rev 56251 : imported patch 8226705-v1
rev 56253 : [mq]: 8226705-v3-pat

   1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/debugInfoRec.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "interpreter/bytecode.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/oopMapCache.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/resourceArea.hpp"
  40 #include "memory/universe.hpp"
  41 #include "oops/constantPool.hpp"
  42 #include "oops/method.hpp"
  43 #include "oops/objArrayKlass.hpp"
  44 #include "oops/objArrayOop.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/fieldStreams.hpp"
  47 #include "oops/typeArrayOop.inline.hpp"
  48 #include "oops/verifyOopClosure.hpp"
  49 #include "prims/jvmtiThreadState.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fieldDescriptor.hpp"
  54 #include "runtime/fieldDescriptor.inline.hpp"
  55 #include "runtime/frame.inline.hpp"
  56 #include "runtime/jniHandles.inline.hpp"
  57 #include "runtime/handles.inline.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/safepointVerifiers.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/thread.hpp"
  64 #include "runtime/threadSMR.hpp"
  65 #include "runtime/vframe.hpp"
  66 #include "runtime/vframeArray.hpp"
  67 #include "runtime/vframe_hp.hpp"
  68 #include "utilities/events.hpp"
  69 #include "utilities/preserveException.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 
  72 
  73 bool DeoptimizationMarker::_is_active = false;
  74 
  75 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  76                                          int  caller_adjustment,
  77                                          int  caller_actual_parameters,
  78                                          int  number_of_frames,
  79                                          intptr_t* frame_sizes,
  80                                          address* frame_pcs,
  81                                          BasicType return_type,
  82                                          int exec_mode) {
  83   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  84   _caller_adjustment         = caller_adjustment;
  85   _caller_actual_parameters  = caller_actual_parameters;
  86   _number_of_frames          = number_of_frames;
  87   _frame_sizes               = frame_sizes;
  88   _frame_pcs                 = frame_pcs;
  89   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  90   _return_type               = return_type;
  91   _initial_info              = 0;
  92   // PD (x86 only)
  93   _counter_temp              = 0;
  94   _unpack_kind               = exec_mode;
  95   _sender_sp_temp            = 0;
  96 
  97   _total_frame_sizes         = size_of_frames();
  98   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  99 }
 100 
 101 
 102 Deoptimization::UnrollBlock::~UnrollBlock() {
 103   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 104   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 105   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 106 }
 107 
 108 
 109 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 110   assert(register_number < RegisterMap::reg_count, "checking register number");
 111   return &_register_block[register_number * 2];
 112 }
 113 
 114 
 115 
 116 int Deoptimization::UnrollBlock::size_of_frames() const {
 117   // Acount first for the adjustment of the initial frame
 118   int result = _caller_adjustment;
 119   for (int index = 0; index < number_of_frames(); index++) {
 120     result += frame_sizes()[index];
 121   }
 122   return result;
 123 }
 124 
 125 
 126 void Deoptimization::UnrollBlock::print() {
 127   ttyLocker ttyl;
 128   tty->print_cr("UnrollBlock");
 129   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 130   tty->print(   "  frame_sizes: ");
 131   for (int index = 0; index < number_of_frames(); index++) {
 132     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 133   }
 134   tty->cr();
 135 }
 136 
 137 
 138 // In order to make fetch_unroll_info work properly with escape
 139 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 140 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 141 // of previously eliminated objects occurs in realloc_objects, which is
 142 // called from the method fetch_unroll_info_helper below.
 143 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 144   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 145   // but makes the entry a little slower. There is however a little dance we have to
 146   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 147 
 148   // fetch_unroll_info() is called at the beginning of the deoptimization
 149   // handler. Note this fact before we start generating temporary frames
 150   // that can confuse an asynchronous stack walker. This counter is
 151   // decremented at the end of unpack_frames().
 152   if (TraceDeoptimization) {
 153     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 154   }
 155   thread->inc_in_deopt_handler();
 156 
 157   return fetch_unroll_info_helper(thread, exec_mode);
 158 JRT_END
 159 
 160 #if COMPILER2_OR_JVMCI
 161 static bool eliminate_allocations(JavaThread* thread, int exec_mode, CompiledMethod* compiled_method,
 162                                   frame& deoptee, RegisterMap& map, GrowableArray<compiledVFrame*>* chunk) {
 163   bool realloc_failures = false;
 164   assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 165 
 166   GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 167 
 168   // The flag return_oop() indicates call sites which return oop
 169   // in compiled code. Such sites include java method calls,
 170   // runtime calls (for example, used to allocate new objects/arrays
 171   // on slow code path) and any other calls generated in compiled code.
 172   // It is not guaranteed that we can get such information here only
 173   // by analyzing bytecode in deoptimized frames. This is why this flag
 174   // is set during method compilation (see Compile::Process_OopMap_Node()).
 175   // If the previous frame was popped or if we are dispatching an exception,
 176   // we don't have an oop result.
 177   bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Deoptimization::Unpack_deopt);
 178   Handle return_value;
 179   if (save_oop_result) {
 180     // Reallocation may trigger GC. If deoptimization happened on return from
 181     // call which returns oop we need to save it since it is not in oopmap.
 182     oop result = deoptee.saved_oop_result(&map);
 183     assert(oopDesc::is_oop_or_null(result), "must be oop");
 184     return_value = Handle(thread, result);
 185     assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 186     if (TraceDeoptimization) {
 187       ttyLocker ttyl;
 188       tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 189     }
 190   }
 191   if (objects != NULL) {
 192     JRT_BLOCK
 193       realloc_failures = Deoptimization::realloc_objects(thread, &deoptee, &map, objects, THREAD);
 194     JRT_END
 195     bool skip_internal = (compiled_method != NULL) && !compiled_method->is_compiled_by_jvmci();
 196     Deoptimization::reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 197 #ifndef PRODUCT
 198     if (TraceDeoptimization) {
 199       ttyLocker ttyl;
 200       tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 201       Deoptimization::print_objects(objects, realloc_failures);
 202     }
 203 #endif
 204   }
 205   if (save_oop_result) {
 206     // Restore result.
 207     deoptee.set_saved_oop_result(&map, return_value());
 208   }
 209   return realloc_failures;
 210 }
 211 
 212 static void eliminate_locks(JavaThread* thread, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
 213 #ifndef PRODUCT
 214   bool first = true;
 215 #endif
 216   for (int i = 0; i < chunk->length(); i++) {
 217     compiledVFrame* cvf = chunk->at(i);
 218     assert (cvf->scope() != NULL,"expect only compiled java frames");
 219     GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 220     if (monitors->is_nonempty()) {
 221       Deoptimization::relock_objects(monitors, thread, realloc_failures);
 222 #ifndef PRODUCT
 223       if (PrintDeoptimizationDetails) {
 224         ttyLocker ttyl;
 225         for (int j = 0; j < monitors->length(); j++) {
 226           MonitorInfo* mi = monitors->at(j);
 227           if (mi->eliminated()) {
 228             if (first) {
 229               first = false;
 230               tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 231             }
 232             if (mi->owner_is_scalar_replaced()) {
 233               Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 234               tty->print_cr("     failed reallocation for klass %s", k->external_name());
 235             } else {
 236               tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 237             }
 238           }
 239         }
 240       }
 241 #endif // !PRODUCT
 242     }
 243   }
 244 }
 245 #endif // COMPILER2_OR_JVMCI
 246 
 247 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 248 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 249 
 250   // Note: there is a safepoint safety issue here. No matter whether we enter
 251   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 252   // the vframeArray is created.
 253   //
 254 
 255   // Allocate our special deoptimization ResourceMark
 256   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 257   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 258   thread->set_deopt_mark(dmark);
 259 
 260   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 261   RegisterMap map(thread, true);
 262   RegisterMap dummy_map(thread, false);
 263   // Now get the deoptee with a valid map
 264   frame deoptee = stub_frame.sender(&map);
 265   // Set the deoptee nmethod
 266   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 267   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 268   thread->set_deopt_compiled_method(cm);
 269 
 270   if (VerifyStack) {
 271     thread->validate_frame_layout();
 272   }
 273 
 274   // Create a growable array of VFrames where each VFrame represents an inlined
 275   // Java frame.  This storage is allocated with the usual system arena.
 276   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 277   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 278   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 279   while (!vf->is_top()) {
 280     assert(vf->is_compiled_frame(), "Wrong frame type");
 281     chunk->push(compiledVFrame::cast(vf));
 282     vf = vf->sender();
 283   }
 284   assert(vf->is_compiled_frame(), "Wrong frame type");
 285   chunk->push(compiledVFrame::cast(vf));
 286 
 287   bool realloc_failures = false;
 288 
 289 #if COMPILER2_OR_JVMCI
 290 #if INCLUDE_JVMCI
 291   bool jvmci_enabled = true;
 292 #else
 293   bool jvmci_enabled = false;
 294 #endif
 295 
 296   // Reallocate the non-escaping objects and restore their fields. Then
 297   // relock objects if synchronization on them was eliminated.
 298   if (jvmci_enabled || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateAllocations)) {
 299     realloc_failures = eliminate_allocations(thread, exec_mode, cm, deoptee, map, chunk);
 300   }

 301 
 302   // Revoke biases, done with in java state.
 303   // No safepoints allowed after this
 304   revoke_from_deopt_handler(thread, deoptee, &map);
 305 
 306   // Ensure that no safepoint is taken after pointers have been stored
 307   // in fields of rematerialized objects.  If a safepoint occurs from here on
 308   // out the java state residing in the vframeArray will be missed.
 309   // Locks may be rebaised in a safepoint.
 310   NoSafepointVerifier no_safepoint;
 311 

 312   if (jvmci_enabled || ((DoEscapeAnalysis || EliminateNestedLocks) && EliminateLocks)) {
 313     eliminate_locks(thread, chunk, realloc_failures);
 314   }
 315 #endif // COMPILER2_OR_JVMCI
 316 
 317   ScopeDesc* trap_scope = chunk->at(0)->scope();
 318   Handle exceptionObject;
 319   if (trap_scope->rethrow_exception()) {
 320     if (PrintDeoptimizationDetails) {
 321       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 322     }
 323     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 324     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 325     ScopeValue* topOfStack = expressions->top();
 326     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 327     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 328   }
 329 
 330   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 331 #if COMPILER2_OR_JVMCI
 332   if (realloc_failures) {
 333     pop_frames_failed_reallocs(thread, array);
 334   }
 335 #endif
 336 
 337   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 338   thread->set_vframe_array_head(array);
 339 
 340   // Now that the vframeArray has been created if we have any deferred local writes
 341   // added by jvmti then we can free up that structure as the data is now in the
 342   // vframeArray
 343 
 344   if (thread->deferred_locals() != NULL) {
 345     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 346     int i = 0;
 347     do {
 348       // Because of inlining we could have multiple vframes for a single frame
 349       // and several of the vframes could have deferred writes. Find them all.
