1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "gc/serial/defNewGeneration.hpp"
  34 #include "gc/shared/adaptiveSizePolicy.hpp"
  35 #include "gc/shared/cardTableBarrierSet.hpp"
  36 #include "gc/shared/cardTableRS.hpp"
  37 #include "gc/shared/collectedHeap.inline.hpp"
  38 #include "gc/shared/collectorCounters.hpp"
  39 #include "gc/shared/gcId.hpp"
  40 #include "gc/shared/gcLocker.hpp"
  41 #include "gc/shared/gcPolicyCounters.hpp"
  42 #include "gc/shared/gcTrace.hpp"
  43 #include "gc/shared/gcTraceTime.inline.hpp"
  44 #include "gc/shared/genCollectedHeap.hpp"
  45 #include "gc/shared/genOopClosures.inline.hpp"
  46 #include "gc/shared/generationSpec.hpp"
  47 #include "gc/shared/space.hpp"
  48 #include "gc/shared/strongRootsScope.hpp"
  49 #include "gc/shared/vmGCOperations.hpp"
  50 #include "gc/shared/weakProcessor.hpp"
  51 #include "gc/shared/workgroup.hpp"
  52 #include "memory/filemap.hpp"
  53 #include "memory/metaspaceCounters.hpp"
  54 #include "memory/resourceArea.hpp"
  55 #include "oops/oop.inline.hpp"
  56 #include "runtime/biasedLocking.hpp"
  57 #include "runtime/flags/flagSetting.hpp"
  58 #include "runtime/handles.hpp"
  59 #include "runtime/handles.inline.hpp"
  60 #include "runtime/java.hpp"
  61 #include "runtime/vmThread.hpp"
  62 #include "services/management.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "utilities/debug.hpp"
  65 #include "utilities/formatBuffer.hpp"
  66 #include "utilities/macros.hpp"
  67 #include "utilities/stack.inline.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy,
  71                                    Generation::Name young,
  72                                    Generation::Name old,
  73                                    const char* policy_counters_name) :
  74   CollectedHeap(),
  75   _rem_set(NULL),
  76   _young_gen_spec(new GenerationSpec(young,
  77                                      policy->initial_young_size(),
  78                                      policy->max_young_size(),
  79                                      policy->gen_alignment())),
  80   _old_gen_spec(new GenerationSpec(old,
  81                                    policy->initial_old_size(),
  82                                    policy->max_old_size(),
  83                                    policy->gen_alignment())),
  84   _gen_policy(policy),
  85   _soft_ref_gen_policy(),
  86   _gc_policy_counters(new GCPolicyCounters(policy_counters_name, 2, 2)),
  87   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  88   _full_collections_completed(0) {
  89 }
  90 
  91 jint GenCollectedHeap::initialize() {
  92   // While there are no constraints in the GC code that HeapWordSize
  93   // be any particular value, there are multiple other areas in the
  94   // system which believe this to be true (e.g. oop->object_size in some
  95   // cases incorrectly returns the size in wordSize units rather than
  96   // HeapWordSize).
  97   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  98 
  99   // Allocate space for the heap.
 100 
 101   char* heap_address;
 102   ReservedSpace heap_rs;
 103 
 104   size_t heap_alignment = collector_policy()->heap_alignment();
 105 
 106   heap_address = allocate(heap_alignment, &heap_rs);
 107 
 108   if (!heap_rs.is_reserved()) {
 109     vm_shutdown_during_initialization(
 110       "Could not reserve enough space for object heap");
 111     return JNI_ENOMEM;
 112   }
 113 
 114   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 115 
 116   _rem_set = create_rem_set(reserved_region());
 117   _rem_set->initialize();
 118   CardTableBarrierSet *bs = new CardTableBarrierSet(_rem_set);
 119   bs->initialize();
 120   BarrierSet::set_barrier_set(bs);
 121 
 122   ReservedSpace young_rs = heap_rs.first_part(_young_gen_spec->max_size(), false, false);
 123   _young_gen = _young_gen_spec->init(young_rs, rem_set());
 124   heap_rs = heap_rs.last_part(_young_gen_spec->max_size());
 125 
 126   ReservedSpace old_rs = heap_rs.first_part(_old_gen_spec->max_size(), false, false);
 127   _old_gen = _old_gen_spec->init(old_rs, rem_set());
 128   clear_incremental_collection_failed();
 129 
 130   return JNI_OK;
 131 }
 132 
 133 CardTableRS* GenCollectedHeap::create_rem_set(const MemRegion& reserved_region) {
 134   return new CardTableRS(reserved_region, false /* scan_concurrently */);
 135 }
 136 
 137 void GenCollectedHeap::initialize_size_policy(size_t init_eden_size,
 138                                               size_t init_promo_size,
 139                                               size_t init_survivor_size) {
 140   const double max_gc_pause_sec = ((double) MaxGCPauseMillis) / 1000.0;
 141   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 142                                         init_promo_size,
 143                                         init_survivor_size,
 144                                         max_gc_pause_sec,
 145                                         GCTimeRatio);
 146 }
 147 
 148 char* GenCollectedHeap::allocate(size_t alignment,
 149                                  ReservedSpace* heap_rs){
 150   // Now figure out the total size.
 151   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 152   assert(alignment % pageSize == 0, "Must be");
 153 
 154   // Check for overflow.
 155   size_t total_reserved = _young_gen_spec->max_size() + _old_gen_spec->max_size();
 156   if (total_reserved < _young_gen_spec->max_size()) {
 157     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 158                                   "the maximum representable size");
 159   }
 160   assert(total_reserved % alignment == 0,
 161          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 162          SIZE_FORMAT, total_reserved, alignment);
 163 
 164   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 165 
 166   os::trace_page_sizes("Heap",
 167                        collector_policy()->min_heap_byte_size(),
 168                        total_reserved,
 169                        alignment,
 170                        heap_rs->base(),
 171                        heap_rs->size());
 172 
 173   return heap_rs->base();
 174 }
 175 
 176 void GenCollectedHeap::post_initialize() {
 177   CollectedHeap::post_initialize();
 178   ref_processing_init();
 179 
 180   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 181 
 182   initialize_size_policy(def_new_gen->eden()->capacity(),
 183                          _old_gen->capacity(),
 184                          def_new_gen->from()->capacity());
 185 
 186   MarkSweep::initialize();
 187 }
 188 
 189 void GenCollectedHeap::ref_processing_init() {
 190   _young_gen->ref_processor_init();
 191   _old_gen->ref_processor_init();
 192 }
 193 
 194 GenerationSpec* GenCollectedHeap::young_gen_spec() const {
 195   return _young_gen_spec;
 196 }
 197 
 198 GenerationSpec* GenCollectedHeap::old_gen_spec() const {
 199   return _old_gen_spec;
 200 }
 201 
 202 size_t GenCollectedHeap::capacity() const {
 203   return _young_gen->capacity() + _old_gen->capacity();
 204 }
 205 
 206 size_t GenCollectedHeap::used() const {
 207   return _young_gen->used() + _old_gen->used();
 208 }
 209 
 210 void GenCollectedHeap::save_used_regions() {
 211   _old_gen->save_used_region();
 212   _young_gen->save_used_region();
 213 }
 214 
 215 size_t GenCollectedHeap::max_capacity() const {
 216   return _young_gen->max_capacity() + _old_gen->max_capacity();
 217 }
 218 
 219 // Update the _full_collections_completed counter
 220 // at the end of a stop-world full GC.
 221 unsigned int GenCollectedHeap::update_full_collections_completed() {
 222   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 223   assert(_full_collections_completed <= _total_full_collections,
 224          "Can't complete more collections than were started");
 225   _full_collections_completed = _total_full_collections;
 226   ml.notify_all();
 227   return _full_collections_completed;
 228 }
 229 
 230 // Update the _full_collections_completed counter, as appropriate,
 231 // at the end of a concurrent GC cycle. Note the conditional update
 232 // below to allow this method to be called by a concurrent collector
 233 // without synchronizing in any manner with the VM thread (which
 234 // may already have initiated a STW full collection "concurrently").
 235 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 236   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 237   assert((_full_collections_completed <= _total_full_collections) &&
 238          (count <= _total_full_collections),
 239          "Can't complete more collections than were started");
 240   if (count > _full_collections_completed) {
 241     _full_collections_completed = count;
 242     ml.notify_all();
 243   }
 244   return _full_collections_completed;
 245 }
 246 
 247 // Return true if any of the following is true:
 248 // . the allocation won't fit into the current young gen heap
 249 // . gc locker is occupied (jni critical section)
 250 // . heap memory is tight -- the most recent previous collection
 251 //   was a full collection because a partial collection (would
 252 //   have) failed and is likely to fail again
 253 bool GenCollectedHeap::should_try_older_generation_allocation(size_t word_size) const {
 254   size_t young_capacity = _young_gen->capacity_before_gc();
 255   return    (word_size > heap_word_size(young_capacity))
 256          || GCLocker::is_active_and_needs_gc()
 257          || incremental_collection_failed();
 258 }
 259 
 260 HeapWord* GenCollectedHeap::expand_heap_and_allocate(size_t size, bool   is_tlab) {
 261   HeapWord* result = NULL;
 262   if (_old_gen->should_allocate(size, is_tlab)) {
 263     result = _old_gen->expand_and_allocate(size, is_tlab);
 264   }
 265   if (result == NULL) {
 266     if (_young_gen->should_allocate(size, is_tlab)) {
 267       result = _young_gen->expand_and_allocate(size, is_tlab);
 268     }
 269   }
 270   assert(result == NULL || is_in_reserved(result), "result not in heap");
 271   return result;
 272 }
 273 
 274 HeapWord* GenCollectedHeap::mem_allocate_work(size_t size,
 275                                               bool is_tlab,
 276                                               bool* gc_overhead_limit_was_exceeded) {
 277   debug_only(check_for_valid_allocation_state());
 278   assert(no_gc_in_progress(), "Allocation during gc not allowed");
 279 
 280   // In general gc_overhead_limit_was_exceeded should be false so
 281   // set it so here and reset it to true only if the gc time
 282   // limit is being exceeded as checked below.
 283   *gc_overhead_limit_was_exceeded = false;
 284 
 285   HeapWord* result = NULL;
 286 
 287   // Loop until the allocation is satisfied, or unsatisfied after GC.
 288   for (uint try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 289     HandleMark hm; // Discard any handles allocated in each iteration.
 290 
 291     // First allocation attempt is lock-free.
 292     Generation *young = _young_gen;
 293     assert(young->supports_inline_contig_alloc(),
 294       "Otherwise, must do alloc within heap lock");
 295     if (young->should_allocate(size, is_tlab)) {
 296       result = young->par_allocate(size, is_tlab);
 297       if (result != NULL) {
 298         assert(is_in_reserved(result), "result not in heap");
 299         return result;
 300       }
 301     }
 302     uint gc_count_before;  // Read inside the Heap_lock locked region.
 303     {
 304       MutexLocker ml(Heap_lock);
 305       log_trace(gc, alloc)("GenCollectedHeap::mem_allocate_work: attempting locked slow path allocation");
 306       // Note that only large objects get a shot at being
 307       // allocated in later generations.
 308       bool first_only = !should_try_older_generation_allocation(size);
 309 
 310       result = attempt_allocation(size, is_tlab, first_only);
 311       if (result != NULL) {
 312         assert(is_in_reserved(result), "result not in heap");
 313         return result;
 314       }
 315 
 316       if (GCLocker::is_active_and_needs_gc()) {
 317         if (is_tlab) {
 318           return NULL;  // Caller will retry allocating individual object.
 319         }
 320         if (!is_maximal_no_gc()) {
 321           // Try and expand heap to satisfy request.
 322           result = expand_heap_and_allocate(size, is_tlab);
 323           // Result could be null if we are out of space.
 324           if (result != NULL) {
 325             return result;
 326           }
 327         }
 328 
 329         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 330           return NULL; // We didn't get to do a GC and we didn't get any memory.
 331         }
 332 
 333         // If this thread is not in a jni critical section, we stall
 334         // the requestor until the critical section has cleared and
 335         // GC allowed. When the critical section clears, a GC is
 336         // initiated by the last thread exiting the critical section; so
 337         // we retry the allocation sequence from the beginning of the loop,
 338         // rather than causing more, now probably unnecessary, GC attempts.
 339         JavaThread* jthr = JavaThread::current();
 340         if (!jthr->in_critical()) {
 341           MutexUnlocker mul(Heap_lock);
 342           // Wait for JNI critical section to be exited
 343           GCLocker::stall_until_clear();
 344           gclocker_stalled_count += 1;
 345           continue;
 346         } else {
 347           if (CheckJNICalls) {
 348             fatal("Possible deadlock due to allocating while"
 349                   " in jni critical section");
 350           }
 351           return NULL;
 352         }
 353       }
 354 
 355       // Read the gc count while the heap lock is held.
 356       gc_count_before = total_collections();
 357     }
 358 
 359     VM_GenCollectForAllocation op(size, is_tlab, gc_count_before);
 360     VMThread::execute(&op);
 361     if (op.prologue_succeeded()) {
 362       result = op.result();
 363       if (op.gc_locked()) {
 364          assert(result == NULL, "must be NULL if gc_locked() is true");
 365          continue;  // Retry and/or stall as necessary.
 366       }
 367 
 368       // Allocation has failed and a collection
 369       // has been done.  If the gc time limit was exceeded the
 370       // this time, return NULL so that an out-of-memory
 371       // will be thrown.  Clear gc_overhead_limit_exceeded
 372       // so that the overhead exceeded does not persist.
 373 
 374       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 375       const bool softrefs_clear = soft_ref_policy()->all_soft_refs_clear();
 376 
 377       if (limit_exceeded && softrefs_clear) {
 378         *gc_overhead_limit_was_exceeded = true;
 379         size_policy()->set_gc_overhead_limit_exceeded(false);
 380         if (op.result() != NULL) {
 381           CollectedHeap::fill_with_object(op.result(), size);
 382         }
 383         return NULL;
 384       }
 385       assert(result == NULL || is_in_reserved(result),
 386              "result not in heap");
 387       return result;
 388     }
 389 
 390     // Give a warning if we seem to be looping forever.
 391     if ((QueuedAllocationWarningCount > 0) &&
 392         (try_count % QueuedAllocationWarningCount == 0)) {
 393           log_warning(gc, ergo)("GenCollectedHeap::mem_allocate_work retries %d times,"
 394                                 " size=" SIZE_FORMAT " %s", try_count, size, is_tlab ? "(TLAB)" : "");
 395     }
 396   }
 397 }
 398 
 399 #ifndef PRODUCT
 400 // Override of memory state checking method in CollectedHeap:
 401 // Some collectors (CMS for example) can't have badHeapWordVal written
 402 // in the first two words of an object. (For instance , in the case of
 403 // CMS these words hold state used to synchronize between certain
 404 // (concurrent) GC steps and direct allocating mutators.)
 405 // The skip_header_HeapWords() method below, allows us to skip
 406 // over the requisite number of HeapWord's. Note that (for
 407 // generational collectors) this means that those many words are
 408 // skipped in each object, irrespective of the generation in which
 409 // that object lives. The resultant loss of precision seems to be
 410 // harmless and the pain of avoiding that imprecision appears somewhat
 411 // higher than we are prepared to pay for such rudimentary debugging
 412 // support.
 413 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 414                                                          size_t size) {
 415   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 416     // We are asked to check a size in HeapWords,
 417     // but the memory is mangled in juint words.
 418     juint* start = (juint*) (addr + skip_header_HeapWords());
 419     juint* end   = (juint*) (addr + size);
 420     for (juint* slot = start; slot < end; slot += 1) {
 421       assert(*slot == badHeapWordVal,
 422              "Found non badHeapWordValue in pre-allocation check");
 423     }
 424   }
 425 }
 426 #endif
 427 
 428 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 429                                                bool is_tlab,
 430                                                bool first_only) {
 431   HeapWord* res = NULL;
 432 
 433   if (_young_gen->should_allocate(size, is_tlab)) {
 434     res = _young_gen->allocate(size, is_tlab);
 435     if (res != NULL || first_only) {
 436       return res;
 437     }
 438   }
 439 
 440   if (_old_gen->should_allocate(size, is_tlab)) {
 441     res = _old_gen->allocate(size, is_tlab);
 442   }
 443 
 444   return res;
 445 }
 446 
 447 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 448                                          bool* gc_overhead_limit_was_exceeded) {
 449   return mem_allocate_work(size,
 450                            false /* is_tlab */,
 451                            gc_overhead_limit_was_exceeded);
 452 }
 453 
 454 bool GenCollectedHeap::must_clear_all_soft_refs() {
 455   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 456          _gc_cause == GCCause::_wb_full_gc;
 457 }
 458 
 459 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 460                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 461                                           bool restore_marks_for_biased_locking) {
 462   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 463   GCTraceTime(Trace, gc, phases) t1(title);
 464   TraceCollectorStats tcs(gen->counters());
 465   TraceMemoryManagerStats tmms(gen->gc_manager(), gc_cause());
 466 
 467   gen->stat_record()->invocations++;
 468   gen->stat_record()->accumulated_time.start();
 469 
 470   // Must be done anew before each collection because
 471   // a previous collection will do mangling and will
 472   // change top of some spaces.
 473   record_gen_tops_before_GC();
 474 
 475   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 476 
 477   if (run_verification && VerifyBeforeGC) {
 478     HandleMark hm;  // Discard invalid handles created during verification
 479     Universe::verify("Before GC");
 480   }
 481   COMPILER2_PRESENT(DerivedPointerTable::clear());
 482 
 483   if (restore_marks_for_biased_locking) {
 484     // We perform this mark word preservation work lazily
 485     // because it's only at this point that we know whether we
 486     // absolutely have to do it; we want to avoid doing it for
 487     // scavenge-only collections where it's unnecessary
 488     BiasedLocking::preserve_marks();
 489   }
 490 
 491   // Do collection work
 492   {
 493     // Note on ref discovery: For what appear to be historical reasons,
 494     // GCH enables and disabled (by enqueing) refs discovery.
 495     // In the future this should be moved into the generation's
 496     // collect method so that ref discovery and enqueueing concerns
 497     // are local to a generation. The collect method could return
 498     // an appropriate indication in the case that notification on
 499     // the ref lock was needed. This will make the treatment of
 500     // weak refs more uniform (and indeed remove such concerns
 501     // from GCH). XXX
 502 
 503     HandleMark hm;  // Discard invalid handles created during gc
 504     save_marks();   // save marks for all gens
 505     // We want to discover references, but not process them yet.
 506     // This mode is disabled in process_discovered_references if the
 507     // generation does some collection work, or in
 508     // enqueue_discovered_references if the generation returns
 509     // without doing any work.
 510     ReferenceProcessor* rp = gen->ref_processor();
 511     // If the discovery of ("weak") refs in this generation is
 512     // atomic wrt other collectors in this configuration, we
 513     // are guaranteed to have empty discovered ref lists.
 514     if (rp->discovery_is_atomic()) {
 515       rp->enable_discovery();
 516       rp->setup_policy(clear_soft_refs);
 517     } else {
 518       // collect() below will enable discovery as appropriate
 519     }
 520     gen->collect(full, clear_soft_refs, size, is_tlab);
 521     if (!rp->enqueuing_is_done()) {
 522       rp->disable_discovery();
 523     } else {
 524       rp->set_enqueuing_is_done(false);
 525     }
 526     rp->verify_no_references_recorded();
 527   }
 528 
 529   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 530 
 531   gen->stat_record()->accumulated_time.stop();
 532 
 533   update_gc_stats(gen, full);
 534 
 535   if (run_verification && VerifyAfterGC) {
 536     HandleMark hm;  // Discard invalid handles created during verification
 537     Universe::verify("After GC");
 538   }
 539 }
 540 
 541 void GenCollectedHeap::do_collection(bool           full,
 542                                      bool           clear_all_soft_refs,
 543                                      size_t         size,
 544                                      bool           is_tlab,
 545                                      GenerationType max_generation) {
 546   ResourceMark rm;
 547   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 548 
 549   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 550   assert(my_thread->is_VM_thread() ||
 551          my_thread->is_ConcurrentGC_thread(),
 552          "incorrect thread type capability");
 553   assert(Heap_lock->is_locked(),
 554          "the requesting thread should have the Heap_lock");
 555   guarantee(!is_gc_active(), "collection is not reentrant");
 556 
 557   if (GCLocker::check_active_before_gc()) {
 558     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 559   }
 560 
 561   GCIdMark gc_id_mark;
 562 
 563   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 564                           soft_ref_policy()->should_clear_all_soft_refs();
 565 
 566   ClearedAllSoftRefs casr(do_clear_all_soft_refs, soft_ref_policy());
 567 
 568   const size_t metadata_prev_used = MetaspaceUtils::used_bytes();
 569 
 570   print_heap_before_gc();
 571 
 572   {
 573     FlagSetting fl(_is_gc_active, true);
 574 
 575     bool complete = full && (max_generation == OldGen);
 576     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 577     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 578 
 579     FormatBuffer<> gc_string("%s", "Pause ");
 580     if (do_young_collection) {
 581       gc_string.append("Young");
 582     } else {
 583       gc_string.append("Full");
 584     }
 585 
 586     GCTraceCPUTime tcpu;
 587     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 588 
 589     gc_prologue(complete);
 590     increment_total_collections(complete);
 591 
 592     size_t young_prev_used = _young_gen->used();
 593     size_t old_prev_used = _old_gen->used();
 594 
 595     bool run_verification = total_collections() >= VerifyGCStartAt;
 596 
 597     bool prepared_for_verification = false;
 598     bool collected_old = false;
 599 
 600     if (do_young_collection) {
 601       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 602         prepare_for_verify();
 603         prepared_for_verification = true;
 604       }
 605 
 606       collect_generation(_young_gen,
 607                          full,
 608                          size,
 609                          is_tlab,
 610                          run_verification && VerifyGCLevel <= 0,
 611                          do_clear_all_soft_refs,
 612                          false);
 613 
 614       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 615           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 616         // Allocation request was met by young GC.
 617         size = 0;
 618       }
 619     }
 620 
 621     bool must_restore_marks_for_biased_locking = false;
 622 
 623     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 624       if (!complete) {
 625         // The full_collections increment was missed above.
 626         increment_total_full_collections();
 627       }
 628 
 629       if (!prepared_for_verification && run_verification &&
 630           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 631         prepare_for_verify();
 632       }
 633 
 634       if (do_young_collection) {
 635         // We did a young GC. Need a new GC id for the old GC.
 636         GCIdMark gc_id_mark;
 637         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 638         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 639       } else {
 640         // No young GC done. Use the same GC id as was set up earlier in this method.
 641         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 642       }
 643 
 644       must_restore_marks_for_biased_locking = true;
 645       collected_old = true;
 646     }
 647 
 648     // Update "complete" boolean wrt what actually transpired --
 649     // for instance, a promotion failure could have led to
 650     // a whole heap collection.
 651     complete = complete || collected_old;
 652 
 653     print_heap_change(young_prev_used, old_prev_used);
 654     MetaspaceUtils::print_metaspace_change(metadata_prev_used);
 655 
 656     // Adjust generation sizes.
 657     if (collected_old) {
 658       _old_gen->compute_new_size();
 659     }
 660     _young_gen->compute_new_size();
 661 
 662     if (complete) {
 663       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 664       ClassLoaderDataGraph::purge();
 665       MetaspaceUtils::verify_metrics();
 666       // Resize the metaspace capacity after full collections
 667       MetaspaceGC::compute_new_size();
 668       update_full_collections_completed();
 669     }
 670 
 671     // Track memory usage and detect low memory after GC finishes
 672     MemoryService::track_memory_usage();
 673 
 674     gc_epilogue(complete);
 675 
 676     if (must_restore_marks_for_biased_locking) {
 677       BiasedLocking::restore_marks();
 678     }
 679   }
 680 
 681   print_heap_after_gc();
 682 
 683 #ifdef TRACESPINNING
 684   ParallelTaskTerminator::print_termination_counts();
 685 #endif
 686 }
 687 
 688 void GenCollectedHeap::register_nmethod(nmethod* nm) {
 689   CodeCache::register_scavenge_root_nmethod(nm);
 690 }
 691 
 692 void GenCollectedHeap::verify_nmethod(nmethod* nm) {
 693   CodeCache::verify_scavenge_root_nmethod(nm);
 694 }
 695 
 696 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 697   GCCauseSetter x(this, GCCause::_allocation_failure);
 698   HeapWord* result = NULL;
 699 
 700   assert(size != 0, "Precondition violated");
 701   if (GCLocker::is_active_and_needs_gc()) {
 702     // GC locker is active; instead of a collection we will attempt
 703     // to expand the heap, if there's room for expansion.
 704     if (!is_maximal_no_gc()) {
 705       result = expand_heap_and_allocate(size, is_tlab);
 706     }
 707     return result;   // Could be null if we are out of space.
 708   } else if (!incremental_collection_will_fail(false /* don't consult_young */)) {
 709     // Do an incremental collection.
 710     do_collection(false,                     // full
 711                   false,                     // clear_all_soft_refs
 712                   size,                      // size
 713                   is_tlab,                   // is_tlab
 714                   GenCollectedHeap::OldGen); // max_generation
 715   } else {
 716     log_trace(gc)(" :: Trying full because partial may fail :: ");
 717     // Try a full collection; see delta for bug id 6266275
 718     // for the original code and why this has been simplified
 719     // with from-space allocation criteria modified and
 720     // such allocation moved out of the safepoint path.
 721     do_collection(true,                      // full
 722                   false,                     // clear_all_soft_refs
 723                   size,                      // size
 724                   is_tlab,                   // is_tlab
 725                   GenCollectedHeap::OldGen); // max_generation
 726   }
 727 
 728   result = attempt_allocation(size, is_tlab, false /*first_only*/);
 729 
 730   if (result != NULL) {
 731     assert(is_in_reserved(result), "result not in heap");
 732     return result;
 733   }
 734 
 735   // OK, collection failed, try expansion.
 736   result = expand_heap_and_allocate(size, is_tlab);
 737   if (result != NULL) {
 738     return result;
 739   }
 740 
 741   // If we reach this point, we're really out of memory. Try every trick
 742   // we can to reclaim memory. Force collection of soft references. Force
 743   // a complete compaction of the heap. Any additional methods for finding
 744   // free memory should be here, especially if they are expensive. If this
 745   // attempt fails, an OOM exception will be thrown.
 746   {
 747     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 748 
 749     do_collection(true,                      // full
 750                   true,                      // clear_all_soft_refs
 751                   size,                      // size
 752                   is_tlab,                   // is_tlab
 753                   GenCollectedHeap::OldGen); // max_generation
 754   }
 755 
 756   result = attempt_allocation(size, is_tlab, false /* first_only */);
 757   if (result != NULL) {
 758     assert(is_in_reserved(result), "result not in heap");
 759     return result;
 760   }
 761 
 762   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
 763     "Flag should have been handled and cleared prior to this point");
 764 
 765   // What else?  We might try synchronous finalization later.  If the total
 766   // space available is large enough for the allocation, then a more
 767   // complete compaction phase than we've tried so far might be
 768   // appropriate.
 769   return NULL;
 770 }
 771 
 772 #ifdef ASSERT
 773 class AssertNonScavengableClosure: public OopClosure {
 774 public:
 775   virtual void do_oop(oop* p) {
 776     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 777       "Referent should not be scavengable.");  }
 778   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 779 };
 780 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 781 #endif
 782 
 783 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 784                                      ScanningOption so,
 785                                      OopClosure* strong_roots,
 786                                      CLDClosure* strong_cld_closure,
 787                                      CLDClosure* weak_cld_closure,
 788                                      CodeBlobToOopClosure* code_roots) {
 789   // General roots.
 790   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 791   assert(code_roots != NULL, "code root closure should always be set");
 792   // _n_termination for _process_strong_tasks should be set up stream
 793   // in a method not running in a GC worker.  Otherwise the GC worker
 794   // could be trying to change the termination condition while the task
 795   // is executing in another GC worker.
 796 
 797   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 798     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 799   }
 800 
 801   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 802   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 803 
 804   bool is_par = scope->n_threads() > 1;
 805   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 806 
 807   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 808     Universe::oops_do(strong_roots);
 809   }
 810   // Global (strong) JNI handles
 811   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 812     JNIHandles::oops_do(strong_roots);
 813   }
 814 
 815   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 816     ObjectSynchronizer::oops_do(strong_roots);
 817   }
 818   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 819     Management::oops_do(strong_roots);
 820   }
 821   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 822     JvmtiExport::oops_do(strong_roots);
 823   }
 824   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 825     AOTLoader::oops_do(strong_roots);
 826   }
 827 
 828   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 829     SystemDictionary::oops_do(strong_roots);
 830   }
 831 
 832   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 833     if (so & SO_ScavengeCodeCache) {
 834       assert(code_roots != NULL, "must supply closure for code cache");
 835 
 836       // We only visit parts of the CodeCache when scavenging.
 837       CodeCache::scavenge_root_nmethods_do(code_roots);
 838     }
 839     if (so & SO_AllCodeCache) {
 840       assert(code_roots != NULL, "must supply closure for code cache");
 841 
 842       // CMSCollector uses this to do intermediate-strength collections.
 843       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 844       CodeCache::blobs_do(code_roots);
 845     }
 846     // Verify that the code cache contents are not subject to
 847     // movement by a scavenging collection.
 848     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 849     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 850   }
 851 }
 852 
 853 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 854                                                   OopClosure* root_closure) {
 855   assert(root_closure != NULL, "Must be set");
 856   // All threads execute the following. A specific chunk of buckets
 857   // from the StringTable are the individual tasks.
 858   if (scope->n_threads() > 1) {
 859     StringTable::possibly_parallel_oops_do(root_closure);
 860   } else {
 861     StringTable::oops_do(root_closure);
 862   }
 863 }
 864 
 865 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 866                                            OopsInGenClosure* root_closure,
 867                                            OopsInGenClosure* old_gen_closure,
 868                                            CLDClosure* cld_closure) {
 869   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 870 
 871   process_roots(scope, SO_ScavengeCodeCache, root_closure,
 872                 cld_closure, cld_closure, &mark_code_closure);
 873   process_string_table_roots(scope, root_closure);
 874 
 875   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 876     root_closure->reset_generation();
 877   }
 878 
 879   // When collection is parallel, all threads get to cooperate to do
 880   // old generation scanning.
 881   old_gen_closure->set_generation(_old_gen);
 882   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 883   old_gen_closure->reset_generation();
 884 
 885   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 886 }
 887 
 888 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 889                                           bool is_adjust_phase,
 890                                           ScanningOption so,
 891                                           bool only_strong_roots,
 892                                           OopsInGenClosure* root_closure,
 893                                           CLDClosure* cld_closure) {
 894   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 895   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 896 
 897   process_roots(scope, so, root_closure, cld_closure, weak_cld_closure, &mark_code_closure);
 898   if (is_adjust_phase) {
 899     // We never treat the string table as roots during marking
 900     // for the full gc, so we only need to process it during
 901     // the adjust phase.
 902     process_string_table_roots(scope, root_closure);
 903   }
 904 
 905   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 906 }
 907 
 908 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 909   WeakProcessor::oops_do(root_closure);
 910   _young_gen->ref_processor()->weak_oops_do(root_closure);
 911   _old_gen->ref_processor()->weak_oops_do(root_closure);
 912 }
 913 
 914 bool GenCollectedHeap::no_allocs_since_save_marks() {
 915   return _young_gen->no_allocs_since_save_marks() &&
 916          _old_gen->no_allocs_since_save_marks();
 917 }
 918 
 919 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 920   return _young_gen->supports_inline_contig_alloc();
 921 }
 922 
 923 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 924   return _young_gen->top_addr();
 925 }
 926 
 927 HeapWord** GenCollectedHeap::end_addr() const {
 928   return _young_gen->end_addr();
 929 }
 930 
 931 // public collection interfaces
 932 
 933 void GenCollectedHeap::collect(GCCause::Cause cause) {
 934   if (cause == GCCause::_wb_young_gc) {
 935     // Young collection for the WhiteBox API.
 936     collect(cause, YoungGen);
 937   } else {
 938 #ifdef ASSERT
 939   if (cause == GCCause::_scavenge_alot) {
 940     // Young collection only.
 941     collect(cause, YoungGen);
 942   } else {
 943     // Stop-the-world full collection.
 944     collect(cause, OldGen);
 945   }
 946 #else
 947     // Stop-the-world full collection.
 948     collect(cause, OldGen);
 949 #endif
 950   }
 951 }
 952 
 953 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 954   // The caller doesn't have the Heap_lock
 955   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 956   MutexLocker ml(Heap_lock);
 957   collect_locked(cause, max_generation);
 958 }
 959 
 960 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 961   // The caller has the Heap_lock
 962   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 963   collect_locked(cause, OldGen);
 964 }
 965 
 966 // this is the private collection interface
 967 // The Heap_lock is expected to be held on entry.
 968 
 969 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 970   // Read the GC count while holding the Heap_lock
 971   unsigned int gc_count_before      = total_collections();
 972   unsigned int full_gc_count_before = total_full_collections();
 973   {
 974     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 975     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 976                          cause, max_generation);
 977     VMThread::execute(&op);
 978   }
 979 }
 980 
 981 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 982    do_full_collection(clear_all_soft_refs, OldGen);
 983 }
 984 
 985 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 986                                           GenerationType last_generation) {
 987   GenerationType local_last_generation;
 988   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 989       gc_cause() == GCCause::_gc_locker) {
 990     local_last_generation = YoungGen;
 991   } else {
 992     local_last_generation = last_generation;
 993   }
 994 
 995   do_collection(true,                   // full
 996                 clear_all_soft_refs,    // clear_all_soft_refs
 997                 0,                      // size
 998                 false,                  // is_tlab
 999                 local_last_generation); // last_generation
1000   // Hack XXX FIX ME !!!
1001   // A scavenge may not have been attempted, or may have
1002   // been attempted and failed, because the old gen was too full
1003   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
1004       incremental_collection_will_fail(false /* don't consult_young */)) {
1005     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
1006     // This time allow the old gen to be collected as well
1007     do_collection(true,                // full
1008                   clear_all_soft_refs, // clear_all_soft_refs
1009                   0,                   // size
1010                   false,               // is_tlab
1011                   OldGen);             // last_generation
1012   }
1013 }
1014 
1015 bool GenCollectedHeap::is_in_young(oop p) {
1016   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
1017   assert(result == _young_gen->is_in_reserved(p),
1018          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
1019   return result;
1020 }
1021 
1022 // Returns "TRUE" iff "p" points into the committed areas of the heap.
1023 bool GenCollectedHeap::is_in(const void* p) const {
1024   return _young_gen->is_in(p) || _old_gen->is_in(p);
1025 }
1026 
1027 #ifdef ASSERT
1028 // Don't implement this by using is_in_young().  This method is used
1029 // in some cases to check that is_in_young() is correct.
1030 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
1031   assert(is_in_reserved(p) || p == NULL,
1032     "Does not work if address is non-null and outside of the heap");
1033   return p < _young_gen->reserved().end() && p != NULL;
1034 }
1035 #endif
1036 
1037 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
1038   NoHeaderExtendedOopClosure no_header_cl(cl);
1039   oop_iterate(&no_header_cl);
1040 }
1041 
1042 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
1043   _young_gen->oop_iterate(cl);
1044   _old_gen->oop_iterate(cl);
1045 }
1046 
1047 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
1048   _young_gen->object_iterate(cl);
1049   _old_gen->object_iterate(cl);
1050 }
1051 
1052 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
1053   _young_gen->safe_object_iterate(cl);
1054   _old_gen->safe_object_iterate(cl);
1055 }
1056 
1057 Space* GenCollectedHeap::space_containing(const void* addr) const {
1058   Space* res = _young_gen->space_containing(addr);
1059   if (res != NULL) {
1060     return res;
1061   }
1062   res = _old_gen->space_containing(addr);
1063   assert(res != NULL, "Could not find containing space");
1064   return res;
1065 }
1066 
1067 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
1068   assert(is_in_reserved(addr), "block_start of address outside of heap");
1069   if (_young_gen->is_in_reserved(addr)) {
1070     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1071     return _young_gen->block_start(addr);
1072   }
1073 
1074   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1075   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1076   return _old_gen->block_start(addr);
1077 }
1078 
1079 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
1080   assert(is_in_reserved(addr), "block_size of address outside of heap");
1081   if (_young_gen->is_in_reserved(addr)) {
1082     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
1083     return _young_gen->block_size(addr);
1084   }
1085 
1086   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1087   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
1088   return _old_gen->block_size(addr);
1089 }
1090 
1091 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
1092   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
1093   assert(block_start(addr) == addr, "addr must be a block start");
1094   if (_young_gen->is_in_reserved(addr)) {
1095     return _young_gen->block_is_obj(addr);
1096   }
1097 
1098   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
1099   return _old_gen->block_is_obj(addr);
1100 }
1101 
1102 bool GenCollectedHeap::supports_tlab_allocation() const {
1103   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1104   return _young_gen->supports_tlab_allocation();
1105 }
1106 
1107 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
1108   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1109   if (_young_gen->supports_tlab_allocation()) {
1110     return _young_gen->tlab_capacity();
1111   }
1112   return 0;
1113 }
1114 
1115 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
1116   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1117   if (_young_gen->supports_tlab_allocation()) {
1118     return _young_gen->tlab_used();
1119   }
1120   return 0;
1121 }
1122 
1123 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1124   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1125   if (_young_gen->supports_tlab_allocation()) {
1126     return _young_gen->unsafe_max_tlab_alloc();
1127   }
1128   return 0;
1129 }
1130 
1131 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t min_size,
1132                                               size_t requested_size,
1133                                               size_t* actual_size) {
1134   bool gc_overhead_limit_was_exceeded;
1135   HeapWord* result = mem_allocate_work(requested_size /* size */,
1136                                        true /* is_tlab */,
1137                                        &gc_overhead_limit_was_exceeded);
1138   if (result != NULL) {
1139     *actual_size = requested_size;
1140   }
1141 
1142   return result;
1143 }
1144 
1145 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1146 // from the list headed by "*prev_ptr".
1147 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1148   bool first = true;
1149   size_t min_size = 0;   // "first" makes this conceptually infinite.
1150   ScratchBlock **smallest_ptr, *smallest;
1151   ScratchBlock  *cur = *prev_ptr;
1152   while (cur) {
1153     assert(*prev_ptr == cur, "just checking");
1154     if (first || cur->num_words < min_size) {
1155       smallest_ptr = prev_ptr;
1156       smallest     = cur;
1157       min_size     = smallest->num_words;
1158       first        = false;
1159     }
1160     prev_ptr = &cur->next;
1161     cur     =  cur->next;
1162   }
1163   smallest      = *smallest_ptr;
1164   *smallest_ptr = smallest->next;
1165   return smallest;
1166 }
1167 
1168 // Sort the scratch block list headed by res into decreasing size order,
1169 // and set "res" to the result.
1170 static void sort_scratch_list(ScratchBlock*& list) {
1171   ScratchBlock* sorted = NULL;
1172   ScratchBlock* unsorted = list;
1173   while (unsorted) {
1174     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1175     smallest->next  = sorted;
1176     sorted          = smallest;
1177   }
1178   list = sorted;
1179 }
1180 
1181 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1182                                                size_t max_alloc_words) {
1183   ScratchBlock* res = NULL;
1184   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1185   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1186   sort_scratch_list(res);
1187   return res;
1188 }
1189 
1190 void GenCollectedHeap::release_scratch() {
1191   _young_gen->reset_scratch();
1192   _old_gen->reset_scratch();
1193 }
1194 
1195 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1196   void do_generation(Generation* gen) {
1197     gen->prepare_for_verify();
1198   }
1199 };
1200 
1201 void GenCollectedHeap::prepare_for_verify() {
1202   ensure_parsability(false);        // no need to retire TLABs
1203   GenPrepareForVerifyClosure blk;
1204   generation_iterate(&blk, false);
1205 }
1206 
1207 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1208                                           bool old_to_young) {
1209   if (old_to_young) {
1210     cl->do_generation(_old_gen);
1211     cl->do_generation(_young_gen);
1212   } else {
1213     cl->do_generation(_young_gen);
1214     cl->do_generation(_old_gen);
1215   }
1216 }
1217 
1218 bool GenCollectedHeap::is_maximal_no_gc() const {
1219   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1220 }
1221 
1222 void GenCollectedHeap::save_marks() {
1223   _young_gen->save_marks();
1224   _old_gen->save_marks();
1225 }
1226 
1227 GenCollectedHeap* GenCollectedHeap::heap() {
1228   CollectedHeap* heap = Universe::heap();
1229   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1230   assert(heap->kind() == CollectedHeap::Serial ||
1231          heap->kind() == CollectedHeap::CMS, "Invalid name");
1232   return (GenCollectedHeap*) heap;
1233 }
1234 
1235 #if INCLUDE_SERIALGC
1236 void GenCollectedHeap::prepare_for_compaction() {
1237   // Start by compacting into same gen.
