1 /*
   2  * Copyright (c) 2010, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileBroker.hpp"
  27 #include "compiler/compilerOracle.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "runtime/arguments.hpp"
  30 #include "runtime/handles.inline.hpp"
  31 #include "runtime/safepoint.hpp"
  32 #include "runtime/safepointVerifiers.hpp"
  33 #include "runtime/tieredThresholdPolicy.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "oops/method.inline.hpp"
  36 #if INCLUDE_JVMCI
  37 #include "jvmci/jvmci.hpp"
  38 #endif
  39 
  40 #ifdef TIERED
  41 
  42 #include "c1/c1_Compiler.hpp"
  43 #include "opto/c2compiler.hpp"
  44 
  45 template<CompLevel level>
  46 bool TieredThresholdPolicy::call_predicate_helper(int i, int b, double scale, Method* method) {
  47   double threshold_scaling;
  48   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
  49     scale *= threshold_scaling;
  50   }
  51   switch(level) {
  52   case CompLevel_aot:
  53     return (i >= Tier3AOTInvocationThreshold * scale) ||
  54            (i >= Tier3AOTMinInvocationThreshold * scale && i + b >= Tier3AOTCompileThreshold * scale);
  55   case CompLevel_none:
  56   case CompLevel_limited_profile:
  57     return (i >= Tier3InvocationThreshold * scale) ||
  58            (i >= Tier3MinInvocationThreshold * scale && i + b >= Tier3CompileThreshold * scale);
  59   case CompLevel_full_profile:
  60    return (i >= Tier4InvocationThreshold * scale) ||
  61           (i >= Tier4MinInvocationThreshold * scale && i + b >= Tier4CompileThreshold * scale);
  62   }
  63   return true;
  64 }
  65 
  66 template<CompLevel level>
  67 bool TieredThresholdPolicy::loop_predicate_helper(int i, int b, double scale, Method* method) {
  68   double threshold_scaling;
  69   if (CompilerOracle::has_option_value(method, "CompileThresholdScaling", threshold_scaling)) {
  70     scale *= threshold_scaling;
  71   }
  72   switch(level) {
  73   case CompLevel_aot:
  74     return b >= Tier3AOTBackEdgeThreshold * scale;
  75   case CompLevel_none:
  76   case CompLevel_limited_profile:
  77     return b >= Tier3BackEdgeThreshold * scale;
  78   case CompLevel_full_profile:
  79     return b >= Tier4BackEdgeThreshold * scale;
  80   }
  81   return true;
  82 }
  83 
  84 // Simple methods are as good being compiled with C1 as C2.
  85 // Determine if a given method is such a case.
  86 bool TieredThresholdPolicy::is_trivial(Method* method) {
  87   if (method->is_accessor() ||
  88       method->is_constant_getter()) {
  89     return true;
  90   }
  91   return false;
  92 }
  93 
  94 bool TieredThresholdPolicy::should_compile_at_level_simple(Method* method) {
  95   if (TieredThresholdPolicy::is_trivial(method)) {
  96     return true;
  97   }
  98 #if INCLUDE_JVMCI
  99   if (UseJVMCICompiler) {
 100     AbstractCompiler* comp = CompileBroker::compiler(CompLevel_full_optimization);
 101     if (comp != NULL && comp->is_jvmci() && ((JVMCICompiler*) comp)->force_comp_at_level_simple(method)) {
 102       return true;
 103     }
 104   }
 105 #endif
 106   return false;
 107 }
 108 
 109 CompLevel TieredThresholdPolicy::comp_level(Method* method) {
 110   CompiledMethod *nm = method->code();
 111   if (nm != NULL && nm->is_in_use()) {
 112     return (CompLevel)nm->comp_level();
 113   }
 114   return CompLevel_none;
 115 }
 116 
 117 void TieredThresholdPolicy::print_counters(const char* prefix, const methodHandle& mh) {
 118   int invocation_count = mh->invocation_count();
 119   int backedge_count = mh->backedge_count();
 120   MethodData* mdh = mh->method_data();
 121   int mdo_invocations = 0, mdo_backedges = 0;
 122   int mdo_invocations_start = 0, mdo_backedges_start = 0;
 123   if (mdh != NULL) {
 124     mdo_invocations = mdh->invocation_count();
 125     mdo_backedges = mdh->backedge_count();
 126     mdo_invocations_start = mdh->invocation_count_start();
 127     mdo_backedges_start = mdh->backedge_count_start();
 128   }
 129   tty->print(" %stotal=%d,%d %smdo=%d(%d),%d(%d)", prefix,
 130       invocation_count, backedge_count, prefix,
 131       mdo_invocations, mdo_invocations_start,
 132       mdo_backedges, mdo_backedges_start);
 133   tty->print(" %smax levels=%d,%d", prefix,
 134       mh->highest_comp_level(), mh->highest_osr_comp_level());
 135 }
 136 
 137 // Print an event.
 138 void TieredThresholdPolicy::print_event(EventType type, const methodHandle& mh, const methodHandle& imh,
 139                                         int bci, CompLevel level) {
 140   bool inlinee_event = mh() != imh();
 141 
 142   ttyLocker tty_lock;
 143   tty->print("%lf: [", os::elapsedTime());
 144 
 145   switch(type) {
 146   case CALL:
 147     tty->print("call");
 148     break;
 149   case LOOP:
 150     tty->print("loop");
 151     break;
 152   case COMPILE:
 153     tty->print("compile");
 154     break;
 155   case REMOVE_FROM_QUEUE:
 156     tty->print("remove-from-queue");
 157     break;
 158   case UPDATE_IN_QUEUE:
 159     tty->print("update-in-queue");
 160     break;
 161   case REPROFILE:
 162     tty->print("reprofile");
 163     break;
 164   case MAKE_NOT_ENTRANT:
 165     tty->print("make-not-entrant");
 166     break;
 167   default:
 168     tty->print("unknown");
 169   }
 170 
 171   tty->print(" level=%d ", level);
 172 
 173   ResourceMark rm;
 174   char *method_name = mh->name_and_sig_as_C_string();
 175   tty->print("[%s", method_name);
 176   if (inlinee_event) {
 177     char *inlinee_name = imh->name_and_sig_as_C_string();
 178     tty->print(" [%s]] ", inlinee_name);
 179   }
 180   else tty->print("] ");
 181   tty->print("@%d queues=%d,%d", bci, CompileBroker::queue_size(CompLevel_full_profile),
 182                                       CompileBroker::queue_size(CompLevel_full_optimization));
 183 
 184   print_specific(type, mh, imh, bci, level);
 185 
 186   if (type != COMPILE) {
 187     print_counters("", mh);
 188     if (inlinee_event) {
 189       print_counters("inlinee ", imh);
 190     }
 191     tty->print(" compilable=");
 192     bool need_comma = false;
 193     if (!mh->is_not_compilable(CompLevel_full_profile)) {
 194       tty->print("c1");
 195       need_comma = true;
 196     }
 197     if (!mh->is_not_osr_compilable(CompLevel_full_profile)) {
 198       if (need_comma) tty->print(",");
 199       tty->print("c1-osr");
 200       need_comma = true;
 201     }
 202     if (!mh->is_not_compilable(CompLevel_full_optimization)) {
 203       if (need_comma) tty->print(",");
 204       tty->print("c2");
 205       need_comma = true;
 206     }
 207     if (!mh->is_not_osr_compilable(CompLevel_full_optimization)) {
 208       if (need_comma) tty->print(",");
 209       tty->print("c2-osr");
 210     }
 211     tty->print(" status=");
 212     if (mh->queued_for_compilation()) {
 213       tty->print("in-queue");
 214     } else tty->print("idle");
 215   }
 216   tty->print_cr("]");
 217 }
 218 
 219 void TieredThresholdPolicy::initialize() {
 220   int count = CICompilerCount;
 221   bool c1_only = TieredStopAtLevel < CompLevel_full_optimization;
 222 #ifdef _LP64
 223   // Turn on ergonomic compiler count selection
 224   if (FLAG_IS_DEFAULT(CICompilerCountPerCPU) && FLAG_IS_DEFAULT(CICompilerCount)) {
 225     FLAG_SET_DEFAULT(CICompilerCountPerCPU, true);
 226   }
 227   if (CICompilerCountPerCPU) {
 228     // Simple log n seems to grow too slowly for tiered, try something faster: log n * log log n
 229     int log_cpu = log2_int(os::active_processor_count());
 230     int loglog_cpu = log2_int(MAX2(log_cpu, 1));
 231     count = MAX2(log_cpu * loglog_cpu * 3 / 2, 2);
 232     // Make sure there is enough space in the code cache to hold all the compiler buffers
 233     size_t c1_size = Compiler::code_buffer_size();
 234     size_t c2_size = C2Compiler::initial_code_buffer_size();
 235     size_t buffer_size = c1_only ? c1_size : (c1_size/3 + 2*c2_size/3);
 236     int max_count = (ReservedCodeCacheSize - (CodeCacheMinimumUseSpace DEBUG_ONLY(* 3))) / (int)buffer_size;
 237     if (count > max_count) {
 238       // Lower the compiler count such that all buffers fit into the code cache
 239       count = MAX2(max_count, c1_only ? 1 : 2);
 240     }
 241     FLAG_SET_ERGO(CICompilerCount, count);
 242   }
 243 #else
 244   // On 32-bit systems, the number of compiler threads is limited to 3.
 245   // On these systems, the virtual address space available to the JVM
 246   // is usually limited to 2-4 GB (the exact value depends on the platform).
 247   // As the compilers (especially C2) can consume a large amount of
 248   // memory, scaling the number of compiler threads with the number of
 249   // available cores can result in the exhaustion of the address space
 250   /// available to the VM and thus cause the VM to crash.
 251   if (FLAG_IS_DEFAULT(CICompilerCount)) {
 252     count = 3;
 253     FLAG_SET_ERGO(CICompilerCount, count);
 254   }
 255 #endif
 256 
 257   if (c1_only) {
 258     // No C2 compiler thread required
 259     set_c1_count(count);
 260   } else {
 261     set_c1_count(MAX2(count / 3, 1));
 262     set_c2_count(MAX2(count - c1_count(), 1));
 263   }
 264   assert(count == c1_count() + c2_count(), "inconsistent compiler thread count");
 265 
 266   // Some inlining tuning
 267 #ifdef X86
 268   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
 269     FLAG_SET_DEFAULT(InlineSmallCode, 2000);
 270   }
 271 #endif
 272 
 273 #if defined SPARC || defined AARCH64
 274   if (FLAG_IS_DEFAULT(InlineSmallCode)) {
 275     FLAG_SET_DEFAULT(InlineSmallCode, 2500);
 276   }
 277 #endif
 278 
 279   set_increase_threshold_at_ratio();
 280   set_start_time(os::javaTimeMillis());
 281 }
 282 
 283 void TieredThresholdPolicy::set_carry_if_necessary(InvocationCounter *counter) {
 284   if (!counter->carry() && counter->count() > InvocationCounter::count_limit / 2) {
 285     counter->set_carry_flag();
 286   }
 287 }
 288 
 289 // Set carry flags on the counters if necessary
 290 void TieredThresholdPolicy::handle_counter_overflow(Method* method) {
 291   MethodCounters *mcs = method->method_counters();
 292   if (mcs != NULL) {
 293     set_carry_if_necessary(mcs->invocation_counter());
 294     set_carry_if_necessary(mcs->backedge_counter());
 295   }
 296   MethodData* mdo = method->method_data();
 297   if (mdo != NULL) {
 298     set_carry_if_necessary(mdo->invocation_counter());
 299     set_carry_if_necessary(mdo->backedge_counter());
 300   }
 301 }
 302 
 303 // Called with the queue locked and with at least one element
 304 CompileTask* TieredThresholdPolicy::select_task(CompileQueue* compile_queue) {
 305   CompileTask *max_blocking_task = NULL;
 306   CompileTask *max_task = NULL;
 307   Method* max_method = NULL;
 308   jlong t = os::javaTimeMillis();
 309   // Iterate through the queue and find a method with a maximum rate.
 310   for (CompileTask* task = compile_queue->first(); task != NULL;) {
 311     CompileTask* next_task = task->next();
 312     Method* method = task->method();
 313     // If a method was unloaded or has been stale for some time, remove it from the queue.
 314     // Blocking tasks and tasks submitted from whitebox API don't become stale
 315     if (task->is_unloaded() || (task->can_become_stale() && is_stale(t, TieredCompileTaskTimeout, method) && !is_old(method))) {
 316       if (!task->is_unloaded()) {
 317         if (PrintTieredEvents) {
 318           print_event(REMOVE_FROM_QUEUE, method, method, task->osr_bci(), (CompLevel) task->comp_level());
 319         }
 320         method->clear_queued_for_compilation();
 321       }
 322       compile_queue->remove_and_mark_stale(task);
 323       task = next_task;
 324       continue;
 325     }
 326     update_rate(t, method);
 327     if (max_task == NULL || compare_methods(method, max_method)) {
 328       // Select a method with the highest rate
 329       max_task = task;
 330       max_method = method;
 331     }
 332 
 333     if (task->is_blocking()) {
 334       if (max_blocking_task == NULL || compare_methods(method, max_blocking_task->method())) {
 335         max_blocking_task = task;
 336       }
 337     }
 338 
 339     task = next_task;
 340   }
 341 
 342   if (max_blocking_task != NULL) {
 343     // In blocking compilation mode, the CompileBroker will make
 344     // compilations submitted by a JVMCI compiler thread non-blocking. These
 345     // compilations should be scheduled after all blocking compilations
 346     // to service non-compiler related compilations sooner and reduce the
 347     // chance of such compilations timing out.
 348     max_task = max_blocking_task;
 349     max_method = max_task->method();
 350   }
 351 
 352   if (max_task != NULL && max_task->comp_level() == CompLevel_full_profile &&
 353       TieredStopAtLevel > CompLevel_full_profile &&
 354       max_method != NULL && is_method_profiled(max_method)) {
 355     max_task->set_comp_level(CompLevel_limited_profile);
 356 
 357     if (CompileBroker::compilation_is_complete(max_method, max_task->osr_bci(), CompLevel_limited_profile)) {
 358       if (PrintTieredEvents) {
 359         print_event(REMOVE_FROM_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 360       }
 361       compile_queue->remove_and_mark_stale(max_task);
 362       max_method->clear_queued_for_compilation();
 363       return NULL;
 364     }
 365 
 366     if (PrintTieredEvents) {
 367       print_event(UPDATE_IN_QUEUE, max_method, max_method, max_task->osr_bci(), (CompLevel)max_task->comp_level());
 368     }
 369   }
 370 
 371   return max_task;
 372 }
 373 
 374 void TieredThresholdPolicy::reprofile(ScopeDesc* trap_scope, bool is_osr) {
 375   for (ScopeDesc* sd = trap_scope;; sd = sd->sender()) {
 376     if (PrintTieredEvents) {
 377       methodHandle mh(sd->method());
 378       print_event(REPROFILE, mh, mh, InvocationEntryBci, CompLevel_none);
 379     }
 380     MethodData* mdo = sd->method()->method_data();
 381     if (mdo != NULL) {
 382       mdo->reset_start_counters();
 383     }
 384     if (sd->is_top()) break;
 385   }
 386 }
 387 
 388 nmethod* TieredThresholdPolicy::event(const methodHandle& method, const methodHandle& inlinee,
 389                                       int branch_bci, int bci, CompLevel comp_level, CompiledMethod* nm, JavaThread* thread) {
 390   if (comp_level == CompLevel_none &&
 391       JvmtiExport::can_post_interpreter_events() &&
 392       thread->is_interp_only_mode()) {
 393     return NULL;
 394   }
 395   if (ReplayCompiles) {
 396     // Don't trigger other compiles in testing mode
 397     return NULL;
 398   }
 399 
 400   handle_counter_overflow(method());
 401   if (method() != inlinee()) {
 402     handle_counter_overflow(inlinee());
 403   }
 404 
 405   if (PrintTieredEvents) {
 406     print_event(bci == InvocationEntryBci ? CALL : LOOP, method, inlinee, bci, comp_level);
 407   }
 408 
 409   if (bci == InvocationEntryBci) {
 410     method_invocation_event(method, inlinee, comp_level, nm, thread);
 411   } else {
 412     // method == inlinee if the event originated in the main method
 413     method_back_branch_event(method, inlinee, bci, comp_level, nm, thread);
 414     // Check if event led to a higher level OSR compilation
 415     CompLevel expected_comp_level = comp_level;
 416     if (inlinee->is_not_osr_compilable(expected_comp_level)) {
 417       // It's not possble to reach the expected level so fall back to simple.
