1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generationSpec.hpp"
  41 #include "gc/shared/space.hpp"
  42 #include "gc/shared/strongRootsScope.hpp"
  43 #include "gc/shared/vmGCOperations.hpp"
  44 #include "gc/shared/workgroup.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/management.hpp"
  55 #include "services/memoryService.hpp"
  56 #include "utilities/debug.hpp"
  57 #include "utilities/formatBuffer.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 #include "utilities/vmError.hpp"
  61 #if INCLUDE_ALL_GCS
  62 #include "gc/cms/concurrentMarkSweepThread.hpp"
  63 #include "gc/cms/vmCMSOperations.hpp"
  64 #endif // INCLUDE_ALL_GCS
  65 
  66 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  67 
  68 // The set of potentially parallel tasks in root scanning.
  69 enum GCH_strong_roots_tasks {
  70   GCH_PS_Universe_oops_do,
  71   GCH_PS_JNIHandles_oops_do,
  72   GCH_PS_ObjectSynchronizer_oops_do,
  73   GCH_PS_FlatProfiler_oops_do,
  74   GCH_PS_Management_oops_do,
  75   GCH_PS_SystemDictionary_oops_do,
  76   GCH_PS_ClassLoaderDataGraph_oops_do,
  77   GCH_PS_jvmti_oops_do,
  78   GCH_PS_CodeCache_oops_do,
  79   GCH_PS_aot_oops_do,
  80   GCH_PS_younger_gens,
  81   // Leave this one last.
  82   GCH_PS_NumElements
  83 };
  84 
  85 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  86   CollectedHeap(),
  87   _rem_set(NULL),
  88   _gen_policy(policy),
  89   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  90   _full_collections_completed(0)
  91 {
  92   assert(policy != NULL, "Sanity check");
  93   if (UseConcMarkSweepGC) {
  94     _workers = new WorkGang("GC Thread", ParallelGCThreads,
  95                             /* are_GC_task_threads */true,
  96                             /* are_ConcurrentGC_threads */false);
  97     _workers->initialize_workers();
  98   } else {
  99     // Serial GC does not use workers.
 100     _workers = NULL;
 101   }
 102 }
 103 
 104 jint GenCollectedHeap::initialize() {
 105   CollectedHeap::pre_initialize();
 106 
 107   // While there are no constraints in the GC code that HeapWordSize
 108   // be any particular value, there are multiple other areas in the
 109   // system which believe this to be true (e.g. oop->object_size in some
 110   // cases incorrectly returns the size in wordSize units rather than
 111   // HeapWordSize).
 112   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
 113 
 114   // Allocate space for the heap.
 115 
 116   char* heap_address;
 117   ReservedSpace heap_rs;
 118 
 119   size_t heap_alignment = collector_policy()->heap_alignment();
 120 
 121   heap_address = allocate(heap_alignment, &heap_rs);
 122 
 123   if (!heap_rs.is_reserved()) {
 124     vm_shutdown_during_initialization(
 125       "Could not reserve enough space for object heap");
 126     return JNI_ENOMEM;
 127   }
 128 
 129   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 130 
 131   _rem_set = collector_policy()->create_rem_set(reserved_region());
 132   set_barrier_set(rem_set()->bs());
 133 
 134   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 135   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 136   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 137 
 138   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 139   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 140   clear_incremental_collection_failed();
 141 
 142 #if INCLUDE_ALL_GCS
 143   // If we are running CMS, create the collector responsible
 144   // for collecting the CMS generations.
 145   if (collector_policy()->is_concurrent_mark_sweep_policy()) {
 146     bool success = create_cms_collector();
 147     if (!success) return JNI_ENOMEM;
 148   }
 149 #endif // INCLUDE_ALL_GCS
 150 
 151   return JNI_OK;
 152 }
 153 
 154 char* GenCollectedHeap::allocate(size_t alignment,
 155                                  ReservedSpace* heap_rs){
 156   // Now figure out the total size.
 157   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 158   assert(alignment % pageSize == 0, "Must be");
 159 
 160   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 161   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 162 
 163   // Check for overflow.
 164   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 165   if (total_reserved < young_spec->max_size()) {
 166     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 167                                   "the maximum representable size");
 168   }
 169   assert(total_reserved % alignment == 0,
 170          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 171          SIZE_FORMAT, total_reserved, alignment);
 172 
 173   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 174 
 175   os::trace_page_sizes("Heap",
 176                        collector_policy()->min_heap_byte_size(),
 177                        total_reserved,
 178                        alignment,
 179                        heap_rs->base(),
 180                        heap_rs->size());
 181 
 182   return heap_rs->base();
 183 }
 184 
 185 void GenCollectedHeap::post_initialize() {
 186   ref_processing_init();
 187   assert((_young_gen->kind() == Generation::DefNew) ||
 188          (_young_gen->kind() == Generation::ParNew),
 189     "Wrong youngest generation type");
 190   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 191 
 192   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep ||
 193          _old_gen->kind() == Generation::MarkSweepCompact,
 194     "Wrong generation kind");
 195 
 196   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 197                                       _old_gen->capacity(),
 198                                       def_new_gen->from()->capacity());
 199   _gen_policy->initialize_gc_policy_counters();
 200 }
 201 
 202 void GenCollectedHeap::ref_processing_init() {
 203   _young_gen->ref_processor_init();
 204   _old_gen->ref_processor_init();
 205 }
 206 
 207 size_t GenCollectedHeap::capacity() const {
 208   return _young_gen->capacity() + _old_gen->capacity();
 209 }
 210 
 211 size_t GenCollectedHeap::used() const {
 212   return _young_gen->used() + _old_gen->used();
 213 }
 214 
 215 void GenCollectedHeap::save_used_regions() {
 216   _old_gen->save_used_region();
 217   _young_gen->save_used_region();
 218 }
 219 
 220 size_t GenCollectedHeap::max_capacity() const {
 221   return _young_gen->max_capacity() + _old_gen->max_capacity();
 222 }
 223 
 224 // Update the _full_collections_completed counter
 225 // at the end of a stop-world full GC.
