1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "gc/shared/strongRootsScope.hpp"
  37 #include "gc/shared/workgroup.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "runtime/atomic.hpp"
  45 #include "runtime/compilationPolicy.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/frame.inline.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/orderAccess.inline.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/safepoint.hpp"
  53 #include "runtime/signature.hpp"
  54 #include "runtime/stubCodeGenerator.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/sweeper.hpp"
  57 #include "runtime/synchronizer.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/timerTrace.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "trace/tracing.hpp"
  62 #include "trace/traceMacros.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/macros.hpp"
  65 #if INCLUDE_ALL_GCS
  66 #include "gc/cms/concurrentMarkSweepThread.hpp"
  67 #include "gc/g1/suspendibleThreadSet.hpp"
  68 #endif // INCLUDE_ALL_GCS
  69 #ifdef COMPILER1
  70 #include "c1/c1_globals.hpp"
  71 #endif
  72 
  73 // --------------------------------------------------------------------------------------------------
  74 // Implementation of Safepoint begin/end
  75 
  76 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
  77 volatile int  SafepointSynchronize::_waiting_to_block = 0;
  78 volatile int SafepointSynchronize::_safepoint_counter = 0;
  79 int SafepointSynchronize::_current_jni_active_count = 0;
  80 long  SafepointSynchronize::_end_of_last_safepoint = 0;
  81 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
  82 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
  83 static bool timeout_error_printed = false;
  84 
  85 // Roll all threads forward to a safepoint and suspend them all
  86 void SafepointSynchronize::begin() {
  87   EventSafepointBegin begin_event;
  88   Thread* myThread = Thread::current();
  89   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
  90 
  91   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
  92     _safepoint_begin_time = os::javaTimeNanos();
  93     _ts_of_current_safepoint = tty->time_stamp().seconds();
  94   }
  95 
  96 #if INCLUDE_ALL_GCS
  97   if (UseConcMarkSweepGC) {
  98     // In the future we should investigate whether CMS can use the
  99     // more-general mechanism below.  DLD (01/05).
 100     ConcurrentMarkSweepThread::synchronize(false);
 101   } else if (UseG1GC) {
 102     SuspendibleThreadSet::synchronize();
 103   }
 104 #endif // INCLUDE_ALL_GCS
 105 
 106   // By getting the Threads_lock, we assure that no threads are about to start or
 107   // exit. It is released again in SafepointSynchronize::end().
 108   Threads_lock->lock();
 109 
 110   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 111 
 112   int nof_threads = Threads::number_of_threads();
 113 
 114   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 115 
 116   RuntimeService::record_safepoint_begin();
 117 
 118   MutexLocker mu(Safepoint_lock);
 119 
 120   // Reset the count of active JNI critical threads
 121   _current_jni_active_count = 0;
 122 
 123   // Set number of threads to wait for, before we initiate the callbacks
 124   _waiting_to_block = nof_threads;
 125   TryingToBlock     = 0 ;
 126   int still_running = nof_threads;
 127 
 128   // Save the starting time, so that it can be compared to see if this has taken
 129   // too long to complete.
 130   jlong safepoint_limit_time = 0;
 131   timeout_error_printed = false;
 132 
 133   // PrintSafepointStatisticsTimeout can be specified separately. When
 134   // specified, PrintSafepointStatistics will be set to true in
 135   // deferred_initialize_stat method. The initialization has to be done
 136   // early enough to avoid any races. See bug 6880029 for details.
 137   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 138     deferred_initialize_stat();
 139   }
 140 
 141   // Begin the process of bringing the system to a safepoint.
 142   // Java threads can be in several different states and are
 143   // stopped by different mechanisms:
 144   //
 145   //  1. Running interpreted
 146   //     The interpreter dispatch table is changed to force it to
 147   //     check for a safepoint condition between bytecodes.
 148   //  2. Running in native code
 149   //     When returning from the native code, a Java thread must check
 150   //     the safepoint _state to see if we must block.  If the
 151   //     VM thread sees a Java thread in native, it does
 152   //     not wait for this thread to block.  The order of the memory
 153   //     writes and reads of both the safepoint state and the Java
 154   //     threads state is critical.  In order to guarantee that the
 155   //     memory writes are serialized with respect to each other,
 156   //     the VM thread issues a memory barrier instruction
 157   //     (on MP systems).  In order to avoid the overhead of issuing
 158   //     a memory barrier for each Java thread making native calls, each Java
 159   //     thread performs a write to a single memory page after changing
 160   //     the thread state.  The VM thread performs a sequence of
 161   //     mprotect OS calls which forces all previous writes from all
 162   //     Java threads to be serialized.  This is done in the
 163   //     os::serialize_thread_states() call.  This has proven to be
 164   //     much more efficient than executing a membar instruction
 165   //     on every call to native code.
 166   //  3. Running compiled Code
 167   //     Compiled code reads a global (Safepoint Polling) page that
 168   //     is set to fault if we are trying to get to a safepoint.
 169   //  4. Blocked
 170   //     A thread which is blocked will not be allowed to return from the
 171   //     block condition until the safepoint operation is complete.
 172   //  5. In VM or Transitioning between states
 173   //     If a Java thread is currently running in the VM or transitioning
 174   //     between states, the safepointing code will wait for the thread to
 175   //     block itself when it attempts transitions to a new state.
 176   //
 177   {
 178     EventSafepointStateSynchronization sync_event;
 179     int initial_running = 0;
 180 
 181     _state            = _synchronizing;
 182     OrderAccess::fence();
 183 
 184     // Flush all thread states to memory
 185     if (!UseMembar) {
 186       os::serialize_thread_states();
 187     }
 188 
 189     // Make interpreter safepoint aware
 190     Interpreter::notice_safepoints();
 191 
 192     if (DeferPollingPageLoopCount < 0) {
 193       // Make polling safepoint aware
 194       guarantee (PageArmed == 0, "invariant") ;
 195       PageArmed = 1 ;
 196       os::make_polling_page_unreadable();
 197     }
 198 
 199     // Consider using active_processor_count() ... but that call is expensive.
