1 /*
   2  * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "gc/shared/collectedHeap.inline.hpp"
  33 #include "gc/shared/collectorCounters.hpp"
  34 #include "gc/shared/gcId.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/gcTrace.hpp"
  37 #include "gc/shared/gcTraceTime.inline.hpp"
  38 #include "gc/shared/genCollectedHeap.hpp"
  39 #include "gc/shared/genOopClosures.inline.hpp"
  40 #include "gc/shared/generationSpec.hpp"
  41 #include "gc/shared/space.hpp"
  42 #include "gc/shared/strongRootsScope.hpp"
  43 #include "gc/shared/vmGCOperations.hpp"
  44 #include "gc/shared/workgroup.hpp"
  45 #include "memory/filemap.hpp"
  46 #include "memory/resourceArea.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/fprofiler.hpp"
  50 #include "runtime/handles.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/java.hpp"
  53 #include "runtime/vmThread.hpp"
  54 #include "services/management.hpp"
  55 #include "services/memoryService.hpp"
  56 #include "utilities/debug.hpp"
  57 #include "utilities/formatBuffer.hpp"
  58 #include "utilities/macros.hpp"
  59 #include "utilities/stack.inline.hpp"
  60 #include "utilities/vmError.hpp"
  61 
  62 NOT_PRODUCT(size_t GenCollectedHeap::_skip_header_HeapWords = 0;)
  63 
  64 GenCollectedHeap::GenCollectedHeap(GenCollectorPolicy *policy) :
  65   CollectedHeap(),
  66   _rem_set(NULL),
  67   _gen_policy(policy),
  68   _process_strong_tasks(new SubTasksDone(GCH_PS_NumElements)),
  69   _full_collections_completed(0)
  70 {
  71   assert(policy != NULL, "Sanity check");
  72 }
  73 
  74 jint GenCollectedHeap::initialize() {
  75   CollectedHeap::pre_initialize();
  76 
  77   // While there are no constraints in the GC code that HeapWordSize
  78   // be any particular value, there are multiple other areas in the
  79   // system which believe this to be true (e.g. oop->object_size in some
  80   // cases incorrectly returns the size in wordSize units rather than
  81   // HeapWordSize).
  82   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
  83 
  84   // Allocate space for the heap.
  85 
  86   char* heap_address;
  87   ReservedSpace heap_rs;
  88 
  89   size_t heap_alignment = collector_policy()->heap_alignment();
  90 
  91   heap_address = allocate(heap_alignment, &heap_rs);
  92 
  93   if (!heap_rs.is_reserved()) {
  94     vm_shutdown_during_initialization(
  95       "Could not reserve enough space for object heap");
  96     return JNI_ENOMEM;
  97   }
  98 
  99   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
 100 
 101   _rem_set = collector_policy()->create_rem_set(reserved_region());
 102   set_barrier_set(rem_set()->bs());
 103 
 104   ReservedSpace young_rs = heap_rs.first_part(gen_policy()->young_gen_spec()->max_size(), false, false);
 105   _young_gen = gen_policy()->young_gen_spec()->init(young_rs, rem_set());
 106   heap_rs = heap_rs.last_part(gen_policy()->young_gen_spec()->max_size());
 107 
 108   ReservedSpace old_rs = heap_rs.first_part(gen_policy()->old_gen_spec()->max_size(), false, false);
 109   _old_gen = gen_policy()->old_gen_spec()->init(old_rs, rem_set());
 110   clear_incremental_collection_failed();
 111 
 112   return JNI_OK;
 113 }
 114 
 115 char* GenCollectedHeap::allocate(size_t alignment,
 116                                  ReservedSpace* heap_rs){
 117   // Now figure out the total size.
 118   const size_t pageSize = UseLargePages ? os::large_page_size() : os::vm_page_size();
 119   assert(alignment % pageSize == 0, "Must be");
 120 
 121   GenerationSpec* young_spec = gen_policy()->young_gen_spec();
 122   GenerationSpec* old_spec = gen_policy()->old_gen_spec();
 123 
 124   // Check for overflow.
 125   size_t total_reserved = young_spec->max_size() + old_spec->max_size();
 126   if (total_reserved < young_spec->max_size()) {
 127     vm_exit_during_initialization("The size of the object heap + VM data exceeds "
 128                                   "the maximum representable size");
 129   }
 130   assert(total_reserved % alignment == 0,
 131          "Gen size; total_reserved=" SIZE_FORMAT ", alignment="
 132          SIZE_FORMAT, total_reserved, alignment);
 133 
 134   *heap_rs = Universe::reserve_heap(total_reserved, alignment);
 135 
 136   os::trace_page_sizes("Heap",
 137                        collector_policy()->min_heap_byte_size(),
 138                        total_reserved,
 139                        alignment,
 140                        heap_rs->base(),
 141                        heap_rs->size());
 142 
 143   return heap_rs->base();
 144 }
 145 
 146 void GenCollectedHeap::post_initialize() {
 147   ref_processing_init();
 148 #ifdef ASSERT
 149   check_gen_kinds();
 150 #endif
 151   DefNewGeneration* def_new_gen = (DefNewGeneration*)_young_gen;
 152 
 153   _gen_policy->initialize_size_policy(def_new_gen->eden()->capacity(),
 154                                       _old_gen->capacity(),
 155                                       def_new_gen->from()->capacity());
 156   _gen_policy->initialize_gc_policy_counters();
 157 }
 158 
 159 #ifdef ASSERT
 160 void GenCollectedHeap::check_gen_kinds() {
 161   assert(young_gen()->kind() == Generation::DefNew,
 162          "Wrong youngest generation type");
 163   assert(old_gen()->kind() == Generation::MarkSweepCompact,
 164          "Wrong generation kind");
 165 }
 166 #endif
 167 
 168 void GenCollectedHeap::ref_processing_init() {
 169   _young_gen->ref_processor_init();
 170   _old_gen->ref_processor_init();
 171 }
 172 
 173 size_t GenCollectedHeap::capacity() const {
 174   return _young_gen->capacity() + _old_gen->capacity();
 175 }
 176 
 177 size_t GenCollectedHeap::used() const {
 178   return _young_gen->used() + _old_gen->used();
 179 }
 180 
 181 void GenCollectedHeap::save_used_regions() {
 182   _old_gen->save_used_region();
 183   _young_gen->save_used_region();
 184 }
 185 
 186 size_t GenCollectedHeap::max_capacity() const {
 187   return _young_gen->max_capacity() + _old_gen->max_capacity();
 188 }
 189 
 190 // Update the _full_collections_completed counter
 191 // at the end of a stop-world full GC.
