1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "memory/allocation.hpp"
  31 #include "runtime/handles.hpp"
  32 #include "runtime/perfData.hpp"
  33 #include "runtime/safepoint.hpp"
  34 #include "utilities/debug.hpp"
  35 #include "utilities/events.hpp"
  36 #include "utilities/formatBuffer.hpp"
  37 
  38 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  39 // is an abstract class: there may be many different kinds of heaps.  This
  40 // class defines the functions that a heap must implement, and contains
  41 // infrastructure common to all heaps.
  42 
  43 class AdaptiveSizePolicy;
  44 class BarrierSet;
  45 class CollectorPolicy;
  46 class GCHeapSummary;
  47 class GCTimer;
  48 class GCTracer;
  49 class MetaspaceSummary;
  50 class Thread;
  51 class ThreadClosure;
  52 class VirtualSpaceSummary;
  53 class WorkGang;
  54 class nmethod;
  55 
  56 class GCMessage : public FormatBuffer<1024> {
  57  public:
  58   bool is_before;
  59 
  60  public:
  61   GCMessage() {}
  62 };
  63 
  64 class CollectedHeap;
  65 
  66 class GCHeapLog : public EventLogBase<GCMessage> {
  67  private:
  68   void log_heap(CollectedHeap* heap, bool before);
  69 
  70  public:
  71   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History") {}
  72 
  73   void log_heap_before(CollectedHeap* heap) {
  74     log_heap(heap, true);
  75   }
  76   void log_heap_after(CollectedHeap* heap) {
  77     log_heap(heap, false);
  78   }
  79 };
  80 
  81 //
  82 // CollectedHeap
  83 //   GenCollectedHeap
  84 //   G1CollectedHeap
  85 //   ParallelScavengeHeap
  86 //
  87 class CollectedHeap : public CHeapObj<mtInternal> {
  88   friend class VMStructs;
  89   friend class JVMCIVMStructs;
  90   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
  91 
  92  private:
  93 #ifdef ASSERT
  94   static int       _fire_out_of_memory_count;
  95 #endif
  96 
  97   GCHeapLog* _gc_heap_log;
  98 
  99   // Used in support of ReduceInitialCardMarks; only consulted if COMPILER2
 100   // or INCLUDE_JVMCI is being used
 101   bool _defer_initial_card_mark;
 102 
 103   MemRegion _reserved;
 104 
 105  protected:
 106   BarrierSet* _barrier_set;
 107   bool _is_gc_active;
 108 
 109   // Used for filler objects (static, but initialized in ctor).
 110   static size_t _filler_array_max_size;
 111 
 112   unsigned int _total_collections;          // ... started
 113   unsigned int _total_full_collections;     // ... started
 114   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 115   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 116 
 117   // Reason for current garbage collection.  Should be set to
 118   // a value reflecting no collection between collections.
 119   GCCause::Cause _gc_cause;
 120   GCCause::Cause _gc_lastcause;
 121   PerfStringVariable* _perf_gc_cause;
 122   PerfStringVariable* _perf_gc_lastcause;
 123 
 124   // Constructor
 125   CollectedHeap();
 126 
 127   // Do common initializations that must follow instance construction,
 128   // for example, those needing virtual calls.
 129   // This code could perhaps be moved into initialize() but would
 130   // be slightly more awkward because we want the latter to be a
 131   // pure virtual.
 132   void pre_initialize();
 133 
 134   // Create a new tlab. All TLAB allocations must go through this.
 135   virtual HeapWord* allocate_new_tlab(size_t size);
 136 
 137   // Accumulate statistics on all tlabs.
 138   virtual void accumulate_statistics_all_tlabs();
 139 
 140   // Reinitialize tlabs before resuming mutators.
 141   virtual void resize_all_tlabs();
 142 
 143   // Allocate from the current thread's TLAB, with broken-out slow path.
 144   inline static HeapWord* allocate_from_tlab(Klass* klass, Thread* thread, size_t size);
 145   static HeapWord* allocate_from_tlab_slow(Klass* klass, Thread* thread, size_t size);
 146 
 147   // Allocate an uninitialized block of the given size, or returns NULL if
 148   // this is impossible.
 149   inline static HeapWord* common_mem_allocate_noinit(Klass* klass, size_t size, TRAPS);
 150 
 151   // Like allocate_init, but the block returned by a successful allocation
 152   // is guaranteed initialized to zeros.
