1 /*
   2  * Copyright (c) 2001, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/bufferingOopClosure.hpp"
  32 #include "gc/g1/concurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1Allocator.inline.hpp"
  34 #include "gc/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc/g1/g1CollectionSet.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1EvacStats.inline.hpp"
  41 #include "gc/g1/g1FullCollector.hpp"
  42 #include "gc/g1/g1FullGCScope.hpp"
  43 #include "gc/g1/g1GCPhaseTimes.hpp"
  44 #include "gc/g1/g1HeapSizingPolicy.hpp"
  45 #include "gc/g1/g1HeapTransition.hpp"
  46 #include "gc/g1/g1HeapVerifier.hpp"
  47 #include "gc/g1/g1HotCardCache.hpp"
  48 #include "gc/g1/g1MemoryPool.hpp"
  49 #include "gc/g1/g1OopClosures.inline.hpp"
  50 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  51 #include "gc/g1/g1Policy.hpp"
  52 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  53 #include "gc/g1/g1RemSet.hpp"
  54 #include "gc/g1/g1RootClosures.hpp"
  55 #include "gc/g1/g1RootProcessor.hpp"
  56 #include "gc/g1/g1StringDedup.hpp"
  57 #include "gc/g1/g1YCTypes.hpp"
  58 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  59 #include "gc/g1/heapRegion.inline.hpp"
  60 #include "gc/g1/heapRegionRemSet.hpp"
  61 #include "gc/g1/heapRegionSet.inline.hpp"
  62 #include "gc/g1/vm_operations_g1.hpp"
  63 #include "gc/shared/gcHeapSummary.hpp"
  64 #include "gc/shared/gcId.hpp"
  65 #include "gc/shared/gcLocker.inline.hpp"
  66 #include "gc/shared/gcTimer.hpp"
  67 #include "gc/shared/gcTrace.hpp"
  68 #include "gc/shared/gcTraceTime.inline.hpp"
  69 #include "gc/shared/generationSpec.hpp"
  70 #include "gc/shared/isGCActiveMark.hpp"
  71 #include "gc/shared/preservedMarks.inline.hpp"
  72 #include "gc/shared/suspendibleThreadSet.hpp"
  73 #include "gc/shared/referenceProcessor.inline.hpp"
  74 #include "gc/shared/taskqueue.inline.hpp"
  75 #include "gc/shared/weakProcessor.hpp"
  76 #include "logging/log.hpp"
  77 #include "memory/allocation.hpp"
  78 #include "memory/iterator.hpp"
  79 #include "memory/resourceArea.hpp"
  80 #include "oops/oop.inline.hpp"
  81 #include "prims/resolvedMethodTable.hpp"
  82 #include "runtime/atomic.hpp"
  83 #include "runtime/init.hpp"
  84 #include "runtime/orderAccess.inline.hpp"
  85 #include "runtime/vmThread.hpp"
  86 #include "services/memoryManager.hpp"
  87 #include "utilities/align.hpp"
  88 #include "utilities/globalDefinitions.hpp"
  89 #include "utilities/stack.inline.hpp"
  90 
  91 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  92 
  93 // INVARIANTS/NOTES
  94 //
  95 // All allocation activity covered by the G1CollectedHeap interface is
  96 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  97 // and allocate_new_tlab, which are the "entry" points to the
  98 // allocation code from the rest of the JVM.  (Note that this does not
  99 // apply to TLAB allocation, which is not part of this interface: it
 100 // is done by clients of this interface.)
 101 
 102 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 103  private:
 104   size_t _num_dirtied;
 105   G1CollectedHeap* _g1h;
 106   G1SATBCardTableLoggingModRefBS* _g1_bs;
 107 
 108   HeapRegion* region_for_card(jbyte* card_ptr) const {
 109     return _g1h->heap_region_containing(_g1_bs->addr_for(card_ptr));
 110   }
 111 
 112   bool will_become_free(HeapRegion* hr) const {
 113     // A region will be freed by free_collection_set if the region is in the
 114     // collection set and has not had an evacuation failure.
 115     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 116   }
 117 
 118  public:
 119   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : CardTableEntryClosure(),
 120     _num_dirtied(0), _g1h(g1h), _g1_bs(g1h->g1_barrier_set()) { }
 121 
 122   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 123     HeapRegion* hr = region_for_card(card_ptr);
 124 
 125     // Should only dirty cards in regions that won't be freed.
 126     if (!will_become_free(hr)) {
 127       *card_ptr = CardTableModRefBS::dirty_card_val();
 128       _num_dirtied++;
 129     }
 130 
 131     return true;
 132   }
 133 
 134   size_t num_dirtied()   const { return _num_dirtied; }
 135 };
 136 
 137 
 138 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 139   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 140 }
 141 
 142 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 143   // The from card cache is not the memory that is actually committed. So we cannot
 144   // take advantage of the zero_filled parameter.