 350       if (list->at(i)->id() == array->original().id()) {
 351         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 352         list->remove_at(i);
 353         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 354         delete dlv;
 355       } else {
 356         i++;
 357       }
 358     } while ( i < list->length() );
 359     if (list->length() == 0) {
 360       thread->set_deferred_locals(NULL);
 361       // free the list and elements back to C heap.
 362       delete list;
 363     }
 364 
 365   }
 366 
 367   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 368   CodeBlob* cb = stub_frame.cb();
 369   // Verify we have the right vframeArray
 370   assert(cb->frame_size() >= 0, "Unexpected frame size");
 371   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 372 
 373   // If the deopt call site is a MethodHandle invoke call site we have
 374   // to adjust the unpack_sp.
 375   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 376   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 377     unpack_sp = deoptee.unextended_sp();
 378 
 379 #ifdef ASSERT
 380   assert(cb->is_deoptimization_stub() ||
 381          cb->is_uncommon_trap_stub() ||
 382          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 383          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 384          "unexpected code blob: %s", cb->name());
 385 #endif
 386 
 387   // This is a guarantee instead of an assert because if vframe doesn't match
 388   // we will unpack the wrong deoptimized frame and wind up in strange places
 389   // where it will be very difficult to figure out what went wrong. Better
 390   // to die an early death here than some very obscure death later when the
 391   // trail is cold.
 392   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 393   // in that it will fail to detect a problem when there is one. This needs
 394   // more work in tiger timeframe.
 395   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 396 
 397   int number_of_frames = array->frames();
 398 
 399   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 400   // virtual activation, which is the reverse of the elements in the vframes array.
 401   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 402   // +1 because we always have an interpreter return address for the final slot.
 403   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 404   int popframe_extra_args = 0;
 405   // Create an interpreter return address for the stub to use as its return
 406   // address so the skeletal frames are perfectly walkable
 407   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 408 
 409   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 410   // activation be put back on the expression stack of the caller for reexecution
 411   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 412     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 413   }
 414 
 415   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 416   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 417   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 418   //
 419   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 420   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 421 
 422   // It's possible that the number of parameters at the call site is
 423   // different than number of arguments in the callee when method
 424   // handles are used.  If the caller is interpreted get the real
 425   // value so that the proper amount of space can be added to it's
 426   // frame.
 427   bool caller_was_method_handle = false;
 428   if (deopt_sender.is_interpreted_frame()) {
 429     methodHandle method = deopt_sender.interpreter_frame_method();
 430     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 431     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 432       // Method handle invokes may involve fairly arbitrary chains of
 433       // calls so it's impossible to know how much actual space the
 434       // caller has for locals.
 435       caller_was_method_handle = true;
 436     }
 437   }
 438 
 439   //
 440   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 441   // frame_sizes/frame_pcs[1] next oldest frame (int)
 442   // frame_sizes/frame_pcs[n] youngest frame (int)
 443   //
 444   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 445   // owns the space for the return address to it's caller).  Confusing ain't it.
 446   //
 447   // The vframe array can address vframes with indices running from
 448   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 449   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 450   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 451   // so things look a little strange in this loop.
 452   //
 453   int callee_parameters = 0;
 454   int callee_locals = 0;
 455   for (int index = 0; index < array->frames(); index++ ) {
 456     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 457     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 458     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 459     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 460                                                                                                     callee_locals,
 461                                                                                                     index == 0,
 462                                                                                                     popframe_extra_args);
 463     // This pc doesn't have to be perfect just good enough to identify the frame
 464     // as interpreted so the skeleton frame will be walkable
 465     // The correct pc will be set when the skeleton frame is completely filled out
 466     // The final pc we store in the loop is wrong and will be overwritten below
 467     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 468 
 469     callee_parameters = array->element(index)->method()->size_of_parameters();
 470     callee_locals = array->element(index)->method()->max_locals();
 471     popframe_extra_args = 0;
 472   }
 473 
 474   // Compute whether the root vframe returns a float or double value.
 475   BasicType return_type;
 476   {
 477     methodHandle method(thread, array->element(0)->method());
 478     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 479     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 480   }
 481 
 482   // Compute information for handling adapters and adjusting the frame size of the caller.
 483   int caller_adjustment = 0;
 484 
 485   // Compute the amount the oldest interpreter frame will have to adjust
 486   // its caller's stack by. If the caller is a compiled frame then
 487   // we pretend that the callee has no parameters so that the
 488   // extension counts for the full amount of locals and not just
 489   // locals-parms. This is because without a c2i adapter the parm
 490   // area as created by the compiled frame will not be usable by
 491   // the interpreter. (Depending on the calling convention there
 492   // may not even be enough space).
 493 
 494   // QQQ I'd rather see this pushed down into last_frame_adjust
 495   // and have it take the sender (aka caller).
 496 
 497   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 498     caller_adjustment = last_frame_adjust(0, callee_locals);
 499   } else if (callee_locals > callee_parameters) {
 500     // The caller frame may need extending to accommodate
 501     // non-parameter locals of the first unpacked interpreted frame.
 502     // Compute that adjustment.
 503     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 504   }
 505 
 506   // If the sender is deoptimized the we must retrieve the address of the handler
 507   // since the frame will "magically" show the original pc before the deopt
 508   // and we'd undo the deopt.
 509 
 510   frame_pcs[0] = deopt_sender.raw_pc();
 511 
 512   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 513 
 514 #if INCLUDE_JVMCI
 515   if (exceptionObject() != NULL) {
 516     thread->set_exception_oop(exceptionObject());
 517     exec_mode = Unpack_exception;
 518   }
 519 #endif
 520 
 521   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 522     assert(thread->has_pending_exception(), "should have thrown OOME");
 523     thread->set_exception_oop(thread->pending_exception());
 524     thread->clear_pending_exception();
 525     exec_mode = Unpack_exception;
 526   }
 527 
 528 #if INCLUDE_JVMCI
 529   if (thread->frames_to_pop_failed_realloc() > 0) {
 530     thread->set_pending_monitorenter(false);
 531   }
 532 #endif
 533 
 534   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 535                                       caller_adjustment * BytesPerWord,
 536                                       caller_was_method_handle ? 0 : callee_parameters,
 537                                       number_of_frames,
 538                                       frame_sizes,
 539                                       frame_pcs,
 540                                       return_type,
 541                                       exec_mode);
 542   // On some platforms, we need a way to pass some platform dependent
 543   // information to the unpacking code so the skeletal frames come out
 544   // correct (initial fp value, unextended sp, ...)
 545   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 546 
 547   if (array->frames() > 1) {
 548     if (VerifyStack && TraceDeoptimization) {
 549       ttyLocker ttyl;
 550       tty->print_cr("Deoptimizing method containing inlining");
 551     }
 552   }
 553 
 554   array->set_unroll_block(info);
 555   return info;
 556 }
 557 
 558 // Called to cleanup deoptimization data structures in normal case
 559 // after unpacking to stack and when stack overflow error occurs
 560 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 561                                         vframeArray *array) {
 562 
 563   // Get array if coming from exception
 564   if (array == NULL) {
 565     array = thread->vframe_array_head();
 566   }
 567   thread->set_vframe_array_head(NULL);
 568 
 569   // Free the previous UnrollBlock
 570   vframeArray* old_array = thread->vframe_array_last();
 571   thread->set_vframe_array_last(array);
 572 
 573   if (old_array != NULL) {
 574     UnrollBlock* old_info = old_array->unroll_block();
 575     old_array->set_unroll_block(NULL);
 576     delete old_info;
 577     delete old_array;
 578   }
 579 
 580   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 581   // inside the vframeArray (StackValueCollections)
 582 
 583   delete thread->deopt_mark();
 584   thread->set_deopt_mark(NULL);
 585   thread->set_deopt_compiled_method(NULL);
 586 
 587 
 588   if (JvmtiExport::can_pop_frame()) {
 589 #ifndef CC_INTERP
 590     // Regardless of whether we entered this routine with the pending
 591     // popframe condition bit set, we should always clear it now
 592     thread->clear_popframe_condition();
 593 #else
 594     // C++ interpreter will clear has_pending_popframe when it enters
 595     // with method_resume. For deopt_resume2 we clear it now.
 596     if (thread->popframe_forcing_deopt_reexecution())
 597         thread->clear_popframe_condition();
 598 #endif /* CC_INTERP */
 599   }
 600 
 601   // unpack_frames() is called at the end of the deoptimization handler
 602   // and (in C2) at the end of the uncommon trap handler. Note this fact
 603   // so that an asynchronous stack walker can work again. This counter is
 604   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 605   // the beginning of uncommon_trap().
 606   thread->dec_in_deopt_handler();
 607 }
 608 
 609 // Moved from cpu directories because none of the cpus has callee save values.
 610 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 611 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 612 
 613   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 614   // the days we had adapter frames. When we deoptimize a situation where a
 615   // compiled caller calls a compiled caller will have registers it expects
 616   // to survive the call to the callee. If we deoptimize the callee the only
 617   // way we can restore these registers is to have the oldest interpreter
 618   // frame that we create restore these values. That is what this routine
 619   // will accomplish.
 620 
 621   // At the moment we have modified c2 to not have any callee save registers
 622   // so this problem does not exist and this routine is just a place holder.
 623 
 624   assert(f->is_interpreted_frame(), "must be interpreted");
 625 }
 626 
 627 // Return BasicType of value being returned
 628 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 629 
 630   // We are already active in the special DeoptResourceMark any ResourceObj's we
 631   // allocate will be freed at the end of the routine.
 632 
 633   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 634   // but makes the entry a little slower. There is however a little dance we have to
 635   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 636   ResetNoHandleMark rnhm; // No-op in release/product versions
 637   HandleMark hm;
 638 
 639   frame stub_frame = thread->last_frame();
 640 
 641   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 642   // must point to the vframeArray for the unpack frame.
 643   vframeArray* array = thread->vframe_array_head();
 644 
 645 #ifndef PRODUCT
 646   if (TraceDeoptimization) {
 647     ttyLocker ttyl;
 648     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 649                   p2i(thread), p2i(array), exec_mode);
 650   }
 651 #endif
 652   Events::log_deopt_message(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 653               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 654 
 655   UnrollBlock* info = array->unroll_block();
 656 
 657   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 658   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 659 
 660   BasicType bt = info->return_type();
 661 
 662   // If we have an exception pending, claim that the return type is an oop
 663   // so the deopt_blob does not overwrite the exception_oop.