 153   inline static HeapWord* common_mem_allocate_init(Klass* klass, size_t size, TRAPS);
 154 
 155   // Helper functions for (VM) allocation.
 156   inline static void post_allocation_setup_common(Klass* klass, HeapWord* obj);
 157   inline static void post_allocation_setup_no_klass_install(Klass* klass,
 158                                                             HeapWord* objPtr);
 159 
 160   inline static void post_allocation_setup_obj(Klass* klass, HeapWord* obj, int size);
 161 
 162   inline static void post_allocation_setup_array(Klass* klass,
 163                                                  HeapWord* obj, int length);
 164 
 165   inline static void post_allocation_setup_class(Klass* klass, HeapWord* obj, int size);
 166 
 167   // Clears an allocated object.
 168   inline static void init_obj(HeapWord* obj, size_t size);
 169 
 170   // Filler object utilities.
 171   static inline size_t filler_array_hdr_size();
 172   static inline size_t filler_array_min_size();
 173 
 174   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 175   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 176 
 177   // Fill with a single array; caller must ensure filler_array_min_size() <=
 178   // words <= filler_array_max_size().
 179   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 180 
 181   // Fill with a single object (either an int array or a java.lang.Object).
 182   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 183 
 184   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 185 
 186   // Verification functions
 187   virtual void check_for_bad_heap_word_value(HeapWord* addr, size_t size)
 188     PRODUCT_RETURN;
 189   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 190     PRODUCT_RETURN;
 191   debug_only(static void check_for_valid_allocation_state();)
 192 
 193  public:
 194   enum Name {
 195     GenCollectedHeap,
 196     ParallelScavengeHeap,
 197     G1CollectedHeap
 198   };
 199 
 200   static inline size_t filler_array_max_size() {
 201     return _filler_array_max_size;
 202   }
 203 
 204   virtual Name kind() const = 0;
 205 
 206   virtual const char* name() const = 0;
 207 
 208   /**
 209    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 210    * and JNI_OK on success.
 211    */
 212   virtual jint initialize() = 0;
 213 
 214   // In many heaps, there will be a need to perform some initialization activities
 215   // after the Universe is fully formed, but before general heap allocation is allowed.
 216   // This is the correct place to place such initialization methods.
 217   virtual void post_initialize() = 0;
 218 
 219   // Stop any onging concurrent work and prepare for exit.
 220   virtual void stop() {}
 221 
 222   void initialize_reserved_region(HeapWord *start, HeapWord *end);
 223   MemRegion reserved_region() const { return _reserved; }
 224   address base() const { return (address)reserved_region().start(); }
 225 
 226   virtual size_t capacity() const = 0;
 227   virtual size_t used() const = 0;
 228 
 229   // Return "true" if the part of the heap that allocates Java
 230   // objects has reached the maximal committed limit that it can
 231   // reach, without a garbage collection.
 232   virtual bool is_maximal_no_gc() const = 0;
 233 
 234   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 235   // memory that the vm could make available for storing 'normal' java objects.
 236   // This is based on the reserved address space, but should not include space
 237   // that the vm uses internally for bookkeeping or temporary storage
 238   // (e.g., in the case of the young gen, one of the survivor
 239   // spaces).
 240   virtual size_t max_capacity() const = 0;
 241 
 242   // Returns "TRUE" if "p" points into the reserved area of the heap.
 243   bool is_in_reserved(const void* p) const {
 244     return _reserved.contains(p);
 245   }
 246 
 247   bool is_in_reserved_or_null(const void* p) const {
 248     return p == NULL || is_in_reserved(p);
 249   }
 250 
 251   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 252   // This method can be expensive so avoid using it in performance critical
 253   // code.
 254   virtual bool is_in(const void* p) const = 0;
 255 
 256   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 257 
 258   // Let's define some terms: a "closed" subset of a heap is one that
 259   //
 260   // 1) contains all currently-allocated objects, and
 261   //
 262   // 2) is closed under reference: no object in the closed subset
 263   //    references one outside the closed subset.
 264   //
 265   // Membership in a heap's closed subset is useful for assertions.
 266   // Clearly, the entire heap is a closed subset, so the default
 267   // implementation is to use "is_in_reserved".  But this may not be too
 268   // liberal to perform useful checking.  Also, the "is_in" predicate
 269   // defines a closed subset, but may be too expensive, since "is_in"
 270   // verifies that its argument points to an object head.  The
 271   // "closed_subset" method allows a heap to define an intermediate
 272   // predicate, allowing more precise checking than "is_in_reserved" at
 273   // lower cost than "is_in."
