cr("[AFTER Deoptimization]");
2719     trace_frames();
2720   }
2721 }
2722 
2723 
2724 // Make zombies
2725 void JavaThread::make_zombies() {
2726   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2727     if (fst.current()->can_be_deoptimized()) {
2728       // it is a Java nmethod
2729       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2730       nm->make_not_entrant();
2731     }
2732   }
2733 }
2734 #endif // PRODUCT
2735 
2736 
2737 void JavaThread::deoptimized_wrt_marked_nmethods() {
2738   if (!has_last_Java_frame()) return;
2739   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2740   StackFrameStream fst(this, UseBiasedLocking);
2741   for (; !fst.is_done(); fst.next()) {
2742     if (fst.current()->should_be_deoptimized()) {
2743       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2744     }
2745   }
2746 }
2747 
2748 
2749 // If the caller is a NamedThread, then remember, in the current scope,
2750 // the given JavaThread in its _processed_thread field.
2751 class RememberProcessedThread: public StackObj {
2752   NamedThread* _cur_thr;
2753  public:
2754   RememberProcessedThread(JavaThread* jthr) {
2755     Thread* thread = Thread::current();
2756     if (thread->is_Named_thread()) {
2757       _cur_thr = (NamedThread *)thread;
2758       _cur_thr->set_processed_thread(jthr);
2759     } else {
2760       _cur_thr = NULL;
2761     }
2762   }
2763 
2764   ~RememberProcessedThread() {
2765     if (_cur_thr) {
2766       _cur_thr->set_processed_thread(NULL);
2767     }
2768   }
2769 };
2770 
2771 void JavaThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
2772   // Verify that the deferred card marks have been flushed.
2773   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2774 
2775   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2776   // since there may be more than one thread using each ThreadProfiler.
2777 
2778   // Traverse the GCHandles
2779   Thread::oops_do(f, cf);
2780 
2781   JVMCI_ONLY(f->do_oop((oop*)&_pending_failed_speculation);)
2782 
2783   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2784          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2785 
2786   if (has_last_Java_frame()) {
2787     // Record JavaThread to GC thread
2788     RememberProcessedThread rpt(this);
2789 
2790     // Traverse the privileged stack
2791     if (_privileged_stack_top != NULL) {
2792       _privileged_stack_top->oops_do(f);
2793     }
2794 
2795     // traverse the registered growable array
2796     if (_array_for_gc != NULL) {
2797       for (int index = 0; index < _array_for_gc->length(); index++) {
2798         f->do_oop(_array_for_gc->adr_at(index));
2799       }
2800     }
2801 
2802     // Traverse the monitor chunks
2803     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2804       chunk->oops_do(f);
2805     }
2806 
2807     // Traverse the execution stack
2808     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2809       fst.current()->oops_do(f, cf, fst.register_map());
2810     }
2811   }
2812 
2813   // callee_target is never live across a gc point so NULL it here should
2814   // it still contain a methdOop.
2815 
2816   set_callee_target(NULL);
2817 
2818   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2819   // If we have deferred set_locals there might be oops waiting to be
2820   // written
2821   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2822   if (list != NULL) {
2823     for (int i = 0; i < list->length(); i++) {
2824       list->at(i)->oops_do(f);
2825     }
2826   }
2827 
2828   // Traverse instance variables at the end since the GC may be moving things
2829   // around using this function
2830   f->do_oop((oop*) &_threadObj);
2831   f->do_oop((oop*) &_vm_result);
2832   f->do_oop((oop*) &_exception_oop);
2833   f->do_oop((oop*) &_pending_async_exception);
2834 
2835   if (jvmti_thread_state() != NULL) {
2836     jvmti_thread_state()->oops_do(f);
2837   }
2838 }
2839 
2840 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2841   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2842          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2843 
2844   if (has_last_Java_frame()) {
2845     // Traverse the execution stack
2846     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2847       fst.current()->nmethods_do(cf);
2848     }
2849   }
2850 }
2851 
2852 void JavaThread::metadata_do(void f(Metadata*)) {
2853   if (has_last_Java_frame()) {
2854     // Traverse the execution stack to call f() on the methods in the stack
2855     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2856       fst.current()->metadata_do(f);
2857     }
2858   } else if (is_Compiler_thread()) {
2859     // need to walk ciMetadata in current compile tasks to keep alive.
2860     CompilerThread* ct = (CompilerThread*)this;
2861     if (ct->env() != NULL) {
2862       ct->env()->metadata_do(f);
2863     }
2864     if (ct->task() != NULL) {
2865       ct->task()->metadata_do(f);
2866     }
2867   }
2868 }
2869 
2870 // Printing
2871 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2872   switch (_thread_state) {
2873   case _thread_uninitialized:     return "_thread_uninitialized";
2874   case _thread_new:               return "_thread_new";
2875   case _thread_new_trans:         return "_thread_new_trans";
2876   case _thread_in_native:         return "_thread_in_native";
2877   case _thread_in_native_trans:   return "_thread_in_native_trans";
2878   case _thread_in_vm:             return "_thread_in_vm";
2879   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2880   case _thread_in_Java:           return "_thread_in_Java";
2881   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2882   case _thread_blocked:           return "_thread_blocked";
2883   case _thread_blocked_trans:     return "_thread_blocked_trans";
2884   default:                        return "unknown thread state";
2885   }
2886 }
2887 
2888 #ifndef PRODUCT
2889 void JavaThread::print_thread_state_on(outputStream *st) const {
2890   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2891 };
2892 void JavaThread::print_thread_state() const {
2893   print_thread_state_on(tty);
2894 }
2895 #endif // PRODUCT
2896 
2897 // Called by Threads::print() for VM_PrintThreads operation
2898 void JavaThread::print_on(outputStream *st) const {
2899   st->print_raw("\"");
2900   st->print_raw(get_thread_name());
2901   st->print_raw("\" ");
2902   oop thread_oop = threadObj();
2903   if (thread_oop != NULL) {
2904     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2905     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2906     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2907   }
2908   Thread::print_on(st);
2909   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2910   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2911   if (thread_oop != NULL) {
2912     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2913   }
2914 #ifndef PRODUCT
2915   print_thread_state_on(st);
2916   _safepoint_state->print_on(st);
2917 #endif // PRODUCT
2918   if (is_Compiler_thread()) {
2919     CompilerThread* ct = (CompilerThread*)this;
2920     if (ct->task() != NULL) {
2921       st->print("   Compiling: ");
2922       ct->task()->print(st, NULL, true, false);
2923     } else {
2924       st->print("   No compile task");
2925     }
2926     st->cr();
2927   }
2928 }
2929 
2930 void JavaThread::print_name_on_error(outputStream* st, char *buf, int buflen) const {
2931   st->print("%s", get_thread_name_string(buf, buflen));
2932 }
2933 
2934 // Called by fatal error handler. The difference between this and
2935 // JavaThread::print() is that we can't grab lock or allocate memory.
2936 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2937   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2938   oop thread_obj = threadObj();
2939   if (thread_obj != NULL) {
2940     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2941   }
2942   st->print(" [");
2943   st->print("%s", _get_thread_state_name(_thread_state));
2944   if (osthread()) {
2945     st->print(", id=%d", osthread()->thread_id());
2946   }
2947   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2948             p2i(stack_end()), p2i(stack_base()));
2949   st->print("]");
2950   return;
2951 }
2952 
2953 // Verification
2954 
2955 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2956 
2957 void JavaThread::verify() {
2958   // Verify oops in the thread.
2959   oops_do(&VerifyOopClosure::verify_oop, NULL);
2960 
2961   // Verify the stack frames.
2962   frames_do(frame_verify);
2963 }
2964 
2965 // CR 6300358 (sub-CR 2137150)
2966 // Most callers of this method assume that it can't return NULL but a
2967 // thread may not have a name whilst it is in the process of attaching to
2968 // the VM - see CR 6412693, and there are places where a JavaThread can be
2969 // seen prior to having it's threadObj set (eg JNI attaching threads and
2970 // if vm exit occurs during initialization). These cases can all be accounted
2971 // for such that this method never returns NULL.
2972 const char* JavaThread::get_thread_name() const {
2973 #ifdef ASSERT
2974   // early safepoints can hit while current thread does not yet have TLS
2975   if (!SafepointSynchronize::is_at_safepoint()) {
2976     Thread *cur = Thread::current();
2977     if (!(cur->is_Java_thread() && cur == this)) {
2978       // Current JavaThreads are allowed to get their own name without
2979       // the Threads_lock.