 226 unsigned int GenCollectedHeap::update_full_collections_completed() {
 227   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 228   assert(_full_collections_completed <= _total_full_collections,
 229          "Can't complete more collections than were started");
 230   _full_collections_completed = _total_full_collections;
 231   ml.notify_all();
 232   return _full_collections_completed;
 233 }
 234 
 235 // Update the _full_collections_completed counter, as appropriate,
 236 // at the end of a concurrent GC cycle. Note the conditional update
 237 // below to allow this method to be called by a concurrent collector
 238 // without synchronizing in any manner with the VM thread (which
 239 // may already have initiated a STW full collection "concurrently").
 240 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 241   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 242   assert((_full_collections_completed <= _total_full_collections) &&
 243          (count <= _total_full_collections),
 244          "Can't complete more collections than were started");
 245   if (count > _full_collections_completed) {
 246     _full_collections_completed = count;
 247     ml.notify_all();
 248   }
 249   return _full_collections_completed;
 250 }
 251 
 252 
 253 #ifndef PRODUCT
 254 // Override of memory state checking method in CollectedHeap:
 255 // Some collectors (CMS for example) can't have badHeapWordVal written
 256 // in the first two words of an object. (For instance , in the case of
 257 // CMS these words hold state used to synchronize between certain
 258 // (concurrent) GC steps and direct allocating mutators.)
 259 // The skip_header_HeapWords() method below, allows us to skip
 260 // over the requisite number of HeapWord's. Note that (for
 261 // generational collectors) this means that those many words are
 262 // skipped in each object, irrespective of the generation in which
 263 // that object lives. The resultant loss of precision seems to be
 264 // harmless and the pain of avoiding that imprecision appears somewhat
 265 // higher than we are prepared to pay for such rudimentary debugging
 266 // support.
 267 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 268                                                          size_t size) {
 269   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 270     // We are asked to check a size in HeapWords,
 271     // but the memory is mangled in juint words.
 272     juint* start = (juint*) (addr + skip_header_HeapWords());
 273     juint* end   = (juint*) (addr + size);
 274     for (juint* slot = start; slot < end; slot += 1) {
 275       assert(*slot == badHeapWordVal,
 276              "Found non badHeapWordValue in pre-allocation check");
 277     }
 278   }
 279 }
 280 #endif
 281 
 282 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 283                                                bool is_tlab,
 284                                                bool first_only) {
 285   HeapWord* res = NULL;
 286 
 287   if (_young_gen->should_allocate(size, is_tlab)) {
 288     res = _young_gen->allocate(size, is_tlab);
 289     if (res != NULL || first_only) {
 290       return res;
 291     }
 292   }
 293 
 294   if (_old_gen->should_allocate(size, is_tlab)) {
 295     res = _old_gen->allocate(size, is_tlab);
 296   }
 297 
 298   return res;
 299 }
 300 
 301 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 302                                          bool* gc_overhead_limit_was_exceeded) {
 303   return gen_policy()->mem_allocate_work(size,
 304                                          false /* is_tlab */,
 305                                          gc_overhead_limit_was_exceeded);
 306 }
 307 
 308 bool GenCollectedHeap::must_clear_all_soft_refs() {
 309   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 310          _gc_cause == GCCause::_wb_full_gc;
 311 }
 312 
 313 bool GenCollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
 314   if (!UseConcMarkSweepGC) {
 315     return false;
 316   }
 317 
 318   switch (cause) {
 319     case GCCause::_gc_locker:           return GCLockerInvokesConcurrent;
 320     case GCCause::_java_lang_system_gc:
 321     case GCCause::_dcmd_gc_run:         return ExplicitGCInvokesConcurrent;
 322     default:                            return false;
 323   }
 324 }
 325 
 326 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 327                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 328                                           bool restore_marks_for_biased_locking) {
 329   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 330   GCTraceTime(Trace, gc, phases) t1(title);
 331   TraceCollectorStats tcs(gen->counters());
 332   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 333 
 334   gen->stat_record()->invocations++;
 335   gen->stat_record()->accumulated_time.start();
 336 
 337   // Must be done anew before each collection because
 338   // a previous collection will do mangling and will
 339   // change top of some spaces.