 274 
 275   // One important case is a heap composed of disjoint contiguous spaces,
 276   // such as the Garbage-First collector.  Such heaps have a convenient
 277   // closed subset consisting of the allocated portions of those
 278   // contiguous spaces.
 279 
 280   // Return "TRUE" iff the given pointer points into the heap's defined
 281   // closed subset (which defaults to the entire heap).
 282   virtual bool is_in_closed_subset(const void* p) const {
 283     return is_in_reserved(p);
 284   }
 285 
 286   bool is_in_closed_subset_or_null(const void* p) const {
 287     return p == NULL || is_in_closed_subset(p);
 288   }
 289 
 290   // An object is scavengable if its location may move during a scavenge.
 291   // (A scavenge is a GC which is not a full GC.)
 292   virtual bool is_scavengable(const void *p) = 0;
 293 
 294   void set_gc_cause(GCCause::Cause v) {
 295      if (UsePerfData) {
 296        _gc_lastcause = _gc_cause;
 297        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 298        _perf_gc_cause->set_value(GCCause::to_string(v));
 299      }
 300     _gc_cause = v;
 301   }
 302   GCCause::Cause gc_cause() { return _gc_cause; }
 303 
 304   // General obj/array allocation facilities.
 305   inline static oop obj_allocate(Klass* klass, int size, TRAPS);
 306   inline static oop array_allocate(Klass* klass, int size, int length, TRAPS);
 307   inline static oop array_allocate_nozero(Klass* klass, int size, int length, TRAPS);
 308   inline static oop class_allocate(Klass* klass, int size, TRAPS);
 309 
 310   // Raw memory allocation facilities
 311   // The obj and array allocate methods are covers for these methods.
 312   // mem_allocate() should never be
 313   // called to allocate TLABs, only individual objects.
 314   virtual HeapWord* mem_allocate(size_t size,
 315                                  bool* gc_overhead_limit_was_exceeded) = 0;
 316 
 317   // Utilities for turning raw memory into filler objects.
 318   //
 319   // min_fill_size() is the smallest region that can be filled.
 320   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 321   // multiple objects.  fill_with_object() is for regions known to be smaller
 322   // than the largest array of integers; it uses a single object to fill the
 323   // region and has slightly less overhead.
 324   static size_t min_fill_size() {
 325     return size_t(align_object_size(oopDesc::header_size()));
 326   }
 327 
 328   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 329 
 330   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 331   static void fill_with_object(MemRegion region, bool zap = true) {
 332     fill_with_object(region.start(), region.word_size(), zap);
 333   }
 334   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 335     fill_with_object(start, pointer_delta(end, start), zap);
 336   }
 337 
 338   // Return the address "addr" aligned by "alignment_in_bytes" if such
 339   // an address is below "end".  Return NULL otherwise.
 340   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 341                                                    HeapWord* end,
 342                                                    unsigned short alignment_in_bytes);
 343 
 344   // Some heaps may offer a contiguous region for shared non-blocking
 345   // allocation, via inlined code (by exporting the address of the top and
 346   // end fields defining the extent of the contiguous allocation region.)
 347 
 348   // This function returns "true" iff the heap supports this kind of
 349   // allocation.  (Default is "no".)
 350   virtual bool supports_inline_contig_alloc() const {
 351     return false;
 352   }
 353   // These functions return the addresses of the fields that define the
 354   // boundaries of the contiguous allocation area.  (These fields should be
 355   // physically near to one another.)
 356   virtual HeapWord* volatile* top_addr() const {
 357     guarantee(false, "inline contiguous allocation not supported");
 358     return NULL;
 359   }
 360   virtual HeapWord** end_addr() const {
 361     guarantee(false, "inline contiguous allocation not supported");
 362     return NULL;
 363   }
 364 
 365   // Some heaps may be in an unparseable state at certain times between
 366   // collections. This may be necessary for efficient implementation of
 367   // certain allocation-related activities. Calling this function before
 368   // attempting to parse a heap ensures that the heap is in a parsable
 369   // state (provided other concurrent activity does not introduce
 370   // unparsability). It is normally expected, therefore, that this
 371   // method is invoked with the world stopped.
 372   // NOTE: if you override this method, make sure you call
 373   // super::ensure_parsability so that the non-generational
 374   // part of the work gets done. See implementation of
 375   // CollectedHeap::ensure_parsability and, for instance,
 376   // that of GenCollectedHeap::ensure_parsability().
 377   // The argument "retire_tlabs" controls whether existing TLABs
 378   // are merely filled or also retired, thus preventing further
 379   // allocation from them and necessitating allocation of new TLABs.
 380   virtual void ensure_parsability(bool retire_tlabs);
 381 
 382   // Section on thread-local allocation buffers (TLABs)
 383   // If the heap supports thread-local allocation buffers, it should override
 384   // the following methods:
 385   // Returns "true" iff the heap supports thread-local allocation buffers.
 386   // The default is "no".
 387   virtual bool supports_tlab_allocation() const = 0;
 388 
 389   // The amount of space available for thread-local allocation buffers.
 390   virtual size_t tlab_capacity(Thread *thr) const = 0;
 391 
 392   // The amount of used space for thread-local allocation buffers for the given thread.
 393   virtual size_t tlab_used(Thread *thr) const = 0;
 394 
 395   virtual size_t max_tlab_size() const;
 396 
 397   // An estimate of the maximum allocation that could be performed
 398   // for thread-local allocation buffers without triggering any
 399   // collection or expansion activity.
 400   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 401     guarantee(false, "thread-local allocation buffers not supported");
 402     return 0;
 403   }
 404 
 405   // Can a compiler initialize a new object without store barriers?
 406   // This permission only extends from the creation of a new object
 407   // via a TLAB up to the first subsequent safepoint. If such permission
 408   // is granted for this heap type, the compiler promises to call
 409   // defer_store_barrier() below on any slow path allocation of
 410   // a new object for which such initializing store barriers will
 411   // have been elided.
 412   virtual bool can_elide_tlab_store_barriers() const = 0;
 413 
 414   // If a compiler is eliding store barriers for TLAB-allocated objects,
 415   // there is probably a corresponding slow path which can produce
 416   // an object allocated anywhere.  The compiler's runtime support
 417   // promises to call this function on such a slow-path-allocated
 418   // object before performing initializations that have elided
 419   // store barriers. Returns new_obj, or maybe a safer copy thereof.
 420   virtual oop new_store_pre_barrier(JavaThread* thread, oop new_obj);
 421 
 422   // Answers whether an initializing store to a new object currently
 423   // allocated at the given address doesn't need a store
 424   // barrier. Returns "true" if it doesn't need an initializing
 425   // store barrier; answers "false" if it does.
 426   virtual bool can_elide_initializing_store_barrier(oop new_obj) = 0;
 427 
 428   // If a compiler is eliding store barriers for TLAB-allocated objects,
 429   // we will be informed of a slow-path allocation by a call
 430   // to new_store_pre_barrier() above. Such a call precedes the
 431   // initialization of the object itself, and no post-store-barriers will
 432   // be issued. Some heap types require that the barrier strictly follows
 433   // the initializing stores. (This is currently implemented by deferring the
 434   // barrier until the next slow-path allocation or gc-related safepoint.)
 435   // This interface answers whether a particular heap type needs the card
 436   // mark to be thus strictly sequenced after the stores.
 437   virtual bool card_mark_must_follow_store() const = 0;
 438 
 439   // If the CollectedHeap was asked to defer a store barrier above,
 440   // this informs it to flush such a deferred store barrier to the
 441   // remembered set.
 442   virtual void flush_deferred_store_barrier(JavaThread* thread);
 443 
 444   // Perform a collection of the heap; intended for use in implementing
 445   // "System.gc".  This probably implies as full a collection as the
 446   // "CollectedHeap" supports.
 447   virtual void collect(GCCause::Cause cause) = 0;
 448 
 449   // Perform a full collection
 450   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 451 
 452   // This interface assumes that it's being called by the
 453   // vm thread. It collects the heap assuming that the
 454   // heap lock is already held and that we are executing in
 455   // the context of the vm thread.
 456   virtual void collect_as_vm_thread(GCCause::Cause cause);
 457 
 458   // Returns the barrier set for this heap
 459   BarrierSet* barrier_set() { return _barrier_set; }
 460   void set_barrier_set(BarrierSet* barrier_set);
 461 
 462   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 463   // that it should answer "false" for the concurrent part of a concurrent
 464   // collector -- dld).
 465   bool is_gc_active() const { return _is_gc_active; }
 466 
 467   // Total number of GC collections (started)
 468   unsigned int total_collections() const { return _total_collections; }
 469   unsigned int total_full_collections() const { return _total_full_collections;}
 470 
 471   // Increment total number of GC collections (started)
 472   // Should be protected but used by PSMarkSweep - cleanup for 1.4.2
 473   void increment_total_collections(bool full = false) {
 474     _total_collections++;
 475     if (full) {
 476       increment_total_full_collections();
 477     }
 478   }
 479 
 480   void increment_total_full_collections() { _total_full_collections++; }
 481 
 482   // Return the CollectorPolicy for the heap
 483   virtual CollectorPolicy* collector_policy() const = 0;
 484 
 485   // Iterate over all objects, calling "cl.do_object" on each.
 486   virtual void object_iterate(ObjectClosure* cl) = 0;
 487 
 488   // Similar to object_iterate() except iterates only
 489   // over live objects.
 490   virtual void safe_object_iterate(ObjectClosure* cl) = 0;
 491 
 492   // NOTE! There is no requirement that a collector implement these
 493   // functions.
 494   //
 495   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
 496   // each address in the (reserved) heap is a member of exactly
 497   // one block.  The defining characteristic of a block is that it is
 498   // possible to find its size, and thus to progress forward to the next
 499   // block.  (Blocks may be of different sizes.)  Thus, blocks may
 500   // represent Java objects, or they might be free blocks in a
 501   // free-list-based heap (or subheap), as long as the two kinds are
 502   // distinguishable and the size of each is determinable.
 503 
 504   // Returns the address of the start of the "block" that contains the
 505   // address "addr".  We say "blocks" instead of "object" since some heaps
 506   // may not pack objects densely; a chunk may either be an object or a
 507   // non-object.
 508   virtual HeapWord* block_start(const void* addr) const = 0;
 509 
 510   // Requires "addr" to be the start of a chunk, and returns its size.
 511   // "addr + size" is required to be the start of a new chunk, or the end
 512   // of the active area of the heap.
 513   virtual size_t block_size(const HeapWord* addr) const = 0;
 514 
 515   // Requires "addr" to be the start of a block, and returns "TRUE" iff
 516   // the block is an object.
 517   virtual bool block_is_obj(const HeapWord* addr) const = 0;
 518 
 519   // Returns the longest time (in ms) that has elapsed since the last
 520   // time that any part of the heap was examined by a garbage collection.
 521   virtual jlong millis_since_last_gc() = 0;
 522 
 523   // Perform any cleanup actions necessary before allowing a verification.
 524   virtual void prepare_for_verify() = 0;
 525 
 526   // Generate any dumps preceding or following a full gc
 527  private:
 528   void full_gc_dump(GCTimer* timer, bool before);
 529  public:
 530   void pre_full_gc_dump(GCTimer* timer);
 531   void post_full_gc_dump(GCTimer* timer);
 532 
 533   VirtualSpaceSummary create_heap_space_summary();
 534   GCHeapSummary create_heap_summary();
 535 
 536   MetaspaceSummary create_metaspace_summary();
 537 
 538   // Print heap information on the given outputStream.
 539   virtual void print_on(outputStream* st) const = 0;
 540   // The default behavior is to call print_on() on tty.
 541   virtual void print() const {
 542     print_on(tty);
 543   }
 544   // Print more detailed heap information on the given
 545   // outputStream. The default behavior is to call print_on(). It is
 546   // up to each subclass to override it and add any additional output
 547   // it needs.
 548   virtual void print_extended_on(outputStream* st) const {
 549     print_on(st);
 550   }
 551 
 552   virtual void print_on_error(outputStream* st) const;
 553 
 554   // Print all GC threads (other than the VM thread)
 555   // used by this heap.
 556   virtual void print_gc_threads_on(outputStream* st) const = 0;
 557   // The default behavior is to call print_gc_threads_on() on tty.
 558   void print_gc_threads() {
 559     print_gc_threads_on(tty);
 560   }
 561   // Iterator for all GC threads (other than VM thread)
 562   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 563 
 564   // Print any relevant tracing info that flags imply.
 565   // Default implementation does nothing.
 566   virtual void print_tracing_info() const = 0;
 567 
 568   void print_heap_before_gc();
 569   void print_heap_after_gc();
 570 
 571   // Registering and unregistering an nmethod (compiled code) with the heap.
 572   // Override with specific mechanism for each specialized heap type.