 664 
 665   if (exec_mode == Unpack_exception)
 666     bt = T_OBJECT;
 667 
 668   // Cleanup thread deopt data
 669   cleanup_deopt_info(thread, array);
 670 
 671 #ifndef PRODUCT
 672   if (VerifyStack) {
 673     ResourceMark res_mark;
 674     // Clear pending exception to not break verification code (restored afterwards)
 675     PRESERVE_EXCEPTION_MARK;
 676 
 677     thread->validate_frame_layout();
 678 
 679     // Verify that the just-unpacked frames match the interpreter's
 680     // notions of expression stack and locals
 681     vframeArray* cur_array = thread->vframe_array_last();
 682     RegisterMap rm(thread, false);
 683     rm.set_include_argument_oops(false);
 684     bool is_top_frame = true;
 685     int callee_size_of_parameters = 0;
 686     int callee_max_locals = 0;
 687     for (int i = 0; i < cur_array->frames(); i++) {
 688       vframeArrayElement* el = cur_array->element(i);
 689       frame* iframe = el->iframe();
 690       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 691 
 692       // Get the oop map for this bci
 693       InterpreterOopMap mask;
 694       int cur_invoke_parameter_size = 0;
 695       bool try_next_mask = false;
 696       int next_mask_expression_stack_size = -1;
 697       int top_frame_expression_stack_adjustment = 0;
 698       methodHandle mh(thread, iframe->interpreter_frame_method());
 699       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 700       BytecodeStream str(mh, iframe->interpreter_frame_bci());
 701       int max_bci = mh->code_size();
 702       // Get to the next bytecode if possible
 703       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 704       // Check to see if we can grab the number of outgoing arguments
 705       // at an uncommon trap for an invoke (where the compiler
 706       // generates debug info before the invoke has executed)
 707       Bytecodes::Code cur_code = str.next();
 708       if (Bytecodes::is_invoke(cur_code)) {
 709         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 710         cur_invoke_parameter_size = invoke.size_of_parameters();
 711         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 712           callee_size_of_parameters++;
 713         }
 714       }
 715       if (str.bci() < max_bci) {
 716         Bytecodes::Code next_code = str.next();
 717         if (next_code >= 0) {
 718           // The interpreter oop map generator reports results before
 719           // the current bytecode has executed except in the case of
 720           // calls. It seems to be hard to tell whether the compiler
 721           // has emitted debug information matching the "state before"
 722           // a given bytecode or the state after, so we try both
 723           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 724             // Get expression stack size for the next bytecode
 725             InterpreterOopMap next_mask;
 726             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 727             next_mask_expression_stack_size = next_mask.expression_stack_size();
 728             if (Bytecodes::is_invoke(next_code)) {
 729               Bytecode_invoke invoke(mh, str.bci());
 730               next_mask_expression_stack_size += invoke.size_of_parameters();
 731             }
 732             // Need to subtract off the size of the result type of
 733             // the bytecode because this is not described in the
 734             // debug info but returned to the interpreter in the TOS
 735             // caching register
 736             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 737             if (bytecode_result_type != T_ILLEGAL) {
 738               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 739             }
 740             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 741             try_next_mask = true;
 742           }
 743         }
 744       }
 745 
 746       // Verify stack depth and oops in frame
 747       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 748       if (!(
 749             /* SPARC */
 750             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 751             /* x86 */
 752             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 753             (try_next_mask &&
 754              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 755                                                                     top_frame_expression_stack_adjustment))) ||
 756             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 757             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 758              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 759             )) {
 760         {
 761           ttyLocker ttyl;
 762 
 763           // Print out some information that will help us debug the problem
 764           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 765           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 766           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 767                         iframe->interpreter_frame_expression_stack_size());
 768           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 769           tty->print_cr("  try_next_mask = %d", try_next_mask);
 770           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 771           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 772           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 773           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 774           tty->print_cr("  exec_mode = %d", exec_mode);
 775           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 776           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 777           tty->print_cr("  Interpreted frames:");
 778           for (int k = 0; k < cur_array->frames(); k++) {
 779             vframeArrayElement* el = cur_array->element(k);
 780             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 781           }
 782           cur_array->print_on_2(tty);
 783         } // release tty lock before calling guarantee
 784         guarantee(false, "wrong number of expression stack elements during deopt");
 785       }
 786       VerifyOopClosure verify;
 787       iframe->oops_interpreted_do(&verify, &rm, false);
 788       callee_size_of_parameters = mh->size_of_parameters();
 789       callee_max_locals = mh->max_locals();
 790       is_top_frame = false;
 791     }
 792   }
 793 #endif /* !PRODUCT */
 794 
 795 
 796   return bt;
 797 JRT_END
 798 
 799 class DeoptimizeMarkedTC : public ThreadClosure {
 800  public:
 801   virtual void do_thread(Thread* thread) {
 802     assert(thread->is_Java_thread(), "must be");
 803     JavaThread* jt = (JavaThread*)thread;
 804     jt->deoptimize_marked_methods();
 805   }
 806 };
 807 
 808 void Deoptimization::deoptimize_all_marked() {
 809   ResourceMark rm;
 810   DeoptimizationMarker dm;
 811 
 812   if (SafepointSynchronize::is_at_safepoint()) {
 813     DeoptimizeMarkedTC deopt;
 814     // Make the dependent methods not entrant
 815     CodeCache::make_marked_nmethods_not_entrant();
 816     Threads::java_threads_do(&deopt);
 817   } else {
 818     // Make the dependent methods not entrant
 819     {
 820       MutexLocker mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
 821       CodeCache::make_marked_nmethods_not_entrant();
 822     }
 823     DeoptimizeMarkedTC deopt;
 824     Handshake::execute(&deopt);
 825   }
 826 }
 827 
 828 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 829   = Deoptimization::Action_reinterpret;
 830 
 831 
 832 
 833 #if INCLUDE_JVMCI || INCLUDE_AOT
 834 template<typename CacheType>
 835 class BoxCacheBase : public CHeapObj<mtCompiler> {
 836 protected:
 837   static InstanceKlass* find_cache_klass(Symbol* klass_name, TRAPS) {
 838     ResourceMark rm;
 839     char* klass_name_str = klass_name->as_C_string();
 840     Klass* k = SystemDictionary::find(klass_name, Handle(), Handle(), THREAD);
 841     guarantee(k != NULL, "%s must be loaded", klass_name_str);
 842     InstanceKlass* ik = InstanceKlass::cast(k);
 843     guarantee(ik->is_initialized(), "%s must be initialized", klass_name_str);
 844     CacheType::compute_offsets(ik);
 845     return ik;
 846   }
 847 };
 848 
 849 template<typename PrimitiveType, typename CacheType, typename BoxType> class BoxCache  : public BoxCacheBase<CacheType> {
 850   PrimitiveType _low;
 851   PrimitiveType _high;
 852   jobject _cache;
 853 protected:
 854   static BoxCache<PrimitiveType, CacheType, BoxType> *_singleton;
 855   BoxCache(Thread* thread) {
 856     InstanceKlass* ik = BoxCacheBase<CacheType>::find_cache_klass(CacheType::symbol(), thread);
 857     objArrayOop cache = CacheType::cache(ik);
 858     assert(cache->length() > 0, "Empty cache");
 859     _low = BoxType::value(cache->obj_at(0));
 860     _high = _low + cache->length() - 1;
 861     _cache = JNIHandles::make_global(Handle(thread, cache));
 862   }
 863   ~BoxCache() {
 864     JNIHandles::destroy_global(_cache);
 865   }
 866 public:
 867   static BoxCache<PrimitiveType, CacheType, BoxType>* singleton(Thread* thread) {
 868     if (_singleton == NULL) {
 869       BoxCache<PrimitiveType, CacheType, BoxType>* s = new BoxCache<PrimitiveType, CacheType, BoxType>(thread);
 870       if (!Atomic::replace_if_null(s, &_singleton)) {
 871         delete s;
 872       }
 873     }
 874     return _singleton;
 875   }
 876   oop lookup(PrimitiveType value) {
 877     if (_low <= value && value <= _high) {
 878       int offset = value - _low;
 879       return objArrayOop(JNIHandles::resolve_non_null(_cache))->obj_at(offset);
 880     }
 881     return NULL;
 882   }
 883   oop lookup_raw(intptr_t raw_value) {
 884     // Have to cast to avoid little/big-endian problems.
 885     if (sizeof(PrimitiveType) > sizeof(jint)) {
 886       jlong value = (jlong)raw_value;
 887       return lookup(value);
 888     }
 889     PrimitiveType value = (PrimitiveType)*((jint*)&raw_value);
 890     return lookup(value);
 891   }
 892 };
 893 
 894 typedef BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer> IntegerBoxCache;
 895 typedef BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long> LongBoxCache;
 896 typedef BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character> CharacterBoxCache;
 897 typedef BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short> ShortBoxCache;
 898 typedef BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte> ByteBoxCache;
 899 
 900 template<> BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>* BoxCache<jint, java_lang_Integer_IntegerCache, java_lang_Integer>::_singleton = NULL;
 901 template<> BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>* BoxCache<jlong, java_lang_Long_LongCache, java_lang_Long>::_singleton = NULL;
 902 template<> BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>* BoxCache<jchar, java_lang_Character_CharacterCache, java_lang_Character>::_singleton = NULL;
 903 template<> BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>* BoxCache<jshort, java_lang_Short_ShortCache, java_lang_Short>::_singleton = NULL;
 904 template<> BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>* BoxCache<jbyte, java_lang_Byte_ByteCache, java_lang_Byte>::_singleton = NULL;
 905 
 906 class BooleanBoxCache : public BoxCacheBase<java_lang_Boolean> {
 907   jobject _true_cache;
 908   jobject _false_cache;
 909 protected:
 910   static BooleanBoxCache *_singleton;
 911   BooleanBoxCache(Thread *thread) {
 912     InstanceKlass* ik = find_cache_klass(java_lang_Boolean::symbol(), thread);
 913     _true_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_TRUE(ik)));
 914     _false_cache = JNIHandles::make_global(Handle(thread, java_lang_Boolean::get_FALSE(ik)));
 915   }
 916   ~BooleanBoxCache() {
 917     JNIHandles::destroy_global(_true_cache);
 918     JNIHandles::destroy_global(_false_cache);
 919   }
 920 public:
 921   static BooleanBoxCache* singleton(Thread* thread) {
 922     if (_singleton == NULL) {
 923       BooleanBoxCache* s = new BooleanBoxCache(thread);
 924       if (!Atomic::replace_if_null(s, &_singleton)) {
 925         delete s;
 926       }
 927     }
 928     return _singleton;
 929   }
 930   oop lookup_raw(intptr_t raw_value) {
 931     // Have to cast to avoid little/big-endian problems.
