1 /*
   2  * Copyright (c) 2002, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/vmSymbols.hpp"
  27 #include "gc/shared/collectedHeap.hpp"
  28 #include "interpreter/bytecodeHistogram.hpp"
  29 #include "interpreter/bytecodeInterpreter.hpp"
  30 #include "interpreter/bytecodeInterpreter.inline.hpp"
  31 #include "interpreter/bytecodeInterpreterProfiling.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/interpreterRuntime.hpp"
  34 #include "logging/log.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/methodCounters.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "oops/objArrayOop.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiThreadState.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/biasedLocking.hpp"
  44 #include "runtime/frame.inline.hpp"
  45 #include "runtime/handles.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/orderAccess.inline.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/threadCritical.hpp"
  50 #include "utilities/exceptions.hpp"
  51 
  52 // no precompiled headers
  53 #ifdef CC_INTERP
  54 
  55 /*
  56  * USELABELS - If using GCC, then use labels for the opcode dispatching
  57  * rather -then a switch statement. This improves performance because it
  58  * gives us the opportunity to have the instructions that calculate the
  59  * next opcode to jump to be intermixed with the rest of the instructions
  60  * that implement the opcode (see UPDATE_PC_AND_TOS_AND_CONTINUE macro).
  61  */
  62 #undef USELABELS
  63 #ifdef __GNUC__
  64 /*
  65    ASSERT signifies debugging. It is much easier to step thru bytecodes if we
  66    don't use the computed goto approach.
  67 */
  68 #ifndef ASSERT
  69 #define USELABELS
  70 #endif
  71 #endif
  72 
  73 #undef CASE
  74 #ifdef USELABELS
  75 #define CASE(opcode) opc ## opcode
  76 #define DEFAULT opc_default
  77 #else
  78 #define CASE(opcode) case Bytecodes:: opcode
  79 #define DEFAULT default
  80 #endif
  81 
  82 /*
  83  * PREFETCH_OPCCODE - Some compilers do better if you prefetch the next
  84  * opcode before going back to the top of the while loop, rather then having
  85  * the top of the while loop handle it. This provides a better opportunity
  86  * for instruction scheduling. Some compilers just do this prefetch
  87  * automatically. Some actually end up with worse performance if you
  88  * force the prefetch. Solaris gcc seems to do better, but cc does worse.
  89  */
  90 #undef PREFETCH_OPCCODE
  91 #define PREFETCH_OPCCODE
  92 
  93 /*
  94   Interpreter safepoint: it is expected that the interpreter will have no live
  95   handles of its own creation live at an interpreter safepoint. Therefore we
  96   run a HandleMarkCleaner and trash all handles allocated in the call chain
  97   since the JavaCalls::call_helper invocation that initiated the chain.
  98   There really shouldn't be any handles remaining to trash but this is cheap
  99   in relation to a safepoint.
 100 */
 101 #define SAFEPOINT                                                                 \
 102     if ( SafepointSynchronize::is_synchronizing()) {                              \
 103         {                                                                         \
 104           /* zap freed handles rather than GC'ing them */                         \
 105           HandleMarkCleaner __hmc(THREAD);                                        \
 106         }                                                                         \
 107         CALL_VM(SafepointSynchronize::block(THREAD), handle_exception);           \
 108     }
 109 
 110 /*
 111  * VM_JAVA_ERROR - Macro for throwing a java exception from
 112  * the interpreter loop. Should really be a CALL_VM but there
 113  * is no entry point to do the transition to vm so we just
 114  * do it by hand here.
 115  */
 116 #define VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                             \
 117     DECACHE_STATE();                                                              \
 118     SET_LAST_JAVA_FRAME();                                                        \
 119     {                                                                             \
 120        InterpreterRuntime::note_a_trap(THREAD, istate->method(), BCI());          \
 121        ThreadInVMfromJava trans(THREAD);                                          \
 122        Exceptions::_throw_msg(THREAD, __FILE__, __LINE__, name, msg);             \
 123     }                                                                             \
 124     RESET_LAST_JAVA_FRAME();                                                      \
 125     CACHE_STATE();
 126 
 127 // Normal throw of a java error.
 128 #define VM_JAVA_ERROR(name, msg, note_a_trap)                                     \
 129     VM_JAVA_ERROR_NO_JUMP(name, msg, note_a_trap)                                 \
 130     goto handle_exception;
 131 
 132 #ifdef PRODUCT
 133 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)
 134 #else
 135 #define DO_UPDATE_INSTRUCTION_COUNT(opcode)                                                          \
 136 {                                                                                                    \
 137     BytecodeCounter::_counter_value++;                                                               \
 138     BytecodeHistogram::_counters[(Bytecodes::Code)opcode]++;                                         \
 139     if (StopInterpreterAt && StopInterpreterAt == BytecodeCounter::_counter_value) os::breakpoint(); \
 140     if (TraceBytecodes) {                                                                            \
 141       CALL_VM((void)InterpreterRuntime::trace_bytecode(THREAD, 0,                    \
 142                                         topOfStack[Interpreter::expr_index_at(1)],   \
 143                                         topOfStack[Interpreter::expr_index_at(2)]),  \
 144                                         handle_exception);                           \
 145     }                                                                                \
 146 }
 147 #endif
 148 
 149 #undef DEBUGGER_SINGLE_STEP_NOTIFY
 150 #ifdef VM_JVMTI
 151 /* NOTE: (kbr) This macro must be called AFTER the PC has been
 152    incremented. JvmtiExport::at_single_stepping_point() may cause a
 153    breakpoint opcode to get inserted at the current PC to allow the
 154    debugger to coalesce single-step events.
 155 
 156    As a result if we call at_single_stepping_point() we refetch opcode
 157    to get the current opcode. This will override any other prefetching
 158    that might have occurred.
 159 */
 160 #define DEBUGGER_SINGLE_STEP_NOTIFY()                                            \
 161 {                                                                                \
 162       if (_jvmti_interp_events) {                                                \
 163         if (JvmtiExport::should_post_single_step()) {                            \
 164           DECACHE_STATE();                                                       \
 165           SET_LAST_JAVA_FRAME();                                                 \
 166           ThreadInVMfromJava trans(THREAD);                                      \
 167           JvmtiExport::at_single_stepping_point(THREAD,                          \
 168                                           istate->method(),                      \
 169                                           pc);                                   \
 170           RESET_LAST_JAVA_FRAME();                                               \
 171           CACHE_STATE();                                                         \
 172           if (THREAD->pop_frame_pending() &&                                     \
 173               !THREAD->pop_frame_in_process()) {                                 \
 174             goto handle_Pop_Frame;                                               \
 175           }                                                                      \
 176           if (THREAD->jvmti_thread_state() &&                                    \
 177               THREAD->jvmti_thread_state()->is_earlyret_pending()) {             \
 178             goto handle_Early_Return;                                            \
 179           }                                                                      \
 180           opcode = *pc;                                                          \
 181         }                                                                        \
 182       }                                                                          \
 183 }
 184 #else
 185 #define DEBUGGER_SINGLE_STEP_NOTIFY()
 186 #endif
 187 
 188 /*
 189  * CONTINUE - Macro for executing the next opcode.
 190  */
 191 #undef CONTINUE
 192 #ifdef USELABELS
 193 // Have to do this dispatch this way in C++ because otherwise gcc complains about crossing an
 194 // initialization (which is is the initialization of the table pointer...)
 195 #define DISPATCH(opcode) goto *(void*)dispatch_table[opcode]
 196 #define CONTINUE {                              \
 197         opcode = *pc;                           \
 198         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 199         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 200         DISPATCH(opcode);                       \
 201     }
 202 #else
 203 #ifdef PREFETCH_OPCCODE
 204 #define CONTINUE {                              \
 205         opcode = *pc;                           \
 206         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 207         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 208         continue;                               \
 209     }
 210 #else
 211 #define CONTINUE {                              \
 212         DO_UPDATE_INSTRUCTION_COUNT(opcode);    \
 213         DEBUGGER_SINGLE_STEP_NOTIFY();          \
 214         continue;                               \
 215     }
 216 #endif
 217 #endif
 218 
 219 
 220 #define UPDATE_PC(opsize) {pc += opsize; }
 221 /*
 222  * UPDATE_PC_AND_TOS - Macro for updating the pc and topOfStack.
 223  */
 224 #undef UPDATE_PC_AND_TOS
 225 #define UPDATE_PC_AND_TOS(opsize, stack) \
 226     {pc += opsize; MORE_STACK(stack); }
 227 
 228 /*
 229  * UPDATE_PC_AND_TOS_AND_CONTINUE - Macro for updating the pc and topOfStack,
 230  * and executing the next opcode. It's somewhat similar to the combination
 231  * of UPDATE_PC_AND_TOS and CONTINUE, but with some minor optimizations.
 232  */
 233 #undef UPDATE_PC_AND_TOS_AND_CONTINUE
 234 #ifdef USELABELS
 235 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 236         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 237         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 238         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 239         DISPATCH(opcode);                                       \
 240     }
 241 
 242 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 243         pc += opsize; opcode = *pc;                             \
 244         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 245         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 246         DISPATCH(opcode);                                       \
 247     }
 248 #else
 249 #ifdef PREFETCH_OPCCODE
 250 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) {         \
 251         pc += opsize; opcode = *pc; MORE_STACK(stack);          \
 252         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 253         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 254         goto do_continue;                                       \
 255     }
 256 
 257 #define UPDATE_PC_AND_CONTINUE(opsize) {                        \
 258         pc += opsize; opcode = *pc;                             \
 259         DO_UPDATE_INSTRUCTION_COUNT(opcode);                    \
 260         DEBUGGER_SINGLE_STEP_NOTIFY();                          \
 261         goto do_continue;                                       \
 262     }
 263 #else
 264 #define UPDATE_PC_AND_TOS_AND_CONTINUE(opsize, stack) { \
 265         pc += opsize; MORE_STACK(stack);                \
 266         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 267         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 268         goto do_continue;                               \
 269     }
 270 
 271 #define UPDATE_PC_AND_CONTINUE(opsize) {                \
 272         pc += opsize;                                   \
 273         DO_UPDATE_INSTRUCTION_COUNT(opcode);            \
 274         DEBUGGER_SINGLE_STEP_NOTIFY();                  \
 275         goto do_continue;                               \
 276     }
 277 #endif /* PREFETCH_OPCCODE */
 278 #endif /* USELABELS */
 279 
 280 // About to call a new method, update the save the adjusted pc and return to frame manager
 281 #define UPDATE_PC_AND_RETURN(opsize)  \
 282    DECACHE_TOS();                     \
 283    istate->set_bcp(pc+opsize);        \
 284    return;
 285 
 286 
 287 #define METHOD istate->method()
 288 #define GET_METHOD_COUNTERS(res)    \
 289   res = METHOD->method_counters();  \
 290   if (res == NULL) {                \
 291     CALL_VM(res = InterpreterRuntime::build_method_counters(THREAD, METHOD), handle_exception); \
 292   }
 293 
 294 #define OSR_REQUEST(res, branch_pc) \
 295             CALL_VM(res=InterpreterRuntime::frequency_counter_overflow(THREAD, branch_pc), handle_exception);
 296 /*
 297  * For those opcodes that need to have a GC point on a backwards branch
 298  */
 299 
 300 // Backedge counting is kind of strange. The asm interpreter will increment
 301 // the backedge counter as a separate counter but it does it's comparisons
 302 // to the sum (scaled) of invocation counter and backedge count to make
 303 // a decision. Seems kind of odd to sum them together like that
 304 
 305 // skip is delta from current bcp/bci for target, branch_pc is pre-branch bcp
 306 
 307 
 308 #define DO_BACKEDGE_CHECKS(skip, branch_pc)                                                         \
 309     if ((skip) <= 0) {                                                                              \
 310       MethodCounters* mcs;                                                                          \
 311       GET_METHOD_COUNTERS(mcs);                                                                     \
 312       if (UseLoopCounter) {                                                                         \
 313         bool do_OSR = UseOnStackReplacement;                                                        \
 314         mcs->backedge_counter()->increment();                                                       \
 315         if (ProfileInterpreter) {                                                                   \
 316           BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);                                   \
 317           /* Check for overflow against MDO count. */                                               \
 318           do_OSR = do_OSR                                                                           \
 319             && (mdo_last_branch_taken_count >= (uint)InvocationCounter::InterpreterBackwardBranchLimit)\
 320             /* When ProfileInterpreter is on, the backedge_count comes     */                       \
 321             /* from the methodDataOop, which value does not get reset on   */                       \
 322             /* the call to frequency_counter_overflow(). To avoid          */                       \
 323             /* excessive calls to the overflow routine while the method is */                       \
 324             /* being compiled, add a second test to make sure the overflow */                       \
 325             /* function is called only once every overflow_frequency.      */                       \
 326             && (!(mdo_last_branch_taken_count & 1023));                                             \
 327         } else {                                                                                    \
 328           /* check for overflow of backedge counter */                                              \
 329           do_OSR = do_OSR                                                                           \
 330             && mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter());         \
 331         }                                                                                           \
 332         if (do_OSR) {                                                                               \
 333           nmethod* osr_nmethod;                                                                     \
 334           OSR_REQUEST(osr_nmethod, branch_pc);                                                      \
 335           if (osr_nmethod != NULL && osr_nmethod->is_in_use()) {                                    \
 336             intptr_t* buf;                                                                          \
 337             /* Call OSR migration with last java frame only, no checks. */                          \
 338             CALL_VM_NAKED_LJF(buf=SharedRuntime::OSR_migration_begin(THREAD));                      \
 339             istate->set_msg(do_osr);                                                                \
 340             istate->set_osr_buf((address)buf);                                                      \
 341             istate->set_osr_entry(osr_nmethod->osr_entry());                                        \
 342             return;                                                                                 \
 343           }                                                                                         \
 344         }                                                                                           \
 345       }  /* UseCompiler ... */                                                                      \
 346       SAFEPOINT;                                                                                    \
 347     }
 348 
 349 /*
 350  * For those opcodes that need to have a GC point on a backwards branch
 351  */
 352 
 353 /*
 354  * Macros for caching and flushing the interpreter state. Some local
 355  * variables need to be flushed out to the frame before we do certain
 356  * things (like pushing frames or becomming gc safe) and some need to
 357  * be recached later (like after popping a frame). We could use one
 358  * macro to cache or decache everything, but this would be less then
 359  * optimal because we don't always need to cache or decache everything
 360  * because some things we know are already cached or decached.
 361  */
 362 #undef DECACHE_TOS
 363 #undef CACHE_TOS
 364 #undef CACHE_PREV_TOS
 365 #define DECACHE_TOS()    istate->set_stack(topOfStack);
 366 
 367 #define CACHE_TOS()      topOfStack = (intptr_t *)istate->stack();
 368 
 369 #undef DECACHE_PC
 370 #undef CACHE_PC
 371 #define DECACHE_PC()    istate->set_bcp(pc);
 372 #define CACHE_PC()      pc = istate->bcp();
 373 #define CACHE_CP()      cp = istate->constants();
 374 #define CACHE_LOCALS()  locals = istate->locals();
 375 #undef CACHE_FRAME
 376 #define CACHE_FRAME()
 377 
 378 // BCI() returns the current bytecode-index.
 379 #undef  BCI
 380 #define BCI()           ((int)(intptr_t)(pc - (intptr_t)istate->method()->code_base()))
 381 
 382 /*
 383  * CHECK_NULL - Macro for throwing a NullPointerException if the object
 384  * passed is a null ref.
 385  * On some architectures/platforms it should be possible to do this implicitly
 386  */
 387 #undef CHECK_NULL
 388 #define CHECK_NULL(obj_)                                                                         \
 389         if ((obj_) == NULL) {                                                                    \
 390           VM_JAVA_ERROR(vmSymbols::java_lang_NullPointerException(), NULL, note_nullCheck_trap); \
 391         }                                                                                        \
 392         VERIFY_OOP(obj_)
 393 
 394 #define VMdoubleConstZero() 0.0
 395 #define VMdoubleConstOne() 1.0
 396 #define VMlongConstZero() (max_jlong-max_jlong)
 397 #define VMlongConstOne() ((max_jlong-max_jlong)+1)
 398 
 399 /*
 400  * Alignment
 401  */
 402 #define VMalignWordUp(val)          (((uintptr_t)(val) + 3) & ~3)
 403 
 404 // Decache the interpreter state that interpreter modifies directly (i.e. GC is indirect mod)
 405 #define DECACHE_STATE() DECACHE_PC(); DECACHE_TOS();
 406 
 407 // Reload interpreter state after calling the VM or a possible GC
 408 #define CACHE_STATE()   \
 409         CACHE_TOS();    \
 410         CACHE_PC();     \
 411         CACHE_CP();     \
 412         CACHE_LOCALS();
 413 
 414 // Call the VM with last java frame only.
 415 #define CALL_VM_NAKED_LJF(func)                                    \
 416         DECACHE_STATE();                                           \
 417         SET_LAST_JAVA_FRAME();                                     \
 418         func;                                                      \
 419         RESET_LAST_JAVA_FRAME();                                   \
 420         CACHE_STATE();
 421 
 422 // Call the VM. Don't check for pending exceptions.
 423 #define CALL_VM_NOCHECK(func)                                      \
 424         CALL_VM_NAKED_LJF(func)                                    \
 425         if (THREAD->pop_frame_pending() &&                         \
 426             !THREAD->pop_frame_in_process()) {                     \
 427           goto handle_Pop_Frame;                                   \
 428         }                                                          \
 429         if (THREAD->jvmti_thread_state() &&                        \
 430             THREAD->jvmti_thread_state()->is_earlyret_pending()) { \
 431           goto handle_Early_Return;                                \
 432         }
 433 
 434 // Call the VM and check for pending exceptions
 435 #define CALL_VM(func, label) {                                     \
 436           CALL_VM_NOCHECK(func);                                   \
 437           if (THREAD->has_pending_exception()) goto label;         \
 438         }
 439 
 440 /*
 441  * BytecodeInterpreter::run(interpreterState istate)
 442  * BytecodeInterpreter::runWithChecks(interpreterState istate)
 443  *
 444  * The real deal. This is where byte codes actually get interpreted.
 445  * Basically it's a big while loop that iterates until we return from
 446  * the method passed in.
