1 /*
   2  * Copyright (c) 2000, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/adaptiveSizePolicy.hpp"
  29 #include "gc/shared/collectedHeap.hpp"
  30 #include "gc/shared/collectorPolicy.hpp"
  31 #include "gc/shared/generation.hpp"
  32 
  33 class StrongRootsScope;
  34 class SubTasksDone;
  35 class WorkGang;
  36 
  37 // A "GenCollectedHeap" is a CollectedHeap that uses generational
  38 // collection.  It has two generations, young and old.
  39 class GenCollectedHeap : public CollectedHeap {
  40   friend class GenCollectorPolicy;
  41   friend class Generation;
  42   friend class DefNewGeneration;
  43   friend class TenuredGeneration;
  44   friend class ConcurrentMarkSweepGeneration;
  45   friend class CMSCollector;
  46   friend class GenMarkSweep;
  47   friend class VM_GenCollectForAllocation;
  48   friend class VM_GenCollectFull;
  49   friend class VM_GenCollectFullConcurrent;
  50   friend class VM_GC_HeapInspection;
  51   friend class VM_HeapDumper;
  52   friend class HeapInspection;
  53   friend class GCCauseSetter;
  54   friend class VMStructs;
  55 public:
  56   friend class VM_PopulateDumpSharedSpace;
  57 
  58   enum GenerationType {
  59     YoungGen,
  60     OldGen
  61   };
  62 
  63 private:
  64   Generation* _young_gen;
  65   Generation* _old_gen;
  66 
  67   // The singleton CardTable Remembered Set.
  68   CardTableRS* _rem_set;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // Indicates that the most recent previous incremental collection failed.
  74   // The flag is cleared when an action is taken that might clear the
  75   // condition that caused that incremental collection to fail.
  76   bool _incremental_collection_failed;
  77 
  78   // In support of ExplicitGCInvokesConcurrent functionality
  79   unsigned int _full_collections_completed;
  80 
  81   // Collects the given generation.
  82   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  83                           bool run_verification, bool clear_soft_refs,
  84                           bool restore_marks_for_biased_locking);
  85 
  86 protected:
  87 
  88   // The set of potentially parallel tasks in root scanning.
  89   enum GCH_strong_roots_tasks {
  90     GCH_PS_Universe_oops_do,
  91     GCH_PS_JNIHandles_oops_do,
  92     GCH_PS_ObjectSynchronizer_oops_do,
  93     GCH_PS_FlatProfiler_oops_do,
  94     GCH_PS_Management_oops_do,
  95     GCH_PS_SystemDictionary_oops_do,
  96     GCH_PS_ClassLoaderDataGraph_oops_do,
  97     GCH_PS_jvmti_oops_do,
  98     GCH_PS_CodeCache_oops_do,
  99     GCH_PS_aot_oops_do,
 100     GCH_PS_younger_gens,
 101     // Leave this one last.
 102     GCH_PS_NumElements
 103   };
 104 
 105   // Data structure for claiming the (potentially) parallel tasks in
 106   // (gen-specific) roots processing.
 107   SubTasksDone* _process_strong_tasks;
 108 
 109   // Helper functions for allocation
 110   HeapWord* attempt_allocation(size_t size,
 111                                bool   is_tlab,
 112                                bool   first_only);
 113 
 114   // Helper function for two callbacks below.
 115   // Considers collection of the first max_level+1 generations.
 116   void do_collection(bool           full,
 117                      bool           clear_all_soft_refs,
 118                      size_t         size,
 119                      bool           is_tlab,
 120                      GenerationType max_generation);
 121 
 122   // Callback from VM_GenCollectForAllocation operation.
 123   // This function does everything necessary/possible to satisfy an
 124   // allocation request that failed in the youngest generation that should
 125   // have handled it (including collection, expansion, etc.)
 126   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 127 
 128   // Callback from VM_GenCollectFull operation.
 129   // Perform a full collection of the first max_level+1 generations.
 130   virtual void do_full_collection(bool clear_all_soft_refs);
 131   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 132 
 133   // Does the "cause" of GC indicate that
 134   // we absolutely __must__ clear soft refs?
 135   bool must_clear_all_soft_refs();
 136 
 137 public:
 138   GenCollectedHeap(GenCollectorPolicy *policy);
 139 
 140   // Returns JNI_OK on success
 141   virtual jint initialize();
 142 
 143   // Reserve aligned space for the heap as needed by the contained generations.
 144   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 145 
 146   // Does operations required after initialization has been done.