 340   record_gen_tops_before_GC();
 341 
 342   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 343 
 344   if (run_verification && VerifyBeforeGC) {
 345     HandleMark hm;  // Discard invalid handles created during verification
 346     Universe::verify("Before GC");
 347   }
 348   COMPILER2_PRESENT(DerivedPointerTable::clear());
 349 
 350   if (restore_marks_for_biased_locking) {
 351     // We perform this mark word preservation work lazily
 352     // because it's only at this point that we know whether we
 353     // absolutely have to do it; we want to avoid doing it for
 354     // scavenge-only collections where it's unnecessary
 355     BiasedLocking::preserve_marks();
 356   }
 357 
 358   // Do collection work
 359   {
 360     // Note on ref discovery: For what appear to be historical reasons,
 361     // GCH enables and disabled (by enqueing) refs discovery.
 362     // In the future this should be moved into the generation's
 363     // collect method so that ref discovery and enqueueing concerns
 364     // are local to a generation. The collect method could return
 365     // an appropriate indication in the case that notification on
 366     // the ref lock was needed. This will make the treatment of
 367     // weak refs more uniform (and indeed remove such concerns
 368     // from GCH). XXX
 369 
 370     HandleMark hm;  // Discard invalid handles created during gc
 371     save_marks();   // save marks for all gens
 372     // We want to discover references, but not process them yet.
 373     // This mode is disabled in process_discovered_references if the
 374     // generation does some collection work, or in
 375     // enqueue_discovered_references if the generation returns
 376     // without doing any work.
 377     ReferenceProcessor* rp = gen->ref_processor();
 378     // If the discovery of ("weak") refs in this generation is
 379     // atomic wrt other collectors in this configuration, we
 380     // are guaranteed to have empty discovered ref lists.
 381     if (rp->discovery_is_atomic()) {
 382       rp->enable_discovery();
 383       rp->setup_policy(clear_soft_refs);
 384     } else {
 385       // collect() below will enable discovery as appropriate
 386     }
 387     gen->collect(full, clear_soft_refs, size, is_tlab);
 388     if (!rp->enqueuing_is_done()) {
 389       rp->enqueue_discovered_references();
 390     } else {
 391       rp->set_enqueuing_is_done(false);
 392     }
 393     rp->verify_no_references_recorded();
 394   }
 395 
 396   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 397 
 398   gen->stat_record()->accumulated_time.stop();
 399 
 400   update_gc_stats(gen, full);
 401 
 402   if (run_verification && VerifyAfterGC) {
 403     HandleMark hm;  // Discard invalid handles created during verification
 404     Universe::verify("After GC");
 405   }
 406 }
 407 
 408 void GenCollectedHeap::do_collection(bool           full,
 409                                      bool           clear_all_soft_refs,
 410                                      size_t         size,
 411                                      bool           is_tlab,
 412                                      GenerationType max_generation) {
 413   ResourceMark rm;
 414   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 415 
 416   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 417   assert(my_thread->is_VM_thread() ||
 418          my_thread->is_ConcurrentGC_thread(),
 419          "incorrect thread type capability");
 420   assert(Heap_lock->is_locked(),
 421          "the requesting thread should have the Heap_lock");
 422   guarantee(!is_gc_active(), "collection is not reentrant");
 423 
 424   if (GCLocker::check_active_before_gc()) {
 425     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 426   }
 427 
 428   GCIdMarkAndRestore gc_id_mark;
 429 
 430   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 431                           collector_policy()->should_clear_all_soft_refs();
 432 
 433   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 434 
 435   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 436 
 437   print_heap_before_gc();
 438 
 439   {
 440     FlagSetting fl(_is_gc_active, true);
 441 
 442     bool complete = full && (max_generation == OldGen);
 443     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 444     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 445 
 446     FormatBuffer<> gc_string("%s", "Pause ");
 447     if (do_young_collection) {
 448       gc_string.append("Young");
 449     } else {
 450       gc_string.append("Full");
 451     }
 452 
 453     GCTraceCPUTime tcpu;
 454     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 455 
 456     gc_prologue(complete);
 457     increment_total_collections(complete);
 458 
 459     size_t young_prev_used = _young_gen->used();
 460     size_t old_prev_used = _old_gen->used();
 461 
 462     bool run_verification = total_collections() >= VerifyGCStartAt;
 463 
 464     bool prepared_for_verification = false;
 465     bool collected_old = false;
 466 
 467     if (do_young_collection) {
 468       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 469         prepare_for_verify();
 470         prepared_for_verification = true;
 471       }
 472 
 473       collect_generation(_young_gen,
 474                          full,
 475                          size,
 476                          is_tlab,
 477                          run_verification && VerifyGCLevel <= 0,
 478                          do_clear_all_soft_refs,
 479                          false);
 480 
 481       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 482           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 483         // Allocation request was met by young GC.
 484         size = 0;
 485       }
 486     }
 487 
 488     bool must_restore_marks_for_biased_locking = false;
 489 
 490     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 491       if (!complete) {
 492         // The full_collections increment was missed above.