 447  *
 448  * The runWithChecks is used if JVMTI is enabled.
 449  *
 450  */
 451 #if defined(VM_JVMTI)
 452 void
 453 BytecodeInterpreter::runWithChecks(interpreterState istate) {
 454 #else
 455 void
 456 BytecodeInterpreter::run(interpreterState istate) {
 457 #endif
 458 
 459   // In order to simplify some tests based on switches set at runtime
 460   // we invoke the interpreter a single time after switches are enabled
 461   // and set simpler to to test variables rather than method calls or complex
 462   // boolean expressions.
 463 
 464   static int initialized = 0;
 465   static int checkit = 0;
 466   static intptr_t* c_addr = NULL;
 467   static intptr_t  c_value;
 468 
 469   if (checkit && *c_addr != c_value) {
 470     os::breakpoint();
 471   }
 472 #ifdef VM_JVMTI
 473   static bool _jvmti_interp_events = 0;
 474 #endif
 475 
 476   static int _compiling;  // (UseCompiler || CountCompiledCalls)
 477 
 478 #ifdef ASSERT
 479   if (istate->_msg != initialize) {
 480     assert(labs(istate->_stack_base - istate->_stack_limit) == (istate->_method->max_stack() + 1), "bad stack limit");
 481     IA32_ONLY(assert(istate->_stack_limit == istate->_thread->last_Java_sp() + 1, "wrong"));
 482   }
 483   // Verify linkages.
 484   interpreterState l = istate;
 485   do {
 486     assert(l == l->_self_link, "bad link");
 487     l = l->_prev_link;
 488   } while (l != NULL);
 489   // Screwups with stack management usually cause us to overwrite istate
 490   // save a copy so we can verify it.
 491   interpreterState orig = istate;
 492 #endif
 493 
 494   register intptr_t*        topOfStack = (intptr_t *)istate->stack(); /* access with STACK macros */
 495   register address          pc = istate->bcp();
 496   register jubyte opcode;
 497   register intptr_t*        locals = istate->locals();
 498   register ConstantPoolCache*    cp = istate->constants(); // method()->constants()->cache()
 499 #ifdef LOTS_OF_REGS
 500   register JavaThread*      THREAD = istate->thread();
 501 #else
 502 #undef THREAD
 503 #define THREAD istate->thread()
 504 #endif
 505 
 506 #ifdef USELABELS
 507   const static void* const opclabels_data[256] = {
 508 /* 0x00 */ &&opc_nop,     &&opc_aconst_null,&&opc_iconst_m1,&&opc_iconst_0,
 509 /* 0x04 */ &&opc_iconst_1,&&opc_iconst_2,   &&opc_iconst_3, &&opc_iconst_4,
 510 /* 0x08 */ &&opc_iconst_5,&&opc_lconst_0,   &&opc_lconst_1, &&opc_fconst_0,
 511 /* 0x0C */ &&opc_fconst_1,&&opc_fconst_2,   &&opc_dconst_0, &&opc_dconst_1,
 512 
 513 /* 0x10 */ &&opc_bipush, &&opc_sipush, &&opc_ldc,    &&opc_ldc_w,
 514 /* 0x14 */ &&opc_ldc2_w, &&opc_iload,  &&opc_lload,  &&opc_fload,
 515 /* 0x18 */ &&opc_dload,  &&opc_aload,  &&opc_iload_0,&&opc_iload_1,
 516 /* 0x1C */ &&opc_iload_2,&&opc_iload_3,&&opc_lload_0,&&opc_lload_1,
 517 
 518 /* 0x20 */ &&opc_lload_2,&&opc_lload_3,&&opc_fload_0,&&opc_fload_1,
 519 /* 0x24 */ &&opc_fload_2,&&opc_fload_3,&&opc_dload_0,&&opc_dload_1,
 520 /* 0x28 */ &&opc_dload_2,&&opc_dload_3,&&opc_aload_0,&&opc_aload_1,
 521 /* 0x2C */ &&opc_aload_2,&&opc_aload_3,&&opc_iaload, &&opc_laload,
 522 
 523 /* 0x30 */ &&opc_faload,  &&opc_daload,  &&opc_aaload,  &&opc_baload,
 524 /* 0x34 */ &&opc_caload,  &&opc_saload,  &&opc_istore,  &&opc_lstore,
 525 /* 0x38 */ &&opc_fstore,  &&opc_dstore,  &&opc_astore,  &&opc_istore_0,
 526 /* 0x3C */ &&opc_istore_1,&&opc_istore_2,&&opc_istore_3,&&opc_lstore_0,
 527 
 528 /* 0x40 */ &&opc_lstore_1,&&opc_lstore_2,&&opc_lstore_3,&&opc_fstore_0,
 529 /* 0x44 */ &&opc_fstore_1,&&opc_fstore_2,&&opc_fstore_3,&&opc_dstore_0,
 530 /* 0x48 */ &&opc_dstore_1,&&opc_dstore_2,&&opc_dstore_3,&&opc_astore_0,
 531 /* 0x4C */ &&opc_astore_1,&&opc_astore_2,&&opc_astore_3,&&opc_iastore,
 532 
 533 /* 0x50 */ &&opc_lastore,&&opc_fastore,&&opc_dastore,&&opc_aastore,
 534 /* 0x54 */ &&opc_bastore,&&opc_castore,&&opc_sastore,&&opc_pop,
 535 /* 0x58 */ &&opc_pop2,   &&opc_dup,    &&opc_dup_x1, &&opc_dup_x2,
 536 /* 0x5C */ &&opc_dup2,   &&opc_dup2_x1,&&opc_dup2_x2,&&opc_swap,
 537 
 538 /* 0x60 */ &&opc_iadd,&&opc_ladd,&&opc_fadd,&&opc_dadd,
 539 /* 0x64 */ &&opc_isub,&&opc_lsub,&&opc_fsub,&&opc_dsub,
 540 /* 0x68 */ &&opc_imul,&&opc_lmul,&&opc_fmul,&&opc_dmul,
 541 /* 0x6C */ &&opc_idiv,&&opc_ldiv,&&opc_fdiv,&&opc_ddiv,
 542 
 543 /* 0x70 */ &&opc_irem, &&opc_lrem, &&opc_frem,&&opc_drem,
 544 /* 0x74 */ &&opc_ineg, &&opc_lneg, &&opc_fneg,&&opc_dneg,
 545 /* 0x78 */ &&opc_ishl, &&opc_lshl, &&opc_ishr,&&opc_lshr,
 546 /* 0x7C */ &&opc_iushr,&&opc_lushr,&&opc_iand,&&opc_land,
 547 
 548 /* 0x80 */ &&opc_ior, &&opc_lor,&&opc_ixor,&&opc_lxor,
 549 /* 0x84 */ &&opc_iinc,&&opc_i2l,&&opc_i2f, &&opc_i2d,
 550 /* 0x88 */ &&opc_l2i, &&opc_l2f,&&opc_l2d, &&opc_f2i,
 551 /* 0x8C */ &&opc_f2l, &&opc_f2d,&&opc_d2i, &&opc_d2l,
 552 
 553 /* 0x90 */ &&opc_d2f,  &&opc_i2b,  &&opc_i2c,  &&opc_i2s,
 554 /* 0x94 */ &&opc_lcmp, &&opc_fcmpl,&&opc_fcmpg,&&opc_dcmpl,
 555 /* 0x98 */ &&opc_dcmpg,&&opc_ifeq, &&opc_ifne, &&opc_iflt,
 556 /* 0x9C */ &&opc_ifge, &&opc_ifgt, &&opc_ifle, &&opc_if_icmpeq,
 557 
 558 /* 0xA0 */ &&opc_if_icmpne,&&opc_if_icmplt,&&opc_if_icmpge,  &&opc_if_icmpgt,
 559 /* 0xA4 */ &&opc_if_icmple,&&opc_if_acmpeq,&&opc_if_acmpne,  &&opc_goto,
 560 /* 0xA8 */ &&opc_jsr,      &&opc_ret,      &&opc_tableswitch,&&opc_lookupswitch,
 561 /* 0xAC */ &&opc_ireturn,  &&opc_lreturn,  &&opc_freturn,    &&opc_dreturn,
 562 
 563 /* 0xB0 */ &&opc_areturn,     &&opc_return,         &&opc_getstatic,    &&opc_putstatic,
 564 /* 0xB4 */ &&opc_getfield,    &&opc_putfield,       &&opc_invokevirtual,&&opc_invokespecial,
 565 /* 0xB8 */ &&opc_invokestatic,&&opc_invokeinterface,&&opc_invokedynamic,&&opc_new,
 566 /* 0xBC */ &&opc_newarray,    &&opc_anewarray,      &&opc_arraylength,  &&opc_athrow,
 567 
 568 /* 0xC0 */ &&opc_checkcast,   &&opc_instanceof,     &&opc_monitorenter, &&opc_monitorexit,
 569 /* 0xC4 */ &&opc_wide,        &&opc_multianewarray, &&opc_ifnull,       &&opc_ifnonnull,
 570 /* 0xC8 */ &&opc_goto_w,      &&opc_jsr_w,          &&opc_breakpoint,   &&opc_default,
 571 /* 0xCC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 572 
 573 /* 0xD0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 574 /* 0xD4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 575 /* 0xD8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 576 /* 0xDC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 577 
 578 /* 0xE0 */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 579 /* 0xE4 */ &&opc_default,     &&opc_default,        &&opc_fast_aldc,    &&opc_fast_aldc_w,
 580 /* 0xE8 */ &&opc_return_register_finalizer,
 581                               &&opc_invokehandle,   &&opc_default,      &&opc_default,
 582 /* 0xEC */ &&opc_default,     &&opc_default,        &&opc_default,         &&opc_default,
 583 
 584 /* 0xF0 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 585 /* 0xF4 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 586 /* 0xF8 */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default,
 587 /* 0xFC */ &&opc_default,     &&opc_default,        &&opc_default,      &&opc_default
 588   };
 589   register uintptr_t *dispatch_table = (uintptr_t*)&opclabels_data[0];
 590 #endif /* USELABELS */
 591 
 592 #ifdef ASSERT
 593   // this will trigger a VERIFY_OOP on entry
 594   if (istate->msg() != initialize && ! METHOD->is_static()) {
 595     oop rcvr = LOCALS_OBJECT(0);
 596     VERIFY_OOP(rcvr);
 597   }
 598 #endif
 599 // #define HACK
 600 #ifdef HACK
 601   bool interesting = false;
 602 #endif // HACK
 603 
 604   /* QQQ this should be a stack method so we don't know actual direction */
 605   guarantee(istate->msg() == initialize ||
 606          topOfStack >= istate->stack_limit() &&
 607          topOfStack < istate->stack_base(),
 608          "Stack top out of range");
 609 
 610 #ifdef CC_INTERP_PROFILE
 611   // MethodData's last branch taken count.
 612   uint mdo_last_branch_taken_count = 0;
 613 #else
 614   const uint mdo_last_branch_taken_count = 0;
 615 #endif
 616 
 617   switch (istate->msg()) {
 618     case initialize: {
 619       if (initialized++) ShouldNotReachHere(); // Only one initialize call.
 620       _compiling = (UseCompiler || CountCompiledCalls);
 621 #ifdef VM_JVMTI
 622       _jvmti_interp_events = JvmtiExport::can_post_interpreter_events();
 623 #endif
 624       return;
 625     }
 626     break;
 627     case method_entry: {
 628       THREAD->set_do_not_unlock();
 629       // count invocations
 630       assert(initialized, "Interpreter not initialized");
 631       if (_compiling) {
 632         MethodCounters* mcs;
 633         GET_METHOD_COUNTERS(mcs);
 634 #if COMPILER2_OR_JVMCI
 635         if (ProfileInterpreter) {
 636           METHOD->increment_interpreter_invocation_count(THREAD);
 637         }
 638 #endif
 639         mcs->invocation_counter()->increment();
 640         if (mcs->invocation_counter()->reached_InvocationLimit(mcs->backedge_counter())) {
 641           CALL_VM((void)InterpreterRuntime::frequency_counter_overflow(THREAD, NULL), handle_exception);
 642           // We no longer retry on a counter overflow.
 643         }
 644         // Get or create profile data. Check for pending (async) exceptions.
 645         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 646         SAFEPOINT;
 647       }
 648 
 649       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 650         // initialize
 651         os::breakpoint();
 652       }
 653 
 654 #ifdef HACK
 655       {
 656         ResourceMark rm;
 657         char *method_name = istate->method()->name_and_sig_as_C_string();
 658         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 659           tty->print_cr("entering: depth %d bci: %d",
 660                          (istate->_stack_base - istate->_stack),
 661                          istate->_bcp - istate->_method->code_base());
 662           interesting = true;
 663         }
 664       }
 665 #endif // HACK
 666 
 667       // Lock method if synchronized.
 668       if (METHOD->is_synchronized()) {
 669         // oop rcvr = locals[0].j.r;
 670         oop rcvr;
 671         if (METHOD->is_static()) {
 672           rcvr = METHOD->constants()->pool_holder()->java_mirror();
 673         } else {
 674           rcvr = LOCALS_OBJECT(0);
 675           VERIFY_OOP(rcvr);
 676         }
 677         // The initial monitor is ours for the taking.
 678         // Monitor not filled in frame manager any longer as this caused race condition with biased locking.
 679         BasicObjectLock* mon = &istate->monitor_base()[-1];
 680         mon->set_obj(rcvr);
 681         bool success = false;
 682         uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 683         markOop mark = rcvr->mark();
 684         intptr_t hash = (intptr_t) markOopDesc::no_hash;
 685         // Implies UseBiasedLocking.
 686         if (mark->has_bias_pattern()) {
 687           uintptr_t thread_ident;
 688           uintptr_t anticipated_bias_locking_value;
 689           thread_ident = (uintptr_t)istate->thread();
 690           anticipated_bias_locking_value =
 691             (((uintptr_t)rcvr->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 692             ~((uintptr_t) markOopDesc::age_mask_in_place);
 693 
 694           if (anticipated_bias_locking_value == 0) {
 695             // Already biased towards this thread, nothing to do.
 696             if (PrintBiasedLockingStatistics) {
 697               (* BiasedLocking::biased_lock_entry_count_addr())++;
 698             }
 699             success = true;
 700           } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 701             // Try to revoke bias.
 702             markOop header = rcvr->klass()->prototype_header();
 703             if (hash != markOopDesc::no_hash) {
 704               header = header->copy_set_hash(hash);
 705             }
 706             if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), mark) == mark) {
 707               if (PrintBiasedLockingStatistics)
 708                 (*BiasedLocking::revoked_lock_entry_count_addr())++;
 709             }
 710           } else if ((anticipated_bias_locking_value & epoch_mask_in_place) != 0) {
 711             // Try to rebias.
 712             markOop new_header = (markOop) ( (intptr_t) rcvr->klass()->prototype_header() | thread_ident);
 713             if (hash != markOopDesc::no_hash) {
 714               new_header = new_header->copy_set_hash(hash);
 715             }
 716             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), mark) == mark) {
 717               if (PrintBiasedLockingStatistics) {
 718                 (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 719               }
 720             } else {
 721               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 722             }
 723             success = true;
 724           } else {
 725             // Try to bias towards thread in case object is anonymously biased.
 726             markOop header = (markOop) ((uintptr_t) mark &
 727                                         ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 728                                          (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 729             if (hash != markOopDesc::no_hash) {
 730               header = header->copy_set_hash(hash);
 731             }
 732             markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 733             // Debugging hint.
 734             DEBUG_ONLY(mon->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 735             if (Atomic::cmpxchg_ptr((void*)new_header, rcvr->mark_addr(), header) == header) {
 736               if (PrintBiasedLockingStatistics) {
 737                 (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 738               }
 739             } else {
 740               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 741             }
 742             success = true;
 743           }
 744         }
 745 
 746         // Traditional lightweight locking.
 747         if (!success) {
 748           markOop displaced = rcvr->mark()->set_unlocked();
 749           mon->lock()->set_displaced_header(displaced);
 750           bool call_vm = UseHeavyMonitors;
 751           if (call_vm || Atomic::cmpxchg_ptr(mon, rcvr->mark_addr(), displaced) != displaced) {
 752             // Is it simple recursive case?
 753             if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 754               mon->lock()->set_displaced_header(NULL);
 755             } else {
 756               CALL_VM(InterpreterRuntime::monitorenter(THREAD, mon), handle_exception);
 757             }
 758           }
 759         }
 760       }
 761       THREAD->clr_do_not_unlock();
 762 
 763       // Notify jvmti
 764 #ifdef VM_JVMTI
 765       if (_jvmti_interp_events) {
 766         // Whenever JVMTI puts a thread in interp_only_mode, method
 767         // entry/exit events are sent for that thread to track stack depth.
 768         if (THREAD->is_interp_only_mode()) {
 769           CALL_VM(InterpreterRuntime::post_method_entry(THREAD),
 770                   handle_exception);
 771         }
 772       }
 773 #endif /* VM_JVMTI */
 774 
 775       goto run;
 776     }
 777 
 778     case popping_frame: {
 779       // returned from a java call to pop the frame, restart the call
 780       // clear the message so we don't confuse ourselves later
 781       assert(THREAD->pop_frame_in_process(), "wrong frame pop state");
 782       istate->set_msg(no_request);
 783       if (_compiling) {
 784         // Set MDX back to the ProfileData of the invoke bytecode that will be
 785         // restarted.
 786         SET_MDX(NULL);
 787         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 788       }
 789       THREAD->clr_pop_frame_in_process();
 790       goto run;
 791     }
 792 
 793     case method_resume: {
 794       if ((istate->_stack_base - istate->_stack_limit) != istate->method()->max_stack() + 1) {
 795         // resume
 796         os::breakpoint();
 797       }
 798 #ifdef HACK
 799       {
 800         ResourceMark rm;
 801         char *method_name = istate->method()->name_and_sig_as_C_string();
 802         if (strstr(method_name, "runThese$TestRunner.run()V") != NULL) {
 803           tty->print_cr("resume: depth %d bci: %d",
 804                          (istate->_stack_base - istate->_stack) ,
 805                          istate->_bcp - istate->_method->code_base());
 806           interesting = true;
 807         }
 808       }
 809 #endif // HACK
 810       // returned from a java call, continue executing.