 573   virtual void register_nmethod(nmethod* nm);
 574   virtual void unregister_nmethod(nmethod* nm);
 575 
 576   void trace_heap_before_gc(const GCTracer* gc_tracer);
 577   void trace_heap_after_gc(const GCTracer* gc_tracer);
 578 
 579   // Heap verification
 580   virtual void verify(VerifyOption option) = 0;
 581 
 582   // Return true if concurrent phase control (via
 583   // request_concurrent_phase_control) is supported by this collector.
 584   // The default implementation returns false.
 585   virtual bool supports_concurrent_phase_control() const;
 586 
 587   // Return a NULL terminated array of concurrent phase names provided
 588   // by this collector.  Supports Whitebox testing.  These are the
 589   // names recognized by request_concurrent_phase(). The default
 590   // implementation returns an array of one NULL element.
 591   virtual const char* const* concurrent_phases() const;
 592 
 593   // Request the collector enter the indicated concurrent phase, and
 594   // wait until it does so.  Supports WhiteBox testing.  Only one
 595   // request may be active at a time.  Phases are designated by name;
 596   // the set of names and their meaning is GC-specific.  Once the
 597   // requested phase has been reached, the collector will attempt to
 598   // avoid transitioning to a new phase until a new request is made.
 599   // [Note: A collector might not be able to remain in a given phase.
 600   // For example, a full collection might cancel an in-progress
 601   // concurrent collection.]
 602   //
 603   // Returns true when the phase is reached.  Returns false for an
 604   // unknown phase.  The default implementation returns false.
 605   virtual bool request_concurrent_phase(const char* phase);
 606 
 607   // Provides a thread pool to SafepointSynchronize to use
 608   // for parallel safepoint cleanup.
 609   // GCs that use a GC worker thread pool may want to share
 610   // it for use during safepoint cleanup. This is only possible
 611   // if the GC can pause and resume concurrent work (e.g. G1
 612   // concurrent marking) for an intermittent non-GC safepoint.
 613   // If this method returns NULL, SafepointSynchronize will
 614   // perform cleanup tasks serially in the VMThread.
 615   virtual WorkGang* get_safepoint_workers() { return NULL; }
 616 
 617   // Non product verification and debugging.
 618 #ifndef PRODUCT
 619   // Support for PromotionFailureALot.  Return true if it's time to cause a
 620   // promotion failure.  The no-argument version uses
 621   // this->_promotion_failure_alot_count as the counter.
 622   inline bool promotion_should_fail(volatile size_t* count);
 623   inline bool promotion_should_fail();
 624 
 625   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 626   // GC in which promotion failure occurred.
 627   inline void reset_promotion_should_fail(volatile size_t* count);
 628   inline void reset_promotion_should_fail();
 629 #endif  // #ifndef PRODUCT
 630 
 631 #ifdef ASSERT
 632   static int fired_fake_oom() {
 633     return (CIFireOOMAt > 1 && _fire_out_of_memory_count >= CIFireOOMAt);
 634   }
 635 #endif
 636 
 637  public:
 638   // Copy the current allocation context statistics for the specified contexts.
 639   // For each context in contexts, set the corresponding entries in the totals
 640   // and accuracy arrays to the current values held by the statistics.  Each
 641   // array should be of length len.
 642   // Returns true if there are more stats available.
 643   virtual bool copy_allocation_context_stats(const jint* contexts,
 644                                              jlong* totals,
 645                                              jbyte* accuracy,
 646                                              jint len) {
 647     return false;
 648   }
 649 
 650 };
 651 
 652 // Class to set and reset the GC cause for a CollectedHeap.
 653 
 654 class GCCauseSetter : StackObj {
 655   CollectedHeap* _heap;
 656   GCCause::Cause _previous_cause;
 657  public:
 658   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 659     assert(SafepointSynchronize::is_at_safepoint(),
 660            "This method manipulates heap state without locking");
 661     _heap = heap;
 662     _previous_cause = _heap->gc_cause();
 663     _heap->set_gc_cause(cause);
 664   }
 665 
 666   ~GCCauseSetter() {
 667     assert(SafepointSynchronize::is_at_safepoint(),
 668           "This method manipulates heap state without locking");
 669     _heap->set_gc_cause(_previous_cause);
 670   }
 671 };
 672 
 673 #endif // SHARE_VM_GC_SHARED_COLLECTEDHEAP_HPP