2980       assert_locked_or_safepoint(Threads_lock);
2981     }
2982   }
2983 #endif // ASSERT
2984   return get_thread_name_string();
2985 }
2986 
2987 // Returns a non-NULL representation of this thread's name, or a suitable
2988 // descriptive string if there is no set name
2989 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2990   const char* name_str;
2991   oop thread_obj = threadObj();
2992   if (thread_obj != NULL) {
2993     oop name = java_lang_Thread::name(thread_obj);
2994     if (name != NULL) {
2995       if (buf == NULL) {
2996         name_str = java_lang_String::as_utf8_string(name);
2997       } else {
2998         name_str = java_lang_String::as_utf8_string(name, buf, buflen);
2999       }
3000     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
3001       name_str = "<no-name - thread is attaching>";
3002     } else {
3003       name_str = Thread::name();
3004     }
3005   } else {
3006     name_str = Thread::name();
3007   }
3008   assert(name_str != NULL, "unexpected NULL thread name");
3009   return name_str;
3010 }
3011 
3012 
3013 const char* JavaThread::get_threadgroup_name() const {
3014   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3015   oop thread_obj = threadObj();
3016   if (thread_obj != NULL) {
3017     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3018     if (thread_group != NULL) {
3019       // ThreadGroup.name can be null
3020       return java_lang_ThreadGroup::name(thread_group);
3021     }
3022   }
3023   return NULL;
3024 }
3025 
3026 const char* JavaThread::get_parent_name() const {
3027   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
3028   oop thread_obj = threadObj();
3029   if (thread_obj != NULL) {
3030     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
3031     if (thread_group != NULL) {
3032       oop parent = java_lang_ThreadGroup::parent(thread_group);
3033       if (parent != NULL) {
3034         // ThreadGroup.name can be null
3035         return java_lang_ThreadGroup::name(parent);
3036       }
3037     }
3038   }
3039   return NULL;
3040 }
3041 
3042 ThreadPriority JavaThread::java_priority() const {
3043   oop thr_oop = threadObj();
3044   if (thr_oop == NULL) return NormPriority; // Bootstrapping
3045   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
3046   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
3047   return priority;
3048 }
3049 
3050 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
3051 
3052   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
3053   // Link Java Thread object <-> C++ Thread
3054 
3055   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3056   // and put it into a new Handle.  The Handle "thread_oop" can then
3057   // be used to pass the C++ thread object to other methods.
3058 
3059   // Set the Java level thread object (jthread) field of the
3060   // new thread (a JavaThread *) to C++ thread object using the
3061   // "thread_oop" handle.
3062 
3063   // Set the thread field (a JavaThread *) of the
3064   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3065 
3066   Handle thread_oop(Thread::current(),
3067                     JNIHandles::resolve_non_null(jni_thread));
3068   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3069          "must be initialized");
3070   set_threadObj(thread_oop());
3071   java_lang_Thread::set_thread(thread_oop(), this);
3072 
3073   if (prio == NoPriority) {
3074     prio = java_lang_Thread::priority(thread_oop());
3075     assert(prio != NoPriority, "A valid priority should be present");
3076   }
3077 
3078   // Push the Java priority down to the native thread; needs Threads_lock
3079   Thread::set_priority(this, prio);
3080 
3081   prepare_ext();
3082 
3083   // Add the new thread to the Threads list and set it in motion.
3084   // We must have threads lock in order to call Threads::add.
3085   // It is crucial that we do not block before the thread is
3086   // added to the Threads list for if a GC happens, then the java_thread oop
3087   // will not be visited by GC.
3088   Threads::add(this);
3089 }
3090 
3091 oop JavaThread::current_park_blocker() {
3092   // Support for JSR-166 locks
3093   oop thread_oop = threadObj();
3094   if (thread_oop != NULL &&
3095       JDK_Version::current().supports_thread_park_blocker()) {
3096     return java_lang_Thread::park_blocker(thread_oop);
3097   }
3098   return NULL;
3099 }
3100 
3101 
3102 void JavaThread::print_stack_on(outputStream* st) {
3103   if (!has_last_Java_frame()) return;
3104   ResourceMark rm;
3105   HandleMark   hm;
3106 
3107   RegisterMap reg_map(this);
3108   vframe* start_vf = last_java_vframe(&reg_map);
3109   int count = 0;
3110   for (vframe* f = start_vf; f; f = f->sender()) {
3111     if (f->is_java_frame()) {
3112       javaVFrame* jvf = javaVFrame::cast(f);
3113       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3114 
3115       // Print out lock information
3116       if (JavaMonitorsInStackTrace) {
3117         jvf->print_lock_info_on(st, count);
3118       }
3119     } else {
3120       // Ignore non-Java frames
3121     }
3122 
3123     // Bail-out case for too deep stacks
3124     count++;
3125     if (MaxJavaStackTraceDepth == count) return;
3126   }
3127 }
3128 
3129 
3130 // JVMTI PopFrame support
3131 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3132   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3133   if (in_bytes(size_in_bytes) != 0) {
3134     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3135     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3136     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3137   }
3138 }
3139 
3140 void* JavaThread::popframe_preserved_args() {
3141   return _popframe_preserved_args;
3142 }
3143 
3144 ByteSize JavaThread::popframe_preserved_args_size() {
3145   return in_ByteSize(_popframe_preserved_args_size);
3146 }
3147 
3148 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3149   int sz = in_bytes(popframe_preserved_args_size());
3150   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3151   return in_WordSize(sz / wordSize);
3152 }
3153 
3154 void JavaThread::popframe_free_preserved_args() {
3155   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3156   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args);
3157   _popframe_preserved_args = NULL;
3158   _popframe_preserved_args_size = 0;
3159 }
3160 
3161 #ifndef PRODUCT
3162 
3163 void JavaThread::trace_frames() {
3164   tty->print_cr("[Describe stack]");
3165   int frame_no = 1;
3166   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3167     tty->print("  %d. ", frame_no++);
3168     fst.current()->print_value_on(tty, this);
3169     tty->cr();
3170   }
3171 }
3172 
3173 class PrintAndVerifyOopClosure: public OopClosure {
3174  protected:
3175   template <class T> inline void do_oop_work(T* p) {
3176     oop obj = oopDesc::load_decode_heap_oop(p);
3177     if (obj == NULL) return;
3178     tty->print(INTPTR_FORMAT ": ", p2i(p));
3179     if (obj->is_oop_or_null()) {
3180       if (obj->is_objArray()) {
3181         tty->print_cr("valid objArray: " INTPTR_FORMAT, p2i(obj));
3182       } else {
3183         obj->print();
3184       }
3185     } else {
3186       tty->print_cr("invalid oop: " INTPTR_FORMAT, p2i(obj));
3187     }
3188     tty->cr();
3189   }
3190  public:
3191   virtual void do_oop(oop* p) { do_oop_work(p); }
3192   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3193 };
3194 
3195 
3196 static void oops_print(frame* f, const RegisterMap *map) {
3197   PrintAndVerifyOopClosure print;
3198   f->print_value();
3199   f->oops_do(&print, NULL, (RegisterMap*)map);
3200 }
3201 
3202 // Print our all the locations that contain oops and whether they are
3203 // valid or not.  This useful when trying to find the oldest frame
3204 // where an oop has gone bad since the frame walk is from youngest to
3205 // oldest.
3206 void JavaThread::trace_oops() {
3207   tty->print_cr("[Trace oops]");
3208   frames_do(oops_print);
3209 }
3210 
3211 
3212 #ifdef ASSERT
3213 // Print or validate the layout of stack frames
3214 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3215   ResourceMark rm;
3216   PRESERVE_EXCEPTION_MARK;
3217   FrameValues values;
3218   int frame_no = 0;
3219   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3220     fst.current()->describe(values, ++frame_no);
3221     if (depth == frame_no) break;
3222   }
3223   if (validate_only) {
3224     values.validate();
3225   } else {
3226     tty->print_cr("[Describe stack layout]");
3227     values.print(this);
3228   }
3229 }
3230 #endif
3231 
3232 void JavaThread::trace_stack_from(vframe* start_vf) {
3233   ResourceMark rm;
3234   int vframe_no = 1;
3235   for (vframe* f = start_vf; f; f = f->sender()) {
3236     if (f->is_java_frame()) {
3237       javaVFrame::cast(f)->print_activation(vframe_no++);
3238     } else {
3239       f->print();
3240     }
3241     if (vframe_no > StackPrintLimit) {
3242       tty->print_cr("...<more frames>...");
3243       return;
3244     }
3245   }
3246 }
3247 
3248 
3249 void JavaThread::trace_stack() {
3250   if (!has_last_Java_frame()) return;
3251   ResourceMark rm;
3252   HandleMark   hm;
3253   RegisterMap reg_map(this);
3254   trace_stack_from(last_java_vframe(&reg_map));
3255 }
3256 
3257 
3258 #endif // PRODUCT
3259 
3260 
3261 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3262   assert(reg_map != NULL, "a map must be given");
3263   frame f = last_frame();
3264   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3265     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3266   }
3267   return NULL;
3268 }
3269 
3270 
3271 Klass* JavaThread::security_get_caller_class(int depth) {
3272   vframeStream vfst(this);
3273   vfst.security_get_caller_frame(depth);
3274   if (!vfst.at_end()) {
3275     return vfst.method()->method_holder();
3276   }
3277   return NULL;
3278 }
3279 
3280 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3281   assert(thread->is_Compiler_thread(), "must be compiler thread");
3282   CompileBroker::compiler_thread_loop();
3283 }
3284 
3285 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3286   NMethodSweeper::sweeper_loop();
3287 }
3288 
3289 // Create a CompilerThread
3290 CompilerThread::CompilerThread(CompileQueue* queue,
3291                                CompilerCounters* counters)
3292                                : JavaThread(&compiler_thread_entry) {
3293   _env   = NULL;
3294   _log   = NULL;
3295   _task  = NULL;
3296   _queue = queue;
3297   _counters = counters;
3298   _buffer_blob = NULL;
3299   _compiler = NULL;
3300 
3301 #ifndef PRODUCT
3302   _ideal_graph_printer = NULL;
3303 #endif
3304 }
3305 
3306 bool CompilerThread::can_call_java() const {
3307   return _compiler != NULL && _compiler->is_jvmci();
3308 }
3309 
3310 // Create sweeper thread
3311 CodeCacheSweeperThread::CodeCacheSweeperThread()
3312 : JavaThread(&sweeper_thread_entry) {
3313   _scanned_compiled_method = NULL;
3314 }
3315 
3316 void CodeCacheSweeperThread::oops_do(OopClosure* f, CodeBlobClosure* cf) {
3317   JavaThread::oops_do(f, cf);
3318   if (_scanned_compiled_method != NULL && cf != NULL) {
3319     // Safepoints can occur when the sweeper is scanning an nmethod so
3320     // process it here to make sure it isn't unloaded in the middle of
3321     // a scan.