 192 unsigned int GenCollectedHeap::update_full_collections_completed() {
 193   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 194   assert(_full_collections_completed <= _total_full_collections,
 195          "Can't complete more collections than were started");
 196   _full_collections_completed = _total_full_collections;
 197   ml.notify_all();
 198   return _full_collections_completed;
 199 }
 200 
 201 // Update the _full_collections_completed counter, as appropriate,
 202 // at the end of a concurrent GC cycle. Note the conditional update
 203 // below to allow this method to be called by a concurrent collector
 204 // without synchronizing in any manner with the VM thread (which
 205 // may already have initiated a STW full collection "concurrently").
 206 unsigned int GenCollectedHeap::update_full_collections_completed(unsigned int count) {
 207   MonitorLockerEx ml(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
 208   assert((_full_collections_completed <= _total_full_collections) &&
 209          (count <= _total_full_collections),
 210          "Can't complete more collections than were started");
 211   if (count > _full_collections_completed) {
 212     _full_collections_completed = count;
 213     ml.notify_all();
 214   }
 215   return _full_collections_completed;
 216 }
 217 
 218 
 219 #ifndef PRODUCT
 220 // Override of memory state checking method in CollectedHeap:
 221 // Some collectors (CMS for example) can't have badHeapWordVal written
 222 // in the first two words of an object. (For instance , in the case of
 223 // CMS these words hold state used to synchronize between certain
 224 // (concurrent) GC steps and direct allocating mutators.)
 225 // The skip_header_HeapWords() method below, allows us to skip
 226 // over the requisite number of HeapWord's. Note that (for
 227 // generational collectors) this means that those many words are
 228 // skipped in each object, irrespective of the generation in which
 229 // that object lives. The resultant loss of precision seems to be
 230 // harmless and the pain of avoiding that imprecision appears somewhat
 231 // higher than we are prepared to pay for such rudimentary debugging
 232 // support.
 233 void GenCollectedHeap::check_for_non_bad_heap_word_value(HeapWord* addr,
 234                                                          size_t size) {
 235   if (CheckMemoryInitialization && ZapUnusedHeapArea) {
 236     // We are asked to check a size in HeapWords,
 237     // but the memory is mangled in juint words.
 238     juint* start = (juint*) (addr + skip_header_HeapWords());
 239     juint* end   = (juint*) (addr + size);
 240     for (juint* slot = start; slot < end; slot += 1) {
 241       assert(*slot == badHeapWordVal,
 242              "Found non badHeapWordValue in pre-allocation check");
 243     }
 244   }
 245 }
 246 #endif
 247 
 248 HeapWord* GenCollectedHeap::attempt_allocation(size_t size,
 249                                                bool is_tlab,
 250                                                bool first_only) {
 251   HeapWord* res = NULL;
 252 
 253   if (_young_gen->should_allocate(size, is_tlab)) {
 254     res = _young_gen->allocate(size, is_tlab);
 255     if (res != NULL || first_only) {
 256       return res;
 257     }
 258   }
 259 
 260   if (_old_gen->should_allocate(size, is_tlab)) {
 261     res = _old_gen->allocate(size, is_tlab);
 262   }
 263 
 264   return res;
 265 }
 266 
 267 HeapWord* GenCollectedHeap::mem_allocate(size_t size,
 268                                          bool* gc_overhead_limit_was_exceeded) {
 269   return gen_policy()->mem_allocate_work(size,
 270                                          false /* is_tlab */,
 271                                          gc_overhead_limit_was_exceeded);
 272 }
 273 
 274 bool GenCollectedHeap::must_clear_all_soft_refs() {
 275   return _gc_cause == GCCause::_metadata_GC_clear_soft_refs ||
 276          _gc_cause == GCCause::_wb_full_gc;
 277 }
 278 
 279 void GenCollectedHeap::collect_generation(Generation* gen, bool full, size_t size,
 280                                           bool is_tlab, bool run_verification, bool clear_soft_refs,
 281                                           bool restore_marks_for_biased_locking) {
 282   FormatBuffer<> title("Collect gen: %s", gen->short_name());
 283   GCTraceTime(Trace, gc, phases) t1(title);
 284   TraceCollectorStats tcs(gen->counters());
 285   TraceMemoryManagerStats tmms(gen->kind(),gc_cause());
 286 
 287   gen->stat_record()->invocations++;
 288   gen->stat_record()->accumulated_time.start();
 289 
 290   // Must be done anew before each collection because
 291   // a previous collection will do mangling and will
 292   // change top of some spaces.
 293   record_gen_tops_before_GC();
 294 
 295   log_trace(gc)("%s invoke=%d size=" SIZE_FORMAT, heap()->is_young_gen(gen) ? "Young" : "Old", gen->stat_record()->invocations, size * HeapWordSize);
 296 
 297   if (run_verification && VerifyBeforeGC) {
 298     HandleMark hm;  // Discard invalid handles created during verification
 299     Universe::verify("Before GC");
 300   }
 301   COMPILER2_PRESENT(DerivedPointerTable::clear());
 302 
 303   if (restore_marks_for_biased_locking) {
 304     // We perform this mark word preservation work lazily
 305     // because it's only at this point that we know whether we
 306     // absolutely have to do it; we want to avoid doing it for
 307     // scavenge-only collections where it's unnecessary
 308     BiasedLocking::preserve_marks();
 309   }
 310 
 311   // Do collection work
 312   {
 313     // Note on ref discovery: For what appear to be historical reasons,
 314     // GCH enables and disabled (by enqueing) refs discovery.
 315     // In the future this should be moved into the generation's
 316     // collect method so that ref discovery and enqueueing concerns
 317     // are local to a generation. The collect method could return
 318     // an appropriate indication in the case that notification on
 319     // the ref lock was needed. This will make the treatment of
 320     // weak refs more uniform (and indeed remove such concerns
 321     // from GCH). XXX
 322 
 323     HandleMark hm;  // Discard invalid handles created during gc
 324     save_marks();   // save marks for all gens
 325     // We want to discover references, but not process them yet.
 326     // This mode is disabled in process_discovered_references if the
 327     // generation does some collection work, or in
 328     // enqueue_discovered_references if the generation returns
 329     // without doing any work.
 330     ReferenceProcessor* rp = gen->ref_processor();
 331     // If the discovery of ("weak") refs in this generation is
 332     // atomic wrt other collectors in this configuration, we
 333     // are guaranteed to have empty discovered ref lists.
 334     if (rp->discovery_is_atomic()) {
 335       rp->enable_discovery();
 336       rp->setup_policy(clear_soft_refs);
 337     } else {
 338       // collect() below will enable discovery as appropriate
 339     }
 340     gen->collect(full, clear_soft_refs, size, is_tlab);
 341     if (!rp->enqueuing_is_done()) {
 342       rp->enqueue_discovered_references();
 343     } else {
 344       rp->set_enqueuing_is_done(false);
 345     }
 346     rp->verify_no_references_recorded();
 347   }
 348 
 349   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
 350 
 351   gen->stat_record()->accumulated_time.stop();
 352 
 353   update_gc_stats(gen, full);
 354 
 355   if (run_verification && VerifyAfterGC) {
 356     HandleMark hm;  // Discard invalid handles created during verification
 357     Universe::verify("After GC");
 358   }
 359 }
 360 
 361 void GenCollectedHeap::do_collection(bool           full,
 362                                      bool           clear_all_soft_refs,
 363                                      size_t         size,
 364                                      bool           is_tlab,
 365                                      GenerationType max_generation) {
 366   ResourceMark rm;
 367   DEBUG_ONLY(Thread* my_thread = Thread::current();)
 368 
 369   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
 370   assert(my_thread->is_VM_thread() ||
 371          my_thread->is_ConcurrentGC_thread(),
 372          "incorrect thread type capability");
 373   assert(Heap_lock->is_locked(),
 374          "the requesting thread should have the Heap_lock");
 375   guarantee(!is_gc_active(), "collection is not reentrant");
 376 
 377   if (GCLocker::check_active_before_gc()) {
 378     return; // GC is disabled (e.g. JNI GetXXXCritical operation)
 379   }
 380 
 381   GCIdMarkAndRestore gc_id_mark;
 382 
 383   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
 384                           collector_policy()->should_clear_all_soft_refs();
 385 
 386   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
 387 
 388   const size_t metadata_prev_used = MetaspaceAux::used_bytes();
 389 
 390   print_heap_before_gc();
 391 
 392   {
 393     FlagSetting fl(_is_gc_active, true);
 394 
 395     bool complete = full && (max_generation == OldGen);
 396     bool old_collects_young = complete && !ScavengeBeforeFullGC;
 397     bool do_young_collection = !old_collects_young && _young_gen->should_collect(full, size, is_tlab);
 398 
 399     FormatBuffer<> gc_string("%s", "Pause ");
 400     if (do_young_collection) {
 401       gc_string.append("Young");
 402     } else {
 403       gc_string.append("Full");
 404     }
 405 
 406     GCTraceCPUTime tcpu;
 407     GCTraceTime(Info, gc) t(gc_string, NULL, gc_cause(), true);
 408 
 409     gc_prologue(complete);
 410     increment_total_collections(complete);
 411 
 412     size_t young_prev_used = _young_gen->used();
 413     size_t old_prev_used = _old_gen->used();
 414 
 415     bool run_verification = total_collections() >= VerifyGCStartAt;
 416 
 417     bool prepared_for_verification = false;
 418     bool collected_old = false;
 419 
 420     if (do_young_collection) {
 421       if (run_verification && VerifyGCLevel <= 0 && VerifyBeforeGC) {
 422         prepare_for_verify();
 423         prepared_for_verification = true;
 424       }
 425 
 426       collect_generation(_young_gen,
 427                          full,
 428                          size,
 429                          is_tlab,
 430                          run_verification && VerifyGCLevel <= 0,
 431                          do_clear_all_soft_refs,
 432                          false);
 433 
 434       if (size > 0 && (!is_tlab || _young_gen->supports_tlab_allocation()) &&
 435           size * HeapWordSize <= _young_gen->unsafe_max_alloc_nogc()) {
 436         // Allocation request was met by young GC.
 437         size = 0;
 438       }
 439     }
 440 
 441     bool must_restore_marks_for_biased_locking = false;
 442 
 443     if (max_generation == OldGen && _old_gen->should_collect(full, size, is_tlab)) {
 444       if (!complete) {
 445         // The full_collections increment was missed above.
 446         increment_total_full_collections();
 447       }
 448 
 449       if (!prepared_for_verification && run_verification &&
 450           VerifyGCLevel <= 1 && VerifyBeforeGC) {
 451         prepare_for_verify();
 452       }
 453 
 454       if (do_young_collection) {
 455         // We did a young GC. Need a new GC id for the old GC.
 456         GCIdMarkAndRestore gc_id_mark;
 457         GCTraceTime(Info, gc) t("Pause Full", NULL, gc_cause(), true);
 458         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 459       } else {
 460         // No young GC done. Use the same GC id as was set up earlier in this method.
 461         collect_generation(_old_gen, full, size, is_tlab, run_verification && VerifyGCLevel <= 1, do_clear_all_soft_refs, true);
 462       }
 463 
 464       must_restore_marks_for_biased_locking = true;
 465       collected_old = true;
 466     }
 467 
 468     // Update "complete" boolean wrt what actually transpired --
 469     // for instance, a promotion failure could have led to
 470     // a whole heap collection.
 471     complete = complete || collected_old;
 472 
 473     print_heap_change(young_prev_used, old_prev_used);
 474     MetaspaceAux::print_metaspace_change(metadata_prev_used);
 475 
 476     // Adjust generation sizes.
 477     if (collected_old) {
 478       _old_gen->compute_new_size();
 479     }
 480     _young_gen->compute_new_size();
 481 
 482     if (complete) {
 483       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
 484       ClassLoaderDataGraph::purge();
 485       MetaspaceAux::verify_metrics();
 486       // Resize the metaspace capacity after full collections
 487       MetaspaceGC::compute_new_size();
 488       update_full_collections_completed();
 489     }
 490 
 491     // Track memory usage and detect low memory after GC finishes
 492     MemoryService::track_memory_usage();
 493 
 494     gc_epilogue(complete);
 495 
 496     if (must_restore_marks_for_biased_locking) {
 497       BiasedLocking::restore_marks();
 498     }
 499   }
 500 
 501   print_heap_after_gc();
 502 
 503 #ifdef TRACESPINNING
 504   ParallelTaskTerminator::print_termination_counts();
 505 #endif
 506 }
 507 
 508 HeapWord* GenCollectedHeap::satisfy_failed_allocation(size_t size, bool is_tlab) {
 509   return gen_policy()->satisfy_failed_allocation(size, is_tlab);
 510 }
 511 
 512 #ifdef ASSERT
 513 class AssertNonScavengableClosure: public OopClosure {
 514 public:
 515   virtual void do_oop(oop* p) {
 516     assert(!GenCollectedHeap::heap()->is_in_partial_collection(*p),
 517       "Referent should not be scavengable.");  }
 518   virtual void do_oop(narrowOop* p) { ShouldNotReachHere(); }
 519 };
 520 static AssertNonScavengableClosure assert_is_non_scavengable_closure;
 521 #endif
 522 
 523 void GenCollectedHeap::process_roots(StrongRootsScope* scope,
 524                                      ScanningOption so,
 525                                      OopClosure* strong_roots,
 526                                      OopClosure* weak_roots,
 527                                      CLDClosure* strong_cld_closure,
 528                                      CLDClosure* weak_cld_closure,
 529                                      CodeBlobToOopClosure* code_roots) {
 530   // General roots.
 531   assert(Threads::thread_claim_parity() != 0, "must have called prologue code");
 532   assert(code_roots != NULL, "code root closure should always be set");
 533   // _n_termination for _process_strong_tasks should be set up stream
 534   // in a method not running in a GC worker.  Otherwise the GC worker
 535   // could be trying to change the termination condition while the task
 536   // is executing in another GC worker.
 537 
 538   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ClassLoaderDataGraph_oops_do)) {
 539     ClassLoaderDataGraph::roots_cld_do(strong_cld_closure, weak_cld_closure);
 540   }
 541 
 542   // Only process code roots from thread stacks if we aren't visiting the entire CodeCache anyway
 543   CodeBlobToOopClosure* roots_from_code_p = (so & SO_AllCodeCache) ? NULL : code_roots;
 544 
 545   bool is_par = scope->n_threads() > 1;
 546   Threads::possibly_parallel_oops_do(is_par, strong_roots, roots_from_code_p);
 547 
 548   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Universe_oops_do)) {
 549     Universe::oops_do(strong_roots);
 550   }
 551   // Global (strong) JNI handles
 552   if (!_process_strong_tasks->is_task_claimed(GCH_PS_JNIHandles_oops_do)) {
 553     JNIHandles::oops_do(strong_roots);
 554   }
 555 
 556   if (!_process_strong_tasks->is_task_claimed(GCH_PS_ObjectSynchronizer_oops_do)) {
 557     ObjectSynchronizer::oops_do(strong_roots);
 558   }
 559   if (!_process_strong_tasks->is_task_claimed(GCH_PS_FlatProfiler_oops_do)) {
 560     FlatProfiler::oops_do(strong_roots);
 561   }
 562   if (!_process_strong_tasks->is_task_claimed(GCH_PS_Management_oops_do)) {
 563     Management::oops_do(strong_roots);
 564   }
 565   if (!_process_strong_tasks->is_task_claimed(GCH_PS_jvmti_oops_do)) {
 566     JvmtiExport::oops_do(strong_roots);
 567   }
 568   if (UseAOT && !_process_strong_tasks->is_task_claimed(GCH_PS_aot_oops_do)) {
 569     AOTLoader::oops_do(strong_roots);
 570   }
 571 
 572   if (!_process_strong_tasks->is_task_claimed(GCH_PS_SystemDictionary_oops_do)) {
 573     SystemDictionary::roots_oops_do(strong_roots, weak_roots);
 574   }
 575 
 576   if (!_process_strong_tasks->is_task_claimed(GCH_PS_CodeCache_oops_do)) {
 577     if (so & SO_ScavengeCodeCache) {
 578       assert(code_roots != NULL, "must supply closure for code cache");
 579 
 580       // We only visit parts of the CodeCache when scavenging.
 581       CodeCache::scavenge_root_nmethods_do(code_roots);
 582     }
 583     if (so & SO_AllCodeCache) {
 584       assert(code_roots != NULL, "must supply closure for code cache");
 585 
 586       // CMSCollector uses this to do intermediate-strength collections.
 587       // We scan the entire code cache, since CodeCache::do_unloading is not called.
 588       CodeCache::blobs_do(code_roots);
 589     }
 590     // Verify that the code cache contents are not subject to
 591     // movement by a scavenging collection.
 592     DEBUG_ONLY(CodeBlobToOopClosure assert_code_is_non_scavengable(&assert_is_non_scavengable_closure, !CodeBlobToOopClosure::FixRelocations));
 593     DEBUG_ONLY(CodeCache::asserted_non_scavengable_nmethods_do(&assert_code_is_non_scavengable));
 594   }
 595 }
 596 
 597 void GenCollectedHeap::process_string_table_roots(StrongRootsScope* scope,
 598                                                   OopClosure* root_closure) {
 599   assert(root_closure != NULL, "Must be set");
 600   // All threads execute the following. A specific chunk of buckets
 601   // from the StringTable are the individual tasks.
 602   if (scope->n_threads() > 1) {
 603     StringTable::possibly_parallel_oops_do(root_closure);
 604   } else {
 605     StringTable::oops_do(root_closure);
 606   }
 607 }
 608 
 609 void GenCollectedHeap::young_process_roots(StrongRootsScope* scope,
 610                                            OopsInGenClosure* root_closure,
 611                                            OopsInGenClosure* old_gen_closure,
 612                                            CLDClosure* cld_closure) {
 613   MarkingCodeBlobClosure mark_code_closure(root_closure, CodeBlobToOopClosure::FixRelocations);
 614 
 615   process_roots(scope, SO_ScavengeCodeCache, root_closure, root_closure,
 616                 cld_closure, cld_closure, &mark_code_closure);
 617   process_string_table_roots(scope, root_closure);
 618 
 619   if (!_process_strong_tasks->is_task_claimed(GCH_PS_younger_gens)) {
 620     root_closure->reset_generation();
 621   }
 622 
 623   // When collection is parallel, all threads get to cooperate to do
 624   // old generation scanning.
 625   old_gen_closure->set_generation(_old_gen);
 626   rem_set()->younger_refs_iterate(_old_gen, old_gen_closure, scope->n_threads());
 627   old_gen_closure->reset_generation();
 628 
 629   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 630 }
 631 
 632 void GenCollectedHeap::full_process_roots(StrongRootsScope* scope,
 633                                           bool is_adjust_phase,
 634                                           ScanningOption so,
 635                                           bool only_strong_roots,
 636                                           OopsInGenClosure* root_closure,
 637                                           CLDClosure* cld_closure) {
 638   MarkingCodeBlobClosure mark_code_closure(root_closure, is_adjust_phase);
 639   OopsInGenClosure* weak_roots = only_strong_roots ? NULL : root_closure;
 640   CLDClosure* weak_cld_closure = only_strong_roots ? NULL : cld_closure;
 641 
 642   process_roots(scope, so, root_closure, weak_roots, cld_closure, weak_cld_closure, &mark_code_closure);
 643   if (is_adjust_phase) {
 644     // We never treat the string table as roots during marking
 645     // for the full gc, so we only need to process it during
 646     // the adjust phase.
 647     process_string_table_roots(scope, root_closure);
 648   }
 649 
 650   _process_strong_tasks->all_tasks_completed(scope->n_threads());
 651 }
 652 
 653 void GenCollectedHeap::gen_process_weak_roots(OopClosure* root_closure) {
 654   JNIHandles::weak_oops_do(root_closure);
 655   _young_gen->ref_processor()->weak_oops_do(root_closure);
 656   _old_gen->ref_processor()->weak_oops_do(root_closure);
 657 }
 658 
 659 #define GCH_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)    \
 660 void GenCollectedHeap::                                                 \
 661 oop_since_save_marks_iterate(GenerationType gen,                        \
 662                              OopClosureType* cur,                       \
 663                              OopClosureType* older) {                   \
 664   if (gen == YoungGen) {                              \
 665     _young_gen->oop_since_save_marks_iterate##nv_suffix(cur);           \
 666     _old_gen->oop_since_save_marks_iterate##nv_suffix(older);           \
 667   } else {                                                              \
 668     _old_gen->oop_since_save_marks_iterate##nv_suffix(cur);             \
 669   }                                                                     \
 670 }
 671 
 672 ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DEFN)
 673 
 674 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DEFN
 675 
 676 bool GenCollectedHeap::no_allocs_since_save_marks() {
 677   return _young_gen->no_allocs_since_save_marks() &&
 678          _old_gen->no_allocs_since_save_marks();
 679 }
 680 
 681 bool GenCollectedHeap::supports_inline_contig_alloc() const {
 682   return _young_gen->supports_inline_contig_alloc();
 683 }
 684 
 685 HeapWord* volatile* GenCollectedHeap::top_addr() const {
 686   return _young_gen->top_addr();
 687 }
 688 
 689 HeapWord** GenCollectedHeap::end_addr() const {
 690   return _young_gen->end_addr();
 691 }
 692 
 693 // public collection interfaces
 694 
 695 void GenCollectedHeap::collect(GCCause::Cause cause) {
 696   if (cause == GCCause::_wb_young_gc) {
 697     // Young collection for the WhiteBox API.
 698     collect(cause, YoungGen);
 699   } else {
 700 #ifdef ASSERT
 701   if (cause == GCCause::_scavenge_alot) {
 702     // Young collection only.
 703     collect(cause, YoungGen);
 704   } else {
 705     // Stop-the-world full collection.
 706     collect(cause, OldGen);
 707   }
 708 #else
 709     // Stop-the-world full collection.
 710     collect(cause, OldGen);
 711 #endif
 712   }
 713 }
 714 
 715 void GenCollectedHeap::collect(GCCause::Cause cause, GenerationType max_generation) {
 716   // The caller doesn't have the Heap_lock
 717   assert(!Heap_lock->owned_by_self(), "this thread should not own the Heap_lock");
 718   MutexLocker ml(Heap_lock);
 719   collect_locked(cause, max_generation);
 720 }
 721 
 722 void GenCollectedHeap::collect_locked(GCCause::Cause cause) {
 723   // The caller has the Heap_lock
 724   assert(Heap_lock->owned_by_self(), "this thread should own the Heap_lock");
 725   collect_locked(cause, OldGen);
 726 }
 727 
 728 // this is the private collection interface
 729 // The Heap_lock is expected to be held on entry.
 730 
 731 void GenCollectedHeap::collect_locked(GCCause::Cause cause, GenerationType max_generation) {
 732   // Read the GC count while holding the Heap_lock
 733   unsigned int gc_count_before      = total_collections();
 734   unsigned int full_gc_count_before = total_full_collections();
 735   {
 736     MutexUnlocker mu(Heap_lock);  // give up heap lock, execute gets it back
 737     VM_GenCollectFull op(gc_count_before, full_gc_count_before,
 738                          cause, max_generation);
 739     VMThread::execute(&op);
 740   }
 741 }
 742 
 743 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs) {
 744    do_full_collection(clear_all_soft_refs, OldGen);
 745 }
 746 
 747 void GenCollectedHeap::do_full_collection(bool clear_all_soft_refs,
 748                                           GenerationType last_generation) {
 749   GenerationType local_last_generation;
 750   if (!incremental_collection_will_fail(false /* don't consult_young */) &&
 751       gc_cause() == GCCause::_gc_locker) {
 752     local_last_generation = YoungGen;
 753   } else {
 754     local_last_generation = last_generation;
 755   }
 756 
 757   do_collection(true,                   // full
 758                 clear_all_soft_refs,    // clear_all_soft_refs
 759                 0,                      // size
 760                 false,                  // is_tlab
 761                 local_last_generation); // last_generation
 762   // Hack XXX FIX ME !!!
 763   // A scavenge may not have been attempted, or may have
 764   // been attempted and failed, because the old gen was too full
 765   if (local_last_generation == YoungGen && gc_cause() == GCCause::_gc_locker &&
 766       incremental_collection_will_fail(false /* don't consult_young */)) {
 767     log_debug(gc, jni)("GC locker: Trying a full collection because scavenge failed");
 768     // This time allow the old gen to be collected as well
 769     do_collection(true,                // full
 770                   clear_all_soft_refs, // clear_all_soft_refs
 771                   0,                   // size
 772                   false,               // is_tlab
 773                   OldGen);             // last_generation
 774   }
 775 }
 776 
 777 bool GenCollectedHeap::is_in_young(oop p) {
 778   bool result = ((HeapWord*)p) < _old_gen->reserved().start();
 779   assert(result == _young_gen->is_in_reserved(p),
 780          "incorrect test - result=%d, p=" INTPTR_FORMAT, result, p2i((void*)p));
 781   return result;
 782 }
 783 
 784 // Returns "TRUE" iff "p" points into the committed areas of the heap.
 785 bool GenCollectedHeap::is_in(const void* p) const {
 786   return _young_gen->is_in(p) || _old_gen->is_in(p);
 787 }
 788 
 789 #ifdef ASSERT
 790 // Don't implement this by using is_in_young().  This method is used
 791 // in some cases to check that is_in_young() is correct.
 792 bool GenCollectedHeap::is_in_partial_collection(const void* p) {
 793   assert(is_in_reserved(p) || p == NULL,
 794     "Does not work if address is non-null and outside of the heap");
 795   return p < _young_gen->reserved().end() && p != NULL;
 796 }
 797 #endif
 798 
 799 void GenCollectedHeap::oop_iterate_no_header(OopClosure* cl) {
 800   NoHeaderExtendedOopClosure no_header_cl(cl);
 801   oop_iterate(&no_header_cl);
 802 }
 803 
 804 void GenCollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
 805   _young_gen->oop_iterate(cl);
 806   _old_gen->oop_iterate(cl);
 807 }
 808 
 809 void GenCollectedHeap::object_iterate(ObjectClosure* cl) {
 810   _young_gen->object_iterate(cl);
 811   _old_gen->object_iterate(cl);
 812 }
 813 
 814 void GenCollectedHeap::safe_object_iterate(ObjectClosure* cl) {
 815   _young_gen->safe_object_iterate(cl);
 816   _old_gen->safe_object_iterate(cl);
 817 }
 818 
 819 Space* GenCollectedHeap::space_containing(const void* addr) const {
 820   Space* res = _young_gen->space_containing(addr);
 821   if (res != NULL) {
 822     return res;
 823   }
 824   res = _old_gen->space_containing(addr);
 825   assert(res != NULL, "Could not find containing space");
 826   return res;
 827 }
 828 
 829 HeapWord* GenCollectedHeap::block_start(const void* addr) const {
 830   assert(is_in_reserved(addr), "block_start of address outside of heap");
 831   if (_young_gen->is_in_reserved(addr)) {
 832     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 833     return _young_gen->block_start(addr);
 834   }
 835 
 836   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 837   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 838   return _old_gen->block_start(addr);
 839 }
 840 
 841 size_t GenCollectedHeap::block_size(const HeapWord* addr) const {
 842   assert(is_in_reserved(addr), "block_size of address outside of heap");
 843   if (_young_gen->is_in_reserved(addr)) {
 844     assert(_young_gen->is_in(addr), "addr should be in allocated part of generation");
 845     return _young_gen->block_size(addr);
 846   }
 847 
 848   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 849   assert(_old_gen->is_in(addr), "addr should be in allocated part of generation");
 850   return _old_gen->block_size(addr);
 851 }
 852 
 853 bool GenCollectedHeap::block_is_obj(const HeapWord* addr) const {
 854   assert(is_in_reserved(addr), "block_is_obj of address outside of heap");
 855   assert(block_start(addr) == addr, "addr must be a block start");
 856   if (_young_gen->is_in_reserved(addr)) {
 857     return _young_gen->block_is_obj(addr);
 858   }
 859 
 860   assert(_old_gen->is_in_reserved(addr), "Some generation should contain the address");
 861   return _old_gen->block_is_obj(addr);
 862 }
 863 
 864 bool GenCollectedHeap::supports_tlab_allocation() const {
 865   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 866   return _young_gen->supports_tlab_allocation();
 867 }
 868 
 869 size_t GenCollectedHeap::tlab_capacity(Thread* thr) const {
 870   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 871   if (_young_gen->supports_tlab_allocation()) {
 872     return _young_gen->tlab_capacity();
 873   }
 874   return 0;
 875 }
 876 
 877 size_t GenCollectedHeap::tlab_used(Thread* thr) const {
 878   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 879   if (_young_gen->supports_tlab_allocation()) {
 880     return _young_gen->tlab_used();
 881   }
 882   return 0;
 883 }
 884 
 885 size_t GenCollectedHeap::unsafe_max_tlab_alloc(Thread* thr) const {
 886   assert(!_old_gen->supports_tlab_allocation(), "Old gen supports TLAB allocation?!");
 887   if (_young_gen->supports_tlab_allocation()) {
 888     return _young_gen->unsafe_max_tlab_alloc();
 889   }
 890   return 0;
 891 }
 892 
 893 HeapWord* GenCollectedHeap::allocate_new_tlab(size_t size) {
 894   bool gc_overhead_limit_was_exceeded;
 895   return gen_policy()->mem_allocate_work(size /* size */,
 896                                          true /* is_tlab */,
 897                                          &gc_overhead_limit_was_exceeded);
 898 }
 899 
 900 // Requires "*prev_ptr" to be non-NULL.  Deletes and a block of minimal size
 901 // from the list headed by "*prev_ptr".
 902 static ScratchBlock *removeSmallestScratch(ScratchBlock **prev_ptr) {
 903   bool first = true;
 904   size_t min_size = 0;   // "first" makes this conceptually infinite.
 905   ScratchBlock **smallest_ptr, *smallest;
 906   ScratchBlock  *cur = *prev_ptr;
 907   while (cur) {
 908     assert(*prev_ptr == cur, "just checking");
 909     if (first || cur->num_words < min_size) {
 910       smallest_ptr = prev_ptr;
 911       smallest     = cur;
 912       min_size     = smallest->num_words;
 913       first        = false;
 914     }
 915     prev_ptr = &cur->next;
 916     cur     =  cur->next;
 917   }
 918   smallest      = *smallest_ptr;
 919   *smallest_ptr = smallest->next;
 920   return smallest;
 921 }
 922 
 923 // Sort the scratch block list headed by res into decreasing size order,
 924 // and set "res" to the result.
 925 static void sort_scratch_list(ScratchBlock*& list) {
 926   ScratchBlock* sorted = NULL;
 927   ScratchBlock* unsorted = list;
 928   while (unsorted) {
 929     ScratchBlock *smallest = removeSmallestScratch(&unsorted);
 930     smallest->next  = sorted;
 931     sorted          = smallest;
 932   }
 933   list = sorted;
 934 }
 935 
 936 ScratchBlock* GenCollectedHeap::gather_scratch(Generation* requestor,
 937                                                size_t max_alloc_words) {
 938   ScratchBlock* res = NULL;
 939   _young_gen->contribute_scratch(res, requestor, max_alloc_words);
 940   _old_gen->contribute_scratch(res, requestor, max_alloc_words);
 941   sort_scratch_list(res);
 942   return res;
 943 }
 944 
 945 void GenCollectedHeap::release_scratch() {
 946   _young_gen->reset_scratch();
 947   _old_gen->reset_scratch();
 948 }
 949 
 950 class GenPrepareForVerifyClosure: public GenCollectedHeap::GenClosure {
 951   void do_generation(Generation* gen) {
 952     gen->prepare_for_verify();
 953   }
 954 };
 955 
 956 void GenCollectedHeap::prepare_for_verify() {
 957   ensure_parsability(false);        // no need to retire TLABs
 958   GenPrepareForVerifyClosure blk;
 959   generation_iterate(&blk, false);
 960 }
 961 
 962 void GenCollectedHeap::generation_iterate(GenClosure* cl,
 963                                           bool old_to_young) {
 964   if (old_to_young) {
 965     cl->do_generation(_old_gen);
 966     cl->do_generation(_young_gen);
 967   } else {
 968     cl->do_generation(_young_gen);
 969     cl->do_generation(_old_gen);
 970   }
 971 }
 972 
 973 bool GenCollectedHeap::is_maximal_no_gc() const {
 974   return _young_gen->is_maximal_no_gc() && _old_gen->is_maximal_no_gc();
 975 }
 976 
 977 void GenCollectedHeap::save_marks() {
 978   _young_gen->save_marks();
 979   _old_gen->save_marks();
 980 }
 981 
 982 GenCollectedHeap* GenCollectedHeap::heap() {
 983   CollectedHeap* heap = Universe::heap();
 984   assert(heap != NULL, "Uninitialized access to GenCollectedHeap::heap()");
 985   assert(heap->kind() == CollectedHeap::GenCollectedHeap ||
 986          heap->kind() == CollectedHeap::CMSHeap, "Not a GenCollectedHeap");
 987   return (GenCollectedHeap*) heap;
 988 }
 989 
 990 void GenCollectedHeap::prepare_for_compaction() {
 991   // Start by compacting into same gen.
 992   CompactPoint cp(_old_gen);
 993   _old_gen->prepare_for_compaction(&cp);
 994   _young_gen->prepare_for_compaction(&cp);
 995 }
 996 
 997 void GenCollectedHeap::verify(VerifyOption option /* ignored */) {
 998   log_debug(gc, verify)("%s", _old_gen->name());
 999   _old_gen->verify();
1000 
1001   log_debug(gc, verify)("%s", _old_gen->name());
1002   _young_gen->verify();
1003 
1004   log_debug(gc, verify)("RemSet");
1005   rem_set()->verify();
1006 }
1007 
1008 void GenCollectedHeap::print_on(outputStream* st) const {
1009   _young_gen->print_on(st);
1010   _old_gen->print_on(st);
1011   MetaspaceAux::print_on(st);
1012 }
1013 
1014 void GenCollectedHeap::gc_threads_do(ThreadClosure* tc) const {
1015 }
1016 
1017 void GenCollectedHeap::print_gc_threads_on(outputStream* st) const {
1018 }
1019 
1020 void GenCollectedHeap::print_tracing_info() const {
1021   if (TraceYoungGenTime) {
1022     _young_gen->print_summary_info();
1023   }
1024   if (TraceOldGenTime) {
1025     _old_gen->print_summary_info();
1026   }
1027 }
1028 
1029 void GenCollectedHeap::print_heap_change(size_t young_prev_used, size_t old_prev_used) const {
1030   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1031                      _young_gen->short_name(), young_prev_used / K, _young_gen->used() /K, _young_gen->capacity() /K);
1032   log_info(gc, heap)("%s: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1033                      _old_gen->short_name(), old_prev_used / K, _old_gen->used() /K, _old_gen->capacity() /K);
1034 }
1035 
1036 class GenGCPrologueClosure: public GenCollectedHeap::GenClosure {
1037  private:
1038   bool _full;
1039  public:
1040   void do_generation(Generation* gen) {
1041     gen->gc_prologue(_full);
1042   }
1043   GenGCPrologueClosure(bool full) : _full(full) {};
1044 };
1045 
1046 void GenCollectedHeap::gc_prologue(bool full) {
1047   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
1048 
1049   always_do_update_barrier = false;
1050   // Fill TLAB's and such
1051   CollectedHeap::accumulate_statistics_all_tlabs();
1052   ensure_parsability(true);   // retire TLABs
1053 
1054   // Walk generations
1055   GenGCPrologueClosure blk(full);
1056   generation_iterate(&blk, false);  // not old-to-young.
1057 };
1058 
1059 class GenGCEpilogueClosure: public GenCollectedHeap::GenClosure {
1060  private:
1061   bool _full;
1062  public:
1063   void do_generation(Generation* gen) {
1064     gen->gc_epilogue(_full);
1065   }
1066   GenGCEpilogueClosure(bool full) : _full(full) {};
1067 };
1068 
1069 void GenCollectedHeap::gc_epilogue(bool full) {
1070 #if defined(COMPILER2) || INCLUDE_JVMCI
1071   assert(DerivedPointerTable::is_empty(), "derived pointer present");
1072   size_t actual_gap = pointer_delta((HeapWord*) (max_uintx-3), *(end_addr()));
1073   guarantee(is_client_compilation_mode_vm() || actual_gap > (size_t)FastAllocateSizeLimit, "inline allocation wraps");
1074 #endif /* COMPILER2 || INCLUDE_JVMCI */
1075 
1076   resize_all_tlabs();
1077 
1078   GenGCEpilogueClosure blk(full);
1079   generation_iterate(&blk, false);  // not old-to-young.
1080 
1081   if (!CleanChunkPoolAsync) {
1082     Chunk::clean_chunk_pool();
1083   }
1084 
1085   MetaspaceCounters::update_performance_counters();
1086   CompressedClassSpaceCounters::update_performance_counters();
1087 
1088   always_do_update_barrier = UseConcMarkSweepGC;
1089 };
1090 
1091 #ifndef PRODUCT
1092 class GenGCSaveTopsBeforeGCClosure: public GenCollectedHeap::GenClosure {
1093  private:
1094  public:
1095   void do_generation(Generation* gen) {
1096     gen->record_spaces_top();
1097   }
1098 };
1099 
1100 void GenCollectedHeap::record_gen_tops_before_GC() {
1101   if (ZapUnusedHeapArea) {
1102     GenGCSaveTopsBeforeGCClosure blk;
1103     generation_iterate(&blk, false);  // not old-to-young.
1104   }
1105 }
1106 #endif  // not PRODUCT
1107 
1108 class GenEnsureParsabilityClosure: public GenCollectedHeap::GenClosure {
1109  public:
1110   void do_generation(Generation* gen) {
1111     gen->ensure_parsability();
1112   }
1113 };
1114 
1115 void GenCollectedHeap::ensure_parsability(bool retire_tlabs) {
1116   CollectedHeap::ensure_parsability(retire_tlabs);
1117   GenEnsureParsabilityClosure ep_cl;
1118   generation_iterate(&ep_cl, false);
1119 }
1120 
1121 oop GenCollectedHeap::handle_failed_promotion(Generation* old_gen,
1122                                               oop obj,
1123                                               size_t obj_size) {
1124   guarantee(old_gen == _old_gen, "We only get here with an old generation");
1125   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1126   HeapWord* result = NULL;
1127 
1128   result = old_gen->expand_and_allocate(obj_size, false);
1129 
1130   if (result != NULL) {
1131     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
1132   }
1133   return oop(result);
1134 }
1135 
1136 class GenTimeOfLastGCClosure: public GenCollectedHeap::GenClosure {
1137   jlong _time;   // in ms
1138   jlong _now;    // in ms
1139 
1140  public:
1141   GenTimeOfLastGCClosure(jlong now) : _time(now), _now(now) { }
1142 
1143   jlong time() { return _time; }
1144 
1145   void do_generation(Generation* gen) {
1146     _time = MIN2(_time, gen->time_of_last_gc(_now));
1147   }
1148 };
1149 
1150 jlong GenCollectedHeap::millis_since_last_gc() {
1151   // javaTimeNanos() is guaranteed to be monotonically non-decreasing
1152   // provided the underlying platform provides such a time source
1153   // (and it is bug free). So we still have to guard against getting
1154   // back a time later than 'now'.
1155   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
1156   GenTimeOfLastGCClosure tolgc_cl(now);
1157   // iterate over generations getting the oldest
1158   // time that a generation was collected
1159   generation_iterate(&tolgc_cl, false);
1160 
1161   jlong retVal = now - tolgc_cl.time();
1162   if (retVal < 0) {
1163     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
1164        ". returning zero instead.", retVal);
1165     return 0;
1166   }
1167   return retVal;
1168 }