 200     int ncpus = os::processor_count() ;
 201 
 202 #ifdef ASSERT
 203     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 204       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 205       // Clear the visited flag to ensure that the critical counts are collected properly.
 206       cur->set_visited_for_critical_count(false);
 207     }
 208 #endif // ASSERT
 209 
 210     if (SafepointTimeout)
 211       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 212 
 213     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 214     unsigned int iterations = 0;
 215     int steps = 0 ;
 216     while(still_running > 0) {
 217       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 218         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 219         ThreadSafepointState *cur_state = cur->safepoint_state();
 220         if (cur_state->is_running()) {
 221           cur_state->examine_state_of_thread();
 222           if (!cur_state->is_running()) {
 223             still_running--;
 224             // consider adjusting steps downward:
 225             //   steps = 0
 226             //   steps -= NNN
 227             //   steps >>= 1
 228             //   steps = MIN(steps, 2000-100)
 229             //   if (iterations != 0) steps -= NNN
 230           }
 231           if (log_is_enabled(Trace, safepoint)) {
 232             ResourceMark rm;
 233             cur_state->print_on(Log(safepoint)::trace_stream());
 234           }
 235         }
 236       }
 237 
 238       if (iterations == 0) {
 239         initial_running = still_running;
 240         if (PrintSafepointStatistics) {
 241           begin_statistics(nof_threads, still_running);
 242         }
 243       }
 244 
 245       if (still_running > 0) {
 246         // Check for if it takes to long
 247         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 248           print_safepoint_timeout(_spinning_timeout);
 249         }
 250 
 251         // Spin to avoid context switching.
 252         // There's a tension between allowing the mutators to run (and rendezvous)
 253         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 254         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 255         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 256         // Blocking or yielding incur their own penalties in the form of context switching
 257         // and the resultant loss of $ residency.
 258         //
 259         // Further complicating matters is that yield() does not work as naively expected
 260         // on many platforms -- yield() does not guarantee that any other ready threads
 261         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 262         // nakes_short_sleep() is implemented as a short unconditional sleep.
 263         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 264         // can actually increase the time it takes the VM thread to detect that a system-wide
 265         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 266         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 267         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 268         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 269         // will eventually wake up and detect that all mutators are safe, at which point
 270         // we'll again make progress.
 271         //
 272         // Beware too that that the VMThread typically runs at elevated priority.
 273         // Its default priority is higher than the default mutator priority.
 274         // Obviously, this complicates spinning.
 275         //
 276         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 277         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 278         //
 279         // See the comments in synchronizer.cpp for additional remarks on spinning.
 280         //
 281         // In the future we might:
 282         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 283         //    This is tricky as the path used by a thread exiting the JVM (say on
 284         //    on JNI call-out) simply stores into its state field.  The burden
 285         //    is placed on the VM thread, which must poll (spin).
 286         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 287         //    we might aggressively scan the stacks of threads that are already safe.
 288         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 289         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 290         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 291         // 5. Check system saturation.  If the system is not fully saturated then
 292         //    simply spin and avoid sleep/yield.
 293         // 6. As still-running mutators rendezvous they could unpark the sleeping
 294         //    VMthread.  This works well for still-running mutators that become
 295         //    safe.  The VMthread must still poll for mutators that call-out.
 296         // 7. Drive the policy on time-since-begin instead of iterations.
 297         // 8. Consider making the spin duration a function of the # of CPUs:
 298         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 299         //    Alternately, instead of counting iterations of the outer loop
 300         //    we could count the # of threads visited in the inner loop, above.
 301         // 9. On windows consider using the return value from SwitchThreadTo()
 302         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 303 
 304         if (int(iterations) == DeferPollingPageLoopCount) {
 305           guarantee (PageArmed == 0, "invariant") ;
 306           PageArmed = 1 ;
 307           os::make_polling_page_unreadable();
 308         }
 309 
 310         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 311         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 312         ++steps ;
 313         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 314           SpinPause() ;     // MP-Polite spin
 315         } else
 316           if (steps < DeferThrSuspendLoopCount) {
 317             os::naked_yield() ;
 318           } else {
 319             os::naked_short_sleep(1);
 320           }
 321 
 322         iterations ++ ;
 323       }
 324       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 325     }
 326     assert(still_running == 0, "sanity check");
 327 
 328     if (PrintSafepointStatistics) {
 329       update_statistics_on_spin_end();
 330     }
 331 
 332     if (sync_event.should_commit()) {
 333       sync_event.set_safepointId(safepoint_counter());
 334       sync_event.set_initialThreadCount(initial_running);
 335       sync_event.set_runningThreadCount(_waiting_to_block);
 336       sync_event.set_iterations(iterations);
 337       sync_event.commit();
 338     }
 339   } //EventSafepointStateSync
 340 
 341   // wait until all threads are stopped
 342   {
 343     EventSafepointWaitBlocked wait_blocked_event;
 344     int initial_waiting_to_block = _waiting_to_block;
 345 
 346     while (_waiting_to_block > 0) {
 347       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 348       if (!SafepointTimeout || timeout_error_printed) {
 349         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 350       } else {
 351         // Compute remaining time
 352         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 353 
 354         // If there is no remaining time, then there is an error
 355         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 356           print_safepoint_timeout(_blocking_timeout);
 357         }
 358       }
 359     }
 360     assert(_waiting_to_block == 0, "sanity check");
 361 
 362 #ifndef PRODUCT
 363     if (SafepointTimeout) {
 364       jlong current_time = os::javaTimeNanos();
 365       if (safepoint_limit_time < current_time) {
 366         tty->print_cr("# SafepointSynchronize: Finished after "
 367                       INT64_FORMAT_W(6) " ms",
 368                       (int64_t)((current_time - safepoint_limit_time) / MICROUNITS +
 369                                 (jlong)SafepointTimeoutDelay));
 370       }
 371     }
 372 #endif
 373 
 374     assert((_safepoint_counter & 0x1) == 0, "must be even");
 375     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 376     _safepoint_counter ++;
 377 
 378     // Record state
 379     _state = _synchronized;
 380 
 381     OrderAccess::fence();
 382 
 383     if (wait_blocked_event.should_commit()) {
 384       wait_blocked_event.set_safepointId(safepoint_counter());
 385       wait_blocked_event.set_runningThreadCount(initial_waiting_to_block);
 386       wait_blocked_event.commit();
 387     }
 388   } // EventSafepointWaitBlocked
 389 
 390 #ifdef ASSERT
 391   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 392     // make sure all the threads were visited
 393     assert(cur->was_visited_for_critical_count(), "missed a thread");
 394   }
 395 #endif // ASSERT
 396 
 397   // Update the count of active JNI critical regions
 398   GCLocker::set_jni_lock_count(_current_jni_active_count);
 399 
 400   if (log_is_enabled(Debug, safepoint)) {
 401     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 402   }
 403 
 404   RuntimeService::record_safepoint_synchronized();
 405   if (PrintSafepointStatistics) {
 406     update_statistics_on_sync_end(os::javaTimeNanos());
 407   }
 408 
 409   // Call stuff that needs to be run when a safepoint is just about to be completed
 410   {
 411     EventSafepointCleanup cleanup_event;
 412     do_cleanup_tasks();
 413     if (cleanup_event.should_commit()) {
 414       cleanup_event.set_safepointId(safepoint_counter());
 415       cleanup_event.commit();
 416     }
 417   }
 418 
 419   if (PrintSafepointStatistics) {
 420     // Record how much time spend on the above cleanup tasks
 421     update_statistics_on_cleanup_end(os::javaTimeNanos());
 422   }
 423   if (begin_event.should_commit()) {
 424     begin_event.set_safepointId(safepoint_counter());
 425     begin_event.set_totalThreadCount(nof_threads);
 426     begin_event.set_jniCriticalThreadCount(_current_jni_active_count);
 427     begin_event.commit();
 428   }
 429 }
 430 
 431 // Wake up all threads, so they are ready to resume execution after the safepoint
 432 // operation has been carried out
 433 void SafepointSynchronize::end() {
 434   EventSafepointEnd event;
 435   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 436 
 437   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 438   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 439   _safepoint_counter ++;
 440   // memory fence isn't required here since an odd _safepoint_counter
 441   // value can do no harm and a fence is issued below anyway.
 442 
 443   DEBUG_ONLY(Thread* myThread = Thread::current();)
 444   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 445 
 446   if (PrintSafepointStatistics) {
 447     end_statistics(os::javaTimeNanos());
 448   }
 449 
 450 #ifdef ASSERT
 451   // A pending_exception cannot be installed during a safepoint.  The threads
 452   // may install an async exception after they come back from a safepoint into
 453   // pending_exception after they unblock.  But that should happen later.
 454   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 455     assert (!(cur->has_pending_exception() &&
 456               cur->safepoint_state()->is_at_poll_safepoint()),
 457             "safepoint installed a pending exception");
 458   }
 459 #endif // ASSERT
 460 
 461   if (PageArmed) {
 462     // Make polling safepoint aware
 463     os::make_polling_page_readable();
 464     PageArmed = 0 ;
 465   }
 466 
 467   // Remove safepoint check from interpreter
 468   Interpreter::ignore_safepoints();
 469 
 470   {
 471     MutexLocker mu(Safepoint_lock);
 472 
 473     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 474 
 475     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 476     // when they get restarted.
 477     _state = _not_synchronized;
 478     OrderAccess::fence();
 479 
 480     log_debug(safepoint)("Leaving safepoint region");
 481 
 482     // Start suspended threads
 483     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 484       // A problem occurring on Solaris is when attempting to restart threads
 485       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 486       // to the next one (since it has been running the longest).  We then have
 487       // to wait for a cpu to become available before we can continue restarting
 488       // threads.
 489       // FIXME: This causes the performance of the VM to degrade when active and with
 490       // large numbers of threads.  Apparently this is due to the synchronous nature
 491       // of suspending threads.
 492       //
 493       // TODO-FIXME: the comments above are vestigial and no longer apply.
 494       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 495       if (VMThreadHintNoPreempt) {
 496         os::hint_no_preempt();
 497       }
 498       ThreadSafepointState* cur_state = current->safepoint_state();
 499       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 500       cur_state->restart();
 501       assert(cur_state->is_running(), "safepoint state has not been reset");
 502     }
 503 
 504     RuntimeService::record_safepoint_end();
 505 
 506     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 507     // blocked in signal_thread_blocked
 508     Threads_lock->unlock();
 509 
 510   }
 511 #if INCLUDE_ALL_GCS
 512   // If there are any concurrent GC threads resume them.
 513   if (UseConcMarkSweepGC) {
 514     ConcurrentMarkSweepThread::desynchronize(false);
 515   } else if (UseG1GC) {
 516     SuspendibleThreadSet::desynchronize();
 517   }
 518 #endif // INCLUDE_ALL_GCS
 519   // record this time so VMThread can keep track how much time has elapsed
 520   // since last safepoint.
 521   _end_of_last_safepoint = os::javaTimeMillis();
 522 
 523   if (event.should_commit()) {
 524     event.set_safepointId(safepoint_id);
 525     event.commit();
 526   }
 527 }
 528 
 529 bool SafepointSynchronize::is_cleanup_needed() {
 530   // Need a safepoint if there are many monitors to deflate.
 531   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 532   // Need a safepoint if some inline cache buffers is non-empty
 533   if (!InlineCacheBuffer::is_empty()) return true;
 534   return false;
 535 }
 536 
 537 static void event_safepoint_cleanup_task_commit(EventSafepointCleanupTask& event, const char* name) {
 538   if (event.should_commit()) {
 539     event.set_safepointId(SafepointSynchronize::safepoint_counter());
 540     event.set_name(name);
 541     event.commit();
 542   }
 543 }
 544 
 545 class ParallelSPCleanupThreadClosure : public ThreadClosure {
 546 private:
 547   CodeBlobClosure* _nmethod_cl;
 548   DeflateMonitorCounters* _counters;
 549 
 550 public:
 551   ParallelSPCleanupThreadClosure(DeflateMonitorCounters* counters) :
 552     _counters(counters),
 553     _nmethod_cl(NMethodSweeper::prepare_mark_active_nmethods()) {}
 554 
 555   void do_thread(Thread* thread) {
 556     ObjectSynchronizer::deflate_thread_local_monitors(thread, _counters);
 557     if (_nmethod_cl != NULL && thread->is_Java_thread() &&
 558         ! thread->is_Code_cache_sweeper_thread()) {
 559       JavaThread* jt = (JavaThread*) thread;
 560       jt->nmethods_do(_nmethod_cl);
 561     }
 562   }
 563 };
 564 
 565 class ParallelSPCleanupTask : public AbstractGangTask {
 566 private:
 567   SubTasksDone _subtasks;
 568   ParallelSPCleanupThreadClosure _cleanup_threads_cl;
 569   uint _num_workers;
 570   DeflateMonitorCounters* _counters;
 571 public:
 572   ParallelSPCleanupTask(uint num_workers, DeflateMonitorCounters* counters) :
 573     AbstractGangTask("Parallel Safepoint Cleanup"),
 574     _cleanup_threads_cl(ParallelSPCleanupThreadClosure(counters)),
 575     _num_workers(num_workers),
 576     _subtasks(SubTasksDone(SafepointSynchronize::SAFEPOINT_CLEANUP_NUM_TASKS)),
 577     _counters(counters) {}
 578 
 579   void work(uint worker_id) {
 580     // All threads deflate monitors and mark nmethods (if necessary).
 581     Threads::parallel_java_threads_do(&_cleanup_threads_cl);
 582 
 583     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_DEFLATE_MONITORS)) {
 584       const char* name = "deflating idle monitors";
 585       EventSafepointCleanupTask event;
 586       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 587       ObjectSynchronizer::deflate_idle_monitors(_counters);
 588       event_safepoint_cleanup_task_commit(event, name);
 589     }
 590 
 591     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_UPDATE_INLINE_CACHES)) {
 592       const char* name = "updating inline caches";
 593       EventSafepointCleanupTask event;
 594       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 595       InlineCacheBuffer::update_inline_caches();
 596       event_safepoint_cleanup_task_commit(event, name);
 597     }
 598 
 599     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_COMPILATION_POLICY)) {
 600       const char* name = "compilation policy safepoint handler";
 601       EventSafepointCleanupTask event;
 602       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 603       CompilationPolicy::policy()->do_safepoint_work();
 604       event_safepoint_cleanup_task_commit(event, name);
 605     }
 606 
 607     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_SYMBOL_TABLE_REHASH)) {
 608       if (SymbolTable::needs_rehashing()) {
 609         const char* name = "rehashing symbol table";
 610         EventSafepointCleanupTask event;
 611         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 612         SymbolTable::rehash_table();
 613         event_safepoint_cleanup_task_commit(event, name);
 614       }
 615     }
 616 
 617     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_STRING_TABLE_REHASH)) {
 618       if (StringTable::needs_rehashing()) {
 619         const char* name = "rehashing string table";
 620         EventSafepointCleanupTask event;
 621         TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 622         StringTable::rehash_table();
 623         event_safepoint_cleanup_task_commit(event, name);
 624       }
 625     }
 626 
 627     if (!_subtasks.is_task_claimed(SafepointSynchronize::SAFEPOINT_CLEANUP_CLD_PURGE)) {
 628       // CMS delays purging the CLDG until the beginning of the next safepoint and to
 629       // make sure concurrent sweep is done
 630       const char* name = "purging class loader data graph";
 631       EventSafepointCleanupTask event;
 632       TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 633       ClassLoaderDataGraph::purge_if_needed();
 634       event_safepoint_cleanup_task_commit(event, name);
 635     }
 636     _subtasks.all_tasks_completed(_num_workers);
 637   }
 638 };
 639 
 640 // Various cleaning tasks that should be done periodically at safepoints.
 641 void SafepointSynchronize::do_cleanup_tasks() {
 642 
 643   TraceTime timer("safepoint cleanup tasks", TRACETIME_LOG(Info, safepoint, cleanup));
 644 
 645   // Prepare for monitor deflation.
 646   DeflateMonitorCounters deflate_counters;
 647   ObjectSynchronizer::prepare_deflate_idle_monitors(&deflate_counters);
 648 
 649   CollectedHeap* heap = Universe::heap();
 650   assert(heap != NULL, "heap not initialized yet?");
 651   WorkGang* cleanup_workers = heap->get_safepoint_workers();
 652   if (cleanup_workers != NULL) {
 653     // Parallel cleanup using GC provided thread pool.
 654     uint num_cleanup_workers = cleanup_workers->active_workers();
 655     ParallelSPCleanupTask cleanup(num_cleanup_workers, &deflate_counters);
 656     StrongRootsScope srs(num_cleanup_workers);
 657     cleanup_workers->run_task(&cleanup);
 658   } else {
 659     // Serial cleanup using VMThread.
 660     ParallelSPCleanupTask cleanup(1, &deflate_counters);
 661     StrongRootsScope srs(1);
 662     cleanup.work(0);
 663   }
 664 
 665   // Finish monitor deflation.
 666   ObjectSynchronizer::finish_deflate_idle_monitors(&deflate_counters);
 667 }
 668 
 669 
 670 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 671   switch(state) {
 672   case _thread_in_native:
 673     // native threads are safe if they have no java stack or have walkable stack
 674     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 675 
 676    // blocked threads should have already have walkable stack
 677   case _thread_blocked:
 678     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 679     return true;
 680 
 681   default:
 682     return false;
 683   }
 684 }
 685 
 686 
 687 // See if the thread is running inside a lazy critical native and
 688 // update the thread critical count if so.  Also set a suspend flag to
 689 // cause the native wrapper to return into the JVM to do the unlock
 690 // once the native finishes.