 932     jboolean value = (jboolean)*((jint*)&raw_value);
 933     return lookup(value);
 934   }
 935   oop lookup(jboolean value) {
 936     if (value != 0) {
 937       return JNIHandles::resolve_non_null(_true_cache);
 938     }
 939     return JNIHandles::resolve_non_null(_false_cache);
 940   }
 941 };
 942 
 943 BooleanBoxCache* BooleanBoxCache::_singleton = NULL;
 944 
 945 oop Deoptimization::get_cached_box(AutoBoxObjectValue* bv, frame* fr, RegisterMap* reg_map, TRAPS) {
 946    Klass* k = java_lang_Class::as_Klass(bv->klass()->as_ConstantOopReadValue()->value()());
 947    BasicType box_type = SystemDictionary::box_klass_type(k);
 948    if (box_type != T_OBJECT) {
 949      StackValue* value = StackValue::create_stack_value(fr, reg_map, bv->field_at(box_type == T_LONG ? 1 : 0));
 950      switch(box_type) {
 951        case T_INT:     return IntegerBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 952        case T_CHAR:    return CharacterBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 953        case T_SHORT:   return ShortBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 954        case T_BYTE:    return ByteBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 955        case T_BOOLEAN: return BooleanBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 956        case T_LONG:    return LongBoxCache::singleton(THREAD)->lookup_raw(value->get_int());
 957        default:;
 958      }
 959    }
 960    return NULL;
 961 }
 962 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 963 
 964 #if COMPILER2_OR_JVMCI
 965 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, TRAPS) {
 966   Handle pending_exception(THREAD, thread->pending_exception());
 967   const char* exception_file = thread->exception_file();
 968   int exception_line = thread->exception_line();
 969   thread->clear_pending_exception();
 970 
 971   bool failures = false;
 972 
 973   for (int i = 0; i < objects->length(); i++) {
 974     assert(objects->at(i)->is_object(), "invalid debug information");
 975     ObjectValue* sv = (ObjectValue*) objects->at(i);
 976 
 977     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 978     oop obj = NULL;
 979 
 980     if (k->is_instance_klass()) {
 981 #if INCLUDE_JVMCI || INCLUDE_AOT
 982       CompiledMethod* cm = fr->cb()->as_compiled_method_or_null();
 983       if (cm->is_compiled_by_jvmci() && sv->is_auto_box()) {
 984         AutoBoxObjectValue* abv = (AutoBoxObjectValue*) sv;
 985         obj = get_cached_box(abv, fr, reg_map, THREAD);
 986         if (obj != NULL) {
 987           // Set the flag to indicate the box came from a cache, so that we can skip the field reassignment for it.
 988           abv->set_cached(true);
 989         }
 990       }
 991 #endif // INCLUDE_JVMCI || INCLUDE_AOT
 992       InstanceKlass* ik = InstanceKlass::cast(k);
 993       if (obj == NULL) {
 994         obj = ik->allocate_instance(THREAD);
 995       }
 996     } else if (k->is_typeArray_klass()) {
 997       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 998       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 999       int len = sv->field_size() / type2size[ak->element_type()];
1000       obj = ak->allocate(len, THREAD);
1001     } else if (k->is_objArray_klass()) {
1002       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
1003       obj = ak->allocate(sv->field_size(), THREAD);
1004     }
1005 
1006     if (obj == NULL) {
1007       failures = true;
1008     }
1009 
1010     assert(sv->value().is_null(), "redundant reallocation");
1011     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
1012     CLEAR_PENDING_EXCEPTION;
1013     sv->set_value(obj);
1014   }
1015 
1016   if (failures) {
1017     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
1018   } else if (pending_exception.not_null()) {
1019     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
1020   }
1021 
1022   return failures;
1023 }
1024 
1025 // restore elements of an eliminated type array
1026 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
1027   int index = 0;
1028   intptr_t val;
1029 
1030   for (int i = 0; i < sv->field_size(); i++) {
1031     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1032     switch(type) {
1033     case T_LONG: case T_DOUBLE: {
1034       assert(value->type() == T_INT, "Agreement.");
1035       StackValue* low =
1036         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1037 #ifdef _LP64
1038       jlong res = (jlong)low->get_int();
1039 #else
1040 #ifdef SPARC
1041       // For SPARC we have to swap high and low words.
1042       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1043 #else
1044       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1045 #endif //SPARC
1046 #endif
1047       obj->long_at_put(index, res);
1048       break;
1049     }
1050 
1051     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1052     case T_INT: case T_FLOAT: { // 4 bytes.
1053       assert(value->type() == T_INT, "Agreement.");
1054       bool big_value = false;
1055       if (i + 1 < sv->field_size() && type == T_INT) {
1056         if (sv->field_at(i)->is_location()) {
1057           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
1058           if (type == Location::dbl || type == Location::lng) {
1059             big_value = true;
1060           }
1061         } else if (sv->field_at(i)->is_constant_int()) {
1062           ScopeValue* next_scope_field = sv->field_at(i + 1);
1063           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1064             big_value = true;
1065           }
1066         }
1067       }
1068 
1069       if (big_value) {
1070         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
1071   #ifdef _LP64
1072         jlong res = (jlong)low->get_int();
1073   #else
1074   #ifdef SPARC
1075         // For SPARC we have to swap high and low words.
1076         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1077   #else
1078         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1079   #endif //SPARC
1080   #endif
1081         obj->int_at_put(index, (jint)*((jint*)&res));
1082         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
1083       } else {
1084         val = value->get_int();
1085         obj->int_at_put(index, (jint)*((jint*)&val));
1086       }
1087       break;
1088     }
1089 
1090     case T_SHORT:
1091       assert(value->type() == T_INT, "Agreement.");
1092       val = value->get_int();
1093       obj->short_at_put(index, (jshort)*((jint*)&val));
1094       break;
1095 
1096     case T_CHAR:
1097       assert(value->type() == T_INT, "Agreement.");
1098       val = value->get_int();
1099       obj->char_at_put(index, (jchar)*((jint*)&val));
1100       break;
1101 
1102     case T_BYTE:
1103       assert(value->type() == T_INT, "Agreement.");
1104       val = value->get_int();
1105       obj->byte_at_put(index, (jbyte)*((jint*)&val));
1106       break;
1107 
1108     case T_BOOLEAN:
1109       assert(value->type() == T_INT, "Agreement.");
1110       val = value->get_int();
1111       obj->bool_at_put(index, (jboolean)*((jint*)&val));
1112       break;
1113 
1114       default:
1115         ShouldNotReachHere();
1116     }
1117     index++;
1118   }
1119 }
1120 
1121 
1122 // restore fields of an eliminated object array
1123 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
1124   for (int i = 0; i < sv->field_size(); i++) {
1125     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
1126     assert(value->type() == T_OBJECT, "object element expected");
1127     obj->obj_at_put(i, value->get_obj()());
1128   }
1129 }
1130 
1131 class ReassignedField {
1132 public:
1133   int _offset;
1134   BasicType _type;
1135 public:
1136   ReassignedField() {
1137     _offset = 0;
1138     _type = T_ILLEGAL;
1139   }
1140 };
1141 
1142 int compare(ReassignedField* left, ReassignedField* right) {
1143   return left->_offset - right->_offset;
1144 }
1145 
1146 // Restore fields of an eliminated instance object using the same field order
1147 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1148 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
1149   if (klass->superklass() != NULL) {
1150     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
1151   }
1152 
1153   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1154   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1155     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1156       ReassignedField field;
1157       field._offset = fs.offset();
1158       field._type = FieldType::basic_type(fs.signature());
1159       fields->append(field);
1160     }
1161   }
1162   fields->sort(compare);
1163   for (int i = 0; i < fields->length(); i++) {
1164     intptr_t val;
1165     ScopeValue* scope_field = sv->field_at(svIndex);
1166     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1167     int offset = fields->at(i)._offset;
1168     BasicType type = fields->at(i)._type;
1169     switch (type) {
1170       case T_OBJECT: case T_ARRAY:
1171         assert(value->type() == T_OBJECT, "Agreement.");
1172         obj->obj_field_put(offset, value->get_obj()());
1173         break;
1174 
1175       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1176       case T_INT: case T_FLOAT: { // 4 bytes.
1177         assert(value->type() == T_INT, "Agreement.");
1178         bool big_value = false;
1179         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1180           if (scope_field->is_location()) {
1181             Location::Type type = ((LocationValue*) scope_field)->location().type();
1182             if (type == Location::dbl || type == Location::lng) {
1183               big_value = true;
1184             }
1185           }
1186           if (scope_field->is_constant_int()) {
1187             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1188             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1189               big_value = true;
1190             }
1191           }
1192         }
1193 
1194         if (big_value) {
1195           i++;
1196           assert(i < fields->length(), "second T_INT field needed");
1197           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1198         } else {
1199           val = value->get_int();
1200           obj->int_field_put(offset, (jint)*((jint*)&val));
1201           break;
1202         }
1203       }
1204         /* no break */
1205 
1206       case T_LONG: case T_DOUBLE: {
1207         assert(value->type() == T_INT, "Agreement.");
1208         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1209 #ifdef _LP64
1210         jlong res = (jlong)low->get_int();
1211 #else
1212 #ifdef SPARC
1213         // For SPARC we have to swap high and low words.
1214         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1215 #else
1216         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1217 #endif //SPARC
1218 #endif
1219         obj->long_field_put(offset, res);
1220         break;
1221       }
1222 
1223       case T_SHORT:
1224         assert(value->type() == T_INT, "Agreement.");
1225         val = value->get_int();
1226         obj->short_field_put(offset, (jshort)*((jint*)&val));
1227         break;
1228 
1229       case T_CHAR:
1230         assert(value->type() == T_INT, "Agreement.");
1231         val = value->get_int();
1232         obj->char_field_put(offset, (jchar)*((jint*)&val));
1233         break;
1234 
1235       case T_BYTE:
1236         assert(value->type() == T_INT, "Agreement.");
1237         val = value->get_int();
1238         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1239         break;
1240 
1241       case T_BOOLEAN:
1242         assert(value->type() == T_INT, "Agreement.");
1243         val = value->get_int();
1244         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1245         break;
1246 
1247       default:
1248         ShouldNotReachHere();
1249     }
1250     svIndex++;
1251   }
1252   return svIndex;
1253 }
1254 
1255 // restore fields of all eliminated objects and arrays
1256 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1257   for (int i = 0; i < objects->length(); i++) {
1258     ObjectValue* sv = (ObjectValue*) objects->at(i);
1259     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1260     Handle obj = sv->value();
1261     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1262     if (PrintDeoptimizationDetails) {
1263       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1264     }
1265     if (obj.is_null()) {
1266       continue;
1267     }
1268 #if INCLUDE_JVMCI || INCLUDE_AOT
1269     // Don't reassign fields of boxes that came from a cache. Caches may be in CDS.