 493         increment_total_full_collections();
 494       }
 495 
 496       if (!prepared_for_verification && run_verification &&
 497           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 498         prepare_for_verify();
 499       }
 500 
 501       if (do_young_collection) {
 502         // We did a young GC. Need a new GC id for the old GC.
 503         GCIdMarkAndRestore gc_id_mark;
 504         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 505         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 506       } else {
 507         // No young GC done. Use the same GC id as was set up earlier in this method.
 508         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 509       }
 510 
 511       must_restore_marks_for_biased_locking = true;
 512       collected_old = true;
 513     }
 514 
 515     // Update "complete" boolean wrt what actually transpired --
 516     // for instance, a promotion failure could have led to
 517     // a whole heap collection.
 518     complete = complete || collected_old;
 519 
 520     print_heap_change(young_prev_used, old_prev_used);
 521     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 522 
 523     // Adjust generation sizes.
 524     if (collected_old) {
 525       _old_gen->compute_new_size();
 526     }
 527     _young_gen->compute_new_size();
 528 
 529     if (complete) {
 530       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 531       ClassLoaderDataGraph::purge();
 532       MetaspaceAux::verify_metrics();
 533       // Resize the metaspace capacity after full collections
 534       MetaspaceGC::compute_new_size();
 535       update_full_collections_completed();
 536     }
 537 
 538     // Track memory usage and detect low memory after GC finishes
 539     MemoryService::track_memory_usage();
 540 
 541     gc_epilogue(complete);
 542 
 543     if (must_restore_marks_for_biased_locking) {
 544       BiasedLocking::restore_marks();
 545     }
 546   }
 547 
 548   print_heap_after_gc();
 549 
 550 #ifdef TRACESPINNING
 551   ParallelTaskTerminator::print_termination_counts();
 552 #endif
 553 }
 554 
 555 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 556   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 557 }
 558 
 559 #ifdef ASSERT
 560 class AssertNonScavengableClosure: public OopClosure {
 561 public:
 562   virtual void do_oop(oop* p) {
 563     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 564       "Referent should not be scavengable.");  }
 565   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 566 };
 567 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 568 #endif
 569 
 570 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 571                                      ScanningOption so,
 572                                      OopClosure* strong_roots,
 573                                      OopClosure* weak_roots,
 574                                      CLDClosure* strong_cld_closure,
 575                                      CLDClosure* weak_cld_closure,
 576                                      CodeBlobToOopClosure* code_roots) {
 577   // General roots.
 578   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 579   assert(code_roots != NULL, "code root closure should always be set");
 580   // _n_termination for _process_strong_tasks should be set up stream
 581   // in a method not running in a GC worker.  Otherwise the GC worker
 582   // could be trying to change the termination condition while the task
 583   // is executing in another GC worker.
 584 
 585   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 586     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 587   }
 588 
 589   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 590   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 591 
 592   bool is_par = scope->n_threads() > 1;
 593   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 594 
 595   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 596     Universe::oops_do(strong_roots);
 597   }
 598   // Global (strong) JNI handles
 599   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 600     JNIHandles::oops_do(strong_roots);
 601   }
 602 
 603   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 604     ObjectSynchronizer::oops_do(strong_roots);
 605   }
 606   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 607     FlatProfiler::oops_do(strong_roots);
 608   }
 609   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 610     Management::oops_do(strong_roots);
 611   }
 612   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 613     JvmtiExport::oops_do(strong_roots);
 614   }
 615   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 616     AOTLoader::oops_do(strong_roots);
 617   }
 618 
 619   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 620     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 621   }
 622 
 623   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 624     if (so & SO_ScavengeCodeCache) {
 625       assert(code_roots != NULL, "must supply closure for code cache");
 626 
 627       // We only visit parts of the CodeCache when scavenging.
 628       CodeCache::scavenge_root_nmethods_do(code_roots);
 629     }
 630     if (so & SO_AllCodeCache) {
 631       assert(code_roots != NULL, "must supply closure for code cache");
 632 
 633       // CMSCollector uses this to do intermediate-strength collections.
 634       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 635       CodeCache::blobs_do(code_roots);
 636     }
 637     // Verify that the code cache contents are not subject to
 638     // movement by a scavenging collection.
 639     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 640     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 641   }
 642 }
 643 
 644 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 645                                                   OopClosure* root_closure) {
 646   assert(root_closure != NULL, "Must be set");
 647   // All threads execute the following. A specific chunk of buckets
 648   // from the StringTable are the individual tasks.
 649   if (scope->n_threads() > 1) {
 650     StringTable::possibly_parallel_oops_do(root_closure);
 651   } else {
 652     StringTable::oops_do(root_closure);
 653   }
 654 }
 655 
 656 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 657                                            OopsInGenClosure* root_closure,
 658                                            OopsInGenClosure* old_gen_closure,
 659                                            CLDClosure* cld_closure) {
 660   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 661 
 662   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 663                 cld_closure, cld_closure, &mark_code_closure);
 664   process_string_table_roots(scope, root_closure);
 665 
 666   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 667     root_closure->reset_generation();
 668   }
 669 
 670   // When collection is parallel, all threads get to cooperate to do
 671   // old generation scanning.
