1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 
  33 class StrongRootsScope;
  34 class SubTasksDone;
  35 class WorkGang;
  36 
  37 // The set of potentially parallel tasks in root scanning.
  38 enum GCH_strong_roots_tasks {
  39   GCH_PS_Universe_oops_do,
  40   GCH_PS_JNIHandles_oops_do,
  41   GCH_PS_ObjectSynchronizer_oops_do,
  42   GCH_PS_FlatProfiler_oops_do,
  43   GCH_PS_Management_oops_do,
  44   GCH_PS_SystemDictionary_oops_do,
  45   GCH_PS_ClassLoaderDataGraph_oops_do,
  46   GCH_PS_jvmti_oops_do,
  47   GCH_PS_CodeCache_oops_do,
  48   GCH_PS_aot_oops_do,
  49   GCH_PS_younger_gens,
  50   // Leave this one last.
  51   GCH_PS_NumElements
  52 };
  53 
  54 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  55 // collection.  It has two generations, young and old.
  56 class GenCollectedHeap : public CollectedHeap {
  57   friend class GenCollectorPolicy;
  58   friend class Generation;
  59   friend class DefNewGeneration;
  60   friend class TenuredGeneration;
  61   friend class ConcurrentMarkSweepGeneration;
  62   friend class CMSCollector;
  63   friend class GenMarkSweep;
  64   friend class VM_GenCollectForAllocation;
  65   friend class VM_GenCollectFull;
  66   friend class VM_GenCollectFullConcurrent;
  67   friend class VM_GC_HeapInspection;
  68   friend class VM_HeapDumper;
  69   friend class HeapInspection;
  70   friend class GCCauseSetter;
  71   friend class VMStructs;
  72 public:
  73   friend class VM_PopulateDumpSharedSpace;
  74 
  75   enum GenerationType {
  76     YoungGen,
  77     OldGen
  78   };
  79 
  80 private:
  81   Generation* _young_gen;
  82   Generation* _old_gen;
  83 
  84   // The singleton CardTable Remembered Set.
  85   CardTableRS* _rem_set;
  86 
  87   // The generational collector policy.
  88   GenCollectorPolicy* _gen_policy;
  89 
  90   // Indicates that the most recent previous incremental collection failed.
  91   // The flag is cleared when an action is taken that might clear the
  92   // condition that caused that incremental collection to fail.
  93   bool _incremental_collection_failed;
  94 
  95   // In support of ExplicitGCInvokesConcurrent functionality
  96   unsigned int _full_collections_completed;
  97 
  98   // Collects the given generation.
  99   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
 100                           bool run_verification, bool clear_soft_refs,
 101                           bool restore_marks_for_biased_locking);
 102 
 103 protected:
 104   // Data structure for claiming the (potentially) parallel tasks in
 105   // (gen-specific) roots processing.
 106   SubTasksDone* _process_strong_tasks;
 107 
 108   // Helper functions for allocation
 109   HeapWord* attempt_allocation(size_t size,
 110                                bool   is_tlab,
 111                                bool   first_only);
 112 
 113   // Helper function for two callbacks below.
 114   // Considers collection of the first max_level+1 generations.
 115   void do_collection(bool           full,
 116                      bool           clear_all_soft_refs,
 117                      size_t         size,
 118                      bool           is_tlab,
 119                      GenerationType max_generation);
 120 
 121   // Callback from VM_GenCollectForAllocation operation.
 122   // This function does everything necessary/possible to satisfy an
 123   // allocation request that failed in the youngest generation that should
 124   // have handled it (including collection, expansion, etc.)
 125   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 126 
 127   // Callback from VM_GenCollectFull operation.
 128   // Perform a full collection of the first max_level+1 generations.
 129   virtual void do_full_collection(bool clear_all_soft_refs);
 130   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 131 
 132   // Does the "cause" of GC indicate that
 133   // we absolutely __must__ clear soft refs?
 134   bool must_clear_all_soft_refs();
 135 
 136 public:
 137   GenCollectedHeap(GenCollectorPolicy *policy);
 138 
 139   // Returns JNI_OK on success
 140   virtual jint initialize();
 141 
 142   // Reserve aligned space for the heap as needed by the contained generations.
 143   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 144 
 145   // Does operations required after initialization has been done.