 811       if (THREAD->pop_frame_pending() && !THREAD->pop_frame_in_process()) {
 812         goto handle_Pop_Frame;
 813       }
 814       if (THREAD->jvmti_thread_state() &&
 815           THREAD->jvmti_thread_state()->is_earlyret_pending()) {
 816         goto handle_Early_Return;
 817       }
 818 
 819       if (THREAD->has_pending_exception()) goto handle_exception;
 820       // Update the pc by the saved amount of the invoke bytecode size
 821       UPDATE_PC(istate->bcp_advance());
 822 
 823       if (_compiling) {
 824         // Get or create profile data. Check for pending (async) exceptions.
 825         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 826       }
 827       goto run;
 828     }
 829 
 830     case deopt_resume2: {
 831       // Returned from an opcode that will reexecute. Deopt was
 832       // a result of a PopFrame request.
 833       //
 834 
 835       if (_compiling) {
 836         // Get or create profile data. Check for pending (async) exceptions.
 837         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 838       }
 839       goto run;
 840     }
 841 
 842     case deopt_resume: {
 843       // Returned from an opcode that has completed. The stack has
 844       // the result all we need to do is skip across the bytecode
 845       // and continue (assuming there is no exception pending)
 846       //
 847       // compute continuation length
 848       //
 849       // Note: it is possible to deopt at a return_register_finalizer opcode
 850       // because this requires entering the vm to do the registering. While the
 851       // opcode is complete we can't advance because there are no more opcodes
 852       // much like trying to deopt at a poll return. In that has we simply
 853       // get out of here
 854       //
 855       if ( Bytecodes::code_at(METHOD, pc) == Bytecodes::_return_register_finalizer) {
 856         // this will do the right thing even if an exception is pending.
 857         goto handle_return;
 858       }
 859       UPDATE_PC(Bytecodes::length_at(METHOD, pc));
 860       if (THREAD->has_pending_exception()) goto handle_exception;
 861 
 862       if (_compiling) {
 863         // Get or create profile data. Check for pending (async) exceptions.
 864         BI_PROFILE_GET_OR_CREATE_METHOD_DATA(handle_exception);
 865       }
 866       goto run;
 867     }
 868     case got_monitors: {
 869       // continue locking now that we have a monitor to use
 870       // we expect to find newly allocated monitor at the "top" of the monitor stack.
 871       oop lockee = STACK_OBJECT(-1);
 872       VERIFY_OOP(lockee);
 873       // derefing's lockee ought to provoke implicit null check
 874       // find a free monitor
 875       BasicObjectLock* entry = (BasicObjectLock*) istate->stack_base();
 876       assert(entry->obj() == NULL, "Frame manager didn't allocate the monitor");
 877       entry->set_obj(lockee);
 878       bool success = false;
 879       uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
 880 
 881       markOop mark = lockee->mark();
 882       intptr_t hash = (intptr_t) markOopDesc::no_hash;
 883       // implies UseBiasedLocking
 884       if (mark->has_bias_pattern()) {
 885         uintptr_t thread_ident;
 886         uintptr_t anticipated_bias_locking_value;
 887         thread_ident = (uintptr_t)istate->thread();
 888         anticipated_bias_locking_value =
 889           (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
 890           ~((uintptr_t) markOopDesc::age_mask_in_place);
 891 
 892         if  (anticipated_bias_locking_value == 0) {
 893           // already biased towards this thread, nothing to do
 894           if (PrintBiasedLockingStatistics) {
 895             (* BiasedLocking::biased_lock_entry_count_addr())++;
 896           }
 897           success = true;
 898         } else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
 899           // try revoke bias
 900           markOop header = lockee->klass()->prototype_header();
 901           if (hash != markOopDesc::no_hash) {
 902             header = header->copy_set_hash(hash);
 903           }
 904           if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
 905             if (PrintBiasedLockingStatistics) {
 906               (*BiasedLocking::revoked_lock_entry_count_addr())++;
 907             }
 908           }
 909         } else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
 910           // try rebias
 911           markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
 912           if (hash != markOopDesc::no_hash) {
 913                 new_header = new_header->copy_set_hash(hash);
 914           }
 915           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
 916             if (PrintBiasedLockingStatistics) {
 917               (* BiasedLocking::rebiased_lock_entry_count_addr())++;
 918             }
 919           } else {
 920             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 921           }
 922           success = true;
 923         } else {
 924           // try to bias towards thread in case object is anonymously biased
 925           markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
 926                                                           (uintptr_t)markOopDesc::age_mask_in_place | epoch_mask_in_place));
 927           if (hash != markOopDesc::no_hash) {
 928             header = header->copy_set_hash(hash);
 929           }
 930           markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
 931           // debugging hint
 932           DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
 933           if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
 934             if (PrintBiasedLockingStatistics) {
 935               (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
 936             }
 937           } else {
 938             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 939           }
 940           success = true;
 941         }
 942       }
 943 
 944       // traditional lightweight locking
 945       if (!success) {
 946         markOop displaced = lockee->mark()->set_unlocked();
 947         entry->lock()->set_displaced_header(displaced);
 948         bool call_vm = UseHeavyMonitors;
 949         if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
 950           // Is it simple recursive case?
 951           if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
 952             entry->lock()->set_displaced_header(NULL);
 953           } else {
 954             CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
 955           }
 956         }
 957       }
 958       UPDATE_PC_AND_TOS(1, -1);
 959       goto run;
 960     }
 961     default: {
 962       fatal("Unexpected message from frame manager");
 963     }
 964   }
 965 
 966 run:
 967 
 968   DO_UPDATE_INSTRUCTION_COUNT(*pc)
 969   DEBUGGER_SINGLE_STEP_NOTIFY();
 970 #ifdef PREFETCH_OPCCODE
 971   opcode = *pc;  /* prefetch first opcode */
 972 #endif
 973 
 974 #ifndef USELABELS
 975   while (1)
 976 #endif
 977   {
 978 #ifndef PREFETCH_OPCCODE
 979       opcode = *pc;
 980 #endif
 981       // Seems like this happens twice per opcode. At worst this is only
 982       // need at entry to the loop.
 983       // DEBUGGER_SINGLE_STEP_NOTIFY();
 984       /* Using this labels avoids double breakpoints when quickening and
 985        * when returing from transition frames.
 986        */
 987   opcode_switch:
 988       assert(istate == orig, "Corrupted istate");
 989       /* QQQ Hmm this has knowledge of direction, ought to be a stack method */
 990       assert(topOfStack >= istate->stack_limit(), "Stack overrun");
 991       assert(topOfStack < istate->stack_base(), "Stack underrun");
 992 
 993 #ifdef USELABELS
 994       DISPATCH(opcode);
 995 #else
 996       switch (opcode)
 997 #endif
 998       {
 999       CASE(_nop):
1000           UPDATE_PC_AND_CONTINUE(1);
1001 
1002           /* Push miscellaneous constants onto the stack. */
1003 
1004       CASE(_aconst_null):
1005           SET_STACK_OBJECT(NULL, 0);
1006           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1007 
1008 #undef  OPC_CONST_n
1009 #define OPC_CONST_n(opcode, const_type, value)                          \
1010       CASE(opcode):                                                     \
1011           SET_STACK_ ## const_type(value, 0);                           \
1012           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1013 
1014           OPC_CONST_n(_iconst_m1,   INT,       -1);
1015           OPC_CONST_n(_iconst_0,    INT,        0);
1016           OPC_CONST_n(_iconst_1,    INT,        1);
1017           OPC_CONST_n(_iconst_2,    INT,        2);
1018           OPC_CONST_n(_iconst_3,    INT,        3);
1019           OPC_CONST_n(_iconst_4,    INT,        4);
1020           OPC_CONST_n(_iconst_5,    INT,        5);
1021           OPC_CONST_n(_fconst_0,    FLOAT,      0.0);
1022           OPC_CONST_n(_fconst_1,    FLOAT,      1.0);
1023           OPC_CONST_n(_fconst_2,    FLOAT,      2.0);
1024 
1025 #undef  OPC_CONST2_n
1026 #define OPC_CONST2_n(opcname, value, key, kind)                         \
1027       CASE(_##opcname):                                                 \
1028       {                                                                 \
1029           SET_STACK_ ## kind(VM##key##Const##value(), 1);               \
1030           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1031       }
1032          OPC_CONST2_n(dconst_0, Zero, double, DOUBLE);
1033          OPC_CONST2_n(dconst_1, One,  double, DOUBLE);
1034          OPC_CONST2_n(lconst_0, Zero, long, LONG);
1035          OPC_CONST2_n(lconst_1, One,  long, LONG);
1036 
1037          /* Load constant from constant pool: */
1038 
1039           /* Push a 1-byte signed integer value onto the stack. */
1040       CASE(_bipush):
1041           SET_STACK_INT((jbyte)(pc[1]), 0);
1042           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1043 
1044           /* Push a 2-byte signed integer constant onto the stack. */
1045       CASE(_sipush):
1046           SET_STACK_INT((int16_t)Bytes::get_Java_u2(pc + 1), 0);
1047           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
1048 
1049           /* load from local variable */
1050 
1051       CASE(_aload):
1052           VERIFY_OOP(LOCALS_OBJECT(pc[1]));
1053           SET_STACK_OBJECT(LOCALS_OBJECT(pc[1]), 0);
1054           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1055 
1056       CASE(_iload):
1057       CASE(_fload):
1058           SET_STACK_SLOT(LOCALS_SLOT(pc[1]), 0);
1059           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 1);
1060 
1061       CASE(_lload):
1062           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(pc[1]), 1);
1063           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1064 
1065       CASE(_dload):
1066           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(pc[1]), 1);
1067           UPDATE_PC_AND_TOS_AND_CONTINUE(2, 2);
1068 
1069 #undef  OPC_LOAD_n
1070 #define OPC_LOAD_n(num)                                                 \
1071       CASE(_aload_##num):                                               \
1072           VERIFY_OOP(LOCALS_OBJECT(num));                               \
1073           SET_STACK_OBJECT(LOCALS_OBJECT(num), 0);                      \
1074           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1075                                                                         \
1076       CASE(_iload_##num):                                               \
1077       CASE(_fload_##num):                                               \
1078           SET_STACK_SLOT(LOCALS_SLOT(num), 0);                          \
1079           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);                         \
1080                                                                         \
1081       CASE(_lload_##num):                                               \
1082           SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(num), 1);             \
1083           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);                         \
1084       CASE(_dload_##num):                                               \
1085           SET_STACK_DOUBLE_FROM_ADDR(LOCALS_DOUBLE_AT(num), 1);         \
1086           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1087 
1088           OPC_LOAD_n(0);
1089           OPC_LOAD_n(1);
1090           OPC_LOAD_n(2);
1091           OPC_LOAD_n(3);
1092 
1093           /* store to a local variable */
1094 
1095       CASE(_astore):
1096           astore(topOfStack, -1, locals, pc[1]);
1097           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1098 
1099       CASE(_istore):
1100       CASE(_fstore):
1101           SET_LOCALS_SLOT(STACK_SLOT(-1), pc[1]);
1102           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -1);
1103 
1104       CASE(_lstore):
1105           SET_LOCALS_LONG(STACK_LONG(-1), pc[1]);
1106           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1107 
1108       CASE(_dstore):
1109           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), pc[1]);
1110           UPDATE_PC_AND_TOS_AND_CONTINUE(2, -2);
1111 
1112       CASE(_wide): {
1113           uint16_t reg = Bytes::get_Java_u2(pc + 2);
1114 
1115           opcode = pc[1];
1116 
1117           // Wide and it's sub-bytecode are counted as separate instructions. If we
1118           // don't account for this here, the bytecode trace skips the next bytecode.
1119           DO_UPDATE_INSTRUCTION_COUNT(opcode);
1120 
1121           switch(opcode) {
1122               case Bytecodes::_aload:
1123                   VERIFY_OOP(LOCALS_OBJECT(reg));
1124                   SET_STACK_OBJECT(LOCALS_OBJECT(reg), 0);
1125                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1126 
1127               case Bytecodes::_iload:
1128               case Bytecodes::_fload:
1129                   SET_STACK_SLOT(LOCALS_SLOT(reg), 0);
1130                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 1);
1131 
1132               case Bytecodes::_lload:
1133                   SET_STACK_LONG_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1134                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1135 
1136               case Bytecodes::_dload:
1137                   SET_STACK_DOUBLE_FROM_ADDR(LOCALS_LONG_AT(reg), 1);
1138                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, 2);
1139 
1140               case Bytecodes::_astore:
1141                   astore(topOfStack, -1, locals, reg);
1142                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1143 
1144               case Bytecodes::_istore:
1145               case Bytecodes::_fstore:
1146                   SET_LOCALS_SLOT(STACK_SLOT(-1), reg);
1147                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -1);
1148 
1149               case Bytecodes::_lstore:
1150                   SET_LOCALS_LONG(STACK_LONG(-1), reg);
1151                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1152 
1153               case Bytecodes::_dstore:
1154                   SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), reg);
1155                   UPDATE_PC_AND_TOS_AND_CONTINUE(4, -2);
1156 
1157               case Bytecodes::_iinc: {
1158                   int16_t offset = (int16_t)Bytes::get_Java_u2(pc+4);
1159                   // Be nice to see what this generates.... QQQ
1160                   SET_LOCALS_INT(LOCALS_INT(reg) + offset, reg);
1161                   UPDATE_PC_AND_CONTINUE(6);
1162               }
1163               case Bytecodes::_ret:
1164                   // Profile ret.
1165                   BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(reg))));
1166                   // Now, update the pc.
1167                   pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(reg));
1168                   UPDATE_PC_AND_CONTINUE(0);
1169               default:
1170                   VM_JAVA_ERROR(vmSymbols::java_lang_InternalError(), "undefined opcode", note_no_trap);
1171           }
1172       }
1173 
1174 
1175 #undef  OPC_STORE_n
1176 #define OPC_STORE_n(num)                                                \
1177       CASE(_astore_##num):                                              \
1178           astore(topOfStack, -1, locals, num);                          \
1179           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1180       CASE(_istore_##num):                                              \
1181       CASE(_fstore_##num):                                              \
1182           SET_LOCALS_SLOT(STACK_SLOT(-1), num);                         \
1183           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1184 
1185           OPC_STORE_n(0);
1186           OPC_STORE_n(1);
1187           OPC_STORE_n(2);
1188           OPC_STORE_n(3);
1189 
1190 #undef  OPC_DSTORE_n
1191 #define OPC_DSTORE_n(num)                                               \
1192       CASE(_dstore_##num):                                              \
1193           SET_LOCALS_DOUBLE(STACK_DOUBLE(-1), num);                     \
1194           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1195       CASE(_lstore_##num):                                              \
1196           SET_LOCALS_LONG(STACK_LONG(-1), num);                         \
1197           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1198 
1199           OPC_DSTORE_n(0);
1200           OPC_DSTORE_n(1);
1201           OPC_DSTORE_n(2);
1202           OPC_DSTORE_n(3);
1203 
1204           /* stack pop, dup, and insert opcodes */
1205 
1206 
1207       CASE(_pop):                /* Discard the top item on the stack */
1208           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1209 
1210 
1211       CASE(_pop2):               /* Discard the top 2 items on the stack */
1212           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);
1213 
1214 
1215       CASE(_dup):               /* Duplicate the top item on the stack */
1216           dup(topOfStack);
1217           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1218 
1219       CASE(_dup2):              /* Duplicate the top 2 items on the stack */
1220           dup2(topOfStack);
1221           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1222 
1223       CASE(_dup_x1):    /* insert top word two down */
1224           dup_x1(topOfStack);
1225           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1226 
1227       CASE(_dup_x2):    /* insert top word three down  */
1228           dup_x2(topOfStack);
1229           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1230 
1231       CASE(_dup2_x1):   /* insert top 2 slots three down */
1232           dup2_x1(topOfStack);
1233           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1234 
1235       CASE(_dup2_x2):   /* insert top 2 slots four down */
1236           dup2_x2(topOfStack);
1237           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1238 
1239       CASE(_swap): {        /* swap top two elements on the stack */
1240           swap(topOfStack);
1241           UPDATE_PC_AND_CONTINUE(1);
1242       }
1243 
1244           /* Perform various binary integer operations */
1245 
1246 #undef  OPC_INT_BINARY
1247 #define OPC_INT_BINARY(opcname, opname, test)                           \
1248       CASE(_i##opcname):                                                \
1249           if (test && (STACK_INT(-1) == 0)) {                           \
1250               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1251                             "/ by zero", note_div0Check_trap);          \
1252           }                                                             \
1253           SET_STACK_INT(VMint##opname(STACK_INT(-2),                    \
1254                                       STACK_INT(-1)),                   \
1255                                       -2);                              \
1256           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                        \
1257       CASE(_l##opcname):                                                \
1258       {                                                                 \
1259           if (test) {                                                   \
1260             jlong l1 = STACK_LONG(-1);                                  \
1261             if (VMlongEqz(l1)) {                                        \
1262               VM_JAVA_ERROR(vmSymbols::java_lang_ArithmeticException(), \
1263                             "/ by long zero", note_div0Check_trap);     \
1264             }                                                           \
1265           }                                                             \
1266           /* First long at (-1,-2) next long at (-3,-4) */              \
1267           SET_STACK_LONG(VMlong##opname(STACK_LONG(-3),                 \
1268                                         STACK_LONG(-1)),                \
1269                                         -3);                            \
1270           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                        \
1271       }
1272 
1273       OPC_INT_BINARY(add, Add, 0);
1274       OPC_INT_BINARY(sub, Sub, 0);
1275       OPC_INT_BINARY(mul, Mul, 0);
1276       OPC_INT_BINARY(and, And, 0);
1277       OPC_INT_BINARY(or,  Or,  0);
1278       OPC_INT_BINARY(xor, Xor, 0);
1279       OPC_INT_BINARY(div, Div, 1);
1280       OPC_INT_BINARY(rem, Rem, 1);
1281 
1282 
1283       /* Perform various binary floating number operations */
1284       /* On some machine/platforms/compilers div zero check can be implicit */
1285 
1286 #undef  OPC_FLOAT_BINARY
1287 #define OPC_FLOAT_BINARY(opcname, opname)                                  \
1288       CASE(_d##opcname): {                                                 \
1289           SET_STACK_DOUBLE(VMdouble##opname(STACK_DOUBLE(-3),              \
1290                                             STACK_DOUBLE(-1)),             \
1291                                             -3);                           \
1292           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -2);                           \
1293       }                                                                    \
1294       CASE(_f##opcname):                                                   \
1295           SET_STACK_FLOAT(VMfloat##opname(STACK_FLOAT(-2),                 \
1296                                           STACK_FLOAT(-1)),                \
1297                                           -2);                             \
1298           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1299 
1300 
1301      OPC_FLOAT_BINARY(add, Add);
1302      OPC_FLOAT_BINARY(sub, Sub);
1303      OPC_FLOAT_BINARY(mul, Mul);
1304      OPC_FLOAT_BINARY(div, Div);
1305      OPC_FLOAT_BINARY(rem, Rem);
1306 
1307       /* Shift operations
1308        * Shift left int and long: ishl, lshl
1309        * Logical shift right int and long w/zero extension: iushr, lushr
1310        * Arithmetic shift right int and long w/sign extension: ishr, lshr
1311        */
1312 
1313 #undef  OPC_SHIFT_BINARY
1314 #define OPC_SHIFT_BINARY(opcname, opname)                               \
1315       CASE(_i##opcname):                                                \
1316          SET_STACK_INT(VMint##opname(STACK_INT(-2),                     \
1317                                      STACK_INT(-1)),                    \
1318                                      -2);                               \
1319          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1320       CASE(_l##opcname):                                                \
1321       {                                                                 \
1322          SET_STACK_LONG(VMlong##opname(STACK_LONG(-2),                  \
1323                                        STACK_INT(-1)),                  \
1324                                        -2);                             \
1325          UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                         \
1326       }
1327 
1328       OPC_SHIFT_BINARY(shl, Shl);
1329       OPC_SHIFT_BINARY(shr, Shr);
1330       OPC_SHIFT_BINARY(ushr, Ushr);
1331 
1332      /* Increment local variable by constant */
1333       CASE(_iinc):
1334       {
1335           // locals[pc[1]].j.i += (jbyte)(pc[2]);
1336           SET_LOCALS_INT(LOCALS_INT(pc[1]) + (jbyte)(pc[2]), pc[1]);
1337           UPDATE_PC_AND_CONTINUE(3);
1338       }
1339 
1340      /* negate the value on the top of the stack */
1341 
1342       CASE(_ineg):
1343          SET_STACK_INT(VMintNeg(STACK_INT(-1)), -1);
1344          UPDATE_PC_AND_CONTINUE(1);
1345 
1346       CASE(_fneg):
1347          SET_STACK_FLOAT(VMfloatNeg(STACK_FLOAT(-1)), -1);
1348          UPDATE_PC_AND_CONTINUE(1);
1349 
1350       CASE(_lneg):
1351       {
1352          SET_STACK_LONG(VMlongNeg(STACK_LONG(-1)), -1);
1353          UPDATE_PC_AND_CONTINUE(1);
1354       }
1355 
1356       CASE(_dneg):
1357       {
1358          SET_STACK_DOUBLE(VMdoubleNeg(STACK_DOUBLE(-1)), -1);
1359          UPDATE_PC_AND_CONTINUE(1);
1360       }
1361 
1362       /* Conversion operations */
1363 
1364       CASE(_i2f):       /* convert top of stack int to float */
1365          SET_STACK_FLOAT(VMint2Float(STACK_INT(-1)), -1);
1366          UPDATE_PC_AND_CONTINUE(1);
1367 
1368       CASE(_i2l):       /* convert top of stack int to long */
1369       {
1370           // this is ugly QQQ
1371           jlong r = VMint2Long(STACK_INT(-1));
1372           MORE_STACK(-1); // Pop
1373           SET_STACK_LONG(r, 1);
1374 
1375           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1376       }
1377 
1378       CASE(_i2d):       /* convert top of stack int to double */
1379       {
1380           // this is ugly QQQ (why cast to jlong?? )
1381           jdouble r = (jlong)STACK_INT(-1);
1382           MORE_STACK(-1); // Pop
1383           SET_STACK_DOUBLE(r, 1);
1384 
1385           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1386       }
1387 
1388       CASE(_l2i):       /* convert top of stack long to int */
1389       {
1390           jint r = VMlong2Int(STACK_LONG(-1));
1391           MORE_STACK(-2); // Pop
1392           SET_STACK_INT(r, 0);
1393           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1394       }
1395 
1396       CASE(_l2f):   /* convert top of stack long to float */
1397       {
1398           jlong r = STACK_LONG(-1);
1399           MORE_STACK(-2); // Pop
1400           SET_STACK_FLOAT(VMlong2Float(r), 0);
1401           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1402       }
1403 
1404       CASE(_l2d):       /* convert top of stack long to double */
1405       {
1406           jlong r = STACK_LONG(-1);
1407           MORE_STACK(-2); // Pop
1408           SET_STACK_DOUBLE(VMlong2Double(r), 1);
1409           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1410       }
1411 
1412       CASE(_f2i):  /* Convert top of stack float to int */
1413           SET_STACK_INT(SharedRuntime::f2i(STACK_FLOAT(-1)), -1);
1414           UPDATE_PC_AND_CONTINUE(1);
1415 
1416       CASE(_f2l):  /* convert top of stack float to long */
1417       {
1418           jlong r = SharedRuntime::f2l(STACK_FLOAT(-1));
1419           MORE_STACK(-1); // POP
1420           SET_STACK_LONG(r, 1);
1421           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1422       }
1423 
1424       CASE(_f2d):  /* convert top of stack float to double */
1425       {
1426           jfloat f;
1427           jdouble r;
1428           f = STACK_FLOAT(-1);
1429           r = (jdouble) f;
1430           MORE_STACK(-1); // POP
1431           SET_STACK_DOUBLE(r, 1);
1432           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1433       }
1434 
1435       CASE(_d2i): /* convert top of stack double to int */
1436       {
1437           jint r1 = SharedRuntime::d2i(STACK_DOUBLE(-1));
1438           MORE_STACK(-2);
1439           SET_STACK_INT(r1, 0);
1440           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1441       }
1442 
1443       CASE(_d2f): /* convert top of stack double to float */
1444       {
1445           jfloat r1 = VMdouble2Float(STACK_DOUBLE(-1));
1446           MORE_STACK(-2);
1447           SET_STACK_FLOAT(r1, 0);
1448           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1449       }
1450 
1451       CASE(_d2l): /* convert top of stack double to long */
1452       {
1453           jlong r1 = SharedRuntime::d2l(STACK_DOUBLE(-1));
1454           MORE_STACK(-2);
1455           SET_STACK_LONG(r1, 1);
1456           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 2);
1457       }
1458 
1459       CASE(_i2b):
1460           SET_STACK_INT(VMint2Byte(STACK_INT(-1)), -1);
1461           UPDATE_PC_AND_CONTINUE(1);
1462 
1463       CASE(_i2c):
1464           SET_STACK_INT(VMint2Char(STACK_INT(-1)), -1);
1465           UPDATE_PC_AND_CONTINUE(1);
1466 
1467       CASE(_i2s):
1468           SET_STACK_INT(VMint2Short(STACK_INT(-1)), -1);
1469           UPDATE_PC_AND_CONTINUE(1);
1470 
1471       /* comparison operators */
1472 
1473 
1474 #define COMPARISON_OP(name, comparison)                                      \
1475       CASE(_if_icmp##name): {                                                \
1476           const bool cmp = (STACK_INT(-2) comparison STACK_INT(-1));         \
1477           int skip = cmp                                                     \
1478                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1479           address branch_pc = pc;                                            \
1480           /* Profile branch. */                                              \
1481           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1482           UPDATE_PC_AND_TOS(skip, -2);                                       \
1483           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1484           CONTINUE;                                                          \
1485       }                                                                      \
1486       CASE(_if##name): {                                                     \
1487           const bool cmp = (STACK_INT(-1) comparison 0);                     \
1488           int skip = cmp                                                     \
1489                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1490           address branch_pc = pc;                                            \
1491           /* Profile branch. */                                              \
1492           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1493           UPDATE_PC_AND_TOS(skip, -1);                                       \
1494           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1495           CONTINUE;                                                          \
1496       }
1497 
1498 #define COMPARISON_OP2(name, comparison)                                     \
1499       COMPARISON_OP(name, comparison)                                        \
1500       CASE(_if_acmp##name): {                                                \
1501           const bool cmp = (STACK_OBJECT(-2) comparison STACK_OBJECT(-1));   \
1502           int skip = cmp                                                     \
1503                        ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;            \
1504           address branch_pc = pc;                                            \
1505           /* Profile branch. */                                              \
1506           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1507           UPDATE_PC_AND_TOS(skip, -2);                                       \
1508           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1509           CONTINUE;                                                          \
1510       }
1511 
1512 #define NULL_COMPARISON_NOT_OP(name)                                         \
1513       CASE(_if##name): {                                                     \
1514           const bool cmp = (!(STACK_OBJECT(-1) == NULL));                    \
1515           int skip = cmp                                                     \
1516                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1517           address branch_pc = pc;                                            \
1518           /* Profile branch. */                                              \
1519           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1520           UPDATE_PC_AND_TOS(skip, -1);                                       \
1521           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1522           CONTINUE;                                                          \
1523       }
1524 
1525 #define NULL_COMPARISON_OP(name)                                             \
1526       CASE(_if##name): {                                                     \
1527           const bool cmp = ((STACK_OBJECT(-1) == NULL));                     \
1528           int skip = cmp                                                     \
1529                       ? (int16_t)Bytes::get_Java_u2(pc + 1) : 3;             \
1530           address branch_pc = pc;                                            \
1531           /* Profile branch. */                                              \
1532           BI_PROFILE_UPDATE_BRANCH(/*is_taken=*/cmp);                        \
1533           UPDATE_PC_AND_TOS(skip, -1);                                       \
1534           DO_BACKEDGE_CHECKS(skip, branch_pc);                               \
1535           CONTINUE;                                                          \
1536       }
1537       COMPARISON_OP(lt, <);
1538       COMPARISON_OP(gt, >);
1539       COMPARISON_OP(le, <=);
1540       COMPARISON_OP(ge, >=);
1541       COMPARISON_OP2(eq, ==);  /* include ref comparison */
1542       COMPARISON_OP2(ne, !=);  /* include ref comparison */
1543       NULL_COMPARISON_OP(null);
1544       NULL_COMPARISON_NOT_OP(nonnull);
1545 
1546       /* Goto pc at specified offset in switch table. */
1547 
1548       CASE(_tableswitch): {
1549           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1550           int32_t  key  = STACK_INT(-1);
1551           int32_t  low  = Bytes::get_Java_u4((address)&lpc[1]);
1552           int32_t  high = Bytes::get_Java_u4((address)&lpc[2]);
1553           int32_t  skip;
1554           key -= low;
1555           if (((uint32_t) key > (uint32_t)(high - low))) {
1556             key = -1;
1557             skip = Bytes::get_Java_u4((address)&lpc[0]);
1558           } else {
1559             skip = Bytes::get_Java_u4((address)&lpc[key + 3]);
1560           }
1561           // Profile switch.
1562           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/key);
1563           // Does this really need a full backedge check (osr)?
1564           address branch_pc = pc;
1565           UPDATE_PC_AND_TOS(skip, -1);
1566           DO_BACKEDGE_CHECKS(skip, branch_pc);
1567           CONTINUE;
1568       }
1569 
1570       /* Goto pc whose table entry matches specified key. */
1571 
1572       CASE(_lookupswitch): {
1573           jint* lpc  = (jint*)VMalignWordUp(pc+1);
1574           int32_t  key  = STACK_INT(-1);
1575           int32_t  skip = Bytes::get_Java_u4((address) lpc); /* default amount */
1576           // Remember index.
1577           int      index = -1;
1578           int      newindex = 0;
1579           int32_t  npairs = Bytes::get_Java_u4((address) &lpc[1]);
1580           while (--npairs >= 0) {
1581             lpc += 2;
1582             if (key == (int32_t)Bytes::get_Java_u4((address)lpc)) {
1583               skip = Bytes::get_Java_u4((address)&lpc[1]);
1584               index = newindex;
1585               break;
1586             }
1587             newindex += 1;
1588           }
1589           // Profile switch.
1590           BI_PROFILE_UPDATE_SWITCH(/*switch_index=*/index);
1591           address branch_pc = pc;
1592           UPDATE_PC_AND_TOS(skip, -1);
1593           DO_BACKEDGE_CHECKS(skip, branch_pc);
1594           CONTINUE;
1595       }
1596 
1597       CASE(_fcmpl):
1598       CASE(_fcmpg):
1599       {
1600           SET_STACK_INT(VMfloatCompare(STACK_FLOAT(-2),
1601                                         STACK_FLOAT(-1),
1602                                         (opcode == Bytecodes::_fcmpl ? -1 : 1)),
1603                         -2);
1604           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1605       }
1606 
1607       CASE(_dcmpl):
1608       CASE(_dcmpg):
1609       {
1610           int r = VMdoubleCompare(STACK_DOUBLE(-3),
1611                                   STACK_DOUBLE(-1),
1612                                   (opcode == Bytecodes::_dcmpl ? -1 : 1));
1613           MORE_STACK(-4); // Pop
1614           SET_STACK_INT(r, 0);
1615           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1616       }
1617 
1618       CASE(_lcmp):
1619       {
1620           int r = VMlongCompare(STACK_LONG(-3), STACK_LONG(-1));
1621           MORE_STACK(-4);
1622           SET_STACK_INT(r, 0);
1623           UPDATE_PC_AND_TOS_AND_CONTINUE(1, 1);
1624       }
1625 
1626 
1627       /* Return from a method */
1628 
1629       CASE(_areturn):
1630       CASE(_ireturn):
1631       CASE(_freturn):
1632       {
1633           // Allow a safepoint before returning to frame manager.
1634           SAFEPOINT;
1635 
1636           goto handle_return;
1637       }
1638 
1639       CASE(_lreturn):
1640       CASE(_dreturn):
1641       {
1642           // Allow a safepoint before returning to frame manager.
1643           SAFEPOINT;
1644           goto handle_return;
1645       }
1646 
1647       CASE(_return_register_finalizer): {
1648 
1649           oop rcvr = LOCALS_OBJECT(0);
1650           VERIFY_OOP(rcvr);
1651           if (rcvr->klass()->has_finalizer()) {
1652             CALL_VM(InterpreterRuntime::register_finalizer(THREAD, rcvr), handle_exception);
1653           }
1654           goto handle_return;
1655       }
1656       CASE(_return): {
1657 
1658           // Allow a safepoint before returning to frame manager.
1659           SAFEPOINT;
1660           goto handle_return;
1661       }
1662 
1663       /* Array access byte-codes */
1664 
1665       /* Every array access byte-code starts out like this */
1666 //        arrayOopDesc* arrObj = (arrayOopDesc*)STACK_OBJECT(arrayOff);
1667 #define ARRAY_INTRO(arrayOff)                                                  \
1668       arrayOop arrObj = (arrayOop)STACK_OBJECT(arrayOff);                      \
1669       jint     index  = STACK_INT(arrayOff + 1);                               \
1670       char message[jintAsStringSize];                                          \
1671       CHECK_NULL(arrObj);                                                      \
1672       if ((uint32_t)index >= (uint32_t)arrObj->length()) {                     \
1673           sprintf(message, "%d", index);                                       \
1674           VM_JAVA_ERROR(vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), \
1675                         message, note_rangeCheck_trap);                        \
1676       }
1677 
1678       /* 32-bit loads. These handle conversion from < 32-bit types */
1679 #define ARRAY_LOADTO32(T, T2, format, stackRes, extra)                                \
1680       {                                                                               \
1681           ARRAY_INTRO(-2);                                                            \
1682           (void)extra;                                                                \
1683           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), \
1684                            -2);                                                       \
1685           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);                                      \
1686       }
1687 
1688       /* 64-bit loads */
1689 #define ARRAY_LOADTO64(T,T2, stackRes, extra)                                              \
1690       {                                                                                    \
1691           ARRAY_INTRO(-2);                                                                 \
1692           SET_ ## stackRes(*(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)), -1); \
1693           (void)extra;                                                                     \
1694           UPDATE_PC_AND_CONTINUE(1);                                                       \
1695       }
1696 
1697       CASE(_iaload):
1698           ARRAY_LOADTO32(T_INT, jint,   "%d",   STACK_INT, 0);
1699       CASE(_faload):
1700           ARRAY_LOADTO32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1701       CASE(_aaload): {
1702           ARRAY_INTRO(-2);
1703           SET_STACK_OBJECT(((objArrayOop) arrObj)->obj_at(index), -2);
1704           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1705       }
1706       CASE(_baload):
1707           ARRAY_LOADTO32(T_BYTE, jbyte,  "%d",   STACK_INT, 0);
1708       CASE(_caload):
1709           ARRAY_LOADTO32(T_CHAR,  jchar, "%d",   STACK_INT, 0);
1710       CASE(_saload):
1711           ARRAY_LOADTO32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1712       CASE(_laload):
1713           ARRAY_LOADTO64(T_LONG, jlong, STACK_LONG, 0);
1714       CASE(_daload):
1715           ARRAY_LOADTO64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1716 
1717       /* 32-bit stores. These handle conversion to < 32-bit types */
1718 #define ARRAY_STOREFROM32(T, T2, format, stackSrc, extra)                            \
1719       {                                                                              \
1720           ARRAY_INTRO(-3);                                                           \
1721           (void)extra;                                                               \
1722           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1723           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);                                     \
1724       }
1725 
1726       /* 64-bit stores */
1727 #define ARRAY_STOREFROM64(T, T2, stackSrc, extra)                                    \
1728       {                                                                              \
1729           ARRAY_INTRO(-4);                                                           \
1730           (void)extra;                                                               \
1731           *(T2 *)(((address) arrObj->base(T)) + index * sizeof(T2)) = stackSrc( -1); \
1732           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -4);                                     \
1733       }
1734 
1735       CASE(_iastore):
1736           ARRAY_STOREFROM32(T_INT, jint,   "%d",   STACK_INT, 0);
1737       CASE(_fastore):
1738           ARRAY_STOREFROM32(T_FLOAT, jfloat, "%f",   STACK_FLOAT, 0);
1739       /*
1740        * This one looks different because of the assignability check
1741        */
1742       CASE(_aastore): {
1743           oop rhsObject = STACK_OBJECT(-1);
1744           VERIFY_OOP(rhsObject);
1745           ARRAY_INTRO( -3);
1746           // arrObj, index are set
1747           if (rhsObject != NULL) {
1748             /* Check assignability of rhsObject into arrObj */
1749             Klass* rhsKlass = rhsObject->klass(); // EBX (subclass)
1750             Klass* elemKlass = ObjArrayKlass::cast(arrObj->klass())->element_klass(); // superklass EAX
1751             //
1752             // Check for compatibilty. This check must not GC!!