 691 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 692   if (state == _thread_in_native &&
 693       thread->has_last_Java_frame() &&
 694       thread->frame_anchor()->walkable()) {
 695     // This thread might be in a critical native nmethod so look at
 696     // the top of the stack and increment the critical count if it
 697     // is.
 698     frame wrapper_frame = thread->last_frame();
 699     CodeBlob* stub_cb = wrapper_frame.cb();
 700     if (stub_cb != NULL &&
 701         stub_cb->is_nmethod() &&
 702         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 703       // A thread could potentially be in a critical native across
 704       // more than one safepoint, so only update the critical state on
 705       // the first one.  When it returns it will perform the unlock.
 706       if (!thread->do_critical_native_unlock()) {
 707 #ifdef ASSERT
 708         if (!thread->in_critical()) {
 709           GCLocker::increment_debug_jni_lock_count();
 710         }
 711 #endif
 712         thread->enter_critical();
 713         // Make sure the native wrapper calls back on return to
 714         // perform the needed critical unlock.
 715         thread->set_critical_native_unlock();
 716       }
 717     }
 718   }
 719 }
 720 
 721 
 722 
 723 // -------------------------------------------------------------------------------------------------------
 724 // Implementation of Safepoint callback point
 725 
 726 void SafepointSynchronize::block(JavaThread *thread) {
 727   assert(thread != NULL, "thread must be set");
 728   assert(thread->is_Java_thread(), "not a Java thread");
 729 
 730   // Threads shouldn't block if they are in the middle of printing, but...
 731   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 732 
 733   // Only bail from the block() call if the thread is gone from the
 734   // thread list; starting to exit should still block.
 735   if (thread->is_terminated()) {
 736      // block current thread if we come here from native code when VM is gone
 737      thread->block_if_vm_exited();
 738 
 739      // otherwise do nothing
 740      return;
 741   }
 742 
 743   JavaThreadState state = thread->thread_state();
 744   thread->frame_anchor()->make_walkable(thread);
 745 
 746   // Check that we have a valid thread_state at this point
 747   switch(state) {
 748     case _thread_in_vm_trans:
 749     case _thread_in_Java:        // From compiled code
 750 
 751       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 752       // we pretend we are still in the VM.
 753       thread->set_thread_state(_thread_in_vm);
 754 
 755       if (is_synchronizing()) {
 756          Atomic::inc (&TryingToBlock) ;
 757       }
 758 
 759       // We will always be holding the Safepoint_lock when we are examine the state
 760       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 761       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 762       Safepoint_lock->lock_without_safepoint_check();
 763       if (is_synchronizing()) {
 764         // Decrement the number of threads to wait for and signal vm thread
 765         assert(_waiting_to_block > 0, "sanity check");
 766         _waiting_to_block--;
 767         thread->safepoint_state()->set_has_called_back(true);
 768 
 769         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 770         if (thread->in_critical()) {
 771           // Notice that this thread is in a critical section
 772           increment_jni_active_count();
 773         }
 774 
 775         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 776         if (_waiting_to_block == 0) {
 777           Safepoint_lock->notify_all();
 778         }
 779       }
 780 
 781       // We transition the thread to state _thread_blocked here, but
 782       // we can't do our usual check for external suspension and then
 783       // self-suspend after the lock_without_safepoint_check() call
 784       // below because we are often called during transitions while
 785       // we hold different locks. That would leave us suspended while
 786       // holding a resource which results in deadlocks.
 787       thread->set_thread_state(_thread_blocked);
 788       Safepoint_lock->unlock();
 789 
 790       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 791       // the entire safepoint, the threads will all line up here during the safepoint.
 792       Threads_lock->lock_without_safepoint_check();
 793       // restore original state. This is important if the thread comes from compiled code, so it
 794       // will continue to execute with the _thread_in_Java state.
 795       thread->set_thread_state(state);
 796       Threads_lock->unlock();
 797       break;
 798 
 799     case _thread_in_native_trans:
 800     case _thread_blocked_trans:
 801     case _thread_new_trans:
 802       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 803         thread->print_thread_state();
 804         fatal("Deadlock in safepoint code.  "
 805               "Should have called back to the VM before blocking.");
 806       }
 807 
 808       // We transition the thread to state _thread_blocked here, but
 809       // we can't do our usual check for external suspension and then
 810       // self-suspend after the lock_without_safepoint_check() call
 811       // below because we are often called during transitions while
 812       // we hold different locks. That would leave us suspended while
 813       // holding a resource which results in deadlocks.
 814       thread->set_thread_state(_thread_blocked);
 815 
 816       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 817       // the safepoint code might still be waiting for it to block. We need to change the state here,
 818       // so it can see that it is at a safepoint.
 819 
 820       // Block until the safepoint operation is completed.
 821       Threads_lock->lock_without_safepoint_check();
 822 
 823       // Restore state
 824       thread->set_thread_state(state);
 825 
 826       Threads_lock->unlock();
 827       break;
 828 
 829     default:
 830      fatal("Illegal threadstate encountered: %d", state);
 831   }
 832 
 833   // Check for pending. async. exceptions or suspends - except if the
 834   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 835   // is called last since it grabs a lock and we only want to do that when
 836   // we must.
 837   //
 838   // Note: we never deliver an async exception at a polling point as the
 839   // compiler may not have an exception handler for it. The polling
 840   // code will notice the async and deoptimize and the exception will
 841   // be delivered. (Polling at a return point is ok though). Sure is
 842   // a lot of bother for a deprecated feature...
 843   //
 844   // We don't deliver an async exception if the thread state is
 845   // _thread_in_native_trans so JNI functions won't be called with
 846   // a surprising pending exception. If the thread state is going back to java,
 847   // async exception is checked in check_special_condition_for_native_trans().