 146   void post_initialize();
 147 
 148 #ifdef ASSERT
 149   virtual void check_gen_kinds();
 150 #endif
 151 
 152   // Initialize ("weak") refs processing support
 153   virtual void ref_processing_init();
 154 
 155   virtual Name kind() const {
 156     return CollectedHeap::GenCollectedHeap;
 157   }
 158 
 159   virtual const char* name() const {
 160     return "Serial";
 161   }
 162 
 163   Generation* young_gen() const { return _young_gen; }
 164   Generation* old_gen()   const { return _old_gen; }
 165 
 166   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 167   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 168 
 169   // The generational collector policy.
 170   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 171 
 172   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 173 
 174   // Adaptive size policy
 175   virtual AdaptiveSizePolicy* size_policy() {
 176     return gen_policy()->size_policy();
 177   }
 178 
 179   // Return the (conservative) maximum heap alignment
 180   static size_t conservative_max_heap_alignment() {
 181     return Generation::GenGrain;
 182   }
 183 
 184   size_t capacity() const;
 185   size_t used() const;
 186 
 187   // Save the "used_region" for both generations.
 188   void save_used_regions();
 189 
 190   size_t max_capacity() const;
 191 
 192   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 193 
 194   // We may support a shared contiguous allocation area, if the youngest
 195   // generation does.
 196   bool supports_inline_contig_alloc() const;
 197   HeapWord* volatile* top_addr() const;
 198   HeapWord** end_addr() const;
 199 
 200   // Perform a full collection of the heap; intended for use in implementing
 201   // "System.gc". This implies as full a collection as the CollectedHeap
 202   // supports. Caller does not hold the Heap_lock on entry.
 203   virtual void collect(GCCause::Cause cause);
 204 
 205   // The same as above but assume that the caller holds the Heap_lock.
 206   void collect_locked(GCCause::Cause cause);
 207 
 208   // Perform a full collection of generations up to and including max_generation.
 209   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 210   void collect(GCCause::Cause cause, GenerationType max_generation);
 211 
 212   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 213   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 214   // be expensive to compute in general, so, to prevent
 215   // their inadvertent use in product jvm's, we restrict their use to
 216   // assertion checking or verification only.
 217   bool is_in(const void* p) const;
 218 
 219   // override
 220   virtual bool is_in_closed_subset(const void* p) const {
 221     return is_in(p);
 222   }
 223 
 224   // Returns true if the reference is to an object in the reserved space
 225   // for the young generation.
 226   // Assumes the the young gen address range is less than that of the old gen.
 227   bool is_in_young(oop p);
 228 
 229 #ifdef ASSERT
 230   bool is_in_partial_collection(const void* p);
 231 #endif
 232 
 233   virtual bool is_scavengable(const void* addr) {
 234     return is_in_young((oop)addr);
 235   }
 236 
 237   // Iteration functions.
 238   void oop_iterate_no_header(OopClosure* cl);
 239   void oop_iterate(ExtendedOopClosure* cl);
 240   void object_iterate(ObjectClosure* cl);
 241   void safe_object_iterate(ObjectClosure* cl);
 242   Space* space_containing(const void* addr) const;
 243 
 244   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 245   // each address in the (reserved) heap is a member of exactly
 246   // one block.  The defining characteristic of a block is that it is
 247   // possible to find its size, and thus to progress forward to the next
 248   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 249   // represent Java objects, or they might be free blocks in a
 250   // free-list-based heap (or subheap), as long as the two kinds are
 251   // distinguishable and the size of each is determinable.
 252 
 253   // Returns the address of the start of the "block" that contains the
 254   // address "addr".  We say "blocks" instead of "object" since some heaps
 255   // may not pack objects densely; a chunk may either be an object or a
 256   // non-object.
 257   virtual HeapWord* block_start(const void* addr) const;
 258 
 259   // Requires "addr" to be the start of a chunk, and returns its size.
 260   // "addr + size" is required to be the start of a new chunk, or the end
 261   // of the active area of the heap. Assumes (and verifies in non-product
 262   // builds) that addr is in the allocated part of the heap and is
 263   // the start of a chunk.
 264   virtual size_t block_size(const HeapWord* addr) const;
 265 
 266   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 267   // the block is an object. Assumes (and verifies in non-product
 268   // builds) that addr is in the allocated part of the heap and is
 269   // the start of a chunk.
 270   virtual bool block_is_obj(const HeapWord* addr) const;
 271 
 272   // Section on TLAB's.
 273   virtual bool supports_tlab_allocation() const;
 274   virtual size_t tlab_capacity(Thread* thr) const;
 275   virtual size_t tlab_used(Thread* thr) const;
 276   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 277   virtual HeapWord* allocate_new_tlab(size_t size);
 278 
 279   // Can a compiler initialize a new object without store barriers?
 280   // This permission only extends from the creation of a new object
 281   // via a TLAB up to the first subsequent safepoint.
 282   virtual bool can_elide_tlab_store_barriers() const {
 283     return true;
 284   }
 285 
 286   virtual bool card_mark_must_follow_store() const {
 287     return false;
 288   }
 289 
 290   // We don't need barriers for stores to objects in the
 291   // young gen and, a fortiori, for initializing stores to
 292   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 293   // only and may need to be re-examined in case other
 294   // kinds of collectors are implemented in the future.
 295   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 296     return is_in_young(new_obj);
 297   }
 298 
 299   // The "requestor" generation is performing some garbage collection
 300   // action for which it would be useful to have scratch space.  The
 301   // requestor promises to allocate no more than "max_alloc_words" in any
 302   // older generation (via promotion say.)   Any blocks of space that can
 303   // be provided are returned as a list of ScratchBlocks, sorted by
 304   // decreasing size.
 305   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 306   // Allow each generation to reset any scratch space that it has
 307   // contributed as it needs.
 308   void release_scratch();
 309 
 310   // Ensure parsability: override
 311   virtual void ensure_parsability(bool retire_tlabs);
 312 
 313   // Time in ms since the longest time a collector ran in
 314   // in any generation.
 315   virtual jlong millis_since_last_gc();
 316 
 317   // Total number of full collections completed.
 318   unsigned int total_full_collections_completed() {
 319     assert(_full_collections_completed <= _total_full_collections,
 320            "Can't complete more collections than were started");
 321     return _full_collections_completed;
 322   }
 323 
 324   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 325   unsigned int update_full_collections_completed();
 326   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 327   unsigned int update_full_collections_completed(unsigned int count);
 328 
 329   // Update "time of last gc" for all generations to "now".
 330   void update_time_of_last_gc(jlong now) {
 331     _young_gen->update_time_of_last_gc(now);
 332     _old_gen->update_time_of_last_gc(now);
 333   }
 334 
 335   // Update the gc statistics for each generation.
 336   void update_gc_stats(Generation* current_generation, bool full) {
 337     _old_gen->update_gc_stats(current_generation, full);
 338   }
 339 
 340   bool no_gc_in_progress() { return !is_gc_active(); }
 341 
 342   // Override.
 343   void prepare_for_verify();
 344 
 345   // Override.
 346   void verify(VerifyOption option);
 347 
 348   // Override.
 349   virtual void print_on(outputStream* st) const;
 350   virtual void print_gc_threads_on(outputStream* st) const;
 351   virtual void gc_threads_do(ThreadClosure* tc) const;
 352   virtual void print_tracing_info() const;
 353 
 354   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 355 
 356   // The functions below are helper functions that a subclass of
 357   // "CollectedHeap" can use in the implementation of its virtual
 358   // functions.
 359 
 360   class GenClosure : public StackObj {
 361    public:
 362     virtual void do_generation(Generation* gen) = 0;
 363   };
 364 
 365   // Apply "cl.do_generation" to all generations in the heap
 366   // If "old_to_young" determines the order.
 367   void generation_iterate(GenClosure* cl, bool old_to_young);
 368 
 369   // Return "true" if all generations have reached the
 370   // maximal committed limit that they can reach, without a garbage
 371   // collection.
 372   virtual bool is_maximal_no_gc() const;
 373 
 374   // This function returns the CardTableRS object that allows us to scan
 375   // generations in a fully generational heap.
 376   CardTableRS* rem_set() { return _rem_set; }
 377 
 378   // Convenience function to be used in situations where the heap type can be
 379   // asserted to be this type.