1753             // Seems way more expensive now that we must dispatch
1754             //
1755             if (rhsKlass != elemKlass && !rhsKlass->is_subtype_of(elemKlass)) { // ebx->is...
1756               // Decrement counter if subtype check failed.
1757               BI_PROFILE_SUBTYPECHECK_FAILED(rhsKlass);
1758               VM_JAVA_ERROR(vmSymbols::java_lang_ArrayStoreException(), "", note_arrayCheck_trap);
1759             }
1760             // Profile checkcast with null_seen and receiver.
1761             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, rhsKlass);
1762           } else {
1763             // Profile checkcast with null_seen and receiver.
1764             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
1765           }
1766           ((objArrayOop) arrObj)->obj_at_put(index, rhsObject);
1767           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1768       }
1769       CASE(_bastore): {
1770           ARRAY_INTRO(-3);
1771           int item = STACK_INT(-1);
1772           // if it is a T_BOOLEAN array, mask the stored value to 0/1
1773           if (arrObj->klass() == Universe::boolArrayKlassObj()) {
1774             item &= 1;
1775           } else {
1776             assert(arrObj->klass() == Universe::byteArrayKlassObj(),
1777                    "should be byte array otherwise");
1778           }
1779           ((typeArrayOop)arrObj)->byte_at_put(index, item);
1780           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -3);
1781       }
1782       CASE(_castore):
1783           ARRAY_STOREFROM32(T_CHAR, jchar,  "%d",   STACK_INT, 0);
1784       CASE(_sastore):
1785           ARRAY_STOREFROM32(T_SHORT, jshort, "%d",   STACK_INT, 0);
1786       CASE(_lastore):
1787           ARRAY_STOREFROM64(T_LONG, jlong, STACK_LONG, 0);
1788       CASE(_dastore):
1789           ARRAY_STOREFROM64(T_DOUBLE, jdouble, STACK_DOUBLE, 0);
1790 
1791       CASE(_arraylength):
1792       {
1793           arrayOop ary = (arrayOop) STACK_OBJECT(-1);
1794           CHECK_NULL(ary);
1795           SET_STACK_INT(ary->length(), -1);
1796           UPDATE_PC_AND_CONTINUE(1);
1797       }
1798 
1799       /* monitorenter and monitorexit for locking/unlocking an object */
1800 
1801       CASE(_monitorenter): {
1802         oop lockee = STACK_OBJECT(-1);
1803         // derefing's lockee ought to provoke implicit null check
1804         CHECK_NULL(lockee);
1805         // find a free monitor or one already allocated for this object
1806         // if we find a matching object then we need a new monitor
1807         // since this is recursive enter
1808         BasicObjectLock* limit = istate->monitor_base();
1809         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1810         BasicObjectLock* entry = NULL;
1811         while (most_recent != limit ) {
1812           if (most_recent->obj() == NULL) entry = most_recent;
1813           else if (most_recent->obj() == lockee) break;
1814           most_recent++;
1815         }
1816         if (entry != NULL) {
1817           entry->set_obj(lockee);
1818           int success = false;
1819           uintptr_t epoch_mask_in_place = (uintptr_t)markOopDesc::epoch_mask_in_place;
1820 
1821           markOop mark = lockee->mark();
1822           intptr_t hash = (intptr_t) markOopDesc::no_hash;
1823           // implies UseBiasedLocking
1824           if (mark->has_bias_pattern()) {
1825             uintptr_t thread_ident;
1826             uintptr_t anticipated_bias_locking_value;
1827             thread_ident = (uintptr_t)istate->thread();
1828             anticipated_bias_locking_value =
1829               (((uintptr_t)lockee->klass()->prototype_header() | thread_ident) ^ (uintptr_t)mark) &
1830               ~((uintptr_t) markOopDesc::age_mask_in_place);
1831 
1832             if  (anticipated_bias_locking_value == 0) {
1833               // already biased towards this thread, nothing to do
1834               if (PrintBiasedLockingStatistics) {
1835                 (* BiasedLocking::biased_lock_entry_count_addr())++;
1836               }
1837               success = true;
1838             }
1839             else if ((anticipated_bias_locking_value & markOopDesc::biased_lock_mask_in_place) != 0) {
1840               // try revoke bias
1841               markOop header = lockee->klass()->prototype_header();
1842               if (hash != markOopDesc::no_hash) {
1843                 header = header->copy_set_hash(hash);
1844               }
1845               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), mark) == mark) {
1846                 if (PrintBiasedLockingStatistics)
1847                   (*BiasedLocking::revoked_lock_entry_count_addr())++;
1848               }
1849             }
1850             else if ((anticipated_bias_locking_value & epoch_mask_in_place) !=0) {
1851               // try rebias
1852               markOop new_header = (markOop) ( (intptr_t) lockee->klass()->prototype_header() | thread_ident);
1853               if (hash != markOopDesc::no_hash) {
1854                 new_header = new_header->copy_set_hash(hash);
1855               }
1856               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), mark) == mark) {
1857                 if (PrintBiasedLockingStatistics)
1858                   (* BiasedLocking::rebiased_lock_entry_count_addr())++;
1859               }
1860               else {
1861                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1862               }
1863               success = true;
1864             }
1865             else {
1866               // try to bias towards thread in case object is anonymously biased
1867               markOop header = (markOop) ((uintptr_t) mark & ((uintptr_t)markOopDesc::biased_lock_mask_in_place |
1868                                                               (uintptr_t)markOopDesc::age_mask_in_place |
1869                                                               epoch_mask_in_place));
1870               if (hash != markOopDesc::no_hash) {
1871                 header = header->copy_set_hash(hash);
1872               }
1873               markOop new_header = (markOop) ((uintptr_t) header | thread_ident);
1874               // debugging hint
1875               DEBUG_ONLY(entry->lock()->set_displaced_header((markOop) (uintptr_t) 0xdeaddead);)
1876               if (Atomic::cmpxchg_ptr((void*)new_header, lockee->mark_addr(), header) == header) {
1877                 if (PrintBiasedLockingStatistics)
1878                   (* BiasedLocking::anonymously_biased_lock_entry_count_addr())++;
1879               }
1880               else {
1881                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1882               }
1883               success = true;
1884             }
1885           }
1886 
1887           // traditional lightweight locking
1888           if (!success) {
1889             markOop displaced = lockee->mark()->set_unlocked();
1890             entry->lock()->set_displaced_header(displaced);
1891             bool call_vm = UseHeavyMonitors;
1892             if (call_vm || Atomic::cmpxchg_ptr(entry, lockee->mark_addr(), displaced) != displaced) {
1893               // Is it simple recursive case?
1894               if (!call_vm && THREAD->is_lock_owned((address) displaced->clear_lock_bits())) {
1895                 entry->lock()->set_displaced_header(NULL);
1896               } else {
1897                 CALL_VM(InterpreterRuntime::monitorenter(THREAD, entry), handle_exception);
1898               }
1899             }
1900           }
1901           UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1902         } else {
1903           istate->set_msg(more_monitors);
1904           UPDATE_PC_AND_RETURN(0); // Re-execute
1905         }
1906       }
1907 
1908       CASE(_monitorexit): {
1909         oop lockee = STACK_OBJECT(-1);
1910         CHECK_NULL(lockee);
1911         // derefing's lockee ought to provoke implicit null check
1912         // find our monitor slot
1913         BasicObjectLock* limit = istate->monitor_base();
1914         BasicObjectLock* most_recent = (BasicObjectLock*) istate->stack_base();
1915         while (most_recent != limit ) {
1916           if ((most_recent)->obj() == lockee) {
1917             BasicLock* lock = most_recent->lock();
1918             markOop header = lock->displaced_header();
1919             most_recent->set_obj(NULL);
1920             if (!lockee->mark()->has_bias_pattern()) {
1921               bool call_vm = UseHeavyMonitors;
1922               // If it isn't recursive we either must swap old header or call the runtime
1923               if (header != NULL || call_vm) {
1924                 if (call_vm || Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
1925                   // restore object for the slow case
1926                   most_recent->set_obj(lockee);
1927                   CALL_VM(InterpreterRuntime::monitorexit(THREAD, most_recent), handle_exception);
1928                 }
1929               }
1930             }
1931             UPDATE_PC_AND_TOS_AND_CONTINUE(1, -1);
1932           }
1933           most_recent++;
1934         }
1935         // Need to throw illegal monitor state exception
1936         CALL_VM(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD), handle_exception);
1937         ShouldNotReachHere();
1938       }
1939 
1940       /* All of the non-quick opcodes. */
1941 
1942       /* -Set clobbersCpIndex true if the quickened opcode clobbers the
1943        *  constant pool index in the instruction.
1944        */
1945       CASE(_getfield):
1946       CASE(_getstatic):
1947         {
1948           u2 index;
1949           ConstantPoolCacheEntry* cache;
1950           index = Bytes::get_native_u2(pc+1);
1951 
1952           // QQQ Need to make this as inlined as possible. Probably need to
1953           // split all the bytecode cases out so c++ compiler has a chance
1954           // for constant prop to fold everything possible away.
1955 
1956           cache = cp->entry_at(index);
1957           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
1958             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
1959                     handle_exception);
1960             cache = cp->entry_at(index);
1961           }
1962 
1963 #ifdef VM_JVMTI
1964           if (_jvmti_interp_events) {
1965             int *count_addr;
1966             oop obj;
1967             // Check to see if a field modification watch has been set
1968             // before we take the time to call into the VM.
1969             count_addr = (int *)JvmtiExport::get_field_access_count_addr();
1970             if ( *count_addr > 0 ) {
1971               if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1972                 obj = (oop)NULL;
1973               } else {
1974                 obj = (oop) STACK_OBJECT(-1);
1975                 VERIFY_OOP(obj);
1976               }
1977               CALL_VM(InterpreterRuntime::post_field_access(THREAD,
1978                                           obj,
1979                                           cache),
1980                                           handle_exception);
1981             }
1982           }
1983 #endif /* VM_JVMTI */
1984 
1985           oop obj;
1986           if ((Bytecodes::Code)opcode == Bytecodes::_getstatic) {
1987             Klass* k = cache->f1_as_klass();
1988             obj = k->java_mirror();
1989             MORE_STACK(1);  // Assume single slot push
1990           } else {
1991             obj = (oop) STACK_OBJECT(-1);
1992             CHECK_NULL(obj);
1993           }
1994 
1995           //
1996           // Now store the result on the stack
1997           //
1998           TosState tos_type = cache->flag_state();
1999           int field_offset = cache->f2_as_index();
2000           if (cache->is_volatile()) {
2001             if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2002               OrderAccess::fence();
2003             }
2004             if (tos_type == atos) {
2005               VERIFY_OOP(obj->obj_field_acquire(field_offset));
2006               SET_STACK_OBJECT(obj->obj_field_acquire(field_offset), -1);
2007             } else if (tos_type == itos) {
2008               SET_STACK_INT(obj->int_field_acquire(field_offset), -1);
2009             } else if (tos_type == ltos) {
2010               SET_STACK_LONG(obj->long_field_acquire(field_offset), 0);
2011               MORE_STACK(1);
2012             } else if (tos_type == btos || tos_type == ztos) {
2013               SET_STACK_INT(obj->byte_field_acquire(field_offset), -1);
2014             } else if (tos_type == ctos) {
2015               SET_STACK_INT(obj->char_field_acquire(field_offset), -1);
2016             } else if (tos_type == stos) {
2017               SET_STACK_INT(obj->short_field_acquire(field_offset), -1);
2018             } else if (tos_type == ftos) {
2019               SET_STACK_FLOAT(obj->float_field_acquire(field_offset), -1);
2020             } else {
2021               SET_STACK_DOUBLE(obj->double_field_acquire(field_offset), 0);
2022               MORE_STACK(1);
2023             }
2024           } else {
2025             if (tos_type == atos) {
2026               VERIFY_OOP(obj->obj_field(field_offset));
2027               SET_STACK_OBJECT(obj->obj_field(field_offset), -1);
2028             } else if (tos_type == itos) {
2029               SET_STACK_INT(obj->int_field(field_offset), -1);
2030             } else if (tos_type == ltos) {
2031               SET_STACK_LONG(obj->long_field(field_offset), 0);
2032               MORE_STACK(1);
2033             } else if (tos_type == btos || tos_type == ztos) {
2034               SET_STACK_INT(obj->byte_field(field_offset), -1);
2035             } else if (tos_type == ctos) {
2036               SET_STACK_INT(obj->char_field(field_offset), -1);
2037             } else if (tos_type == stos) {
2038               SET_STACK_INT(obj->short_field(field_offset), -1);
2039             } else if (tos_type == ftos) {
2040               SET_STACK_FLOAT(obj->float_field(field_offset), -1);
2041             } else {
2042               SET_STACK_DOUBLE(obj->double_field(field_offset), 0);
2043               MORE_STACK(1);
2044             }
2045           }
2046 
2047           UPDATE_PC_AND_CONTINUE(3);
2048          }
2049 
2050       CASE(_putfield):
2051       CASE(_putstatic):
2052         {
2053           u2 index = Bytes::get_native_u2(pc+1);
2054           ConstantPoolCacheEntry* cache = cp->entry_at(index);
2055           if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2056             CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2057                     handle_exception);
2058             cache = cp->entry_at(index);
2059           }
2060 
2061 #ifdef VM_JVMTI
2062           if (_jvmti_interp_events) {
2063             int *count_addr;
2064             oop obj;
2065             // Check to see if a field modification watch has been set
2066             // before we take the time to call into the VM.
2067             count_addr = (int *)JvmtiExport::get_field_modification_count_addr();
2068             if ( *count_addr > 0 ) {
2069               if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2070                 obj = (oop)NULL;
2071               }
2072               else {
2073                 if (cache->is_long() || cache->is_double()) {
2074                   obj = (oop) STACK_OBJECT(-3);
2075                 } else {
2076                   obj = (oop) STACK_OBJECT(-2);
2077                 }
2078                 VERIFY_OOP(obj);
2079               }
2080 
2081               CALL_VM(InterpreterRuntime::post_field_modification(THREAD,
2082                                           obj,
2083                                           cache,
2084                                           (jvalue *)STACK_SLOT(-1)),
2085                                           handle_exception);
2086             }
2087           }
2088 #endif /* VM_JVMTI */
2089 
2090           // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2091           // out so c++ compiler has a chance for constant prop to fold everything possible away.
2092 
2093           oop obj;
2094           int count;
2095           TosState tos_type = cache->flag_state();
2096 
2097           count = -1;
2098           if (tos_type == ltos || tos_type == dtos) {
2099             --count;
2100           }
2101           if ((Bytecodes::Code)opcode == Bytecodes::_putstatic) {
2102             Klass* k = cache->f1_as_klass();
2103             obj = k->java_mirror();
2104           } else {
2105             --count;
2106             obj = (oop) STACK_OBJECT(count);
2107             CHECK_NULL(obj);
2108           }
2109 
2110           //
2111           // Now store the result
2112           //
2113           int field_offset = cache->f2_as_index();
2114           if (cache->is_volatile()) {
2115             if (tos_type == itos) {
2116               obj->release_int_field_put(field_offset, STACK_INT(-1));
2117             } else if (tos_type == atos) {
2118               VERIFY_OOP(STACK_OBJECT(-1));
2119               obj->release_obj_field_put(field_offset, STACK_OBJECT(-1));
2120             } else if (tos_type == btos) {
2121               obj->release_byte_field_put(field_offset, STACK_INT(-1));
2122             } else if (tos_type == ztos) {
2123               int bool_field = STACK_INT(-1);  // only store LSB
2124               obj->release_byte_field_put(field_offset, (bool_field & 1));
2125             } else if (tos_type == ltos) {
2126               obj->release_long_field_put(field_offset, STACK_LONG(-1));
2127             } else if (tos_type == ctos) {
2128               obj->release_char_field_put(field_offset, STACK_INT(-1));
2129             } else if (tos_type == stos) {
2130               obj->release_short_field_put(field_offset, STACK_INT(-1));
2131             } else if (tos_type == ftos) {
2132               obj->release_float_field_put(field_offset, STACK_FLOAT(-1));
2133             } else {
2134               obj->release_double_field_put(field_offset, STACK_DOUBLE(-1));
2135             }
2136             OrderAccess::storeload();
2137           } else {
2138             if (tos_type == itos) {
2139               obj->int_field_put(field_offset, STACK_INT(-1));
2140             } else if (tos_type == atos) {
2141               VERIFY_OOP(STACK_OBJECT(-1));
2142               obj->obj_field_put(field_offset, STACK_OBJECT(-1));
2143             } else if (tos_type == btos) {
2144               obj->byte_field_put(field_offset, STACK_INT(-1));
2145             } else if (tos_type == ztos) {
2146               int bool_field = STACK_INT(-1);  // only store LSB
2147               obj->byte_field_put(field_offset, (bool_field & 1));
2148             } else if (tos_type == ltos) {
2149               obj->long_field_put(field_offset, STACK_LONG(-1));
2150             } else if (tos_type == ctos) {
2151               obj->char_field_put(field_offset, STACK_INT(-1));
2152             } else if (tos_type == stos) {
2153               obj->short_field_put(field_offset, STACK_INT(-1));
2154             } else if (tos_type == ftos) {
2155               obj->float_field_put(field_offset, STACK_FLOAT(-1));
2156             } else {
2157               obj->double_field_put(field_offset, STACK_DOUBLE(-1));
2158             }
2159           }
2160 
2161           UPDATE_PC_AND_TOS_AND_CONTINUE(3, count);
2162         }
2163 
2164       CASE(_new): {
2165         u2 index = Bytes::get_Java_u2(pc+1);
2166         ConstantPool* constants = istate->method()->constants();
2167         if (!constants->tag_at(index).is_unresolved_klass()) {
2168           // Make sure klass is initialized and doesn't have a finalizer
2169           Klass* entry = constants->resolved_klass_at(index);
2170           InstanceKlass* ik = InstanceKlass::cast(entry);
2171           if (ik->is_initialized() && ik->can_be_fastpath_allocated() ) {
2172             size_t obj_size = ik->size_helper();
2173             oop result = NULL;
2174             // If the TLAB isn't pre-zeroed then we'll have to do it
2175             bool need_zero = !ZeroTLAB;
2176             if (UseTLAB) {
2177               result = (oop) THREAD->tlab().allocate(obj_size);
2178             }
2179             // Disable non-TLAB-based fast-path, because profiling requires that all
2180             // allocations go through InterpreterRuntime::_new() if THREAD->tlab().allocate
2181             // returns NULL.
2182 #ifndef CC_INTERP_PROFILE
2183             if (result == NULL) {
2184               need_zero = true;
2185               // Try allocate in shared eden
2186             retry:
2187               HeapWord* compare_to = *Universe::heap()->top_addr();
2188               HeapWord* new_top = compare_to + obj_size;
2189               if (new_top <= *Universe::heap()->end_addr()) {
2190                 if (Atomic::cmpxchg_ptr(new_top, Universe::heap()->top_addr(), compare_to) != compare_to) {
2191                   goto retry;
2192                 }
2193                 result = (oop) compare_to;
2194               }
2195             }
2196 #endif
2197             if (result != NULL) {
2198               // Initialize object (if nonzero size and need) and then the header
2199               if (need_zero ) {
2200                 HeapWord* to_zero = (HeapWord*) result + sizeof(oopDesc) / oopSize;
2201                 obj_size -= sizeof(oopDesc) / oopSize;
2202                 if (obj_size > 0 ) {
2203                   memset(to_zero, 0, obj_size * HeapWordSize);
2204                 }
2205               }
2206               if (UseBiasedLocking) {
2207                 result->set_mark(ik->prototype_header());
2208               } else {
2209                 result->set_mark(markOopDesc::prototype());
2210               }
2211               result->set_klass_gap(0);
2212               result->set_klass(ik);
2213               // Must prevent reordering of stores for object initialization
2214               // with stores that publish the new object.
2215               OrderAccess::storestore();
2216               SET_STACK_OBJECT(result, 0);
2217               UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2218             }
2219           }
2220         }
2221         // Slow case allocation
2222         CALL_VM(InterpreterRuntime::_new(THREAD, METHOD->constants(), index),
2223                 handle_exception);
2224         // Must prevent reordering of stores for object initialization
2225         // with stores that publish the new object.
2226         OrderAccess::storestore();
2227         SET_STACK_OBJECT(THREAD->vm_result(), 0);
2228         THREAD->set_vm_result(NULL);
2229         UPDATE_PC_AND_TOS_AND_CONTINUE(3, 1);
2230       }
2231       CASE(_anewarray): {
2232         u2 index = Bytes::get_Java_u2(pc+1);
2233         jint size = STACK_INT(-1);
2234         CALL_VM(InterpreterRuntime::anewarray(THREAD, METHOD->constants(), index, size),
2235                 handle_exception);
2236         // Must prevent reordering of stores for object initialization
2237         // with stores that publish the new object.
2238         OrderAccess::storestore();
2239         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2240         THREAD->set_vm_result(NULL);
2241         UPDATE_PC_AND_CONTINUE(3);
2242       }
2243       CASE(_multianewarray): {
2244         jint dims = *(pc+3);
2245         jint size = STACK_INT(-1);
2246         // stack grows down, dimensions are up!
2247         jint *dimarray =
2248                    (jint*)&topOfStack[dims * Interpreter::stackElementWords+
2249                                       Interpreter::stackElementWords-1];
2250         //adjust pointer to start of stack element
2251         CALL_VM(InterpreterRuntime::multianewarray(THREAD, dimarray),
2252                 handle_exception);
2253         // Must prevent reordering of stores for object initialization
2254         // with stores that publish the new object.
2255         OrderAccess::storestore();
2256         SET_STACK_OBJECT(THREAD->vm_result(), -dims);
2257         THREAD->set_vm_result(NULL);
2258         UPDATE_PC_AND_TOS_AND_CONTINUE(4, -(dims-1));
2259       }
2260       CASE(_checkcast):
2261           if (STACK_OBJECT(-1) != NULL) {
2262             VERIFY_OOP(STACK_OBJECT(-1));
2263             u2 index = Bytes::get_Java_u2(pc+1);
2264             // Constant pool may have actual klass or unresolved klass. If it is
2265             // unresolved we must resolve it.
2266             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2267               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2268             }
2269             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2270             Klass* objKlass = STACK_OBJECT(-1)->klass(); // ebx
2271             //
2272             // Check for compatibilty. This check must not GC!!
2273             // Seems way more expensive now that we must dispatch.
2274             //
2275             if (objKlass != klassOf && !objKlass->is_subtype_of(klassOf)) {
2276               // Decrement counter at checkcast.
2277               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2278               ResourceMark rm(THREAD);
2279               char* message = SharedRuntime::generate_class_cast_message(
2280                 objKlass, klassOf);
2281               VM_JAVA_ERROR(vmSymbols::java_lang_ClassCastException(), message, note_classCheck_trap);
2282             }
2283             // Profile checkcast with null_seen and receiver.
2284             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/false, objKlass);
2285           } else {
2286             // Profile checkcast with null_seen and receiver.
2287             BI_PROFILE_UPDATE_CHECKCAST(/*null_seen=*/true, NULL);
2288           }
2289           UPDATE_PC_AND_CONTINUE(3);
2290 
2291       CASE(_instanceof):
2292           if (STACK_OBJECT(-1) == NULL) {
2293             SET_STACK_INT(0, -1);
2294             // Profile instanceof with null_seen and receiver.
2295             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/true, NULL);
2296           } else {
2297             VERIFY_OOP(STACK_OBJECT(-1));
2298             u2 index = Bytes::get_Java_u2(pc+1);
2299             // Constant pool may have actual klass or unresolved klass. If it is
2300             // unresolved we must resolve it.
2301             if (METHOD->constants()->tag_at(index).is_unresolved_klass()) {
2302               CALL_VM(InterpreterRuntime::quicken_io_cc(THREAD), handle_exception);
2303             }
2304             Klass* klassOf = (Klass*) METHOD->constants()->resolved_klass_at(index);
2305             Klass* objKlass = STACK_OBJECT(-1)->klass();
2306             //
2307             // Check for compatibilty. This check must not GC!!
2308             // Seems way more expensive now that we must dispatch.
2309             //
2310             if ( objKlass == klassOf || objKlass->is_subtype_of(klassOf)) {
2311               SET_STACK_INT(1, -1);
2312             } else {
2313               SET_STACK_INT(0, -1);
2314               // Decrement counter at checkcast.
2315               BI_PROFILE_SUBTYPECHECK_FAILED(objKlass);
2316             }
2317             // Profile instanceof with null_seen and receiver.
2318             BI_PROFILE_UPDATE_INSTANCEOF(/*null_seen=*/false, objKlass);
2319           }
2320           UPDATE_PC_AND_CONTINUE(3);
2321 
2322       CASE(_ldc_w):
2323       CASE(_ldc):
2324         {
2325           u2 index;
2326           bool wide = false;
2327           int incr = 2; // frequent case
2328           if (opcode == Bytecodes::_ldc) {
2329             index = pc[1];
2330           } else {
2331             index = Bytes::get_Java_u2(pc+1);
2332             incr = 3;
2333             wide = true;
2334           }
2335 
2336           ConstantPool* constants = METHOD->constants();
2337           switch (constants->tag_at(index).value()) {
2338           case JVM_CONSTANT_Integer:
2339             SET_STACK_INT(constants->int_at(index), 0);
2340             break;
2341 
2342           case JVM_CONSTANT_Float:
2343             SET_STACK_FLOAT(constants->float_at(index), 0);
2344             break;
2345 
2346           case JVM_CONSTANT_String:
2347             {
2348               oop result = constants->resolved_references()->obj_at(index);
2349               if (result == NULL) {
2350                 CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode), handle_exception);
2351                 SET_STACK_OBJECT(THREAD->vm_result(), 0);
2352                 THREAD->set_vm_result(NULL);
2353               } else {
2354                 VERIFY_OOP(result);
2355                 SET_STACK_OBJECT(result, 0);
2356               }
2357             break;
2358             }
2359 
2360           case JVM_CONSTANT_Class:
2361             VERIFY_OOP(constants->resolved_klass_at(index)->java_mirror());
2362             SET_STACK_OBJECT(constants->resolved_klass_at(index)->java_mirror(), 0);
2363             break;
2364 
2365           case JVM_CONSTANT_UnresolvedClass:
2366           case JVM_CONSTANT_UnresolvedClassInError:
2367             CALL_VM(InterpreterRuntime::ldc(THREAD, wide), handle_exception);
2368             SET_STACK_OBJECT(THREAD->vm_result(), 0);
2369             THREAD->set_vm_result(NULL);
2370             break;
2371 
2372           default:  ShouldNotReachHere();
2373           }
2374           UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2375         }
2376 
2377       CASE(_ldc2_w):
2378         {
2379           u2 index = Bytes::get_Java_u2(pc+1);
2380 
2381           ConstantPool* constants = METHOD->constants();
2382           switch (constants->tag_at(index).value()) {
2383 
2384           case JVM_CONSTANT_Long:
2385              SET_STACK_LONG(constants->long_at(index), 1);
2386             break;
2387 
2388           case JVM_CONSTANT_Double:
2389              SET_STACK_DOUBLE(constants->double_at(index), 1);
2390             break;
2391           default:  ShouldNotReachHere();
2392           }
2393           UPDATE_PC_AND_TOS_AND_CONTINUE(3, 2);
2394         }
2395 
2396       CASE(_fast_aldc_w):
2397       CASE(_fast_aldc): {
2398         u2 index;
2399         int incr;
2400         if (opcode == Bytecodes::_fast_aldc) {
2401           index = pc[1];
2402           incr = 2;
2403         } else {
2404           index = Bytes::get_native_u2(pc+1);
2405           incr = 3;
2406         }
2407 
2408         // We are resolved if the f1 field contains a non-null object (CallSite, etc.)
2409         // This kind of CP cache entry does not need to match the flags byte, because
2410         // there is a 1-1 relation between bytecode type and CP entry type.
2411         ConstantPool* constants = METHOD->constants();
2412         oop result = constants->resolved_references()->obj_at(index);
2413         if (result == NULL) {
2414           CALL_VM(InterpreterRuntime::resolve_ldc(THREAD, (Bytecodes::Code) opcode),
2415                   handle_exception);
2416           result = THREAD->vm_result();
2417         }
2418 
2419         VERIFY_OOP(result);
2420         SET_STACK_OBJECT(result, 0);
2421         UPDATE_PC_AND_TOS_AND_CONTINUE(incr, 1);
2422       }
2423 
2424       CASE(_invokedynamic): {
2425 
2426         u4 index = Bytes::get_native_u4(pc+1);
2427         ConstantPoolCacheEntry* cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2428 
2429         // We are resolved if the resolved_references field contains a non-null object (CallSite, etc.)
2430         // This kind of CP cache entry does not need to match the flags byte, because
2431         // there is a 1-1 relation between bytecode type and CP entry type.
2432         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2433           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2434                   handle_exception);
2435           cache = cp->constant_pool()->invokedynamic_cp_cache_entry_at(index);
2436         }
2437 
2438         Method* method = cache->f1_as_method();
2439         if (VerifyOops) method->verify();
2440 
2441         if (cache->has_appendix()) {
2442           ConstantPool* constants = METHOD->constants();
2443           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2444           MORE_STACK(1);
2445         }
2446 
2447         istate->set_msg(call_method);
2448         istate->set_callee(method);
2449         istate->set_callee_entry_point(method->from_interpreted_entry());
2450         istate->set_bcp_advance(5);
2451 
2452         // Invokedynamic has got a call counter, just like an invokestatic -> increment!
2453         BI_PROFILE_UPDATE_CALL();
2454 
2455         UPDATE_PC_AND_RETURN(0); // I'll be back...
2456       }
2457 
2458       CASE(_invokehandle): {
2459 
2460         u2 index = Bytes::get_native_u2(pc+1);
2461         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2462 
2463         if (! cache->is_resolved((Bytecodes::Code) opcode)) {
2464           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2465                   handle_exception);
2466           cache = cp->entry_at(index);
2467         }
2468 
2469         Method* method = cache->f1_as_method();
2470         if (VerifyOops) method->verify();
2471 
2472         if (cache->has_appendix()) {
2473           ConstantPool* constants = METHOD->constants();
2474           SET_STACK_OBJECT(cache->appendix_if_resolved(constants), 0);
2475           MORE_STACK(1);
2476         }
2477 
2478         istate->set_msg(call_method);
2479         istate->set_callee(method);
2480         istate->set_callee_entry_point(method->from_interpreted_entry());
2481         istate->set_bcp_advance(3);
2482 
2483         // Invokehandle has got a call counter, just like a final call -> increment!
2484         BI_PROFILE_UPDATE_FINALCALL();
2485 
2486         UPDATE_PC_AND_RETURN(0); // I'll be back...
2487       }
2488 
2489       CASE(_invokeinterface): {
2490         u2 index = Bytes::get_native_u2(pc+1);
2491 
2492         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2493         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2494 
2495         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2496         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2497           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2498                   handle_exception);
2499           cache = cp->entry_at(index);
2500         }
2501 
2502         istate->set_msg(call_method);
2503 
2504         // Special case of invokeinterface called for virtual method of
2505         // java.lang.Object.  See cpCacheOop.cpp for details.
2506         // This code isn't produced by javac, but could be produced by
2507         // another compliant java compiler.
2508         if (cache->is_forced_virtual()) {
2509           Method* callee;
2510           CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2511           if (cache->is_vfinal()) {
2512             callee = cache->f2_as_vfinal_method();
2513             // Profile 'special case of invokeinterface' final call.
2514             BI_PROFILE_UPDATE_FINALCALL();
2515           } else {
2516             // Get receiver.
2517             int parms = cache->parameter_size();
2518             // Same comments as invokevirtual apply here.
2519             oop rcvr = STACK_OBJECT(-parms);
2520             VERIFY_OOP(rcvr);
2521             Klass* rcvrKlass = rcvr->klass();
2522             callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2523             // Profile 'special case of invokeinterface' virtual call.
2524             BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2525           }
2526           istate->set_callee(callee);
2527           istate->set_callee_entry_point(callee->from_interpreted_entry());
2528 #ifdef VM_JVMTI
2529           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2530             istate->set_callee_entry_point(callee->interpreter_entry());
2531           }
2532 #endif /* VM_JVMTI */
2533           istate->set_bcp_advance(5);
2534           UPDATE_PC_AND_RETURN(0); // I'll be back...
2535         }
2536 
2537         // this could definitely be cleaned up QQQ
2538         Method* callee;
2539         Klass* iclass = cache->f1_as_klass();
2540         // InstanceKlass* interface = (InstanceKlass*) iclass;
2541         // get receiver
2542         int parms = cache->parameter_size();
2543         oop rcvr = STACK_OBJECT(-parms);
2544         CHECK_NULL(rcvr);
2545         InstanceKlass* int2 = (InstanceKlass*) rcvr->klass();
2546         itableOffsetEntry* ki = (itableOffsetEntry*) int2->start_of_itable();
2547         int i;
2548         for ( i = 0 ; i < int2->itable_length() ; i++, ki++ ) {
2549           if (ki->interface_klass() == iclass) break;
2550         }
2551         // If the interface isn't found, this class doesn't implement this
2552         // interface.  The link resolver checks this but only for the first
2553         // time this interface is called.
2554         if (i == int2->itable_length()) {
2555           VM_JAVA_ERROR(vmSymbols::java_lang_IncompatibleClassChangeError(), "", note_no_trap);
2556         }
2557         int mindex = cache->f2_as_index();
2558         itableMethodEntry* im = ki->first_method_entry(rcvr->klass());
2559         callee = im[mindex].method();
2560         if (callee == NULL) {
2561           VM_JAVA_ERROR(vmSymbols::java_lang_AbstractMethodError(), "", note_no_trap);
2562         }
2563 
2564         // Profile virtual call.
2565         BI_PROFILE_UPDATE_VIRTUALCALL(rcvr->klass());
2566 
2567         istate->set_callee(callee);
2568         istate->set_callee_entry_point(callee->from_interpreted_entry());
2569 #ifdef VM_JVMTI
2570         if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2571           istate->set_callee_entry_point(callee->interpreter_entry());
2572         }
2573 #endif /* VM_JVMTI */
2574         istate->set_bcp_advance(5);
2575         UPDATE_PC_AND_RETURN(0); // I'll be back...
2576       }
2577 
2578       CASE(_invokevirtual):
2579       CASE(_invokespecial):
2580       CASE(_invokestatic): {
2581         u2 index = Bytes::get_native_u2(pc+1);
2582 
2583         ConstantPoolCacheEntry* cache = cp->entry_at(index);
2584         // QQQ Need to make this as inlined as possible. Probably need to split all the bytecode cases
2585         // out so c++ compiler has a chance for constant prop to fold everything possible away.
2586 
2587         if (!cache->is_resolved((Bytecodes::Code)opcode)) {
2588           CALL_VM(InterpreterRuntime::resolve_from_cache(THREAD, (Bytecodes::Code)opcode),
2589                   handle_exception);
2590           cache = cp->entry_at(index);
2591         }
2592 
2593         istate->set_msg(call_method);
2594         {
2595           Method* callee;
2596           if ((Bytecodes::Code)opcode == Bytecodes::_invokevirtual) {
2597             CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2598             if (cache->is_vfinal()) {
2599               callee = cache->f2_as_vfinal_method();
2600               // Profile final call.
2601               BI_PROFILE_UPDATE_FINALCALL();
2602             } else {
2603               // get receiver
2604               int parms = cache->parameter_size();
2605               // this works but needs a resourcemark and seems to create a vtable on every call:
2606               // Method* callee = rcvr->klass()->vtable()->method_at(cache->f2_as_index());
2607               //
2608               // this fails with an assert
2609               // InstanceKlass* rcvrKlass = InstanceKlass::cast(STACK_OBJECT(-parms)->klass());
2610               // but this works
2611               oop rcvr = STACK_OBJECT(-parms);
2612               VERIFY_OOP(rcvr);
2613               Klass* rcvrKlass = rcvr->klass();
2614               /*
2615                 Executing this code in java.lang.String:
2616                     public String(char value[]) {
2617                           this.count = value.length;
2618                           this.value = (char[])value.clone();
2619                      }
2620 
2621                  a find on rcvr->klass() reports:
2622                  {type array char}{type array class}
2623                   - klass: {other class}
2624 
2625                   but using InstanceKlass::cast(STACK_OBJECT(-parms)->klass()) causes in assertion failure
2626                   because rcvr->klass()->is_instance_klass() == 0
2627                   However it seems to have a vtable in the right location. Huh?
2628                   Because vtables have the same offset for ArrayKlass and InstanceKlass.
2629               */
2630               callee = (Method*) rcvrKlass->method_at_vtable(cache->f2_as_index());
2631               // Profile virtual call.
2632               BI_PROFILE_UPDATE_VIRTUALCALL(rcvrKlass);
2633             }
2634           } else {
2635             if ((Bytecodes::Code)opcode == Bytecodes::_invokespecial) {
2636               CHECK_NULL(STACK_OBJECT(-(cache->parameter_size())));
2637             }
2638             callee = cache->f1_as_method();
2639 
2640             // Profile call.
2641             BI_PROFILE_UPDATE_CALL();
2642           }
2643 
2644           istate->set_callee(callee);
2645           istate->set_callee_entry_point(callee->from_interpreted_entry());
2646 #ifdef VM_JVMTI
2647           if (JvmtiExport::can_post_interpreter_events() && THREAD->is_interp_only_mode()) {
2648             istate->set_callee_entry_point(callee->interpreter_entry());
2649           }
2650 #endif /* VM_JVMTI */
2651           istate->set_bcp_advance(3);
2652           UPDATE_PC_AND_RETURN(0); // I'll be back...
2653         }
2654       }
2655 
2656       /* Allocate memory for a new java object. */
2657 
2658       CASE(_newarray): {
2659         BasicType atype = (BasicType) *(pc+1);
2660         jint size = STACK_INT(-1);
2661         CALL_VM(InterpreterRuntime::newarray(THREAD, atype, size),
2662                 handle_exception);
2663         // Must prevent reordering of stores for object initialization
2664         // with stores that publish the new object.
2665         OrderAccess::storestore();
2666         SET_STACK_OBJECT(THREAD->vm_result(), -1);
2667         THREAD->set_vm_result(NULL);
2668 
2669         UPDATE_PC_AND_CONTINUE(2);
2670       }
2671 
2672       /* Throw an exception. */
2673 
2674       CASE(_athrow): {
2675           oop except_oop = STACK_OBJECT(-1);
2676           CHECK_NULL(except_oop);
2677           // set pending_exception so we use common code
2678           THREAD->set_pending_exception(except_oop, NULL, 0);
2679           goto handle_exception;
2680       }
2681 
2682       /* goto and jsr. They are exactly the same except jsr pushes
2683        * the address of the next instruction first.
2684        */
2685 
2686       CASE(_jsr): {
2687           /* push bytecode index on stack */
2688           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 3), 0);
2689           MORE_STACK(1);
2690           /* FALL THROUGH */
2691       }
2692 
2693       CASE(_goto):
2694       {
2695           int16_t offset = (int16_t)Bytes::get_Java_u2(pc + 1);
2696           // Profile jump.
2697           BI_PROFILE_UPDATE_JUMP();
2698           address branch_pc = pc;
2699           UPDATE_PC(offset);
2700           DO_BACKEDGE_CHECKS(offset, branch_pc);
2701           CONTINUE;
2702       }
2703 
2704       CASE(_jsr_w): {
2705           /* push return address on the stack */
2706           SET_STACK_ADDR(((address)pc - (intptr_t)(istate->method()->code_base()) + 5), 0);
2707           MORE_STACK(1);
2708           /* FALL THROUGH */
2709       }
2710 
2711       CASE(_goto_w):
2712       {
2713           int32_t offset = Bytes::get_Java_u4(pc + 1);
2714           // Profile jump.
2715           BI_PROFILE_UPDATE_JUMP();
2716           address branch_pc = pc;
2717           UPDATE_PC(offset);
2718           DO_BACKEDGE_CHECKS(offset, branch_pc);
2719           CONTINUE;
2720       }
2721 
2722       /* return from a jsr or jsr_w */
2723 
2724       CASE(_ret): {
2725           // Profile ret.
2726           BI_PROFILE_UPDATE_RET(/*bci=*/((int)(intptr_t)(LOCALS_ADDR(pc[1]))));
2727           // Now, update the pc.
2728           pc = istate->method()->code_base() + (intptr_t)(LOCALS_ADDR(pc[1]));
2729           UPDATE_PC_AND_CONTINUE(0);
2730       }
2731 
2732       /* debugger breakpoint */
2733 
2734       CASE(_breakpoint): {
2735           Bytecodes::Code original_bytecode;
2736           DECACHE_STATE();
2737           SET_LAST_JAVA_FRAME();
2738           original_bytecode = InterpreterRuntime::get_original_bytecode_at(THREAD,
2739                               METHOD, pc);
2740           RESET_LAST_JAVA_FRAME();
2741           CACHE_STATE();
2742           if (THREAD->has_pending_exception()) goto handle_exception;
2743             CALL_VM(InterpreterRuntime::_breakpoint(THREAD, METHOD, pc),
2744                                                     handle_exception);
2745 
2746           opcode = (jubyte)original_bytecode;
2747           goto opcode_switch;
2748       }
2749 
2750       DEFAULT:
2751           fatal("Unimplemented opcode %d = %s", opcode,
2752                 Bytecodes::name((Bytecodes::Code)opcode));
2753           goto finish;
2754 
2755       } /* switch(opc) */
2756 
2757 
2758 #ifdef USELABELS
2759     check_for_exception:
2760 #endif
2761     {
2762       if (!THREAD->has_pending_exception()) {
2763         CONTINUE;
2764       }
2765       /* We will be gcsafe soon, so flush our state. */
2766       DECACHE_PC();
2767       goto handle_exception;
2768     }
2769   do_continue: ;
2770 
2771   } /* while (1) interpreter loop */
2772 
2773 
2774   // An exception exists in the thread state see whether this activation can handle it
2775   handle_exception: {
2776 
2777     HandleMarkCleaner __hmc(THREAD);
2778     Handle except_oop(THREAD, THREAD->pending_exception());
2779     // Prevent any subsequent HandleMarkCleaner in the VM
2780     // from freeing the except_oop handle.
2781     HandleMark __hm(THREAD);
2782 
2783     THREAD->clear_pending_exception();
2784     assert(except_oop(), "No exception to process");
2785     intptr_t continuation_bci;
2786     // expression stack is emptied
2787     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2788     CALL_VM(continuation_bci = (intptr_t)InterpreterRuntime::exception_handler_for_exception(THREAD, except_oop()),
2789             handle_exception);
2790 
2791     except_oop = Handle(THREAD, THREAD->vm_result());
2792     THREAD->set_vm_result(NULL);
2793     if (continuation_bci >= 0) {
2794       // Place exception on top of stack
2795       SET_STACK_OBJECT(except_oop(), 0);
2796       MORE_STACK(1);
2797       pc = METHOD->code_base() + continuation_bci;
2798       if (log_is_enabled(Info, exceptions)) {
2799         ResourceMark rm(THREAD);
2800         stringStream tempst;
2801         tempst.print("interpreter method <%s>\n"
2802                      " at bci %d, continuing at %d for thread " INTPTR_FORMAT,
2803                      METHOD->print_value_string(),
2804                      (int)(istate->bcp() - METHOD->code_base()),
2805                      (int)continuation_bci, p2i(THREAD));
2806         Exceptions::log_exception(except_oop, tempst);
2807       }
2808       // for AbortVMOnException flag
2809       Exceptions::debug_check_abort(except_oop);
2810 
2811       // Update profiling data.
2812       BI_PROFILE_ALIGN_TO_CURRENT_BCI();
2813       goto run;
2814     }
2815     if (log_is_enabled(Info, exceptions)) {
2816       ResourceMark rm;
2817       stringStream tempst;
2818       tempst.print("interpreter method <%s>\n"
2819              " at bci %d, unwinding for thread " INTPTR_FORMAT,
2820              METHOD->print_value_string(),
2821              (int)(istate->bcp() - METHOD->code_base()),
2822              p2i(THREAD));
2823       Exceptions::log_exception(except_oop, tempst);
2824     }
2825     // for AbortVMOnException flag
2826     Exceptions::debug_check_abort(except_oop);
2827 
2828     // No handler in this activation, unwind and try again
2829     THREAD->set_pending_exception(except_oop(), NULL, 0);
2830     goto handle_return;
2831   }  // handle_exception:
2832 
2833   // Return from an interpreter invocation with the result of the interpretation
2834   // on the top of the Java Stack (or a pending exception)
2835 
2836   handle_Pop_Frame: {
2837 
2838     // We don't really do anything special here except we must be aware
2839     // that we can get here without ever locking the method (if sync).
2840     // Also we skip the notification of the exit.
2841 
2842     istate->set_msg(popping_frame);
2843     // Clear pending so while the pop is in process
2844     // we don't start another one if a call_vm is done.
2845     THREAD->clr_pop_frame_pending();
2846     // Let interpreter (only) see the we're in the process of popping a frame
2847     THREAD->set_pop_frame_in_process();
2848 
2849     goto handle_return;
2850 
2851   } // handle_Pop_Frame
2852 
2853   // ForceEarlyReturn ends a method, and returns to the caller with a return value
2854   // given by the invoker of the early return.
2855   handle_Early_Return: {
2856 
2857     istate->set_msg(early_return);
2858 
2859     // Clear expression stack.
2860     topOfStack = istate->stack_base() - Interpreter::stackElementWords;
2861 
2862     JvmtiThreadState *ts = THREAD->jvmti_thread_state();
2863 
2864     // Push the value to be returned.
2865     switch (istate->method()->result_type()) {
2866       case T_BOOLEAN:
2867       case T_SHORT:
2868       case T_BYTE:
2869       case T_CHAR:
2870       case T_INT:
2871         SET_STACK_INT(ts->earlyret_value().i, 0);
2872         MORE_STACK(1);
2873         break;
2874       case T_LONG:
2875         SET_STACK_LONG(ts->earlyret_value().j, 1);
2876         MORE_STACK(2);
2877         break;
2878       case T_FLOAT:
2879         SET_STACK_FLOAT(ts->earlyret_value().f, 0);
2880         MORE_STACK(1);
2881         break;
2882       case T_DOUBLE:
2883         SET_STACK_DOUBLE(ts->earlyret_value().d, 1);
2884         MORE_STACK(2);
2885         break;
2886       case T_ARRAY:
2887       case T_OBJECT:
2888         SET_STACK_OBJECT(ts->earlyret_oop(), 0);
2889         MORE_STACK(1);
2890         break;
2891     }
2892 
2893     ts->clr_earlyret_value();
2894     ts->set_earlyret_oop(NULL);
2895     ts->clr_earlyret_pending();
2896 
2897     // Fall through to handle_return.
2898 
2899   } // handle_Early_Return
2900 
2901   handle_return: {
2902     // A storestore barrier is required to order initialization of
2903     // final fields with publishing the reference to the object that
2904     // holds the field. Without the barrier the value of final fields
2905     // can be observed to change.
2906     OrderAccess::storestore();
2907 
2908     DECACHE_STATE();
2909 
2910     bool suppress_error = istate->msg() == popping_frame || istate->msg() == early_return;
2911     bool suppress_exit_event = THREAD->has_pending_exception() || istate->msg() == popping_frame;
2912     Handle original_exception(THREAD, THREAD->pending_exception());
2913     Handle illegal_state_oop(THREAD, NULL);
2914 
2915     // We'd like a HandleMark here to prevent any subsequent HandleMarkCleaner
2916     // in any following VM entries from freeing our live handles, but illegal_state_oop
2917     // isn't really allocated yet and so doesn't become live until later and
2918     // in unpredicatable places. Instead we must protect the places where we enter the
2919     // VM. It would be much simpler (and safer) if we could allocate a real handle with
2920     // a NULL oop in it and then overwrite the oop later as needed. This isn't
2921     // unfortunately isn't possible.
2922 
2923     THREAD->clear_pending_exception();
2924 
2925     //
2926     // As far as we are concerned we have returned. If we have a pending exception
2927     // that will be returned as this invocation's result. However if we get any
2928     // exception(s) while checking monitor state one of those IllegalMonitorStateExceptions
2929     // will be our final result (i.e. monitor exception trumps a pending exception).
2930     //
2931 
2932     // If we never locked the method (or really passed the point where we would have),
2933     // there is no need to unlock it (or look for other monitors), since that
2934     // could not have happened.
2935 
2936     if (THREAD->do_not_unlock()) {
2937 
2938       // Never locked, reset the flag now because obviously any caller must
2939       // have passed their point of locking for us to have gotten here.
2940 
2941       THREAD->clr_do_not_unlock();
2942     } else {
2943       // At this point we consider that we have returned. We now check that the
2944       // locks were properly block structured. If we find that they were not
2945       // used properly we will return with an illegal monitor exception.
2946       // The exception is checked by the caller not the callee since this
2947       // checking is considered to be part of the invocation and therefore
2948       // in the callers scope (JVM spec 8.13).
2949       //
2950       // Another weird thing to watch for is if the method was locked
2951       // recursively and then not exited properly. This means we must
2952       // examine all the entries in reverse time(and stack) order and
2953       // unlock as we find them. If we find the method monitor before
2954       // we are at the initial entry then we should throw an exception.
2955       // It is not clear the template based interpreter does this
2956       // correctly
2957 
2958       BasicObjectLock* base = istate->monitor_base();
2959       BasicObjectLock* end = (BasicObjectLock*) istate->stack_base();
2960       bool method_unlock_needed = METHOD->is_synchronized();
2961       // We know the initial monitor was used for the method don't check that
2962       // slot in the loop
2963       if (method_unlock_needed) base--;
2964 
2965       // Check all the monitors to see they are unlocked. Install exception if found to be locked.
2966       while (end < base) {
2967         oop lockee = end->obj();
2968         if (lockee != NULL) {
2969           BasicLock* lock = end->lock();
2970           markOop header = lock->displaced_header();
2971           end->set_obj(NULL);
2972 
2973           if (!lockee->mark()->has_bias_pattern()) {
2974             // If it isn't recursive we either must swap old header or call the runtime
2975             if (header != NULL) {
2976               if (Atomic::cmpxchg_ptr(header, lockee->mark_addr(), lock) != lock) {
2977                 // restore object for the slow case
2978                 end->set_obj(lockee);
2979                 {
2980                   // Prevent any HandleMarkCleaner from freeing our live handles
2981                   HandleMark __hm(THREAD);
2982                   CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, end));
2983                 }
2984               }
2985             }
2986           }
2987           // One error is plenty
2988           if (illegal_state_oop() == NULL && !suppress_error) {
2989             {
2990               // Prevent any HandleMarkCleaner from freeing our live handles
2991               HandleMark __hm(THREAD);
2992               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
2993             }
2994             assert(THREAD->has_pending_exception(), "Lost our exception!");
2995             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
2996             THREAD->clear_pending_exception();
2997           }
2998         }
2999         end++;
3000       }
3001       // Unlock the method if needed
3002       if (method_unlock_needed) {
3003         if (base->obj() == NULL) {
3004           // The method is already unlocked this is not good.
3005           if (illegal_state_oop() == NULL && !suppress_error) {
3006             {
3007               // Prevent any HandleMarkCleaner from freeing our live handles
3008               HandleMark __hm(THREAD);
3009               CALL_VM_NOCHECK(InterpreterRuntime::throw_illegal_monitor_state_exception(THREAD));
3010             }
3011             assert(THREAD->has_pending_exception(), "Lost our exception!");
3012             illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3013             THREAD->clear_pending_exception();
3014           }
3015         } else {
3016           //
3017           // The initial monitor is always used for the method
3018           // However if that slot is no longer the oop for the method it was unlocked
3019           // and reused by something that wasn't unlocked!
3020           //
3021           // deopt can come in with rcvr dead because c2 knows
3022           // its value is preserved in the monitor. So we can't use locals[0] at all
3023           // and must use first monitor slot.
3024           //
3025           oop rcvr = base->obj();
3026           if (rcvr == NULL) {
3027             if (!suppress_error) {
3028               VM_JAVA_ERROR_NO_JUMP(vmSymbols::java_lang_NullPointerException(), "", note_nullCheck_trap);
3029               illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3030               THREAD->clear_pending_exception();
3031             }
3032           } else if (UseHeavyMonitors) {
3033             {
3034               // Prevent any HandleMarkCleaner from freeing our live handles.
3035               HandleMark __hm(THREAD);
3036               CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3037             }
3038             if (THREAD->has_pending_exception()) {
3039               if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3040               THREAD->clear_pending_exception();
3041             }
3042           } else {
3043             BasicLock* lock = base->lock();
3044             markOop header = lock->displaced_header();
3045             base->set_obj(NULL);
3046 
3047             if (!rcvr->mark()->has_bias_pattern()) {
3048               base->set_obj(NULL);
3049               // If it isn't recursive we either must swap old header or call the runtime
3050               if (header != NULL) {
3051                 if (Atomic::cmpxchg_ptr(header, rcvr->mark_addr(), lock) != lock) {
3052                   // restore object for the slow case
3053                   base->set_obj(rcvr);
3054                   {
3055                     // Prevent any HandleMarkCleaner from freeing our live handles
3056                     HandleMark __hm(THREAD);
3057                     CALL_VM_NOCHECK(InterpreterRuntime::monitorexit(THREAD, base));
3058                   }
3059                   if (THREAD->has_pending_exception()) {
3060                     if (!suppress_error) illegal_state_oop = Handle(THREAD, THREAD->pending_exception());
3061                     THREAD->clear_pending_exception();
3062                   }
3063                 }
3064               }
3065             }
3066           }
3067         }
3068       }
3069     }
3070     // Clear the do_not_unlock flag now.