 147   void post_initialize();
 148 
 149   virtual void check_gen_kinds();
 150 
 151   // Initialize ("weak") refs processing support
 152   virtual void ref_processing_init();
 153 
 154   virtual Name kind() const {
 155     return CollectedHeap::GenCollectedHeap;
 156   }
 157 
 158   virtual const char* name() const {
 159     return "Serial";
 160   }
 161 
 162   Generation* young_gen() const { return _young_gen; }
 163   Generation* old_gen()   const { return _old_gen; }
 164 
 165   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 166   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 167 
 168   // The generational collector policy.
 169   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 170 
 171   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 172 
 173   // Adaptive size policy
 174   virtual AdaptiveSizePolicy* size_policy() {
 175     return gen_policy()->size_policy();
 176   }
 177 
 178   // Return the (conservative) maximum heap alignment
 179   static size_t conservative_max_heap_alignment() {
 180     return Generation::GenGrain;
 181   }
 182 
 183   size_t capacity() const;
 184   size_t used() const;
 185 
 186   // Save the "used_region" for both generations.
 187   void save_used_regions();
 188 
 189   size_t max_capacity() const;
 190 
 191   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 192 
 193   // We may support a shared contiguous allocation area, if the youngest
 194   // generation does.
 195   bool supports_inline_contig_alloc() const;
 196   HeapWord* volatile* top_addr() const;
 197   HeapWord** end_addr() const;
 198 
 199   // Perform a full collection of the heap; intended for use in implementing
 200   // "System.gc". This implies as full a collection as the CollectedHeap
 201   // supports. Caller does not hold the Heap_lock on entry.
 202   virtual void collect(GCCause::Cause cause);
 203 
 204   // The same as above but assume that the caller holds the Heap_lock.
 205   void collect_locked(GCCause::Cause cause);
 206 
 207   // Perform a full collection of generations up to and including max_generation.
 208   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 209   void collect(GCCause::Cause cause, GenerationType max_generation);
 210 
 211   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 212   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 213   // be expensive to compute in general, so, to prevent
 214   // their inadvertent use in product jvm's, we restrict their use to
 215   // assertion checking or verification only.
 216   bool is_in(const void* p) const;
 217 
 218   // override
 219   virtual bool is_in_closed_subset(const void* p) const {
 220     return is_in(p);
 221   }
 222 
 223   // Returns true if the reference is to an object in the reserved space
 224   // for the young generation.
 225   // Assumes the the young gen address range is less than that of the old gen.
 226   bool is_in_young(oop p);
 227 
 228 #ifdef ASSERT
 229   bool is_in_partial_collection(const void* p);
 230 #endif
 231 
 232   virtual bool is_scavengable(const void* addr) {
 233     return is_in_young((oop)addr);
 234   }
 235 
 236   // Iteration functions.
 237   void oop_iterate_no_header(OopClosure* cl);
 238   void oop_iterate(ExtendedOopClosure* cl);
 239   void object_iterate(ObjectClosure* cl);
 240   void safe_object_iterate(ObjectClosure* cl);
 241   Space* space_containing(const void* addr) const;
 242 
 243   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 244   // each address in the (reserved) heap is a member of exactly
 245   // one block.  The defining characteristic of a block is that it is
 246   // possible to find its size, and thus to progress forward to the next
 247   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 248   // represent Java objects, or they might be free blocks in a
 249   // free-list-based heap (or subheap), as long as the two kinds are
 250   // distinguishable and the size of each is determinable.
 251 
 252   // Returns the address of the start of the "block" that contains the
 253   // address "addr".  We say "blocks" instead of "object" since some heaps
 254   // may not pack objects densely; a chunk may either be an object or a
 255   // non-object.
 256   virtual HeapWord* block_start(const void* addr) const;
 257 
 258   // Requires "addr" to be the start of a chunk, and returns its size.
 259   // "addr + size" is required to be the start of a new chunk, or the end
 260   // of the active area of the heap. Assumes (and verifies in non-product
 261   // builds) that addr is in the allocated part of the heap and is
 262   // the start of a chunk.
 263   virtual size_t block_size(const HeapWord* addr) const;
 264 
 265   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 266   // the block is an object. Assumes (and verifies in non-product
 267   // builds) that addr is in the allocated part of the heap and is
 268   // the start of a chunk.
 269   virtual bool block_is_obj(const HeapWord* addr) const;
 270 
 271   // Section on TLAB's.