3322     cf->do_code_blob(_scanned_compiled_method);
3323   }
3324 }
3325 
3326 void CodeCacheSweeperThread::nmethods_do(CodeBlobClosure* cf) {
3327   JavaThread::nmethods_do(cf);
3328   if (_scanned_compiled_method != NULL && cf != NULL) {
3329     // Safepoints can occur when the sweeper is scanning an nmethod so
3330     // process it here to make sure it isn't unloaded in the middle of
3331     // a scan.
3332     cf->do_code_blob(_scanned_compiled_method);
3333   }
3334 }
3335 
3336 
3337 // ======= Threads ========
3338 
3339 // The Threads class links together all active threads, and provides
3340 // operations over all threads.  It is protected by its own Mutex
3341 // lock, which is also used in other contexts to protect thread
3342 // operations from having the thread being operated on from exiting
3343 // and going away unexpectedly (e.g., safepoint synchronization)
3344 
3345 JavaThread* Threads::_thread_list = NULL;
3346 int         Threads::_number_of_threads = 0;
3347 int         Threads::_number_of_non_daemon_threads = 0;
3348 int         Threads::_return_code = 0;
3349 int         Threads::_thread_claim_parity = 0;
3350 size_t      JavaThread::_stack_size_at_create = 0;
3351 #ifdef ASSERT
3352 bool        Threads::_vm_complete = false;
3353 #endif
3354 
3355 // All JavaThreads
3356 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3357 
3358 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3359 void Threads::threads_do(ThreadClosure* tc) {
3360   assert_locked_or_safepoint(Threads_lock);
3361   // ALL_JAVA_THREADS iterates through all JavaThreads
3362   ALL_JAVA_THREADS(p) {
3363     tc->do_thread(p);
3364   }
3365   // Someday we could have a table or list of all non-JavaThreads.
3366   // For now, just manually iterate through them.
3367   tc->do_thread(VMThread::vm_thread());
3368   Universe::heap()->gc_threads_do(tc);
3369   WatcherThread *wt = WatcherThread::watcher_thread();
3370   // Strictly speaking, the following NULL check isn't sufficient to make sure
3371   // the data for WatcherThread is still valid upon being examined. However,
3372   // considering that WatchThread terminates when the VM is on the way to
3373   // exit at safepoint, the chance of the above is extremely small. The right
3374   // way to prevent termination of WatcherThread would be to acquire
3375   // Terminator_lock, but we can't do that without violating the lock rank
3376   // checking in some cases.
3377   if (wt != NULL) {
3378     tc->do_thread(wt);
3379   }
3380 
3381   // If CompilerThreads ever become non-JavaThreads, add them here
3382 }
3383 
3384 // The system initialization in the library has three phases.
3385 //
3386 // Phase 1: java.lang.System class initialization
3387 //     java.lang.System is a primordial class loaded and initialized
3388 //     by the VM early during startup.  java.lang.System.<clinit>
3389 //     only does registerNatives and keeps the rest of the class
3390 //     initialization work later until thread initialization completes.
3391 //
3392 //     System.initPhase1 initializes the system properties, the static
3393 //     fields in, out, and err. Set up java signal handlers, OS-specific
3394 //     system settings, and thread group of the main thread.
3395 static void call_initPhase1(TRAPS) {
3396   Klass* klass =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3397   JavaValue result(T_VOID);
3398   JavaCalls::call_static(&result, klass, vmSymbols::initPhase1_name(),
3399                                          vmSymbols::void_method_signature(), CHECK);
3400 }
3401 
3402 // Phase 2. Module system initialization
3403 //     This will initialize the module system.  Only java.base classes
3404 //     can be loaded until phase 2 completes.
3405 //
3406 //     Call System.initPhase2 after the compiler initialization and jsr292
3407 //     classes get initialized because module initialization runs a lot of java
3408 //     code, that for performance reasons, should be compiled.  Also, this will
3409 //     enable the startup code to use lambda and other language features in this
3410 //     phase and onward.
3411 //
3412 //     After phase 2, The VM will begin search classes from -Xbootclasspath/a.
3413 static void call_initPhase2(TRAPS) {
3414   TraceTime timer("Phase2 initialization", TRACETIME_LOG(Info, module, startuptime));
3415 
3416   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3417 
3418   JavaValue result(T_INT);
3419   JavaCallArguments args;
3420   args.push_int(DisplayVMOutputToStderr);
3421   args.push_int(log_is_enabled(Debug, init)); // print stack trace if exception thrown
3422   JavaCalls::call_static(&result, klass, vmSymbols::initPhase2_name(),
3423                                          vmSymbols::boolean_boolean_int_signature(), &args, CHECK);
3424   if (result.get_jint() != JNI_OK) {
3425     vm_exit_during_initialization(); // no message or exception
3426   }
3427 
3428   universe_post_module_init();
3429 }
3430 
3431 // Phase 3. final setup - set security manager, system class loader and TCCL
3432 //
3433 //     This will instantiate and set the security manager, set the system class
3434 //     loader as well as the thread context class loader.  The security manager
3435 //     and system class loader may be a custom class loaded from -Xbootclasspath/a,
3436 //     other modules or the application's classpath.
3437 static void call_initPhase3(TRAPS) {
3438   Klass* klass = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
3439   JavaValue result(T_VOID);
3440   JavaCalls::call_static(&result, klass, vmSymbols::initPhase3_name(),
3441                                          vmSymbols::void_method_signature(), CHECK);
3442 }
3443 
3444 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3445   TraceTime timer("Initialize java.lang classes", TRACETIME_LOG(Info, startuptime));
3446 
3447   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3448     create_vm_init_libraries();
3449   }
3450 
3451   initialize_class(vmSymbols::java_lang_String(), CHECK);
3452 
3453   // Inject CompactStrings value after the static initializers for String ran.
3454   java_lang_String::set_compact_strings(CompactStrings);
3455 
3456   // Initialize java_lang.System (needed before creating the thread)
3457   initialize_class(vmSymbols::java_lang_System(), CHECK);
3458   // The VM creates & returns objects of this class. Make sure it's initialized.
3459   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3460   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3461   Handle thread_group = create_initial_thread_group(CHECK);
3462   Universe::set_main_thread_group(thread_group());
3463   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3464   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3465   main_thread->set_threadObj(thread_object);
3466   // Set thread status to running since main thread has
3467   // been started and running.
3468   java_lang_Thread::set_thread_status(thread_object,
3469                                       java_lang_Thread::RUNNABLE);
3470 
3471   // The VM creates objects of this class.
3472   initialize_class(vmSymbols::java_lang_Module(), CHECK);
3473 
3474   // The VM preresolves methods to these classes. Make sure that they get initialized
3475   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3476   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3477 
3478   // Phase 1 of the system initialization in the library, java.lang.System class initialization
3479   call_initPhase1(CHECK);
3480 
3481   // get the Java runtime name after java.lang.System is initialized
3482   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3483   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3484 
3485   // an instance of OutOfMemory exception has been allocated earlier
3486   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3487   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3488   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3489   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3490   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3491   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3492   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3493   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3494 }
3495 
3496 void Threads::initialize_jsr292_core_classes(TRAPS) {
3497   TraceTime timer("Initialize java.lang.invoke classes", TRACETIME_LOG(Info, startuptime));
3498 
3499   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3500   initialize_class(vmSymbols::java_lang_invoke_ResolvedMethodName(), CHECK);
3501   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3502   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3503 }
3504 
3505 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3506   extern void JDK_Version_init();
3507 
3508   // Preinitialize version info.
3509   VM_Version::early_initialize();
3510 
3511   // Check version
3512   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3513 
3514   // Initialize library-based TLS
3515   ThreadLocalStorage::init();
3516 
3517   // Initialize the output stream module
3518   ostream_init();
3519 
3520   // Process java launcher properties.
3521   Arguments::process_sun_java_launcher_properties(args);
3522 
3523   // Initialize the os module
3524   os::init();
3525 
3526   // Record VM creation timing statistics
3527   TraceVmCreationTime create_vm_timer;
3528   create_vm_timer.start();
3529 
3530   // Initialize system properties.
3531   Arguments::init_system_properties();
3532 
3533   // So that JDK version can be used as a discriminator when parsing arguments
3534   JDK_Version_init();
3535 
3536   // Update/Initialize System properties after JDK version number is known
3537   Arguments::init_version_specific_system_properties();
3538 
3539   // Make sure to initialize log configuration *before* parsing arguments
3540   LogConfiguration::initialize(create_vm_timer.begin_time());
3541 
3542   // Parse arguments
3543   jint parse_result = Arguments::parse(args);
3544   if (parse_result != JNI_OK) return parse_result;
3545 
3546   os::init_before_ergo();
3547 
3548   jint ergo_result = Arguments::apply_ergo();
3549   if (ergo_result != JNI_OK) return ergo_result;
3550 
3551   // Final check of all ranges after ergonomics which may change values.