1270     if (sv->is_auto_box() && ((AutoBoxObjectValue*) sv)->is_cached()) {
1271       continue;
1272     }
1273 #endif // INCLUDE_JVMCI || INCLUDE_AOT
1274     if (k->is_instance_klass()) {
1275       InstanceKlass* ik = InstanceKlass::cast(k);
1276       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1277     } else if (k->is_typeArray_klass()) {
1278       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1279       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1280     } else if (k->is_objArray_klass()) {
1281       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1282     }
1283   }
1284 }
1285 
1286 
1287 // relock objects for which synchronization was eliminated
1288 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1289   for (int i = 0; i < monitors->length(); i++) {
1290     MonitorInfo* mon_info = monitors->at(i);
1291     if (mon_info->eliminated()) {
1292       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1293       if (!mon_info->owner_is_scalar_replaced()) {
1294         Handle obj(thread, mon_info->owner());
1295         markWord mark = obj->mark();
1296         if (UseBiasedLocking && mark.has_bias_pattern()) {
1297           // New allocated objects may have the mark set to anonymously biased.
1298           // Also the deoptimized method may called methods with synchronization
1299           // where the thread-local object is bias locked to the current thread.
1300           assert(mark.is_biased_anonymously() ||
1301                  mark.biased_locker() == thread, "should be locked to current thread");
1302           // Reset mark word to unbiased prototype.
1303           markWord unbiased_prototype = markWord::prototype().set_age(mark.age());
1304           obj->set_mark(unbiased_prototype);
1305         }
1306         BasicLock* lock = mon_info->lock();
1307         ObjectSynchronizer::enter(obj, lock, thread);
1308         assert(mon_info->owner()->is_locked(), "object must be locked now");
1309       }
1310     }
1311   }
1312 }
1313 
1314 
1315 #ifndef PRODUCT
1316 // print information about reallocated objects
1317 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1318   fieldDescriptor fd;
1319 
1320   for (int i = 0; i < objects->length(); i++) {
1321     ObjectValue* sv = (ObjectValue*) objects->at(i);
1322     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1323     Handle obj = sv->value();
1324 
1325     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1326     k->print_value();
1327     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1328     if (obj.is_null()) {
1329       tty->print(" allocation failed");
1330     } else {
1331       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1332     }
1333     tty->cr();
1334 
1335     if (Verbose && !obj.is_null()) {
1336       k->oop_print_on(obj(), tty);
1337     }
1338   }
1339 }
1340 #endif
1341 #endif // COMPILER2_OR_JVMCI
1342 
1343 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1344   Events::log_deopt_message(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1345 
1346 #ifndef PRODUCT
1347   if (PrintDeoptimizationDetails) {
1348     ttyLocker ttyl;
1349     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1350     fr.print_on(tty);
1351     tty->print_cr("     Virtual frames (innermost first):");
1352     for (int index = 0; index < chunk->length(); index++) {
1353       compiledVFrame* vf = chunk->at(index);
1354       tty->print("       %2d - ", index);
1355       vf->print_value();
1356       int bci = chunk->at(index)->raw_bci();
1357       const char* code_name;
1358       if (bci == SynchronizationEntryBCI) {
1359         code_name = "sync entry";
1360       } else {
1361         Bytecodes::Code code = vf->method()->code_at(bci);
1362         code_name = Bytecodes::name(code);
1363       }
1364       tty->print(" - %s", code_name);
1365       tty->print_cr(" @ bci %d ", bci);
1366       if (Verbose) {
1367         vf->print();
1368         tty->cr();
1369       }
1370     }
1371   }
1372 #endif
1373 
1374   // Register map for next frame (used for stack crawl).  We capture
1375   // the state of the deopt'ing frame's caller.  Thus if we need to
1376   // stuff a C2I adapter we can properly fill in the callee-save
1377   // register locations.
1378   frame caller = fr.sender(reg_map);
1379   int frame_size = caller.sp() - fr.sp();
1380 
1381   frame sender = caller;
1382 
1383   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1384   // the vframeArray containing the unpacking information is allocated in the C heap.
1385   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1386   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1387 
1388   // Compare the vframeArray to the collected vframes
1389   assert(array->structural_compare(thread, chunk), "just checking");
1390 
1391 #ifndef PRODUCT
1392   if (PrintDeoptimizationDetails) {
1393     ttyLocker ttyl;
1394     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1395   }
1396 #endif // PRODUCT
1397 
1398   return array;
1399 }
1400 
1401 #if COMPILER2_OR_JVMCI
1402 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1403   // Reallocation of some scalar replaced objects failed. Record
1404   // that we need to pop all the interpreter frames for the
1405   // deoptimized compiled frame.
1406   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1407   thread->set_frames_to_pop_failed_realloc(array->frames());
1408   // Unlock all monitors here otherwise the interpreter will see a
1409   // mix of locked and unlocked monitors (because of failed
1410   // reallocations of synchronized objects) and be confused.
1411   for (int i = 0; i < array->frames(); i++) {
1412     MonitorChunk* monitors = array->element(i)->monitors();
1413     if (monitors != NULL) {
1414       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1415         BasicObjectLock* src = monitors->at(j);
1416         if (src->obj() != NULL) {
1417           ObjectSynchronizer::exit(src->obj(), src->lock(), thread);
1418         }
1419       }
1420       array->element(i)->free_monitors(thread);
1421 #ifdef ASSERT
1422       array->element(i)->set_removed_monitors();
1423 #endif
1424     }
1425   }
1426 }
1427 #endif
1428 
1429 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1430   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1431   Thread* thread = Thread::current();
1432   for (int i = 0; i < monitors->length(); i++) {
1433     MonitorInfo* mon_info = monitors->at(i);
1434     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1435       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1436     }
1437   }
1438 }
1439 
1440 static void get_monitors_from_stack(GrowableArray<Handle>* objects_to_revoke, JavaThread* thread, frame fr, RegisterMap* map) {
1441   // Unfortunately we don't have a RegisterMap available in most of
1442   // the places we want to call this routine so we need to walk the
1443   // stack again to update the register map.
1444   if (map == NULL || !map->update_map()) {
1445     StackFrameStream sfs(thread, true);
1446     bool found = false;
1447     while (!found && !sfs.is_done()) {
1448       frame* cur = sfs.current();
1449       sfs.next();
1450       found = cur->id() == fr.id();
1451     }
1452     assert(found, "frame to be deoptimized not found on target thread's stack");
1453     map = sfs.register_map();
1454   }
1455 
1456   vframe* vf = vframe::new_vframe(&fr, map, thread);
1457   compiledVFrame* cvf = compiledVFrame::cast(vf);
1458   // Revoke monitors' biases in all scopes
1459   while (!cvf->is_top()) {
1460     collect_monitors(cvf, objects_to_revoke);
1461     cvf = compiledVFrame::cast(cvf->sender());
1462   }
1463   collect_monitors(cvf, objects_to_revoke);
1464 }
1465 
1466 void Deoptimization::revoke_from_deopt_handler(JavaThread* thread, frame fr, RegisterMap* map) {
1467   if (!UseBiasedLocking) {
1468     return;
1469   }
1470   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1471   get_monitors_from_stack(objects_to_revoke, thread, fr, map);
1472 
1473   int len = objects_to_revoke->length();
1474   for (int i = 0; i < len; i++) {
1475     oop obj = (objects_to_revoke->at(i))();
1476     BiasedLocking::revoke_own_locks(objects_to_revoke->at(i), thread);
1477     assert(!obj->mark().has_bias_pattern(), "biases should be revoked by now");
1478   }
1479 }
1480 
1481 
1482 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1483   assert(fr.can_be_deoptimized(), "checking frame type");
1484 
1485   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1486 
1487   if (LogCompilation && xtty != NULL) {
1488     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1489     assert(cm != NULL, "only compiled methods can deopt");
1490 
1491     ttyLocker ttyl;
1492     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1493     cm->log_identity(xtty);
1494     xtty->end_head();
1495     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1496       xtty->begin_elem("jvms bci='%d'", sd->bci());
1497       xtty->method(sd->method());
1498       xtty->end_elem();
1499       if (sd->is_top())  break;
1500     }
1501     xtty->tail("deoptimized");
1502   }
1503 
1504   // Patch the compiled method so that when execution returns to it we will
1505   // deopt the execution state and return to the interpreter.
1506   fr.deoptimize(thread);
1507 }
1508 
1509 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1510   // Deoptimize only if the frame comes from compile code.
1511   // Do not deoptimize the frame which is already patched
1512   // during the execution of the loops below.
1513   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1514     return;
1515   }
1516   ResourceMark rm;
1517   DeoptimizationMarker dm;
1518   deoptimize_single_frame(thread, fr, reason);
1519 }
1520 
1521 #if INCLUDE_JVMCI
1522 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1523   // there is no exception handler for this pc => deoptimize
1524   cm->make_not_entrant();
1525 
1526   // Use Deoptimization::deoptimize for all of its side-effects:
1527   // revoking biases of monitors, gathering traps statistics, logging...
1528   // it also patches the return pc but we do not care about that
1529   // since we return a continuation to the deopt_blob below.
1530   JavaThread* thread = JavaThread::current();
1531   RegisterMap reg_map(thread, UseBiasedLocking);
1532   frame runtime_frame = thread->last_frame();
1533   frame caller_frame = runtime_frame.sender(&reg_map);
1534   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1535   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1536 
1537   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1538   if (trap_mdo != NULL) {
1539     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1540   }
1541 
1542   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1543 }
1544 #endif
1545 
1546 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1547   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1548          "can only deoptimize other thread at a safepoint");
1549   // Compute frame and register map based on thread and sp.
1550   RegisterMap reg_map(thread, UseBiasedLocking);
1551   frame fr = thread->last_frame();
1552   while (fr.id() != id) {
1553     fr = fr.sender(&reg_map);
1554   }
1555   deoptimize(thread, fr, &reg_map, reason);
1556 }
1557 
1558 
1559 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1560   if (thread == Thread::current()) {
1561     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1562   } else {
1563     VM_DeoptimizeFrame deopt(thread, id, reason);
1564     VMThread::execute(&deopt);
1565   }
1566 }
1567 
1568 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1569   deoptimize_frame(thread, id, Reason_constraint);
1570 }
1571 
1572 // JVMTI PopFrame support
1573 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1574 {
1575   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1576 }
1577 JRT_END
1578 
1579 MethodData*
1580 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1581                                 bool create_if_missing) {
1582   Thread* THREAD = thread;
1583   MethodData* mdo = m()->method_data();
1584   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1585     // Build an MDO.  Ignore errors like OutOfMemory;
1586     // that simply means we won't have an MDO to update.