 672   old_gen_closure->set_generation(_old_gen);
 673   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 674   old_gen_closure->reset_generation();
 675 
 676   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 677 }
 678 
 679 void GenCollectedHeap::cms_process_roots(StrongRootsScope* scope,
 680                                          bool young_gen_as_roots,
 681                                          ScanningOption so,
 682                                          bool only_strong_roots,
 683                                          OopsInGenClosure* root_closure,
 684                                          CLDClosure* cld_closure) {
 685   MarkingCodeBlobClosure mark_code_closure(root_closure, !CodeBlobToOopClosure::FixRelocations);
 686   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 687   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 688 
 689   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 690   if (!only_strong_roots) {
 691     process_string_table_roots(scope, root_closure);
 692   }
 693 
 694   if (young_gen_as_roots &&
 695       !_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 696     root_closure->set_generation(_young_gen);
 697     _young_gen->oop_iterate(root_closure);
 698     root_closure->reset_generation();
 699   }
 700 
 701   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 702 }
 703 
 704 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 705                                           bool is_adjust_phase,
 706                                           ScanningOption so,
 707                                           bool only_strong_roots,
 708                                           OopsInGenClosure* root_closure,
 709                                           CLDClosure* cld_closure) {
 710   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 711   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 712   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 713 
 714   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 715   if (is_adjust_phase) {
 716     // We never treat the string table as roots during marking
 717     // for the full gc, so we only need to process it during
 718     // the adjust phase.
 719     process_string_table_roots(scope, root_closure);
 720   }
 721 
 722   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 723 }
 724 
 725 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 726   JNIHandles::weak_oops_do(root_closure);
 727   _young_gen->ref_processor()->weak_oops_do(root_closure);
 728   _old_gen->ref_processor()->weak_oops_do(root_closure);
 729 }
 730 
 731 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 732 void GenCollectedHeap::                                                 \
 733 oop_since_save_marks_iterate(GenerationType gen,                        \
 734                              OopClosureType* cur,                       \
 735                              OopClosureType* older) {                   \
 736   if (gen == YoungGen) {                              \
 737     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 738     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 739   } else {                                                              \
 740     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 741   }                                                                     \
 742 }
 743 
 744 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 745 
 746 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 747 
 748 bool GenCollectedHeap::no_allocs_since_save_marks() {
 749   return _young_gen->no_allocs_since_save_marks() &&
 750          _old_gen->no_allocs_since_save_marks();
 751 }
 752 
 753 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 754   return _young_gen->supports_inline_contig_alloc();
 755 }
 756 
 757 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 758   return _young_gen->top_addr();
 759 }
 760 
 761 HeapWord** GenCollectedHeap::end_addr() const {
 762   return _young_gen->end_addr();
 763 }
 764 
 765 // public collection interfaces
 766 
 767 void GenCollectedHeap::collect(GCCause::Cause cause) {
 768   if (should_do_concurrent_full_gc(cause)) {
 769 #if INCLUDE_ALL_GCS
 770     // Mostly concurrent full collection.
 771     collect_mostly_concurrent(cause);
 772 #else  // INCLUDE_ALL_GCS
 773     ShouldNotReachHere();
 774 #endif // INCLUDE_ALL_GCS
 775   } else if (cause == GCCause::_wb_young_gc) {
 776     // Young collection for the WhiteBox API.
 777     collect(cause, YoungGen);
 778   } else {
 779 #ifdef ASSERT
 780   if (cause == GCCause::_scavenge_alot) {
 781     // Young collection only.
 782     collect(cause, YoungGen);
 783   } else {
 784     // Stop-the-world full collection.
 785     collect(cause, OldGen);
 786   }
 787 #else
 788     // Stop-the-world full collection.
 789     collect(cause, OldGen);
 790 #endif
 791   }
 792 }
 793 
 794 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 795   // The caller doesn't have the Heap_lock
 796   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 797   MutexLocker ml(Heap_lock);
 798   collect_locked(cause, max_generation);
 799 }
 800 
 801 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 802   // The caller has the Heap_lock
 803   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 804   collect_locked(cause, OldGen);
 805 }
 806 
 807 // this is the private collection interface
 808 // The Heap_lock is expected to be held on entry.