 145   reset_from_card_cache(start_idx, num_regions);
 146 }
 147 
 148 
 149 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 150                                              MemRegion mr) {
 151   return new HeapRegion(hrs_index, bot(), mr);
 152 }
 153 
 154 // Private methods.
 155 
 156 HeapRegion*
 157 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 158   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 159   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 160     if (!_secondary_free_list.is_empty()) {
 161       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 162                                       "secondary_free_list has %u entries",
 163                                       _secondary_free_list.length());
 164       // It looks as if there are free regions available on the
 165       // secondary_free_list. Let's move them to the free_list and try
 166       // again to allocate from it.
 167       append_secondary_free_list();
 168 
 169       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 170              "empty we should have moved at least one entry to the free_list");
 171       HeapRegion* res = _hrm.allocate_free_region(is_old);
 172       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 173                                       "allocated " HR_FORMAT " from secondary_free_list",
 174                                       HR_FORMAT_PARAMS(res));
 175       return res;
 176     }
 177 
 178     // Wait here until we get notified either when (a) there are no
 179     // more free regions coming or (b) some regions have been moved on
 180     // the secondary_free_list.
 181     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 182   }
 183 
 184   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 185                                   "could not allocate from secondary_free_list");
 186   return NULL;
 187 }
 188 
 189 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 190   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 191          "the only time we use this to allocate a humongous region is "
 192          "when we are allocating a single humongous region");
 193 
 194   HeapRegion* res;
 195   if (G1StressConcRegionFreeing) {
 196     if (!_secondary_free_list.is_empty()) {
 197       log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 198                                       "forced to look at the secondary_free_list");
 199       res = new_region_try_secondary_free_list(is_old);
 200       if (res != NULL) {
 201         return res;
 202       }
 203     }
 204   }
 205 
 206   res = _hrm.allocate_free_region(is_old);
 207 
 208   if (res == NULL) {
 209     log_develop_trace(gc, freelist)("G1ConcRegionFreeing [region alloc] : "
 210                                     "res == NULL, trying the secondary_free_list");
 211     res = new_region_try_secondary_free_list(is_old);
 212   }
 213   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 214     // Currently, only attempts to allocate GC alloc regions set
 215     // do_expand to true. So, we should only reach here during a
 216     // safepoint. If this assumption changes we might have to
 217     // reconsider the use of _expand_heap_after_alloc_failure.
 218     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 219 
 220     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 221                               word_size * HeapWordSize);
 222 
 223     if (expand(word_size * HeapWordSize)) {
 224       // Given that expand() succeeded in expanding the heap, and we
 225       // always expand the heap by an amount aligned to the heap
 226       // region size, the free list should in theory not be empty.
 227       // In either case allocate_free_region() will check for NULL.
 228       res = _hrm.allocate_free_region(is_old);
 229     } else {
 230       _expand_heap_after_alloc_failure = false;
 231     }
 232   }
 233   return res;
 234 }
 235 
 236 HeapWord*
 237 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 238                                                            uint num_regions,
 239                                                            size_t word_size,
 240                                                            AllocationContext_t context) {
 241   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 242   assert(is_humongous(word_size), "word_size should be humongous");
 243   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 244 
 245   // Index of last region in the series.
 246   uint last = first + num_regions - 1;
 247 
 248   // We need to initialize the region(s) we just discovered. This is
 249   // a bit tricky given that it can happen concurrently with
 250   // refinement threads refining cards on these regions and
 251   // potentially wanting to refine the BOT as they are scanning
 252   // those cards (this can happen shortly after a cleanup; see CR
 253   // 6991377). So we have to set up the region(s) carefully and in
 254   // a specific order.
 255 
 256   // The word size sum of all the regions we will allocate.
 257   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 258   assert(word_size <= word_size_sum, "sanity");
 259 
 260   // This will be the "starts humongous" region.
 261   HeapRegion* first_hr = region_at(first);
 262   // The header of the new object will be placed at the bottom of
 263   // the first region.
 264   HeapWord* new_obj = first_hr->bottom();
 265   // This will be the new top of the new object.
 266   HeapWord* obj_top = new_obj + word_size;
 267 
 268   // First, we need to zero the header of the space that we will be
 269   // allocating. When we update top further down, some refinement
 270   // threads might try to scan the region. By zeroing the header we
 271   // ensure that any thread that will try to scan the region will
 272   // come across the zero klass word and bail out.