1587     Method::build_interpreter_method_data(m, THREAD);
1588     if (HAS_PENDING_EXCEPTION) {
1589       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1590       CLEAR_PENDING_EXCEPTION;
1591     }
1592     mdo = m()->method_data();
1593   }
1594   return mdo;
1595 }
1596 
1597 #if COMPILER2_OR_JVMCI
1598 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1599   // in case of an unresolved klass entry, load the class.
1600   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1601     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1602     return;
1603   }
1604 
1605   if (!constant_pool->tag_at(index).is_symbol()) return;
1606 
1607   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1608   Symbol*  symbol  = constant_pool->symbol_at(index);
1609 
1610   // class name?
1611   if (symbol->char_at(0) != '(') {
1612     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1613     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1614     return;
1615   }
1616 
1617   // then it must be a signature!
1618   ResourceMark rm(THREAD);
1619   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1620     if (ss.is_object()) {
1621       Symbol* class_name = ss.as_symbol();
1622       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1623       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1624     }
1625   }
1626 }
1627 
1628 
1629 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1630   EXCEPTION_MARK;
1631   load_class_by_index(constant_pool, index, THREAD);
1632   if (HAS_PENDING_EXCEPTION) {
1633     // Exception happened during classloading. We ignore the exception here, since it
1634     // is going to be rethrown since the current activation is going to be deoptimized and
1635     // the interpreter will re-execute the bytecode.
1636     CLEAR_PENDING_EXCEPTION;
1637     // Class loading called java code which may have caused a stack
1638     // overflow. If the exception was thrown right before the return
1639     // to the runtime the stack is no longer guarded. Reguard the
1640     // stack otherwise if we return to the uncommon trap blob and the
1641     // stack bang causes a stack overflow we crash.
1642     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1643     JavaThread* thread = (JavaThread*)THREAD;
1644     bool guard_pages_enabled = thread->stack_guards_enabled();
1645     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1646     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1647   }
1648 }
1649 
1650 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1651   HandleMark hm;
1652 
1653   // uncommon_trap() is called at the beginning of the uncommon trap
1654   // handler. Note this fact before we start generating temporary frames
1655   // that can confuse an asynchronous stack walker. This counter is
1656   // decremented at the end of unpack_frames().
1657   thread->inc_in_deopt_handler();
1658 
1659   // We need to update the map if we have biased locking.
1660 #if INCLUDE_JVMCI
1661   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1662   RegisterMap reg_map(thread, true);
1663 #else
1664   RegisterMap reg_map(thread, UseBiasedLocking);
1665 #endif
1666   frame stub_frame = thread->last_frame();
1667   frame fr = stub_frame.sender(&reg_map);
1668   // Make sure the calling nmethod is not getting deoptimized and removed
1669   // before we are done with it.
1670   nmethodLocker nl(fr.pc());
1671 
1672   // Log a message
1673   Events::log_deopt_message(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1674               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1675 
1676   {
1677     ResourceMark rm;
1678 
1679     DeoptReason reason = trap_request_reason(trap_request);
1680     DeoptAction action = trap_request_action(trap_request);
1681 #if INCLUDE_JVMCI
1682     int debug_id = trap_request_debug_id(trap_request);
1683 #endif
1684     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1685 
1686     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1687     compiledVFrame* cvf = compiledVFrame::cast(vf);
1688 
1689     CompiledMethod* nm = cvf->code();
1690 
1691     ScopeDesc*      trap_scope  = cvf->scope();
1692 
1693     if (TraceDeoptimization) {
1694       ttyLocker ttyl;
1695       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1696 #if INCLUDE_JVMCI
1697           , debug_id
1698 #endif
1699           );
1700     }
1701 
1702     methodHandle    trap_method = trap_scope->method();
1703     int             trap_bci    = trap_scope->bci();
1704 #if INCLUDE_JVMCI
1705     jlong           speculation = thread->pending_failed_speculation();
1706     if (nm->is_compiled_by_jvmci() && nm->is_nmethod()) { // Exclude AOTed methods
1707       nm->as_nmethod()->update_speculation(thread);
1708     } else {
1709       assert(speculation == 0, "There should not be a speculation for methods compiled by non-JVMCI compilers");
1710     }
1711 
1712     if (trap_bci == SynchronizationEntryBCI) {
1713       trap_bci = 0;
1714       thread->set_pending_monitorenter(true);
1715     }
1716 
1717     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1718       thread->set_pending_transfer_to_interpreter(true);
1719     }
1720 #endif
1721 
1722     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1723     // Record this event in the histogram.
1724     gather_statistics(reason, action, trap_bc);
1725 
1726     // Ensure that we can record deopt. history:
1727     // Need MDO to record RTM code generation state.
1728     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1729 
1730     methodHandle profiled_method;
1731 #if INCLUDE_JVMCI
1732     if (nm->is_compiled_by_jvmci()) {
1733       profiled_method = nm->method();
1734     } else {
1735       profiled_method = trap_method;
1736     }
1737 #else
1738     profiled_method = trap_method;
1739 #endif
1740 
1741     MethodData* trap_mdo =
1742       get_method_data(thread, profiled_method, create_if_missing);
1743 
1744     // Log a message
1745     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1746                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1747                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1748 
1749     // Print a bunch of diagnostics, if requested.
1750     if (TraceDeoptimization || LogCompilation) {
1751       ResourceMark rm;
1752       ttyLocker ttyl;
1753       char buf[100];
1754       if (xtty != NULL) {
1755         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1756                          os::current_thread_id(),
1757                          format_trap_request(buf, sizeof(buf), trap_request));
1758 #if INCLUDE_JVMCI
1759         if (speculation != 0) {
1760           xtty->print(" speculation='" JLONG_FORMAT "'", speculation);
1761         }
1762 #endif
1763         nm->log_identity(xtty);
1764       }
1765       Symbol* class_name = NULL;
1766       bool unresolved = false;
1767       if (unloaded_class_index >= 0) {
1768         constantPoolHandle constants (THREAD, trap_method->constants());
1769         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1770           class_name = constants->klass_name_at(unloaded_class_index);
1771           unresolved = true;
1772           if (xtty != NULL)
1773             xtty->print(" unresolved='1'");
1774         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1775           class_name = constants->symbol_at(unloaded_class_index);
1776         }
1777         if (xtty != NULL)
1778           xtty->name(class_name);
1779       }
1780       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1781         // Dump the relevant MDO state.
1782         // This is the deopt count for the current reason, any previous
1783         // reasons or recompiles seen at this point.
1784         int dcnt = trap_mdo->trap_count(reason);
1785         if (dcnt != 0)
1786           xtty->print(" count='%d'", dcnt);
1787         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1788         int dos = (pdata == NULL)? 0: pdata->trap_state();
1789         if (dos != 0) {
1790           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1791           if (trap_state_is_recompiled(dos)) {
1792             int recnt2 = trap_mdo->overflow_recompile_count();
1793             if (recnt2 != 0)
1794               xtty->print(" recompiles2='%d'", recnt2);
1795           }
1796         }
1797       }
1798       if (xtty != NULL) {
1799         xtty->stamp();
1800         xtty->end_head();
1801       }
1802       if (TraceDeoptimization) {  // make noise on the tty
1803         tty->print("Uncommon trap occurred in");
1804         nm->method()->print_short_name(tty);
1805         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1806 #if INCLUDE_JVMCI
1807         if (nm->is_nmethod()) {
1808           const char* installed_code_name = nm->as_nmethod()->jvmci_name();
1809           if (installed_code_name != NULL) {
1810             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1811           }
1812         }
1813 #endif
1814         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1815                    p2i(fr.pc()),
1816                    os::current_thread_id(),
1817                    trap_reason_name(reason),
1818                    trap_action_name(action),
1819                    unloaded_class_index
1820 #if INCLUDE_JVMCI
1821                    , debug_id
1822 #endif
1823                    );
1824         if (class_name != NULL) {
1825           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1826           class_name->print_symbol_on(tty);
1827         }
1828         tty->cr();
1829       }
1830       if (xtty != NULL) {
1831         // Log the precise location of the trap.
1832         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1833           xtty->begin_elem("jvms bci='%d'", sd->bci());
1834           xtty->method(sd->method());
1835           xtty->end_elem();
1836           if (sd->is_top())  break;
1837         }
1838         xtty->tail("uncommon_trap");
1839       }
1840     }
1841     // (End diagnostic printout.)
1842 
1843     // Load class if necessary
1844     if (unloaded_class_index >= 0) {
1845       constantPoolHandle constants(THREAD, trap_method->constants());
1846       load_class_by_index(constants, unloaded_class_index);
1847     }
1848 
1849     // Flush the nmethod if necessary and desirable.
1850     //
1851     // We need to avoid situations where we are re-flushing the nmethod
1852     // because of a hot deoptimization site.  Repeated flushes at the same
1853     // point need to be detected by the compiler and avoided.  If the compiler
1854     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1855     // module must take measures to avoid an infinite cycle of recompilation
1856     // and deoptimization.  There are several such measures:
1857     //
1858     //   1. If a recompilation is ordered a second time at some site X
1859     //   and for the same reason R, the action is adjusted to 'reinterpret',
1860     //   to give the interpreter time to exercise the method more thoroughly.
1861     //   If this happens, the method's overflow_recompile_count is incremented.
1862     //
1863     //   2. If the compiler fails to reduce the deoptimization rate, then
1864     //   the method's overflow_recompile_count will begin to exceed the set
1865     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1866     //   is adjusted to 'make_not_compilable', and the method is abandoned
1867     //   to the interpreter.  This is a performance hit for hot methods,
1868     //   but is better than a disastrous infinite cycle of recompilations.
1869     //   (Actually, only the method containing the site X is abandoned.)
1870     //
1871     //   3. In parallel with the previous measures, if the total number of
1872     //   recompilations of a method exceeds the much larger set limit
1873     //   PerMethodRecompilationCutoff, the method is abandoned.
1874     //   This should only happen if the method is very large and has
1875     //   many "lukewarm" deoptimizations.  The code which enforces this
1876     //   limit is elsewhere (class nmethod, class Method).
1877     //
1878     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1879     // to recompile at each bytecode independently of the per-BCI cutoff.
1880     //
1881     // The decision to update code is up to the compiler, and is encoded
1882     // in the Action_xxx code.  If the compiler requests Action_none
1883     // no trap state is changed, no compiled code is changed, and the
1884     // computation suffers along in the interpreter.