 809 
 810 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 811   // Read the GC count while holding the Heap_lock
 812   unsigned int gc_count_before      = total_collections();
 813   unsigned int full_gc_count_before = total_full_collections();
 814   {
 815     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 816     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 817                          cause, max_generation);
 818     VMThread::execute(&op);
 819   }
 820 }
 821 
 822 #if INCLUDE_ALL_GCS
 823 bool GenCollectedHeap::create_cms_collector() {
 824 
 825   assert(_old_gen->kind() == Generation::ConcurrentMarkSweep,
 826          "Unexpected generation kinds");
 827   // Skip two header words in the block content verification
 828   NOT_PRODUCT(_skip_header_HeapWords = CMSCollector::skip_header_HeapWords();)
 829   assert(_gen_policy->is_concurrent_mark_sweep_policy(), "Unexpected policy type");
 830   CMSCollector* collector =
 831     new CMSCollector((ConcurrentMarkSweepGeneration*)_old_gen,
 832                      _rem_set,
 833                      _gen_policy->as_concurrent_mark_sweep_policy());
 834 
 835   if (collector == NULL || !collector->completed_initialization()) {
 836     if (collector) {
 837       delete collector;  // Be nice in embedded situation
 838     }
 839     vm_shutdown_during_initialization("Could not create CMS collector");
 840     return false;
 841   }
 842   return true;  // success
 843 }
 844 
 845 void GenCollectedHeap::collect_mostly_concurrent(GCCause::Cause cause) {
 846   assert(!Heap_lock->owned_by_self(), "Should not own Heap_lock");
 847 
 848   MutexLocker ml(Heap_lock);
 849   // Read the GC counts while holding the Heap_lock
 850   unsigned int full_gc_count_before = total_full_collections();
 851   unsigned int gc_count_before      = total_collections();
 852   {
 853     MutexUnlocker mu(Heap_lock);
 854     VM_GenCollectFullConcurrent op(gc_count_before, full_gc_count_before, cause);
 855     VMThread::execute(&op);
 856   }
 857 }
 858 #endif // INCLUDE_ALL_GCS
 859 
 860 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 861    do_full_collection(clear_all_soft_refs, OldGen);
 862 }
 863 
 864 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 865                                           GenerationType last_generation) {
 866   GenerationType local_last_generation;
 867   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 868       gc_cause() == GCCause::_gc_locker) {
 869     local_last_generation = YoungGen;
 870   } else {
 871     local_last_generation = last_generation;
 872   }
 873 
 874   do_collection(true,                   // full
 875                 clear_all_soft_refs,    // clear_all_soft_refs
 876                 0,                      // size
 877                 false,                  // is_tlab
 878                 local_last_generation); // last_generation
 879   // Hack XXX FIX ME !!!
 880   // A scavenge may not have been attempted, or may have
 881   // been attempted and failed, because the old gen was too full
 882   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 883       incremental_collection_will_fail(false /* don't consult_young */)) {
 884     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 885     // This time allow the old gen to be collected as well
 886     do_collection(true,                // full
 887                   clear_all_soft_refs, // clear_all_soft_refs
 888                   0,                   // size
 889                   false,               // is_tlab
 890                   OldGen);             // last_generation
 891   }
 892 }
 893 
 894 bool GenCollectedHeap::is_in_young(oop p) {
 895   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 896   assert(result == _young_gen->is_in_reserved(p),
 897          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 898   return result;
 899 }
 900 
 901 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 902 bool GenCollectedHeap::is_in(const void* p) const {
 903   return _young_gen->is_in(p) || _old_gen->is_in(p);
 904 }
 905 
 906 #ifdef ASSERT
 907 // Don't implement this by using is_in_young().  This method is used
 908 // in some cases to check that is_in_young() is correct.
 909 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 910   assert(is_in_reserved(p) || p == NULL,
 911     "Does not work if address is non-null and outside of the heap");
 912   return p < _young_gen->reserved().end() && p != NULL;
 913 }
 914 #endif
 915 
 916 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 917   NoHeaderExtendedOopClosure no_header_cl(cl);
 918   oop_iterate(&no_header_cl);
 919 }
 920 
 921 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 922   _young_gen->oop_iterate(cl);
 923   _old_gen->oop_iterate(cl);
 924 }
 925 
 926 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 927   _young_gen->object_iterate(cl);
 928   _old_gen->object_iterate(cl);
 929 }
 930 
 931 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 932   _young_gen->safe_object_iterate(cl);
 933   _old_gen->safe_object_iterate(cl);
 934 }
 935 
 936 Space* GenCollectedHeap::space_containing(const void* addr) const {
 937   Space* res = _young_gen->space_containing(addr);
 938   if (res != NULL) {
 939     return res;
 940   }
 941   res = _old_gen->space_containing(addr);
 942   assert(res != NULL, "Could not find containing space");
 943   return res;
 944 }
 945 
 946 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 947   assert(is_in_reserved(addr), "block_start of address outside of heap");
 948   if (_young_gen->is_in_reserved(addr)) {
 949     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 950     return _young_gen->block_start(addr);
 951   }
 952 
 953   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 954   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 955   return _old_gen->block_start(addr);
 956 }
 957 
 958 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 959   assert(is_in_reserved(addr), "block_size of address outside of heap");
 960   if (_young_gen->is_in_reserved(addr)) {
 961     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 962     return _young_gen->block_size(addr);
 963   }
 964 
 965   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 966   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 967   return _old_gen->block_size(addr);
 968 }
 969 
 970 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 971   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 972   assert(block_start(addr) == addr, "addr must be a block start");
 973   if (_young_gen->is_in_reserved(addr)) {
 974     return _young_gen->block_is_obj(addr);
 975   }
 976 
 977   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 978   return _old_gen->block_is_obj(addr);
 979 }
 980 
 981 bool GenCollectedHeap::supports_tlab_allocation() const {
 982   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 983   return _young_gen->supports_tlab_allocation();
 984 }
 985 
 986 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 987   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 988   if (_young_gen->supports_tlab_allocation()) {
 989     return _young_gen->tlab_capacity();
 990   }
 991   return 0;
 992 }
 993 
 994 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 995   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 996   if (_young_gen->supports_tlab_allocation()) {
 997     return _young_gen->tlab_used();
 998   }
 999   return 0;
1000 }
1001 
1002 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
1003   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
1004   if (_young_gen->supports_tlab_allocation()) {
1005     return _young_gen->unsafe_max_tlab_alloc();
1006   }
1007   return 0;
1008 }
1009 
1010 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
1011   bool gc_overhead_limit_was_exceeded;
1012   return gen_policy()->mem_allocate_work(size /* size */,
1013                                          true /* is_tlab */,
1014                                          &gc_overhead_limit_was_exceeded);
1015 }
1016 
1017 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
1018 // from the list headed by "*prev_ptr".