 273   //
 274   // NOTE: It would not have been correct to have used
 275   // CollectedHeap::fill_with_object() and make the space look like
 276   // an int array. The thread that is doing the allocation will
 277   // later update the object header to a potentially different array
 278   // type and, for a very short period of time, the klass and length
 279   // fields will be inconsistent. This could cause a refinement
 280   // thread to calculate the object size incorrectly.
 281   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 282 
 283   // Next, pad out the unused tail of the last region with filler
 284   // objects, for improved usage accounting.
 285   // How many words we use for filler objects.
 286   size_t word_fill_size = word_size_sum - word_size;
 287 
 288   // How many words memory we "waste" which cannot hold a filler object.
 289   size_t words_not_fillable = 0;
 290 
 291   if (word_fill_size >= min_fill_size()) {
 292     fill_with_objects(obj_top, word_fill_size);
 293   } else if (word_fill_size > 0) {
 294     // We have space to fill, but we cannot fit an object there.
 295     words_not_fillable = word_fill_size;
 296     word_fill_size = 0;
 297   }
 298 
 299   // We will set up the first region as "starts humongous". This
 300   // will also update the BOT covering all the regions to reflect
 301   // that there is a single object that starts at the bottom of the
 302   // first region.
 303   first_hr->set_starts_humongous(obj_top, word_fill_size);
 304   first_hr->set_allocation_context(context);
 305   // Then, if there are any, we will set up the "continues
 306   // humongous" regions.
 307   HeapRegion* hr = NULL;
 308   for (uint i = first + 1; i <= last; ++i) {
 309     hr = region_at(i);
 310     hr->set_continues_humongous(first_hr);
 311     hr->set_allocation_context(context);
 312   }
 313 
 314   // Up to this point no concurrent thread would have been able to
 315   // do any scanning on any region in this series. All the top
 316   // fields still point to bottom, so the intersection between
 317   // [bottom,top] and [card_start,card_end] will be empty. Before we
 318   // update the top fields, we'll do a storestore to make sure that
 319   // no thread sees the update to top before the zeroing of the
 320   // object header and the BOT initialization.
 321   OrderAccess::storestore();
 322 
 323   // Now, we will update the top fields of the "continues humongous"
 324   // regions except the last one.
 325   for (uint i = first; i < last; ++i) {
 326     hr = region_at(i);
 327     hr->set_top(hr->end());
 328   }
 329 
 330   hr = region_at(last);
 331   // If we cannot fit a filler object, we must set top to the end
 332   // of the humongous object, otherwise we cannot iterate the heap
 333   // and the BOT will not be complete.
 334   hr->set_top(hr->end() - words_not_fillable);
 335 
 336   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 337          "obj_top should be in last region");
 338 
 339   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 340 
 341   assert(words_not_fillable == 0 ||
 342          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 343          "Miscalculation in humongous allocation");
 344 
 345   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 346 
 347   for (uint i = first; i <= last; ++i) {
 348     hr = region_at(i);
 349     _humongous_set.add(hr);
 350     _hr_printer.alloc(hr);
 351   }
 352 
 353   return new_obj;
 354 }
 355 
 356 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 357   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 358   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 359 }
 360 
 361 // If could fit into free regions w/o expansion, try.
 362 // Otherwise, if can expand, do so.
 363 // Otherwise, if using ex regions might help, try with ex given back.
 364 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 365   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 366 
 367   _verifier->verify_region_sets_optional();
 368 
 369   uint first = G1_NO_HRM_INDEX;
 370   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 371 
 372   if (obj_regions == 1) {
 373     // Only one region to allocate, try to use a fast path by directly allocating
 374     // from the free lists. Do not try to expand here, we will potentially do that
 375     // later.
 376     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 377     if (hr != NULL) {
 378       first = hr->hrm_index();
 379     }
 380   } else {
 381     // We can't allocate humongous regions spanning more than one region while
 382     // cleanupComplete() is running, since some of the regions we find to be
 383     // empty might not yet be added to the free list. It is not straightforward
 384     // to know in which list they are on so that we can remove them. We only
 385     // need to do this if we need to allocate more than one region to satisfy the
 386     // current humongous allocation request. If we are only allocating one region
 387     // we use the one-region region allocation code (see above), that already
 388     // potentially waits for regions from the secondary free list.
 389     wait_while_free_regions_coming();
 390     append_secondary_free_list_if_not_empty_with_lock();
 391 
 392     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 393     // are lucky enough to find some.
 394     first = _hrm.find_contiguous_only_empty(obj_regions);
 395     if (first != G1_NO_HRM_INDEX) {
 396       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 397     }
 398   }
 399 
 400   if (first == G1_NO_HRM_INDEX) {
 401     // Policy: We could not find enough regions for the humongous object in the
 402     // free list. Look through the heap to find a mix of free and uncommitted regions.
 403     // If so, try expansion.