 848 
 849   if (state != _thread_blocked_trans &&
 850       state != _thread_in_vm_trans &&
 851       thread->has_special_runtime_exit_condition()) {
 852     thread->handle_special_runtime_exit_condition(
 853       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 854   }
 855 }
 856 
 857 // ------------------------------------------------------------------------------------------------------
 858 // Exception handlers
 859 
 860 
 861 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 862   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 863   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 864   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 865 
 866   if (ShowSafepointMsgs) {
 867     tty->print("handle_polling_page_exception: ");
 868   }
 869 
 870   if (PrintSafepointStatistics) {
 871     inc_page_trap_count();
 872   }
 873 
 874   ThreadSafepointState* state = thread->safepoint_state();
 875 
 876   state->handle_polling_page_exception();
 877 }
 878 
 879 
 880 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 881   if (!timeout_error_printed) {
 882     timeout_error_printed = true;
 883     // Print out the thread info which didn't reach the safepoint for debugging
 884     // purposes (useful when there are lots of threads in the debugger).
 885     tty->cr();
 886     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 887     if (reason ==  _spinning_timeout) {
 888       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 889     } else if (reason == _blocking_timeout) {
 890       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 891     }
 892 
 893     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 894     ThreadSafepointState *cur_state;
 895     ResourceMark rm;
 896     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 897         cur_thread = cur_thread->next()) {
 898       cur_state = cur_thread->safepoint_state();
 899 
 900       if (cur_thread->thread_state() != _thread_blocked &&
 901           ((reason == _spinning_timeout && cur_state->is_running()) ||
 902            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 903         tty->print("# ");
 904         cur_thread->print();
 905         tty->cr();
 906       }
 907     }
 908     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 909   }
 910 
 911   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 912   // ShowMessageBoxOnError.
 913   if (DieOnSafepointTimeout) {
 914     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 915           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 916   }
 917 }
 918 
 919 
 920 // -------------------------------------------------------------------------------------------------------
 921 // Implementation of ThreadSafepointState
 922 
 923 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 924   _thread = thread;
 925   _type   = _running;
 926   _has_called_back = false;
 927   _at_poll_safepoint = false;
 928 }
 929 
 930 void ThreadSafepointState::create(JavaThread *thread) {
 931   ThreadSafepointState *state = new ThreadSafepointState(thread);
 932   thread->set_safepoint_state(state);
 933 }
 934 
 935 void ThreadSafepointState::destroy(JavaThread *thread) {
 936   if (thread->safepoint_state()) {
 937     delete(thread->safepoint_state());
 938     thread->set_safepoint_state(NULL);
 939   }
 940 }
 941 
 942 void ThreadSafepointState::examine_state_of_thread() {
 943   assert(is_running(), "better be running or just have hit safepoint poll");
 944 
 945   JavaThreadState state = _thread->thread_state();
 946 
 947   // Save the state at the start of safepoint processing.
 948   _orig_thread_state = state;
 949 
 950   // Check for a thread that is suspended. Note that thread resume tries
 951   // to grab the Threads_lock which we own here, so a thread cannot be
 952   // resumed during safepoint synchronization.
 953 
 954   // We check to see if this thread is suspended without locking to
 955   // avoid deadlocking with a third thread that is waiting for this
 956   // thread to be suspended. The third thread can notice the safepoint
 957   // that we're trying to start at the beginning of its SR_lock->wait()
 958   // call. If that happens, then the third thread will block on the
 959   // safepoint while still holding the underlying SR_lock. We won't be
 960   // able to get the SR_lock and we'll deadlock.
 961   //
 962   // We don't need to grab the SR_lock here for two reasons:
 963   // 1) The suspend flags are both volatile and are set with an
 964   //    Atomic::cmpxchg() call so we should see the suspended
 965   //    state right away.
 966   // 2) We're being called from the safepoint polling loop; if
 967   //    we don't see the suspended state on this iteration, then
 968   //    we'll come around again.
 969   //
 970   bool is_suspended = _thread->is_ext_suspended();
 971   if (is_suspended) {
 972     roll_forward(_at_safepoint);
 973     return;
 974   }
 975 
 976   // Some JavaThread states have an initial safepoint state of
 977   // running, but are actually at a safepoint. We will happily
 978   // agree and update the safepoint state here.
 979   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 980     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 981     roll_forward(_at_safepoint);
 982     return;
 983   }
 984 
 985   if (state == _thread_in_vm) {
 986     roll_forward(_call_back);
 987     return;
 988   }
 989 
 990   // All other thread states will continue to run until they
 991   // transition and self-block in state _blocked
 992   // Safepoint polling in compiled code causes the Java threads to do the same.
 993   // Note: new threads may require a malloc so they must be allowed to finish
 994 
 995   assert(is_running(), "examine_state_of_thread on non-running thread");
 996   return;
 997 }
 998 
 999 // Returns true is thread could not be rolled forward at present position.
1000 void ThreadSafepointState::roll_forward(suspend_type type) {
1001   _type = type;
1002 
1003   switch(_type) {
1004     case _at_safepoint:
1005       SafepointSynchronize::signal_thread_at_safepoint();
1006       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
1007       if (_thread->in_critical()) {
1008         // Notice that this thread is in a critical section
1009         SafepointSynchronize::increment_jni_active_count();
1010       }
1011       break;
1012 
1013     case _call_back:
1014       set_has_called_back(false);
1015       break;
1016 
1017     case _running:
1018     default:
1019       ShouldNotReachHere();
1020   }
1021 }
1022 
1023 void ThreadSafepointState::restart() {
1024   switch(type()) {
1025     case _at_safepoint:
1026     case _call_back:
1027       break;
1028 
1029     case _running:
1030     default:
1031        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1032                      p2i(_thread), _type);
1033        _thread->print();
1034       ShouldNotReachHere();
1035   }
1036   _type = _running;
1037   set_has_called_back(false);
1038 }
1039 
1040 
1041 void ThreadSafepointState::print_on(outputStream *st) const {
1042   const char *s = NULL;
1043 
1044   switch(_type) {
1045     case _running                : s = "_running";              break;
1046     case _at_safepoint           : s = "_at_safepoint";         break;
1047     case _call_back              : s = "_call_back";            break;
1048     default:
1049       ShouldNotReachHere();
1050   }
1051 
1052   st->print_cr("Thread: " INTPTR_FORMAT
1053               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1054                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1055                _at_poll_safepoint);
1056 
1057   _thread->print_thread_state_on(st);
1058 }
1059 
1060 // ---------------------------------------------------------------------------------------------------------------------
1061 
1062 // Block the thread at the safepoint poll or poll return.
1063 void ThreadSafepointState::handle_polling_page_exception() {
1064 
1065   // Check state.  block() will set thread state to thread_in_vm which will
1066   // cause the safepoint state _type to become _call_back.
1067   assert(type() == ThreadSafepointState::_running,
1068          "polling page exception on thread not running state");
1069 
1070   // Step 1: Find the nmethod from the return address
1071   if (ShowSafepointMsgs && Verbose) {
1072     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1073   }
1074   address real_return_addr = thread()->saved_exception_pc();
1075 
1076   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1077   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1078   CompiledMethod* nm = (CompiledMethod*)cb;
1079 
1080   // Find frame of caller
1081   frame stub_fr = thread()->last_frame();
1082   CodeBlob* stub_cb = stub_fr.cb();
1083   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1084   RegisterMap map(thread(), true);
1085   frame caller_fr = stub_fr.sender(&map);
1086 
1087   // Should only be poll_return or poll
1088   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1089 
1090   // This is a poll immediately before a return. The exception handling code
1091   // has already had the effect of causing the return to occur, so the execution
1092   // will continue immediately after the call. In addition, the oopmap at the
1093   // return point does not mark the return value as an oop (if it is), so
1094   // it needs a handle here to be updated.
1095   if( nm->is_at_poll_return(real_return_addr) ) {
1096     // See if return type is an oop.
1097     bool return_oop = nm->method()->is_returning_oop();
1098     Handle return_value;
1099     if (return_oop) {
1100       // The oop result has been saved on the stack together with all
1101       // the other registers. In order to preserve it over GCs we need
1102       // to keep it in a handle.
1103       oop result = caller_fr.saved_oop_result(&map);
1104       assert(result == NULL || result->is_oop(), "must be oop");
1105       return_value = Handle(thread(), result);
1106       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1107     }
1108 
1109     // Block the thread
1110     SafepointSynchronize::block(thread());
1111 
1112     // restore oop result, if any
1113     if (return_oop) {
1114       caller_fr.set_saved_oop_result(&map, return_value());
1115     }
1116   }
1117 
1118   // This is a safepoint poll. Verify the return address and block.
1119   else {
1120     set_at_poll_safepoint(true);
1121 
1122     // verify the blob built the "return address" correctly
1123     assert(real_return_addr == caller_fr.pc(), "must match");
1124 
1125     // Block the thread
1126     SafepointSynchronize::block(thread());
1127     set_at_poll_safepoint(false);
1128 
1129     // If we have a pending async exception deoptimize the frame
1130     // as otherwise we may never deliver it.
1131     if (thread()->has_async_condition()) {
1132       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1133       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1134     }
1135 
1136     // If an exception has been installed we must check for a pending deoptimization
1137     // Deoptimize frame if exception has been thrown.
1138 
1139     if (thread()->has_pending_exception() ) {
1140       RegisterMap map(thread(), true);
1141       frame caller_fr = stub_fr.sender(&map);
1142       if (caller_fr.is_deoptimized_frame()) {
1143         // The exception patch will destroy registers that are still
1144         // live and will be needed during deoptimization. Defer the
1145         // Async exception should have deferred the exception until the
1146         // next safepoint which will be detected when we get into
1147         // the interpreter so if we have an exception now things
1148         // are messed up.
1149 
1150         fatal("Exception installed and deoptimization is pending");
1151       }
1152     }
1153   }
1154 }
1155 
1156 
1157 //
1158 //                     Statistics & Instrumentations
1159 //
1160 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1161 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1162 int    SafepointSynchronize::_cur_stat_index = 0;
1163 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1164 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1165 jlong  SafepointSynchronize::_max_sync_time = 0;
1166 jlong  SafepointSynchronize::_max_vmop_time = 0;
1167 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1168 
1169 static jlong  cleanup_end_time = 0;
1170 static bool   need_to_track_page_armed_status = false;
1171 static bool   init_done = false;
1172 
1173 // Helper method to print the header.
1174 static void print_header() {
1175   // The number of spaces is significant here, and should match the format
1176   // specifiers in print_statistics().
1177 
1178   tty->print("          vmop                            "
1179              "[ threads:    total initially_running wait_to_block ]"
1180              "[ time:    spin   block    sync cleanup    vmop ] ");
1181 
1182   // no page armed status printed out if it is always armed.
1183   if (need_to_track_page_armed_status) {
1184     tty->print("page_armed ");
1185   }
1186 
1187   tty->print_cr("page_trap_count");
1188 }
1189 
1190 void SafepointSynchronize::deferred_initialize_stat() {
1191   if (init_done) return;
1192 
1193   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1194   // be printed right away, in which case, _safepoint_stats will regress to
1195   // a single element array. Otherwise, it is a circular ring buffer with default
1196   // size of PrintSafepointStatisticsCount.
1197   int stats_array_size;
1198   if (PrintSafepointStatisticsTimeout > 0) {
1199     stats_array_size = 1;
1200     PrintSafepointStatistics = true;
1201   } else {
1202     stats_array_size = PrintSafepointStatisticsCount;
1203   }
1204   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1205                                                  * sizeof(SafepointStats), mtInternal);
1206   guarantee(_safepoint_stats != NULL,
1207             "not enough memory for safepoint instrumentation data");
1208 
1209   if (DeferPollingPageLoopCount >= 0) {
1210     need_to_track_page_armed_status = true;
1211   }
1212   init_done = true;
1213 }
1214 
1215 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1216   assert(init_done, "safepoint statistics array hasn't been initialized");
1217   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1218 
1219   spstat->_time_stamp = _ts_of_current_safepoint;
1220 
1221   VM_Operation *op = VMThread::vm_operation();
1222   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1223   if (op != NULL) {
1224     _safepoint_reasons[spstat->_vmop_type]++;
1225   }
1226 
1227   spstat->_nof_total_threads = nof_threads;
1228   spstat->_nof_initial_running_threads = nof_running;
1229   spstat->_nof_threads_hit_page_trap = 0;
1230 
1231   // Records the start time of spinning. The real time spent on spinning
1232   // will be adjusted when spin is done. Same trick is applied for time
1233   // spent on waiting for threads to block.
1234   if (nof_running != 0) {
1235     spstat->_time_to_spin = os::javaTimeNanos();
1236   }  else {
1237     spstat->_time_to_spin = 0;
1238   }
1239 }
1240 
1241 void SafepointSynchronize::update_statistics_on_spin_end() {
1242   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1243 
1244   jlong cur_time = os::javaTimeNanos();
1245 
1246   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1247   if (spstat->_nof_initial_running_threads != 0) {
1248     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1249   }
1250 
1251   if (need_to_track_page_armed_status) {
1252     spstat->_page_armed = (PageArmed == 1);
1253   }
1254 
1255   // Records the start time of waiting for to block. Updated when block is done.
1256   if (_waiting_to_block != 0) {
1257     spstat->_time_to_wait_to_block = cur_time;
1258   } else {
1259     spstat->_time_to_wait_to_block = 0;
1260   }
1261 }
1262 
1263 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1264   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1265 
1266   if (spstat->_nof_threads_wait_to_block != 0) {
1267     spstat->_time_to_wait_to_block = end_time -
1268       spstat->_time_to_wait_to_block;
1269   }
1270 
1271   // Records the end time of sync which will be used to calculate the total
1272   // vm operation time. Again, the real time spending in syncing will be deducted
1273   // from the start of the sync time later when end_statistics is called.
1274   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1275   if (spstat->_time_to_sync > _max_sync_time) {
1276     _max_sync_time = spstat->_time_to_sync;
1277   }
1278 
1279   spstat->_time_to_do_cleanups = end_time;
1280 }
1281 
1282 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1283   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1284 
1285   // Record how long spent in cleanup tasks.
1286   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1287 
1288   cleanup_end_time = end_time;
1289 }
1290 
1291 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1292   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1293 
1294   // Update the vm operation time.
1295   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1296   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1297     _max_vmop_time = spstat->_time_to_exec_vmop;
1298   }
1299   // Only the sync time longer than the specified
1300   // PrintSafepointStatisticsTimeout will be printed out right away.
1301   // By default, it is -1 meaning all samples will be put into the list.
1302   if ( PrintSafepointStatisticsTimeout > 0) {
1303     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1304       print_statistics();
1305     }
1306   } else {
1307     // The safepoint statistics will be printed out when the _safepoin_stats
1308     // array fills up.
1309     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1310       print_statistics();
1311       _cur_stat_index = 0;
1312     } else {
1313       _cur_stat_index++;
1314     }
1315   }
1316 }
1317 
1318 void SafepointSynchronize::print_statistics() {
1319   for (int index = 0; index <= _cur_stat_index; index++) {
1320     if (index % 30 == 0) {
1321       print_header();
1322     }
1323     SafepointStats* sstats = &_safepoint_stats[index];
1324     tty->print("%8.3f: ", sstats->_time_stamp);
1325     tty->print("%-30s  [          "
1326                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1327                "]",
1328                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1329                sstats->_nof_total_threads,
1330                sstats->_nof_initial_running_threads,
1331                sstats->_nof_threads_wait_to_block);
1332     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1333     tty->print("[       "
1334                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1335                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1336                INT64_FORMAT_W(7) " ] ",
1337                (int64_t)(sstats->_time_to_spin / MICROUNITS),
1338                (int64_t)(sstats->_time_to_wait_to_block / MICROUNITS),
1339                (int64_t)(sstats->_time_to_sync / MICROUNITS),
1340                (int64_t)(sstats->_time_to_do_cleanups / MICROUNITS),
1341                (int64_t)(sstats->_time_to_exec_vmop / MICROUNITS));
1342 
1343     if (need_to_track_page_armed_status) {
1344       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1345     }
1346     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1347   }
1348 }
1349 
1350 // This method will be called when VM exits. It will first call
1351 // print_statistics to print out the rest of the sampling.  Then
1352 // it tries to summarize the sampling.
1353 void SafepointSynchronize::print_stat_on_exit() {
1354   if (_safepoint_stats == NULL) return;
1355 
1356   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1357 
1358   // During VM exit, end_statistics may not get called and in that
1359   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1360   // don't print it out.
1361   // Approximate the vm op time.
1362   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1363     os::javaTimeNanos() - cleanup_end_time;
1364 
1365   if ( PrintSafepointStatisticsTimeout < 0 ||
1366        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1367     print_statistics();
1368   }
1369   tty->cr();
1370 
1371   // Print out polling page sampling status.
1372   if (!need_to_track_page_armed_status) {
1373     tty->print_cr("Polling page always armed");
1374   } else {
1375     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1376                   DeferPollingPageLoopCount);
1377   }
1378 
1379   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1380     if (_safepoint_reasons[index] != 0) {
1381       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1382                     _safepoint_reasons[index]);
1383     }
1384   }
1385 
1386   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1387                 _coalesced_vmop_count);
1388   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1389                 (int64_t)(_max_sync_time / MICROUNITS));
1390   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1391                 INT64_FORMAT_W(5) " ms",
1392                 (int64_t)(_max_vmop_time / MICROUNITS));
1393 }
1394 
1395 // ------------------------------------------------------------------------------------------------
1396 // Non-product code
1397 
1398 #ifndef PRODUCT
1399 
1400 void SafepointSynchronize::print_state() {
1401   if (_state == _not_synchronized) {
1402     tty->print_cr("not synchronized");
1403   } else if (_state == _synchronizing || _state == _synchronized) {
1404     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1405                   "synchronized");
1406 
1407     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1408        cur->safepoint_state()->print();
1409     }
1410   }
1411 }
1412 
1413 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1414   if (ShowSafepointMsgs) {
1415     va_list ap;
1416     va_start(ap, format);
1417     tty->vprint_cr(format, ap);
1418     va_end(ap);
1419   }
1420 }
1421 
1422 #endif // !PRODUCT