1019 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
1020   bool first = true;
1021   size_t min_size = 0;   // "first" makes this conceptually infinite.
1022   ScratchBlock **smallest_ptr, *smallest;
1023   ScratchBlock  *cur = *prev_ptr;
1024   while (cur) {
1025     assert(*prev_ptr == cur, "just checking");
1026     if (first || cur->num_words < min_size) {
1027       smallest_ptr = prev_ptr;
1028       smallest     = cur;
1029       min_size     = smallest->num_words;
1030       first        = false;
1031     }
1032     prev_ptr = &cur->next;
1033     cur     =  cur->next;
1034   }
1035   smallest      = *smallest_ptr;
1036   *smallest_ptr = smallest->next;
1037   return smallest;
1038 }
1039 
1040 // Sort the scratch block list headed by res into decreasing size order,
1041 // and set "res" to the result.
1042 static void sort_scratch_list(ScratchBlock*& list) {
1043   ScratchBlock* sorted = NULL;
1044   ScratchBlock* unsorted = list;
1045   while (unsorted) {
1046     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
1047     smallest->next  = sorted;
1048     sorted          = smallest;
1049   }
1050   list = sorted;
1051 }
1052 
1053 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
1054                                                size_t max_alloc_words) {
1055   ScratchBlock* res = NULL;
1056   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
1057   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
1058   sort_scratch_list(res);
1059   return res;
1060 }
1061 
1062 void GenCollectedHeap::release_scratch() {
1063   _young_gen->reset_scratch();
1064   _old_gen->reset_scratch();
1065 }
1066 
1067 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
1068   void do_generation(Generation* gen) {
1069     gen->prepare_for_verify();
1070   }
1071 };
1072 
1073 void GenCollectedHeap::prepare_for_verify() {
1074   ensure_parsability(false);        // no need to retire TLABs
1075   GenPrepareForVerifyClosure blk;
1076   generation_iterate(&blk, false);
1077 }
1078 
1079 void GenCollectedHeap::generation_iterate(GenClosure* cl,
1080                                           bool old_to_young) {
1081   if (old_to_young) {
1082     cl->do_generation(_old_gen);
1083     cl->do_generation(_young_gen);
1084   } else {
1085     cl->do_generation(_young_gen);
1086     cl->do_generation(_old_gen);
1087   }
1088 }
1089 
1090 bool GenCollectedHeap::is_maximal_no_gc() const {
1091   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
1092 }
1093 
1094 void GenCollectedHeap::save_marks() {
1095   _young_gen->save_marks();
1096   _old_gen->save_marks();
1097 }
1098 
1099 GenCollectedHeap* GenCollectedHeap::heap() {
1100   CollectedHeap* heap = Universe::heap();
1101   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
1102   assert(heap->kind() == CollectedHeap::GenCollectedHeap, "Not a GenCollectedHeap");
1103   return (GenCollectedHeap*)heap;
1104 }
1105 
1106 void GenCollectedHeap::prepare_for_compaction() {
1107   // Start by compacting into same gen.