 418       expected_comp_level = CompLevel_simple;
 419     }
 420     nmethod* osr_nm = inlinee->lookup_osr_nmethod_for(bci, expected_comp_level, false);
 421     assert(osr_nm == NULL || osr_nm->comp_level() >= expected_comp_level, "lookup_osr_nmethod_for is broken");
 422     if (osr_nm != NULL) {
 423       // Perform OSR with new nmethod
 424       return osr_nm;
 425     }
 426   }
 427   return NULL;
 428 }
 429 
 430 // Check if the method can be compiled, change level if necessary
 431 void TieredThresholdPolicy::compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 432   assert(level <= TieredStopAtLevel, "Invalid compilation level");
 433   if (level == CompLevel_none) {
 434     return;
 435   }
 436   if (level == CompLevel_aot) {
 437     if (mh->has_aot_code()) {
 438       if (PrintTieredEvents) {
 439         print_event(COMPILE, mh, mh, bci, level);
 440       }
 441       MutexLocker ml(Compile_lock);
 442       NoSafepointVerifier nsv;
 443       if (mh->has_aot_code() && mh->code() != mh->aot_code()) {
 444         mh->aot_code()->make_entrant();
 445         if (mh->has_compiled_code()) {
 446           mh->code()->make_not_entrant();
 447         }
 448         Method::set_code(mh, mh->aot_code());
 449       }
 450     }
 451     return;
 452   }
 453 
 454   // Check if the method can be compiled. If it cannot be compiled with C1, continue profiling
 455   // in the interpreter and then compile with C2 (the transition function will request that,
 456   // see common() ). If the method cannot be compiled with C2 but still can with C1, compile it with
 457   // pure C1.
 458   if ((bci == InvocationEntryBci && !can_be_compiled(mh, level))) {
 459     if (level == CompLevel_full_optimization && can_be_compiled(mh, CompLevel_simple)) {
 460       compile(mh, bci, CompLevel_simple, thread);
 461     }
 462     return;
 463   }
 464   if ((bci != InvocationEntryBci && !can_be_osr_compiled(mh, level))) {
 465     if (level == CompLevel_full_optimization && can_be_osr_compiled(mh, CompLevel_simple)) {
 466       nmethod* osr_nm = mh->lookup_osr_nmethod_for(bci, CompLevel_simple, false);
 467       if (osr_nm != NULL && osr_nm->comp_level() > CompLevel_simple) {
 468         // Invalidate the existing OSR nmethod so that a compile at CompLevel_simple is permitted.
 469         osr_nm->make_not_entrant();
 470       }
 471       compile(mh, bci, CompLevel_simple, thread);
 472     }
 473     return;
 474   }
 475   if (bci != InvocationEntryBci && mh->is_not_osr_compilable(level)) {
 476     return;
 477   }
 478   if (!CompileBroker::compilation_is_in_queue(mh)) {
 479     if (PrintTieredEvents) {
 480       print_event(COMPILE, mh, mh, bci, level);
 481     }
 482     submit_compile(mh, bci, level, thread);
 483   }
 484 }
 485 
 486 // Update the rate and submit compile
 487 void TieredThresholdPolicy::submit_compile(const methodHandle& mh, int bci, CompLevel level, JavaThread* thread) {
 488   int hot_count = (bci == InvocationEntryBci) ? mh->invocation_count() : mh->backedge_count();
 489   update_rate(os::javaTimeMillis(), mh());
 490   CompileBroker::compile_method(mh, bci, level, mh, hot_count, CompileTask::Reason_Tiered, thread);
 491 }
 492 
 493 // Print an event.
 494 void TieredThresholdPolicy::print_specific(EventType type, const methodHandle& mh, const methodHandle& imh,
 495                                              int bci, CompLevel level) {
 496   tty->print(" rate=");
 497   if (mh->prev_time() == 0) tty->print("n/a");
 498   else tty->print("%f", mh->rate());
 499 
 500   tty->print(" k=%.2lf,%.2lf", threshold_scale(CompLevel_full_profile, Tier3LoadFeedback),
 501                                threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback));
 502 
 503 }
 504 
 505 // update_rate() is called from select_task() while holding a compile queue lock.
 506 void TieredThresholdPolicy::update_rate(jlong t, Method* m) {
 507   // Skip update if counters are absent.
 508   // Can't allocate them since we are holding compile queue lock.
 509   if (m->method_counters() == NULL)  return;
 510 
 511   if (is_old(m)) {
 512     // We don't remove old methods from the queue,
 513     // so we can just zero the rate.
 514     m->set_rate(0);
 515     return;
 516   }
 517 
 518   // We don't update the rate if we've just came out of a safepoint.
 519   // delta_s is the time since last safepoint in milliseconds.
 520   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
 521   jlong delta_t = t - (m->prev_time() != 0 ? m->prev_time() : start_time()); // milliseconds since the last measurement
 522   // How many events were there since the last time?
 523   int event_count = m->invocation_count() + m->backedge_count();
 524   int delta_e = event_count - m->prev_event_count();
 525 
 526   // We should be running for at least 1ms.
 527   if (delta_s >= TieredRateUpdateMinTime) {
 528     // And we must've taken the previous point at least 1ms before.
 529     if (delta_t >= TieredRateUpdateMinTime && delta_e > 0) {
 530       m->set_prev_time(t);
 531       m->set_prev_event_count(event_count);
 532       m->set_rate((float)delta_e / (float)delta_t); // Rate is events per millisecond
 533     } else {
 534       if (delta_t > TieredRateUpdateMaxTime && delta_e == 0) {
 535         // If nothing happened for 25ms, zero the rate. Don't modify prev values.
 536         m->set_rate(0);
 537       }
 538     }
 539   }
 540 }
 541 
 542 // Check if this method has been stale for a given number of milliseconds.
 543 // See select_task().
 544 bool TieredThresholdPolicy::is_stale(jlong t, jlong timeout, Method* m) {
 545   jlong delta_s = t - SafepointTracing::end_of_last_safepoint_epoch_ms();
 546   jlong delta_t = t - m->prev_time();
 547   if (delta_t > timeout && delta_s > timeout) {
 548     int event_count = m->invocation_count() + m->backedge_count();
 549     int delta_e = event_count - m->prev_event_count();
 550     // Return true if there were no events.
 551     return delta_e == 0;
 552   }
 553   return false;
 554 }
 555 
 556 // We don't remove old methods from the compile queue even if they have
 557 // very low activity. See select_task().
 558 bool TieredThresholdPolicy::is_old(Method* method) {
 559   return method->invocation_count() > 50000 || method->backedge_count() > 500000;
 560 }
 561 
 562 double TieredThresholdPolicy::weight(Method* method) {
 563   return (double)(method->rate() + 1) *
 564     (method->invocation_count() + 1) * (method->backedge_count() + 1);
 565 }
 566 
 567 // Apply heuristics and return true if x should be compiled before y
 568 bool TieredThresholdPolicy::compare_methods(Method* x, Method* y) {
 569   if (x->highest_comp_level() > y->highest_comp_level()) {
 570     // recompilation after deopt
 571     return true;
 572   } else
 573     if (x->highest_comp_level() == y->highest_comp_level()) {
 574       if (weight(x) > weight(y)) {
 575         return true;
 576       }
 577     }
 578   return false;
 579 }
 580 
 581 // Is method profiled enough?
 582 bool TieredThresholdPolicy::is_method_profiled(Method* method) {
 583   MethodData* mdo = method->method_data();
 584   if (mdo != NULL) {
 585     int i = mdo->invocation_count_delta();
 586     int b = mdo->backedge_count_delta();
 587     return call_predicate_helper<CompLevel_full_profile>(i, b, 1, method);
 588   }
 589   return false;
 590 }
 591 
 592 double TieredThresholdPolicy::threshold_scale(CompLevel level, int feedback_k) {
 593   double queue_size = CompileBroker::queue_size(level);
 594   int comp_count = compiler_count(level);
 595   double k = queue_size / (feedback_k * comp_count) + 1;
 596 
 597   // Increase C1 compile threshold when the code cache is filled more
 598   // than specified by IncreaseFirstTierCompileThresholdAt percentage.
 599   // The main intention is to keep enough free space for C2 compiled code
 600   // to achieve peak performance if the code cache is under stress.
 601   if ((TieredStopAtLevel == CompLevel_full_optimization) && (level != CompLevel_full_optimization))  {
 602     double current_reverse_free_ratio = CodeCache::reverse_free_ratio(CodeCache::get_code_blob_type(level));
 603     if (current_reverse_free_ratio > _increase_threshold_at_ratio) {
 604       k *= exp(current_reverse_free_ratio - _increase_threshold_at_ratio);
 605     }
 606   }
 607   return k;
 608 }
 609 
 610 // Call and loop predicates determine whether a transition to a higher
 611 // compilation level should be performed (pointers to predicate functions
 612 // are passed to common()).
 613 // Tier?LoadFeedback is basically a coefficient that determines of
 614 // how many methods per compiler thread can be in the queue before
 615 // the threshold values double.
 616 bool TieredThresholdPolicy::loop_predicate(int i, int b, CompLevel cur_level, Method* method) {
 617   switch(cur_level) {
 618   case CompLevel_aot: {
 619     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 620     return loop_predicate_helper<CompLevel_aot>(i, b, k, method);
 621   }
 622   case CompLevel_none:
 623   case CompLevel_limited_profile: {
 624     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 625     return loop_predicate_helper<CompLevel_none>(i, b, k, method);
 626   }
 627   case CompLevel_full_profile: {
 628     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 629     return loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 630   }
 631   default:
 632     return true;
 633   }
 634 }
 635 
 636 bool TieredThresholdPolicy::call_predicate(int i, int b, CompLevel cur_level, Method* method) {
 637   switch(cur_level) {
 638   case CompLevel_aot: {
 639     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 640     return call_predicate_helper<CompLevel_aot>(i, b, k, method);
 641   }
 642   case CompLevel_none:
 643   case CompLevel_limited_profile: {
 644     double k = threshold_scale(CompLevel_full_profile, Tier3LoadFeedback);
 645     return call_predicate_helper<CompLevel_none>(i, b, k, method);
 646   }
 647   case CompLevel_full_profile: {
 648     double k = threshold_scale(CompLevel_full_optimization, Tier4LoadFeedback);
 649     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 650   }
 651   default:
 652     return true;
 653   }
 654 }
 655 
 656 // Determine is a method is mature.
 657 bool TieredThresholdPolicy::is_mature(Method* method) {
 658   if (should_compile_at_level_simple(method)) return true;
 659   MethodData* mdo = method->method_data();
 660   if (mdo != NULL) {
 661     int i = mdo->invocation_count();
 662     int b = mdo->backedge_count();
 663     double k = ProfileMaturityPercentage / 100.0;
 664     return call_predicate_helper<CompLevel_full_profile>(i, b, k, method) ||
 665            loop_predicate_helper<CompLevel_full_profile>(i, b, k, method);
 666   }
 667   return false;
 668 }
 669 
 670 // If a method is old enough and is still in the interpreter we would want to
 671 // start profiling without waiting for the compiled method to arrive.
 672 // We also take the load on compilers into the account.
 673 bool TieredThresholdPolicy::should_create_mdo(Method* method, CompLevel cur_level) {
 674   if (cur_level == CompLevel_none &&
 675       CompileBroker::queue_size(CompLevel_full_optimization) <=
 676       Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 677     int i = method->invocation_count();
 678     int b = method->backedge_count();
 679     double k = Tier0ProfilingStartPercentage / 100.0;
 680     return call_predicate_helper<CompLevel_none>(i, b, k, method) || loop_predicate_helper<CompLevel_none>(i, b, k, method);
 681   }
 682   return false;
 683 }
 684 
 685 // Inlining control: if we're compiling a profiled method with C1 and the callee
 686 // is known to have OSRed in a C2 version, don't inline it.
 687 bool TieredThresholdPolicy::should_not_inline(ciEnv* env, ciMethod* callee) {
 688   CompLevel comp_level = (CompLevel)env->comp_level();
 689   if (comp_level == CompLevel_full_profile ||
 690       comp_level == CompLevel_limited_profile) {
 691     return callee->highest_osr_comp_level() == CompLevel_full_optimization;
 692   }
 693   return false;
 694 }
 695 
 696 // Create MDO if necessary.
 697 void TieredThresholdPolicy::create_mdo(const methodHandle& mh, JavaThread* THREAD) {
 698   if (mh->is_native() ||
 699       mh->is_abstract() ||
 700       mh->is_accessor() ||
 701       mh->is_constant_getter()) {
 702     return;
 703   }
 704   if (mh->method_data() == NULL) {
 705     Method::build_interpreter_method_data(mh, CHECK_AND_CLEAR);
 706   }
 707 }
 708 
 709 
 710 /*
 711  * Method states:
 712  *   0 - interpreter (CompLevel_none)
 713  *   1 - pure C1 (CompLevel_simple)
 714  *   2 - C1 with invocation and backedge counting (CompLevel_limited_profile)
 715  *   3 - C1 with full profiling (CompLevel_full_profile)
 716  *   4 - C2 (CompLevel_full_optimization)
 717  *
 718  * Common state transition patterns:
 719  * a. 0 -> 3 -> 4.
 720  *    The most common path. But note that even in this straightforward case
 721  *    profiling can start at level 0 and finish at level 3.
 722  *
 723  * b. 0 -> 2 -> 3 -> 4.
 724  *    This case occurs when the load on C2 is deemed too high. So, instead of transitioning
 725  *    into state 3 directly and over-profiling while a method is in the C2 queue we transition to
 726  *    level 2 and wait until the load on C2 decreases. This path is disabled for OSRs.
 727  *
 728  * c. 0 -> (3->2) -> 4.
 729  *    In this case we enqueue a method for compilation at level 3, but the C1 queue is long enough
 730  *    to enable the profiling to fully occur at level 0. In this case we change the compilation level
 731  *    of the method to 2 while the request is still in-queue, because it'll allow it to run much faster
 732  *    without full profiling while c2 is compiling.
 733  *
 734  * d. 0 -> 3 -> 1 or 0 -> 2 -> 1.
 735  *    After a method was once compiled with C1 it can be identified as trivial and be compiled to
 736  *    level 1. These transition can also occur if a method can't be compiled with C2 but can with C1.
 737  *
 738  * e. 0 -> 4.
 739  *    This can happen if a method fails C1 compilation (it will still be profiled in the interpreter)
 740  *    or because of a deopt that didn't require reprofiling (compilation won't happen in this case because
 741  *    the compiled version already exists).
 742  *
 743  * Note that since state 0 can be reached from any other state via deoptimization different loops
 744  * are possible.
 745  *
 746  */
 747 
 748 // Common transition function. Given a predicate determines if a method should transition to another level.
 749 CompLevel TieredThresholdPolicy::common(Predicate p, Method* method, CompLevel cur_level, bool disable_feedback) {
 750   CompLevel next_level = cur_level;
 751   int i = method->invocation_count();
 752   int b = method->backedge_count();
 753 
 754   if (should_compile_at_level_simple(method)) {
 755     next_level = CompLevel_simple;
 756   } else {
 757     switch(cur_level) {
 758       default: break;
 759       case CompLevel_aot: {
 760       // If we were at full profile level, would we switch to full opt?
 761       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 762         next_level = CompLevel_full_optimization;
 763       } else if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 764                                Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 765                                (this->*p)(i, b, cur_level, method))) {
 766         next_level = CompLevel_full_profile;
 767       }
 768     }
 769     break;
 770     case CompLevel_none:
 771       // If we were at full profile level, would we switch to full opt?
 772       if (common(p, method, CompLevel_full_profile, disable_feedback) == CompLevel_full_optimization) {
 773         next_level = CompLevel_full_optimization;
 774       } else if ((this->*p)(i, b, cur_level, method)) {
 775 #if INCLUDE_JVMCI
 776         if (EnableJVMCI && UseJVMCICompiler) {
 777           // Since JVMCI takes a while to warm up, its queue inevitably backs up during
 778           // early VM execution. As of 2014-06-13, JVMCI's inliner assumes that the root
 779           // compilation method and all potential inlinees have mature profiles (which
 780           // includes type profiling). If it sees immature profiles, JVMCI's inliner
 781           // can perform pathologically bad (e.g., causing OutOfMemoryErrors due to
 782           // exploring/inlining too many graphs). Since a rewrite of the inliner is
 783           // in progress, we simply disable the dialing back heuristic for now and will
 784           // revisit this decision once the new inliner is completed.
 785           next_level = CompLevel_full_profile;
 786         } else
 787 #endif
 788         {
 789           // C1-generated fully profiled code is about 30% slower than the limited profile
 790           // code that has only invocation and backedge counters. The observation is that
 791           // if C2 queue is large enough we can spend too much time in the fully profiled code
 792           // while waiting for C2 to pick the method from the queue. To alleviate this problem
 793           // we introduce a feedback on the C2 queue size. If the C2 queue is sufficiently long
 794           // we choose to compile a limited profiled version and then recompile with full profiling
 795           // when the load on C2 goes down.
 796           if (!disable_feedback && CompileBroker::queue_size(CompLevel_full_optimization) >
 797               Tier3DelayOn * compiler_count(CompLevel_full_optimization)) {
 798             next_level = CompLevel_limited_profile;
 799           } else {
 800             next_level = CompLevel_full_profile;
 801           }
 802         }
 803       }
 804       break;
 805     case CompLevel_limited_profile:
 806       if (is_method_profiled(method)) {
 807         // Special case: we got here because this method was fully profiled in the interpreter.
 808         next_level = CompLevel_full_optimization;
 809       } else {
 810         MethodData* mdo = method->method_data();
 811         if (mdo != NULL) {
 812           if (mdo->would_profile()) {
 813             if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 814                                      Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 815                                      (this->*p)(i, b, cur_level, method))) {
 816               next_level = CompLevel_full_profile;
 817             }
 818           } else {
 819             next_level = CompLevel_full_optimization;
 820           }
 821         } else {
 822           // If there is no MDO we need to profile
 823           if (disable_feedback || (CompileBroker::queue_size(CompLevel_full_optimization) <=
 824                                    Tier3DelayOff * compiler_count(CompLevel_full_optimization) &&
 825                                    (this->*p)(i, b, cur_level, method))) {
 826             next_level = CompLevel_full_profile;
 827           }
 828         }
 829       }
 830       break;
 831     case CompLevel_full_profile:
 832       {
 833         MethodData* mdo = method->method_data();
 834         if (mdo != NULL) {
 835           if (mdo->would_profile()) {
 836             int mdo_i = mdo->invocation_count_delta();
 837             int mdo_b = mdo->backedge_count_delta();
 838             if ((this->*p)(mdo_i, mdo_b, cur_level, method)) {
 839               next_level = CompLevel_full_optimization;
 840             }
 841           } else {
 842             next_level = CompLevel_full_optimization;
 843           }
 844         }
 845       }
 846       break;
 847     }
 848   }
 849   return MIN2(next_level, (CompLevel)TieredStopAtLevel);
 850 }
 851 
 852 // Determine if a method should be compiled with a normal entry point at a different level.
 853 CompLevel TieredThresholdPolicy::call_event(Method* method, CompLevel cur_level, JavaThread * thread) {
 854   CompLevel osr_level = MIN2((CompLevel) method->highest_osr_comp_level(),
 855                              common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true));
 856   CompLevel next_level = common(&TieredThresholdPolicy::call_predicate, method, cur_level);
 857 
 858   // If OSR method level is greater than the regular method level, the levels should be
 859   // equalized by raising the regular method level in order to avoid OSRs during each
 860   // invocation of the method.
 861   if (osr_level == CompLevel_full_optimization && cur_level == CompLevel_full_profile) {
 862     MethodData* mdo = method->method_data();
 863     guarantee(mdo != NULL, "MDO should not be NULL");
 864     if (mdo->invocation_count() >= 1) {
 865       next_level = CompLevel_full_optimization;
 866     }
 867   } else {
 868     next_level = MAX2(osr_level, next_level);
 869   }
 870   return next_level;
 871 }
 872 
 873 // Determine if we should do an OSR compilation of a given method.
 874 CompLevel TieredThresholdPolicy::loop_event(Method* method, CompLevel cur_level, JavaThread* thread) {
 875   CompLevel next_level = common(&TieredThresholdPolicy::loop_predicate, method, cur_level, true);
 876   if (cur_level == CompLevel_none) {
 877     // If there is a live OSR method that means that we deopted to the interpreter
 878     // for the transition.
 879     CompLevel osr_level = MIN2((CompLevel)method->highest_osr_comp_level(), next_level);
 880     if (osr_level > CompLevel_none) {
 881       return osr_level;
 882     }
 883   }
 884   return next_level;
 885 }
 886 
 887 bool TieredThresholdPolicy::maybe_switch_to_aot(const methodHandle& mh, CompLevel cur_level, CompLevel next_level, JavaThread* thread) {
 888   if (UseAOT) {
 889     if (cur_level == CompLevel_full_profile || cur_level == CompLevel_none) {
 890       // If the current level is full profile or interpreter and we're switching to any other level,
 891       // activate the AOT code back first so that we won't waste time overprofiling.
 892       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 893       // Fall through for JIT compilation.
 894     }
 895     if (next_level == CompLevel_limited_profile && cur_level != CompLevel_aot && mh->has_aot_code()) {
 896       // If the next level is limited profile, use the aot code (if there is any),
 897       // since it's essentially the same thing.
 898       compile(mh, InvocationEntryBci, CompLevel_aot, thread);
 899       // Not need to JIT, we're done.
 900       return true;
 901     }
 902   }
 903   return false;
 904 }
 905 
 906 
 907 // Handle the invocation event.
 908 void TieredThresholdPolicy::method_invocation_event(const methodHandle& mh, const methodHandle& imh,
 909                                                       CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 910   if (should_create_mdo(mh(), level)) {
 911     create_mdo(mh, thread);
 912   }
 913   CompLevel next_level = call_event(mh(), level, thread);
 914   if (next_level != level) {
 915     if (maybe_switch_to_aot(mh, level, next_level, thread)) {
 916       // No JITting necessary
 917       return;
 918     }
 919     if (is_compilation_enabled() && !CompileBroker::compilation_is_in_queue(mh)) {
 920       compile(mh, InvocationEntryBci, next_level, thread);
 921     }
 922   }
 923 }
 924 
 925 // Handle the back branch event. Notice that we can compile the method
 926 // with a regular entry from here.
 927 void TieredThresholdPolicy::method_back_branch_event(const methodHandle& mh, const methodHandle& imh,
 928                                                      int bci, CompLevel level, CompiledMethod* nm, JavaThread* thread) {
 929   if (should_create_mdo(mh(), level)) {
 930     create_mdo(mh, thread);
 931   }
 932   // Check if MDO should be created for the inlined method
 933   if (should_create_mdo(imh(), level)) {
 934     create_mdo(imh, thread);
 935   }
 936 
 937   if (is_compilation_enabled()) {
 938     CompLevel next_osr_level = loop_event(imh(), level, thread);
 939     CompLevel max_osr_level = (CompLevel)imh->highest_osr_comp_level();
 940     // At the very least compile the OSR version
 941     if (!CompileBroker::compilation_is_in_queue(imh) && (next_osr_level != level)) {
 942       compile(imh, bci, next_osr_level, thread);
 943     }
 944 
 945     // Use loop event as an opportunity to also check if there's been
 946     // enough calls.
 947     CompLevel cur_level, next_level;
 948     if (mh() != imh()) { // If there is an enclosing method
 949       if (level == CompLevel_aot) {
 950         // Recompile the enclosing method to prevent infinite OSRs. Stay at AOT level while it's compiling.
 951         if (max_osr_level != CompLevel_none && !CompileBroker::compilation_is_in_queue(mh)) {
 952           compile(mh, InvocationEntryBci, MIN2((CompLevel)TieredStopAtLevel, CompLevel_full_profile), thread);
 953         }
 954       } else {
 955         // Current loop event level is not AOT
 956         guarantee(nm != NULL, "Should have nmethod here");
 957         cur_level = comp_level(mh());
 958         next_level = call_event(mh(), cur_level, thread);
 959 
 960         if (max_osr_level == CompLevel_full_optimization) {
 961           // The inlinee OSRed to full opt, we need to modify the enclosing method to avoid deopts
 962           bool make_not_entrant = false;
 963           if (nm->is_osr_method()) {
 964             // This is an osr method, just make it not entrant and recompile later if needed
 965             make_not_entrant = true;
 966           } else {
 967             if (next_level != CompLevel_full_optimization) {
 968               // next_level is not full opt, so we need to recompile the
 969               // enclosing method without the inlinee
 970               cur_level = CompLevel_none;
 971               make_not_entrant = true;
 972             }
 973           }
 974           if (make_not_entrant) {
 975             if (PrintTieredEvents) {
 976               int osr_bci = nm->is_osr_method() ? nm->osr_entry_bci() : InvocationEntryBci;
 977               print_event(MAKE_NOT_ENTRANT, mh(), mh(), osr_bci, level);
 978             }
 979             nm->make_not_entrant();
 980           }
 981         }
 982         // Fix up next_level if necessary to avoid deopts
 983         if (next_level == CompLevel_limited_profile && max_osr_level == CompLevel_full_profile) {
 984           next_level = CompLevel_full_profile;
 985         }
 986         if (cur_level != next_level) {
 987           if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 988             compile(mh, InvocationEntryBci, next_level, thread);
 989           }
 990         }
 991       }
 992     } else {
 993       cur_level = comp_level(mh());
 994       next_level = call_event(mh(), cur_level, thread);
 995       if (next_level != cur_level) {
 996         if (!maybe_switch_to_aot(mh, cur_level, next_level, thread) && !CompileBroker::compilation_is_in_queue(mh)) {
 997           compile(mh, InvocationEntryBci, next_level, thread);
 998         }
 999       }
1000     }
1001   }
1002 }
1003 
1004 #endif