 272   virtual bool supports_tlab_allocation() const;
 273   virtual size_t tlab_capacity(Thread* thr) const;
 274   virtual size_t tlab_used(Thread* thr) const;
 275   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 276   virtual HeapWord* allocate_new_tlab(size_t size);
 277 
 278   // Can a compiler initialize a new object without store barriers?
 279   // This permission only extends from the creation of a new object
 280   // via a TLAB up to the first subsequent safepoint.
 281   virtual bool can_elide_tlab_store_barriers() const {
 282     return true;
 283   }
 284 
 285   virtual bool card_mark_must_follow_store() const {
 286     return false;
 287   }
 288 
 289   // We don't need barriers for stores to objects in the
 290   // young gen and, a fortiori, for initializing stores to
 291   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 292   // only and may need to be re-examined in case other
 293   // kinds of collectors are implemented in the future.
 294   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 295     return is_in_young(new_obj);
 296   }
 297 
 298   // The "requestor" generation is performing some garbage collection
 299   // action for which it would be useful to have scratch space.  The
 300   // requestor promises to allocate no more than "max_alloc_words" in any
 301   // older generation (via promotion say.)   Any blocks of space that can
 302   // be provided are returned as a list of ScratchBlocks, sorted by
 303   // decreasing size.
 304   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 305   // Allow each generation to reset any scratch space that it has
 306   // contributed as it needs.
 307   void release_scratch();
 308 
 309   // Ensure parsability: override
 310   virtual void ensure_parsability(bool retire_tlabs);
 311 
 312   // Time in ms since the longest time a collector ran in
 313   // in any generation.
 314   virtual jlong millis_since_last_gc();
 315 
 316   // Total number of full collections completed.
 317   unsigned int total_full_collections_completed() {
 318     assert(_full_collections_completed <= _total_full_collections,
 319            "Can't complete more collections than were started");
 320     return _full_collections_completed;
 321   }
 322 
 323   // Update above counter, as appropriate, at the end of a stop-world GC cycle
 324   unsigned int update_full_collections_completed();
 325   // Update above counter, as appropriate, at the end of a concurrent GC cycle
 326   unsigned int update_full_collections_completed(unsigned int count);
 327 
 328   // Update "time of last gc" for all generations to "now".
 329   void update_time_of_last_gc(jlong now) {
 330     _young_gen->update_time_of_last_gc(now);
 331     _old_gen->update_time_of_last_gc(now);
 332   }
 333 
 334   // Update the gc statistics for each generation.
 335   void update_gc_stats(Generation* current_generation, bool full) {
 336     _old_gen->update_gc_stats(current_generation, full);
 337   }
 338 
 339   bool no_gc_in_progress() { return !is_gc_active(); }
 340 
 341   // Override.
 342   void prepare_for_verify();
 343 
 344   // Override.
 345   void verify(VerifyOption option);
 346 
 347   // Override.
 348   virtual void print_on(outputStream* st) const;
 349   virtual void print_gc_threads_on(outputStream* st) const;
 350   virtual void gc_threads_do(ThreadClosure* tc) const;
 351   virtual void print_tracing_info() const;
 352 
 353   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 354 
 355   // The functions below are helper functions that a subclass of
 356   // "CollectedHeap" can use in the implementation of its virtual
 357   // functions.
 358 
 359   class GenClosure : public StackObj {
 360    public:
 361     virtual void do_generation(Generation* gen) = 0;
 362   };
 363 
 364   // Apply "cl.do_generation" to all generations in the heap
 365   // If "old_to_young" determines the order.
 366   void generation_iterate(GenClosure* cl, bool old_to_young);
 367 
 368   // Return "true" if all generations have reached the
 369   // maximal committed limit that they can reach, without a garbage
 370   // collection.
 371   virtual bool is_maximal_no_gc() const;
 372 
 373   // This function returns the CardTableRS object that allows us to scan
 374   // generations in a fully generational heap.
 375   CardTableRS* rem_set() { return _rem_set; }
 376 
 377   // Convenience function to be used in situations where the heap type can be
 378   // asserted to be this type.