3552   if (!CommandLineFlagRangeList::check_ranges()) {
3553     return JNI_EINVAL;
3554   }
3555 
3556   // Final check of all 'AfterErgo' constraints after ergonomics which may change values.
3557   bool constraint_result = CommandLineFlagConstraintList::check_constraints(CommandLineFlagConstraint::AfterErgo);
3558   if (!constraint_result) {
3559     return JNI_EINVAL;
3560   }
3561 
3562   CommandLineFlagWriteableList::mark_startup();
3563 
3564   if (PauseAtStartup) {
3565     os::pause();
3566   }
3567 
3568   HOTSPOT_VM_INIT_BEGIN();
3569 
3570   // Timing (must come after argument parsing)
3571   TraceTime timer("Create VM", TRACETIME_LOG(Info, startuptime));
3572 
3573   // Initialize the os module after parsing the args
3574   jint os_init_2_result = os::init_2();
3575   if (os_init_2_result != JNI_OK) return os_init_2_result;
3576 
3577   jint adjust_after_os_result = Arguments::adjust_after_os();
3578   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3579 
3580   // Initialize output stream logging
3581   ostream_init_log();
3582 
3583   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3584   // Must be before create_vm_init_agents()
3585   if (Arguments::init_libraries_at_startup()) {
3586     convert_vm_init_libraries_to_agents();
3587   }
3588 
3589   // Launch -agentlib/-agentpath and converted -Xrun agents
3590   if (Arguments::init_agents_at_startup()) {
3591     create_vm_init_agents();
3592   }
3593 
3594   // Initialize Threads state
3595   _thread_list = NULL;
3596   _number_of_threads = 0;
3597   _number_of_non_daemon_threads = 0;
3598 
3599   // Initialize global data structures and create system classes in heap
3600   vm_init_globals();
3601 
3602 #if INCLUDE_JVMCI
3603   if (JVMCICounterSize > 0) {
3604     JavaThread::_jvmci_old_thread_counters = NEW_C_HEAP_ARRAY(jlong, JVMCICounterSize, mtInternal);
3605     memset(JavaThread::_jvmci_old_thread_counters, 0, sizeof(jlong) * JVMCICounterSize);
3606   } else {
3607     JavaThread::_jvmci_old_thread_counters = NULL;
3608   }
3609 #endif // INCLUDE_JVMCI
3610 
3611   // Attach the main thread to this os thread
3612   JavaThread* main_thread = new JavaThread();
3613   main_thread->set_thread_state(_thread_in_vm);
3614   main_thread->initialize_thread_current();
3615   // must do this before set_active_handles
3616   main_thread->record_stack_base_and_size();
3617   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3618 
3619   if (!main_thread->set_as_starting_thread()) {
3620     vm_shutdown_during_initialization(
3621                                       "Failed necessary internal allocation. Out of swap space");
3622     delete main_thread;
3623     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3624     return JNI_ENOMEM;
3625   }
3626 
3627   // Enable guard page *after* os::create_main_thread(), otherwise it would
3628   // crash Linux VM, see notes in os_linux.cpp.
3629   main_thread->create_stack_guard_pages();
3630 
3631   // Initialize Java-Level synchronization subsystem
3632   ObjectMonitor::Initialize();
3633 
3634   // Initialize global modules
3635   jint status = init_globals();
3636   if (status != JNI_OK) {
3637     delete main_thread;
3638     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3639     return status;
3640   }
3641 
3642   if (TRACE_INITIALIZE() != JNI_OK) {
3643     vm_exit_during_initialization("Failed to initialize tracing backend");
3644   }
3645 
3646   // Should be done after the heap is fully created
3647   main_thread->cache_global_variables();
3648 
3649   HandleMark hm;
3650 
3651   { MutexLocker mu(Threads_lock);
3652     Threads::add(main_thread);
3653   }
3654 
3655   // Any JVMTI raw monitors entered in onload will transition into
3656   // real raw monitor. VM is setup enough here for raw monitor enter.
3657   JvmtiExport::transition_pending_onload_raw_monitors();
3658 
3659   // Create the VMThread
3660   { TraceTime timer("Start VMThread", TRACETIME_LOG(Info, startuptime));
3661 
3662   VMThread::create();
3663     Thread* vmthread = VMThread::vm_thread();
3664 
3665     if (!os::create_thread(vmthread, os::vm_thread)) {
3666       vm_exit_during_initialization("Cannot create VM thread. "
3667                                     "Out of system resources.");
3668     }
3669 
3670     // Wait for the VM thread to become ready, and VMThread::run to initialize
3671     // Monitors can have spurious returns, must always check another state flag
3672     {
3673       MutexLocker ml(Notify_lock);
3674       os::start_thread(vmthread);
3675       while (vmthread->active_handles() == NULL) {
3676         Notify_lock->wait();
3677       }
3678     }
3679   }
3680 
3681   assert(Universe::is_fully_initialized(), "not initialized");
3682   if (VerifyDuringStartup) {
3683     // Make sure we're starting with a clean slate.
3684     VM_Verify verify_op;
3685     VMThread::execute(&verify_op);
3686   }
3687 
3688   Thread* THREAD = Thread::current();
3689 
3690   // At this point, the Universe is initialized, but we have not executed
3691   // any byte code.  Now is a good time (the only time) to dump out the
3692   // internal state of the JVM for sharing.
3693   if (DumpSharedSpaces) {
3694     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3695     ShouldNotReachHere();
3696   }
3697 
3698   // Always call even when there are not JVMTI environments yet, since environments
3699   // may be attached late and JVMTI must track phases of VM execution
3700   JvmtiExport::enter_early_start_phase();
3701 
3702   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3703   JvmtiExport::post_early_vm_start();
3704 
3705   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3706 
3707   // We need this for ClassDataSharing - the initial vm.info property is set
3708   // with the default value of CDS "sharing" which may be reset through
3709   // command line options.
3710   reset_vm_info_property(CHECK_JNI_ERR);
3711 
3712   quicken_jni_functions();
3713 
3714   // No more stub generation allowed after that point.
3715   StubCodeDesc::freeze();
3716 
3717   // Set flag that basic initialization has completed. Used by exceptions and various
3718   // debug stuff, that does not work until all basic classes have been initialized.
3719   set_init_completed();
3720 
3721   LogConfiguration::post_initialize();
3722   Metaspace::post_initialize();
3723 
3724   HOTSPOT_VM_INIT_END();
3725 
3726   // record VM initialization completion time
3727 #if INCLUDE_MANAGEMENT
3728   Management::record_vm_init_completed();
3729 #endif // INCLUDE_MANAGEMENT
3730 
3731   // Signal Dispatcher needs to be started before VMInit event is posted
3732   os::signal_init(CHECK_JNI_ERR);
3733 
3734   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3735   if (!DisableAttachMechanism) {
3736     AttachListener::vm_start();
3737     if (StartAttachListener || AttachListener::init_at_startup()) {
3738       AttachListener::init();
3739     }
3740   }
3741 
3742   // Launch -Xrun agents
3743   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3744   // back-end can launch with -Xdebug -Xrunjdwp.
3745   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3746     create_vm_init_libraries();
3747   }
3748 
3749   if (CleanChunkPoolAsync) {
3750     Chunk::start_chunk_pool_cleaner_task();
3751   }
3752 
3753   // initialize compiler(s)
3754 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
3755   CompileBroker::compilation_init(CHECK_JNI_ERR);
3756 #endif
3757 
3758   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3759   // It is done after compilers are initialized, because otherwise compilations of
3760   // signature polymorphic MH intrinsics can be missed
3761   // (see SystemDictionary::find_method_handle_intrinsic).
3762   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3763 
3764   // This will initialize the module system.  Only java.base classes can be
3765   // loaded until phase 2 completes
3766   call_initPhase2(CHECK_JNI_ERR);
3767 
3768   // Always call even when there are not JVMTI environments yet, since environments
3769   // may be attached late and JVMTI must track phases of VM execution
3770   JvmtiExport::enter_start_phase();
3771 
3772   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3773   JvmtiExport::post_vm_start();
3774 
3775   // Final system initialization including security manager and system class loader
3776   call_initPhase3(CHECK_JNI_ERR);
3777 
3778   // cache the system class loader
3779   SystemDictionary::compute_java_system_loader(CHECK_(JNI_ERR));
3780 
3781 #if INCLUDE_JVMCI
3782   if (EnableJVMCI) {
3783     // Initialize JVMCI eagerly if JVMCIPrintProperties is enabled.
3784     // The JVMCI Java initialization code will read this flag and
3785     // do the printing if it's set.
3786     bool init = JVMCIPrintProperties;
3787 
3788     if (!init) {
3789       // 8145270: Force initialization of JVMCI runtime otherwise requests for blocking
3790       // compilations via JVMCI will not actually block until JVMCI is initialized.
3791       init = UseJVMCICompiler && (!UseInterpreter || !BackgroundCompilation);
3792     }
3793 
3794     if (init) {
3795       JVMCIRuntime::force_initialization(CHECK_JNI_ERR);
3796     }
3797   }
3798 #endif
3799 
3800   // Always call even when there are not JVMTI environments yet, since environments
3801   // may be attached late and JVMTI must track phases of VM execution
3802   JvmtiExport::enter_live_phase();
3803 
3804   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3805   JvmtiExport::post_vm_initialized();
3806 
3807   if (TRACE_START() != JNI_OK) {
3808     vm_exit_during_initialization("Failed to start tracing backend.");
3809   }
3810 
3811 #if INCLUDE_MANAGEMENT
3812   Management::initialize(THREAD);
3813 
3814   if (HAS_PENDING_EXCEPTION) {
3815     // management agent fails to start possibly due to
3816     // configuration problem and is responsible for printing
3817     // stack trace if appropriate. Simply exit VM.
3818     vm_exit(1);
3819   }
3820 #endif // INCLUDE_MANAGEMENT
3821 
3822   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3823   if (MemProfiling)                   MemProfiler::engage();
3824   StatSampler::engage();
3825   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3826 
3827   BiasedLocking::init();
3828 
3829 #if INCLUDE_RTM_OPT
3830   RTMLockingCounters::init();
3831 #endif
3832 
3833   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3834     call_postVMInitHook(THREAD);
3835     // The Java side of PostVMInitHook.run must deal with all
3836     // exceptions and provide means of diagnosis.
3837     if (HAS_PENDING_EXCEPTION) {
3838       CLEAR_PENDING_EXCEPTION;
3839     }
3840   }
3841 
3842   {
3843     MutexLocker ml(PeriodicTask_lock);
3844     // Make sure the WatcherThread can be started by WatcherThread::start()
3845     // or by dynamic enrollment.
3846     WatcherThread::make_startable();
3847     // Start up the WatcherThread if there are any periodic tasks
3848     // NOTE:  All PeriodicTasks should be registered by now. If they
3849     //   aren't, late joiners might appear to start slowly (we might
3850     //   take a while to process their first tick).
3851     if (PeriodicTask::num_tasks() > 0) {
3852       WatcherThread::start();
3853     }
3854   }
3855 
3856   create_vm_timer.end();
3857 #ifdef ASSERT
3858   _vm_complete = true;
3859 #endif
3860   return JNI_OK;
3861 }
3862 
3863 // type for the Agent_OnLoad and JVM_OnLoad entry points
3864 extern "C" {
3865   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3866 }
3867 // Find a command line agent library and return its entry point for
3868 //         -agentlib:  -agentpath:   -Xrun
3869 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3870 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3871                                     const char *on_load_symbols[],
3872                                     size_t num_symbol_entries) {
3873   OnLoadEntry_t on_load_entry = NULL;
3874   void *library = NULL;
3875 
3876   if (!agent->valid()) {
3877     char buffer[JVM_MAXPATHLEN];
3878     char ebuf[1024] = "";
3879     const char *name = agent->name();
3880     const char *msg = "Could not find agent library ";
3881 
3882     // First check to see if agent is statically linked into executable
3883     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3884       library = agent->os_lib();
3885     } else if (agent->is_absolute_path()) {
3886       library = os::dll_load(name, ebuf, sizeof ebuf);
3887       if (library == NULL) {
3888         const char *sub_msg = " in absolute path, with error: ";
3889         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3890         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3891         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3892         // If we can't find the agent, exit.
3893         vm_exit_during_initialization(buf, NULL);
3894         FREE_C_HEAP_ARRAY(char, buf);
3895       }
3896     } else {
3897       // Try to load the agent from the standard dll directory
3898       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3899                              name)) {
3900         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3901       }
3902       if (library == NULL) { // Try the local directory
3903         char ns[1] = {0};
3904         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3905           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3906         }
3907         if (library == NULL) {
3908           const char *sub_msg = " on the library path, with error: ";
3909           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3910           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3911           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3912           // If we can't find the agent, exit.
3913           vm_exit_during_initialization(buf, NULL);
3914           FREE_C_HEAP_ARRAY(char, buf);
3915         }
3916       }
3917     }
3918     agent->set_os_lib(library);
3919     agent->set_valid();
3920   }
3921 
3922   // Find the OnLoad function.
3923   on_load_entry =
3924     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3925                                                           false,
3926                                                           on_load_symbols,
3927                                                           num_symbol_entries));
3928   return on_load_entry;
3929 }
3930 
3931 // Find the JVM_OnLoad entry point
3932 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3933   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3934   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3935 }
3936 
3937 // Find the Agent_OnLoad entry point
3938 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3939   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3940   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3941 }
3942 
3943 // For backwards compatibility with -Xrun
3944 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3945 // treated like -agentpath:
3946 // Must be called before agent libraries are created
3947 void Threads::convert_vm_init_libraries_to_agents() {
3948   AgentLibrary* agent;
3949   AgentLibrary* next;
3950 
3951   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3952     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3953     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3954 
3955     // If there is an JVM_OnLoad function it will get called later,
3956     // otherwise see if there is an Agent_OnLoad
3957     if (on_load_entry == NULL) {
3958       on_load_entry = lookup_agent_on_load(agent);
3959       if (on_load_entry != NULL) {
3960         // switch it to the agent list -- so that Agent_OnLoad will be called,
3961         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3962         Arguments::convert_library_to_agent(agent);
3963       } else {
3964         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3965       }
3966     }
3967   }
3968 }
3969 
3970 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3971 // Invokes Agent_OnLoad
3972 // Called very early -- before JavaThreads exist
3973 void Threads::create_vm_init_agents() {
3974   extern struct JavaVM_ main_vm;
3975   AgentLibrary* agent;
3976 
3977   JvmtiExport::enter_onload_phase();
3978 
3979   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3980     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3981 
3982     if (on_load_entry != NULL) {
3983       // Invoke the Agent_OnLoad function
3984       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3985       if (err != JNI_OK) {
3986         vm_exit_during_initialization("agent library failed to init", agent->name());
3987       }
3988     } else {
3989       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3990     }
3991   }
3992   JvmtiExport::enter_primordial_phase();
3993 }
3994 
3995 extern "C" {
3996   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3997 }
3998 
3999 void Threads::shutdown_vm_agents() {
4000   // Send any Agent_OnUnload notifications
4001   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
4002   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
4003   extern struct JavaVM_ main_vm;
4004   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
4005 
4006     // Find the Agent_OnUnload function.
4007     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
4008                                                    os::find_agent_function(agent,
4009                                                    false,
4010                                                    on_unload_symbols,
4011                                                    num_symbol_entries));
4012 
4013     // Invoke the Agent_OnUnload function
4014     if (unload_entry != NULL) {
4015       JavaThread* thread = JavaThread::current();
4016       ThreadToNativeFromVM ttn(thread);
4017       HandleMark hm(thread);
4018       (*unload_entry)(&main_vm);
4019     }
4020   }
4021 }
4022 
4023 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
4024 // Invokes JVM_OnLoad
4025 void Threads::create_vm_init_libraries() {
4026   extern struct JavaVM_ main_vm;
4027   AgentLibrary* agent;
4028 
4029   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
4030     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
4031 
4032     if (on_load_entry != NULL) {
4033       // Invoke the JVM_OnLoad function
4034       JavaThread* thread = JavaThread::current();
4035       ThreadToNativeFromVM ttn(thread);
4036       HandleMark hm(thread);
4037       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
4038       if (err != JNI_OK) {
4039         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
4040       }
4041     } else {
4042       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
4043     }
4044   }
4045 }
4046 
4047 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
4048   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
4049 
4050   JavaThread* java_thread = NULL;
4051   // Sequential search for now.  Need to do better optimization later.
4052   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
4053     oop tobj = thread->threadObj();
4054     if (!thread->is_exiting() &&
4055         tobj != NULL &&
4056         java_tid == java_lang_Thread::thread_id(tobj)) {
4057       java_thread = thread;
4058       break;
4059     }
4060   }
4061   return java_thread;
4062 }
4063 
4064 
4065 // Last thread running calls java.lang.Shutdown.shutdown()
4066 void JavaThread::invoke_shutdown_hooks() {
4067   HandleMark hm(this);
4068 
4069   // We could get here with a pending exception, if so clear it now.
4070   if (this->has_pending_exception()) {
4071     this->clear_pending_exception();
4072   }
4073 
4074   EXCEPTION_MARK;
4075   Klass* shutdown_klass =
4076     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
4077                                       THREAD);
4078   if (shutdown_klass != NULL) {
4079     // SystemDictionary::resolve_or_null will return null if there was
4080     // an exception.  If we cannot load the Shutdown class, just don't
4081     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
4082     // and finalizers (if runFinalizersOnExit is set) won't be run.
4083     // Note that if a shutdown hook was registered or runFinalizersOnExit
4084     // was called, the Shutdown class would have already been loaded
4085     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
4086     JavaValue result(T_VOID);
4087     JavaCalls::call_static(&result,
4088                            shutdown_klass,
4089                            vmSymbols::shutdown_method_name(),
4090                            vmSymbols::void_method_signature(),
4091                            THREAD);
4092   }
4093   CLEAR_PENDING_EXCEPTION;
4094 }
4095 
4096 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
4097 // the program falls off the end of main(). Another VM exit path is through
4098 // vm_exit() when the program calls System.exit() to return a value or when
4099 // there is a serious error in VM. The two shutdown paths are not exactly
4100 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
4101 // and VM_Exit op at VM level.
4102 //
4103 // Shutdown sequence:
4104 //   + Shutdown native memory tracking if it is on
4105 //   + Wait until we are the last non-daemon thread to execute
4106 //     <-- every thing is still working at this moment -->
4107 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
4108 //        shutdown hooks, run finalizers if finalization-on-exit
4109 //   + Call before_exit(), prepare for VM exit
4110 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
4111 //        currently the only user of this mechanism is File.deleteOnExit())
4112 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
4113 //        post thread end and vm death events to JVMTI,
4114 //        stop signal thread
4115 //   + Call JavaThread::exit(), it will:
4116 //      > release JNI handle blocks, remove stack guard pages
4117 //      > remove this thread from Threads list
4118 //     <-- no more Java code from this thread after this point -->
4119 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
4120 //     the compiler threads at safepoint
4121 //     <-- do not use anything that could get blocked by Safepoint -->
4122 //   + Disable tracing at JNI/JVM barriers
4123 //   + Set _vm_exited flag for threads that are still running native code
4124 //   + Delete this thread
4125 //   + Call exit_globals()
4126 //      > deletes tty
4127 //      > deletes PerfMemory resources
4128 //   + Return to caller
4129 
4130 bool Threads::destroy_vm() {
4131   JavaThread* thread = JavaThread::current();
4132 
4133 #ifdef ASSERT
4134   _vm_complete = false;
4135 #endif
4136   // Wait until we are the last non-daemon thread to execute
4137   { MutexLocker nu(Threads_lock);
4138     while (Threads::number_of_non_daemon_threads() > 1)
4139       // This wait should make safepoint checks, wait without a timeout,
4140       // and wait as a suspend-equivalent condition.
4141       //
4142       // Note: If the FlatProfiler is running and this thread is waiting
4143       // for another non-daemon thread to finish, then the FlatProfiler
4144       // is waiting for the external suspend request on this thread to
4145       // complete. wait_for_ext_suspend_completion() will eventually
4146       // timeout, but that takes time. Making this wait a suspend-
4147       // equivalent condition solves that timeout problem.
4148       //
4149       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
4150                          Mutex::_as_suspend_equivalent_flag);
4151   }
4152 
4153   // Hang forever on exit if we are reporting an error.
4154   if (ShowMessageBoxOnError && VMError::is_error_reported()) {
4155     os::infinite_sleep();
4156   }
4157   os::wait_for_keypress_at_exit();
4158 
4159   // run Java level shutdown hooks
4160   thread->invoke_shutdown_hooks();
4161 
4162   before_exit(thread);
4163 
4164   thread->exit(true);
4165 
4166   // Stop VM thread.
4167   {
4168     // 4945125 The vm thread comes to a safepoint during exit.
4169     // GC vm_operations can get caught at the safepoint, and the
4170     // heap is unparseable if they are caught. Grab the Heap_lock
4171     // to prevent this. The GC vm_operations will not be able to
4172     // queue until after the vm thread is dead. After this point,
4173     // we'll never emerge out of the safepoint before the VM exits.
4174 
4175     MutexLocker ml(Heap_lock);
4176 
4177     VMThread::wait_for_vm_thread_exit();
4178     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4179     VMThread::destroy();
4180   }
4181 
4182   // clean up ideal graph printers
4183 #if defined(COMPILER2) && !defined(PRODUCT)
4184   IdealGraphPrinter::clean_up();
4185 #endif
4186 
4187   // Now, all Java threads are gone except daemon threads. Daemon threads
4188   // running Java code or in VM are stopped by the Safepoint. However,
4189   // daemon threads executing native code are still running.  But they
4190   // will be stopped at native=>Java/VM barriers. Note that we can't
4191   // simply kill or suspend them, as it is inherently deadlock-prone.
4192 
4193   VM_Exit::set_vm_exited();
4194 
4195   notify_vm_shutdown();
4196 
4197   delete thread;
4198 
4199 #if INCLUDE_JVMCI
4200   if (JVMCICounterSize > 0) {
4201     FREE_C_HEAP_ARRAY(jlong, JavaThread::_jvmci_old_thread_counters);
4202   }
4203 #endif
4204 
4205   // exit_globals() will delete tty
4206   exit_globals();
4207 
4208   LogConfiguration::finalize();
4209 
4210   return true;
4211 }
4212 
4213 
4214 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4215   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4216   return is_supported_jni_version(version);
4217 }
4218 
4219 
4220 jboolean Threads::is_supported_jni_version(jint version) {
4221   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4222   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4223   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4224   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4225   if (version == JNI_VERSION_9) return JNI_TRUE;
4226   return JNI_FALSE;
4227 }
4228 
4229 
4230 void Threads::add(JavaThread* p, bool force_daemon) {
4231   // The threads lock must be owned at this point
4232   assert_locked_or_safepoint(Threads_lock);
4233 
4234   // See the comment for this method in thread.hpp for its purpose and
4235   // why it is called here.
4236   p->initialize_queues();
4237   p->set_next(_thread_list);
4238   _thread_list = p;
4239   _number_of_threads++;
4240   oop threadObj = p->threadObj();
4241   bool daemon = true;
4242   // Bootstrapping problem: threadObj can be null for initial
4243   // JavaThread (or for threads attached via JNI)
4244   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4245     _number_of_non_daemon_threads++;
4246     daemon = false;
4247   }
4248 
4249   ThreadService::add_thread(p, daemon);
4250 
4251   // Possible GC point.
4252   Events::log(p, "Thread added: " INTPTR_FORMAT, p2i(p));
4253 }
4254 
4255 void Threads::remove(JavaThread* p) {
4256 
4257   // Reclaim the objectmonitors from the omInUseList and omFreeList of the moribund thread.
4258   ObjectSynchronizer::omFlush(p);
4259 
4260   // Extra scope needed for Thread_lock, so we can check
4261   // that we do not remove thread without safepoint code notice
4262   { MutexLocker ml(Threads_lock);
4263 
4264     assert(includes(p), "p must be present");
4265 
4266     JavaThread* current = _thread_list;
4267     JavaThread* prev    = NULL;
4268 
4269     while (current != p) {
4270       prev    = current;
4271       current = current->next();
4272     }
4273 
4274     if (prev) {
4275       prev->set_next(current->next());
4276     } else {
4277       _thread_list = p->next();
4278     }
4279     _number_of_threads--;
4280     oop threadObj = p->threadObj();
4281     bool daemon = true;
4282     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4283       _number_of_non_daemon_threads--;
4284       daemon = false;
4285 
4286       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4287       // on destroy_vm will wake up.
4288       if (number_of_non_daemon_threads() == 1) {
4289         Threads_lock->notify_all();
4290       }
4291     }
4292     ThreadService::remove_thread(p, daemon);
4293 
4294     // Make sure that safepoint code disregard this thread. This is needed since
4295     // the thread might mess around with locks after this point. This can cause it
4296     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4297     // of this thread since it is removed from the queue.
4298     p->set_terminated_value();
4299   } // unlock Threads_lock
4300 
4301   // Since Events::log uses a lock, we grab it outside the Threads_lock
4302   Events::log(p, "Thread exited: " INTPTR_FORMAT, p2i(p));
4303 }
4304 
4305 // Threads_lock must be held when this is called (or must be called during a safepoint)
4306 bool Threads::includes(JavaThread* p) {
4307   assert(Threads_lock->is_locked(), "sanity check");
4308   ALL_JAVA_THREADS(q) {
4309     if (q == p) {
4310       return true;
4311     }
4312   }
4313   return false;
4314 }
4315 
4316 // Operations on the Threads list for GC.  These are not explicitly locked,
4317 // but the garbage collector must provide a safe context for them to run.
4318 // In particular, these things should never be called when the Threads_lock
4319 // is held by some other thread. (Note: the Safepoint abstraction also
4320 // uses the Threads_lock to guarantee this property. It also makes sure that
4321 // all threads gets blocked when exiting or starting).
4322 
4323 void Threads::oops_do(OopClosure* f, CodeBlobClosure* cf) {
4324   ALL_JAVA_THREADS(p) {
4325     p->oops_do(f, cf);
4326   }
4327   VMThread::vm_thread()->oops_do(f, cf);
4328 }
4329 
4330 void Threads::change_thread_claim_parity() {
4331   // Set the new claim parity.
4332   assert(_thread_claim_parity >= 0 && _thread_claim_parity <= 2,
4333          "Not in range.");
4334   _thread_claim_parity++;
4335   if (_thread_claim_parity == 3) _thread_claim_parity = 1;
4336   assert(_thread_claim_parity >= 1 && _thread_claim_parity <= 2,
4337          "Not in range.");
4338 }
4339 
4340 #ifdef ASSERT
4341 void Threads::assert_all_threads_claimed() {
4342   ALL_JAVA_THREADS(p) {
4343     const int thread_parity = p->oops_do_parity();
4344     assert((thread_parity == _thread_claim_parity),
4345            "Thread " PTR_FORMAT " has incorrect parity %d != %d", p2i(p), thread_parity, _thread_claim_parity);
4346   }
4347 }
4348 #endif // ASSERT
4349 
4350 void Threads::possibly_parallel_oops_do(bool is_par, OopClosure* f, CodeBlobClosure* cf) {
4351   int cp = Threads::thread_claim_parity();
4352   ALL_JAVA_THREADS(p) {
4353     if (p->claim_oops_do(is_par, cp)) {
4354       p->oops_do(f, cf);
4355     }
4356   }
4357   VMThread* vmt = VMThread::vm_thread();
4358   if (vmt->claim_oops_do(is_par, cp)) {
4359     vmt->oops_do(f, cf);
4360   }
4361 }
4362 
4363 #if INCLUDE_ALL_GCS
4364 // Used by ParallelScavenge
4365 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4366   ALL_JAVA_THREADS(p) {
4367     q->enqueue(new ThreadRootsTask(p));
4368   }
4369   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4370 }
4371 
4372 // Used by Parallel Old
4373 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4374   ALL_JAVA_THREADS(p) {
4375     q->enqueue(new ThreadRootsMarkingTask(p));
4376   }
4377   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4378 }
4379 #endif // INCLUDE_ALL_GCS
4380 
4381 void Threads::nmethods_do(CodeBlobClosure* cf) {
4382   ALL_JAVA_THREADS(p) {
4383     // This is used by the code cache sweeper to mark nmethods that are active
4384     // on the stack of a Java thread. Ignore the sweeper thread itself to avoid
4385     // marking CodeCacheSweeperThread::_scanned_compiled_method as active.
4386     if(!p->is_Code_cache_sweeper_thread()) {
4387       p->nmethods_do(cf);
4388     }
4389   }
4390 }
4391 
4392 void Threads::metadata_do(void f(Metadata*)) {
4393   ALL_JAVA_THREADS(p) {
4394     p->metadata_do(f);
4395   }
4396 }
4397 
4398 class ThreadHandlesClosure : public ThreadClosure {
4399   void (*_f)(Metadata*);
4400  public:
4401   ThreadHandlesClosure(void f(Metadata*)) : _f(f) {}
4402   virtual void do_thread(Thread* thread) {
4403     thread->metadata_handles_do(_f);
4404   }
4405 };
4406 
4407 void Threads::metadata_handles_do(void f(Metadata*)) {
4408   // Only walk the Handles in Thread.
4409   ThreadHandlesClosure handles_closure(f);
4410   threads_do(&handles_closure);
4411 }
4412 
4413 void Threads::deoptimized_wrt_marked_nmethods() {
4414   ALL_JAVA_THREADS(p) {
4415     p->deoptimized_wrt_marked_nmethods();
4416   }
4417 }
4418 
4419 
4420 // Get count Java threads that are waiting to enter the specified monitor.
4421 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4422                                                          address monitor,
4423                                                          bool doLock) {
4424   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4425          "must grab Threads_lock or be at safepoint");
4426   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4427 
4428   int i = 0;
4429   {
4430     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4431     ALL_JAVA_THREADS(p) {
4432       if (!p->can_call_java()) continue;
4433 
4434       address pending = (address)p->current_pending_monitor();
4435       if (pending == monitor) {             // found a match
4436         if (i < count) result->append(p);   // save the first count matches
4437         i++;
4438       }
4439     }
4440   }
4441   return result;
4442 }
4443 
4444 
4445 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4446                                                       bool doLock) {
4447   assert(doLock ||
4448          Threads_lock->owned_by_self() ||
4449          SafepointSynchronize::is_at_safepoint(),
4450          "must grab Threads_lock or be at safepoint");
4451 
4452   // NULL owner means not locked so we can skip the search
4453   if (owner == NULL) return NULL;
4454 
4455   {
4456     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4457     ALL_JAVA_THREADS(p) {
4458       // first, see if owner is the address of a Java thread
4459       if (owner == (address)p) return p;
4460     }
4461   }
4462   // Cannot assert on lack of success here since this function may be
4463   // used by code that is trying to report useful problem information
4464   // like deadlock detection.
4465   if (UseHeavyMonitors) return NULL;
4466 
4467   // If we didn't find a matching Java thread and we didn't force use of
4468   // heavyweight monitors, then the owner is the stack address of the
4469   // Lock Word in the owning Java thread's stack.
4470   //
4471   JavaThread* the_owner = NULL;
4472   {
4473     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4474     ALL_JAVA_THREADS(q) {
4475       if (q->is_lock_owned(owner)) {
4476         the_owner = q;
4477         break;
4478       }
4479     }
4480   }
4481   // cannot assert on lack of success here; see above comment
4482   return the_owner;
4483 }
4484 
4485 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4486 void Threads::print_on(outputStream* st, bool print_stacks,
4487                        bool internal_format, bool print_concurrent_locks) {
4488   char buf[32];
4489   st->print_raw_cr(os::local_time_string(buf, sizeof(buf)));
4490 
4491   st->print_cr("Full thread dump %s (%s %s):",
4492                Abstract_VM_Version::vm_name(),
4493                Abstract_VM_Version::vm_release(),
4494                Abstract_VM_Version::vm_info_string());
4495   st->cr();
4496 
4497 #if INCLUDE_SERVICES
4498   // Dump concurrent locks
4499   ConcurrentLocksDump concurrent_locks;
4500   if (print_concurrent_locks) {
4501     concurrent_locks.dump_at_safepoint();
4502   }
4503 #endif // INCLUDE_SERVICES
4504 
4505   ALL_JAVA_THREADS(p) {
4506     ResourceMark rm;
4507     p->print_on(st);
4508     if (print_stacks) {
4509       if (internal_format) {
4510         p->trace_stack();
4511       } else {
4512         p->print_stack_on(st);
4513       }
4514     }
4515     st->cr();
4516 #if INCLUDE_SERVICES
4517     if (print_concurrent_locks) {
4518       concurrent_locks.print_locks_on(p, st);
4519     }
4520 #endif // INCLUDE_SERVICES
4521   }
4522 
4523   VMThread::vm_thread()->print_on(st);
4524   st->cr();
4525   Universe::heap()->print_gc_threads_on(st);
4526   WatcherThread* wt = WatcherThread::watcher_thread();
4527   if (wt != NULL) {
4528     wt->print_on(st);
4529     st->cr();
4530   }
4531   st->flush();
4532 }
4533 
4534 void Threads::print_on_error(Thread* this_thread, outputStream* st, Thread* current, char* buf,
4535                              int buflen, bool* found_current) {
4536   if (this_thread != NULL) {
4537     bool is_current = (current == this_thread);
4538     *found_current = *found_current || is_current;
4539     st->print("%s", is_current ? "=>" : "  ");
4540 
4541     st->print(PTR_FORMAT, p2i(this_thread));
4542     st->print(" ");
4543     this_thread->print_on_error(st, buf, buflen);
4544     st->cr();
4545   }
4546 }
4547 
4548 class PrintOnErrorClosure : public ThreadClosure {
4549   outputStream* _st;
4550   Thread* _current;
4551   char* _buf;
4552   int _buflen;
4553   bool* _found_current;
4554  public:
4555   PrintOnErrorClosure(outputStream* st, Thread* current, char* buf,
4556                       int buflen, bool* found_current) :
4557    _st(st), _current(current), _buf(buf), _buflen(buflen), _found_current(found_current) {}
4558 
4559   virtual void do_thread(Thread* thread) {
4560     Threads::print_on_error(thread, _st, _current, _buf, _buflen, _found_current);
4561   }
4562 };
4563 
4564 // Threads::print_on_error() is called by fatal error handler. It's possible
4565 // that VM is not at safepoint and/or current thread is inside signal handler.
4566 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4567 // memory (even in resource area), it might deadlock the error handler.
4568 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4569                              int buflen) {
4570   bool found_current = false;
4571   st->print_cr("Java Threads: ( => current thread )");
4572   ALL_JAVA_THREADS(thread) {
4573     print_on_error(thread, st, current, buf, buflen, &found_current);
4574   }
4575   st->cr();
4576 
4577   st->print_cr("Other Threads:");
4578   print_on_error(VMThread::vm_thread(), st, current, buf, buflen, &found_current);
4579   print_on_error(WatcherThread::watcher_thread(), st, current, buf, buflen, &found_current);
4580 
4581   PrintOnErrorClosure print_closure(st, current, buf, buflen, &found_current);
4582   Universe::heap()->gc_threads_do(&print_closure);
4583 
4584   if (!found_current) {
4585     st->cr();
4586     st->print("=>" PTR_FORMAT " (exited) ", p2i(current));
4587     current->print_on_error(st, buf, buflen);
4588     st->cr();
4589   }
4590   st->cr();
4591   st->print_cr("Threads with active compile tasks:");
4592   print_threads_compiling(st, buf, buflen);
4593 }
4594 
4595 void Threads::print_threads_compiling(outputStream* st, char* buf, int buflen) {
4596   ALL_JAVA_THREADS(thread) {
4597     if (thread->is_Compiler_thread()) {
4598       CompilerThread* ct = (CompilerThread*) thread;
4599       if (ct->task() != NULL) {
4600         thread->print_name_on_error(st, buf, buflen);
4601         ct->task()->print(st, NULL, true, true);
4602       }
4603     }
4604   }
4605 }
4606 
4607 
4608 // Internal SpinLock and Mutex
4609 // Based on ParkEvent
4610 
4611 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4612 //
4613 // We employ SpinLocks _only for low-contention, fixed-length
4614 // short-duration critical sections where we're concerned
4615 // about native mutex_t or HotSpot Mutex:: latency.
4616 // The mux construct provides a spin-then-block mutual exclusion
4617 // mechanism.
4618 //
4619 // Testing has shown that contention on the ListLock guarding gFreeList
4620 // is common.  If we implement ListLock as a simple SpinLock it's common
4621 // for the JVM to devolve to yielding with little progress.  This is true
4622 // despite the fact that the critical sections protected by ListLock are
4623 // extremely short.
4624 //
4625 // TODO-FIXME: ListLock should be of type SpinLock.
4626 // We should make this a 1st-class type, integrated into the lock
4627 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4628 // should have sufficient padding to avoid false-sharing and excessive
4629 // cache-coherency traffic.
4630 
4631 
4632 typedef volatile int SpinLockT;
4633 
4634 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4635   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4636     return;   // normal fast-path return
4637   }
4638 
4639   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4640   TEVENT(SpinAcquire - ctx);
4641   int ctr = 0;
4642   int Yields = 0;
4643   for (;;) {
4644     while (*adr != 0) {
4645       ++ctr;
4646       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4647         if (Yields > 5) {
4648           os::naked_short_sleep(1);
4649         } else {
4650           os::naked_yield();
4651           ++Yields;
4652         }
4653       } else {
4654         SpinPause();
4655       }
4656     }
4657     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4658   }
4659 }
4660 
4661 void Thread::SpinRelease(volatile int * adr) {
4662   assert(*adr != 0, "invariant");
4663   OrderAccess::fence();      // guarantee at least release consistency.
4664   // Roach-motel semantics.
4665   // It's safe if subsequent LDs and STs float "up" into the critical section,
4666   // but prior LDs and STs within the critical section can't be allowed
4667   // to reorder or float past the ST that releases the lock.
4668   // Loads and stores in the critical section - which appear in program
4669   // order before the store that releases the lock - must also appear
4670   // before the store that releases the lock in memory visibility order.
4671   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4672   // the ST of 0 into the lock-word which releases the lock, so fence
4673   // more than covers this on all platforms.
4674   *adr = 0;
4675 }
4676 
4677 // muxAcquire and muxRelease:
4678 //
4679 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4680 //    The LSB of the word is set IFF the lock is held.
4681 //    The remainder of the word points to the head of a singly-linked list
4682 //    of threads blocked on the lock.
4683 //
4684 // *  The current implementation of muxAcquire-muxRelease uses its own
4685 //    dedicated Thread._MuxEvent instance.  If we're interested in
4686 //    minimizing the peak number of extant ParkEvent instances then
4687 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4688 //    as certain invariants were satisfied.  Specifically, care would need
4689 //    to be taken with regards to consuming unpark() "permits".
4690 //    A safe rule of thumb is that a thread would never call muxAcquire()
4691 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4692 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4693 //    consume an unpark() permit intended for monitorenter, for instance.
4694 //    One way around this would be to widen the restricted-range semaphore
4695 //    implemented in park().  Another alternative would be to provide
4696 //    multiple instances of the PlatformEvent() for each thread.  One
4697 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4698 //
4699 // *  Usage:
4700 //    -- Only as leaf locks
4701 //    -- for short-term locking only as muxAcquire does not perform
4702 //       thread state transitions.
4703 //
4704 // Alternatives:
4705 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4706 //    but with parking or spin-then-park instead of pure spinning.
4707 // *  Use Taura-Oyama-Yonenzawa locks.
4708 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4709 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4710 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4711 //    acquiring threads use timers (ParkTimed) to detect and recover from
4712 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4713 //    boundaries by using placement-new.
4714 // *  Augment MCS with advisory back-link fields maintained with CAS().
4715 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4716 //    The validity of the backlinks must be ratified before we trust the value.
4717 //    If the backlinks are invalid the exiting thread must back-track through the
4718 //    the forward links, which are always trustworthy.
4719 // *  Add a successor indication.  The LockWord is currently encoded as
4720 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4721 //    to provide the usual futile-wakeup optimization.
4722 //    See RTStt for details.
4723 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4724 //
4725 
4726 
4727 typedef volatile intptr_t MutexT;      // Mux Lock-word
4728 enum MuxBits { LOCKBIT = 1 };
4729 
4730 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4731   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4732   if (w == 0) return;
4733   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4734     return;
4735   }
4736 
4737   TEVENT(muxAcquire - Contention);
4738   ParkEvent * const Self = Thread::current()->_MuxEvent;
4739   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4740   for (;;) {
4741     int its = (os::is_MP() ? 100 : 0) + 1;
4742 
4743     // Optional spin phase: spin-then-park strategy
4744     while (--its >= 0) {
4745       w = *Lock;
4746       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4747         return;
4748       }
4749     }
4750 
4751     Self->reset();
4752     Self->OnList = intptr_t(Lock);
4753     // The following fence() isn't _strictly necessary as the subsequent
4754     // CAS() both serializes execution and ratifies the fetched *Lock value.
4755     OrderAccess::fence();
4756     for (;;) {
4757       w = *Lock;
4758       if ((w & LOCKBIT) == 0) {
4759         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4760           Self->OnList = 0;   // hygiene - allows stronger asserts
4761           return;
4762         }
4763         continue;      // Interference -- *Lock changed -- Just retry
4764       }
4765       assert(w & LOCKBIT, "invariant");
4766       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4767       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4768     }
4769 
4770     while (Self->OnList != 0) {
4771       Self->park();
4772     }
4773   }
4774 }
4775 
4776 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4777   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4778   if (w == 0) return;
4779   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4780     return;
4781   }
4782 
4783   TEVENT(muxAcquire - Contention);
4784   ParkEvent * ReleaseAfter = NULL;
4785   if (ev == NULL) {
4786     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4787   }
4788   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4789   for (;;) {
4790     guarantee(ev->OnList == 0, "invariant");
4791     int its = (os::is_MP() ? 100 : 0) + 1;
4792 
4793     // Optional spin phase: spin-then-park strategy
4794     while (--its >= 0) {
4795       w = *Lock;
4796       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4797         if (ReleaseAfter != NULL) {
4798           ParkEvent::Release(ReleaseAfter);
4799         }
4800         return;
4801       }
4802     }
4803 
4804     ev->reset();
4805     ev->OnList = intptr_t(Lock);
4806     // The following fence() isn't _strictly necessary as the subsequent
4807     // CAS() both serializes execution and ratifies the fetched *Lock value.
4808     OrderAccess::fence();
4809     for (;;) {
4810       w = *Lock;
4811       if ((w & LOCKBIT) == 0) {
4812         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4813           ev->OnList = 0;
4814           // We call ::Release while holding the outer lock, thus
4815           // artificially lengthening the critical section.
4816           // Consider deferring the ::Release() until the subsequent unlock(),
4817           // after we've dropped the outer lock.
4818           if (ReleaseAfter != NULL) {
4819             ParkEvent::Release(ReleaseAfter);
4820           }
4821           return;
4822         }
4823         continue;      // Interference -- *Lock changed -- Just retry
4824       }
4825       assert(w & LOCKBIT, "invariant");
4826       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4827       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4828     }
4829 
4830     while (ev->OnList != 0) {
4831       ev->park();
4832     }
4833   }
4834 }
4835 
4836 // Release() must extract a successor from the list and then wake that thread.
4837 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4838 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4839 // Release() would :
4840 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4841 // (B) Extract a successor from the private list "in-hand"
4842 // (C) attempt to CAS() the residual back into *Lock over null.
4843 //     If there were any newly arrived threads and the CAS() would fail.
4844 //     In that case Release() would detach the RATs, re-merge the list in-hand
4845 //     with the RATs and repeat as needed.  Alternately, Release() might
4846 //     detach and extract a successor, but then pass the residual list to the wakee.
4847 //     The wakee would be responsible for reattaching and remerging before it
4848 //     competed for the lock.
4849 //
4850 // Both "pop" and DMR are immune from ABA corruption -- there can be
4851 // multiple concurrent pushers, but only one popper or detacher.
4852 // This implementation pops from the head of the list.  This is unfair,
4853 // but tends to provide excellent throughput as hot threads remain hot.
4854 // (We wake recently run threads first).
4855 //
4856 // All paths through muxRelease() will execute a CAS.
4857 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4858 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4859 // executed within the critical section are complete and globally visible before the
4860 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4861 void Thread::muxRelease(volatile intptr_t * Lock)  {
4862   for (;;) {
4863     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4864     assert(w & LOCKBIT, "invariant");
4865     if (w == LOCKBIT) return;
4866     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4867     assert(List != NULL, "invariant");
4868     assert(List->OnList == intptr_t(Lock), "invariant");
4869     ParkEvent * const nxt = List->ListNext;
4870     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4871 
4872     // The following CAS() releases the lock and pops the head element.
4873     // The CAS() also ratifies the previously fetched lock-word value.
4874     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4875       continue;
4876     }
4877     List->OnList = 0;
4878     OrderAccess::fence();
4879     List->unpark();
4880     return;
4881   }
4882 }
4883 
4884 
4885 void Threads::verify() {
4886   ALL_JAVA_THREADS(p) {
4887     p->verify();
4888   }
4889   VMThread* thread = VMThread::vm_thread();
4890   if (thread != NULL) thread->verify();
4891 }