3071     THREAD->clr_do_not_unlock();
3072 
3073     //
3074     // Notify jvmti/jvmdi
3075     //
3076     // NOTE: we do not notify a method_exit if we have a pending exception,
3077     // including an exception we generate for unlocking checks.  In the former
3078     // case, JVMDI has already been notified by our call for the exception handler
3079     // and in both cases as far as JVMDI is concerned we have already returned.
3080     // If we notify it again JVMDI will be all confused about how many frames
3081     // are still on the stack (4340444).
3082     //
3083     // NOTE Further! It turns out the the JVMTI spec in fact expects to see
3084     // method_exit events whenever we leave an activation unless it was done
3085     // for popframe. This is nothing like jvmdi. However we are passing the
3086     // tests at the moment (apparently because they are jvmdi based) so rather
3087     // than change this code and possibly fail tests we will leave it alone
3088     // (with this note) in anticipation of changing the vm and the tests
3089     // simultaneously.
3090 
3091 
3092     //
3093     suppress_exit_event = suppress_exit_event || illegal_state_oop() != NULL;
3094 
3095 
3096 
3097 #ifdef VM_JVMTI
3098       if (_jvmti_interp_events) {
3099         // Whenever JVMTI puts a thread in interp_only_mode, method
3100         // entry/exit events are sent for that thread to track stack depth.
3101         if ( !suppress_exit_event && THREAD->is_interp_only_mode() ) {
3102           {
3103             // Prevent any HandleMarkCleaner from freeing our live handles
3104             HandleMark __hm(THREAD);
3105             CALL_VM_NOCHECK(InterpreterRuntime::post_method_exit(THREAD));
3106           }
3107         }
3108       }
3109 #endif /* VM_JVMTI */
3110 
3111     //
3112     // See if we are returning any exception
3113     // A pending exception that was pending prior to a possible popping frame
3114     // overrides the popping frame.
3115     //
3116     assert(!suppress_error || (suppress_error && illegal_state_oop() == NULL), "Error was not suppressed");
3117     if (illegal_state_oop() != NULL || original_exception() != NULL) {
3118       // Inform the frame manager we have no result.
3119       istate->set_msg(throwing_exception);
3120       if (illegal_state_oop() != NULL)
3121         THREAD->set_pending_exception(illegal_state_oop(), NULL, 0);
3122       else
3123         THREAD->set_pending_exception(original_exception(), NULL, 0);
3124       UPDATE_PC_AND_RETURN(0);
3125     }
3126 
3127     if (istate->msg() == popping_frame) {
3128       // Make it simpler on the assembly code and set the message for the frame pop.
3129       // returns
3130       if (istate->prev() == NULL) {
3131         // We must be returning to a deoptimized frame (because popframe only happens between
3132         // two interpreted frames). We need to save the current arguments in C heap so that
3133         // the deoptimized frame when it restarts can copy the arguments to its expression
3134         // stack and re-execute the call. We also have to notify deoptimization that this
3135         // has occurred and to pick the preserved args copy them to the deoptimized frame's
3136         // java expression stack. Yuck.
3137         //
3138         THREAD->popframe_preserve_args(in_ByteSize(METHOD->size_of_parameters() * wordSize),
3139                                 LOCALS_SLOT(METHOD->size_of_parameters() - 1));
3140         THREAD->set_popframe_condition_bit(JavaThread::popframe_force_deopt_reexecution_bit);
3141       }
3142     } else {
3143       istate->set_msg(return_from_method);
3144     }
3145 
3146     // Normal return
3147     // Advance the pc and return to frame manager
3148     UPDATE_PC_AND_RETURN(1);
3149   } /* handle_return: */
3150 
3151 // This is really a fatal error return
3152 
3153 finish:
3154   DECACHE_TOS();
3155   DECACHE_PC();
3156 
3157   return;
3158 }
3159 
3160 /*
3161  * All the code following this point is only produced once and is not present
3162  * in the JVMTI version of the interpreter
3163 */
3164 
3165 #ifndef VM_JVMTI
3166 
3167 // This constructor should only be used to contruct the object to signal
3168 // interpreter initialization. All other instances should be created by
3169 // the frame manager.
3170 BytecodeInterpreter::BytecodeInterpreter(messages msg) {
3171   if (msg != initialize) ShouldNotReachHere();
3172   _msg = msg;
3173   _self_link = this;
3174   _prev_link = NULL;
3175 }
3176 
3177 // Inline static functions for Java Stack and Local manipulation
3178 
3179 // The implementations are platform dependent. We have to worry about alignment
3180 // issues on some machines which can change on the same platform depending on
3181 // whether it is an LP64 machine also.
3182 address BytecodeInterpreter::stack_slot(intptr_t *tos, int offset) {
3183   return (address) tos[Interpreter::expr_index_at(-offset)];
3184 }
3185 
3186 jint BytecodeInterpreter::stack_int(intptr_t *tos, int offset) {
3187   return *((jint*) &tos[Interpreter::expr_index_at(-offset)]);
3188 }
3189 
3190 jfloat BytecodeInterpreter::stack_float(intptr_t *tos, int offset) {
3191   return *((jfloat *) &tos[Interpreter::expr_index_at(-offset)]);
3192 }
3193 
3194 oop BytecodeInterpreter::stack_object(intptr_t *tos, int offset) {
3195   return cast_to_oop(tos [Interpreter::expr_index_at(-offset)]);
3196 }
3197 
3198 jdouble BytecodeInterpreter::stack_double(intptr_t *tos, int offset) {
3199   return ((VMJavaVal64*) &tos[Interpreter::expr_index_at(-offset)])->d;
3200 }
3201 
3202 jlong BytecodeInterpreter::stack_long(intptr_t *tos, int offset) {
3203   return ((VMJavaVal64 *) &tos[Interpreter::expr_index_at(-offset)])->l;
3204 }
3205 
3206 // only used for value types
3207 void BytecodeInterpreter::set_stack_slot(intptr_t *tos, address value,
3208                                                         int offset) {
3209   *((address *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3210 }
3211 
3212 void BytecodeInterpreter::set_stack_int(intptr_t *tos, int value,
3213                                                        int offset) {
3214   *((jint *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3215 }
3216 
3217 void BytecodeInterpreter::set_stack_float(intptr_t *tos, jfloat value,
3218                                                          int offset) {
3219   *((jfloat *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3220 }
3221 
3222 void BytecodeInterpreter::set_stack_object(intptr_t *tos, oop value,
3223                                                           int offset) {
3224   *((oop *)&tos[Interpreter::expr_index_at(-offset)]) = value;
3225 }
3226 
3227 // needs to be platform dep for the 32 bit platforms.
3228 void BytecodeInterpreter::set_stack_double(intptr_t *tos, jdouble value,
3229                                                           int offset) {
3230   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d = value;
3231 }
3232 
3233 void BytecodeInterpreter::set_stack_double_from_addr(intptr_t *tos,
3234                                               address addr, int offset) {
3235   (((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->d =
3236                         ((VMJavaVal64*)addr)->d);
3237 }
3238 
3239 void BytecodeInterpreter::set_stack_long(intptr_t *tos, jlong value,
3240                                                         int offset) {
3241   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3242   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l = value;
3243 }
3244 
3245 void BytecodeInterpreter::set_stack_long_from_addr(intptr_t *tos,
3246                                             address addr, int offset) {
3247   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset+1)])->l = 0xdeedbeeb;
3248   ((VMJavaVal64*)&tos[Interpreter::expr_index_at(-offset)])->l =
3249                         ((VMJavaVal64*)addr)->l;
3250 }
3251 
3252 // Locals
3253 
3254 address BytecodeInterpreter::locals_slot(intptr_t* locals, int offset) {
3255   return (address)locals[Interpreter::local_index_at(-offset)];
3256 }
3257 jint BytecodeInterpreter::locals_int(intptr_t* locals, int offset) {
3258   return (jint)locals[Interpreter::local_index_at(-offset)];
3259 }
3260 jfloat BytecodeInterpreter::locals_float(intptr_t* locals, int offset) {
3261   return (jfloat)locals[Interpreter::local_index_at(-offset)];
3262 }
3263 oop BytecodeInterpreter::locals_object(intptr_t* locals, int offset) {
3264   return cast_to_oop(locals[Interpreter::local_index_at(-offset)]);
3265 }
3266 jdouble BytecodeInterpreter::locals_double(intptr_t* locals, int offset) {
3267   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d;
3268 }
3269 jlong BytecodeInterpreter::locals_long(intptr_t* locals, int offset) {
3270   return ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l;
3271 }
3272 
3273 // Returns the address of locals value.
3274 address BytecodeInterpreter::locals_long_at(intptr_t* locals, int offset) {
3275   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3276 }
3277 address BytecodeInterpreter::locals_double_at(intptr_t* locals, int offset) {
3278   return ((address)&locals[Interpreter::local_index_at(-(offset+1))]);
3279 }
3280 
3281 // Used for local value or returnAddress
3282 void BytecodeInterpreter::set_locals_slot(intptr_t *locals,
3283                                    address value, int offset) {
3284   *((address*)&locals[Interpreter::local_index_at(-offset)]) = value;
3285 }
3286 void BytecodeInterpreter::set_locals_int(intptr_t *locals,
3287                                    jint value, int offset) {
3288   *((jint *)&locals[Interpreter::local_index_at(-offset)]) = value;
3289 }
3290 void BytecodeInterpreter::set_locals_float(intptr_t *locals,
3291                                    jfloat value, int offset) {
3292   *((jfloat *)&locals[Interpreter::local_index_at(-offset)]) = value;
3293 }
3294 void BytecodeInterpreter::set_locals_object(intptr_t *locals,
3295                                    oop value, int offset) {
3296   *((oop *)&locals[Interpreter::local_index_at(-offset)]) = value;
3297 }
3298 void BytecodeInterpreter::set_locals_double(intptr_t *locals,
3299                                    jdouble value, int offset) {
3300   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = value;
3301 }
3302 void BytecodeInterpreter::set_locals_long(intptr_t *locals,
3303                                    jlong value, int offset) {
3304   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = value;
3305 }
3306 void BytecodeInterpreter::set_locals_double_from_addr(intptr_t *locals,
3307                                    address addr, int offset) {
3308   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->d = ((VMJavaVal64*)addr)->d;
3309 }
3310 void BytecodeInterpreter::set_locals_long_from_addr(intptr_t *locals,
3311                                    address addr, int offset) {
3312   ((VMJavaVal64*)&locals[Interpreter::local_index_at(-(offset+1))])->l = ((VMJavaVal64*)addr)->l;
3313 }
3314 
3315 void BytecodeInterpreter::astore(intptr_t* tos,    int stack_offset,
3316                           intptr_t* locals, int locals_offset) {
3317   intptr_t value = tos[Interpreter::expr_index_at(-stack_offset)];
3318   locals[Interpreter::local_index_at(-locals_offset)] = value;
3319 }
3320 
3321 
3322 void BytecodeInterpreter::copy_stack_slot(intptr_t *tos, int from_offset,
3323                                    int to_offset) {
3324   tos[Interpreter::expr_index_at(-to_offset)] =
3325                       (intptr_t)tos[Interpreter::expr_index_at(-from_offset)];
3326 }
3327 
3328 void BytecodeInterpreter::dup(intptr_t *tos) {
3329   copy_stack_slot(tos, -1, 0);
3330 }
3331 void BytecodeInterpreter::dup2(intptr_t *tos) {
3332   copy_stack_slot(tos, -2, 0);
3333   copy_stack_slot(tos, -1, 1);
3334 }
3335 
3336 void BytecodeInterpreter::dup_x1(intptr_t *tos) {
3337   /* insert top word two down */
3338   copy_stack_slot(tos, -1, 0);
3339   copy_stack_slot(tos, -2, -1);
3340   copy_stack_slot(tos, 0, -2);
3341 }
3342 
3343 void BytecodeInterpreter::dup_x2(intptr_t *tos) {
3344   /* insert top word three down  */
3345   copy_stack_slot(tos, -1, 0);
3346   copy_stack_slot(tos, -2, -1);
3347   copy_stack_slot(tos, -3, -2);
3348   copy_stack_slot(tos, 0, -3);
3349 }
3350 void BytecodeInterpreter::dup2_x1(intptr_t *tos) {
3351   /* insert top 2 slots three down */
3352   copy_stack_slot(tos, -1, 1);
3353   copy_stack_slot(tos, -2, 0);
3354   copy_stack_slot(tos, -3, -1);
3355   copy_stack_slot(tos, 1, -2);
3356   copy_stack_slot(tos, 0, -3);
3357 }
3358 void BytecodeInterpreter::dup2_x2(intptr_t *tos) {
3359   /* insert top 2 slots four down */
3360   copy_stack_slot(tos, -1, 1);
3361   copy_stack_slot(tos, -2, 0);
3362   copy_stack_slot(tos, -3, -1);
3363   copy_stack_slot(tos, -4, -2);
3364   copy_stack_slot(tos, 1, -3);
3365   copy_stack_slot(tos, 0, -4);
3366 }
3367 
3368 
3369 void BytecodeInterpreter::swap(intptr_t *tos) {
3370   // swap top two elements
3371   intptr_t val = tos[Interpreter::expr_index_at(1)];
3372   // Copy -2 entry to -1
3373   copy_stack_slot(tos, -2, -1);
3374   // Store saved -1 entry into -2
3375   tos[Interpreter::expr_index_at(2)] = val;
3376 }
3377 // --------------------------------------------------------------------------------
3378 // Non-product code
3379 #ifndef PRODUCT
3380 
3381 const char* BytecodeInterpreter::C_msg(BytecodeInterpreter::messages msg) {
3382   switch (msg) {
3383      case BytecodeInterpreter::no_request:  return("no_request");
3384      case BytecodeInterpreter::initialize:  return("initialize");
3385      // status message to C++ interpreter
3386      case BytecodeInterpreter::method_entry:  return("method_entry");
3387      case BytecodeInterpreter::method_resume:  return("method_resume");
3388      case BytecodeInterpreter::got_monitors:  return("got_monitors");
3389      case BytecodeInterpreter::rethrow_exception:  return("rethrow_exception");
3390      // requests to frame manager from C++ interpreter
3391      case BytecodeInterpreter::call_method:  return("call_method");
3392      case BytecodeInterpreter::return_from_method:  return("return_from_method");
3393      case BytecodeInterpreter::more_monitors:  return("more_monitors");
3394      case BytecodeInterpreter::throwing_exception:  return("throwing_exception");
3395      case BytecodeInterpreter::popping_frame:  return("popping_frame");
3396      case BytecodeInterpreter::do_osr:  return("do_osr");
3397      // deopt
3398      case BytecodeInterpreter::deopt_resume:  return("deopt_resume");
3399      case BytecodeInterpreter::deopt_resume2:  return("deopt_resume2");
3400      default: return("BAD MSG");
3401   }
3402 }
3403 void
3404 BytecodeInterpreter::print() {
3405   tty->print_cr("thread: " INTPTR_FORMAT, (uintptr_t) this->_thread);
3406   tty->print_cr("bcp: " INTPTR_FORMAT, (uintptr_t) this->_bcp);
3407   tty->print_cr("locals: " INTPTR_FORMAT, (uintptr_t) this->_locals);
3408   tty->print_cr("constants: " INTPTR_FORMAT, (uintptr_t) this->_constants);
3409   {
3410     ResourceMark rm;
3411     char *method_name = _method->name_and_sig_as_C_string();
3412     tty->print_cr("method: " INTPTR_FORMAT "[ %s ]",  (uintptr_t) this->_method, method_name);
3413   }
3414   tty->print_cr("mdx: " INTPTR_FORMAT, (uintptr_t) this->_mdx);
3415   tty->print_cr("stack: " INTPTR_FORMAT, (uintptr_t) this->_stack);
3416   tty->print_cr("msg: %s", C_msg(this->_msg));
3417   tty->print_cr("result_to_call._callee: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee);
3418   tty->print_cr("result_to_call._callee_entry_point: " INTPTR_FORMAT, (uintptr_t) this->_result._to_call._callee_entry_point);
3419   tty->print_cr("result_to_call._bcp_advance: %d ", this->_result._to_call._bcp_advance);
3420   tty->print_cr("osr._osr_buf: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_buf);
3421   tty->print_cr("osr._osr_entry: " INTPTR_FORMAT, (uintptr_t) this->_result._osr._osr_entry);
3422   tty->print_cr("prev_link: " INTPTR_FORMAT, (uintptr_t) this->_prev_link);
3423   tty->print_cr("native_mirror: " INTPTR_FORMAT, (uintptr_t) p2i(this->_oop_temp));
3424   tty->print_cr("stack_base: " INTPTR_FORMAT, (uintptr_t) this->_stack_base);
3425   tty->print_cr("stack_limit: " INTPTR_FORMAT, (uintptr_t) this->_stack_limit);
3426   tty->print_cr("monitor_base: " INTPTR_FORMAT, (uintptr_t) this->_monitor_base);
3427 #ifdef SPARC
3428   tty->print_cr("last_Java_pc: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_pc);
3429   tty->print_cr("frame_bottom: " INTPTR_FORMAT, (uintptr_t) this->_frame_bottom);
3430   tty->print_cr("&native_fresult: " INTPTR_FORMAT, (uintptr_t) &this->_native_fresult);
3431   tty->print_cr("native_lresult: " INTPTR_FORMAT, (uintptr_t) this->_native_lresult);
3432 #endif
3433 #if !defined(ZERO) && defined(PPC)
3434   tty->print_cr("last_Java_fp: " INTPTR_FORMAT, (uintptr_t) this->_last_Java_fp);
3435 #endif // !ZERO
3436   tty->print_cr("self_link: " INTPTR_FORMAT, (uintptr_t) this->_self_link);
3437 }
3438 
3439 extern "C" {
3440   void PI(uintptr_t arg) {
3441     ((BytecodeInterpreter*)arg)->print();
3442   }
3443 }
3444 #endif // PRODUCT
3445 
3446 #endif // JVMTI
3447 #endif // CC_INTERP