1108   CompactPoint cp(_old_gen);
1109   _old_gen->prepare_for_compaction(&cp);
1110   _young_gen->prepare_for_compaction(&cp);
1111 }
1112 
1113 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
1114   log_debug(gc, verify)("%s", _old_gen->name());
1115   _old_gen->verify();
1116 
1117   log_debug(gc, verify)("%s", _old_gen->name());
1118   _young_gen->verify();
1119 
1120   log_debug(gc, verify)("RemSet");
1121   rem_set()->verify();
1122 }
1123 
1124 void GenCollectedHeap::print_on(outputStream* st) const {
1125   _young_gen->print_on(st);
1126   _old_gen->print_on(st);
1127   MetaspaceAux::print_on(st);
1128 }
1129 
1130 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1131   if (workers() != NULL) {
1132     workers()->threads_do(tc);
1133   }
1134 #if INCLUDE_ALL_GCS
1135   if (UseConcMarkSweepGC) {
1136     ConcurrentMarkSweepThread::threads_do(tc);
1137   }
1138 #endif // INCLUDE_ALL_GCS
1139 }
1140 
1141 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1142 #if INCLUDE_ALL_GCS
1143   if (UseConcMarkSweepGC) {
1144     workers()->print_worker_threads_on(st);
1145     ConcurrentMarkSweepThread::print_all_on(st);
1146   }
1147 #endif // INCLUDE_ALL_GCS
1148 }
1149 
1150 void GenCollectedHeap::print_on_error(outputStream* st) const {
1151   this->CollectedHeap::print_on_error(st);
1152 
1153 #if INCLUDE_ALL_GCS
1154   if (UseConcMarkSweepGC) {
1155     st->cr();
1156     CMSCollector::print_on_error(st);
1157   }
1158 #endif // INCLUDE_ALL_GCS
1159 }
1160 
1161 void GenCollectedHeap::print_tracing_info() const {
1162   if (TraceYoungGenTime) {
1163     _young_gen->print_summary_info();
1164   }
1165   if (TraceOldGenTime) {
1166     _old_gen->print_summary_info();
1167   }
1168 }
1169 
1170 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1171   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1172                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1173   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1174                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1175 }
1176 
1177 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1178  private:
1179   bool _full;
1180  public:
1181   void do_generation(Generation* gen) {
1182     gen->gc_prologue(_full);
1183   }
1184   GenGCPrologueClosure(bool full) : _full(full) {};
1185 };
1186 
1187 void GenCollectedHeap::gc_prologue(bool full) {
1188   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1189 
1190   always_do_update_barrier = false;
1191   // Fill TLAB's and such
1192   CollectedHeap::accumulate_statistics_all_tlabs();
1193   ensure_parsability(true);   // retire TLABs
1194 
1195   // Walk generations
1196   GenGCPrologueClosure blk(full);
1197   generation_iterate(&blk, false);  // not old-to-young.
1198 };
1199 
1200 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1201  private:
1202   bool _full;
1203  public:
1204   void do_generation(Generation* gen) {
1205     gen->gc_epilogue(_full);
1206   }
1207   GenGCEpilogueClosure(bool full) : _full(full) {};
1208 };
1209 
1210 void GenCollectedHeap::gc_epilogue(bool full) {
1211 #if defined(COMPILER2) || INCLUDE_JVMCI
1212   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1213   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1214   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1215 #endif /* COMPILER2 || INCLUDE_JVMCI */
1216 
1217   resize_all_tlabs();
1218 
1219   GenGCEpilogueClosure blk(full);
1220   generation_iterate(&blk, false);  // not old-to-young.
1221 
1222   if (!CleanChunkPoolAsync) {
1223     Chunk::clean_chunk_pool();
1224   }
1225 
1226   MetaspaceCounters::update_performance_counters();
1227   CompressedClassSpaceCounters::update_performance_counters();
1228 
1229   always_do_update_barrier = UseConcMarkSweepGC;
1230 };
1231 
1232 #ifndef PRODUCT
1233 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1234  private:
1235  public:
1236   void do_generation(Generation* gen) {
1237     gen->record_spaces_top();
1238   }
1239 };
1240 
1241 void GenCollectedHeap::record_gen_tops_before_GC() {
1242   if (ZapUnusedHeapArea) {
1243     GenGCSaveTopsBeforeGCClosure blk;
1244     generation_iterate(&blk, false);  // not old-to-young.
1245   }
1246 }
1247 #endif  // not PRODUCT
1248 
1249 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1250  public:
1251   void do_generation(Generation* gen) {
1252     gen->ensure_parsability();
1253   }
1254 };
1255 
1256 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1257   CollectedHeap::ensure_parsability(retire_tlabs);
1258   GenEnsureParsabilityClosure ep_cl;
1259   generation_iterate(&ep_cl, false);
1260 }
1261 
1262 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1263                                               oop obj,
1264                                               size_t obj_size) {
1265   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1266   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1267   HeapWord* result = NULL;
1268 
1269   result = old_gen->expand_and_allocate(obj_size, false);
1270 
1271   if (result != NULL) {
1272     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1273   }
1274   return oop(result);
1275 }
1276 
1277 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1278   jlong _time;   // in ms
1279   jlong _now;    // in ms
1280 
1281  public:
1282   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1283 
1284   jlong time() { return _time; }
1285 
1286   void do_generation(Generation* gen) {
1287     _time = MIN2(_time, gen->time_of_last_gc(_now));
1288   }
1289 };
1290 
1291 jlong GenCollectedHeap::millis_since_last_gc() {
1292   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1293   // provided the underlying platform provides such a time source
1294   // (and it is bug free). So we still have to guard against getting
1295   // back a time later than 'now'.
1296   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1297   GenTimeOfLastGCClosure tolgc_cl(now);
1298   // iterate over generations getting the oldest
1299   // time that a generation was collected
1300   generation_iterate(&tolgc_cl, false);
1301 
1302   jlong retVal = now - tolgc_cl.time();
1303   if (retVal < 0) {
1304     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1305        ". returning zero instead.", retVal);
1306     return 0;
1307   }
1308   return retVal;
1309 }
1310 
1311 void GenCollectedHeap::stop() {
1312 #if INCLUDE_ALL_GCS
1313   if (UseConcMarkSweepGC) {
1314     ConcurrentMarkSweepThread::cmst()->stop();
1315   }
1316 #endif
1317 }