 379   static GenCollectedHeap* heap();
 380 
 381   // The ScanningOption determines which of the roots
 382   // the closure is applied to:
 383   // "SO_None" does none;
 384   enum ScanningOption {
 385     SO_None                =  0x0,
 386     SO_AllCodeCache        =  0x8,
 387     SO_ScavengeCodeCache   = 0x10
 388   };
 389 
 390  protected:
 391   void process_roots(StrongRootsScope* scope,
 392                      ScanningOption so,
 393                      OopClosure* strong_roots,
 394                      OopClosure* weak_roots,
 395                      CLDClosure* strong_cld_closure,
 396                      CLDClosure* weak_cld_closure,
 397                      CodeBlobToOopClosure* code_roots);
 398 
 399   void process_string_table_roots(StrongRootsScope* scope,
 400                                   OopClosure* root_closure);
 401 
 402  public:
 403   void young_process_roots(StrongRootsScope* scope,
 404                            OopsInGenClosure* root_closure,
 405                            OopsInGenClosure* old_gen_closure,
 406                            CLDClosure* cld_closure);
 407 
 408   void full_process_roots(StrongRootsScope* scope,
 409                           bool is_adjust_phase,
 410                           ScanningOption so,
 411                           bool only_strong_roots,
 412                           OopsInGenClosure* root_closure,
 413                           CLDClosure* cld_closure);
 414 
 415   // Apply "root_closure" to all the weak roots of the system.
 416   // These include JNI weak roots, string table,
 417   // and referents of reachable weak refs.
 418   void gen_process_weak_roots(OopClosure* root_closure);
 419 
 420   // Set the saved marks of generations, if that makes sense.
 421   // In particular, if any generation might iterate over the oops
 422   // in other generations, it should call this method.
 423   void save_marks();
 424 
 425   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 426   // allocated since the last call to save_marks in generations at or above
 427   // "level".  The "cur" closure is
 428   // applied to references in the generation at "level", and the "older"
 429   // closure to older generations.
 430 #define GCH_SINCE_SAVE_MARKS_ITERATE_DECL(OopClosureType, nv_suffix)    \
 431   void oop_since_save_marks_iterate(GenerationType start_gen,           \
 432                                     OopClosureType* cur,                \
 433                                     OopClosureType* older);
 434 
 435   ALL_SINCE_SAVE_MARKS_CLOSURES(GCH_SINCE_SAVE_MARKS_ITERATE_DECL)
 436 
 437 #undef GCH_SINCE_SAVE_MARKS_ITERATE_DECL
 438 
 439   // Returns "true" iff no allocations have occurred since the last
 440   // call to "save_marks".
 441   bool no_allocs_since_save_marks();
 442 
 443   // Returns true if an incremental collection is likely to fail.
 444   // We optionally consult the young gen, if asked to do so;
 445   // otherwise we base our answer on whether the previous incremental
 446   // collection attempt failed with no corrective action as of yet.
 447   bool incremental_collection_will_fail(bool consult_young) {
 448     // The first disjunct remembers if an incremental collection failed, even
 449     // when we thought (second disjunct) that it would not.
 450     return incremental_collection_failed() ||
 451            (consult_young && !_young_gen->collection_attempt_is_safe());
 452   }
 453 
 454   // If a generation bails out of an incremental collection,
 455   // it sets this flag.
 456   bool incremental_collection_failed() const {
 457     return _incremental_collection_failed;
 458   }
 459   void set_incremental_collection_failed() {
 460     _incremental_collection_failed = true;
 461   }
 462   void clear_incremental_collection_failed() {
 463     _incremental_collection_failed = false;
 464   }
 465 
 466   // Promotion of obj into gen failed.  Try to promote obj to higher
 467   // gens in ascending order; return the new location of obj if successful.
 468   // Otherwise, try expand-and-allocate for obj in both the young and old
 469   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 470   oop handle_failed_promotion(Generation* old_gen,
 471                               oop obj,
 472                               size_t obj_size);
 473 
 474 
 475 protected:
 476   // Accessor for memory state verification support
 477   NOT_PRODUCT(
 478     virtual size_t skip_header_HeapWords() { return 0; }
 479   )
 480 
 481 private:
 482   // Override
 483   void check_for_non_bad_heap_word_value(HeapWord* addr,
 484     size_t size) PRODUCT_RETURN;
 485 
 486   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 487   // in an essential way: compaction is performed across generations, by
 488   // iterating over spaces.
 489   void prepare_for_compaction();
 490 
 491   // Perform a full collection of the generations up to and including max_generation.
 492   // This is the low level interface used by the public versions of
 493   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 494   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 495 
 496   // Save the tops of the spaces in all generations
 497   void record_gen_tops_before_GC() PRODUCT_RETURN;
 498 
 499 protected:
 500   virtual void gc_prologue(bool full);
 501   virtual void gc_epilogue(bool full);
 502 
 503 };
 504 
 505 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP