1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1BarrierSet.hpp"
  33 #include "gc/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc/g1/g1CollectionSet.hpp"
  35 #include "gc/g1/g1CollectorPolicy.hpp"
  36 #include "gc/g1/g1CollectorState.hpp"
  37 #include "gc/g1/g1ConcurrentRefine.hpp"
  38 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  39 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1GCPhaseTimes.hpp"
  43 #include "gc/g1/g1HeapSizingPolicy.hpp"
  44 #include "gc/g1/g1HeapTransition.hpp"
  45 #include "gc/g1/g1HeapVerifier.hpp"
  46 #include "gc/g1/g1HotCardCache.hpp"
  47 #include "gc/g1/g1MemoryPool.hpp"
  48 #include "gc/g1/g1OopClosures.inline.hpp"
  49 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  50 #include "gc/g1/g1Policy.hpp"
  51 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  52 #include "gc/g1/g1RemSet.hpp"
  53 #include "gc/g1/g1RootClosures.hpp"
  54 #include "gc/g1/g1RootProcessor.hpp"
  55 #include "gc/g1/g1StringDedup.hpp"
  56 #include "gc/g1/g1ThreadLocalData.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/adaptiveSizePolicy.hpp"
  64 #include "gc/shared/gcHeapSummary.hpp"
  65 #include "gc/shared/gcId.hpp"
  66 #include "gc/shared/gcLocker.hpp"
  67 #include "gc/shared/gcTimer.hpp"
  68 #include "gc/shared/gcTrace.hpp"
  69 #include "gc/shared/gcTraceTime.inline.hpp"
  70 #include "gc/shared/generationSpec.hpp"
  71 #include "gc/shared/isGCActiveMark.hpp"
  72 #include "gc/shared/oopStorageParState.hpp"
  73 #include "gc/shared/preservedMarks.inline.hpp"
  74 #include "gc/shared/suspendibleThreadSet.hpp"
  75 #include "gc/shared/referenceProcessor.inline.hpp"
  76 #include "gc/shared/taskqueue.inline.hpp"
  77 #include "gc/shared/weakProcessor.hpp"
  78 #include "logging/log.hpp"
  79 #include "memory/allocation.hpp"
  80 #include "memory/iterator.hpp"
  81 #include "memory/metaspaceShared.hpp"
  82 #include "memory/resourceArea.hpp"
  83 #include "oops/access.inline.hpp"
  84 #include "oops/compressedOops.inline.hpp"
  85 #include "oops/oop.inline.hpp"
  86 #include "prims/resolvedMethodTable.hpp"
  87 #include "runtime/atomic.hpp"
  88 #include "runtime/flags/flagSetting.hpp"
  89 #include "runtime/handles.inline.hpp"
  90 #include "runtime/init.hpp"
  91 #include "runtime/orderAccess.hpp"
  92 #include "runtime/threadSMR.hpp"
  93 #include "runtime/vmThread.hpp"
  94 #include "utilities/align.hpp"
  95 #include "utilities/globalDefinitions.hpp"
  96 #include "utilities/stack.inline.hpp"
  97 
  98 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  99 
 100 // INVARIANTS/NOTES
 101 //
 102 // All allocation activity covered by the G1CollectedHeap interface is
 103 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 104 // and allocate_new_tlab, which are the "entry" points to the
 105 // allocation code from the rest of the JVM.  (Note that this does not
 106 // apply to TLAB allocation, which is not part of this interface: it
 107 // is done by clients of this interface.)
 108 
 109 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 110  private:
 111   size_t _num_dirtied;
 112   G1CollectedHeap* _g1h;
 113   G1CardTable* _g1_ct;
 114 
 115   HeapRegion* region_for_card(jbyte* card_ptr) const {
 116     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 117   }
 118 
 119   bool will_become_free(HeapRegion* hr) const {
 120     // A region will be freed by free_collection_set if the region is in the
 121     // collection set and has not had an evacuation failure.
 122     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 123   }
 124 
 125  public:
 126   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 127     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 128 
 129   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 130     HeapRegion* hr = region_for_card(card_ptr);
 131 
 132     // Should only dirty cards in regions that won't be freed.
 133     if (!will_become_free(hr)) {
 134       *card_ptr = G1CardTable::dirty_card_val();
 135       _num_dirtied++;
 136     }
 137 
 138     return true;
 139   }
 140 
 141   size_t num_dirtied()   const { return _num_dirtied; }
 142 };
 143 
 144 
 145 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 146   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 147 }
 148 
 149 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 150   // The from card cache is not the memory that is actually committed. So we cannot
 151   // take advantage of the zero_filled parameter.
 152   reset_from_card_cache(start_idx, num_regions);
 153 }
 154 
 155 
 156 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 157                                              MemRegion mr) {
 158   return new HeapRegion(hrs_index, bot(), mr);
 159 }
 160 
 161 // Private methods.
 162 
 163 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 164   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 165          "the only time we use this to allocate a humongous region is "
 166          "when we are allocating a single humongous region");
 167 
 168   HeapRegion* res = _hrm.allocate_free_region(is_old);
 169 
 170   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 171     // Currently, only attempts to allocate GC alloc regions set
 172     // do_expand to true. So, we should only reach here during a
 173     // safepoint. If this assumption changes we might have to
 174     // reconsider the use of _expand_heap_after_alloc_failure.
 175     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 176 
 177     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 178                               word_size * HeapWordSize);
 179 
 180     if (expand(word_size * HeapWordSize)) {
 181       // Given that expand() succeeded in expanding the heap, and we
 182       // always expand the heap by an amount aligned to the heap
 183       // region size, the free list should in theory not be empty.
 184       // In either case allocate_free_region() will check for NULL.
 185       res = _hrm.allocate_free_region(is_old);
 186     } else {
 187       _expand_heap_after_alloc_failure = false;
 188     }
 189   }
 190   return res;
 191 }
 192 
 193 HeapWord*
 194 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 195                                                            uint num_regions,
 196                                                            size_t word_size) {
 197   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 198   assert(is_humongous(word_size), "word_size should be humongous");
 199   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 200 
 201   // Index of last region in the series.
 202   uint last = first + num_regions - 1;
 203 
 204   // We need to initialize the region(s) we just discovered. This is
 205   // a bit tricky given that it can happen concurrently with
 206   // refinement threads refining cards on these regions and
 207   // potentially wanting to refine the BOT as they are scanning
 208   // those cards (this can happen shortly after a cleanup; see CR
 209   // 6991377). So we have to set up the region(s) carefully and in
 210   // a specific order.
 211 
 212   // The word size sum of all the regions we will allocate.
 213   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 214   assert(word_size <= word_size_sum, "sanity");
 215 
 216   // This will be the "starts humongous" region.
 217   HeapRegion* first_hr = region_at(first);
 218   // The header of the new object will be placed at the bottom of
 219   // the first region.
 220   HeapWord* new_obj = first_hr->bottom();
 221   // This will be the new top of the new object.
 222   HeapWord* obj_top = new_obj + word_size;
 223 
 224   // First, we need to zero the header of the space that we will be
 225   // allocating. When we update top further down, some refinement
 226   // threads might try to scan the region. By zeroing the header we
 227   // ensure that any thread that will try to scan the region will
 228   // come across the zero klass word and bail out.
 229   //
 230   // NOTE: It would not have been correct to have used
 231   // CollectedHeap::fill_with_object() and make the space look like
 232   // an int array. The thread that is doing the allocation will
 233   // later update the object header to a potentially different array
 234   // type and, for a very short period of time, the klass and length
 235   // fields will be inconsistent. This could cause a refinement
 236   // thread to calculate the object size incorrectly.
 237   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 238 
 239   // Next, pad out the unused tail of the last region with filler
 240   // objects, for improved usage accounting.
 241   // How many words we use for filler objects.
 242   size_t word_fill_size = word_size_sum - word_size;
 243 
 244   // How many words memory we "waste" which cannot hold a filler object.
 245   size_t words_not_fillable = 0;
 246 
 247   if (word_fill_size >= min_fill_size()) {
 248     fill_with_objects(obj_top, word_fill_size);
 249   } else if (word_fill_size > 0) {
 250     // We have space to fill, but we cannot fit an object there.
 251     words_not_fillable = word_fill_size;
 252     word_fill_size = 0;
 253   }
 254 
 255   // We will set up the first region as "starts humongous". This
 256   // will also update the BOT covering all the regions to reflect
 257   // that there is a single object that starts at the bottom of the
 258   // first region.
 259   first_hr->set_starts_humongous(obj_top, word_fill_size);
 260   _g1_policy->remset_tracker()->update_at_allocate(first_hr);
 261   // Then, if there are any, we will set up the "continues
 262   // humongous" regions.
 263   HeapRegion* hr = NULL;
 264   for (uint i = first + 1; i <= last; ++i) {
 265     hr = region_at(i);
 266     hr->set_continues_humongous(first_hr);
 267     _g1_policy->remset_tracker()->update_at_allocate(hr);
 268   }
 269 
 270   // Up to this point no concurrent thread would have been able to
 271   // do any scanning on any region in this series. All the top
 272   // fields still point to bottom, so the intersection between
 273   // [bottom,top] and [card_start,card_end] will be empty. Before we
 274   // update the top fields, we'll do a storestore to make sure that
 275   // no thread sees the update to top before the zeroing of the
 276   // object header and the BOT initialization.
 277   OrderAccess::storestore();
 278 
 279   // Now, we will update the top fields of the "continues humongous"
 280   // regions except the last one.
 281   for (uint i = first; i < last; ++i) {
 282     hr = region_at(i);
 283     hr->set_top(hr->end());
 284   }
 285 
 286   hr = region_at(last);
 287   // If we cannot fit a filler object, we must set top to the end
 288   // of the humongous object, otherwise we cannot iterate the heap
 289   // and the BOT will not be complete.
 290   hr->set_top(hr->end() - words_not_fillable);
 291 
 292   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 293          "obj_top should be in last region");
 294 
 295   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 296 
 297   assert(words_not_fillable == 0 ||
 298          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 299          "Miscalculation in humongous allocation");
 300 
 301   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 302 
 303   for (uint i = first; i <= last; ++i) {
 304     hr = region_at(i);
 305     _humongous_set.add(hr);
 306     _hr_printer.alloc(hr);
 307   }
 308 
 309   return new_obj;
 310 }
 311 
 312 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 313   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 314   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 315 }
 316 
 317 // If could fit into free regions w/o expansion, try.
 318 // Otherwise, if can expand, do so.
 319 // Otherwise, if using ex regions might help, try with ex given back.
 320 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 321   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 322 
 323   _verifier->verify_region_sets_optional();
 324 
 325   uint first = G1_NO_HRM_INDEX;
 326   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 327 
 328   if (obj_regions == 1) {
 329     // Only one region to allocate, try to use a fast path by directly allocating
 330     // from the free lists. Do not try to expand here, we will potentially do that
 331     // later.
 332     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 333     if (hr != NULL) {
 334       first = hr->hrm_index();
 335     }
 336   } else {
 337     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 338     // are lucky enough to find some.
 339     first = _hrm.find_contiguous_only_empty(obj_regions);
 340     if (first != G1_NO_HRM_INDEX) {
 341       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 342     }
 343   }
 344 
 345   if (first == G1_NO_HRM_INDEX) {
 346     // Policy: We could not find enough regions for the humongous object in the
 347     // free list. Look through the heap to find a mix of free and uncommitted regions.
 348     // If so, try expansion.
 349     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 350     if (first != G1_NO_HRM_INDEX) {
 351       // We found something. Make sure these regions are committed, i.e. expand
 352       // the heap. Alternatively we could do a defragmentation GC.
 353       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 354                                     word_size * HeapWordSize);
 355 
 356       _hrm.expand_at(first, obj_regions, workers());
 357       g1_policy()->record_new_heap_size(num_regions());
 358 
 359 #ifdef ASSERT
 360       for (uint i = first; i < first + obj_regions; ++i) {
 361         HeapRegion* hr = region_at(i);
 362         assert(hr->is_free(), "sanity");
 363         assert(hr->is_empty(), "sanity");
 364         assert(is_on_master_free_list(hr), "sanity");
 365       }
 366 #endif
 367       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 368     } else {
 369       // Policy: Potentially trigger a defragmentation GC.
 370     }
 371   }
 372 
 373   HeapWord* result = NULL;
 374   if (first != G1_NO_HRM_INDEX) {
 375     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 376     assert(result != NULL, "it should always return a valid result");
 377 
 378     // A successful humongous object allocation changes the used space
 379     // information of the old generation so we need to recalculate the
 380     // sizes and update the jstat counters here.
 381     g1mm()->update_sizes();
 382   }
 383 
 384   _verifier->verify_region_sets_optional();
 385 
 386   return result;
 387 }
 388 
 389 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 390                                              size_t requested_size,
 391                                              size_t* actual_size) {
 392   assert_heap_not_locked_and_not_at_safepoint();
 393   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 394 
 395   return attempt_allocation(min_size, requested_size, actual_size);
 396 }
 397 
 398 HeapWord*
 399 G1CollectedHeap::mem_allocate(size_t word_size,
 400                               bool*  gc_overhead_limit_was_exceeded) {
 401   assert_heap_not_locked_and_not_at_safepoint();
 402 
 403   if (is_humongous(word_size)) {
 404     return attempt_allocation_humongous(word_size);
 405   }
 406   size_t dummy = 0;
 407   return attempt_allocation(word_size, word_size, &dummy);
 408 }
 409 
 410 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 411   ResourceMark rm; // For retrieving the thread names in log messages.
 412 
 413   // Make sure you read the note in attempt_allocation_humongous().
 414 
 415   assert_heap_not_locked_and_not_at_safepoint();
 416   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 417          "be called for humongous allocation requests");
 418 
 419   // We should only get here after the first-level allocation attempt
 420   // (attempt_allocation()) failed to allocate.
 421 
 422   // We will loop until a) we manage to successfully perform the
 423   // allocation or b) we successfully schedule a collection which
 424   // fails to perform the allocation. b) is the only case when we'll
 425   // return NULL.
 426   HeapWord* result = NULL;
 427   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 428     bool should_try_gc;
 429     uint gc_count_before;
 430 
 431     {
 432       MutexLockerEx x(Heap_lock);
 433       result = _allocator->attempt_allocation_locked(word_size);
 434       if (result != NULL) {
 435         return result;
 436       }
 437 
 438       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 439       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 440       // waiting because the GCLocker is active to not wait too long.
 441       if (GCLocker::is_active_and_needs_gc() && g1_policy()->can_expand_young_list()) {
 442         // No need for an ergo message here, can_expand_young_list() does this when
 443         // it returns true.
 444         result = _allocator->attempt_allocation_force(word_size);
 445         if (result != NULL) {
 446           return result;
 447         }
 448       }
 449       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 450       // the GCLocker initiated GC has been performed and then retry. This includes
 451       // the case when the GC Locker is not active but has not been performed.
 452       should_try_gc = !GCLocker::needs_gc();
 453       // Read the GC count while still holding the Heap_lock.
 454       gc_count_before = total_collections();
 455     }
 456 
 457     if (should_try_gc) {
 458       bool succeeded;
 459       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 460                                    GCCause::_g1_inc_collection_pause);
 461       if (result != NULL) {
 462         assert(succeeded, "only way to get back a non-NULL result");
 463         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 464                              Thread::current()->name(), p2i(result));
 465         return result;
 466       }
 467 
 468       if (succeeded) {
 469         // We successfully scheduled a collection which failed to allocate. No
 470         // point in trying to allocate further. We'll just return NULL.
 471         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 472                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 473         return NULL;
 474       }
 475       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 476                            Thread::current()->name(), word_size);
 477     } else {
 478       // Failed to schedule a collection.
 479       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 480         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 481                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 482         return NULL;
 483       }
 484       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 485       // The GCLocker is either active or the GCLocker initiated
 486       // GC has not yet been performed. Stall until it is and
 487       // then retry the allocation.
 488       GCLocker::stall_until_clear();
 489       gclocker_retry_count += 1;
 490     }
 491 
 492     // We can reach here if we were unsuccessful in scheduling a
 493     // collection (because another thread beat us to it) or if we were
 494     // stalled due to the GC locker. In either can we should retry the
 495     // allocation attempt in case another thread successfully
 496     // performed a collection and reclaimed enough space. We do the
 497     // first attempt (without holding the Heap_lock) here and the
 498     // follow-on attempt will be at the start of the next loop
 499     // iteration (after taking the Heap_lock).
 500     size_t dummy = 0;
 501     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 502     if (result != NULL) {
 503       return result;
 504     }
 505 
 506     // Give a warning if we seem to be looping forever.
 507     if ((QueuedAllocationWarningCount > 0) &&
 508         (try_count % QueuedAllocationWarningCount == 0)) {
 509       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 510                              Thread::current()->name(), try_count, word_size);
 511     }
 512   }
 513 
 514   ShouldNotReachHere();
 515   return NULL;
 516 }
 517 
 518 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 519   assert_at_safepoint_on_vm_thread();
 520   if (_archive_allocator == NULL) {
 521     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 522   }
 523 }
 524 
 525 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 526   // Allocations in archive regions cannot be of a size that would be considered
 527   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 528   // may be different at archive-restore time.
 529   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 530 }
 531 
 532 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 533   assert_at_safepoint_on_vm_thread();
 534   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 535   if (is_archive_alloc_too_large(word_size)) {
 536     return NULL;
 537   }
 538   return _archive_allocator->archive_mem_allocate(word_size);
 539 }
 540 
 541 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 542                                               size_t end_alignment_in_bytes) {
 543   assert_at_safepoint_on_vm_thread();
 544   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 545 
 546   // Call complete_archive to do the real work, filling in the MemRegion
 547   // array with the archive regions.
 548   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 549   delete _archive_allocator;
 550   _archive_allocator = NULL;
 551 }
 552 
 553 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 554   assert(ranges != NULL, "MemRegion array NULL");
 555   assert(count != 0, "No MemRegions provided");
 556   MemRegion reserved = _hrm.reserved();
 557   for (size_t i = 0; i < count; i++) {
 558     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 559       return false;
 560     }
 561   }
 562   return true;
 563 }
 564 
 565 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 566                                             size_t count,
 567                                             bool open) {
 568   assert(!is_init_completed(), "Expect to be called at JVM init time");
 569   assert(ranges != NULL, "MemRegion array NULL");
 570   assert(count != 0, "No MemRegions provided");
 571   MutexLockerEx x(Heap_lock);
 572 
 573   MemRegion reserved = _hrm.reserved();
 574   HeapWord* prev_last_addr = NULL;
 575   HeapRegion* prev_last_region = NULL;
 576 
 577   // Temporarily disable pretouching of heap pages. This interface is used
 578   // when mmap'ing archived heap data in, so pre-touching is wasted.
 579   FlagSetting fs(AlwaysPreTouch, false);
 580 
 581   // Enable archive object checking used by G1MarkSweep. We have to let it know
 582   // about each archive range, so that objects in those ranges aren't marked.
 583   G1ArchiveAllocator::enable_archive_object_check();
 584 
 585   // For each specified MemRegion range, allocate the corresponding G1
 586   // regions and mark them as archive regions. We expect the ranges
 587   // in ascending starting address order, without overlap.
 588   for (size_t i = 0; i < count; i++) {
 589     MemRegion curr_range = ranges[i];
 590     HeapWord* start_address = curr_range.start();
 591     size_t word_size = curr_range.word_size();
 592     HeapWord* last_address = curr_range.last();
 593     size_t commits = 0;
 594 
 595     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 596               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 597               p2i(start_address), p2i(last_address));
 598     guarantee(start_address > prev_last_addr,
 599               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 600               p2i(start_address), p2i(prev_last_addr));
 601     prev_last_addr = last_address;
 602 
 603     // Check for ranges that start in the same G1 region in which the previous
 604     // range ended, and adjust the start address so we don't try to allocate
 605     // the same region again. If the current range is entirely within that
 606     // region, skip it, just adjusting the recorded top.
 607     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 608     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 609       start_address = start_region->end();
 610       if (start_address > last_address) {
 611         increase_used(word_size * HeapWordSize);
 612         start_region->set_top(last_address + 1);
 613         continue;
 614       }
 615       start_region->set_top(start_address);
 616       curr_range = MemRegion(start_address, last_address + 1);
 617       start_region = _hrm.addr_to_region(start_address);
 618     }
 619 
 620     // Perform the actual region allocation, exiting if it fails.
 621     // Then note how much new space we have allocated.
 622     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 623       return false;
 624     }
 625     increase_used(word_size * HeapWordSize);
 626     if (commits != 0) {
 627       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 628                                 HeapRegion::GrainWords * HeapWordSize * commits);
 629 
 630     }
 631 
 632     // Mark each G1 region touched by the range as archive, add it to
 633     // the old set, and set top.
 634     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 635     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 636     prev_last_region = last_region;
 637 
 638     while (curr_region != NULL) {
 639       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 640              "Region already in use (index %u)", curr_region->hrm_index());
 641       if (open) {
 642         curr_region->set_open_archive();
 643       } else {
 644         curr_region->set_closed_archive();
 645       }
 646       _hr_printer.alloc(curr_region);
 647       _old_set.add(curr_region);
 648       HeapWord* top;
 649       HeapRegion* next_region;
 650       if (curr_region != last_region) {
 651         top = curr_region->end();
 652         next_region = _hrm.next_region_in_heap(curr_region);
 653       } else {
 654         top = last_address + 1;
 655         next_region = NULL;
 656       }
 657       curr_region->set_top(top);
 658       curr_region->set_first_dead(top);
 659       curr_region->set_end_of_live(top);
 660       curr_region = next_region;
 661     }
 662 
 663     // Notify mark-sweep of the archive
 664     G1ArchiveAllocator::set_range_archive(curr_range, open);
 665   }
 666   return true;
 667 }
 668 
 669 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 670   assert(!is_init_completed(), "Expect to be called at JVM init time");
 671   assert(ranges != NULL, "MemRegion array NULL");
 672   assert(count != 0, "No MemRegions provided");
 673   MemRegion reserved = _hrm.reserved();
 674   HeapWord *prev_last_addr = NULL;
 675   HeapRegion* prev_last_region = NULL;
 676 
 677   // For each MemRegion, create filler objects, if needed, in the G1 regions
 678   // that contain the address range. The address range actually within the
 679   // MemRegion will not be modified. That is assumed to have been initialized
 680   // elsewhere, probably via an mmap of archived heap data.
 681   MutexLockerEx x(Heap_lock);
 682   for (size_t i = 0; i < count; i++) {
 683     HeapWord* start_address = ranges[i].start();
 684     HeapWord* last_address = ranges[i].last();
 685 
 686     assert(reserved.contains(start_address) && reserved.contains(last_address),
 687            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 688            p2i(start_address), p2i(last_address));
 689     assert(start_address > prev_last_addr,
 690            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 691            p2i(start_address), p2i(prev_last_addr));
 692 
 693     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 694     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 695     HeapWord* bottom_address = start_region->bottom();
 696 
 697     // Check for a range beginning in the same region in which the
 698     // previous one ended.
 699     if (start_region == prev_last_region) {
 700       bottom_address = prev_last_addr + 1;
 701     }
 702 
 703     // Verify that the regions were all marked as archive regions by
 704     // alloc_archive_regions.
 705     HeapRegion* curr_region = start_region;
 706     while (curr_region != NULL) {
 707       guarantee(curr_region->is_archive(),
 708                 "Expected archive region at index %u", curr_region->hrm_index());
 709       if (curr_region != last_region) {
 710         curr_region = _hrm.next_region_in_heap(curr_region);
 711       } else {
 712         curr_region = NULL;
 713       }
 714     }
 715 
 716     prev_last_addr = last_address;
 717     prev_last_region = last_region;
 718 
 719     // Fill the memory below the allocated range with dummy object(s),
 720     // if the region bottom does not match the range start, or if the previous
 721     // range ended within the same G1 region, and there is a gap.
 722     if (start_address != bottom_address) {
 723       size_t fill_size = pointer_delta(start_address, bottom_address);
 724       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 725       increase_used(fill_size * HeapWordSize);
 726     }
 727   }
 728 }
 729 
 730 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 731                                                      size_t desired_word_size,
 732                                                      size_t* actual_word_size) {
 733   assert_heap_not_locked_and_not_at_safepoint();
 734   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 735          "be called for humongous allocation requests");
 736 
 737   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 738 
 739   if (result == NULL) {
 740     *actual_word_size = desired_word_size;
 741     result = attempt_allocation_slow(desired_word_size);
 742   }
 743 
 744   assert_heap_not_locked();
 745   if (result != NULL) {
 746     assert(*actual_word_size != 0, "Actual size must have been set here");
 747     dirty_young_block(result, *actual_word_size);
 748   } else {
 749     *actual_word_size = 0;
 750   }
 751 
 752   return result;
 753 }
 754 
 755 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 756   assert(!is_init_completed(), "Expect to be called at JVM init time");
 757   assert(ranges != NULL, "MemRegion array NULL");
 758   assert(count != 0, "No MemRegions provided");
 759   MemRegion reserved = _hrm.reserved();
 760   HeapWord* prev_last_addr = NULL;
 761   HeapRegion* prev_last_region = NULL;
 762   size_t size_used = 0;
 763   size_t uncommitted_regions = 0;
 764 
 765   // For each Memregion, free the G1 regions that constitute it, and
 766   // notify mark-sweep that the range is no longer to be considered 'archive.'
 767   MutexLockerEx x(Heap_lock);
 768   for (size_t i = 0; i < count; i++) {
 769     HeapWord* start_address = ranges[i].start();
 770     HeapWord* last_address = ranges[i].last();
 771 
 772     assert(reserved.contains(start_address) && reserved.contains(last_address),
 773            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 774            p2i(start_address), p2i(last_address));
 775     assert(start_address > prev_last_addr,
 776            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 777            p2i(start_address), p2i(prev_last_addr));
 778     size_used += ranges[i].byte_size();
 779     prev_last_addr = last_address;
 780 
 781     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 782     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 783 
 784     // Check for ranges that start in the same G1 region in which the previous
 785     // range ended, and adjust the start address so we don't try to free
 786     // the same region again. If the current range is entirely within that
 787     // region, skip it.
 788     if (start_region == prev_last_region) {
 789       start_address = start_region->end();
 790       if (start_address > last_address) {
 791         continue;
 792       }
 793       start_region = _hrm.addr_to_region(start_address);
 794     }
 795     prev_last_region = last_region;
 796 
 797     // After verifying that each region was marked as an archive region by
 798     // alloc_archive_regions, set it free and empty and uncommit it.
 799     HeapRegion* curr_region = start_region;
 800     while (curr_region != NULL) {
 801       guarantee(curr_region->is_archive(),
 802                 "Expected archive region at index %u", curr_region->hrm_index());
 803       uint curr_index = curr_region->hrm_index();
 804       _old_set.remove(curr_region);
 805       curr_region->set_free();
 806       curr_region->set_top(curr_region->bottom());
 807       if (curr_region != last_region) {
 808         curr_region = _hrm.next_region_in_heap(curr_region);
 809       } else {
 810         curr_region = NULL;
 811       }
 812       _hrm.shrink_at(curr_index, 1);
 813       uncommitted_regions++;
 814     }
 815 
 816     // Notify mark-sweep that this is no longer an archive range.
 817     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 818   }
 819 
 820   if (uncommitted_regions != 0) {
 821     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 822                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 823   }
 824   decrease_used(size_used);
 825 }
 826 
 827 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 828   assert(obj != NULL, "archived obj is NULL");
 829   assert(MetaspaceShared::is_archive_object(obj), "must be archived object");
 830 
 831   // Loading an archived object makes it strongly reachable. If it is
 832   // loaded during concurrent marking, it must be enqueued to the SATB
 833   // queue, shading the previously white object gray.
 834   G1BarrierSet::enqueue(obj);
 835 
 836   return obj;
 837 }
 838 
 839 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 840   ResourceMark rm; // For retrieving the thread names in log messages.
 841 
 842   // The structure of this method has a lot of similarities to
 843   // attempt_allocation_slow(). The reason these two were not merged
 844   // into a single one is that such a method would require several "if
 845   // allocation is not humongous do this, otherwise do that"
 846   // conditional paths which would obscure its flow. In fact, an early
 847   // version of this code did use a unified method which was harder to
 848   // follow and, as a result, it had subtle bugs that were hard to
 849   // track down. So keeping these two methods separate allows each to
 850   // be more readable. It will be good to keep these two in sync as
 851   // much as possible.
 852 
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 855          "should only be called for humongous allocations");
 856 
 857   // Humongous objects can exhaust the heap quickly, so we should check if we
 858   // need to start a marking cycle at each humongous object allocation. We do
 859   // the check before we do the actual allocation. The reason for doing it
 860   // before the allocation is that we avoid having to keep track of the newly
 861   // allocated memory while we do a GC.
 862   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 863                                            word_size)) {
 864     collect(GCCause::_g1_humongous_allocation);
 865   }
 866 
 867   // We will loop until a) we manage to successfully perform the
 868   // allocation or b) we successfully schedule a collection which
 869   // fails to perform the allocation. b) is the only case when we'll
 870   // return NULL.
 871   HeapWord* result = NULL;
 872   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 873     bool should_try_gc;
 874     uint gc_count_before;
 875 
 876 
 877     {
 878       MutexLockerEx x(Heap_lock);
 879 
 880       // Given that humongous objects are not allocated in young
 881       // regions, we'll first try to do the allocation without doing a
 882       // collection hoping that there's enough space in the heap.
 883       result = humongous_obj_allocate(word_size);
 884       if (result != NULL) {
 885         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 886         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 887         return result;
 888       }
 889 
 890       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 891       // the GCLocker initiated GC has been performed and then retry. This includes
 892       // the case when the GC Locker is not active but has not been performed.
 893       should_try_gc = !GCLocker::needs_gc();
 894       // Read the GC count while still holding the Heap_lock.
 895       gc_count_before = total_collections();
 896     }
 897 
 898     if (should_try_gc) {
 899       bool succeeded;
 900       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 901                                    GCCause::_g1_humongous_allocation);
 902       if (result != NULL) {
 903         assert(succeeded, "only way to get back a non-NULL result");
 904         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 905                              Thread::current()->name(), p2i(result));
 906         return result;
 907       }
 908 
 909       if (succeeded) {
 910         // We successfully scheduled a collection which failed to allocate. No
 911         // point in trying to allocate further. We'll just return NULL.
 912         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 913                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 914         return NULL;
 915       }
 916       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 917                            Thread::current()->name(), word_size);
 918     } else {
 919       // Failed to schedule a collection.
 920       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 921         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 922                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 923         return NULL;
 924       }
 925       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 926       // The GCLocker is either active or the GCLocker initiated
 927       // GC has not yet been performed. Stall until it is and
 928       // then retry the allocation.
 929       GCLocker::stall_until_clear();
 930       gclocker_retry_count += 1;
 931     }
 932 
 933 
 934     // We can reach here if we were unsuccessful in scheduling a
 935     // collection (because another thread beat us to it) or if we were
 936     // stalled due to the GC locker. In either can we should retry the
 937     // allocation attempt in case another thread successfully
 938     // performed a collection and reclaimed enough space.
 939     // Humongous object allocation always needs a lock, so we wait for the retry
 940     // in the next iteration of the loop, unlike for the regular iteration case.
 941     // Give a warning if we seem to be looping forever.
 942 
 943     if ((QueuedAllocationWarningCount > 0) &&
 944         (try_count % QueuedAllocationWarningCount == 0)) {
 945       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 946                              Thread::current()->name(), try_count, word_size);
 947     }
 948   }
 949 
 950   ShouldNotReachHere();
 951   return NULL;
 952 }
 953 
 954 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 955                                                            bool expect_null_mutator_alloc_region) {
 956   assert_at_safepoint_on_vm_thread();
 957   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 958          "the current alloc region was unexpectedly found to be non-NULL");
 959 
 960   if (!is_humongous(word_size)) {
 961     return _allocator->attempt_allocation_locked(word_size);
 962   } else {
 963     HeapWord* result = humongous_obj_allocate(word_size);
 964     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
 965       collector_state()->set_initiate_conc_mark_if_possible(true);
 966     }
 967     return result;
 968   }
 969 
 970   ShouldNotReachHere();
 971 }
 972 
 973 class PostCompactionPrinterClosure: public HeapRegionClosure {
 974 private:
 975   G1HRPrinter* _hr_printer;
 976 public:
 977   bool do_heap_region(HeapRegion* hr) {
 978     assert(!hr->is_young(), "not expecting to find young regions");
 979     _hr_printer->post_compaction(hr);
 980     return false;
 981   }
 982 
 983   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 984     : _hr_printer(hr_printer) { }
 985 };
 986 
 987 void G1CollectedHeap::print_hrm_post_compaction() {
 988   if (_hr_printer.is_active()) {
 989     PostCompactionPrinterClosure cl(hr_printer());
 990     heap_region_iterate(&cl);
 991   }
 992 }
 993 
 994 void G1CollectedHeap::abort_concurrent_cycle() {
 995   // If we start the compaction before the CM threads finish
 996   // scanning the root regions we might trip them over as we'll
 997   // be moving objects / updating references. So let's wait until
 998   // they are done. By telling them to abort, they should complete
 999   // early.
1000   _cm->root_regions()->abort();
1001   _cm->root_regions()->wait_until_scan_finished();
1002 
1003   // Disable discovery and empty the discovered lists
1004   // for the CM ref processor.
1005   _ref_processor_cm->disable_discovery();
1006   _ref_processor_cm->abandon_partial_discovery();
1007   _ref_processor_cm->verify_no_references_recorded();
1008 
1009   // Abandon current iterations of concurrent marking and concurrent
1010   // refinement, if any are in progress.
1011   concurrent_mark()->concurrent_cycle_abort();
1012 }
1013 
1014 void G1CollectedHeap::prepare_heap_for_full_collection() {
1015   // Make sure we'll choose a new allocation region afterwards.
1016   _allocator->release_mutator_alloc_region();
1017   _allocator->abandon_gc_alloc_regions();
1018   g1_rem_set()->cleanupHRRS();
1019 
1020   // We may have added regions to the current incremental collection
1021   // set between the last GC or pause and now. We need to clear the
1022   // incremental collection set and then start rebuilding it afresh
1023   // after this full GC.
1024   abandon_collection_set(collection_set());
1025 
1026   tear_down_region_sets(false /* free_list_only */);
1027 }
1028 
1029 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1030   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1031   assert(used() == recalculate_used(), "Should be equal");
1032   _verifier->verify_region_sets_optional();
1033   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1034   _verifier->check_bitmaps("Full GC Start");
1035 }
1036 
1037 void G1CollectedHeap::prepare_heap_for_mutators() {
1038   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1039   ClassLoaderDataGraph::purge();
1040   MetaspaceUtils::verify_metrics();
1041 
1042   // Prepare heap for normal collections.
1043   assert(num_free_regions() == 0, "we should not have added any free regions");
1044   rebuild_region_sets(false /* free_list_only */);
1045   abort_refinement();
1046   resize_if_necessary_after_full_collection();
1047 
1048   // Rebuild the strong code root lists for each region
1049   rebuild_strong_code_roots();
1050 
1051   // Start a new incremental collection set for the next pause
1052   start_new_collection_set();
1053 
1054   _allocator->init_mutator_alloc_region();
1055 
1056   // Post collection state updates.
1057   MetaspaceGC::compute_new_size();
1058 }
1059 
1060 void G1CollectedHeap::abort_refinement() {
1061   if (_hot_card_cache->use_cache()) {
1062     _hot_card_cache->reset_hot_cache();
1063   }
1064 
1065   // Discard all remembered set updates.
1066   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1067   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1068 }
1069 
1070 void G1CollectedHeap::verify_after_full_collection() {
1071   _hrm.verify_optional();
1072   _verifier->verify_region_sets_optional();
1073   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1074   // Clear the previous marking bitmap, if needed for bitmap verification.
1075   // Note we cannot do this when we clear the next marking bitmap in
1076   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1077   // objects marked during a full GC against the previous bitmap.
1078   // But we need to clear it before calling check_bitmaps below since
1079   // the full GC has compacted objects and updated TAMS but not updated
1080   // the prev bitmap.
1081   if (G1VerifyBitmaps) {
1082     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1083     _cm->clear_prev_bitmap(workers());
1084   }
1085   _verifier->check_bitmaps("Full GC End");
1086 
1087   // At this point there should be no regions in the
1088   // entire heap tagged as young.
1089   assert(check_young_list_empty(), "young list should be empty at this point");
1090 
1091   // Note: since we've just done a full GC, concurrent
1092   // marking is no longer active. Therefore we need not
1093   // re-enable reference discovery for the CM ref processor.
1094   // That will be done at the start of the next marking cycle.
1095   // We also know that the STW processor should no longer
1096   // discover any new references.
1097   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1098   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1099   _ref_processor_stw->verify_no_references_recorded();
1100   _ref_processor_cm->verify_no_references_recorded();
1101 }
1102 
1103 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1104   // Post collection logging.
1105   // We should do this after we potentially resize the heap so
1106   // that all the COMMIT / UNCOMMIT events are generated before
1107   // the compaction events.
1108   print_hrm_post_compaction();
1109   heap_transition->print();
1110   print_heap_after_gc();
1111   print_heap_regions();
1112 #ifdef TRACESPINNING
1113   ParallelTaskTerminator::print_termination_counts();
1114 #endif
1115 }
1116 
1117 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1118                                          bool clear_all_soft_refs) {
1119   assert_at_safepoint_on_vm_thread();
1120 
1121   if (GCLocker::check_active_before_gc()) {
1122     // Full GC was not completed.
1123     return false;
1124   }
1125 
1126   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1127       soft_ref_policy()->should_clear_all_soft_refs();
1128 
1129   G1FullCollector collector(this, &_full_gc_memory_manager, explicit_gc, do_clear_all_soft_refs);
1130   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1131 
1132   collector.prepare_collection();
1133   collector.collect();
1134   collector.complete_collection();
1135 
1136   // Full collection was successfully completed.
1137   return true;
1138 }
1139 
1140 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1141   // Currently, there is no facility in the do_full_collection(bool) API to notify
1142   // the caller that the collection did not succeed (e.g., because it was locked
1143   // out by the GC locker). So, right now, we'll ignore the return value.
1144   bool dummy = do_full_collection(true,                /* explicit_gc */
1145                                   clear_all_soft_refs);
1146 }
1147 
1148 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1149   // Capacity, free and used after the GC counted as full regions to
1150   // include the waste in the following calculations.
1151   const size_t capacity_after_gc = capacity();
1152   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1153 
1154   // This is enforced in arguments.cpp.
1155   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1156          "otherwise the code below doesn't make sense");
1157 
1158   // We don't have floating point command-line arguments
1159   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1160   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1161   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1162   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1163 
1164   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1165   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1166 
1167   // We have to be careful here as these two calculations can overflow
1168   // 32-bit size_t's.
1169   double used_after_gc_d = (double) used_after_gc;
1170   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1171   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1172 
1173   // Let's make sure that they are both under the max heap size, which
1174   // by default will make them fit into a size_t.
1175   double desired_capacity_upper_bound = (double) max_heap_size;
1176   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1177                                     desired_capacity_upper_bound);
1178   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1179                                     desired_capacity_upper_bound);
1180 
1181   // We can now safely turn them into size_t's.
1182   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1183   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1184 
1185   // This assert only makes sense here, before we adjust them
1186   // with respect to the min and max heap size.
1187   assert(minimum_desired_capacity <= maximum_desired_capacity,
1188          "minimum_desired_capacity = " SIZE_FORMAT ", "
1189          "maximum_desired_capacity = " SIZE_FORMAT,
1190          minimum_desired_capacity, maximum_desired_capacity);
1191 
1192   // Should not be greater than the heap max size. No need to adjust
1193   // it with respect to the heap min size as it's a lower bound (i.e.,
1194   // we'll try to make the capacity larger than it, not smaller).
1195   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1196   // Should not be less than the heap min size. No need to adjust it
1197   // with respect to the heap max size as it's an upper bound (i.e.,
1198   // we'll try to make the capacity smaller than it, not greater).
1199   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1200 
1201   if (capacity_after_gc < minimum_desired_capacity) {
1202     // Don't expand unless it's significant
1203     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1204 
1205     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1206                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1207                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1208                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1209 
1210     expand(expand_bytes, _workers);
1211 
1212     // No expansion, now see if we want to shrink
1213   } else if (capacity_after_gc > maximum_desired_capacity) {
1214     // Capacity too large, compute shrinking size
1215     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1216 
1217     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1218                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1219                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1220                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1221 
1222     shrink(shrink_bytes);
1223   }
1224 }
1225 
1226 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1227                                                             bool do_gc,
1228                                                             bool clear_all_soft_refs,
1229                                                             bool expect_null_mutator_alloc_region,
1230                                                             bool* gc_succeeded) {
1231   *gc_succeeded = true;
1232   // Let's attempt the allocation first.
1233   HeapWord* result =
1234     attempt_allocation_at_safepoint(word_size,
1235                                     expect_null_mutator_alloc_region);
1236   if (result != NULL) {
1237     return result;
1238   }
1239 
1240   // In a G1 heap, we're supposed to keep allocation from failing by
1241   // incremental pauses.  Therefore, at least for now, we'll favor
1242   // expansion over collection.  (This might change in the future if we can
1243   // do something smarter than full collection to satisfy a failed alloc.)
1244   result = expand_and_allocate(word_size);
1245   if (result != NULL) {
1246     return result;
1247   }
1248 
1249   if (do_gc) {
1250     // Expansion didn't work, we'll try to do a Full GC.
1251     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1252                                        clear_all_soft_refs);
1253   }
1254 
1255   return NULL;
1256 }
1257 
1258 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1259                                                      bool* succeeded) {
1260   assert_at_safepoint_on_vm_thread();
1261 
1262   // Attempts to allocate followed by Full GC.
1263   HeapWord* result =
1264     satisfy_failed_allocation_helper(word_size,
1265                                      true,  /* do_gc */
1266                                      false, /* clear_all_soft_refs */
1267                                      false, /* expect_null_mutator_alloc_region */
1268                                      succeeded);
1269 
1270   if (result != NULL || !*succeeded) {
1271     return result;
1272   }
1273 
1274   // Attempts to allocate followed by Full GC that will collect all soft references.
1275   result = satisfy_failed_allocation_helper(word_size,
1276                                             true, /* do_gc */
1277                                             true, /* clear_all_soft_refs */
1278                                             true, /* expect_null_mutator_alloc_region */
1279                                             succeeded);
1280 
1281   if (result != NULL || !*succeeded) {
1282     return result;
1283   }
1284 
1285   // Attempts to allocate, no GC
1286   result = satisfy_failed_allocation_helper(word_size,
1287                                             false, /* do_gc */
1288                                             false, /* clear_all_soft_refs */
1289                                             true,  /* expect_null_mutator_alloc_region */
1290                                             succeeded);
1291 
1292   if (result != NULL) {
1293     return result;
1294   }
1295 
1296   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1297          "Flag should have been handled and cleared prior to this point");
1298 
1299   // What else?  We might try synchronous finalization later.  If the total
1300   // space available is large enough for the allocation, then a more
1301   // complete compaction phase than we've tried so far might be
1302   // appropriate.
1303   return NULL;
1304 }
1305 
1306 // Attempting to expand the heap sufficiently
1307 // to support an allocation of the given "word_size".  If
1308 // successful, perform the allocation and return the address of the
1309 // allocated block, or else "NULL".
1310 
1311 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1312   assert_at_safepoint_on_vm_thread();
1313 
1314   _verifier->verify_region_sets_optional();
1315 
1316   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1317   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1318                             word_size * HeapWordSize);
1319 
1320 
1321   if (expand(expand_bytes, _workers)) {
1322     _hrm.verify_optional();
1323     _verifier->verify_region_sets_optional();
1324     return attempt_allocation_at_safepoint(word_size,
1325                                            false /* expect_null_mutator_alloc_region */);
1326   }
1327   return NULL;
1328 }
1329 
1330 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1331   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1332   aligned_expand_bytes = align_up(aligned_expand_bytes,
1333                                        HeapRegion::GrainBytes);
1334 
1335   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1336                             expand_bytes, aligned_expand_bytes);
1337 
1338   if (is_maximal_no_gc()) {
1339     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1340     return false;
1341   }
1342 
1343   double expand_heap_start_time_sec = os::elapsedTime();
1344   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1345   assert(regions_to_expand > 0, "Must expand by at least one region");
1346 
1347   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1348   if (expand_time_ms != NULL) {
1349     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1350   }
1351 
1352   if (expanded_by > 0) {
1353     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1354     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1355     g1_policy()->record_new_heap_size(num_regions());
1356   } else {
1357     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1358 
1359     // The expansion of the virtual storage space was unsuccessful.
1360     // Let's see if it was because we ran out of swap.
1361     if (G1ExitOnExpansionFailure &&
1362         _hrm.available() >= regions_to_expand) {
1363       // We had head room...
1364       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1365     }
1366   }
1367   return regions_to_expand > 0;
1368 }
1369 
1370 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1371   size_t aligned_shrink_bytes =
1372     ReservedSpace::page_align_size_down(shrink_bytes);
1373   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1374                                          HeapRegion::GrainBytes);
1375   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1376 
1377   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1378   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1379 
1380 
1381   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1382                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1383   if (num_regions_removed > 0) {
1384     g1_policy()->record_new_heap_size(num_regions());
1385   } else {
1386     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1387   }
1388 }
1389 
1390 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1391   _verifier->verify_region_sets_optional();
1392 
1393   // We should only reach here at the end of a Full GC which means we
1394   // should not not be holding to any GC alloc regions. The method
1395   // below will make sure of that and do any remaining clean up.
1396   _allocator->abandon_gc_alloc_regions();
1397 
1398   // Instead of tearing down / rebuilding the free lists here, we
1399   // could instead use the remove_all_pending() method on free_list to
1400   // remove only the ones that we need to remove.
1401   tear_down_region_sets(true /* free_list_only */);
1402   shrink_helper(shrink_bytes);
1403   rebuild_region_sets(true /* free_list_only */);
1404 
1405   _hrm.verify_optional();
1406   _verifier->verify_region_sets_optional();
1407 }
1408 
1409 // Public methods.
1410 
1411 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1412   CollectedHeap(),
1413   _young_gen_sampling_thread(NULL),
1414   _collector_policy(collector_policy),
1415   _soft_ref_policy(),
1416   _card_table(NULL),
1417   _memory_manager("G1 Young Generation", "end of minor GC"),
1418   _full_gc_memory_manager("G1 Old Generation", "end of major GC"),
1419   _eden_pool(NULL),
1420   _survivor_pool(NULL),
1421   _old_pool(NULL),
1422   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1423   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1424   _g1_policy(new G1Policy(_gc_timer_stw)),
1425   _collection_set(this, _g1_policy),
1426   _dirty_card_queue_set(false),
1427   _ref_processor_stw(NULL),
1428   _is_alive_closure_stw(this),
1429   _is_subject_to_discovery_stw(this),
1430   _ref_processor_cm(NULL),
1431   _is_alive_closure_cm(this),
1432   _is_subject_to_discovery_cm(this),
1433   _bot(NULL),
1434   _hot_card_cache(NULL),
1435   _g1_rem_set(NULL),
1436   _cr(NULL),
1437   _g1mm(NULL),
1438   _preserved_marks_set(true /* in_c_heap */),
1439   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1440   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1441   _humongous_reclaim_candidates(),
1442   _has_humongous_reclaim_candidates(false),
1443   _archive_allocator(NULL),
1444   _summary_bytes_used(0),
1445   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1446   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1447   _expand_heap_after_alloc_failure(true),
1448   _old_marking_cycles_started(0),
1449   _old_marking_cycles_completed(0),
1450   _in_cset_fast_test() {
1451 
1452   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1453                           /* are_GC_task_threads */true,
1454                           /* are_ConcurrentGC_threads */false);
1455   _workers->initialize_workers();
1456   _verifier = new G1HeapVerifier(this);
1457 
1458   _allocator = new G1Allocator(this);
1459 
1460   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1461 
1462   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1463 
1464   // Override the default _filler_array_max_size so that no humongous filler
1465   // objects are created.
1466   _filler_array_max_size = _humongous_object_threshold_in_words;
1467 
1468   uint n_queues = ParallelGCThreads;
1469   _task_queues = new RefToScanQueueSet(n_queues);
1470 
1471   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1472 
1473   for (uint i = 0; i < n_queues; i++) {
1474     RefToScanQueue* q = new RefToScanQueue();
1475     q->initialize();
1476     _task_queues->register_queue(i, q);
1477     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1478   }
1479 
1480   // Initialize the G1EvacuationFailureALot counters and flags.
1481   NOT_PRODUCT(reset_evacuation_should_fail();)
1482 
1483   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1484 }
1485 
1486 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1487                                                                  size_t size,
1488                                                                  size_t translation_factor) {
1489   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1490   // Allocate a new reserved space, preferring to use large pages.
1491   ReservedSpace rs(size, preferred_page_size);
1492   G1RegionToSpaceMapper* result  =
1493     G1RegionToSpaceMapper::create_mapper(rs,
1494                                          size,
1495                                          rs.alignment(),
1496                                          HeapRegion::GrainBytes,
1497                                          translation_factor,
1498                                          mtGC);
1499 
1500   os::trace_page_sizes_for_requested_size(description,
1501                                           size,
1502                                           preferred_page_size,
1503                                           rs.alignment(),
1504                                           rs.base(),
1505                                           rs.size());
1506 
1507   return result;
1508 }
1509 
1510 jint G1CollectedHeap::initialize_concurrent_refinement() {
1511   jint ecode = JNI_OK;
1512   _cr = G1ConcurrentRefine::create(&ecode);
1513   return ecode;
1514 }
1515 
1516 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1517   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1518   if (_young_gen_sampling_thread->osthread() == NULL) {
1519     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1520     return JNI_ENOMEM;
1521   }
1522   return JNI_OK;
1523 }
1524 
1525 jint G1CollectedHeap::initialize() {
1526   os::enable_vtime();
1527 
1528   // Necessary to satisfy locking discipline assertions.
1529 
1530   MutexLocker x(Heap_lock);
1531 
1532   // While there are no constraints in the GC code that HeapWordSize
1533   // be any particular value, there are multiple other areas in the
1534   // system which believe this to be true (e.g. oop->object_size in some
1535   // cases incorrectly returns the size in wordSize units rather than
1536   // HeapWordSize).
1537   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1538 
1539   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1540   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1541   size_t heap_alignment = collector_policy()->heap_alignment();
1542 
1543   // Ensure that the sizes are properly aligned.
1544   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1545   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1546   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1547 
1548   // Reserve the maximum.
1549 
1550   // When compressed oops are enabled, the preferred heap base
1551   // is calculated by subtracting the requested size from the
1552   // 32Gb boundary and using the result as the base address for
1553   // heap reservation. If the requested size is not aligned to
1554   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1555   // into the ReservedHeapSpace constructor) then the actual
1556   // base of the reserved heap may end up differing from the
1557   // address that was requested (i.e. the preferred heap base).
1558   // If this happens then we could end up using a non-optimal
1559   // compressed oops mode.
1560 
1561   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1562                                                  heap_alignment);
1563 
1564   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1565 
1566   // Create the barrier set for the entire reserved region.
1567   G1CardTable* ct = new G1CardTable(reserved_region());
1568   ct->initialize();
1569   G1BarrierSet* bs = new G1BarrierSet(ct);
1570   bs->initialize();
1571   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1572   BarrierSet::set_barrier_set(bs);
1573   _card_table = ct;
1574 
1575   // Create the hot card cache.
1576   _hot_card_cache = new G1HotCardCache(this);
1577 
1578   // Carve out the G1 part of the heap.
1579   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1580   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1581   G1RegionToSpaceMapper* heap_storage =
1582     G1RegionToSpaceMapper::create_mapper(g1_rs,
1583                                          g1_rs.size(),
1584                                          page_size,
1585                                          HeapRegion::GrainBytes,
1586                                          1,
1587                                          mtJavaHeap);
1588   os::trace_page_sizes("Heap",
1589                        collector_policy()->min_heap_byte_size(),
1590                        max_byte_size,
1591                        page_size,
1592                        heap_rs.base(),
1593                        heap_rs.size());
1594   heap_storage->set_mapping_changed_listener(&_listener);
1595 
1596   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1597   G1RegionToSpaceMapper* bot_storage =
1598     create_aux_memory_mapper("Block Offset Table",
1599                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1600                              G1BlockOffsetTable::heap_map_factor());
1601 
1602   G1RegionToSpaceMapper* cardtable_storage =
1603     create_aux_memory_mapper("Card Table",
1604                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1605                              G1CardTable::heap_map_factor());
1606 
1607   G1RegionToSpaceMapper* card_counts_storage =
1608     create_aux_memory_mapper("Card Counts Table",
1609                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1610                              G1CardCounts::heap_map_factor());
1611 
1612   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1613   G1RegionToSpaceMapper* prev_bitmap_storage =
1614     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1615   G1RegionToSpaceMapper* next_bitmap_storage =
1616     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1617 
1618   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1619   _card_table->initialize(cardtable_storage);
1620   // Do later initialization work for concurrent refinement.
1621   _hot_card_cache->initialize(card_counts_storage);
1622 
1623   // 6843694 - ensure that the maximum region index can fit
1624   // in the remembered set structures.
1625   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1626   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1627 
1628   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1629   // start within the first card.
1630   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1631   // Also create a G1 rem set.
1632   _g1_rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1633   _g1_rem_set->initialize(max_capacity(), max_regions());
1634 
1635   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1636   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1637   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1638             "too many cards per region");
1639 
1640   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1641 
1642   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1643 
1644   {
1645     HeapWord* start = _hrm.reserved().start();
1646     HeapWord* end = _hrm.reserved().end();
1647     size_t granularity = HeapRegion::GrainBytes;
1648 
1649     _in_cset_fast_test.initialize(start, end, granularity);
1650     _humongous_reclaim_candidates.initialize(start, end, granularity);
1651   }
1652 
1653   // Create the G1ConcurrentMark data structure and thread.
1654   // (Must do this late, so that "max_regions" is defined.)
1655   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1656   if (_cm == NULL || !_cm->completed_initialization()) {
1657     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1658     return JNI_ENOMEM;
1659   }
1660   _cm_thread = _cm->cm_thread();
1661 
1662   // Now expand into the initial heap size.
1663   if (!expand(init_byte_size, _workers)) {
1664     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1665     return JNI_ENOMEM;
1666   }
1667 
1668   // Perform any initialization actions delegated to the policy.
1669   g1_policy()->init(this, &_collection_set);
1670 
1671   G1BarrierSet::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1672                                                  SATB_Q_FL_lock,
1673                                                  G1SATBProcessCompletedThreshold,
1674                                                  Shared_SATB_Q_lock);
1675 
1676   jint ecode = initialize_concurrent_refinement();
1677   if (ecode != JNI_OK) {
1678     return ecode;
1679   }
1680 
1681   ecode = initialize_young_gen_sampling_thread();
1682   if (ecode != JNI_OK) {
1683     return ecode;
1684   }
1685 
1686   G1BarrierSet::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1687                                                   DirtyCardQ_FL_lock,
1688                                                   (int)concurrent_refine()->yellow_zone(),
1689                                                   (int)concurrent_refine()->red_zone(),
1690                                                   Shared_DirtyCardQ_lock,
1691                                                   NULL,  // fl_owner
1692                                                   true); // init_free_ids
1693 
1694   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1695                                     DirtyCardQ_FL_lock,
1696                                     -1, // never trigger processing
1697                                     -1, // no limit on length
1698                                     Shared_DirtyCardQ_lock,
1699                                     &G1BarrierSet::dirty_card_queue_set());
1700 
1701   // Here we allocate the dummy HeapRegion that is required by the
1702   // G1AllocRegion class.
1703   HeapRegion* dummy_region = _hrm.get_dummy_region();
1704 
1705   // We'll re-use the same region whether the alloc region will
1706   // require BOT updates or not and, if it doesn't, then a non-young
1707   // region will complain that it cannot support allocations without
1708   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1709   dummy_region->set_eden();
1710   // Make sure it's full.
1711   dummy_region->set_top(dummy_region->end());
1712   G1AllocRegion::setup(this, dummy_region);
1713 
1714   _allocator->init_mutator_alloc_region();
1715 
1716   // Do create of the monitoring and management support so that
1717   // values in the heap have been properly initialized.
1718   _g1mm = new G1MonitoringSupport(this);
1719 
1720   G1StringDedup::initialize();
1721 
1722   _preserved_marks_set.init(ParallelGCThreads);
1723 
1724   _collection_set.initialize(max_regions());
1725 
1726   return JNI_OK;
1727 }
1728 
1729 void G1CollectedHeap::initialize_serviceability() {
1730   _eden_pool = new G1EdenPool(this);
1731   _survivor_pool = new G1SurvivorPool(this);
1732   _old_pool = new G1OldGenPool(this);
1733 
1734   _full_gc_memory_manager.add_pool(_eden_pool);
1735   _full_gc_memory_manager.add_pool(_survivor_pool);
1736   _full_gc_memory_manager.add_pool(_old_pool);
1737 
1738   _memory_manager.add_pool(_eden_pool);
1739   _memory_manager.add_pool(_survivor_pool);
1740 
1741 }
1742 
1743 void G1CollectedHeap::stop() {
1744   // Stop all concurrent threads. We do this to make sure these threads
1745   // do not continue to execute and access resources (e.g. logging)
1746   // that are destroyed during shutdown.
1747   _cr->stop();
1748   _young_gen_sampling_thread->stop();
1749   _cm_thread->stop();
1750   if (G1StringDedup::is_enabled()) {
1751     G1StringDedup::stop();
1752   }
1753 }
1754 
1755 void G1CollectedHeap::safepoint_synchronize_begin() {
1756   SuspendibleThreadSet::synchronize();
1757 }
1758 
1759 void G1CollectedHeap::safepoint_synchronize_end() {
1760   SuspendibleThreadSet::desynchronize();
1761 }
1762 
1763 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1764   return HeapRegion::max_region_size();
1765 }
1766 
1767 void G1CollectedHeap::post_initialize() {
1768   CollectedHeap::post_initialize();
1769   ref_processing_init();
1770 }
1771 
1772 void G1CollectedHeap::ref_processing_init() {
1773   // Reference processing in G1 currently works as follows:
1774   //
1775   // * There are two reference processor instances. One is
1776   //   used to record and process discovered references
1777   //   during concurrent marking; the other is used to
1778   //   record and process references during STW pauses
1779   //   (both full and incremental).
1780   // * Both ref processors need to 'span' the entire heap as
1781   //   the regions in the collection set may be dotted around.
1782   //
1783   // * For the concurrent marking ref processor:
1784   //   * Reference discovery is enabled at initial marking.
1785   //   * Reference discovery is disabled and the discovered
1786   //     references processed etc during remarking.
1787   //   * Reference discovery is MT (see below).
1788   //   * Reference discovery requires a barrier (see below).
1789   //   * Reference processing may or may not be MT
1790   //     (depending on the value of ParallelRefProcEnabled
1791   //     and ParallelGCThreads).
1792   //   * A full GC disables reference discovery by the CM
1793   //     ref processor and abandons any entries on it's
1794   //     discovered lists.
1795   //
1796   // * For the STW processor:
1797   //   * Non MT discovery is enabled at the start of a full GC.
1798   //   * Processing and enqueueing during a full GC is non-MT.
1799   //   * During a full GC, references are processed after marking.
1800   //
1801   //   * Discovery (may or may not be MT) is enabled at the start
1802   //     of an incremental evacuation pause.
1803   //   * References are processed near the end of a STW evacuation pause.
1804   //   * For both types of GC:
1805   //     * Discovery is atomic - i.e. not concurrent.
1806   //     * Reference discovery will not need a barrier.
1807 
1808   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1809 
1810   // Concurrent Mark ref processor
1811   _ref_processor_cm =
1812     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1813                            mt_processing,                                  // mt processing
1814                            ParallelGCThreads,                              // degree of mt processing
1815                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1816                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1817                            false,                                          // Reference discovery is not atomic
1818                            &_is_alive_closure_cm);                         // is alive closure
1819 
1820   // STW ref processor
1821   _ref_processor_stw =
1822     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1823                            mt_processing,                        // mt processing
1824                            ParallelGCThreads,                    // degree of mt processing
1825                            (ParallelGCThreads > 1),              // mt discovery
1826                            ParallelGCThreads,                    // degree of mt discovery
1827                            true,                                 // Reference discovery is atomic
1828                            &_is_alive_closure_stw);              // is alive closure
1829 }
1830 
1831 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1832   return _collector_policy;
1833 }
1834 
1835 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1836   return &_soft_ref_policy;
1837 }
1838 
1839 size_t G1CollectedHeap::capacity() const {
1840   return _hrm.length() * HeapRegion::GrainBytes;
1841 }
1842 
1843 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1844   return _hrm.total_free_bytes();
1845 }
1846 
1847 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
1848   _hot_card_cache->drain(cl, worker_i);
1849 }
1850 
1851 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
1852   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1853   size_t n_completed_buffers = 0;
1854   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
1855     n_completed_buffers++;
1856   }
1857   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers, G1GCPhaseTimes::UpdateRSProcessedBuffers);
1858   dcqs.clear_n_completed_buffers();
1859   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
1860 }
1861 
1862 // Computes the sum of the storage used by the various regions.
1863 size_t G1CollectedHeap::used() const {
1864   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1865   if (_archive_allocator != NULL) {
1866     result += _archive_allocator->used();
1867   }
1868   return result;
1869 }
1870 
1871 size_t G1CollectedHeap::used_unlocked() const {
1872   return _summary_bytes_used;
1873 }
1874 
1875 class SumUsedClosure: public HeapRegionClosure {
1876   size_t _used;
1877 public:
1878   SumUsedClosure() : _used(0) {}
1879   bool do_heap_region(HeapRegion* r) {
1880     _used += r->used();
1881     return false;
1882   }
1883   size_t result() { return _used; }
1884 };
1885 
1886 size_t G1CollectedHeap::recalculate_used() const {
1887   double recalculate_used_start = os::elapsedTime();
1888 
1889   SumUsedClosure blk;
1890   heap_region_iterate(&blk);
1891 
1892   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
1893   return blk.result();
1894 }
1895 
1896 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1897   switch (cause) {
1898     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1899     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1900     case GCCause::_wb_conc_mark:                        return true;
1901     default :                                           return false;
1902   }
1903 }
1904 
1905 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1906   switch (cause) {
1907     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
1908     case GCCause::_g1_humongous_allocation: return true;
1909     default:                                return is_user_requested_concurrent_full_gc(cause);
1910   }
1911 }
1912 
1913 #ifndef PRODUCT
1914 void G1CollectedHeap::allocate_dummy_regions() {
1915   // Let's fill up most of the region
1916   size_t word_size = HeapRegion::GrainWords - 1024;
1917   // And as a result the region we'll allocate will be humongous.
1918   guarantee(is_humongous(word_size), "sanity");
1919 
1920   // _filler_array_max_size is set to humongous object threshold
1921   // but temporarily change it to use CollectedHeap::fill_with_object().
1922   SizeTFlagSetting fs(_filler_array_max_size, word_size);
1923 
1924   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
1925     // Let's use the existing mechanism for the allocation
1926     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
1927     if (dummy_obj != NULL) {
1928       MemRegion mr(dummy_obj, word_size);
1929       CollectedHeap::fill_with_object(mr);
1930     } else {
1931       // If we can't allocate once, we probably cannot allocate
1932       // again. Let's get out of the loop.
1933       break;
1934     }
1935   }
1936 }
1937 #endif // !PRODUCT
1938 
1939 void G1CollectedHeap::increment_old_marking_cycles_started() {
1940   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
1941          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
1942          "Wrong marking cycle count (started: %d, completed: %d)",
1943          _old_marking_cycles_started, _old_marking_cycles_completed);
1944 
1945   _old_marking_cycles_started++;
1946 }
1947 
1948 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
1949   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
1950 
1951   // We assume that if concurrent == true, then the caller is a
1952   // concurrent thread that was joined the Suspendible Thread
1953   // Set. If there's ever a cheap way to check this, we should add an
1954   // assert here.
1955 
1956   // Given that this method is called at the end of a Full GC or of a
1957   // concurrent cycle, and those can be nested (i.e., a Full GC can
1958   // interrupt a concurrent cycle), the number of full collections
1959   // completed should be either one (in the case where there was no
1960   // nesting) or two (when a Full GC interrupted a concurrent cycle)
1961   // behind the number of full collections started.
1962 
1963   // This is the case for the inner caller, i.e. a Full GC.
1964   assert(concurrent ||
1965          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
1966          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
1967          "for inner caller (Full GC): _old_marking_cycles_started = %u "
1968          "is inconsistent with _old_marking_cycles_completed = %u",
1969          _old_marking_cycles_started, _old_marking_cycles_completed);
1970 
1971   // This is the case for the outer caller, i.e. the concurrent cycle.
1972   assert(!concurrent ||
1973          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
1974          "for outer caller (concurrent cycle): "
1975          "_old_marking_cycles_started = %u "
1976          "is inconsistent with _old_marking_cycles_completed = %u",
1977          _old_marking_cycles_started, _old_marking_cycles_completed);
1978 
1979   _old_marking_cycles_completed += 1;
1980 
1981   // We need to clear the "in_progress" flag in the CM thread before
1982   // we wake up any waiters (especially when ExplicitInvokesConcurrent
1983   // is set) so that if a waiter requests another System.gc() it doesn't
1984   // incorrectly see that a marking cycle is still in progress.
1985   if (concurrent) {
1986     _cm_thread->set_idle();
1987   }
1988 
1989   // This notify_all() will ensure that a thread that called
1990   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
1991   // and it's waiting for a full GC to finish will be woken up. It is
1992   // waiting in VM_G1CollectForAllocation::doit_epilogue().
1993   FullGCCount_lock->notify_all();
1994 }
1995 
1996 void G1CollectedHeap::collect(GCCause::Cause cause) {
1997   assert_heap_not_locked();
1998 
1999   uint gc_count_before;
2000   uint old_marking_count_before;
2001   uint full_gc_count_before;
2002   bool retry_gc;
2003 
2004   do {
2005     retry_gc = false;
2006 
2007     {
2008       MutexLocker ml(Heap_lock);
2009 
2010       // Read the GC count while holding the Heap_lock
2011       gc_count_before = total_collections();
2012       full_gc_count_before = total_full_collections();
2013       old_marking_count_before = _old_marking_cycles_started;
2014     }
2015 
2016     if (should_do_concurrent_full_gc(cause)) {
2017       // Schedule an initial-mark evacuation pause that will start a
2018       // concurrent cycle. We're setting word_size to 0 which means that
2019       // we are not requesting a post-GC allocation.
2020       VM_G1CollectForAllocation op(0,     /* word_size */
2021                                    gc_count_before,
2022                                    cause,
2023                                    true,  /* should_initiate_conc_mark */
2024                                    g1_policy()->max_pause_time_ms());
2025       VMThread::execute(&op);
2026       if (!op.pause_succeeded()) {
2027         if (old_marking_count_before == _old_marking_cycles_started) {
2028           retry_gc = op.should_retry_gc();
2029         } else {
2030           // A Full GC happened while we were trying to schedule the
2031           // initial-mark GC. No point in starting a new cycle given
2032           // that the whole heap was collected anyway.
2033         }
2034 
2035         if (retry_gc) {
2036           if (GCLocker::is_active_and_needs_gc()) {
2037             GCLocker::stall_until_clear();
2038           }
2039         }
2040       }
2041     } else {
2042       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2043           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2044 
2045         // Schedule a standard evacuation pause. We're setting word_size
2046         // to 0 which means that we are not requesting a post-GC allocation.
2047         VM_G1CollectForAllocation op(0,     /* word_size */
2048                                      gc_count_before,
2049                                      cause,
2050                                      false, /* should_initiate_conc_mark */
2051                                      g1_policy()->max_pause_time_ms());
2052         VMThread::execute(&op);
2053       } else {
2054         // Schedule a Full GC.
2055         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2056         VMThread::execute(&op);
2057       }
2058     }
2059   } while (retry_gc);
2060 }
2061 
2062 bool G1CollectedHeap::is_in(const void* p) const {
2063   if (_hrm.reserved().contains(p)) {
2064     // Given that we know that p is in the reserved space,
2065     // heap_region_containing() should successfully
2066     // return the containing region.
2067     HeapRegion* hr = heap_region_containing(p);
2068     return hr->is_in(p);
2069   } else {
2070     return false;
2071   }
2072 }
2073 
2074 #ifdef ASSERT
2075 bool G1CollectedHeap::is_in_exact(const void* p) const {
2076   bool contains = reserved_region().contains(p);
2077   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2078   if (contains && available) {
2079     return true;
2080   } else {
2081     return false;
2082   }
2083 }
2084 #endif
2085 
2086 // Iteration functions.
2087 
2088 // Iterates an ObjectClosure over all objects within a HeapRegion.
2089 
2090 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2091   ObjectClosure* _cl;
2092 public:
2093   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2094   bool do_heap_region(HeapRegion* r) {
2095     if (!r->is_continues_humongous()) {
2096       r->object_iterate(_cl);
2097     }
2098     return false;
2099   }
2100 };
2101 
2102 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2103   IterateObjectClosureRegionClosure blk(cl);
2104   heap_region_iterate(&blk);
2105 }
2106 
2107 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2108   _hrm.iterate(cl);
2109 }
2110 
2111 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2112                                                                  HeapRegionClaimer *hrclaimer,
2113                                                                  uint worker_id) const {
2114   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2115 }
2116 
2117 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2118                                                          HeapRegionClaimer *hrclaimer) const {
2119   _hrm.par_iterate(cl, hrclaimer, 0);
2120 }
2121 
2122 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2123   _collection_set.iterate(cl);
2124 }
2125 
2126 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2127   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2128 }
2129 
2130 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2131   HeapRegion* hr = heap_region_containing(addr);
2132   return hr->block_start(addr);
2133 }
2134 
2135 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2136   HeapRegion* hr = heap_region_containing(addr);
2137   return hr->block_size(addr);
2138 }
2139 
2140 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2141   HeapRegion* hr = heap_region_containing(addr);
2142   return hr->block_is_obj(addr);
2143 }
2144 
2145 bool G1CollectedHeap::supports_tlab_allocation() const {
2146   return true;
2147 }
2148 
2149 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2150   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2151 }
2152 
2153 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2154   return _eden.length() * HeapRegion::GrainBytes;
2155 }
2156 
2157 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2158 // must be equal to the humongous object limit.
2159 size_t G1CollectedHeap::max_tlab_size() const {
2160   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2161 }
2162 
2163 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2164   return _allocator->unsafe_max_tlab_alloc();
2165 }
2166 
2167 size_t G1CollectedHeap::max_capacity() const {
2168   return _hrm.reserved().byte_size();
2169 }
2170 
2171 jlong G1CollectedHeap::millis_since_last_gc() {
2172   // See the notes in GenCollectedHeap::millis_since_last_gc()
2173   // for more information about the implementation.
2174   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2175     _g1_policy->collection_pause_end_millis();
2176   if (ret_val < 0) {
2177     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2178       ". returning zero instead.", ret_val);
2179     return 0;
2180   }
2181   return ret_val;
2182 }
2183 
2184 void G1CollectedHeap::deduplicate_string(oop str) {
2185   assert(java_lang_String::is_instance(str), "invariant");
2186 
2187   if (G1StringDedup::is_enabled()) {
2188     G1StringDedup::deduplicate(str);
2189   }
2190 }
2191 
2192 void G1CollectedHeap::prepare_for_verify() {
2193   _verifier->prepare_for_verify();
2194 }
2195 
2196 void G1CollectedHeap::verify(VerifyOption vo) {
2197   _verifier->verify(vo);
2198 }
2199 
2200 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2201   return true;
2202 }
2203 
2204 const char* const* G1CollectedHeap::concurrent_phases() const {
2205   return _cm_thread->concurrent_phases();
2206 }
2207 
2208 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2209   return _cm_thread->request_concurrent_phase(phase);
2210 }
2211 
2212 class PrintRegionClosure: public HeapRegionClosure {
2213   outputStream* _st;
2214 public:
2215   PrintRegionClosure(outputStream* st) : _st(st) {}
2216   bool do_heap_region(HeapRegion* r) {
2217     r->print_on(_st);
2218     return false;
2219   }
2220 };
2221 
2222 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2223                                        const HeapRegion* hr,
2224                                        const VerifyOption vo) const {
2225   switch (vo) {
2226   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2227   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2228   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2229   default:                            ShouldNotReachHere();
2230   }
2231   return false; // keep some compilers happy
2232 }
2233 
2234 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2235                                        const VerifyOption vo) const {
2236   switch (vo) {
2237   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2238   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2239   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2240   default:                            ShouldNotReachHere();
2241   }
2242   return false; // keep some compilers happy
2243 }
2244 
2245 void G1CollectedHeap::print_heap_regions() const {
2246   LogTarget(Trace, gc, heap, region) lt;
2247   if (lt.is_enabled()) {
2248     LogStream ls(lt);
2249     print_regions_on(&ls);
2250   }
2251 }
2252 
2253 void G1CollectedHeap::print_on(outputStream* st) const {
2254   st->print(" %-20s", "garbage-first heap");
2255   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2256             capacity()/K, used_unlocked()/K);
2257   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2258             p2i(_hrm.reserved().start()),
2259             p2i(_hrm.reserved().end()));
2260   st->cr();
2261   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2262   uint young_regions = young_regions_count();
2263   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2264             (size_t) young_regions * HeapRegion::GrainBytes / K);
2265   uint survivor_regions = survivor_regions_count();
2266   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2267             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2268   st->cr();
2269   MetaspaceUtils::print_on(st);
2270 }
2271 
2272 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2273   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2274                "HS=humongous(starts), HC=humongous(continues), "
2275                "CS=collection set, F=free, A=archive, "
2276                "TAMS=top-at-mark-start (previous, next)");
2277   PrintRegionClosure blk(st);
2278   heap_region_iterate(&blk);
2279 }
2280 
2281 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2282   print_on(st);
2283 
2284   // Print the per-region information.
2285   print_regions_on(st);
2286 }
2287 
2288 void G1CollectedHeap::print_on_error(outputStream* st) const {
2289   this->CollectedHeap::print_on_error(st);
2290 
2291   if (_cm != NULL) {
2292     st->cr();
2293     _cm->print_on_error(st);
2294   }
2295 }
2296 
2297 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2298   workers()->print_worker_threads_on(st);
2299   _cm_thread->print_on(st);
2300   st->cr();
2301   _cm->print_worker_threads_on(st);
2302   _cr->print_threads_on(st);
2303   _young_gen_sampling_thread->print_on(st);
2304   if (G1StringDedup::is_enabled()) {
2305     G1StringDedup::print_worker_threads_on(st);
2306   }
2307 }
2308 
2309 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2310   workers()->threads_do(tc);
2311   tc->do_thread(_cm_thread);
2312   _cm->threads_do(tc);
2313   _cr->threads_do(tc);
2314   tc->do_thread(_young_gen_sampling_thread);
2315   if (G1StringDedup::is_enabled()) {
2316     G1StringDedup::threads_do(tc);
2317   }
2318 }
2319 
2320 void G1CollectedHeap::print_tracing_info() const {
2321   g1_rem_set()->print_summary_info();
2322   concurrent_mark()->print_summary_info();
2323 }
2324 
2325 #ifndef PRODUCT
2326 // Helpful for debugging RSet issues.
2327 
2328 class PrintRSetsClosure : public HeapRegionClosure {
2329 private:
2330   const char* _msg;
2331   size_t _occupied_sum;
2332 
2333 public:
2334   bool do_heap_region(HeapRegion* r) {
2335     HeapRegionRemSet* hrrs = r->rem_set();
2336     size_t occupied = hrrs->occupied();
2337     _occupied_sum += occupied;
2338 
2339     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2340     if (occupied == 0) {
2341       tty->print_cr("  RSet is empty");
2342     } else {
2343       hrrs->print();
2344     }
2345     tty->print_cr("----------");
2346     return false;
2347   }
2348 
2349   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2350     tty->cr();
2351     tty->print_cr("========================================");
2352     tty->print_cr("%s", msg);
2353     tty->cr();
2354   }
2355 
2356   ~PrintRSetsClosure() {
2357     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2358     tty->print_cr("========================================");
2359     tty->cr();
2360   }
2361 };
2362 
2363 void G1CollectedHeap::print_cset_rsets() {
2364   PrintRSetsClosure cl("Printing CSet RSets");
2365   collection_set_iterate(&cl);
2366 }
2367 
2368 void G1CollectedHeap::print_all_rsets() {
2369   PrintRSetsClosure cl("Printing All RSets");;
2370   heap_region_iterate(&cl);
2371 }
2372 #endif // PRODUCT
2373 
2374 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2375 
2376   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2377   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2378   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2379 
2380   size_t eden_capacity_bytes =
2381     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2382 
2383   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2384   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2385                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2386 }
2387 
2388 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2389   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2390                        stats->unused(), stats->used(), stats->region_end_waste(),
2391                        stats->regions_filled(), stats->direct_allocated(),
2392                        stats->failure_used(), stats->failure_waste());
2393 }
2394 
2395 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2396   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2397   gc_tracer->report_gc_heap_summary(when, heap_summary);
2398 
2399   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2400   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2401 }
2402 
2403 G1CollectedHeap* G1CollectedHeap::heap() {
2404   CollectedHeap* heap = Universe::heap();
2405   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2406   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2407   return (G1CollectedHeap*)heap;
2408 }
2409 
2410 void G1CollectedHeap::gc_prologue(bool full) {
2411   // always_do_update_barrier = false;
2412   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2413 
2414   // This summary needs to be printed before incrementing total collections.
2415   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2416 
2417   // Update common counters.
2418   increment_total_collections(full /* full gc */);
2419   if (full) {
2420     increment_old_marking_cycles_started();
2421   }
2422 
2423   // Fill TLAB's and such
2424   double start = os::elapsedTime();
2425   accumulate_statistics_all_tlabs();
2426   ensure_parsability(true);
2427   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2428 }
2429 
2430 void G1CollectedHeap::gc_epilogue(bool full) {
2431   // Update common counters.
2432   if (full) {
2433     // Update the number of full collections that have been completed.
2434     increment_old_marking_cycles_completed(false /* concurrent */);
2435   }
2436 
2437   // We are at the end of the GC. Total collections has already been increased.
2438   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2439 
2440   // FIXME: what is this about?
2441   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2442   // is set.
2443 #if COMPILER2_OR_JVMCI
2444   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2445 #endif
2446   // always_do_update_barrier = true;
2447 
2448   double start = os::elapsedTime();
2449   resize_all_tlabs();
2450   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2451 
2452   MemoryService::track_memory_usage();
2453   // We have just completed a GC. Update the soft reference
2454   // policy with the new heap occupancy
2455   Universe::update_heap_info_at_gc();
2456 }
2457 
2458 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2459                                                uint gc_count_before,
2460                                                bool* succeeded,
2461                                                GCCause::Cause gc_cause) {
2462   assert_heap_not_locked_and_not_at_safepoint();
2463   VM_G1CollectForAllocation op(word_size,
2464                                gc_count_before,
2465                                gc_cause,
2466                                false, /* should_initiate_conc_mark */
2467                                g1_policy()->max_pause_time_ms());
2468   VMThread::execute(&op);
2469 
2470   HeapWord* result = op.result();
2471   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2472   assert(result == NULL || ret_succeeded,
2473          "the result should be NULL if the VM did not succeed");
2474   *succeeded = ret_succeeded;
2475 
2476   assert_heap_not_locked();
2477   return result;
2478 }
2479 
2480 void G1CollectedHeap::do_concurrent_mark() {
2481   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2482   if (!_cm_thread->in_progress()) {
2483     _cm_thread->set_started();
2484     CGC_lock->notify();
2485   }
2486 }
2487 
2488 size_t G1CollectedHeap::pending_card_num() {
2489   size_t extra_cards = 0;
2490   for (JavaThreadIteratorWithHandle jtiwh; JavaThread *curr = jtiwh.next(); ) {
2491     DirtyCardQueue& dcq = G1ThreadLocalData::dirty_card_queue(curr);
2492     extra_cards += dcq.size();
2493   }
2494   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2495   size_t buffer_size = dcqs.buffer_size();
2496   size_t buffer_num = dcqs.completed_buffers_num();
2497 
2498   return buffer_size * buffer_num + extra_cards;
2499 }
2500 
2501 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2502   // We don't nominate objects with many remembered set entries, on
2503   // the assumption that such objects are likely still live.
2504   HeapRegionRemSet* rem_set = r->rem_set();
2505 
2506   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2507          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2508          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2509 }
2510 
2511 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2512  private:
2513   size_t _total_humongous;
2514   size_t _candidate_humongous;
2515 
2516   DirtyCardQueue _dcq;
2517 
2518   bool humongous_region_is_candidate(G1CollectedHeap* g1h, HeapRegion* region) const {
2519     assert(region->is_starts_humongous(), "Must start a humongous object");
2520 
2521     oop obj = oop(region->bottom());
2522 
2523     // Dead objects cannot be eager reclaim candidates. Due to class
2524     // unloading it is unsafe to query their classes so we return early.
2525     if (g1h->is_obj_dead(obj, region)) {
2526       return false;
2527     }
2528 
2529     // If we do not have a complete remembered set for the region, then we can
2530     // not be sure that we have all references to it.
2531     if (!region->rem_set()->is_complete()) {
2532       return false;
2533     }
2534     // Candidate selection must satisfy the following constraints
2535     // while concurrent marking is in progress:
2536     //
2537     // * In order to maintain SATB invariants, an object must not be
2538     // reclaimed if it was allocated before the start of marking and
2539     // has not had its references scanned.  Such an object must have
2540     // its references (including type metadata) scanned to ensure no
2541     // live objects are missed by the marking process.  Objects
2542     // allocated after the start of concurrent marking don't need to
2543     // be scanned.
2544     //
2545     // * An object must not be reclaimed if it is on the concurrent
2546     // mark stack.  Objects allocated after the start of concurrent
2547     // marking are never pushed on the mark stack.
2548     //
2549     // Nominating only objects allocated after the start of concurrent
2550     // marking is sufficient to meet both constraints.  This may miss
2551     // some objects that satisfy the constraints, but the marking data
2552     // structures don't support efficiently performing the needed
2553     // additional tests or scrubbing of the mark stack.
2554     //
2555     // However, we presently only nominate is_typeArray() objects.
2556     // A humongous object containing references induces remembered
2557     // set entries on other regions.  In order to reclaim such an
2558     // object, those remembered sets would need to be cleaned up.
2559     //
2560     // We also treat is_typeArray() objects specially, allowing them
2561     // to be reclaimed even if allocated before the start of
2562     // concurrent mark.  For this we rely on mark stack insertion to
2563     // exclude is_typeArray() objects, preventing reclaiming an object
2564     // that is in the mark stack.  We also rely on the metadata for
2565     // such objects to be built-in and so ensured to be kept live.
2566     // Frequent allocation and drop of large binary blobs is an
2567     // important use case for eager reclaim, and this special handling
2568     // may reduce needed headroom.
2569 
2570     return obj->is_typeArray() &&
2571            g1h->is_potential_eager_reclaim_candidate(region);
2572   }
2573 
2574  public:
2575   RegisterHumongousWithInCSetFastTestClosure()
2576   : _total_humongous(0),
2577     _candidate_humongous(0),
2578     _dcq(&G1BarrierSet::dirty_card_queue_set()) {
2579   }
2580 
2581   virtual bool do_heap_region(HeapRegion* r) {
2582     if (!r->is_starts_humongous()) {
2583       return false;
2584     }
2585     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2586 
2587     bool is_candidate = humongous_region_is_candidate(g1h, r);
2588     uint rindex = r->hrm_index();
2589     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2590     if (is_candidate) {
2591       _candidate_humongous++;
2592       g1h->register_humongous_region_with_cset(rindex);
2593       // Is_candidate already filters out humongous object with large remembered sets.
2594       // If we have a humongous object with a few remembered sets, we simply flush these
2595       // remembered set entries into the DCQS. That will result in automatic
2596       // re-evaluation of their remembered set entries during the following evacuation
2597       // phase.
2598       if (!r->rem_set()->is_empty()) {
2599         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2600                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2601         G1CardTable* ct = g1h->card_table();
2602         HeapRegionRemSetIterator hrrs(r->rem_set());
2603         size_t card_index;
2604         while (hrrs.has_next(card_index)) {
2605           jbyte* card_ptr = (jbyte*)ct->byte_for_index(card_index);
2606           // The remembered set might contain references to already freed
2607           // regions. Filter out such entries to avoid failing card table
2608           // verification.
2609           if (g1h->is_in_closed_subset(ct->addr_for(card_ptr))) {
2610             if (*card_ptr != G1CardTable::dirty_card_val()) {
2611               *card_ptr = G1CardTable::dirty_card_val();
2612               _dcq.enqueue(card_ptr);
2613             }
2614           }
2615         }
2616         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2617                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2618                hrrs.n_yielded(), r->rem_set()->occupied());
2619         // We should only clear the card based remembered set here as we will not
2620         // implicitly rebuild anything else during eager reclaim. Note that at the moment
2621         // (and probably never) we do not enter this path if there are other kind of
2622         // remembered sets for this region.
2623         r->rem_set()->clear_locked(true /* only_cardset */);
2624         // Clear_locked() above sets the state to Empty. However we want to continue
2625         // collecting remembered set entries for humongous regions that were not
2626         // reclaimed.
2627         r->rem_set()->set_state_complete();
2628       }
2629       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2630     }
2631     _total_humongous++;
2632 
2633     return false;
2634   }
2635 
2636   size_t total_humongous() const { return _total_humongous; }
2637   size_t candidate_humongous() const { return _candidate_humongous; }
2638 
2639   void flush_rem_set_entries() { _dcq.flush(); }
2640 };
2641 
2642 void G1CollectedHeap::register_humongous_regions_with_cset() {
2643   if (!G1EagerReclaimHumongousObjects) {
2644     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2645     return;
2646   }
2647   double time = os::elapsed_counter();
2648 
2649   // Collect reclaim candidate information and register candidates with cset.
2650   RegisterHumongousWithInCSetFastTestClosure cl;
2651   heap_region_iterate(&cl);
2652 
2653   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2654   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2655                                                                   cl.total_humongous(),
2656                                                                   cl.candidate_humongous());
2657   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2658 
2659   // Finally flush all remembered set entries to re-check into the global DCQS.
2660   cl.flush_rem_set_entries();
2661 }
2662 
2663 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2664   public:
2665     bool do_heap_region(HeapRegion* hr) {
2666       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2667         hr->verify_rem_set();
2668       }
2669       return false;
2670     }
2671 };
2672 
2673 uint G1CollectedHeap::num_task_queues() const {
2674   return _task_queues->size();
2675 }
2676 
2677 #if TASKQUEUE_STATS
2678 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2679   st->print_raw_cr("GC Task Stats");
2680   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2681   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2682 }
2683 
2684 void G1CollectedHeap::print_taskqueue_stats() const {
2685   if (!log_is_enabled(Trace, gc, task, stats)) {
2686     return;
2687   }
2688   Log(gc, task, stats) log;
2689   ResourceMark rm;
2690   LogStream ls(log.trace());
2691   outputStream* st = &ls;
2692 
2693   print_taskqueue_stats_hdr(st);
2694 
2695   TaskQueueStats totals;
2696   const uint n = num_task_queues();
2697   for (uint i = 0; i < n; ++i) {
2698     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2699     totals += task_queue(i)->stats;
2700   }
2701   st->print_raw("tot "); totals.print(st); st->cr();
2702 
2703   DEBUG_ONLY(totals.verify());
2704 }
2705 
2706 void G1CollectedHeap::reset_taskqueue_stats() {
2707   const uint n = num_task_queues();
2708   for (uint i = 0; i < n; ++i) {
2709     task_queue(i)->stats.reset();
2710   }
2711 }
2712 #endif // TASKQUEUE_STATS
2713 
2714 void G1CollectedHeap::wait_for_root_region_scanning() {
2715   double scan_wait_start = os::elapsedTime();
2716   // We have to wait until the CM threads finish scanning the
2717   // root regions as it's the only way to ensure that all the
2718   // objects on them have been correctly scanned before we start
2719   // moving them during the GC.
2720   bool waited = _cm->root_regions()->wait_until_scan_finished();
2721   double wait_time_ms = 0.0;
2722   if (waited) {
2723     double scan_wait_end = os::elapsedTime();
2724     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2725   }
2726   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2727 }
2728 
2729 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2730 private:
2731   G1HRPrinter* _hr_printer;
2732 public:
2733   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2734 
2735   virtual bool do_heap_region(HeapRegion* r) {
2736     _hr_printer->cset(r);
2737     return false;
2738   }
2739 };
2740 
2741 void G1CollectedHeap::start_new_collection_set() {
2742   collection_set()->start_incremental_building();
2743 
2744   clear_cset_fast_test();
2745 
2746   guarantee(_eden.length() == 0, "eden should have been cleared");
2747   g1_policy()->transfer_survivors_to_cset(survivor());
2748 }
2749 
2750 bool
2751 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2752   assert_at_safepoint_on_vm_thread();
2753   guarantee(!is_gc_active(), "collection is not reentrant");
2754 
2755   if (GCLocker::check_active_before_gc()) {
2756     return false;
2757   }
2758 
2759   _gc_timer_stw->register_gc_start();
2760 
2761   GCIdMark gc_id_mark;
2762   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2763 
2764   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2765   ResourceMark rm;
2766 
2767   g1_policy()->note_gc_start();
2768 
2769   wait_for_root_region_scanning();
2770 
2771   print_heap_before_gc();
2772   print_heap_regions();
2773   trace_heap_before_gc(_gc_tracer_stw);
2774 
2775   _verifier->verify_region_sets_optional();
2776   _verifier->verify_dirty_young_regions();
2777 
2778   // We should not be doing initial mark unless the conc mark thread is running
2779   if (!_cm_thread->should_terminate()) {
2780     // This call will decide whether this pause is an initial-mark
2781     // pause. If it is, in_initial_mark_gc() will return true
2782     // for the duration of this pause.
2783     g1_policy()->decide_on_conc_mark_initiation();
2784   }
2785 
2786   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2787   assert(!collector_state()->in_initial_mark_gc() ||
2788           collector_state()->in_young_only_phase(), "sanity");
2789 
2790   // We also do not allow mixed GCs during marking.
2791   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
2792 
2793   // Record whether this pause is an initial mark. When the current
2794   // thread has completed its logging output and it's safe to signal
2795   // the CM thread, the flag's value in the policy has been reset.
2796   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
2797 
2798   // Inner scope for scope based logging, timers, and stats collection
2799   {
2800     EvacuationInfo evacuation_info;
2801 
2802     if (collector_state()->in_initial_mark_gc()) {
2803       // We are about to start a marking cycle, so we increment the
2804       // full collection counter.
2805       increment_old_marking_cycles_started();
2806       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2807     }
2808 
2809     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2810 
2811     GCTraceCPUTime tcpu;
2812 
2813     G1HeapVerifier::G1VerifyType verify_type;
2814     FormatBuffer<> gc_string("Pause ");
2815     if (collector_state()->in_initial_mark_gc()) {
2816       gc_string.append("Initial Mark");
2817       verify_type = G1HeapVerifier::G1VerifyInitialMark;
2818     } else if (collector_state()->in_young_only_phase()) {
2819       gc_string.append("Young");
2820       verify_type = G1HeapVerifier::G1VerifyYoungOnly;
2821     } else {
2822       gc_string.append("Mixed");
2823       verify_type = G1HeapVerifier::G1VerifyMixed;
2824     }
2825     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2826 
2827     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2828                                                                   workers()->active_workers(),
2829                                                                   Threads::number_of_non_daemon_threads());
2830     active_workers = workers()->update_active_workers(active_workers);
2831     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2832 
2833     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2834     TraceMemoryManagerStats tms(&_memory_manager, gc_cause());
2835 
2836     G1HeapTransition heap_transition(this);
2837     size_t heap_used_bytes_before_gc = used();
2838 
2839     // Don't dynamically change the number of GC threads this early.  A value of
2840     // 0 is used to indicate serial work.  When parallel work is done,
2841     // it will be set.
2842 
2843     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
2844       IsGCActiveMark x;
2845 
2846       gc_prologue(false);
2847 
2848       if (VerifyRememberedSets) {
2849         log_info(gc, verify)("[Verifying RemSets before GC]");
2850         VerifyRegionRemSetClosure v_cl;
2851         heap_region_iterate(&v_cl);
2852       }
2853 
2854       _verifier->verify_before_gc(verify_type);
2855 
2856       _verifier->check_bitmaps("GC Start");
2857 
2858 #if COMPILER2_OR_JVMCI
2859       DerivedPointerTable::clear();
2860 #endif
2861 
2862       // Please see comment in g1CollectedHeap.hpp and
2863       // G1CollectedHeap::ref_processing_init() to see how
2864       // reference processing currently works in G1.
2865 
2866       // Enable discovery in the STW reference processor
2867       _ref_processor_stw->enable_discovery();
2868 
2869       {
2870         // We want to temporarily turn off discovery by the
2871         // CM ref processor, if necessary, and turn it back on
2872         // on again later if we do. Using a scoped
2873         // NoRefDiscovery object will do this.
2874         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
2875 
2876         // Forget the current alloc region (we might even choose it to be part
2877         // of the collection set!).
2878         _allocator->release_mutator_alloc_region();
2879 
2880         // This timing is only used by the ergonomics to handle our pause target.
2881         // It is unclear why this should not include the full pause. We will
2882         // investigate this in CR 7178365.
2883         //
2884         // Preserving the old comment here if that helps the investigation:
2885         //
2886         // The elapsed time induced by the start time below deliberately elides
2887         // the possible verification above.
2888         double sample_start_time_sec = os::elapsedTime();
2889 
2890         g1_policy()->record_collection_pause_start(sample_start_time_sec);
2891 
2892         if (collector_state()->in_initial_mark_gc()) {
2893           concurrent_mark()->pre_initial_mark();
2894         }
2895 
2896         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
2897 
2898         evacuation_info.set_collectionset_regions(collection_set()->region_length());
2899 
2900         // Make sure the remembered sets are up to date. This needs to be
2901         // done before register_humongous_regions_with_cset(), because the
2902         // remembered sets are used there to choose eager reclaim candidates.
2903         // If the remembered sets are not up to date we might miss some
2904         // entries that need to be handled.
2905         g1_rem_set()->cleanupHRRS();
2906 
2907         register_humongous_regions_with_cset();
2908 
2909         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
2910 
2911         // We call this after finalize_cset() to
2912         // ensure that the CSet has been finalized.
2913         _cm->verify_no_cset_oops();
2914 
2915         if (_hr_printer.is_active()) {
2916           G1PrintCollectionSetClosure cl(&_hr_printer);
2917           _collection_set.iterate(&cl);
2918         }
2919 
2920         // Initialize the GC alloc regions.
2921         _allocator->init_gc_alloc_regions(evacuation_info);
2922 
2923         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
2924         pre_evacuate_collection_set();
2925 
2926         // Actually do the work...
2927         evacuate_collection_set(&per_thread_states);
2928 
2929         post_evacuate_collection_set(evacuation_info, &per_thread_states);
2930 
2931         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
2932         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
2933 
2934         eagerly_reclaim_humongous_regions();
2935 
2936         record_obj_copy_mem_stats();
2937         _survivor_evac_stats.adjust_desired_plab_sz();
2938         _old_evac_stats.adjust_desired_plab_sz();
2939 
2940         double start = os::elapsedTime();
2941         start_new_collection_set();
2942         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2943 
2944         if (evacuation_failed()) {
2945           set_used(recalculate_used());
2946           if (_archive_allocator != NULL) {
2947             _archive_allocator->clear_used();
2948           }
2949           for (uint i = 0; i < ParallelGCThreads; i++) {
2950             if (_evacuation_failed_info_array[i].has_failed()) {
2951               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
2952             }
2953           }
2954         } else {
2955           // The "used" of the the collection set have already been subtracted
2956           // when they were freed.  Add in the bytes evacuated.
2957           increase_used(g1_policy()->bytes_copied_during_gc());
2958         }
2959 
2960         if (collector_state()->in_initial_mark_gc()) {
2961           // We have to do this before we notify the CM threads that
2962           // they can start working to make sure that all the
2963           // appropriate initialization is done on the CM object.
2964           concurrent_mark()->post_initial_mark();
2965           // Note that we don't actually trigger the CM thread at
2966           // this point. We do that later when we're sure that
2967           // the current thread has completed its logging output.
2968         }
2969 
2970         allocate_dummy_regions();
2971 
2972         _allocator->init_mutator_alloc_region();
2973 
2974         {
2975           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2976           if (expand_bytes > 0) {
2977             size_t bytes_before = capacity();
2978             // No need for an ergo logging here,
2979             // expansion_amount() does this when it returns a value > 0.
2980             double expand_ms;
2981             if (!expand(expand_bytes, _workers, &expand_ms)) {
2982               // We failed to expand the heap. Cannot do anything about it.
2983             }
2984             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
2985           }
2986         }
2987 
2988         // We redo the verification but now wrt to the new CSet which
2989         // has just got initialized after the previous CSet was freed.
2990         _cm->verify_no_cset_oops();
2991 
2992         // This timing is only used by the ergonomics to handle our pause target.
2993         // It is unclear why this should not include the full pause. We will
2994         // investigate this in CR 7178365.
2995         double sample_end_time_sec = os::elapsedTime();
2996         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
2997         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
2998         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
2999 
3000         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3001         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3002 
3003         if (VerifyRememberedSets) {
3004           log_info(gc, verify)("[Verifying RemSets after GC]");
3005           VerifyRegionRemSetClosure v_cl;
3006           heap_region_iterate(&v_cl);
3007         }
3008 
3009         _verifier->verify_after_gc(verify_type);
3010         _verifier->check_bitmaps("GC End");
3011 
3012         assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
3013         _ref_processor_stw->verify_no_references_recorded();
3014 
3015         // CM reference discovery will be re-enabled if necessary.
3016       }
3017 
3018 #ifdef TRACESPINNING
3019       ParallelTaskTerminator::print_termination_counts();
3020 #endif
3021 
3022       gc_epilogue(false);
3023     }
3024 
3025     // Print the remainder of the GC log output.
3026     if (evacuation_failed()) {
3027       log_info(gc)("To-space exhausted");
3028     }
3029 
3030     g1_policy()->print_phases();
3031     heap_transition.print();
3032 
3033     // It is not yet to safe to tell the concurrent mark to
3034     // start as we have some optional output below. We don't want the
3035     // output from the concurrent mark thread interfering with this
3036     // logging output either.
3037 
3038     _hrm.verify_optional();
3039     _verifier->verify_region_sets_optional();
3040 
3041     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3042     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3043 
3044     print_heap_after_gc();
3045     print_heap_regions();
3046     trace_heap_after_gc(_gc_tracer_stw);
3047 
3048     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3049     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3050     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3051     // before any GC notifications are raised.
3052     g1mm()->update_sizes();
3053 
3054     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3055     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3056     _gc_timer_stw->register_gc_end();
3057     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3058   }
3059   // It should now be safe to tell the concurrent mark thread to start
3060   // without its logging output interfering with the logging output
3061   // that came from the pause.
3062 
3063   if (should_start_conc_mark) {
3064     // CAUTION: after the doConcurrentMark() call below,
3065     // the concurrent marking thread(s) could be running
3066     // concurrently with us. Make sure that anything after
3067     // this point does not assume that we are the only GC thread
3068     // running. Note: of course, the actual marking work will
3069     // not start until the safepoint itself is released in
3070     // SuspendibleThreadSet::desynchronize().
3071     do_concurrent_mark();
3072   }
3073 
3074   return true;
3075 }
3076 
3077 void G1CollectedHeap::remove_self_forwarding_pointers() {
3078   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3079   workers()->run_task(&rsfp_task);
3080 }
3081 
3082 void G1CollectedHeap::restore_after_evac_failure() {
3083   double remove_self_forwards_start = os::elapsedTime();
3084 
3085   remove_self_forwarding_pointers();
3086   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3087   _preserved_marks_set.restore(&task_executor);
3088 
3089   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3090 }
3091 
3092 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3093   if (!_evacuation_failed) {
3094     _evacuation_failed = true;
3095   }
3096 
3097   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3098   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3099 }
3100 
3101 bool G1ParEvacuateFollowersClosure::offer_termination() {
3102   G1ParScanThreadState* const pss = par_scan_state();
3103   start_term_time();
3104   const bool res = terminator()->offer_termination();
3105   end_term_time();
3106   return res;
3107 }
3108 
3109 void G1ParEvacuateFollowersClosure::do_void() {
3110   G1ParScanThreadState* const pss = par_scan_state();
3111   pss->trim_queue();
3112   do {
3113     pss->steal_and_trim_queue(queues());
3114   } while (!offer_termination());
3115 }
3116 
3117 class G1ParTask : public AbstractGangTask {
3118 protected:
3119   G1CollectedHeap*         _g1h;
3120   G1ParScanThreadStateSet* _pss;
3121   RefToScanQueueSet*       _queues;
3122   G1RootProcessor*         _root_processor;
3123   ParallelTaskTerminator   _terminator;
3124   uint                     _n_workers;
3125 
3126 public:
3127   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3128     : AbstractGangTask("G1 collection"),
3129       _g1h(g1h),
3130       _pss(per_thread_states),
3131       _queues(task_queues),
3132       _root_processor(root_processor),
3133       _terminator(n_workers, _queues),
3134       _n_workers(n_workers)
3135   {}
3136 
3137   void work(uint worker_id) {
3138     if (worker_id >= _n_workers) return;  // no work needed this round
3139 
3140     double start_sec = os::elapsedTime();
3141     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3142 
3143     {
3144       ResourceMark rm;
3145       HandleMark   hm;
3146 
3147       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3148 
3149       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3150       pss->set_ref_discoverer(rp);
3151 
3152       double start_strong_roots_sec = os::elapsedTime();
3153 
3154       _root_processor->evacuate_roots(pss, worker_id);
3155 
3156       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3157       // treating the nmethods visited to act as roots for concurrent marking.
3158       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3159       // objects copied by the current evacuation.
3160       _g1h->g1_rem_set()->oops_into_collection_set_do(pss, worker_id);
3161 
3162       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3163 
3164       double term_sec = 0.0;
3165       size_t evac_term_attempts = 0;
3166       {
3167         double start = os::elapsedTime();
3168         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3169         evac.do_void();
3170 
3171         evac_term_attempts = evac.term_attempts();
3172         term_sec = evac.term_time();
3173         double elapsed_sec = os::elapsedTime() - start;
3174 
3175         G1GCPhaseTimes* p = _g1h->g1_policy()->phase_times();
3176         p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3177         p->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3178         p->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3179       }
3180 
3181       assert(pss->queue_is_empty(), "should be empty");
3182 
3183       if (log_is_enabled(Debug, gc, task, stats)) {
3184         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3185         size_t lab_waste;
3186         size_t lab_undo_waste;
3187         pss->waste(lab_waste, lab_undo_waste);
3188         _g1h->print_termination_stats(worker_id,
3189                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3190                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3191                                       term_sec * 1000.0,                          /* evac term time */
3192                                       evac_term_attempts,                         /* evac term attempts */
3193                                       lab_waste,                                  /* alloc buffer waste */
3194                                       lab_undo_waste                              /* undo waste */
3195                                       );
3196       }
3197 
3198       // Close the inner scope so that the ResourceMark and HandleMark
3199       // destructors are executed here and are included as part of the
3200       // "GC Worker Time".
3201     }
3202     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3203   }
3204 };
3205 
3206 void G1CollectedHeap::print_termination_stats_hdr() {
3207   log_debug(gc, task, stats)("GC Termination Stats");
3208   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3209   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3210   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3211 }
3212 
3213 void G1CollectedHeap::print_termination_stats(uint worker_id,
3214                                               double elapsed_ms,
3215                                               double strong_roots_ms,
3216                                               double term_ms,
3217                                               size_t term_attempts,
3218                                               size_t alloc_buffer_waste,
3219                                               size_t undo_waste) const {
3220   log_debug(gc, task, stats)
3221               ("%3d %9.2f %9.2f %6.2f "
3222                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3223                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3224                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3225                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3226                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3227                alloc_buffer_waste * HeapWordSize / K,
3228                undo_waste * HeapWordSize / K);
3229 }
3230 
3231 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3232 private:
3233   BoolObjectClosure* _is_alive;
3234   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3235   OopStorage::ParState<false /* concurrent */, false /* const */> _par_state_string;
3236 
3237   int _initial_string_table_size;
3238   int _initial_symbol_table_size;
3239 
3240   bool  _process_strings;
3241   int _strings_processed;
3242   int _strings_removed;
3243 
3244   bool  _process_symbols;
3245   int _symbols_processed;
3246   int _symbols_removed;
3247 
3248   bool _process_string_dedup;
3249 
3250 public:
3251   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3252     AbstractGangTask("String/Symbol Unlinking"),
3253     _is_alive(is_alive),
3254     _dedup_closure(is_alive, NULL, false),
3255     _par_state_string(StringTable::weak_storage()),
3256     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3257     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3258     _process_string_dedup(process_string_dedup) {
3259 
3260     _initial_string_table_size = (int) StringTable::the_table()->table_size();
3261     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3262     if (process_symbols) {
3263       SymbolTable::clear_parallel_claimed_index();
3264     }
3265     if (process_strings) {
3266       StringTable::reset_dead_counter();
3267     }
3268   }
3269 
3270   ~G1StringAndSymbolCleaningTask() {
3271     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3272               "claim value %d after unlink less than initial symbol table size %d",
3273               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3274 
3275     log_info(gc, stringtable)(
3276         "Cleaned string and symbol table, "
3277         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3278         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3279         strings_processed(), strings_removed(),
3280         symbols_processed(), symbols_removed());
3281     if (_process_strings) {
3282       StringTable::finish_dead_counter();
3283     }
3284   }
3285 
3286   void work(uint worker_id) {
3287     int strings_processed = 0;
3288     int strings_removed = 0;
3289     int symbols_processed = 0;
3290     int symbols_removed = 0;
3291     if (_process_strings) {
3292       StringTable::possibly_parallel_unlink(&_par_state_string, _is_alive, &strings_processed, &strings_removed);
3293       Atomic::add(strings_processed, &_strings_processed);
3294       Atomic::add(strings_removed, &_strings_removed);
3295     }
3296     if (_process_symbols) {
3297       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3298       Atomic::add(symbols_processed, &_symbols_processed);
3299       Atomic::add(symbols_removed, &_symbols_removed);
3300     }
3301     if (_process_string_dedup) {
3302       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3303     }
3304   }
3305 
3306   size_t strings_processed() const { return (size_t)_strings_processed; }
3307   size_t strings_removed()   const { return (size_t)_strings_removed; }
3308 
3309   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3310   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3311 };
3312 
3313 class G1CodeCacheUnloadingTask {
3314 private:
3315   static Monitor* _lock;
3316 
3317   BoolObjectClosure* const _is_alive;
3318   const bool               _unloading_occurred;
3319   const uint               _num_workers;
3320 
3321   // Variables used to claim nmethods.
3322   CompiledMethod* _first_nmethod;
3323   CompiledMethod* volatile _claimed_nmethod;
3324 
3325   // The list of nmethods that need to be processed by the second pass.
3326   CompiledMethod* volatile _postponed_list;
3327   volatile uint            _num_entered_barrier;
3328 
3329  public:
3330   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3331       _is_alive(is_alive),
3332       _unloading_occurred(unloading_occurred),
3333       _num_workers(num_workers),
3334       _first_nmethod(NULL),
3335       _claimed_nmethod(NULL),
3336       _postponed_list(NULL),
3337       _num_entered_barrier(0)
3338   {
3339     CompiledMethod::increase_unloading_clock();
3340     // Get first alive nmethod
3341     CompiledMethodIterator iter = CompiledMethodIterator();
3342     if(iter.next_alive()) {
3343       _first_nmethod = iter.method();
3344     }
3345     _claimed_nmethod = _first_nmethod;
3346   }
3347 
3348   ~G1CodeCacheUnloadingTask() {
3349     CodeCache::verify_clean_inline_caches();
3350 
3351     CodeCache::set_needs_cache_clean(false);
3352     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3353 
3354     CodeCache::verify_icholder_relocations();
3355   }
3356 
3357  private:
3358   void add_to_postponed_list(CompiledMethod* nm) {
3359       CompiledMethod* old;
3360       do {
3361         old = _postponed_list;
3362         nm->set_unloading_next(old);
3363       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3364   }
3365 
3366   void clean_nmethod(CompiledMethod* nm) {
3367     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3368 
3369     if (postponed) {
3370       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3371       add_to_postponed_list(nm);
3372     }
3373 
3374     // Mark that this nmethod has been cleaned/unloaded.
3375     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3376     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3377   }
3378 
3379   void clean_nmethod_postponed(CompiledMethod* nm) {
3380     nm->do_unloading_parallel_postponed();
3381   }
3382 
3383   static const int MaxClaimNmethods = 16;
3384 
3385   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3386     CompiledMethod* first;
3387     CompiledMethodIterator last;
3388 
3389     do {
3390       *num_claimed_nmethods = 0;
3391 
3392       first = _claimed_nmethod;
3393       last = CompiledMethodIterator(first);
3394 
3395       if (first != NULL) {
3396 
3397         for (int i = 0; i < MaxClaimNmethods; i++) {
3398           if (!last.next_alive()) {
3399             break;
3400           }
3401           claimed_nmethods[i] = last.method();
3402           (*num_claimed_nmethods)++;
3403         }
3404       }
3405 
3406     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3407   }
3408 
3409   CompiledMethod* claim_postponed_nmethod() {
3410     CompiledMethod* claim;
3411     CompiledMethod* next;
3412 
3413     do {
3414       claim = _postponed_list;
3415       if (claim == NULL) {
3416         return NULL;
3417       }
3418 
3419       next = claim->unloading_next();
3420 
3421     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3422 
3423     return claim;
3424   }
3425 
3426  public:
3427   // Mark that we're done with the first pass of nmethod cleaning.
3428   void barrier_mark(uint worker_id) {
3429     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3430     _num_entered_barrier++;
3431     if (_num_entered_barrier == _num_workers) {
3432       ml.notify_all();
3433     }
3434   }
3435 
3436   // See if we have to wait for the other workers to
3437   // finish their first-pass nmethod cleaning work.
3438   void barrier_wait(uint worker_id) {
3439     if (_num_entered_barrier < _num_workers) {
3440       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3441       while (_num_entered_barrier < _num_workers) {
3442           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3443       }
3444     }
3445   }
3446 
3447   // Cleaning and unloading of nmethods. Some work has to be postponed
3448   // to the second pass, when we know which nmethods survive.
3449   void work_first_pass(uint worker_id) {
3450     // The first nmethods is claimed by the first worker.
3451     if (worker_id == 0 && _first_nmethod != NULL) {
3452       clean_nmethod(_first_nmethod);
3453       _first_nmethod = NULL;
3454     }
3455 
3456     int num_claimed_nmethods;
3457     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3458 
3459     while (true) {
3460       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3461 
3462       if (num_claimed_nmethods == 0) {
3463         break;
3464       }
3465 
3466       for (int i = 0; i < num_claimed_nmethods; i++) {
3467         clean_nmethod(claimed_nmethods[i]);
3468       }
3469     }
3470   }
3471 
3472   void work_second_pass(uint worker_id) {
3473     CompiledMethod* nm;
3474     // Take care of postponed nmethods.
3475     while ((nm = claim_postponed_nmethod()) != NULL) {
3476       clean_nmethod_postponed(nm);
3477     }
3478   }
3479 };
3480 
3481 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3482 
3483 class G1KlassCleaningTask : public StackObj {
3484   volatile int                            _clean_klass_tree_claimed;
3485   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3486 
3487  public:
3488   G1KlassCleaningTask() :
3489       _clean_klass_tree_claimed(0),
3490       _klass_iterator() {
3491   }
3492 
3493  private:
3494   bool claim_clean_klass_tree_task() {
3495     if (_clean_klass_tree_claimed) {
3496       return false;
3497     }
3498 
3499     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3500   }
3501 
3502   InstanceKlass* claim_next_klass() {
3503     Klass* klass;
3504     do {
3505       klass =_klass_iterator.next_klass();
3506     } while (klass != NULL && !klass->is_instance_klass());
3507 
3508     // this can be null so don't call InstanceKlass::cast
3509     return static_cast<InstanceKlass*>(klass);
3510   }
3511 
3512 public:
3513 
3514   void clean_klass(InstanceKlass* ik) {
3515     ik->clean_weak_instanceklass_links();
3516   }
3517 
3518   void work() {
3519     ResourceMark rm;
3520 
3521     // One worker will clean the subklass/sibling klass tree.
3522     if (claim_clean_klass_tree_task()) {
3523       Klass::clean_subklass_tree();
3524     }
3525 
3526     // All workers will help cleaning the classes,
3527     InstanceKlass* klass;
3528     while ((klass = claim_next_klass()) != NULL) {
3529       clean_klass(klass);
3530     }
3531   }
3532 };
3533 
3534 class G1ResolvedMethodCleaningTask : public StackObj {
3535   volatile int       _resolved_method_task_claimed;
3536 public:
3537   G1ResolvedMethodCleaningTask() :
3538       _resolved_method_task_claimed(0) {}
3539 
3540   bool claim_resolved_method_task() {
3541     if (_resolved_method_task_claimed) {
3542       return false;
3543     }
3544     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3545   }
3546 
3547   // These aren't big, one thread can do it all.
3548   void work() {
3549     if (claim_resolved_method_task()) {
3550       ResolvedMethodTable::unlink();
3551     }
3552   }
3553 };
3554 
3555 
3556 // To minimize the remark pause times, the tasks below are done in parallel.
3557 class G1ParallelCleaningTask : public AbstractGangTask {
3558 private:
3559   bool                          _unloading_occurred;
3560   G1StringAndSymbolCleaningTask _string_symbol_task;
3561   G1CodeCacheUnloadingTask      _code_cache_task;
3562   G1KlassCleaningTask           _klass_cleaning_task;
3563   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3564 
3565 public:
3566   // The constructor is run in the VMThread.
3567   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3568       AbstractGangTask("Parallel Cleaning"),
3569       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3570       _code_cache_task(num_workers, is_alive, unloading_occurred),
3571       _klass_cleaning_task(),
3572       _unloading_occurred(unloading_occurred),
3573       _resolved_method_cleaning_task() {
3574   }
3575 
3576   // The parallel work done by all worker threads.
3577   void work(uint worker_id) {
3578     // Do first pass of code cache cleaning.
3579     _code_cache_task.work_first_pass(worker_id);
3580 
3581     // Let the threads mark that the first pass is done.
3582     _code_cache_task.barrier_mark(worker_id);
3583 
3584     // Clean the Strings and Symbols.
3585     _string_symbol_task.work(worker_id);
3586 
3587     // Clean unreferenced things in the ResolvedMethodTable
3588     _resolved_method_cleaning_task.work();
3589 
3590     // Wait for all workers to finish the first code cache cleaning pass.
3591     _code_cache_task.barrier_wait(worker_id);
3592 
3593     // Do the second code cache cleaning work, which realize on
3594     // the liveness information gathered during the first pass.
3595     _code_cache_task.work_second_pass(worker_id);
3596 
3597     // Clean all klasses that were not unloaded.
3598     // The weak metadata in klass doesn't need to be
3599     // processed if there was no unloading.
3600     if (_unloading_occurred) {
3601       _klass_cleaning_task.work();
3602     }
3603   }
3604 };
3605 
3606 
3607 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3608                                         bool class_unloading_occurred) {
3609   uint n_workers = workers()->active_workers();
3610 
3611   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3612   workers()->run_task(&g1_unlink_task);
3613 }
3614 
3615 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3616                                        bool process_strings,
3617                                        bool process_symbols,
3618                                        bool process_string_dedup) {
3619   if (!process_strings && !process_symbols && !process_string_dedup) {
3620     // Nothing to clean.
3621     return;
3622   }
3623 
3624   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3625   workers()->run_task(&g1_unlink_task);
3626 
3627 }
3628 
3629 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3630  private:
3631   DirtyCardQueueSet* _queue;
3632   G1CollectedHeap* _g1h;
3633  public:
3634   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3635     _queue(queue), _g1h(g1h) { }
3636 
3637   virtual void work(uint worker_id) {
3638     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3639     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3640 
3641     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3642     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3643 
3644     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3645   }
3646 };
3647 
3648 void G1CollectedHeap::redirty_logged_cards() {
3649   double redirty_logged_cards_start = os::elapsedTime();
3650 
3651   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3652   dirty_card_queue_set().reset_for_par_iteration();
3653   workers()->run_task(&redirty_task);
3654 
3655   DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3656   dcq.merge_bufferlists(&dirty_card_queue_set());
3657   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3658 
3659   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3660 }
3661 
3662 // Weak Reference Processing support
3663 
3664 bool G1STWIsAliveClosure::do_object_b(oop p) {
3665   // An object is reachable if it is outside the collection set,
3666   // or is inside and copied.
3667   return !_g1h->is_in_cset(p) || p->is_forwarded();
3668 }
3669 
3670 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3671   assert(obj != NULL, "must not be NULL");
3672   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3673   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3674   // may falsely indicate that this is not the case here: however the collection set only
3675   // contains old regions when concurrent mark is not running.
3676   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3677 }
3678 
3679 // Non Copying Keep Alive closure
3680 class G1KeepAliveClosure: public OopClosure {
3681   G1CollectedHeap*_g1h;
3682 public:
3683   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3684   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3685   void do_oop(oop* p) {
3686     oop obj = *p;
3687     assert(obj != NULL, "the caller should have filtered out NULL values");
3688 
3689     const InCSetState cset_state =_g1h->in_cset_state(obj);
3690     if (!cset_state.is_in_cset_or_humongous()) {
3691       return;
3692     }
3693     if (cset_state.is_in_cset()) {
3694       assert( obj->is_forwarded(), "invariant" );
3695       *p = obj->forwardee();
3696     } else {
3697       assert(!obj->is_forwarded(), "invariant" );
3698       assert(cset_state.is_humongous(),
3699              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3700      _g1h->set_humongous_is_live(obj);
3701     }
3702   }
3703 };
3704 
3705 // Copying Keep Alive closure - can be called from both
3706 // serial and parallel code as long as different worker
3707 // threads utilize different G1ParScanThreadState instances
3708 // and different queues.
3709 
3710 class G1CopyingKeepAliveClosure: public OopClosure {
3711   G1CollectedHeap*         _g1h;
3712   OopClosure*              _copy_non_heap_obj_cl;
3713   G1ParScanThreadState*    _par_scan_state;
3714 
3715 public:
3716   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3717                             OopClosure* non_heap_obj_cl,
3718                             G1ParScanThreadState* pss):
3719     _g1h(g1h),
3720     _copy_non_heap_obj_cl(non_heap_obj_cl),
3721     _par_scan_state(pss)
3722   {}
3723 
3724   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3725   virtual void do_oop(      oop* p) { do_oop_work(p); }
3726 
3727   template <class T> void do_oop_work(T* p) {
3728     oop obj = RawAccess<>::oop_load(p);
3729 
3730     if (_g1h->is_in_cset_or_humongous(obj)) {
3731       // If the referent object has been forwarded (either copied
3732       // to a new location or to itself in the event of an
3733       // evacuation failure) then we need to update the reference
3734       // field and, if both reference and referent are in the G1
3735       // heap, update the RSet for the referent.
3736       //
3737       // If the referent has not been forwarded then we have to keep
3738       // it alive by policy. Therefore we have copy the referent.
3739       //
3740       // If the reference field is in the G1 heap then we can push
3741       // on the PSS queue. When the queue is drained (after each
3742       // phase of reference processing) the object and it's followers
3743       // will be copied, the reference field set to point to the
3744       // new location, and the RSet updated. Otherwise we need to
3745       // use the the non-heap or metadata closures directly to copy
3746       // the referent object and update the pointer, while avoiding
3747       // updating the RSet.
3748 
3749       if (_g1h->is_in_g1_reserved(p)) {
3750         _par_scan_state->push_on_queue(p);
3751       } else {
3752         assert(!Metaspace::contains((const void*)p),
3753                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3754         _copy_non_heap_obj_cl->do_oop(p);
3755       }
3756     }
3757   }
3758 };
3759 
3760 // Serial drain queue closure. Called as the 'complete_gc'
3761 // closure for each discovered list in some of the
3762 // reference processing phases.
3763 
3764 class G1STWDrainQueueClosure: public VoidClosure {
3765 protected:
3766   G1CollectedHeap* _g1h;
3767   G1ParScanThreadState* _par_scan_state;
3768 
3769   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3770 
3771 public:
3772   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3773     _g1h(g1h),
3774     _par_scan_state(pss)
3775   { }
3776 
3777   void do_void() {
3778     G1ParScanThreadState* const pss = par_scan_state();
3779     pss->trim_queue();
3780   }
3781 };
3782 
3783 // Parallel Reference Processing closures
3784 
3785 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3786 // processing during G1 evacuation pauses.
3787 
3788 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3789 private:
3790   G1CollectedHeap*          _g1h;
3791   G1ParScanThreadStateSet*  _pss;
3792   RefToScanQueueSet*        _queues;
3793   WorkGang*                 _workers;
3794   uint                      _active_workers;
3795 
3796 public:
3797   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3798                            G1ParScanThreadStateSet* per_thread_states,
3799                            WorkGang* workers,
3800                            RefToScanQueueSet *task_queues,
3801                            uint n_workers) :
3802     _g1h(g1h),
3803     _pss(per_thread_states),
3804     _queues(task_queues),
3805     _workers(workers),
3806     _active_workers(n_workers)
3807   {
3808     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3809   }
3810 
3811   // Executes the given task using concurrent marking worker threads.
3812   virtual void execute(ProcessTask& task);
3813 };
3814 
3815 // Gang task for possibly parallel reference processing
3816 
3817 class G1STWRefProcTaskProxy: public AbstractGangTask {
3818   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3819   ProcessTask&     _proc_task;
3820   G1CollectedHeap* _g1h;
3821   G1ParScanThreadStateSet* _pss;
3822   RefToScanQueueSet* _task_queues;
3823   ParallelTaskTerminator* _terminator;
3824 
3825 public:
3826   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3827                         G1CollectedHeap* g1h,
3828                         G1ParScanThreadStateSet* per_thread_states,
3829                         RefToScanQueueSet *task_queues,
3830                         ParallelTaskTerminator* terminator) :
3831     AbstractGangTask("Process reference objects in parallel"),
3832     _proc_task(proc_task),
3833     _g1h(g1h),
3834     _pss(per_thread_states),
3835     _task_queues(task_queues),
3836     _terminator(terminator)
3837   {}
3838 
3839   virtual void work(uint worker_id) {
3840     // The reference processing task executed by a single worker.
3841     ResourceMark rm;
3842     HandleMark   hm;
3843 
3844     G1STWIsAliveClosure is_alive(_g1h);
3845 
3846     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
3847     pss->set_ref_discoverer(NULL);
3848 
3849     // Keep alive closure.
3850     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
3851 
3852     // Complete GC closure
3853     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
3854 
3855     // Call the reference processing task's work routine.
3856     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3857 
3858     // Note we cannot assert that the refs array is empty here as not all
3859     // of the processing tasks (specifically phase2 - pp2_work) execute
3860     // the complete_gc closure (which ordinarily would drain the queue) so
3861     // the queue may not be empty.
3862   }
3863 };
3864 
3865 // Driver routine for parallel reference processing.
3866 // Creates an instance of the ref processing gang
3867 // task and has the worker threads execute it.
3868 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
3869   assert(_workers != NULL, "Need parallel worker threads.");
3870 
3871   ParallelTaskTerminator terminator(_active_workers, _queues);
3872   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3873 
3874   _workers->run_task(&proc_task_proxy);
3875 }
3876 
3877 // End of weak reference support closures
3878 
3879 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3880   double ref_proc_start = os::elapsedTime();
3881 
3882   ReferenceProcessor* rp = _ref_processor_stw;
3883   assert(rp->discovery_enabled(), "should have been enabled");
3884 
3885   // Closure to test whether a referent is alive.
3886   G1STWIsAliveClosure is_alive(this);
3887 
3888   // Even when parallel reference processing is enabled, the processing
3889   // of JNI refs is serial and performed serially by the current thread
3890   // rather than by a worker. The following PSS will be used for processing
3891   // JNI refs.
3892 
3893   // Use only a single queue for this PSS.
3894   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3895   pss->set_ref_discoverer(NULL);
3896   assert(pss->queue_is_empty(), "pre-condition");
3897 
3898   // Keep alive closure.
3899   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
3900 
3901   // Serial Complete GC closure
3902   G1STWDrainQueueClosure drain_queue(this, pss);
3903 
3904   // Setup the soft refs policy...
3905   rp->setup_policy(false);
3906 
3907   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
3908 
3909   ReferenceProcessorStats stats;
3910   if (!rp->processing_is_mt()) {
3911     // Serial reference processing...
3912     stats = rp->process_discovered_references(&is_alive,
3913                                               &keep_alive,
3914                                               &drain_queue,
3915                                               NULL,
3916                                               pt);
3917   } else {
3918     uint no_of_gc_workers = workers()->active_workers();
3919 
3920     // Parallel reference processing
3921     assert(no_of_gc_workers <= rp->max_num_queues(),
3922            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3923            no_of_gc_workers,  rp->max_num_queues());
3924 
3925     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
3926     stats = rp->process_discovered_references(&is_alive,
3927                                               &keep_alive,
3928                                               &drain_queue,
3929                                               &par_task_executor,
3930                                               pt);
3931   }
3932 
3933   _gc_tracer_stw->report_gc_reference_stats(stats);
3934 
3935   // We have completed copying any necessary live referent objects.
3936   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3937 
3938   make_pending_list_reachable();
3939 
3940   rp->verify_no_references_recorded();
3941 
3942   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3943   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3944 }
3945 
3946 void G1CollectedHeap::make_pending_list_reachable() {
3947   if (collector_state()->in_initial_mark_gc()) {
3948     oop pll_head = Universe::reference_pending_list();
3949     if (pll_head != NULL) {
3950       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3951       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3952     }
3953   }
3954 }
3955 
3956 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3957   double merge_pss_time_start = os::elapsedTime();
3958   per_thread_states->flush();
3959   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
3960 }
3961 
3962 void G1CollectedHeap::pre_evacuate_collection_set() {
3963   _expand_heap_after_alloc_failure = true;
3964   _evacuation_failed = false;
3965 
3966   // Disable the hot card cache.
3967   _hot_card_cache->reset_hot_cache_claimed_index();
3968   _hot_card_cache->set_use_cache(false);
3969 
3970   g1_rem_set()->prepare_for_oops_into_collection_set_do();
3971   _preserved_marks_set.assert_empty();
3972 
3973   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3974 
3975   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3976   if (collector_state()->in_initial_mark_gc()) {
3977     double start_clear_claimed_marks = os::elapsedTime();
3978 
3979     ClassLoaderDataGraph::clear_claimed_marks();
3980 
3981     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3982     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3983   }
3984 }
3985 
3986 void G1CollectedHeap::evacuate_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3987   // Should G1EvacuationFailureALot be in effect for this GC?
3988   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3989 
3990   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
3991 
3992   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
3993 
3994   double start_par_time_sec = os::elapsedTime();
3995   double end_par_time_sec;
3996 
3997   {
3998     const uint n_workers = workers()->active_workers();
3999     G1RootProcessor root_processor(this, n_workers);
4000     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4001 
4002     print_termination_stats_hdr();
4003 
4004     workers()->run_task(&g1_par_task);
4005     end_par_time_sec = os::elapsedTime();
4006 
4007     // Closing the inner scope will execute the destructor
4008     // for the G1RootProcessor object. We record the current
4009     // elapsed time before closing the scope so that time
4010     // taken for the destructor is NOT included in the
4011     // reported parallel time.
4012   }
4013 
4014   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4015   phase_times->record_par_time(par_time_ms);
4016 
4017   double code_root_fixup_time_ms =
4018         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4019   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4020 }
4021 
4022 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4023   // Also cleans the card table from temporary duplicate detection information used
4024   // during UpdateRS/ScanRS.
4025   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4026 
4027   // Process any discovered reference objects - we have
4028   // to do this _before_ we retire the GC alloc regions
4029   // as we may have to copy some 'reachable' referent
4030   // objects (and their reachable sub-graphs) that were
4031   // not copied during the pause.
4032   process_discovered_references(per_thread_states);
4033 
4034   // FIXME
4035   // CM's reference processing also cleans up the string and symbol tables.
4036   // Should we do that here also? We could, but it is a serial operation
4037   // and could significantly increase the pause time.
4038 
4039   G1STWIsAliveClosure is_alive(this);
4040   G1KeepAliveClosure keep_alive(this);
4041 
4042   {
4043     double start = os::elapsedTime();
4044 
4045     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4046 
4047     double time_ms = (os::elapsedTime() - start) * 1000.0;
4048     g1_policy()->phase_times()->record_weak_ref_proc_time(time_ms);
4049   }
4050 
4051   if (G1StringDedup::is_enabled()) {
4052     double fixup_start = os::elapsedTime();
4053 
4054     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4055 
4056     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4057     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4058   }
4059 
4060   if (evacuation_failed()) {
4061     restore_after_evac_failure();
4062 
4063     // Reset the G1EvacuationFailureALot counters and flags
4064     // Note: the values are reset only when an actual
4065     // evacuation failure occurs.
4066     NOT_PRODUCT(reset_evacuation_should_fail();)
4067   }
4068 
4069   _preserved_marks_set.assert_empty();
4070 
4071   _allocator->release_gc_alloc_regions(evacuation_info);
4072 
4073   merge_per_thread_state_info(per_thread_states);
4074 
4075   // Reset and re-enable the hot card cache.
4076   // Note the counts for the cards in the regions in the
4077   // collection set are reset when the collection set is freed.
4078   _hot_card_cache->reset_hot_cache();
4079   _hot_card_cache->set_use_cache(true);
4080 
4081   purge_code_root_memory();
4082 
4083   redirty_logged_cards();
4084 #if COMPILER2_OR_JVMCI
4085   double start = os::elapsedTime();
4086   DerivedPointerTable::update_pointers();
4087   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4088 #endif
4089   g1_policy()->print_age_table();
4090 }
4091 
4092 void G1CollectedHeap::record_obj_copy_mem_stats() {
4093   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4094 
4095   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4096                                                create_g1_evac_summary(&_old_evac_stats));
4097 }
4098 
4099 void G1CollectedHeap::free_region(HeapRegion* hr,
4100                                   FreeRegionList* free_list,
4101                                   bool skip_remset,
4102                                   bool skip_hot_card_cache,
4103                                   bool locked) {
4104   assert(!hr->is_free(), "the region should not be free");
4105   assert(!hr->is_empty(), "the region should not be empty");
4106   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4107   assert(free_list != NULL, "pre-condition");
4108 
4109   if (G1VerifyBitmaps) {
4110     MemRegion mr(hr->bottom(), hr->end());
4111     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4112   }
4113 
4114   // Clear the card counts for this region.
4115   // Note: we only need to do this if the region is not young
4116   // (since we don't refine cards in young regions).
4117   if (!skip_hot_card_cache && !hr->is_young()) {
4118     _hot_card_cache->reset_card_counts(hr);
4119   }
4120   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4121   _g1_policy->remset_tracker()->update_at_free(hr);
4122   free_list->add_ordered(hr);
4123 }
4124 
4125 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4126                                             FreeRegionList* free_list) {
4127   assert(hr->is_humongous(), "this is only for humongous regions");
4128   assert(free_list != NULL, "pre-condition");
4129   hr->clear_humongous();
4130   free_region(hr, free_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
4131 }
4132 
4133 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4134                                            const uint humongous_regions_removed) {
4135   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4136     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4137     _old_set.bulk_remove(old_regions_removed);
4138     _humongous_set.bulk_remove(humongous_regions_removed);
4139   }
4140 
4141 }
4142 
4143 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4144   assert(list != NULL, "list can't be null");
4145   if (!list->is_empty()) {
4146     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4147     _hrm.insert_list_into_free_list(list);
4148   }
4149 }
4150 
4151 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4152   decrease_used(bytes);
4153 }
4154 
4155 class G1FreeCollectionSetTask : public AbstractGangTask {
4156 private:
4157 
4158   // Closure applied to all regions in the collection set to do work that needs to
4159   // be done serially in a single thread.
4160   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4161   private:
4162     EvacuationInfo* _evacuation_info;
4163     const size_t* _surviving_young_words;
4164 
4165     // Bytes used in successfully evacuated regions before the evacuation.
4166     size_t _before_used_bytes;
4167     // Bytes used in unsucessfully evacuated regions before the evacuation
4168     size_t _after_used_bytes;
4169 
4170     size_t _bytes_allocated_in_old_since_last_gc;
4171 
4172     size_t _failure_used_words;
4173     size_t _failure_waste_words;
4174 
4175     FreeRegionList _local_free_list;
4176   public:
4177     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4178       HeapRegionClosure(),
4179       _evacuation_info(evacuation_info),
4180       _surviving_young_words(surviving_young_words),
4181       _before_used_bytes(0),
4182       _after_used_bytes(0),
4183       _bytes_allocated_in_old_since_last_gc(0),
4184       _failure_used_words(0),
4185       _failure_waste_words(0),
4186       _local_free_list("Local Region List for CSet Freeing") {
4187     }
4188 
4189     virtual bool do_heap_region(HeapRegion* r) {
4190       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4191 
4192       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4193       g1h->clear_in_cset(r);
4194 
4195       if (r->is_young()) {
4196         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4197                "Young index %d is wrong for region %u of type %s with %u young regions",
4198                r->young_index_in_cset(),
4199                r->hrm_index(),
4200                r->get_type_str(),
4201                g1h->collection_set()->young_region_length());
4202         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4203         r->record_surv_words_in_group(words_survived);
4204       }
4205 
4206       if (!r->evacuation_failed()) {
4207         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4208         _before_used_bytes += r->used();
4209         g1h->free_region(r,
4210                          &_local_free_list,
4211                          true, /* skip_remset */
4212                          true, /* skip_hot_card_cache */
4213                          true  /* locked */);
4214       } else {
4215         r->uninstall_surv_rate_group();
4216         r->set_young_index_in_cset(-1);
4217         r->set_evacuation_failed(false);
4218         // When moving a young gen region to old gen, we "allocate" that whole region
4219         // there. This is in addition to any already evacuated objects. Notify the
4220         // policy about that.
4221         // Old gen regions do not cause an additional allocation: both the objects
4222         // still in the region and the ones already moved are accounted for elsewhere.
4223         if (r->is_young()) {
4224           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4225         }
4226         // The region is now considered to be old.
4227         r->set_old();
4228         // Do some allocation statistics accounting. Regions that failed evacuation
4229         // are always made old, so there is no need to update anything in the young
4230         // gen statistics, but we need to update old gen statistics.
4231         size_t used_words = r->marked_bytes() / HeapWordSize;
4232 
4233         _failure_used_words += used_words;
4234         _failure_waste_words += HeapRegion::GrainWords - used_words;
4235 
4236         g1h->old_set_add(r);
4237         _after_used_bytes += r->used();
4238       }
4239       return false;
4240     }
4241 
4242     void complete_work() {
4243       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4244 
4245       _evacuation_info->set_regions_freed(_local_free_list.length());
4246       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4247 
4248       g1h->prepend_to_freelist(&_local_free_list);
4249       g1h->decrement_summary_bytes(_before_used_bytes);
4250 
4251       G1Policy* policy = g1h->g1_policy();
4252       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4253 
4254       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4255     }
4256   };
4257 
4258   G1CollectionSet* _collection_set;
4259   G1SerialFreeCollectionSetClosure _cl;
4260   const size_t* _surviving_young_words;
4261 
4262   size_t _rs_lengths;
4263 
4264   volatile jint _serial_work_claim;
4265 
4266   struct WorkItem {
4267     uint region_idx;
4268     bool is_young;
4269     bool evacuation_failed;
4270 
4271     WorkItem(HeapRegion* r) {
4272       region_idx = r->hrm_index();
4273       is_young = r->is_young();
4274       evacuation_failed = r->evacuation_failed();
4275     }
4276   };
4277 
4278   volatile size_t _parallel_work_claim;
4279   size_t _num_work_items;
4280   WorkItem* _work_items;
4281 
4282   void do_serial_work() {
4283     // Need to grab the lock to be allowed to modify the old region list.
4284     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4285     _collection_set->iterate(&_cl);
4286   }
4287 
4288   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4289     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4290 
4291     HeapRegion* r = g1h->region_at(region_idx);
4292     assert(!g1h->is_on_master_free_list(r), "sanity");
4293 
4294     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4295 
4296     if (!is_young) {
4297       g1h->_hot_card_cache->reset_card_counts(r);
4298     }
4299 
4300     if (!evacuation_failed) {
4301       r->rem_set()->clear_locked();
4302     }
4303   }
4304 
4305   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4306   private:
4307     size_t _cur_idx;
4308     WorkItem* _work_items;
4309   public:
4310     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4311 
4312     virtual bool do_heap_region(HeapRegion* r) {
4313       _work_items[_cur_idx++] = WorkItem(r);
4314       return false;
4315     }
4316   };
4317 
4318   void prepare_work() {
4319     G1PrepareFreeCollectionSetClosure cl(_work_items);
4320     _collection_set->iterate(&cl);
4321   }
4322 
4323   void complete_work() {
4324     _cl.complete_work();
4325 
4326     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4327     policy->record_max_rs_lengths(_rs_lengths);
4328     policy->cset_regions_freed();
4329   }
4330 public:
4331   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4332     AbstractGangTask("G1 Free Collection Set"),
4333     _cl(evacuation_info, surviving_young_words),
4334     _collection_set(collection_set),
4335     _surviving_young_words(surviving_young_words),
4336     _serial_work_claim(0),
4337     _rs_lengths(0),
4338     _parallel_work_claim(0),
4339     _num_work_items(collection_set->region_length()),
4340     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4341     prepare_work();
4342   }
4343 
4344   ~G1FreeCollectionSetTask() {
4345     complete_work();
4346     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4347   }
4348 
4349   // Chunk size for work distribution. The chosen value has been determined experimentally
4350   // to be a good tradeoff between overhead and achievable parallelism.
4351   static uint chunk_size() { return 32; }
4352 
4353   virtual void work(uint worker_id) {
4354     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4355 
4356     // Claim serial work.
4357     if (_serial_work_claim == 0) {
4358       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4359       if (value == 0) {
4360         double serial_time = os::elapsedTime();
4361         do_serial_work();
4362         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4363       }
4364     }
4365 
4366     // Start parallel work.
4367     double young_time = 0.0;
4368     bool has_young_time = false;
4369     double non_young_time = 0.0;
4370     bool has_non_young_time = false;
4371 
4372     while (true) {
4373       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4374       size_t cur = end - chunk_size();
4375 
4376       if (cur >= _num_work_items) {
4377         break;
4378       }
4379 
4380       double start_time = os::elapsedTime();
4381 
4382       end = MIN2(end, _num_work_items);
4383 
4384       for (; cur < end; cur++) {
4385         bool is_young = _work_items[cur].is_young;
4386 
4387         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4388 
4389         double end_time = os::elapsedTime();
4390         double time_taken = end_time - start_time;
4391         if (is_young) {
4392           young_time += time_taken;
4393           has_young_time = true;
4394         } else {
4395           non_young_time += time_taken;
4396           has_non_young_time = true;
4397         }
4398         start_time = end_time;
4399       }
4400     }
4401 
4402     if (has_young_time) {
4403       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4404     }
4405     if (has_non_young_time) {
4406       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, non_young_time);
4407     }
4408   }
4409 };
4410 
4411 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4412   _eden.clear();
4413 
4414   double free_cset_start_time = os::elapsedTime();
4415 
4416   {
4417     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4418     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4419 
4420     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4421 
4422     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4423                         cl.name(),
4424                         num_workers,
4425                         _collection_set.region_length());
4426     workers()->run_task(&cl, num_workers);
4427   }
4428   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4429 
4430   collection_set->clear();
4431 }
4432 
4433 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4434  private:
4435   FreeRegionList* _free_region_list;
4436   HeapRegionSet* _proxy_set;
4437   uint _humongous_objects_reclaimed;
4438   uint _humongous_regions_reclaimed;
4439   size_t _freed_bytes;
4440  public:
4441 
4442   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4443     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4444   }
4445 
4446   virtual bool do_heap_region(HeapRegion* r) {
4447     if (!r->is_starts_humongous()) {
4448       return false;
4449     }
4450 
4451     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4452 
4453     oop obj = (oop)r->bottom();
4454     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4455 
4456     // The following checks whether the humongous object is live are sufficient.
4457     // The main additional check (in addition to having a reference from the roots
4458     // or the young gen) is whether the humongous object has a remembered set entry.
4459     //
4460     // A humongous object cannot be live if there is no remembered set for it
4461     // because:
4462     // - there can be no references from within humongous starts regions referencing
4463     // the object because we never allocate other objects into them.
4464     // (I.e. there are no intra-region references that may be missed by the
4465     // remembered set)
4466     // - as soon there is a remembered set entry to the humongous starts region
4467     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4468     // until the end of a concurrent mark.
4469     //
4470     // It is not required to check whether the object has been found dead by marking
4471     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4472     // all objects allocated during that time are considered live.
4473     // SATB marking is even more conservative than the remembered set.
4474     // So if at this point in the collection there is no remembered set entry,
4475     // nobody has a reference to it.
4476     // At the start of collection we flush all refinement logs, and remembered sets
4477     // are completely up-to-date wrt to references to the humongous object.
4478     //
4479     // Other implementation considerations:
4480     // - never consider object arrays at this time because they would pose
4481     // considerable effort for cleaning up the the remembered sets. This is
4482     // required because stale remembered sets might reference locations that
4483     // are currently allocated into.
4484     uint region_idx = r->hrm_index();
4485     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4486         !r->rem_set()->is_empty()) {
4487       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4488                                region_idx,
4489                                (size_t)obj->size() * HeapWordSize,
4490                                p2i(r->bottom()),
4491                                r->rem_set()->occupied(),
4492                                r->rem_set()->strong_code_roots_list_length(),
4493                                next_bitmap->is_marked(r->bottom()),
4494                                g1h->is_humongous_reclaim_candidate(region_idx),
4495                                obj->is_typeArray()
4496                               );
4497       return false;
4498     }
4499 
4500     guarantee(obj->is_typeArray(),
4501               "Only eagerly reclaiming type arrays is supported, but the object "
4502               PTR_FORMAT " is not.", p2i(r->bottom()));
4503 
4504     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4505                              region_idx,
4506                              (size_t)obj->size() * HeapWordSize,
4507                              p2i(r->bottom()),
4508                              r->rem_set()->occupied(),
4509                              r->rem_set()->strong_code_roots_list_length(),
4510                              next_bitmap->is_marked(r->bottom()),
4511                              g1h->is_humongous_reclaim_candidate(region_idx),
4512                              obj->is_typeArray()
4513                             );
4514 
4515     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4516     cm->humongous_object_eagerly_reclaimed(r);
4517     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4518            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4519            region_idx,
4520            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4521            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4522     _humongous_objects_reclaimed++;
4523     do {
4524       HeapRegion* next = g1h->next_region_in_humongous(r);
4525       _freed_bytes += r->used();
4526       r->set_containing_set(NULL);
4527       _humongous_regions_reclaimed++;
4528       g1h->free_humongous_region(r, _free_region_list);
4529       r = next;
4530     } while (r != NULL);
4531 
4532     return false;
4533   }
4534 
4535   uint humongous_objects_reclaimed() {
4536     return _humongous_objects_reclaimed;
4537   }
4538 
4539   uint humongous_regions_reclaimed() {
4540     return _humongous_regions_reclaimed;
4541   }
4542 
4543   size_t bytes_freed() const {
4544     return _freed_bytes;
4545   }
4546 };
4547 
4548 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4549   assert_at_safepoint_on_vm_thread();
4550 
4551   if (!G1EagerReclaimHumongousObjects ||
4552       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4553     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4554     return;
4555   }
4556 
4557   double start_time = os::elapsedTime();
4558 
4559   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4560 
4561   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4562   heap_region_iterate(&cl);
4563 
4564   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4565 
4566   G1HRPrinter* hrp = hr_printer();
4567   if (hrp->is_active()) {
4568     FreeRegionListIterator iter(&local_cleanup_list);
4569     while (iter.more_available()) {
4570       HeapRegion* hr = iter.get_next();
4571       hrp->cleanup(hr);
4572     }
4573   }
4574 
4575   prepend_to_freelist(&local_cleanup_list);
4576   decrement_summary_bytes(cl.bytes_freed());
4577 
4578   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4579                                                                     cl.humongous_objects_reclaimed());
4580 }
4581 
4582 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4583 public:
4584   virtual bool do_heap_region(HeapRegion* r) {
4585     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4586     G1CollectedHeap::heap()->clear_in_cset(r);
4587     r->set_young_index_in_cset(-1);
4588     return false;
4589   }
4590 };
4591 
4592 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4593   G1AbandonCollectionSetClosure cl;
4594   collection_set->iterate(&cl);
4595 
4596   collection_set->clear();
4597   collection_set->stop_incremental_building();
4598 }
4599 
4600 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4601   return _allocator->is_retained_old_region(hr);
4602 }
4603 
4604 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4605   _eden.add(hr);
4606   _g1_policy->set_region_eden(hr);
4607 }
4608 
4609 #ifdef ASSERT
4610 
4611 class NoYoungRegionsClosure: public HeapRegionClosure {
4612 private:
4613   bool _success;
4614 public:
4615   NoYoungRegionsClosure() : _success(true) { }
4616   bool do_heap_region(HeapRegion* r) {
4617     if (r->is_young()) {
4618       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4619                             p2i(r->bottom()), p2i(r->end()));
4620       _success = false;
4621     }
4622     return false;
4623   }
4624   bool success() { return _success; }
4625 };
4626 
4627 bool G1CollectedHeap::check_young_list_empty() {
4628   bool ret = (young_regions_count() == 0);
4629 
4630   NoYoungRegionsClosure closure;
4631   heap_region_iterate(&closure);
4632   ret = ret && closure.success();
4633 
4634   return ret;
4635 }
4636 
4637 #endif // ASSERT
4638 
4639 class TearDownRegionSetsClosure : public HeapRegionClosure {
4640 private:
4641   HeapRegionSet *_old_set;
4642 
4643 public:
4644   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4645 
4646   bool do_heap_region(HeapRegion* r) {
4647     if (r->is_old()) {
4648       _old_set->remove(r);
4649     } else if(r->is_young()) {
4650       r->uninstall_surv_rate_group();
4651     } else {
4652       // We ignore free regions, we'll empty the free list afterwards.
4653       // We ignore humongous regions, we're not tearing down the
4654       // humongous regions set.
4655       assert(r->is_free() || r->is_humongous(),
4656              "it cannot be another type");
4657     }
4658     return false;
4659   }
4660 
4661   ~TearDownRegionSetsClosure() {
4662     assert(_old_set->is_empty(), "post-condition");
4663   }
4664 };
4665 
4666 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4667   assert_at_safepoint_on_vm_thread();
4668 
4669   if (!free_list_only) {
4670     TearDownRegionSetsClosure cl(&_old_set);
4671     heap_region_iterate(&cl);
4672 
4673     // Note that emptying the _young_list is postponed and instead done as
4674     // the first step when rebuilding the regions sets again. The reason for
4675     // this is that during a full GC string deduplication needs to know if
4676     // a collected region was young or old when the full GC was initiated.
4677   }
4678   _hrm.remove_all_free_regions();
4679 }
4680 
4681 void G1CollectedHeap::increase_used(size_t bytes) {
4682   _summary_bytes_used += bytes;
4683 }
4684 
4685 void G1CollectedHeap::decrease_used(size_t bytes) {
4686   assert(_summary_bytes_used >= bytes,
4687          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4688          _summary_bytes_used, bytes);
4689   _summary_bytes_used -= bytes;
4690 }
4691 
4692 void G1CollectedHeap::set_used(size_t bytes) {
4693   _summary_bytes_used = bytes;
4694 }
4695 
4696 class RebuildRegionSetsClosure : public HeapRegionClosure {
4697 private:
4698   bool            _free_list_only;
4699   HeapRegionSet*   _old_set;
4700   HeapRegionManager*   _hrm;
4701   size_t          _total_used;
4702 
4703 public:
4704   RebuildRegionSetsClosure(bool free_list_only,
4705                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
4706     _free_list_only(free_list_only),
4707     _old_set(old_set), _hrm(hrm), _total_used(0) {
4708     assert(_hrm->num_free_regions() == 0, "pre-condition");
4709     if (!free_list_only) {
4710       assert(_old_set->is_empty(), "pre-condition");
4711     }
4712   }
4713 
4714   bool do_heap_region(HeapRegion* r) {
4715     // After full GC, no region should have a remembered set.
4716     r->rem_set()->clear(true);
4717     if (r->is_empty()) {
4718       // Add free regions to the free list
4719       r->set_free();
4720       _hrm->insert_into_free_list(r);
4721     } else if (!_free_list_only) {
4722 
4723       if (r->is_humongous()) {
4724         // We ignore humongous regions. We left the humongous set unchanged.
4725       } else {
4726         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4727         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
4728         r->move_to_old();
4729         _old_set->add(r);
4730       }
4731       _total_used += r->used();
4732     }
4733 
4734     return false;
4735   }
4736 
4737   size_t total_used() {
4738     return _total_used;
4739   }
4740 };
4741 
4742 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4743   assert_at_safepoint_on_vm_thread();
4744 
4745   if (!free_list_only) {
4746     _eden.clear();
4747     _survivor.clear();
4748   }
4749 
4750   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
4751   heap_region_iterate(&cl);
4752 
4753   if (!free_list_only) {
4754     set_used(cl.total_used());
4755     if (_archive_allocator != NULL) {
4756       _archive_allocator->clear_used();
4757     }
4758   }
4759   assert(used_unlocked() == recalculate_used(),
4760          "inconsistent used_unlocked(), "
4761          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
4762          used_unlocked(), recalculate_used());
4763 }
4764 
4765 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
4766   HeapRegion* hr = heap_region_containing(p);
4767   return hr->is_in(p);
4768 }
4769 
4770 // Methods for the mutator alloc region
4771 
4772 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4773                                                       bool force) {
4774   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4775   bool should_allocate = g1_policy()->should_allocate_mutator_region();
4776   if (force || should_allocate) {
4777     HeapRegion* new_alloc_region = new_region(word_size,
4778                                               false /* is_old */,
4779                                               false /* do_expand */);
4780     if (new_alloc_region != NULL) {
4781       set_region_short_lived_locked(new_alloc_region);
4782       _hr_printer.alloc(new_alloc_region, !should_allocate);
4783       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4784       _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4785       return new_alloc_region;
4786     }
4787   }
4788   return NULL;
4789 }
4790 
4791 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4792                                                   size_t allocated_bytes) {
4793   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4794   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4795 
4796   collection_set()->add_eden_region(alloc_region);
4797   increase_used(allocated_bytes);
4798   _hr_printer.retire(alloc_region);
4799   // We update the eden sizes here, when the region is retired,
4800   // instead of when it's allocated, since this is the point that its
4801   // used space has been recored in _summary_bytes_used.
4802   g1mm()->update_eden_size();
4803 }
4804 
4805 // Methods for the GC alloc regions
4806 
4807 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
4808   if (dest.is_old()) {
4809     return true;
4810   } else {
4811     return survivor_regions_count() < g1_policy()->max_survivor_regions();
4812   }
4813 }
4814 
4815 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
4816   assert(FreeList_lock->owned_by_self(), "pre-condition");
4817 
4818   if (!has_more_regions(dest)) {
4819     return NULL;
4820   }
4821 
4822   const bool is_survivor = dest.is_young();
4823 
4824   HeapRegion* new_alloc_region = new_region(word_size,
4825                                             !is_survivor,
4826                                             true /* do_expand */);
4827   if (new_alloc_region != NULL) {
4828     if (is_survivor) {
4829       new_alloc_region->set_survivor();
4830       _survivor.add(new_alloc_region);
4831       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4832     } else {
4833       new_alloc_region->set_old();
4834       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4835     }
4836     _g1_policy->remset_tracker()->update_at_allocate(new_alloc_region);
4837     _hr_printer.alloc(new_alloc_region);
4838     bool during_im = collector_state()->in_initial_mark_gc();
4839     new_alloc_region->note_start_of_copying(during_im);
4840     return new_alloc_region;
4841   }
4842   return NULL;
4843 }
4844 
4845 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4846                                              size_t allocated_bytes,
4847                                              InCSetState dest) {
4848   bool during_im = collector_state()->in_initial_mark_gc();
4849   alloc_region->note_end_of_copying(during_im);
4850   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
4851   if (dest.is_old()) {
4852     _old_set.add(alloc_region);
4853   }
4854   _hr_printer.retire(alloc_region);
4855 }
4856 
4857 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4858   bool expanded = false;
4859   uint index = _hrm.find_highest_free(&expanded);
4860 
4861   if (index != G1_NO_HRM_INDEX) {
4862     if (expanded) {
4863       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4864                                 HeapRegion::GrainWords * HeapWordSize);
4865     }
4866     _hrm.allocate_free_regions_starting_at(index, 1);
4867     return region_at(index);
4868   }
4869   return NULL;
4870 }
4871 
4872 // Optimized nmethod scanning
4873 
4874 class RegisterNMethodOopClosure: public OopClosure {
4875   G1CollectedHeap* _g1h;
4876   nmethod* _nm;
4877 
4878   template <class T> void do_oop_work(T* p) {
4879     T heap_oop = RawAccess<>::oop_load(p);
4880     if (!CompressedOops::is_null(heap_oop)) {
4881       oop obj = CompressedOops::decode_not_null(heap_oop);
4882       HeapRegion* hr = _g1h->heap_region_containing(obj);
4883       assert(!hr->is_continues_humongous(),
4884              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4885              " starting at " HR_FORMAT,
4886              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4887 
4888       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4889       hr->add_strong_code_root_locked(_nm);
4890     }
4891   }
4892 
4893 public:
4894   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4895     _g1h(g1h), _nm(nm) {}
4896 
4897   void do_oop(oop* p)       { do_oop_work(p); }
4898   void do_oop(narrowOop* p) { do_oop_work(p); }
4899 };
4900 
4901 class UnregisterNMethodOopClosure: public OopClosure {
4902   G1CollectedHeap* _g1h;
4903   nmethod* _nm;
4904 
4905   template <class T> void do_oop_work(T* p) {
4906     T heap_oop = RawAccess<>::oop_load(p);
4907     if (!CompressedOops::is_null(heap_oop)) {
4908       oop obj = CompressedOops::decode_not_null(heap_oop);
4909       HeapRegion* hr = _g1h->heap_region_containing(obj);
4910       assert(!hr->is_continues_humongous(),
4911              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4912              " starting at " HR_FORMAT,
4913              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4914 
4915       hr->remove_strong_code_root(_nm);
4916     }
4917   }
4918 
4919 public:
4920   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4921     _g1h(g1h), _nm(nm) {}
4922 
4923   void do_oop(oop* p)       { do_oop_work(p); }
4924   void do_oop(narrowOop* p) { do_oop_work(p); }
4925 };
4926 
4927 // Returns true if the reference points to an object that
4928 // can move in an incremental collection.
4929 bool G1CollectedHeap::is_scavengable(oop obj) {
4930   HeapRegion* hr = heap_region_containing(obj);
4931   return !hr->is_pinned();
4932 }
4933 
4934 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4935   guarantee(nm != NULL, "sanity");
4936   RegisterNMethodOopClosure reg_cl(this, nm);
4937   nm->oops_do(&reg_cl);
4938 }
4939 
4940 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4941   guarantee(nm != NULL, "sanity");
4942   UnregisterNMethodOopClosure reg_cl(this, nm);
4943   nm->oops_do(&reg_cl, true);
4944 }
4945 
4946 void G1CollectedHeap::purge_code_root_memory() {
4947   double purge_start = os::elapsedTime();
4948   G1CodeRootSet::purge();
4949   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4950   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4951 }
4952 
4953 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4954   G1CollectedHeap* _g1h;
4955 
4956 public:
4957   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4958     _g1h(g1h) {}
4959 
4960   void do_code_blob(CodeBlob* cb) {
4961     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4962     if (nm == NULL) {
4963       return;
4964     }
4965 
4966     if (ScavengeRootsInCode) {
4967       _g1h->register_nmethod(nm);
4968     }
4969   }
4970 };
4971 
4972 void G1CollectedHeap::rebuild_strong_code_roots() {
4973   RebuildStrongCodeRootClosure blob_cl(this);
4974   CodeCache::blobs_do(&blob_cl);
4975 }
4976 
4977 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4978   GrowableArray<GCMemoryManager*> memory_managers(2);
4979   memory_managers.append(&_memory_manager);
4980   memory_managers.append(&_full_gc_memory_manager);
4981   return memory_managers;
4982 }
4983 
4984 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4985   GrowableArray<MemoryPool*> memory_pools(3);
4986   memory_pools.append(_eden_pool);
4987   memory_pools.append(_survivor_pool);
4988   memory_pools.append(_old_pool);
4989   return memory_pools;
4990 }