1885     //
1886     // The other action codes specify various tactics for decompilation
1887     // and recompilation.  Action_maybe_recompile is the loosest, and
1888     // allows the compiled code to stay around until enough traps are seen,
1889     // and until the compiler gets around to recompiling the trapping method.
1890     //
1891     // The other actions cause immediate removal of the present code.
1892 
1893     // Traps caused by injected profile shouldn't pollute trap counts.
1894     bool injected_profile_trap = trap_method->has_injected_profile() &&
1895                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1896 
1897     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1898     bool make_not_entrant = false;
1899     bool make_not_compilable = false;
1900     bool reprofile = false;
1901     switch (action) {
1902     case Action_none:
1903       // Keep the old code.
1904       update_trap_state = false;
1905       break;
1906     case Action_maybe_recompile:
1907       // Do not need to invalidate the present code, but we can
1908       // initiate another
1909       // Start compiler without (necessarily) invalidating the nmethod.
1910       // The system will tolerate the old code, but new code should be
1911       // generated when possible.
1912       break;
1913     case Action_reinterpret:
1914       // Go back into the interpreter for a while, and then consider
1915       // recompiling form scratch.
1916       make_not_entrant = true;
1917       // Reset invocation counter for outer most method.
1918       // This will allow the interpreter to exercise the bytecodes
1919       // for a while before recompiling.
1920       // By contrast, Action_make_not_entrant is immediate.
1921       //
1922       // Note that the compiler will track null_check, null_assert,
1923       // range_check, and class_check events and log them as if they
1924       // had been traps taken from compiled code.  This will update
1925       // the MDO trap history so that the next compilation will
1926       // properly detect hot trap sites.
1927       reprofile = true;
1928       break;
1929     case Action_make_not_entrant:
1930       // Request immediate recompilation, and get rid of the old code.
1931       // Make them not entrant, so next time they are called they get
1932       // recompiled.  Unloaded classes are loaded now so recompile before next
1933       // time they are called.  Same for uninitialized.  The interpreter will
1934       // link the missing class, if any.
1935       make_not_entrant = true;
1936       break;
1937     case Action_make_not_compilable:
1938       // Give up on compiling this method at all.
1939       make_not_entrant = true;
1940       make_not_compilable = true;
1941       break;
1942     default:
1943       ShouldNotReachHere();
1944     }
1945 
1946     // Setting +ProfileTraps fixes the following, on all platforms:
1947     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1948     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1949     // recompile relies on a MethodData* to record heroic opt failures.
1950 
1951     // Whether the interpreter is producing MDO data or not, we also need
1952     // to use the MDO to detect hot deoptimization points and control
1953     // aggressive optimization.
1954     bool inc_recompile_count = false;
1955     ProfileData* pdata = NULL;
1956     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1957       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1958       uint this_trap_count = 0;
1959       bool maybe_prior_trap = false;
1960       bool maybe_prior_recompile = false;
1961       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1962 #if INCLUDE_JVMCI
1963                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1964 #endif
1965                                    nm->method(),
1966                                    //outputs:
1967                                    this_trap_count,
1968                                    maybe_prior_trap,
1969                                    maybe_prior_recompile);
1970       // Because the interpreter also counts null, div0, range, and class
1971       // checks, these traps from compiled code are double-counted.
1972       // This is harmless; it just means that the PerXTrapLimit values
1973       // are in effect a little smaller than they look.
1974 
1975       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1976       if (per_bc_reason != Reason_none) {
1977         // Now take action based on the partially known per-BCI history.
1978         if (maybe_prior_trap
1979             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1980           // If there are too many traps at this BCI, force a recompile.
1981           // This will allow the compiler to see the limit overflow, and
1982           // take corrective action, if possible.  The compiler generally
1983           // does not use the exact PerBytecodeTrapLimit value, but instead
1984           // changes its tactics if it sees any traps at all.  This provides
1985           // a little hysteresis, delaying a recompile until a trap happens
1986           // several times.
1987           //
1988           // Actually, since there is only one bit of counter per BCI,
1989           // the possible per-BCI counts are {0,1,(per-method count)}.
1990           // This produces accurate results if in fact there is only
1991           // one hot trap site, but begins to get fuzzy if there are
1992           // many sites.  For example, if there are ten sites each
1993           // trapping two or more times, they each get the blame for
1994           // all of their traps.
1995           make_not_entrant = true;
1996         }
1997 
1998         // Detect repeated recompilation at the same BCI, and enforce a limit.
1999         if (make_not_entrant && maybe_prior_recompile) {
2000           // More than one recompile at this point.
2001           inc_recompile_count = maybe_prior_trap;
2002         }
2003       } else {
2004         // For reasons which are not recorded per-bytecode, we simply
2005         // force recompiles unconditionally.
2006         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
2007         make_not_entrant = true;
2008       }
2009 
2010       // Go back to the compiler if there are too many traps in this method.
2011       if (this_trap_count >= per_method_trap_limit(reason)) {
2012         // If there are too many traps in this method, force a recompile.
2013         // This will allow the compiler to see the limit overflow, and
2014         // take corrective action, if possible.
2015         // (This condition is an unlikely backstop only, because the
2016         // PerBytecodeTrapLimit is more likely to take effect first,
2017         // if it is applicable.)
2018         make_not_entrant = true;
2019       }
2020 
2021       // Here's more hysteresis:  If there has been a recompile at
2022       // this trap point already, run the method in the interpreter
2023       // for a while to exercise it more thoroughly.
2024       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
2025         reprofile = true;
2026       }
2027     }
2028 
2029     // Take requested actions on the method:
2030 
2031     // Recompile
2032     if (make_not_entrant) {
2033       if (!nm->make_not_entrant()) {
2034         return; // the call did not change nmethod's state
2035       }
2036 
2037       if (pdata != NULL) {
2038         // Record the recompilation event, if any.
2039         int tstate0 = pdata->trap_state();
2040         int tstate1 = trap_state_set_recompiled(tstate0, true);
2041         if (tstate1 != tstate0)
2042           pdata->set_trap_state(tstate1);
2043       }
2044 
2045 #if INCLUDE_RTM_OPT
2046       // Restart collecting RTM locking abort statistic if the method
2047       // is recompiled for a reason other than RTM state change.
2048       // Assume that in new recompiled code the statistic could be different,
2049       // for example, due to different inlining.
2050       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
2051           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
2052         trap_mdo->atomic_set_rtm_state(ProfileRTM);
2053       }
2054 #endif
2055       // For code aging we count traps separately here, using make_not_entrant()
2056       // as a guard against simultaneous deopts in multiple threads.
2057       if (reason == Reason_tenured && trap_mdo != NULL) {
2058         trap_mdo->inc_tenure_traps();
2059       }
2060     }
2061 
2062     if (inc_recompile_count) {
2063       trap_mdo->inc_overflow_recompile_count();
2064       if ((uint)trap_mdo->overflow_recompile_count() >
2065           (uint)PerBytecodeRecompilationCutoff) {
2066         // Give up on the method containing the bad BCI.
2067         if (trap_method() == nm->method()) {
2068           make_not_compilable = true;
2069         } else {
2070           trap_method->set_not_compilable("overflow_recompile_count > PerBytecodeRecompilationCutoff", CompLevel_full_optimization);
2071           // But give grace to the enclosing nm->method().
2072         }
2073       }
2074     }
2075 
2076     // Reprofile
2077     if (reprofile) {
2078       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
2079     }
2080 
2081     // Give up compiling
2082     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
2083       assert(make_not_entrant, "consistent");
2084       nm->method()->set_not_compilable("give up compiling", CompLevel_full_optimization);
2085     }
2086 
2087   } // Free marked resources
2088 
2089 }
2090 JRT_END
2091 
2092 ProfileData*
2093 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2094                                          int trap_bci,
2095                                          Deoptimization::DeoptReason reason,
2096                                          bool update_total_trap_count,
2097 #if INCLUDE_JVMCI
2098                                          bool is_osr,
2099 #endif
2100                                          Method* compiled_method,
2101                                          //outputs:
2102                                          uint& ret_this_trap_count,
2103                                          bool& ret_maybe_prior_trap,
2104                                          bool& ret_maybe_prior_recompile) {
2105   bool maybe_prior_trap = false;
2106   bool maybe_prior_recompile = false;
2107   uint this_trap_count = 0;
2108   if (update_total_trap_count) {
2109     uint idx = reason;
2110 #if INCLUDE_JVMCI
2111     if (is_osr) {
2112       idx += Reason_LIMIT;
2113     }
2114 #endif
2115     uint prior_trap_count = trap_mdo->trap_count(idx);
2116     this_trap_count  = trap_mdo->inc_trap_count(idx);
2117 
2118     // If the runtime cannot find a place to store trap history,
2119     // it is estimated based on the general condition of the method.
2120     // If the method has ever been recompiled, or has ever incurred
2121     // a trap with the present reason , then this BCI is assumed
2122     // (pessimistically) to be the culprit.
2123     maybe_prior_trap      = (prior_trap_count != 0);
2124     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2125   }
2126   ProfileData* pdata = NULL;
2127 
2128 
2129   // For reasons which are recorded per bytecode, we check per-BCI data.
2130   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2131   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2132   if (per_bc_reason != Reason_none) {
2133     // Find the profile data for this BCI.  If there isn't one,
2134     // try to allocate one from the MDO's set of spares.
2135     // This will let us detect a repeated trap at this point.
2136     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2137 
2138     if (pdata != NULL) {
2139       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2140         if (LogCompilation && xtty != NULL) {
2141           ttyLocker ttyl;
2142           // no more room for speculative traps in this MDO
2143           xtty->elem("speculative_traps_oom");
2144         }
2145       }
2146       // Query the trap state of this profile datum.
2147       int tstate0 = pdata->trap_state();
2148       if (!trap_state_has_reason(tstate0, per_bc_reason))
2149         maybe_prior_trap = false;
2150       if (!trap_state_is_recompiled(tstate0))
2151         maybe_prior_recompile = false;
2152 
2153       // Update the trap state of this profile datum.
2154       int tstate1 = tstate0;
2155       // Record the reason.
2156       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2157       // Store the updated state on the MDO, for next time.
2158       if (tstate1 != tstate0)
2159         pdata->set_trap_state(tstate1);
2160     } else {
2161       if (LogCompilation && xtty != NULL) {
2162         ttyLocker ttyl;
2163         // Missing MDP?  Leave a small complaint in the log.