 380   static GenCollectedHeap* heap();
 381 
 382   // The ScanningOption determines which of the roots
 383   // the closure is applied to:
 384   // "SO_None" does none;
 385   enum ScanningOption {
 386     SO_None                =  0x0,
 387     SO_AllCodeCache        =  0x8,
 388     SO_ScavengeCodeCache   = 0x10
 389   };
 390 
 391  protected:
 392   void process_roots(StrongRootsScope* scope,
 393                      ScanningOption so,
 394                      OopClosure* strong_roots,
 395                      OopClosure* weak_roots,
 396                      CLDClosure* strong_cld_closure,
 397                      CLDClosure* weak_cld_closure,
 398                      CodeBlobToOopClosure* code_roots);
 399 
 400   void process_string_table_roots(StrongRootsScope* scope,
 401                                   OopClosure* root_closure);
 402 
 403  public:
 404   void young_process_roots(StrongRootsScope* scope,
 405                            OopsInGenClosure* root_closure,
 406                            OopsInGenClosure* old_gen_closure,
 407                            CLDClosure* cld_closure);
 408 
 409   void full_process_roots(StrongRootsScope* scope,
 410                           bool is_adjust_phase,
 411                           ScanningOption so,
 412                           bool only_strong_roots,
 413                           OopsInGenClosure* root_closure,
 414                           CLDClosure* cld_closure);
 415 
 416   // Apply "root_closure" to all the weak roots of the system.
 417   // These include JNI weak roots, string table,
 418   // and referents of reachable weak refs.
 419   void gen_process_weak_roots(OopClosure* root_closure);
 420 
 421   // Set the saved marks of generations, if that makes sense.
 422   // In particular, if any generation might iterate over the oops
 423   // in other generations, it should call this method.
 424   void save_marks();
 425 
 426   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 427   // allocated since the last call to save_marks in generations at or above
 428   // "level".  The "cur" closure is
 429   // applied to references in the generation at "level", and the "older"
 430   // closure to older generations.
 431 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 432   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 433                                     OopClosureType* cur,                \
 434                                     OopClosureType* older);
 435 
 436   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 437 
 438 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 439 
 440   // Returns "true" iff no allocations have occurred since the last
 441   // call to "save_marks".
 442   bool no_allocs_since_save_marks();
 443 
 444   // Returns true if an incremental collection is likely to fail.
 445   // We optionally consult the young gen, if asked to do so;
 446   // otherwise we base our answer on whether the previous incremental
 447   // collection attempt failed with no corrective action as of yet.
 448   bool incremental_collection_will_fail(bool consult_young) {
 449     // The first disjunct remembers if an incremental collection failed, even
 450     // when we thought (second disjunct) that it would not.
 451     return incremental_collection_failed() ||
 452            (consult_young && !_young_gen->collection_attempt_is_safe());
 453   }
 454 
 455   // If a generation bails out of an incremental collection,
 456   // it sets this flag.
 457   bool incremental_collection_failed() const {
 458     return _incremental_collection_failed;
 459   }
 460   void set_incremental_collection_failed() {
 461     _incremental_collection_failed = true;
 462   }
 463   void clear_incremental_collection_failed() {
 464     _incremental_collection_failed = false;
 465   }
 466 
 467   // Promotion of obj into gen failed.  Try to promote obj to higher
 468   // gens in ascending order; return the new location of obj if successful.
 469   // Otherwise, try expand-and-allocate for obj in both the young and old
 470   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 471   oop handle_failed_promotion(Generation* old_gen,
 472                               oop obj,
 473                               size_t obj_size);
 474 
 475 
 476 protected:
 477   // In block contents verification, the number of header words to skip
 478   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
 479 
 480   // Accessor for memory state verification support
 481   NOT_PRODUCT(
 482     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 483   )
 484 
 485 private:
 486   // Override
 487   void check_for_non_bad_heap_word_value(HeapWord* addr,
 488     size_t size) PRODUCT_RETURN;
 489 
 490   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 491   // in an essential way: compaction is performed across generations, by
 492   // iterating over spaces.
 493   void prepare_for_compaction();
 494 
 495   // Perform a full collection of the generations up to and including max_generation.
 496   // This is the low level interface used by the public versions of
 497   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 498   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 499 
 500   // Save the tops of the spaces in all generations
 501   void record_gen_tops_before_GC() PRODUCT_RETURN;
 502 
 503 protected:
 504   void gc_prologue(bool full);
 505   void gc_epilogue(bool full);
 506 
 507 };
 508 
 509 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP