< prev index next >

src/share/vm/gc/shared/genCollectedHeap.hpp

Print this page
rev 13265 : [mq]: 8179387.patch


  61   };
  62 
  63 private:
  64   Generation* _young_gen;
  65   Generation* _old_gen;
  66 
  67   // The singleton CardTable Remembered Set.
  68   CardTableRS* _rem_set;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // Indicates that the most recent previous incremental collection failed.
  74   // The flag is cleared when an action is taken that might clear the
  75   // condition that caused that incremental collection to fail.
  76   bool _incremental_collection_failed;
  77 
  78   // In support of ExplicitGCInvokesConcurrent functionality
  79   unsigned int _full_collections_completed;
  80 
  81   // Data structure for claiming the (potentially) parallel tasks in
  82   // (gen-specific) roots processing.
  83   SubTasksDone* _process_strong_tasks;
  84 
  85   // Collects the given generation.
  86   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  87                           bool run_verification, bool clear_soft_refs,
  88                           bool restore_marks_for_biased_locking);
  89 
  90   // In block contents verification, the number of header words to skip
  91   NOT_PRODUCT(static size_t _skip_header_HeapWords;)
  92 
  93   WorkGang* _workers;



















  94 
  95 protected:
  96   // Helper functions for allocation
  97   HeapWord* attempt_allocation(size_t size,
  98                                bool   is_tlab,
  99                                bool   first_only);
 100 
 101   // Helper function for two callbacks below.
 102   // Considers collection of the first max_level+1 generations.
 103   void do_collection(bool           full,
 104                      bool           clear_all_soft_refs,
 105                      size_t         size,
 106                      bool           is_tlab,
 107                      GenerationType max_generation);
 108 
 109   // Callback from VM_GenCollectForAllocation operation.
 110   // This function does everything necessary/possible to satisfy an
 111   // allocation request that failed in the youngest generation that should
 112   // have handled it (including collection, expansion, etc.)
 113   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 114 
 115   // Callback from VM_GenCollectFull operation.
 116   // Perform a full collection of the first max_level+1 generations.
 117   virtual void do_full_collection(bool clear_all_soft_refs);
 118   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 119 
 120   // Does the "cause" of GC indicate that
 121   // we absolutely __must__ clear soft refs?
 122   bool must_clear_all_soft_refs();
 123 
 124 public:
 125   GenCollectedHeap(GenCollectorPolicy *policy);
 126 
 127   WorkGang* workers() const { return _workers; }
 128 
 129   // Returns JNI_OK on success
 130   virtual jint initialize();
 131 
 132   // Reserve aligned space for the heap as needed by the contained generations.
 133   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 134 
 135   // Does operations required after initialization has been done.
 136   void post_initialize();
 137 


 138   // Initialize ("weak") refs processing support
 139   virtual void ref_processing_init();
 140 
 141   virtual Name kind() const {
 142     return CollectedHeap::GenCollectedHeap;
 143   }
 144 
 145   virtual const char* name() const {
 146     if (UseConcMarkSweepGC) {
 147       return "Concurrent Mark Sweep";
 148     } else {
 149       return "Serial";
 150     }
 151   }
 152 
 153   Generation* young_gen() const { return _young_gen; }
 154   Generation* old_gen()   const { return _old_gen; }
 155 
 156   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 157   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 158 
 159   // The generational collector policy.
 160   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 161 
 162   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 163 
 164   // Adaptive size policy
 165   virtual AdaptiveSizePolicy* size_policy() {
 166     return gen_policy()->size_policy();
 167   }
 168 
 169   // Return the (conservative) maximum heap alignment
 170   static size_t conservative_max_heap_alignment() {
 171     return Generation::GenGrain;


 173 
 174   size_t capacity() const;
 175   size_t used() const;
 176 
 177   // Save the "used_region" for both generations.
 178   void save_used_regions();
 179 
 180   size_t max_capacity() const;
 181 
 182   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 183 
 184   // We may support a shared contiguous allocation area, if the youngest
 185   // generation does.
 186   bool supports_inline_contig_alloc() const;
 187   HeapWord* volatile* top_addr() const;
 188   HeapWord** end_addr() const;
 189 
 190   // Perform a full collection of the heap; intended for use in implementing
 191   // "System.gc". This implies as full a collection as the CollectedHeap
 192   // supports. Caller does not hold the Heap_lock on entry.
 193   void collect(GCCause::Cause cause);
 194 
 195   // The same as above but assume that the caller holds the Heap_lock.
 196   void collect_locked(GCCause::Cause cause);
 197 
 198   // Perform a full collection of generations up to and including max_generation.
 199   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 200   void collect(GCCause::Cause cause, GenerationType max_generation);
 201 
 202   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 203   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 204   // be expensive to compute in general, so, to prevent
 205   // their inadvertent use in product jvm's, we restrict their use to
 206   // assertion checking or verification only.
 207   bool is_in(const void* p) const;
 208 
 209   // override
 210   bool is_in_closed_subset(const void* p) const {
 211     if (UseConcMarkSweepGC) {
 212       return is_in_reserved(p);
 213     } else {
 214       return is_in(p);
 215     }
 216   }
 217 
 218   // Returns true if the reference is to an object in the reserved space
 219   // for the young generation.
 220   // Assumes the the young gen address range is less than that of the old gen.
 221   bool is_in_young(oop p);
 222 
 223 #ifdef ASSERT
 224   bool is_in_partial_collection(const void* p);
 225 #endif
 226 
 227   virtual bool is_scavengable(const void* addr) {
 228     return is_in_young((oop)addr);
 229   }
 230 
 231   // Iteration functions.
 232   void oop_iterate_no_header(OopClosure* cl);
 233   void oop_iterate(ExtendedOopClosure* cl);
 234   void object_iterate(ObjectClosure* cl);
 235   void safe_object_iterate(ObjectClosure* cl);
 236   Space* space_containing(const void* addr) const;


 261   // the block is an object. Assumes (and verifies in non-product
 262   // builds) that addr is in the allocated part of the heap and is
 263   // the start of a chunk.
 264   virtual bool block_is_obj(const HeapWord* addr) const;
 265 
 266   // Section on TLAB's.
 267   virtual bool supports_tlab_allocation() const;
 268   virtual size_t tlab_capacity(Thread* thr) const;
 269   virtual size_t tlab_used(Thread* thr) const;
 270   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 271   virtual HeapWord* allocate_new_tlab(size_t size);
 272 
 273   // Can a compiler initialize a new object without store barriers?
 274   // This permission only extends from the creation of a new object
 275   // via a TLAB up to the first subsequent safepoint.
 276   virtual bool can_elide_tlab_store_barriers() const {
 277     return true;
 278   }
 279 
 280   virtual bool card_mark_must_follow_store() const {
 281     return UseConcMarkSweepGC;
 282   }
 283 
 284   // We don't need barriers for stores to objects in the
 285   // young gen and, a fortiori, for initializing stores to
 286   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 287   // only and may need to be re-examined in case other
 288   // kinds of collectors are implemented in the future.
 289   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 290     return is_in_young(new_obj);
 291   }
 292 
 293   // The "requestor" generation is performing some garbage collection
 294   // action for which it would be useful to have scratch space.  The
 295   // requestor promises to allocate no more than "max_alloc_words" in any
 296   // older generation (via promotion say.)   Any blocks of space that can
 297   // be provided are returned as a list of ScratchBlocks, sorted by
 298   // decreasing size.
 299   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 300   // Allow each generation to reset any scratch space that it has
 301   // contributed as it needs.


 327   }
 328 
 329   // Update the gc statistics for each generation.
 330   void update_gc_stats(Generation* current_generation, bool full) {
 331     _old_gen->update_gc_stats(current_generation, full);
 332   }
 333 
 334   bool no_gc_in_progress() { return !is_gc_active(); }
 335 
 336   // Override.
 337   void prepare_for_verify();
 338 
 339   // Override.
 340   void verify(VerifyOption option);
 341 
 342   // Override.
 343   virtual void print_on(outputStream* st) const;
 344   virtual void print_gc_threads_on(outputStream* st) const;
 345   virtual void gc_threads_do(ThreadClosure* tc) const;
 346   virtual void print_tracing_info() const;
 347   virtual void print_on_error(outputStream* st) const;
 348 
 349   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 350 
 351   // The functions below are helper functions that a subclass of
 352   // "CollectedHeap" can use in the implementation of its virtual
 353   // functions.
 354 
 355   class GenClosure : public StackObj {
 356    public:
 357     virtual void do_generation(Generation* gen) = 0;
 358   };
 359 
 360   // Apply "cl.do_generation" to all generations in the heap
 361   // If "old_to_young" determines the order.
 362   void generation_iterate(GenClosure* cl, bool old_to_young);
 363 
 364   // Return "true" if all generations have reached the
 365   // maximal committed limit that they can reach, without a garbage
 366   // collection.
 367   virtual bool is_maximal_no_gc() const;
 368 
 369   // This function returns the CardTableRS object that allows us to scan
 370   // generations in a fully generational heap.
 371   CardTableRS* rem_set() { return _rem_set; }
 372 
 373   // Convenience function to be used in situations where the heap type can be
 374   // asserted to be this type.
 375   static GenCollectedHeap* heap();
 376 
 377   // The ScanningOption determines which of the roots
 378   // the closure is applied to:
 379   // "SO_None" does none;
 380   enum ScanningOption {
 381     SO_None                =  0x0,
 382     SO_AllCodeCache        =  0x8,
 383     SO_ScavengeCodeCache   = 0x10
 384   };
 385 
 386  private:
 387   void process_roots(StrongRootsScope* scope,
 388                      ScanningOption so,
 389                      OopClosure* strong_roots,
 390                      OopClosure* weak_roots,
 391                      CLDClosure* strong_cld_closure,
 392                      CLDClosure* weak_cld_closure,
 393                      CodeBlobToOopClosure* code_roots);
 394 
 395   void process_string_table_roots(StrongRootsScope* scope,
 396                                   OopClosure* root_closure);
 397 








 398  public:
 399   void young_process_roots(StrongRootsScope* scope,
 400                            OopsInGenClosure* root_closure,
 401                            OopsInGenClosure* old_gen_closure,
 402                            CLDClosure* cld_closure);
 403 
 404   // If "young_gen_as_roots" is false, younger generations are
 405   // not scanned as roots; in this case, the caller must be arranging to
 406   // scan the younger generations itself.  (For example, a generation might
 407   // explicitly mark reachable objects in younger generations, to avoid
 408   // excess storage retention.)
 409   void cms_process_roots(StrongRootsScope* scope,
 410                          bool young_gen_as_roots,
 411                          ScanningOption so,
 412                          bool only_strong_roots,
 413                          OopsInGenClosure* root_closure,
 414                          CLDClosure* cld_closure);
 415 
 416   void full_process_roots(StrongRootsScope* scope,
 417                           bool is_adjust_phase,
 418                           ScanningOption so,
 419                           bool only_strong_roots,
 420                           OopsInGenClosure* root_closure,
 421                           CLDClosure* cld_closure);
 422 
 423   // Apply "root_closure" to all the weak roots of the system.
 424   // These include JNI weak roots, string table,
 425   // and referents of reachable weak refs.
 426   void gen_process_weak_roots(OopClosure* root_closure);
 427 
 428   // Set the saved marks of generations, if that makes sense.
 429   // In particular, if any generation might iterate over the oops
 430   // in other generations, it should call this method.
 431   void save_marks();
 432 
 433   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 434   // allocated since the last call to save_marks in generations at or above
 435   // "level".  The "cur" closure is


 462   // If a generation bails out of an incremental collection,
 463   // it sets this flag.
 464   bool incremental_collection_failed() const {
 465     return _incremental_collection_failed;
 466   }
 467   void set_incremental_collection_failed() {
 468     _incremental_collection_failed = true;
 469   }
 470   void clear_incremental_collection_failed() {
 471     _incremental_collection_failed = false;
 472   }
 473 
 474   // Promotion of obj into gen failed.  Try to promote obj to higher
 475   // gens in ascending order; return the new location of obj if successful.
 476   // Otherwise, try expand-and-allocate for obj in both the young and old
 477   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 478   oop handle_failed_promotion(Generation* old_gen,
 479                               oop obj,
 480                               size_t obj_size);
 481 
 482 private:
 483   // Accessor for memory state verification support
 484   NOT_PRODUCT(
 485     static size_t skip_header_HeapWords() { return _skip_header_HeapWords; }
 486   )
 487 

 488   // Override
 489   void check_for_non_bad_heap_word_value(HeapWord* addr,
 490     size_t size) PRODUCT_RETURN;
 491 
 492   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 493   // in an essential way: compaction is performed across generations, by
 494   // iterating over spaces.
 495   void prepare_for_compaction();
 496 
 497   // Perform a full collection of the generations up to and including max_generation.
 498   // This is the low level interface used by the public versions of
 499   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 500   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 501 
 502   // Returns success or failure.
 503   bool create_cms_collector();
 504 
 505   // In support of ExplicitGCInvokesConcurrent functionality
 506   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 507   void collect_mostly_concurrent(GCCause::Cause cause);
 508 
 509   // Save the tops of the spaces in all generations
 510   void record_gen_tops_before_GC() PRODUCT_RETURN;
 511 
 512 protected:
 513   void gc_prologue(bool full);
 514   void gc_epilogue(bool full);
 515 
 516 public:
 517   void stop();
 518 };
 519 
 520 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP


  61   };
  62 
  63 private:
  64   Generation* _young_gen;
  65   Generation* _old_gen;
  66 
  67   // The singleton CardTable Remembered Set.
  68   CardTableRS* _rem_set;
  69 
  70   // The generational collector policy.
  71   GenCollectorPolicy* _gen_policy;
  72 
  73   // Indicates that the most recent previous incremental collection failed.
  74   // The flag is cleared when an action is taken that might clear the
  75   // condition that caused that incremental collection to fail.
  76   bool _incremental_collection_failed;
  77 
  78   // In support of ExplicitGCInvokesConcurrent functionality
  79   unsigned int _full_collections_completed;
  80 




  81   // Collects the given generation.
  82   void collect_generation(Generation* gen, bool full, size_t size, bool is_tlab,
  83                           bool run_verification, bool clear_soft_refs,
  84                           bool restore_marks_for_biased_locking);
  85 
  86 protected:

  87 
  88   // The set of potentially parallel tasks in root scanning.
  89   enum GCH_strong_roots_tasks {
  90     GCH_PS_Universe_oops_do,
  91     GCH_PS_JNIHandles_oops_do,
  92     GCH_PS_ObjectSynchronizer_oops_do,
  93     GCH_PS_FlatProfiler_oops_do,
  94     GCH_PS_Management_oops_do,
  95     GCH_PS_SystemDictionary_oops_do,
  96     GCH_PS_ClassLoaderDataGraph_oops_do,
  97     GCH_PS_jvmti_oops_do,
  98     GCH_PS_CodeCache_oops_do,
  99     GCH_PS_aot_oops_do,
 100     GCH_PS_younger_gens,
 101     // Leave this one last.
 102     GCH_PS_NumElements
 103   };
 104 
 105   // Data structure for claiming the (potentially) parallel tasks in
 106   // (gen-specific) roots processing.
 107   SubTasksDone* _process_strong_tasks;
 108 

 109   // Helper functions for allocation
 110   HeapWord* attempt_allocation(size_t size,
 111                                bool   is_tlab,
 112                                bool   first_only);
 113 
 114   // Helper function for two callbacks below.
 115   // Considers collection of the first max_level+1 generations.
 116   void do_collection(bool           full,
 117                      bool           clear_all_soft_refs,
 118                      size_t         size,
 119                      bool           is_tlab,
 120                      GenerationType max_generation);
 121 
 122   // Callback from VM_GenCollectForAllocation operation.
 123   // This function does everything necessary/possible to satisfy an
 124   // allocation request that failed in the youngest generation that should
 125   // have handled it (including collection, expansion, etc.)
 126   HeapWord* satisfy_failed_allocation(size_t size, bool is_tlab);
 127 
 128   // Callback from VM_GenCollectFull operation.
 129   // Perform a full collection of the first max_level+1 generations.
 130   virtual void do_full_collection(bool clear_all_soft_refs);
 131   void do_full_collection(bool clear_all_soft_refs, GenerationType max_generation);
 132 
 133   // Does the "cause" of GC indicate that
 134   // we absolutely __must__ clear soft refs?
 135   bool must_clear_all_soft_refs();
 136 
 137 public:
 138   GenCollectedHeap(GenCollectorPolicy *policy);
 139 


 140   // Returns JNI_OK on success
 141   virtual jint initialize();
 142 
 143   // Reserve aligned space for the heap as needed by the contained generations.
 144   char* allocate(size_t alignment, ReservedSpace* heap_rs);
 145 
 146   // Does operations required after initialization has been done.
 147   void post_initialize();
 148 
 149   virtual void check_gen_kinds();
 150 
 151   // Initialize ("weak") refs processing support
 152   virtual void ref_processing_init();
 153 
 154   virtual Name kind() const {
 155     return CollectedHeap::GenCollectedHeap;
 156   }
 157 
 158   virtual const char* name() const {



 159     return "Serial";
 160   }

 161 
 162   Generation* young_gen() const { return _young_gen; }
 163   Generation* old_gen()   const { return _old_gen; }
 164 
 165   bool is_young_gen(const Generation* gen) const { return gen == _young_gen; }
 166   bool is_old_gen(const Generation* gen) const { return gen == _old_gen; }
 167 
 168   // The generational collector policy.
 169   GenCollectorPolicy* gen_policy() const { return _gen_policy; }
 170 
 171   virtual CollectorPolicy* collector_policy() const { return gen_policy(); }
 172 
 173   // Adaptive size policy
 174   virtual AdaptiveSizePolicy* size_policy() {
 175     return gen_policy()->size_policy();
 176   }
 177 
 178   // Return the (conservative) maximum heap alignment
 179   static size_t conservative_max_heap_alignment() {
 180     return Generation::GenGrain;


 182 
 183   size_t capacity() const;
 184   size_t used() const;
 185 
 186   // Save the "used_region" for both generations.
 187   void save_used_regions();
 188 
 189   size_t max_capacity() const;
 190 
 191   HeapWord* mem_allocate(size_t size, bool*  gc_overhead_limit_was_exceeded);
 192 
 193   // We may support a shared contiguous allocation area, if the youngest
 194   // generation does.
 195   bool supports_inline_contig_alloc() const;
 196   HeapWord* volatile* top_addr() const;
 197   HeapWord** end_addr() const;
 198 
 199   // Perform a full collection of the heap; intended for use in implementing
 200   // "System.gc". This implies as full a collection as the CollectedHeap
 201   // supports. Caller does not hold the Heap_lock on entry.
 202   virtual void collect(GCCause::Cause cause);
 203 
 204   // The same as above but assume that the caller holds the Heap_lock.
 205   void collect_locked(GCCause::Cause cause);
 206 
 207   // Perform a full collection of generations up to and including max_generation.
 208   // Mostly used for testing purposes. Caller does not hold the Heap_lock on entry.
 209   void collect(GCCause::Cause cause, GenerationType max_generation);
 210 
 211   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 212   // The methods is_in(), is_in_closed_subset() and is_in_youngest() may
 213   // be expensive to compute in general, so, to prevent
 214   // their inadvertent use in product jvm's, we restrict their use to
 215   // assertion checking or verification only.
 216   bool is_in(const void* p) const;
 217 
 218   // override
 219   virtual bool is_in_closed_subset(const void* p) const {



 220     return is_in(p);
 221   }

 222 
 223   // Returns true if the reference is to an object in the reserved space
 224   // for the young generation.
 225   // Assumes the the young gen address range is less than that of the old gen.
 226   bool is_in_young(oop p);
 227 
 228 #ifdef ASSERT
 229   bool is_in_partial_collection(const void* p);
 230 #endif
 231 
 232   virtual bool is_scavengable(const void* addr) {
 233     return is_in_young((oop)addr);
 234   }
 235 
 236   // Iteration functions.
 237   void oop_iterate_no_header(OopClosure* cl);
 238   void oop_iterate(ExtendedOopClosure* cl);
 239   void object_iterate(ObjectClosure* cl);
 240   void safe_object_iterate(ObjectClosure* cl);
 241   Space* space_containing(const void* addr) const;


 266   // the block is an object. Assumes (and verifies in non-product
 267   // builds) that addr is in the allocated part of the heap and is
 268   // the start of a chunk.
 269   virtual bool block_is_obj(const HeapWord* addr) const;
 270 
 271   // Section on TLAB's.
 272   virtual bool supports_tlab_allocation() const;
 273   virtual size_t tlab_capacity(Thread* thr) const;
 274   virtual size_t tlab_used(Thread* thr) const;
 275   virtual size_t unsafe_max_tlab_alloc(Thread* thr) const;
 276   virtual HeapWord* allocate_new_tlab(size_t size);
 277 
 278   // Can a compiler initialize a new object without store barriers?
 279   // This permission only extends from the creation of a new object
 280   // via a TLAB up to the first subsequent safepoint.
 281   virtual bool can_elide_tlab_store_barriers() const {
 282     return true;
 283   }
 284 
 285   virtual bool card_mark_must_follow_store() const {
 286     return false;
 287   }
 288 
 289   // We don't need barriers for stores to objects in the
 290   // young gen and, a fortiori, for initializing stores to
 291   // objects therein. This applies to DefNew+Tenured and ParNew+CMS
 292   // only and may need to be re-examined in case other
 293   // kinds of collectors are implemented in the future.
 294   virtual bool can_elide_initializing_store_barrier(oop new_obj) {
 295     return is_in_young(new_obj);
 296   }
 297 
 298   // The "requestor" generation is performing some garbage collection
 299   // action for which it would be useful to have scratch space.  The
 300   // requestor promises to allocate no more than "max_alloc_words" in any
 301   // older generation (via promotion say.)   Any blocks of space that can
 302   // be provided are returned as a list of ScratchBlocks, sorted by
 303   // decreasing size.
 304   ScratchBlock* gather_scratch(Generation* requestor, size_t max_alloc_words);
 305   // Allow each generation to reset any scratch space that it has
 306   // contributed as it needs.


 332   }
 333 
 334   // Update the gc statistics for each generation.
 335   void update_gc_stats(Generation* current_generation, bool full) {
 336     _old_gen->update_gc_stats(current_generation, full);
 337   }
 338 
 339   bool no_gc_in_progress() { return !is_gc_active(); }
 340 
 341   // Override.
 342   void prepare_for_verify();
 343 
 344   // Override.
 345   void verify(VerifyOption option);
 346 
 347   // Override.
 348   virtual void print_on(outputStream* st) const;
 349   virtual void print_gc_threads_on(outputStream* st) const;
 350   virtual void gc_threads_do(ThreadClosure* tc) const;
 351   virtual void print_tracing_info() const;

 352 
 353   void print_heap_change(size_t young_prev_used, size_t old_prev_used) const;
 354 
 355   // The functions below are helper functions that a subclass of
 356   // "CollectedHeap" can use in the implementation of its virtual
 357   // functions.
 358 
 359   class GenClosure : public StackObj {
 360    public:
 361     virtual void do_generation(Generation* gen) = 0;
 362   };
 363 
 364   // Apply "cl.do_generation" to all generations in the heap
 365   // If "old_to_young" determines the order.
 366   void generation_iterate(GenClosure* cl, bool old_to_young);
 367 
 368   // Return "true" if all generations have reached the
 369   // maximal committed limit that they can reach, without a garbage
 370   // collection.
 371   virtual bool is_maximal_no_gc() const;
 372 
 373   // This function returns the CardTableRS object that allows us to scan
 374   // generations in a fully generational heap.
 375   CardTableRS* rem_set() { return _rem_set; }
 376 
 377   // Convenience function to be used in situations where the heap type can be
 378   // asserted to be this type.
 379   static GenCollectedHeap* heap();
 380 
 381   // The ScanningOption determines which of the roots
 382   // the closure is applied to:
 383   // "SO_None" does none;
 384   enum ScanningOption {
 385     SO_None                =  0x0,
 386     SO_AllCodeCache        =  0x8,
 387     SO_ScavengeCodeCache   = 0x10
 388   };
 389 
 390  protected:
 391   void process_roots(StrongRootsScope* scope,
 392                      ScanningOption so,
 393                      OopClosure* strong_roots,
 394                      OopClosure* weak_roots,
 395                      CLDClosure* strong_cld_closure,
 396                      CLDClosure* weak_cld_closure,
 397                      CodeBlobToOopClosure* code_roots);
 398 
 399   void process_string_table_roots(StrongRootsScope* scope,
 400                                   OopClosure* root_closure);
 401 
 402   // Accessor for memory state verification support
 403   NOT_PRODUCT(
 404     virtual size_t skip_header_HeapWords() { return 0; }
 405   )
 406 
 407   virtual void gc_prologue(bool full);
 408   virtual void gc_epilogue(bool full);
 409 
 410  public:
 411   void young_process_roots(StrongRootsScope* scope,
 412                            OopsInGenClosure* root_closure,
 413                            OopsInGenClosure* old_gen_closure,
 414                            CLDClosure* cld_closure);
 415 












 416   void full_process_roots(StrongRootsScope* scope,
 417                           bool is_adjust_phase,
 418                           ScanningOption so,
 419                           bool only_strong_roots,
 420                           OopsInGenClosure* root_closure,
 421                           CLDClosure* cld_closure);
 422 
 423   // Apply "root_closure" to all the weak roots of the system.
 424   // These include JNI weak roots, string table,
 425   // and referents of reachable weak refs.
 426   void gen_process_weak_roots(OopClosure* root_closure);
 427 
 428   // Set the saved marks of generations, if that makes sense.
 429   // In particular, if any generation might iterate over the oops
 430   // in other generations, it should call this method.
 431   void save_marks();
 432 
 433   // Apply "cur->do_oop" or "older->do_oop" to all the oops in objects
 434   // allocated since the last call to save_marks in generations at or above
 435   // "level".  The "cur" closure is


 462   // If a generation bails out of an incremental collection,
 463   // it sets this flag.
 464   bool incremental_collection_failed() const {
 465     return _incremental_collection_failed;
 466   }
 467   void set_incremental_collection_failed() {
 468     _incremental_collection_failed = true;
 469   }
 470   void clear_incremental_collection_failed() {
 471     _incremental_collection_failed = false;
 472   }
 473 
 474   // Promotion of obj into gen failed.  Try to promote obj to higher
 475   // gens in ascending order; return the new location of obj if successful.
 476   // Otherwise, try expand-and-allocate for obj in both the young and old
 477   // generation; return the new location of obj if successful.  Otherwise, return NULL.
 478   oop handle_failed_promotion(Generation* old_gen,
 479                               oop obj,
 480                               size_t obj_size);
 481 





 482 
 483 private:
 484   // Override
 485   void check_for_non_bad_heap_word_value(HeapWord* addr,
 486     size_t size) PRODUCT_RETURN;
 487 
 488   // For use by mark-sweep.  As implemented, mark-sweep-compact is global
 489   // in an essential way: compaction is performed across generations, by
 490   // iterating over spaces.
 491   void prepare_for_compaction();
 492 
 493   // Perform a full collection of the generations up to and including max_generation.
 494   // This is the low level interface used by the public versions of
 495   // collect() and collect_locked(). Caller holds the Heap_lock on entry.
 496   void collect_locked(GCCause::Cause cause, GenerationType max_generation);
 497 







 498   // Save the tops of the spaces in all generations
 499   void record_gen_tops_before_GC() PRODUCT_RETURN;







 500 };
 501 
 502 #endif // SHARE_VM_GC_SHARED_GENCOLLECTEDHEAP_HPP
< prev index next >