2164         xtty->elem("missing_mdp bci='%d'", trap_bci);
2165       }
2166     }
2167   }
2168 
2169   // Return results:
2170   ret_this_trap_count = this_trap_count;
2171   ret_maybe_prior_trap = maybe_prior_trap;
2172   ret_maybe_prior_recompile = maybe_prior_recompile;
2173   return pdata;
2174 }
2175 
2176 void
2177 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2178   ResourceMark rm;
2179   // Ignored outputs:
2180   uint ignore_this_trap_count;
2181   bool ignore_maybe_prior_trap;
2182   bool ignore_maybe_prior_recompile;
2183   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2184   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2185   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2186   query_update_method_data(trap_mdo, trap_bci,
2187                            (DeoptReason)reason,
2188                            update_total_counts,
2189 #if INCLUDE_JVMCI
2190                            false,
2191 #endif
2192                            NULL,
2193                            ignore_this_trap_count,
2194                            ignore_maybe_prior_trap,
2195                            ignore_maybe_prior_recompile);
2196 }
2197 
2198 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2199   if (TraceDeoptimization) {
2200     tty->print("Uncommon trap ");
2201   }
2202   // Still in Java no safepoints
2203   {
2204     // This enters VM and may safepoint
2205     uncommon_trap_inner(thread, trap_request);
2206   }
2207   return fetch_unroll_info_helper(thread, exec_mode);
2208 }
2209 
2210 // Local derived constants.
2211 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2212 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2213 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2214 
2215 //---------------------------trap_state_reason---------------------------------
2216 Deoptimization::DeoptReason
2217 Deoptimization::trap_state_reason(int trap_state) {
2218   // This assert provides the link between the width of DataLayout::trap_bits
2219   // and the encoding of "recorded" reasons.  It ensures there are enough
2220   // bits to store all needed reasons in the per-BCI MDO profile.
2221   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2222   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2223   trap_state -= recompile_bit;
2224   if (trap_state == DS_REASON_MASK) {
2225     return Reason_many;
2226   } else {
2227     assert((int)Reason_none == 0, "state=0 => Reason_none");
2228     return (DeoptReason)trap_state;
2229   }
2230 }
2231 //-------------------------trap_state_has_reason-------------------------------
2232 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2233   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2234   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2235   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2236   trap_state -= recompile_bit;
2237   if (trap_state == DS_REASON_MASK) {
2238     return -1;  // true, unspecifically (bottom of state lattice)
2239   } else if (trap_state == reason) {
2240     return 1;   // true, definitely
2241   } else if (trap_state == 0) {
2242     return 0;   // false, definitely (top of state lattice)
2243   } else {
2244     return 0;   // false, definitely
2245   }
2246 }
2247 //-------------------------trap_state_add_reason-------------------------------
2248 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2249   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2250   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2251   trap_state -= recompile_bit;
2252   if (trap_state == DS_REASON_MASK) {
2253     return trap_state + recompile_bit;     // already at state lattice bottom
2254   } else if (trap_state == reason) {
2255     return trap_state + recompile_bit;     // the condition is already true
2256   } else if (trap_state == 0) {
2257     return reason + recompile_bit;          // no condition has yet been true
2258   } else {
2259     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2260   }
2261 }
2262 //-----------------------trap_state_is_recompiled------------------------------
2263 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2264   return (trap_state & DS_RECOMPILE_BIT) != 0;
2265 }
2266 //-----------------------trap_state_set_recompiled-----------------------------
2267 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2268   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2269   else    return trap_state & ~DS_RECOMPILE_BIT;
2270 }
2271 //---------------------------format_trap_state---------------------------------
2272 // This is used for debugging and diagnostics, including LogFile output.
2273 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2274                                               int trap_state) {
2275   assert(buflen > 0, "sanity");
2276   DeoptReason reason      = trap_state_reason(trap_state);
2277   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2278   // Re-encode the state from its decoded components.
2279   int decoded_state = 0;
2280   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2281     decoded_state = trap_state_add_reason(decoded_state, reason);
2282   if (recomp_flag)
2283     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2284   // If the state re-encodes properly, format it symbolically.
2285   // Because this routine is used for debugging and diagnostics,
2286   // be robust even if the state is a strange value.
2287   size_t len;
2288   if (decoded_state != trap_state) {
2289     // Random buggy state that doesn't decode??
2290     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2291   } else {
2292     len = jio_snprintf(buf, buflen, "%s%s",
2293                        trap_reason_name(reason),
2294                        recomp_flag ? " recompiled" : "");
2295   }
2296   return buf;
2297 }
2298 
2299 
2300 //--------------------------------statics--------------------------------------
2301 const char* Deoptimization::_trap_reason_name[] = {
2302   // Note:  Keep this in sync. with enum DeoptReason.
2303   "none",
2304   "null_check",
2305   "null_assert" JVMCI_ONLY("_or_unreached0"),
2306   "range_check",
2307   "class_check",
2308   "array_check",
2309   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2310   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2311   "profile_predicate",
2312   "unloaded",
2313   "uninitialized",
2314   "initialized",
2315   "unreached",
2316   "unhandled",
2317   "constraint",
2318   "div0_check",
2319   "age",
2320   "predicate",
2321   "loop_limit_check",
2322   "speculate_class_check",
2323   "speculate_null_check",
2324   "speculate_null_assert",
2325   "rtm_state_change",
2326   "unstable_if",
2327   "unstable_fused_if",
2328 #if INCLUDE_JVMCI
2329   "aliasing",
2330   "transfer_to_interpreter",
2331   "not_compiled_exception_handler",
2332   "unresolved",
2333   "jsr_mismatch",
2334 #endif
2335   "tenured"
2336 };
2337 const char* Deoptimization::_trap_action_name[] = {
2338   // Note:  Keep this in sync. with enum DeoptAction.
2339   "none",
2340   "maybe_recompile",
2341   "reinterpret",
2342   "make_not_entrant",
2343   "make_not_compilable"
2344 };
2345 
2346 const char* Deoptimization::trap_reason_name(int reason) {
2347   // Check that every reason has a name
2348   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2349 
2350   if (reason == Reason_many)  return "many";
2351   if ((uint)reason < Reason_LIMIT)
2352     return _trap_reason_name[reason];
2353   static char buf[20];
2354   sprintf(buf, "reason%d", reason);
2355   return buf;
2356 }
2357 const char* Deoptimization::trap_action_name(int action) {
2358   // Check that every action has a name
2359   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2360 
2361   if ((uint)action < Action_LIMIT)
2362     return _trap_action_name[action];
2363   static char buf[20];
2364   sprintf(buf, "action%d", action);
2365   return buf;
2366 }
2367 
2368 // This is used for debugging and diagnostics, including LogFile output.
2369 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2370                                                 int trap_request) {
2371   jint unloaded_class_index = trap_request_index(trap_request);
2372   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2373   const char* action = trap_action_name(trap_request_action(trap_request));
2374 #if INCLUDE_JVMCI
2375   int debug_id = trap_request_debug_id(trap_request);
2376 #endif
2377   size_t len;
2378   if (unloaded_class_index < 0) {
2379     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2380                        reason, action
2381 #if INCLUDE_JVMCI
2382                        ,debug_id
2383 #endif
2384                        );
2385   } else {
2386     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2387                        reason, action, unloaded_class_index
2388 #if INCLUDE_JVMCI
2389                        ,debug_id
2390 #endif
2391                        );
2392   }
2393   return buf;
2394 }
2395 
2396 juint Deoptimization::_deoptimization_hist
2397         [Deoptimization::Reason_LIMIT]
2398     [1 + Deoptimization::Action_LIMIT]
2399         [Deoptimization::BC_CASE_LIMIT]
2400   = {0};
2401 
2402 enum {
2403   LSB_BITS = 8,
2404   LSB_MASK = right_n_bits(LSB_BITS)
2405 };
2406 
2407 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2408                                        Bytecodes::Code bc) {
2409   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2410   assert(action >= 0 && action < Action_LIMIT, "oob");
2411   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2412   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2413   juint* cases = _deoptimization_hist[reason][1+action];
2414   juint* bc_counter_addr = NULL;
2415   juint  bc_counter      = 0;
2416   // Look for an unused counter, or an exact match to this BC.
2417   if (bc != Bytecodes::_illegal) {
2418     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2419       juint* counter_addr = &cases[bc_case];
2420       juint  counter = *counter_addr;
2421       if ((counter == 0 && bc_counter_addr == NULL)
2422           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2423         // this counter is either free or is already devoted to this BC
2424         bc_counter_addr = counter_addr;
2425         bc_counter = counter | bc;
2426       }
2427     }
2428   }
2429   if (bc_counter_addr == NULL) {
2430     // Overflow, or no given bytecode.
2431     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2432     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2433   }
2434   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2435 }
2436 
2437 jint Deoptimization::total_deoptimization_count() {
2438   return _deoptimization_hist[Reason_none][0][0];
2439 }
2440 
2441 void Deoptimization::print_statistics() {
2442   juint total = total_deoptimization_count();
2443   juint account = total;
2444   if (total != 0) {
2445     ttyLocker ttyl;
2446     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2447     tty->print_cr("Deoptimization traps recorded:");
2448     #define PRINT_STAT_LINE(name, r) \
2449       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2450     PRINT_STAT_LINE("total", total);
2451     // For each non-zero entry in the histogram, print the reason,
2452     // the action, and (if specifically known) the type of bytecode.
2453     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2454       for (int action = 0; action < Action_LIMIT; action++) {
2455         juint* cases = _deoptimization_hist[reason][1+action];
2456         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2457           juint counter = cases[bc_case];
2458           if (counter != 0) {
2459             char name[1*K];
2460             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2461             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2462               bc = Bytecodes::_illegal;
2463             sprintf(name, "%s/%s/%s",
2464                     trap_reason_name(reason),
2465                     trap_action_name(action),
2466                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2467             juint r = counter >> LSB_BITS;
2468             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2469             account -= r;
2470           }
2471         }
2472       }
2473     }
2474     if (account != 0) {
2475       PRINT_STAT_LINE("unaccounted", account);
2476     }
2477     #undef PRINT_STAT_LINE
2478     if (xtty != NULL)  xtty->tail("statistics");
2479   }
2480 }
2481 #else // COMPILER2_OR_JVMCI
2482 
2483 
2484 // Stubs for C1 only system.
2485 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2486   return false;
2487 }
2488 
2489 const char* Deoptimization::trap_reason_name(int reason) {
2490   return "unknown";
2491 }
2492 
2493 void Deoptimization::print_statistics() {
2494   // no output
2495 }
2496 
2497 void
2498 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2499   // no udpate
2500 }
2501 
2502 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2503   return 0;
2504 }
2505 
2506 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2507                                        Bytecodes::Code bc) {
2508   // no update
2509 }
2510 
2511 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2512                                               int trap_state) {
2513   jio_snprintf(buf, buflen, "#%d", trap_state);
2514   return buf;
2515 }
2516 
2517 #endif // COMPILER2_OR_JVMCI
--- EOF ---