1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "interpreter/bytecode.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/oopMapCache.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/method.hpp"
  43 #include "oops/objArrayKlass.hpp"
  44 #include "oops/objArrayOop.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/fieldStreams.hpp"
  47 #include "oops/typeArrayOop.inline.hpp"
  48 #include "oops/verifyOopClosure.hpp"
  49 #include "prims/jvmtiThreadState.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fieldDescriptor.hpp"
  54 #include "runtime/fieldDescriptor.inline.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/thread.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/vframe.hpp"
  66 #include "runtime/vframeArray.hpp"
  67 #include "runtime/vframe_hp.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/preserveException.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 
  72 
  73 bool DeoptimizationMarker::_is_active = false;
  74 
  75 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  76                                          int  caller_adjustment,
  77                                          int  caller_actual_parameters,
  78                                          int  number_of_frames,
  79                                          intptr_t* frame_sizes,
  80                                          address* frame_pcs,
  81                                          BasicType return_type,
  82                                          int exec_mode) {
  83   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  84   _caller_adjustment         = caller_adjustment;
  85   _caller_actual_parameters  = caller_actual_parameters;
  86   _number_of_frames          = number_of_frames;
  87   _frame_sizes               = frame_sizes;
  88   _frame_pcs                 = frame_pcs;
  89   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  90   _return_type               = return_type;
  91   _initial_info              = 0;
  92   // PD (x86 only)
  93   _counter_temp              = 0;
  94   _unpack_kind               = exec_mode;
  95   _sender_sp_temp            = 0;
  96 
  97   _total_frame_sizes         = size_of_frames();
  98   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  99 }
 100 
 101 
 102 Deoptimization::UnrollBlock::~UnrollBlock() {
 103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 106 }
 107 
 108 
 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 110   assert(register_number < RegisterMap::reg_count, "checking register number");
 111   return &_register_block[register_number * 2];
 112 }
 113 
 114 
 115 
 116 int Deoptimization::UnrollBlock::size_of_frames() const {
 117   // Acount first for the adjustment of the initial frame
 118   int result = _caller_adjustment;
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     result += frame_sizes()[index];
 121   }
 122   return result;
 123 }
 124 
 125 
 126 void Deoptimization::UnrollBlock::print() {
 127   ttyLocker ttyl;
 128   tty->print_cr("UnrollBlock");
 129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 130   tty->print(   "  frame_sizes: ");
 131   for (int index = 0; index < number_of_frames(); index++) {
 132     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 133   }
 134   tty->cr();
 135 }
 136 
 137 
 138 // In order to make fetch_unroll_info work properly with escape
 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 141 // of previously eliminated objects occurs in realloc_objects, which is
 142 // called from the method fetch_unroll_info_helper below.
 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 145   // but makes the entry a little slower. There is however a little dance we have to
 146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 147 
 148   // fetch_unroll_info() is called at the beginning of the deoptimization
 149   // handler. Note this fact before we start generating temporary frames
 150   // that can confuse an asynchronous stack walker. This counter is
 151   // decremented at the end of unpack_frames().
 152   if (TraceDeoptimization) {
 153     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 154   }
 155   thread->inc_in_deopt_handler();
 156 
 157   return fetch_unroll_info_helper(thread, exec_mode);
 158 JRT_END
 159 
 160 
 161 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 162 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 163 
 164   // Note: there is a safepoint safety issue here. No matter whether we enter
 165   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 166   // the vframeArray is created.
 167   //
 168 
 169   // Allocate our special deoptimization ResourceMark
 170   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 171   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 172   thread->set_deopt_mark(dmark);
 173 
 174   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 175   RegisterMap map(thread, true);
 176   RegisterMap dummy_map(thread, false);
 177   // Now get the deoptee with a valid map
 178   frame deoptee = stub_frame.sender(&map);
 179   // Set the deoptee nmethod
 180   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 181   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 182   thread->set_deopt_compiled_method(cm);
 183 
 184   if (VerifyStack) {
 185     thread->validate_frame_layout();
 186   }
 187 
 188   // Create a growable array of VFrames where each VFrame represents an inlined
 189   // Java frame.  This storage is allocated with the usual system arena.
 190   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 191   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 192   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 193   while (!vf->is_top()) {
 194     assert(vf->is_compiled_frame(), "Wrong frame type");
 195     chunk->push(compiledVFrame::cast(vf));
 196     vf = vf->sender();
 197   }
 198   assert(vf->is_compiled_frame(), "Wrong frame type");
 199   chunk->push(compiledVFrame::cast(vf));
 200 
 201   bool realloc_failures = false;
 202 
 203 #if COMPILER2_OR_JVMCI
 204   // Reallocate the non-escaping objects and restore their fields. Then
 205   // relock objects if synchronization on them was eliminated.
 206 #if !INCLUDE_JVMCI
 207   if (DoEscapeAnalysis || EliminateNestedLocks) {
 208     if (EliminateAllocations) {
 209 #endif // INCLUDE_JVMCI
 210       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 211       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 212 
 213       // The flag return_oop() indicates call sites which return oop
 214       // in compiled code. Such sites include java method calls,
 215       // runtime calls (for example, used to allocate new objects/arrays
 216       // on slow code path) and any other calls generated in compiled code.
 217       // It is not guaranteed that we can get such information here only
 218       // by analyzing bytecode in deoptimized frames. This is why this flag
 219       // is set during method compilation (see Compile::Process_OopMap_Node()).
 220       // If the previous frame was popped or if we are dispatching an exception,
 221       // we don't have an oop result.
 222       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 223       Handle return_value;
 224       if (save_oop_result) {
 225         // Reallocation may trigger GC. If deoptimization happened on return from
 226         // call which returns oop we need to save it since it is not in oopmap.
 227         oop result = deoptee.saved_oop_result(&map);
 228         assert(oopDesc::is_oop_or_null(result), "must be oop");
 229         return_value = Handle(thread, result);
 230         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 231         if (TraceDeoptimization) {
 232           ttyLocker ttyl;
 233           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 234         }
 235       }
 236       if (objects != NULL) {
 237         JRT_BLOCK
 238           realloc_failures = realloc_objects(thread, &deoptee, &map, objects, THREAD);
 239         JRT_END
 240         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 241         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 242 #ifndef PRODUCT
 243         if (TraceDeoptimization) {
 244           ttyLocker ttyl;
 245           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 246           print_objects(objects, realloc_failures);
 247         }
 248 #endif
 249       }
 250       if (save_oop_result) {
 251         // Restore result.
 252         deoptee.set_saved_oop_result(&map, return_value());
 253       }
 254 #if !INCLUDE_JVMCI
 255     }
 256     if (EliminateLocks) {
 257 #endif // INCLUDE_JVMCI
 258 #ifndef PRODUCT
 259       bool first = true;
 260 #endif
 261       for (int i = 0; i < chunk->length(); i++) {
 262         compiledVFrame* cvf = chunk->at(i);
 263         assert (cvf->scope() != NULL,"expect only compiled java frames");
 264         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 265         if (monitors->is_nonempty()) {
 266           relock_objects(monitors, thread, realloc_failures);
 267 #ifndef PRODUCT
 268           if (PrintDeoptimizationDetails) {
 269             ttyLocker ttyl;
 270             for (int j = 0; j < monitors->length(); j++) {
 271               MonitorInfo* mi = monitors->at(j);
 272               if (mi->eliminated()) {
 273                 if (first) {
 274                   first = false;
 275                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 276                 }
 277                 if (mi->owner_is_scalar_replaced()) {
 278                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 279                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 280                 } else {
 281                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 282                 }
 283               }
 284             }
 285           }
 286 #endif // !PRODUCT
 287         }
 288       }
 289 #if !INCLUDE_JVMCI
 290     }
 291   }
 292 #endif // INCLUDE_JVMCI
 293 #endif // COMPILER2_OR_JVMCI
 294 
 295   ScopeDesc* trap_scope = chunk->at(0)->scope();
 296   Handle exceptionObject;
 297   if (trap_scope->rethrow_exception()) {
 298     if (PrintDeoptimizationDetails) {
 299       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 300     }
 301     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 302     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 303     ScopeValue* topOfStack = expressions->top();
 304     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 305     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 306   }
 307 
 308   // Ensure that no safepoint is taken after pointers have been stored
 309   // in fields of rematerialized objects.  If a safepoint occurs from here on
 310   // out the java state residing in the vframeArray will be missed.
 311   NoSafepointVerifier no_safepoint;
 312 
 313   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 314 #if COMPILER2_OR_JVMCI
 315   if (realloc_failures) {
 316     pop_frames_failed_reallocs(thread, array);
 317   }
 318 #endif
 319 
 320   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 321   thread->set_vframe_array_head(array);
 322 
 323   // Now that the vframeArray has been created if we have any deferred local writes
 324   // added by jvmti then we can free up that structure as the data is now in the
 325   // vframeArray
 326 
 327   if (thread->deferred_locals() != NULL) {
 328     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 329     int i = 0;
 330     do {
 331       // Because of inlining we could have multiple vframes for a single frame
 332       // and several of the vframes could have deferred writes. Find them all.
 333       if (list->at(i)->id() == array->original().id()) {
 334         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 335         list->remove_at(i);
 336         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 337         delete dlv;
 338       } else {
 339         i++;
 340       }
 341     } while ( i < list->length() );
 342     if (list->length() == 0) {
 343       thread->set_deferred_locals(NULL);
 344       // free the list and elements back to C heap.
 345       delete list;
 346     }
 347 
 348   }
 349 
 350   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 351   CodeBlob* cb = stub_frame.cb();
 352   // Verify we have the right vframeArray
 353   assert(cb->frame_size() >= 0, "Unexpected frame size");
 354   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 355 
 356   // If the deopt call site is a MethodHandle invoke call site we have
 357   // to adjust the unpack_sp.
 358   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 359   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 360     unpack_sp = deoptee.unextended_sp();
 361 
 362 #ifdef ASSERT
 363   assert(cb->is_deoptimization_stub() ||
 364          cb->is_uncommon_trap_stub() ||
 365          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 366          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 367          "unexpected code blob: %s", cb->name());
 368 #endif
 369 
 370   // This is a guarantee instead of an assert because if vframe doesn't match
 371   // we will unpack the wrong deoptimized frame and wind up in strange places
 372   // where it will be very difficult to figure out what went wrong. Better
 373   // to die an early death here than some very obscure death later when the
 374   // trail is cold.
 375   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 376   // in that it will fail to detect a problem when there is one. This needs
 377   // more work in tiger timeframe.
 378   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 379 
 380   int number_of_frames = array->frames();
 381 
 382   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 383   // virtual activation, which is the reverse of the elements in the vframes array.
 384   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 385   // +1 because we always have an interpreter return address for the final slot.
 386   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 387   int popframe_extra_args = 0;
 388   // Create an interpreter return address for the stub to use as its return
 389   // address so the skeletal frames are perfectly walkable
 390   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 391 
 392   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 393   // activation be put back on the expression stack of the caller for reexecution
 394   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 395     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 396   }
 397 
 398   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 399   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 400   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 401   //
 402   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 403   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 404 
 405   // It's possible that the number of parameters at the call site is
 406   // different than number of arguments in the callee when method
 407   // handles are used.  If the caller is interpreted get the real
 408   // value so that the proper amount of space can be added to it's
 409   // frame.
 410   bool caller_was_method_handle = false;
 411   if (deopt_sender.is_interpreted_frame()) {
 412     methodHandle method = deopt_sender.interpreter_frame_method();
 413     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 414     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 415       // Method handle invokes may involve fairly arbitrary chains of
 416       // calls so it's impossible to know how much actual space the
 417       // caller has for locals.
 418       caller_was_method_handle = true;
 419     }
 420   }
 421 
 422   //
 423   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 424   // frame_sizes/frame_pcs[1] next oldest frame (int)
 425   // frame_sizes/frame_pcs[n] youngest frame (int)
 426   //
 427   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 428   // owns the space for the return address to it's caller).  Confusing ain't it.
 429   //
 430   // The vframe array can address vframes with indices running from
 431   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 432   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 433   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 434   // so things look a little strange in this loop.
 435   //
 436   int callee_parameters = 0;
 437   int callee_locals = 0;
 438   for (int index = 0; index < array->frames(); index++ ) {
 439     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 440     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 441     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 442     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 443                                                                                                     callee_locals,
 444                                                                                                     index == 0,
 445                                                                                                     popframe_extra_args);
 446     // This pc doesn't have to be perfect just good enough to identify the frame
 447     // as interpreted so the skeleton frame will be walkable
 448     // The correct pc will be set when the skeleton frame is completely filled out
 449     // The final pc we store in the loop is wrong and will be overwritten below
 450     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 451 
 452     callee_parameters = array->element(index)->method()->size_of_parameters();
 453     callee_locals = array->element(index)->method()->max_locals();
 454     popframe_extra_args = 0;
 455   }
 456 
 457   // Compute whether the root vframe returns a float or double value.
 458   BasicType return_type;
 459   {
 460     methodHandle method(thread, array->element(0)->method());
 461     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 462     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 463   }
 464 
 465   // Compute information for handling adapters and adjusting the frame size of the caller.
 466   int caller_adjustment = 0;
 467 
 468   // Compute the amount the oldest interpreter frame will have to adjust
 469   // its caller's stack by. If the caller is a compiled frame then
 470   // we pretend that the callee has no parameters so that the
 471   // extension counts for the full amount of locals and not just
 472   // locals-parms. This is because without a c2i adapter the parm
 473   // area as created by the compiled frame will not be usable by
 474   // the interpreter. (Depending on the calling convention there
 475   // may not even be enough space).
 476 
 477   // QQQ I'd rather see this pushed down into last_frame_adjust
 478   // and have it take the sender (aka caller).
 479 
 480   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 481     caller_adjustment = last_frame_adjust(0, callee_locals);
 482   } else if (callee_locals > callee_parameters) {
 483     // The caller frame may need extending to accommodate
 484     // non-parameter locals of the first unpacked interpreted frame.
 485     // Compute that adjustment.
 486     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 487   }
 488 
 489   // If the sender is deoptimized the we must retrieve the address of the handler
 490   // since the frame will "magically" show the original pc before the deopt
 491   // and we'd undo the deopt.
 492 
 493   frame_pcs[0] = deopt_sender.raw_pc();
 494 
 495   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 496 
 497 #if INCLUDE_JVMCI
 498   if (exceptionObject() != NULL) {
 499     thread->set_exception_oop(exceptionObject());
 500     exec_mode = Unpack_exception;
 501   }
 502 #endif
 503 
 504   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 505     assert(thread->has_pending_exception(), "should have thrown OOME");
 506     thread->set_exception_oop(thread->pending_exception());
 507     thread->clear_pending_exception();
 508     exec_mode = Unpack_exception;
 509   }
 510 
 511 #if INCLUDE_JVMCI
 512   if (thread->frames_to_pop_failed_realloc() > 0) {
 513     thread->set_pending_monitorenter(false);
 514   }
 515 #endif
 516 
 517   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 518                                       caller_adjustment * BytesPerWord,
 519                                       caller_was_method_handle ? 0 : callee_parameters,
 520                                       number_of_frames,
 521                                       frame_sizes,
 522                                       frame_pcs,
 523                                       return_type,
 524                                       exec_mode);
 525   // On some platforms, we need a way to pass some platform dependent
 526   // information to the unpacking code so the skeletal frames come out
 527   // correct (initial fp value, unextended sp, ...)
 528   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 529 
 530   if (array->frames() > 1) {
 531     if (VerifyStack && TraceDeoptimization) {
 532       ttyLocker ttyl;
 533       tty->print_cr("Deoptimizing method containing inlining");
 534     }
 535   }
 536 
 537   array->set_unroll_block(info);
 538   return info;
 539 }
 540 
 541 // Called to cleanup deoptimization data structures in normal case
 542 // after unpacking to stack and when stack overflow error occurs
 543 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 544                                         vframeArray *array) {
 545 
 546   // Get array if coming from exception
 547   if (array == NULL) {
 548     array = thread->vframe_array_head();
 549   }
 550   thread->set_vframe_array_head(NULL);
 551 
 552   // Free the previous UnrollBlock
 553   vframeArray* old_array = thread->vframe_array_last();
 554   thread->set_vframe_array_last(array);
 555 
 556   if (old_array != NULL) {
 557     UnrollBlock* old_info = old_array->unroll_block();
 558     old_array->set_unroll_block(NULL);
 559     delete old_info;
 560     delete old_array;
 561   }
 562 
 563   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 564   // inside the vframeArray (StackValueCollections)
 565 
 566   delete thread->deopt_mark();
 567   thread->set_deopt_mark(NULL);
 568   thread->set_deopt_compiled_method(NULL);
 569 
 570 
 571   if (JvmtiExport::can_pop_frame()) {
 572 #ifndef CC_INTERP
 573     // Regardless of whether we entered this routine with the pending
 574     // popframe condition bit set, we should always clear it now
 575     thread->clear_popframe_condition();
 576 #else
 577     // C++ interpreter will clear has_pending_popframe when it enters
 578     // with method_resume. For deopt_resume2 we clear it now.
 579     if (thread->popframe_forcing_deopt_reexecution())
 580         thread->clear_popframe_condition();
 581 #endif /* CC_INTERP */
 582   }
 583 
 584   // unpack_frames() is called at the end of the deoptimization handler
 585   // and (in C2) at the end of the uncommon trap handler. Note this fact
 586   // so that an asynchronous stack walker can work again. This counter is
 587   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 588   // the beginning of uncommon_trap().
 589   thread->dec_in_deopt_handler();
 590 }
 591 
 592 // Moved from cpu directories because none of the cpus has callee save values.
 593 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 594 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 595 
 596   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 597   // the days we had adapter frames. When we deoptimize a situation where a
 598   // compiled caller calls a compiled caller will have registers it expects
 599   // to survive the call to the callee. If we deoptimize the callee the only
 600   // way we can restore these registers is to have the oldest interpreter
 601   // frame that we create restore these values. That is what this routine
 602   // will accomplish.
 603 
 604   // At the moment we have modified c2 to not have any callee save registers
 605   // so this problem does not exist and this routine is just a place holder.
 606 
 607   assert(f->is_interpreted_frame(), "must be interpreted");
 608 }
 609 
 610 // Return BasicType of value being returned
 611 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 612 
 613   // We are already active in the special DeoptResourceMark any ResourceObj's we
 614   // allocate will be freed at the end of the routine.
 615 
 616   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 617   // but makes the entry a little slower. There is however a little dance we have to
 618   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 619   ResetNoHandleMark rnhm; // No-op in release/product versions
 620   HandleMark hm;
 621 
 622   frame stub_frame = thread->last_frame();
 623 
 624   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 625   // must point to the vframeArray for the unpack frame.
 626   vframeArray* array = thread->vframe_array_head();
 627 
 628 #ifndef PRODUCT
 629   if (TraceDeoptimization) {
 630     ttyLocker ttyl;
 631     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 632                   p2i(thread), p2i(array), exec_mode);
 633   }
 634 #endif
 635   Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 636               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 637 
 638   UnrollBlock* info = array->unroll_block();
 639 
 640   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 641   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 642 
 643   BasicType bt = info->return_type();
 644 
 645   // If we have an exception pending, claim that the return type is an oop
 646   // so the deopt_blob does not overwrite the exception_oop.
 647 
 648   if (exec_mode == Unpack_exception)
 649     bt = T_OBJECT;
 650 
 651   // Cleanup thread deopt data
 652   cleanup_deopt_info(thread, array);
 653 
 654 #ifndef PRODUCT
 655   if (VerifyStack) {
 656     ResourceMark res_mark;
 657     // Clear pending exception to not break verification code (restored afterwards)
 658     PRESERVE_EXCEPTION_MARK;
 659 
 660     thread->validate_frame_layout();
 661 
 662     // Verify that the just-unpacked frames match the interpreter's
 663     // notions of expression stack and locals
 664     vframeArray* cur_array = thread->vframe_array_last();
 665     RegisterMap rm(thread, false);
 666     rm.set_include_argument_oops(false);
 667     bool is_top_frame = true;
 668     int callee_size_of_parameters = 0;
 669     int callee_max_locals = 0;
 670     for (int i = 0; i < cur_array->frames(); i++) {
 671       vframeArrayElement* el = cur_array->element(i);
 672       frame* iframe = el->iframe();
 673       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 674 
 675       // Get the oop map for this bci
 676       InterpreterOopMap mask;
 677       int cur_invoke_parameter_size = 0;
 678       bool try_next_mask = false;
 679       int next_mask_expression_stack_size = -1;
 680       int top_frame_expression_stack_adjustment = 0;
 681       methodHandle mh(thread, iframe->interpreter_frame_method());
 682       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 683       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 684       int max_bci = mh->code_size();
 685       // Get to the next bytecode if possible
 686       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 687       // Check to see if we can grab the number of outgoing arguments
 688       // at an uncommon trap for an invoke (where the compiler
 689       // generates debug info before the invoke has executed)
 690       Bytecodes::Code cur_code = str.next();
 691       if (Bytecodes::is_invoke(cur_code)) {
 692         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 693         cur_invoke_parameter_size = invoke.size_of_parameters();
 694         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 695           callee_size_of_parameters++;
 696         }
 697       }
 698       if (str.bci() < max_bci) {
 699         Bytecodes::Code next_code = str.next();
 700         if (next_code >= 0) {
 701           // The interpreter oop map generator reports results before
 702           // the current bytecode has executed except in the case of
 703           // calls. It seems to be hard to tell whether the compiler
 704           // has emitted debug information matching the "state before"
 705           // a given bytecode or the state after, so we try both
 706           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 707             // Get expression stack size for the next bytecode
 708             InterpreterOopMap next_mask;
 709             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 710             next_mask_expression_stack_size = next_mask.expression_stack_size();
 711             if (Bytecodes::is_invoke(next_code)) {
 712               Bytecode_invoke invoke(mh, str.bci());
 713               next_mask_expression_stack_size += invoke.size_of_parameters();
 714             }
 715             // Need to subtract off the size of the result type of
 716             // the bytecode because this is not described in the
 717             // debug info but returned to the interpreter in the TOS
 718             // caching register
 719             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 720             if (bytecode_result_type != T_ILLEGAL) {
 721               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 722             }
 723             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 724             try_next_mask = true;
 725           }
 726         }
 727       }
 728 
 729       // Verify stack depth and oops in frame
 730       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 731       if (!(
 732             /* SPARC */
 733             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 734             /* x86 */
 735             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 736             (try_next_mask &&
 737              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 738                                                                     top_frame_expression_stack_adjustment))) ||
 739             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 740             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 741              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 742             )) {
 743         {
 744           ttyLocker ttyl;
 745 
 746           // Print out some information that will help us debug the problem
 747           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 748           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 749           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 750                         iframe->interpreter_frame_expression_stack_size());
 751           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 752           tty->print_cr("  try_next_mask = %d", try_next_mask);
 753           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 754           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 755           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 756           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 757           tty->print_cr("  exec_mode = %d", exec_mode);
 758           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 759           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 760           tty->print_cr("  Interpreted frames:");
 761           for (int k = 0; k < cur_array->frames(); k++) {
 762             vframeArrayElement* el = cur_array->element(k);
 763             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 764           }
 765           cur_array->print_on_2(tty);
 766         } // release tty lock before calling guarantee
 767         guarantee(false, "wrong number of expression stack elements during deopt");
 768       }
 769       VerifyOopClosure verify;
 770       iframe->oops_interpreted_do(&verify, &rm, false);
 771       callee_size_of_parameters = mh->size_of_parameters();
 772       callee_max_locals = mh->max_locals();
 773       is_top_frame = false;
 774     }
 775   }
 776 #endif /* !PRODUCT */
 777 
 778 
 779   return bt;
 780 JRT_END
 781 
 782 class DeoptimizeMarkedTC : public ThreadClosure {
 783   bool _in_handshake;
 784  public:
 785   DeoptimizeMarkedTC(bool in_handshake) : _in_handshake(in_handshake) {}
 786   virtual void do_thread(Thread* thread) {
 787     assert(thread->is_Java_thread(), "must be");
 788     JavaThread* jt = (JavaThread*)thread;
 789     jt->deoptimize_marked_methods(_in_handshake);
 790   }
 791 };
 792 
 793 void Deoptimization::deoptimize_all_marked() {
 794   ResourceMark rm;
 795   DeoptimizationMarker dm;
 796 
 797   if (SafepointSynchronize::is_at_safepoint()) {
 798     DeoptimizeMarkedTC deopt(false);
 799     // Make the dependent methods not entrant
 800     CodeCache::make_marked_nmethods_not_entrant();
 801     Threads::java_threads_do(&deopt);
 802   } else {
 803     // Make the dependent methods not entrant
 804     {
 805       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 806       CodeCache::make_marked_nmethods_not_entrant();
 807     }
 808     DeoptimizeMarkedTC deopt(true);
 809     Handshake::execute(&deopt);
 810   }
 811 }
 812 
 813 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 814   = Deoptimization::Action_reinterpret;
 815 
 816 
 817 
 818 #if INCLUDE_JVMCI || INCLUDE_AOT
 819 template<typename CacheType>
 820 class BoxCacheBase : public CHeapObj<mtCompiler> {
 821 protected:
 822   static InstanceKlass* find_cache_klass(Symbol* klass_name, TRAPS) {
 823     ResourceMark rm;
 824     char* klass_name_str = klass_name->as_C_string();
 825     Klass* k = SystemDictionary::find(klass_name, Handle(), Handle(), THREAD);
 826     guarantee(k != NULL, "%s must be loaded", klass_name_str);
 827     InstanceKlass* ik = InstanceKlass::cast(k);
 828     guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
 829     CacheType::compute_offsets(ik);
 830     return ik;
 831   }
 832 };
 833 
 834 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
 835   PrimitiveType _low;
 836   PrimitiveType _high;
 837   jobject _cache;
 838 protected:
 839   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
 840   BoxCache(Thread* thread) {
 841     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol(), thread);
 842     objArrayOop cache = CacheType::cache(ik);
 843     assert(cache->length() > 0, "Empty cache");
 844     _low = BoxType::value(cache->obj_at(0));
 845     _high = _low + cache->length() - 1;
 846     _cache = JNIHandles::make_global(Handle(thread, cache));
 847   }
 848   ~BoxCache() {
 849     JNIHandles::destroy_global(_cache);
 850   }
 851 public:
 852   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
 853     if (_singleton == NULL) {
 854       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
 855       if (!Atomic::replace_if_null(s, &_singleton)) {
 856         delete s;
 857       }
 858     }
 859     return _singleton;
 860   }
 861   oop lookup(PrimitiveType value) {
 862     if (_low <= value && value <= _high) {
 863       int offset = value - _low;
 864       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
 865     }
 866     return NULL;
 867   }
 868   oop lookup_raw(intptr_t raw_value) {
 869     // Have to cast to avoid little/big-endian problems.
 870     if (sizeof(PrimitiveType) > sizeof(jint)) {
 871       jlong value = (jlong)raw_value;
 872       return lookup(value);
 873     }
 874     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
 875     return lookup(value);
 876   }
 877 };
 878 
 879 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
 880 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
 881 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
 882 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
 883 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
 884 
 885 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL;
 886 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL;
 887 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL;
 888 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL;
 889 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL;
 890 
 891 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
 892   jobject _true_cache;
 893   jobject _false_cache;
 894 protected:
 895   static BooleanBoxCache *_singleton;
 896   BooleanBoxCache(Thread *thread) {
 897     InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol(), thread);
 898     _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
 899     _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
 900   }
 901   ~BooleanBoxCache() {
 902     JNIHandles::destroy_global(_true_cache);
 903     JNIHandles::destroy_global(_false_cache);
 904   }
 905 public:
 906   static BooleanBoxCache* singleton(Thread* thread) {
 907     if (_singleton == NULL) {
 908       BooleanBoxCache* s = new BooleanBoxCache(thread);
 909       if (!Atomic::replace_if_null(s, &_singleton)) {
 910         delete s;
 911       }
 912     }
 913     return _singleton;
 914   }
 915   oop lookup_raw(intptr_t raw_value) {
 916     // Have to cast to avoid little/big-endian problems.
 917     jboolean value = (jboolean)*((jint*)&raw_value);
 918     return lookup(value);
 919   }
 920   oop lookup(jboolean value) {
 921     if (value != 0) {
 922       return JNIHandles::resolve_non_null(_true_cache);
 923     }
 924     return JNIHandles::resolve_non_null(_false_cache);
 925   }
 926 };
 927 
 928 BooleanBoxCache* BooleanBoxCache::_singleton = NULL;
 929 
 930 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) {
 931    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
 932    BasicType box_type = SystemDictionary::box_klass_type(k);
 933    if (box_type != T_OBJECT) {
 934      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
 935      switch(box_type) {
 936        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 937        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 938        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 939        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 940        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 941        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 942        default:;
 943      }
 944    }
 945    return NULL;
 946 }
 947 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 948 
 949 #if COMPILER2_OR_JVMCI
 950 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
 951   Handle pending_exception(THREAD, thread->pending_exception());
 952   const char* exception_file = thread->exception_file();
 953   int exception_line = thread->exception_line();
 954   thread->clear_pending_exception();
 955 
 956   bool failures = false;
 957 
 958   for (int i = 0; i < objects->length(); i++) {
 959     assert(objects->at(i)->is_object(), "invalid debug information");
 960     ObjectValue* sv = (ObjectValue*) objects->at(i);
 961 
 962     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 963     oop obj = NULL;
 964 
 965     if (k->is_instance_klass()) {
 966 #if INCLUDE_JVMCI || INCLUDE_AOT
 967       CompiledMethod* cm = fr->cb()->as_compiled_method_or_null();
 968       if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) {
 969         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
 970         obj = get_cached_box(abv, fr, reg_map, THREAD);
 971         if (obj != NULL) {
 972           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
 973           abv->set_cached(true);
 974         }
 975       }
 976 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 977       InstanceKlass* ik = InstanceKlass::cast(k);
 978       if (obj == NULL) {
 979         obj = ik->allocate_instance(THREAD);
 980       }
 981     } else if (k->is_typeArray_klass()) {
 982       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 983       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 984       int len = sv->field_size() / type2size[ak->element_type()];
 985       obj = ak->allocate(len, THREAD);
 986     } else if (k->is_objArray_klass()) {
 987       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 988       obj = ak->allocate(sv->field_size(), THREAD);
 989     }
 990 
 991     if (obj == NULL) {
 992       failures = true;
 993     }
 994 
 995     assert(sv->value().is_null(), "redundant reallocation");
 996     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 997     CLEAR_PENDING_EXCEPTION;
 998     sv->set_value(obj);
 999   }
1000 
1001   if (failures) {
1002     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1003   } else if (pending_exception.not_null()) {
1004     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1005   }
1006 
1007   return failures;
1008 }
1009 
1010 // restore elements of an eliminated type array
1011 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1012   int index = 0;
1013   intptr_t val;
1014 
1015   for (int i = 0; i < sv->field_size(); i++) {
1016     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1017     switch(type) {
1018     case T_LONG: case T_DOUBLE: {
1019       assert(value->type() == T_INT, "Agreement.");
1020       StackValue* low =
1021         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1022 #ifdef _LP64
1023       jlong res = (jlong)low->get_int();
1024 #else
1025 #ifdef SPARC
1026       // For SPARC we have to swap high and low words.
1027       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1028 #else
1029       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1030 #endif //SPARC
1031 #endif
1032       obj->long_at_put(index, res);
1033       break;
1034     }
1035 
1036     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1037     case T_INT: case T_FLOAT: { // 4 bytes.
1038       assert(value->type() == T_INT, "Agreement.");
1039       bool big_value = false;
1040       if (i + 1 < sv->field_size() && type == T_INT) {
1041         if (sv->field_at(i)->is_location()) {
1042           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1043           if (type == Location::dbl || type == Location::lng) {
1044             big_value = true;
1045           }
1046         } else if (sv->field_at(i)->is_constant_int()) {
1047           ScopeValue* next_scope_field = sv->field_at(i + 1);
1048           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1049             big_value = true;
1050           }
1051         }
1052       }
1053 
1054       if (big_value) {
1055         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1056   #ifdef _LP64
1057         jlong res = (jlong)low->get_int();
1058   #else
1059   #ifdef SPARC
1060         // For SPARC we have to swap high and low words.
1061         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1062   #else
1063         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1064   #endif //SPARC
1065   #endif
1066         obj->int_at_put(index, (jint)*((jint*)&res));
1067         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
1068       } else {
1069         val = value->get_int();
1070         obj->int_at_put(index, (jint)*((jint*)&val));
1071       }
1072       break;
1073     }
1074 
1075     case T_SHORT:
1076       assert(value->type() == T_INT, "Agreement.");
1077       val = value->get_int();
1078       obj->short_at_put(index, (jshort)*((jint*)&val));
1079       break;
1080 
1081     case T_CHAR:
1082       assert(value->type() == T_INT, "Agreement.");
1083       val = value->get_int();
1084       obj->char_at_put(index, (jchar)*((jint*)&val));
1085       break;
1086 
1087     case T_BYTE:
1088       assert(value->type() == T_INT, "Agreement.");
1089       val = value->get_int();
1090       obj->byte_at_put(index, (jbyte)*((jint*)&val));
1091       break;
1092 
1093     case T_BOOLEAN:
1094       assert(value->type() == T_INT, "Agreement.");
1095       val = value->get_int();
1096       obj->bool_at_put(index, (jboolean)*((jint*)&val));
1097       break;
1098 
1099       default:
1100         ShouldNotReachHere();
1101     }
1102     index++;
1103   }
1104 }
1105 
1106 
1107 // restore fields of an eliminated object array
1108 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1109   for (int i = 0; i < sv->field_size(); i++) {
1110     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1111     assert(value->type() == T_OBJECT, "object element expected");
1112     obj->obj_at_put(i, value->get_obj()());
1113   }
1114 }
1115 
1116 class ReassignedField {
1117 public:
1118   int _offset;
1119   BasicType _type;
1120 public:
1121   ReassignedField() {
1122     _offset = 0;
1123     _type = T_ILLEGAL;
1124   }
1125 };
1126 
1127 int compare(ReassignedField* left, ReassignedField* right) {
1128   return left->_offset - right->_offset;
1129 }
1130 
1131 // Restore fields of an eliminated instance object using the same field order
1132 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1133 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1134   if (klass->superklass() != NULL) {
1135     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
1136   }
1137 
1138   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1139   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1140     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1141       ReassignedField field;
1142       field._offset = fs.offset();
1143       field._type = FieldType::basic_type(fs.signature());
1144       fields->append(field);
1145     }
1146   }
1147   fields->sort(compare);
1148   for (int i = 0; i < fields->length(); i++) {
1149     intptr_t val;
1150     ScopeValue* scope_field = sv->field_at(svIndex);
1151     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1152     int offset = fields->at(i)._offset;
1153     BasicType type = fields->at(i)._type;
1154     switch (type) {
1155       case T_OBJECT: case T_ARRAY:
1156         assert(value->type() == T_OBJECT, "Agreement.");
1157         obj->obj_field_put(offset, value->get_obj()());
1158         break;
1159 
1160       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1161       case T_INT: case T_FLOAT: { // 4 bytes.
1162         assert(value->type() == T_INT, "Agreement.");
1163         bool big_value = false;
1164         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1165           if (scope_field->is_location()) {
1166             Location::Type type = ((LocationValue*) scope_field)->location().type();
1167             if (type == Location::dbl || type == Location::lng) {
1168               big_value = true;
1169             }
1170           }
1171           if (scope_field->is_constant_int()) {
1172             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1173             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1174               big_value = true;
1175             }
1176           }
1177         }
1178 
1179         if (big_value) {
1180           i++;
1181           assert(i < fields->length(), "second T_INT field needed");
1182           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1183         } else {
1184           val = value->get_int();
1185           obj->int_field_put(offset, (jint)*((jint*)&val));
1186           break;
1187         }
1188       }
1189         /* no break */
1190 
1191       case T_LONG: case T_DOUBLE: {
1192         assert(value->type() == T_INT, "Agreement.");
1193         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1194 #ifdef _LP64
1195         jlong res = (jlong)low->get_int();
1196 #else
1197 #ifdef SPARC
1198         // For SPARC we have to swap high and low words.
1199         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1200 #else
1201         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1202 #endif //SPARC
1203 #endif
1204         obj->long_field_put(offset, res);
1205         break;
1206       }
1207 
1208       case T_SHORT:
1209         assert(value->type() == T_INT, "Agreement.");
1210         val = value->get_int();
1211         obj->short_field_put(offset, (jshort)*((jint*)&val));
1212         break;
1213 
1214       case T_CHAR:
1215         assert(value->type() == T_INT, "Agreement.");
1216         val = value->get_int();
1217         obj->char_field_put(offset, (jchar)*((jint*)&val));
1218         break;
1219 
1220       case T_BYTE:
1221         assert(value->type() == T_INT, "Agreement.");
1222         val = value->get_int();
1223         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1224         break;
1225 
1226       case T_BOOLEAN:
1227         assert(value->type() == T_INT, "Agreement.");
1228         val = value->get_int();
1229         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1230         break;
1231 
1232       default:
1233         ShouldNotReachHere();
1234     }
1235     svIndex++;
1236   }
1237   return svIndex;
1238 }
1239 
1240 // restore fields of all eliminated objects and arrays
1241 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1242   for (int i = 0; i < objects->length(); i++) {
1243     ObjectValue* sv = (ObjectValue*) objects->at(i);
1244     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1245     Handle obj = sv->value();
1246     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1247     if (PrintDeoptimizationDetails) {
1248       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1249     }
1250     if (obj.is_null()) {
1251       continue;
1252     }
1253 #if INCLUDE_JVMCI || INCLUDE_AOT
1254     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1255     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1256       continue;
1257     }
1258 #endif // INCLUDE_JVMCI || INCLUDE_AOT
1259     if (k->is_instance_klass()) {
1260       InstanceKlass* ik = InstanceKlass::cast(k);
1261       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1262     } else if (k->is_typeArray_klass()) {
1263       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1264       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1265     } else if (k->is_objArray_klass()) {
1266       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1267     }
1268   }
1269 }
1270 
1271 
1272 // relock objects for which synchronization was eliminated
1273 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1274   for (int i = 0; i < monitors->length(); i++) {
1275     MonitorInfo* mon_info = monitors->at(i);
1276     if (mon_info->eliminated()) {
1277       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1278       if (!mon_info->owner_is_scalar_replaced()) {
1279         Handle obj(thread, mon_info->owner());
1280         markWord mark = obj->mark();
1281         if (UseBiasedLocking && mark.has_bias_pattern()) {
1282           // New allocated objects may have the mark set to anonymously biased.
1283           // Also the deoptimized method may called methods with synchronization
1284           // where the thread-local object is bias locked to the current thread.
1285           assert(mark.is_biased_anonymously() ||
1286                  mark.biased_locker() == thread, "should be locked to current thread");
1287           // Reset mark word to unbiased prototype.
1288           markWord unbiased_prototype = markWord::prototype().set_age(mark.age());
1289           obj->set_mark(unbiased_prototype);
1290         }
1291         BasicLock* lock = mon_info->lock();
1292         ObjectSynchronizer::enter(obj, lock, thread);
1293         assert(mon_info->owner()->is_locked(), "object must be locked now");
1294       }
1295     }
1296   }
1297 }
1298 
1299 
1300 #ifndef PRODUCT
1301 // print information about reallocated objects
1302 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1303   fieldDescriptor fd;
1304 
1305   for (int i = 0; i < objects->length(); i++) {
1306     ObjectValue* sv = (ObjectValue*) objects->at(i);
1307     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1308     Handle obj = sv->value();
1309 
1310     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1311     k->print_value();
1312     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1313     if (obj.is_null()) {
1314       tty->print(" allocation failed");
1315     } else {
1316       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1317     }
1318     tty->cr();
1319 
1320     if (Verbose && !obj.is_null()) {
1321       k->oop_print_on(obj(), tty);
1322     }
1323   }
1324 }
1325 #endif
1326 #endif // COMPILER2_OR_JVMCI
1327 
1328 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1329   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1330 
1331 #ifndef PRODUCT
1332   if (PrintDeoptimizationDetails) {
1333     ttyLocker ttyl;
1334     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1335     fr.print_on(tty);
1336     tty->print_cr("     Virtual frames (innermost first):");
1337     for (int index = 0; index < chunk->length(); index++) {
1338       compiledVFrame* vf = chunk->at(index);
1339       tty->print("       %2d - ", index);
1340       vf->print_value();
1341       int bci = chunk->at(index)->raw_bci();
1342       const char* code_name;
1343       if (bci == SynchronizationEntryBCI) {
1344         code_name = "sync entry";
1345       } else {
1346         Bytecodes::Code code = vf->method()->code_at(bci);
1347         code_name = Bytecodes::name(code);
1348       }
1349       tty->print(" - %s", code_name);
1350       tty->print_cr(" @ bci %d ", bci);
1351       if (Verbose) {
1352         vf->print();
1353         tty->cr();
1354       }
1355     }
1356   }
1357 #endif
1358 
1359   // Register map for next frame (used for stack crawl).  We capture
1360   // the state of the deopt'ing frame's caller.  Thus if we need to
1361   // stuff a C2I adapter we can properly fill in the callee-save
1362   // register locations.
1363   frame caller = fr.sender(reg_map);
1364   int frame_size = caller.sp() - fr.sp();
1365 
1366   frame sender = caller;
1367 
1368   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1369   // the vframeArray containing the unpacking information is allocated in the C heap.
1370   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1371   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1372 
1373   // Compare the vframeArray to the collected vframes
1374   assert(array->structural_compare(thread, chunk), "just checking");
1375 
1376 #ifndef PRODUCT
1377   if (PrintDeoptimizationDetails) {
1378     ttyLocker ttyl;
1379     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1380   }
1381 #endif // PRODUCT
1382 
1383   return array;
1384 }
1385 
1386 #if COMPILER2_OR_JVMCI
1387 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1388   // Reallocation of some scalar replaced objects failed. Record
1389   // that we need to pop all the interpreter frames for the
1390   // deoptimized compiled frame.
1391   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1392   thread->set_frames_to_pop_failed_realloc(array->frames());
1393   // Unlock all monitors here otherwise the interpreter will see a
1394   // mix of locked and unlocked monitors (because of failed
1395   // reallocations of synchronized objects) and be confused.
1396   for (int i = 0; i < array->frames(); i++) {
1397     MonitorChunk* monitors = array->element(i)->monitors();
1398     if (monitors != NULL) {
1399       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1400         BasicObjectLock* src = monitors->at(j);
1401         if (src->obj() != NULL) {
1402           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1403         }
1404       }
1405       array->element(i)->free_monitors(thread);
1406 #ifdef ASSERT
1407       array->element(i)->set_removed_monitors();
1408 #endif
1409     }
1410   }
1411 }
1412 #endif
1413 
1414 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1415   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1416   Thread* thread = Thread::current();
1417   for (int i = 0; i < monitors->length(); i++) {
1418     MonitorInfo* mon_info = monitors->at(i);
1419     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1420       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1421     }
1422   }
1423 }
1424 
1425 static void get_monitors_from_stack(GrowableArray<Handle>* objects_to_revoke, JavaThread* thread, frame fr, RegisterMap* map) {
1426   // Unfortunately we don't have a RegisterMap available in most of
1427   // the places we want to call this routine so we need to walk the
1428   // stack again to update the register map.
1429   if (map == NULL || !map->update_map()) {
1430     StackFrameStream sfs(thread, true);
1431     bool found = false;
1432     while (!found && !sfs.is_done()) {
1433       frame* cur = sfs.current();
1434       sfs.next();
1435       found = cur->id() == fr.id();
1436     }
1437     assert(found, "frame to be deoptimized not found on target thread's stack");
1438     map = sfs.register_map();
1439   }
1440 
1441   vframe* vf = vframe::new_vframe(&fr, map, thread);
1442   compiledVFrame* cvf = compiledVFrame::cast(vf);
1443   // Revoke monitors' biases in all scopes
1444   while (!cvf->is_top()) {
1445     collect_monitors(cvf, objects_to_revoke);
1446     cvf = compiledVFrame::cast(cvf->sender());
1447   }
1448   collect_monitors(cvf, objects_to_revoke);
1449 }
1450 
1451 void Deoptimization::revoke_using_safepoint(JavaThread* thread, frame fr, RegisterMap* map) {
1452   if (!UseBiasedLocking) {
1453     return;
1454   }
1455   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1456   get_monitors_from_stack(objects_to_revoke, thread, fr, map);
1457 
1458   if (SafepointSynchronize::is_at_safepoint()) {
1459     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1460   } else {
1461     BiasedLocking::revoke(objects_to_revoke, thread);
1462   }
1463 }
1464 
1465 void Deoptimization::revoke_using_handshake(JavaThread* thread, frame fr, RegisterMap* map) {
1466   if (!UseBiasedLocking) {
1467     return;
1468   }
1469   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1470   get_monitors_from_stack(objects_to_revoke, thread, fr, map);
1471 
1472   int len = objects_to_revoke->length();
1473   for (int i = 0; i < len; i++) {
1474     oop obj = (objects_to_revoke->at(i))();
1475     BiasedLocking::revoke_own_locks_in_handshake(objects_to_revoke->at(i), thread);
1476     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
1477   }
1478 }
1479 
1480 
1481 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1482   assert(fr.can_be_deoptimized(), "checking frame type");
1483 
1484   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1485 
1486   if (LogCompilation && xtty != NULL) {
1487     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1488     assert(cm != NULL, "only compiled methods can deopt");
1489 
1490     ttyLocker ttyl;
1491     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1492     cm->log_identity(xtty);
1493     xtty->end_head();
1494     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1495       xtty->begin_elem("jvms bci='%d'", sd->bci());
1496       xtty->method(sd->method());
1497       xtty->end_elem();
1498       if (sd->is_top())  break;
1499     }
1500     xtty->tail("deoptimized");
1501   }
1502 
1503   // Patch the compiled method so that when execution returns to it we will
1504   // deopt the execution state and return to the interpreter.
1505   fr.deoptimize(thread);
1506 }
1507 
1508 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, bool in_handshake) {
1509   deopt_thread(in_handshake, thread, fr, map, Reason_constraint);
1510 }
1511 
1512 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1513   deopt_thread(false, thread, fr, map, reason);
1514 }
1515 
1516 void Deoptimization::deopt_thread(bool in_handshake, JavaThread* thread,
1517                                   frame fr, RegisterMap *map, DeoptReason reason) {
1518   // Deoptimize only if the frame comes from compile code.
1519   // Do not deoptimize the frame which is already patched
1520   // during the execution of the loops below.
1521   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1522     return;
1523   }
1524   ResourceMark rm;
1525   DeoptimizationMarker dm;
1526   if (UseBiasedLocking) {
1527     if (in_handshake) {
1528       revoke_using_handshake(thread, fr, map);
1529     } else {
1530       revoke_using_safepoint(thread, fr, map);
1531     }
1532   }
1533   deoptimize_single_frame(thread, fr, reason);
1534 
1535 }
1536 
1537 #if INCLUDE_JVMCI
1538 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1539   // there is no exception handler for this pc => deoptimize
1540   cm->make_not_entrant();
1541 
1542   // Use Deoptimization::deoptimize for all of its side-effects:
1543   // revoking biases of monitors, gathering traps statistics, logging...
1544   // it also patches the return pc but we do not care about that
1545   // since we return a continuation to the deopt_blob below.
1546   JavaThread* thread = JavaThread::current();
1547   RegisterMap reg_map(thread, UseBiasedLocking);
1548   frame runtime_frame = thread->last_frame();
1549   frame caller_frame = runtime_frame.sender(&reg_map);
1550   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1551   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1552 
1553   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1554   if (trap_mdo != NULL) {
1555     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1556   }
1557 
1558   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1559 }
1560 #endif
1561 
1562 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1563   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1564          "can only deoptimize other thread at a safepoint");
1565   // Compute frame and register map based on thread and sp.
1566   RegisterMap reg_map(thread, UseBiasedLocking);
1567   frame fr = thread->last_frame();
1568   while (fr.id() != id) {
1569     fr = fr.sender(&reg_map);
1570   }
1571   deoptimize(thread, fr, &reg_map, reason);
1572 }
1573 
1574 
1575 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1576   if (thread == Thread::current()) {
1577     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1578   } else {
1579     VM_DeoptimizeFrame deopt(thread, id, reason);
1580     VMThread::execute(&deopt);
1581   }
1582 }
1583 
1584 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1585   deoptimize_frame(thread, id, Reason_constraint);
1586 }
1587 
1588 // JVMTI PopFrame support
1589 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1590 {
1591   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1592 }
1593 JRT_END
1594 
1595 MethodData*
1596 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1597                                 bool create_if_missing) {
1598   Thread* THREAD = thread;
1599   MethodData* mdo = m()->method_data();
1600   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1601     // Build an MDO.  Ignore errors like OutOfMemory;
1602     // that simply means we won't have an MDO to update.
1603     Method::build_interpreter_method_data(m, THREAD);
1604     if (HAS_PENDING_EXCEPTION) {
1605       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1606       CLEAR_PENDING_EXCEPTION;
1607     }
1608     mdo = m()->method_data();
1609   }
1610   return mdo;
1611 }
1612 
1613 #if COMPILER2_OR_JVMCI
1614 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1615   // in case of an unresolved klass entry, load the class.
1616   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1617     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1618     return;
1619   }
1620 
1621   if (!constant_pool->tag_at(index).is_symbol()) return;
1622 
1623   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1624   Symbol*  symbol  = constant_pool->symbol_at(index);
1625 
1626   // class name?
1627   if (symbol->char_at(0) != '(') {
1628     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1629     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1630     return;
1631   }
1632 
1633   // then it must be a signature!
1634   ResourceMark rm(THREAD);
1635   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1636     if (ss.is_object()) {
1637       Symbol* class_name = ss.as_symbol();
1638       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1639       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1640     }
1641   }
1642 }
1643 
1644 
1645 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1646   EXCEPTION_MARK;
1647   load_class_by_index(constant_pool, index, THREAD);
1648   if (HAS_PENDING_EXCEPTION) {
1649     // Exception happened during classloading. We ignore the exception here, since it
1650     // is going to be rethrown since the current activation is going to be deoptimized and
1651     // the interpreter will re-execute the bytecode.
1652     CLEAR_PENDING_EXCEPTION;
1653     // Class loading called java code which may have caused a stack
1654     // overflow. If the exception was thrown right before the return
1655     // to the runtime the stack is no longer guarded. Reguard the
1656     // stack otherwise if we return to the uncommon trap blob and the
1657     // stack bang causes a stack overflow we crash.
1658     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1659     JavaThread* thread = (JavaThread*)THREAD;
1660     bool guard_pages_enabled = thread->stack_guards_enabled();
1661     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1662     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1663   }
1664 }
1665 
1666 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1667   HandleMark hm;
1668 
1669   // uncommon_trap() is called at the beginning of the uncommon trap
1670   // handler. Note this fact before we start generating temporary frames
1671   // that can confuse an asynchronous stack walker. This counter is
1672   // decremented at the end of unpack_frames().
1673   thread->inc_in_deopt_handler();
1674 
1675   // We need to update the map if we have biased locking.
1676 #if INCLUDE_JVMCI
1677   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1678   RegisterMap reg_map(thread, true);
1679 #else
1680   RegisterMap reg_map(thread, UseBiasedLocking);
1681 #endif
1682   frame stub_frame = thread->last_frame();
1683   frame fr = stub_frame.sender(&reg_map);
1684   // Make sure the calling nmethod is not getting deoptimized and removed
1685   // before we are done with it.
1686   nmethodLocker nl(fr.pc());
1687 
1688   // Log a message
1689   Events::log_deopt_message(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1690               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1691 
1692   {
1693     ResourceMark rm;
1694 
1695     // Revoke biases of any monitors in the frame to ensure we can migrate them
1696     revoke_biases_of_monitors(thread, fr, &reg_map);
1697 
1698     DeoptReason reason = trap_request_reason(trap_request);
1699     DeoptAction action = trap_request_action(trap_request);
1700 #if INCLUDE_JVMCI
1701     int debug_id = trap_request_debug_id(trap_request);
1702 #endif
1703     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1704 
1705     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1706     compiledVFrame* cvf = compiledVFrame::cast(vf);
1707 
1708     CompiledMethod* nm = cvf->code();
1709 
1710     ScopeDesc*      trap_scope  = cvf->scope();
1711 
1712     if (TraceDeoptimization) {
1713       ttyLocker ttyl;
1714       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1715 #if INCLUDE_JVMCI
1716           , debug_id
1717 #endif
1718           );
1719     }
1720 
1721     methodHandle    trap_method = trap_scope->method();
1722     int             trap_bci    = trap_scope->bci();
1723 #if INCLUDE_JVMCI
1724     jlong           speculation = thread->pending_failed_speculation();
1725     if (nm->is_compiled_by_jvmci() && nm->is_nmethod()) { // Exclude AOTed methods
1726       nm->as_nmethod()->update_speculation(thread);
1727     } else {
1728       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
1729     }
1730 
1731     if (trap_bci == SynchronizationEntryBCI) {
1732       trap_bci = 0;
1733       thread->set_pending_monitorenter(true);
1734     }
1735 
1736     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1737       thread->set_pending_transfer_to_interpreter(true);
1738     }
1739 #endif
1740 
1741     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1742     // Record this event in the histogram.
1743     gather_statistics(reason, action, trap_bc);
1744 
1745     // Ensure that we can record deopt. history:
1746     // Need MDO to record RTM code generation state.
1747     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1748 
1749     methodHandle profiled_method;
1750 #if INCLUDE_JVMCI
1751     if (nm->is_compiled_by_jvmci()) {
1752       profiled_method = nm->method();
1753     } else {
1754       profiled_method = trap_method;
1755     }
1756 #else
1757     profiled_method = trap_method;
1758 #endif
1759 
1760     MethodData* trap_mdo =
1761       get_method_data(thread, profiled_method, create_if_missing);
1762 
1763     // Log a message
1764     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1765                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1766                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1767 
1768     // Print a bunch of diagnostics, if requested.
1769     if (TraceDeoptimization || LogCompilation) {
1770       ResourceMark rm;
1771       ttyLocker ttyl;
1772       char buf[100];
1773       if (xtty != NULL) {
1774         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1775                          os::current_thread_id(),
1776                          format_trap_request(buf, sizeof(buf), trap_request));
1777 #if INCLUDE_JVMCI
1778         if (speculation != 0) {
1779           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
1780         }
1781 #endif
1782         nm->log_identity(xtty);
1783       }
1784       Symbol* class_name = NULL;
1785       bool unresolved = false;
1786       if (unloaded_class_index >= 0) {
1787         constantPoolHandle constants (THREAD, trap_method->constants());
1788         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1789           class_name = constants->klass_name_at(unloaded_class_index);
1790           unresolved = true;
1791           if (xtty != NULL)
1792             xtty->print(" unresolved='1'");
1793         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1794           class_name = constants->symbol_at(unloaded_class_index);
1795         }
1796         if (xtty != NULL)
1797           xtty->name(class_name);
1798       }
1799       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1800         // Dump the relevant MDO state.
1801         // This is the deopt count for the current reason, any previous
1802         // reasons or recompiles seen at this point.
1803         int dcnt = trap_mdo->trap_count(reason);
1804         if (dcnt != 0)
1805           xtty->print(" count='%d'", dcnt);
1806         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1807         int dos = (pdata == NULL)? 0: pdata->trap_state();
1808         if (dos != 0) {
1809           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1810           if (trap_state_is_recompiled(dos)) {
1811             int recnt2 = trap_mdo->overflow_recompile_count();
1812             if (recnt2 != 0)
1813               xtty->print(" recompiles2='%d'", recnt2);
1814           }
1815         }
1816       }
1817       if (xtty != NULL) {
1818         xtty->stamp();
1819         xtty->end_head();
1820       }
1821       if (TraceDeoptimization) {  // make noise on the tty
1822         tty->print("Uncommon trap occurred in");
1823         nm->method()->print_short_name(tty);
1824         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1825 #if INCLUDE_JVMCI
1826         if (nm->is_nmethod()) {
1827           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
1828           if (installed_code_name != NULL) {
1829             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1830           }
1831         }
1832 #endif
1833         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1834                    p2i(fr.pc()),
1835                    os::current_thread_id(),
1836                    trap_reason_name(reason),
1837                    trap_action_name(action),
1838                    unloaded_class_index
1839 #if INCLUDE_JVMCI
1840                    , debug_id
1841 #endif
1842                    );
1843         if (class_name != NULL) {
1844           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1845           class_name->print_symbol_on(tty);
1846         }
1847         tty->cr();
1848       }
1849       if (xtty != NULL) {
1850         // Log the precise location of the trap.
1851         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1852           xtty->begin_elem("jvms bci='%d'", sd->bci());
1853           xtty->method(sd->method());
1854           xtty->end_elem();
1855           if (sd->is_top())  break;
1856         }
1857         xtty->tail("uncommon_trap");
1858       }
1859     }
1860     // (End diagnostic printout.)
1861 
1862     // Load class if necessary
1863     if (unloaded_class_index >= 0) {
1864       constantPoolHandle constants(THREAD, trap_method->constants());
1865       load_class_by_index(constants, unloaded_class_index);
1866     }
1867 
1868     // Flush the nmethod if necessary and desirable.
1869     //
1870     // We need to avoid situations where we are re-flushing the nmethod
1871     // because of a hot deoptimization site.  Repeated flushes at the same
1872     // point need to be detected by the compiler and avoided.  If the compiler
1873     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1874     // module must take measures to avoid an infinite cycle of recompilation
1875     // and deoptimization.  There are several such measures:
1876     //
1877     //   1. If a recompilation is ordered a second time at some site X
1878     //   and for the same reason R, the action is adjusted to 'reinterpret',
1879     //   to give the interpreter time to exercise the method more thoroughly.
1880     //   If this happens, the method's overflow_recompile_count is incremented.
1881     //
1882     //   2. If the compiler fails to reduce the deoptimization rate, then
1883     //   the method's overflow_recompile_count will begin to exceed the set
1884     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1885     //   is adjusted to 'make_not_compilable', and the method is abandoned
1886     //   to the interpreter.  This is a performance hit for hot methods,
1887     //   but is better than a disastrous infinite cycle of recompilations.
1888     //   (Actually, only the method containing the site X is abandoned.)
1889     //
1890     //   3. In parallel with the previous measures, if the total number of
1891     //   recompilations of a method exceeds the much larger set limit
1892     //   PerMethodRecompilationCutoff, the method is abandoned.
1893     //   This should only happen if the method is very large and has
1894     //   many "lukewarm" deoptimizations.  The code which enforces this
1895     //   limit is elsewhere (class nmethod, class Method).
1896     //
1897     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1898     // to recompile at each bytecode independently of the per-BCI cutoff.
1899     //
1900     // The decision to update code is up to the compiler, and is encoded
1901     // in the Action_xxx code.  If the compiler requests Action_none
1902     // no trap state is changed, no compiled code is changed, and the
1903     // computation suffers along in the interpreter.
1904     //
1905     // The other action codes specify various tactics for decompilation
1906     // and recompilation.  Action_maybe_recompile is the loosest, and
1907     // allows the compiled code to stay around until enough traps are seen,
1908     // and until the compiler gets around to recompiling the trapping method.
1909     //
1910     // The other actions cause immediate removal of the present code.
1911 
1912     // Traps caused by injected profile shouldn't pollute trap counts.
1913     bool injected_profile_trap = trap_method->has_injected_profile() &&
1914                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1915 
1916     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1917     bool make_not_entrant = false;
1918     bool make_not_compilable = false;
1919     bool reprofile = false;
1920     switch (action) {
1921     case Action_none:
1922       // Keep the old code.
1923       update_trap_state = false;
1924       break;
1925     case Action_maybe_recompile:
1926       // Do not need to invalidate the present code, but we can
1927       // initiate another
1928       // Start compiler without (necessarily) invalidating the nmethod.
1929       // The system will tolerate the old code, but new code should be
1930       // generated when possible.
1931       break;
1932     case Action_reinterpret:
1933       // Go back into the interpreter for a while, and then consider
1934       // recompiling form scratch.
1935       make_not_entrant = true;
1936       // Reset invocation counter for outer most method.
1937       // This will allow the interpreter to exercise the bytecodes
1938       // for a while before recompiling.
1939       // By contrast, Action_make_not_entrant is immediate.
1940       //
1941       // Note that the compiler will track null_check, null_assert,
1942       // range_check, and class_check events and log them as if they
1943       // had been traps taken from compiled code.  This will update
1944       // the MDO trap history so that the next compilation will
1945       // properly detect hot trap sites.
1946       reprofile = true;
1947       break;
1948     case Action_make_not_entrant:
1949       // Request immediate recompilation, and get rid of the old code.
1950       // Make them not entrant, so next time they are called they get
1951       // recompiled.  Unloaded classes are loaded now so recompile before next
1952       // time they are called.  Same for uninitialized.  The interpreter will
1953       // link the missing class, if any.
1954       make_not_entrant = true;
1955       break;
1956     case Action_make_not_compilable:
1957       // Give up on compiling this method at all.
1958       make_not_entrant = true;
1959       make_not_compilable = true;
1960       break;
1961     default:
1962       ShouldNotReachHere();
1963     }
1964 
1965     // Setting +ProfileTraps fixes the following, on all platforms:
1966     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1967     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1968     // recompile relies on a MethodData* to record heroic opt failures.
1969 
1970     // Whether the interpreter is producing MDO data or not, we also need
1971     // to use the MDO to detect hot deoptimization points and control
1972     // aggressive optimization.
1973     bool inc_recompile_count = false;
1974     ProfileData* pdata = NULL;
1975     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1976       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1977       uint this_trap_count = 0;
1978       bool maybe_prior_trap = false;
1979       bool maybe_prior_recompile = false;
1980       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1981 #if INCLUDE_JVMCI
1982                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1983 #endif
1984                                    nm->method(),
1985                                    //outputs:
1986                                    this_trap_count,
1987                                    maybe_prior_trap,
1988                                    maybe_prior_recompile);
1989       // Because the interpreter also counts null, div0, range, and class
1990       // checks, these traps from compiled code are double-counted.
1991       // This is harmless; it just means that the PerXTrapLimit values
1992       // are in effect a little smaller than they look.
1993 
1994       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1995       if (per_bc_reason != Reason_none) {
1996         // Now take action based on the partially known per-BCI history.
1997         if (maybe_prior_trap
1998             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1999           // If there are too many traps at this BCI, force a recompile.
2000           // This will allow the compiler to see the limit overflow, and
2001           // take corrective action, if possible.  The compiler generally
2002           // does not use the exact PerBytecodeTrapLimit value, but instead
2003           // changes its tactics if it sees any traps at all.  This provides
2004           // a little hysteresis, delaying a recompile until a trap happens
2005           // several times.
2006           //
2007           // Actually, since there is only one bit of counter per BCI,
2008           // the possible per-BCI counts are {0,1,(per-method count)}.
2009           // This produces accurate results if in fact there is only
2010           // one hot trap site, but begins to get fuzzy if there are
2011           // many sites.  For example, if there are ten sites each
2012           // trapping two or more times, they each get the blame for
2013           // all of their traps.
2014           make_not_entrant = true;
2015         }
2016 
2017         // Detect repeated recompilation at the same BCI, and enforce a limit.
2018         if (make_not_entrant && maybe_prior_recompile) {
2019           // More than one recompile at this point.
2020           inc_recompile_count = maybe_prior_trap;
2021         }
2022       } else {
2023         // For reasons which are not recorded per-bytecode, we simply
2024         // force recompiles unconditionally.
2025         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2026         make_not_entrant = true;
2027       }
2028 
2029       // Go back to the compiler if there are too many traps in this method.
2030       if (this_trap_count >= per_method_trap_limit(reason)) {
2031         // If there are too many traps in this method, force a recompile.
2032         // This will allow the compiler to see the limit overflow, and
2033         // take corrective action, if possible.
2034         // (This condition is an unlikely backstop only, because the
2035         // PerBytecodeTrapLimit is more likely to take effect first,
2036         // if it is applicable.)
2037         make_not_entrant = true;
2038       }
2039 
2040       // Here's more hysteresis:  If there has been a recompile at
2041       // this trap point already, run the method in the interpreter
2042       // for a while to exercise it more thoroughly.
2043       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2044         reprofile = true;
2045       }
2046     }
2047 
2048     // Take requested actions on the method:
2049 
2050     // Recompile
2051     if (make_not_entrant) {
2052       if (!nm->make_not_entrant()) {
2053         return; // the call did not change nmethod's state
2054       }
2055 
2056       if (pdata != NULL) {
2057         // Record the recompilation event, if any.
2058         int tstate0 = pdata->trap_state();
2059         int tstate1 = trap_state_set_recompiled(tstate0, true);
2060         if (tstate1 != tstate0)
2061           pdata->set_trap_state(tstate1);
2062       }
2063 
2064 #if INCLUDE_RTM_OPT
2065       // Restart collecting RTM locking abort statistic if the method
2066       // is recompiled for a reason other than RTM state change.
2067       // Assume that in new recompiled code the statistic could be different,
2068       // for example, due to different inlining.
2069       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
2070           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2071         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2072       }
2073 #endif
2074       // For code aging we count traps separately here, using make_not_entrant()
2075       // as a guard against simultaneous deopts in multiple threads.
2076       if (reason == Reason_tenured && trap_mdo != NULL) {
2077         trap_mdo->inc_tenure_traps();
2078       }
2079     }
2080 
2081     if (inc_recompile_count) {
2082       trap_mdo->inc_overflow_recompile_count();
2083       if ((uint)trap_mdo->overflow_recompile_count() >
2084           (uint)PerBytecodeRecompilationCutoff) {
2085         // Give up on the method containing the bad BCI.
2086         if (trap_method() == nm->method()) {
2087           make_not_compilable = true;
2088         } else {
2089           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2090           // But give grace to the enclosing nm->method().
2091         }
2092       }
2093     }
2094 
2095     // Reprofile
2096     if (reprofile) {
2097       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2098     }
2099 
2100     // Give up compiling
2101     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2102       assert(make_not_entrant, "consistent");
2103       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2104     }
2105 
2106   } // Free marked resources
2107 
2108 }
2109 JRT_END
2110 
2111 ProfileData*
2112 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2113                                          int trap_bci,
2114                                          Deoptimization::DeoptReason reason,
2115                                          bool update_total_trap_count,
2116 #if INCLUDE_JVMCI
2117                                          bool is_osr,
2118 #endif
2119                                          Method* compiled_method,
2120                                          //outputs:
2121                                          uint& ret_this_trap_count,
2122                                          bool& ret_maybe_prior_trap,
2123                                          bool& ret_maybe_prior_recompile) {
2124   bool maybe_prior_trap = false;
2125   bool maybe_prior_recompile = false;
2126   uint this_trap_count = 0;
2127   if (update_total_trap_count) {
2128     uint idx = reason;
2129 #if INCLUDE_JVMCI
2130     if (is_osr) {
2131       idx += Reason_LIMIT;
2132     }
2133 #endif
2134     uint prior_trap_count = trap_mdo->trap_count(idx);
2135     this_trap_count  = trap_mdo->inc_trap_count(idx);
2136 
2137     // If the runtime cannot find a place to store trap history,
2138     // it is estimated based on the general condition of the method.
2139     // If the method has ever been recompiled, or has ever incurred
2140     // a trap with the present reason , then this BCI is assumed
2141     // (pessimistically) to be the culprit.
2142     maybe_prior_trap      = (prior_trap_count != 0);
2143     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2144   }
2145   ProfileData* pdata = NULL;
2146 
2147 
2148   // For reasons which are recorded per bytecode, we check per-BCI data.
2149   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2150   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2151   if (per_bc_reason != Reason_none) {
2152     // Find the profile data for this BCI.  If there isn't one,
2153     // try to allocate one from the MDO's set of spares.
2154     // This will let us detect a repeated trap at this point.
2155     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2156 
2157     if (pdata != NULL) {
2158       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2159         if (LogCompilation && xtty != NULL) {
2160           ttyLocker ttyl;
2161           // no more room for speculative traps in this MDO
2162           xtty->elem("speculative_traps_oom");
2163         }
2164       }
2165       // Query the trap state of this profile datum.
2166       int tstate0 = pdata->trap_state();
2167       if (!trap_state_has_reason(tstate0, per_bc_reason))
2168         maybe_prior_trap = false;
2169       if (!trap_state_is_recompiled(tstate0))
2170         maybe_prior_recompile = false;
2171 
2172       // Update the trap state of this profile datum.
2173       int tstate1 = tstate0;
2174       // Record the reason.
2175       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2176       // Store the updated state on the MDO, for next time.
2177       if (tstate1 != tstate0)
2178         pdata->set_trap_state(tstate1);
2179     } else {
2180       if (LogCompilation && xtty != NULL) {
2181         ttyLocker ttyl;
2182         // Missing MDP?  Leave a small complaint in the log.
2183         xtty->elem("missing_mdp bci='%d'", trap_bci);
2184       }
2185     }
2186   }
2187 
2188   // Return results:
2189   ret_this_trap_count = this_trap_count;
2190   ret_maybe_prior_trap = maybe_prior_trap;
2191   ret_maybe_prior_recompile = maybe_prior_recompile;
2192   return pdata;
2193 }
2194 
2195 void
2196 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2197   ResourceMark rm;
2198   // Ignored outputs:
2199   uint ignore_this_trap_count;
2200   bool ignore_maybe_prior_trap;
2201   bool ignore_maybe_prior_recompile;
2202   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2203   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2204   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2205   query_update_method_data(trap_mdo, trap_bci,
2206                            (DeoptReason)reason,
2207                            update_total_counts,
2208 #if INCLUDE_JVMCI
2209                            false,
2210 #endif
2211                            NULL,
2212                            ignore_this_trap_count,
2213                            ignore_maybe_prior_trap,
2214                            ignore_maybe_prior_recompile);
2215 }
2216 
2217 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2218   if (TraceDeoptimization) {
2219     tty->print("Uncommon trap ");
2220   }
2221   // Still in Java no safepoints
2222   {
2223     // This enters VM and may safepoint
2224     uncommon_trap_inner(thread, trap_request);
2225   }
2226   return fetch_unroll_info_helper(thread, exec_mode);
2227 }
2228 
2229 // Local derived constants.
2230 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2231 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2232 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2233 
2234 //---------------------------trap_state_reason---------------------------------
2235 Deoptimization::DeoptReason
2236 Deoptimization::trap_state_reason(int trap_state) {
2237   // This assert provides the link between the width of DataLayout::trap_bits
2238   // and the encoding of "recorded" reasons.  It ensures there are enough
2239   // bits to store all needed reasons in the per-BCI MDO profile.
2240   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2241   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2242   trap_state -= recompile_bit;
2243   if (trap_state == DS_REASON_MASK) {
2244     return Reason_many;
2245   } else {
2246     assert((int)Reason_none == 0, "state=0 => Reason_none");
2247     return (DeoptReason)trap_state;
2248   }
2249 }
2250 //-------------------------trap_state_has_reason-------------------------------
2251 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2252   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2253   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2254   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2255   trap_state -= recompile_bit;
2256   if (trap_state == DS_REASON_MASK) {
2257     return -1;  // true, unspecifically (bottom of state lattice)
2258   } else if (trap_state == reason) {
2259     return 1;   // true, definitely
2260   } else if (trap_state == 0) {
2261     return 0;   // false, definitely (top of state lattice)
2262   } else {
2263     return 0;   // false, definitely
2264   }
2265 }
2266 //-------------------------trap_state_add_reason-------------------------------
2267 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2268   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2269   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2270   trap_state -= recompile_bit;
2271   if (trap_state == DS_REASON_MASK) {
2272     return trap_state + recompile_bit;     // already at state lattice bottom
2273   } else if (trap_state == reason) {
2274     return trap_state + recompile_bit;     // the condition is already true
2275   } else if (trap_state == 0) {
2276     return reason + recompile_bit;          // no condition has yet been true
2277   } else {
2278     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2279   }
2280 }
2281 //-----------------------trap_state_is_recompiled------------------------------
2282 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2283   return (trap_state & DS_RECOMPILE_BIT) != 0;
2284 }
2285 //-----------------------trap_state_set_recompiled-----------------------------
2286 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2287   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2288   else    return trap_state & ~DS_RECOMPILE_BIT;
2289 }
2290 //---------------------------format_trap_state---------------------------------
2291 // This is used for debugging and diagnostics, including LogFile output.
2292 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2293                                               int trap_state) {
2294   assert(buflen > 0, "sanity");
2295   DeoptReason reason      = trap_state_reason(trap_state);
2296   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2297   // Re-encode the state from its decoded components.
2298   int decoded_state = 0;
2299   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2300     decoded_state = trap_state_add_reason(decoded_state, reason);
2301   if (recomp_flag)
2302     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2303   // If the state re-encodes properly, format it symbolically.
2304   // Because this routine is used for debugging and diagnostics,
2305   // be robust even if the state is a strange value.
2306   size_t len;
2307   if (decoded_state != trap_state) {
2308     // Random buggy state that doesn't decode??
2309     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2310   } else {
2311     len = jio_snprintf(buf, buflen, "%s%s",
2312                        trap_reason_name(reason),
2313                        recomp_flag ? " recompiled" : "");
2314   }
2315   return buf;
2316 }
2317 
2318 
2319 //--------------------------------statics--------------------------------------
2320 const char* Deoptimization::_trap_reason_name[] = {
2321   // Note:  Keep this in sync. with enum DeoptReason.
2322   "none",
2323   "null_check",
2324   "null_assert" JVMCI_ONLY("_or_unreached0"),
2325   "range_check",
2326   "class_check",
2327   "array_check",
2328   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2329   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2330   "profile_predicate",
2331   "unloaded",
2332   "uninitialized",
2333   "initialized",
2334   "unreached",
2335   "unhandled",
2336   "constraint",
2337   "div0_check",
2338   "age",
2339   "predicate",
2340   "loop_limit_check",
2341   "speculate_class_check",
2342   "speculate_null_check",
2343   "speculate_null_assert",
2344   "rtm_state_change",
2345   "unstable_if",
2346   "unstable_fused_if",
2347 #if INCLUDE_JVMCI
2348   "aliasing",
2349   "transfer_to_interpreter",
2350   "not_compiled_exception_handler",
2351   "unresolved",
2352   "jsr_mismatch",
2353 #endif
2354   "tenured"
2355 };
2356 const char* Deoptimization::_trap_action_name[] = {
2357   // Note:  Keep this in sync. with enum DeoptAction.
2358   "none",
2359   "maybe_recompile",
2360   "reinterpret",
2361   "make_not_entrant",
2362   "make_not_compilable"
2363 };
2364 
2365 const char* Deoptimization::trap_reason_name(int reason) {
2366   // Check that every reason has a name
2367   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2368 
2369   if (reason == Reason_many)  return "many";
2370   if ((uint)reason < Reason_LIMIT)
2371     return _trap_reason_name[reason];
2372   static char buf[20];
2373   sprintf(buf, "reason%d", reason);
2374   return buf;
2375 }
2376 const char* Deoptimization::trap_action_name(int action) {
2377   // Check that every action has a name
2378   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2379 
2380   if ((uint)action < Action_LIMIT)
2381     return _trap_action_name[action];
2382   static char buf[20];
2383   sprintf(buf, "action%d", action);
2384   return buf;
2385 }
2386 
2387 // This is used for debugging and diagnostics, including LogFile output.
2388 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2389                                                 int trap_request) {
2390   jint unloaded_class_index = trap_request_index(trap_request);
2391   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2392   const char* action = trap_action_name(trap_request_action(trap_request));
2393 #if INCLUDE_JVMCI
2394   int debug_id = trap_request_debug_id(trap_request);
2395 #endif
2396   size_t len;
2397   if (unloaded_class_index < 0) {
2398     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2399                        reason, action
2400 #if INCLUDE_JVMCI
2401                        ,debug_id
2402 #endif
2403                        );
2404   } else {
2405     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2406                        reason, action, unloaded_class_index
2407 #if INCLUDE_JVMCI
2408                        ,debug_id
2409 #endif
2410                        );
2411   }
2412   return buf;
2413 }
2414 
2415 juint Deoptimization::_deoptimization_hist
2416         [Deoptimization::Reason_LIMIT]
2417     [1 + Deoptimization::Action_LIMIT]
2418         [Deoptimization::BC_CASE_LIMIT]
2419   = {0};
2420 
2421 enum {
2422   LSB_BITS = 8,
2423   LSB_MASK = right_n_bits(LSB_BITS)
2424 };
2425 
2426 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2427                                        Bytecodes::Code bc) {
2428   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2429   assert(action >= 0 && action < Action_LIMIT, "oob");
2430   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2431   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2432   juint* cases = _deoptimization_hist[reason][1+action];
2433   juint* bc_counter_addr = NULL;
2434   juint  bc_counter      = 0;
2435   // Look for an unused counter, or an exact match to this BC.
2436   if (bc != Bytecodes::_illegal) {
2437     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2438       juint* counter_addr = &cases[bc_case];
2439       juint  counter = *counter_addr;
2440       if ((counter == 0 && bc_counter_addr == NULL)
2441           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2442         // this counter is either free or is already devoted to this BC
2443         bc_counter_addr = counter_addr;
2444         bc_counter = counter | bc;
2445       }
2446     }
2447   }
2448   if (bc_counter_addr == NULL) {
2449     // Overflow, or no given bytecode.
2450     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2451     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2452   }
2453   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2454 }
2455 
2456 jint Deoptimization::total_deoptimization_count() {
2457   return _deoptimization_hist[Reason_none][0][0];
2458 }
2459 
2460 void Deoptimization::print_statistics() {
2461   juint total = total_deoptimization_count();
2462   juint account = total;
2463   if (total != 0) {
2464     ttyLocker ttyl;
2465     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2466     tty->print_cr("Deoptimization traps recorded:");
2467     #define PRINT_STAT_LINE(name, r) \
2468       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2469     PRINT_STAT_LINE("total", total);
2470     // For each non-zero entry in the histogram, print the reason,
2471     // the action, and (if specifically known) the type of bytecode.
2472     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2473       for (int action = 0; action < Action_LIMIT; action++) {
2474         juint* cases = _deoptimization_hist[reason][1+action];
2475         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2476           juint counter = cases[bc_case];
2477           if (counter != 0) {
2478             char name[1*K];
2479             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2480             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2481               bc = Bytecodes::_illegal;
2482             sprintf(name, "%s/%s/%s",
2483                     trap_reason_name(reason),
2484                     trap_action_name(action),
2485                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2486             juint r = counter >> LSB_BITS;
2487             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2488             account -= r;
2489           }
2490         }
2491       }
2492     }
2493     if (account != 0) {
2494       PRINT_STAT_LINE("unaccounted", account);
2495     }
2496     #undef PRINT_STAT_LINE
2497     if (xtty != NULL)  xtty->tail("statistics");
2498   }
2499 }
2500 #else // COMPILER2_OR_JVMCI
2501 
2502 
2503 // Stubs for C1 only system.
2504 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2505   return false;
2506 }
2507 
2508 const char* Deoptimization::trap_reason_name(int reason) {
2509   return "unknown";
2510 }
2511 
2512 void Deoptimization::print_statistics() {
2513   // no output
2514 }
2515 
2516 void
2517 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2518   // no udpate
2519 }
2520 
2521 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2522   return 0;
2523 }
2524 
2525 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2526                                        Bytecodes::Code bc) {
2527   // no update
2528 }
2529 
2530 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2531                                               int trap_state) {
2532   jio_snprintf(buf, buflen, "#%d", trap_state);
2533   return buf;
2534 }
2535 
2536 #endif // COMPILER2_OR_JVMCI