1238   CompactPoint cp(_old_gen);
1239   _old_gen->prepare_for_compaction(&cp);
1240   _young_gen->prepare_for_compaction(&cp);
1241 }
1242 #endif // INCLUDE_SERIALGC
1243 
1244 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1245   log_debug(gc, verify)("%s", _old_gen->name());
1246   _old_gen->verify();
1247 
1248   log_debug(gc, verify)("%s", _old_gen->name());
1249   _young_gen->verify();
1250 
1251   log_debug(gc, verify)("RemSet");
1252   rem_set()->verify();
1253 }
1254 
1255 void GenCollectedHeap::print_on(outputStream* st) const {
1256   _young_gen->print_on(st);
1257   _old_gen->print_on(st);
1258   MetaspaceUtils::print_on(st);
1259 }
1260 
1261 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1262 }
1263 
1264 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1265 }
1266 
1267 void GenCollectedHeap::print_tracing_info() const {
1268   if (log_is_enabled(Debug, gc, heap, exit)) {
1269     LogStreamHandle(Debug, gc, heap, exit) lsh;
1270     _young_gen->print_summary_info_on(&lsh);
1271     _old_gen->print_summary_info_on(&lsh);
1272   }
1273 }
1274 
1275 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1276   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1277                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1278   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1279                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1280 }
1281 
1282 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1283  private:
1284   bool _full;
1285  public:
1286   void do_generation(Generation* gen) {
1287     gen->gc_prologue(_full);
1288   }
1289   GenGCPrologueClosure(bool full) : _full(full) {};
1290 };
1291 
1292 void GenCollectedHeap::gc_prologue(bool full) {
1293   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1294 
1295   // Fill TLAB's and such
1296   CollectedHeap::accumulate_statistics_all_tlabs();
1297   ensure_parsability(true);   // retire TLABs
1298 
1299   // Walk generations
1300   GenGCPrologueClosure blk(full);
1301   generation_iterate(&blk, false);  // not old-to-young.
1302 };
1303 
1304 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1305  private:
1306   bool _full;
1307  public:
1308   void do_generation(Generation* gen) {
1309     gen->gc_epilogue(_full);
1310   }
1311   GenGCEpilogueClosure(bool full) : _full(full) {};
1312 };
1313 
1314 void GenCollectedHeap::gc_epilogue(bool full) {
1315 #if COMPILER2_OR_JVMCI
1316   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1317   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1318   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1319 #endif // COMPILER2_OR_JVMCI
1320 
1321   resize_all_tlabs();
1322 
1323   GenGCEpilogueClosure blk(full);
1324   generation_iterate(&blk, false);  // not old-to-young.
1325 
1326   if (!CleanChunkPoolAsync) {
1327     Chunk::clean_chunk_pool();
1328   }
1329 
1330   MetaspaceCounters::update_performance_counters();
1331   CompressedClassSpaceCounters::update_performance_counters();
1332 };
1333 
1334 #ifndef PRODUCT
1335 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1336  private:
1337  public:
1338   void do_generation(Generation* gen) {
1339     gen->record_spaces_top();
1340   }
1341 };
1342 
1343 void GenCollectedHeap::record_gen_tops_before_GC() {
1344   if (ZapUnusedHeapArea) {
1345     GenGCSaveTopsBeforeGCClosure blk;
1346     generation_iterate(&blk, false);  // not old-to-young.
1347   }
1348 }
1349 #endif  // not PRODUCT
1350 
1351 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1352  public:
1353   void do_generation(Generation* gen) {
1354     gen->ensure_parsability();
1355   }
1356 };
1357 
1358 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1359   CollectedHeap::ensure_parsability(retire_tlabs);
1360   GenEnsureParsabilityClosure ep_cl;
1361   generation_iterate(&ep_cl, false);
1362 }
1363 
1364 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1365                                               oop obj,
1366                                               size_t obj_size) {
1367   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1368   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1369   HeapWord* result = NULL;
1370 
1371   result = old_gen->expand_and_allocate(obj_size, false);
1372 
1373   if (result != NULL) {
1374     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1375   }
1376   return oop(result);
1377 }
1378 
1379 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1380   jlong _time;   // in ms
1381   jlong _now;    // in ms
1382 
1383  public:
1384   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1385 
1386   jlong time() { return _time; }
1387 
1388   void do_generation(Generation* gen) {
1389     _time = MIN2(_time, gen->time_of_last_gc(_now));
1390   }
1391 };
1392 
1393 jlong GenCollectedHeap::millis_since_last_gc() {
1394   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1395   // provided the underlying platform provides such a time source
1396   // (and it is bug free). So we still have to guard against getting
1397   // back a time later than 'now'.
1398   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1399   GenTimeOfLastGCClosure tolgc_cl(now);
1400   // iterate over generations getting the oldest
1401   // time that a generation was collected
1402   generation_iterate(&tolgc_cl, false);
1403 
1404   jlong retVal = now - tolgc_cl.time();
1405   if (retVal < 0) {
1406     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1407        ". returning zero instead.", retVal);
1408     return 0;
1409   }
1410   return retVal;
1411 }