 404     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 405     if (first != G1_NO_HRM_INDEX) {
 406       // We found something. Make sure these regions are committed, i.e. expand
 407       // the heap. Alternatively we could do a defragmentation GC.
 408       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 409                                     word_size * HeapWordSize);
 410 
 411       _hrm.expand_at(first, obj_regions, workers());
 412       g1_policy()->record_new_heap_size(num_regions());
 413 
 414 #ifdef ASSERT
 415       for (uint i = first; i < first + obj_regions; ++i) {
 416         HeapRegion* hr = region_at(i);
 417         assert(hr->is_free(), "sanity");
 418         assert(hr->is_empty(), "sanity");
 419         assert(is_on_master_free_list(hr), "sanity");
 420       }
 421 #endif
 422       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 423     } else {
 424       // Policy: Potentially trigger a defragmentation GC.
 425     }
 426   }
 427 
 428   HeapWord* result = NULL;
 429   if (first != G1_NO_HRM_INDEX) {
 430     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 431                                                        word_size, context);
 432     assert(result != NULL, "it should always return a valid result");
 433 
 434     // A successful humongous object allocation changes the used space
 435     // information of the old generation so we need to recalculate the
 436     // sizes and update the jstat counters here.
 437     g1mm()->update_sizes();
 438   }
 439 
 440   _verifier->verify_region_sets_optional();
 441 
 442   return result;
 443 }
 444 
 445 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 446   assert_heap_not_locked_and_not_at_safepoint();
 447   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 448 
 449   uint dummy_gc_count_before;
 450   uint dummy_gclocker_retry_count = 0;
 451   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 452 }
 453 
 454 HeapWord*
 455 G1CollectedHeap::mem_allocate(size_t word_size,
 456                               bool*  gc_overhead_limit_was_exceeded) {
 457   assert_heap_not_locked_and_not_at_safepoint();
 458 
 459   // Loop until the allocation is satisfied, or unsatisfied after GC.
 460   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 461     uint gc_count_before;
 462 
 463     HeapWord* result = NULL;
 464     if (!is_humongous(word_size)) {
 465       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 466     } else {
 467       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 468     }
 469     if (result != NULL) {
 470       return result;
 471     }
 472 
 473     // Create the garbage collection operation...
 474     VM_G1CollectForAllocation op(gc_count_before, word_size);
 475     op.set_allocation_context(AllocationContext::current());
 476 
 477     // ...and get the VM thread to execute it.
 478     VMThread::execute(&op);
 479 
 480     if (op.prologue_succeeded() && op.pause_succeeded()) {
 481       // If the operation was successful we'll return the result even
 482       // if it is NULL. If the allocation attempt failed immediately
 483       // after a Full GC, it's unlikely we'll be able to allocate now.
 484       HeapWord* result = op.result();
 485       if (result != NULL && !is_humongous(word_size)) {
 486         // Allocations that take place on VM operations do not do any
 487         // card dirtying and we have to do it here. We only have to do
 488         // this for non-humongous allocations, though.
 489         dirty_young_block(result, word_size);
 490       }
 491       return result;
 492     } else {
 493       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 494         return NULL;
 495       }
 496       assert(op.result() == NULL,
 497              "the result should be NULL if the VM op did not succeed");
 498     }
 499 
 500     // Give a warning if we seem to be looping forever.
 501     if ((QueuedAllocationWarningCount > 0) &&
 502         (try_count % QueuedAllocationWarningCount == 0)) {
 503       log_warning(gc)("G1CollectedHeap::mem_allocate retries %d times", try_count);
 504     }
 505   }
 506 
 507   ShouldNotReachHere();
 508   return NULL;
 509 }
 510 
 511 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 512                                                    AllocationContext_t context,
 513                                                    uint* gc_count_before_ret,
 514                                                    uint* gclocker_retry_count_ret) {
 515   // Make sure you read the note in attempt_allocation_humongous().
 516 
 517   assert_heap_not_locked_and_not_at_safepoint();
 518   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 519          "be called for humongous allocation requests");
 520 
 521   // We should only get here after the first-level allocation attempt
 522   // (attempt_allocation()) failed to allocate.
 523 
 524   // We will loop until a) we manage to successfully perform the
 525   // allocation or b) we successfully schedule a collection which
 526   // fails to perform the allocation. b) is the only case when we'll
 527   // return NULL.
 528   HeapWord* result = NULL;
 529   for (int try_count = 1; /* we'll return */; try_count += 1) {
 530     bool should_try_gc;
 531     uint gc_count_before;
 532 
 533     {
 534       MutexLockerEx x(Heap_lock);
 535       result = _allocator->attempt_allocation_locked(word_size, context);
 536       if (result != NULL) {
 537         return result;
 538       }
 539 
 540       if (GCLocker::is_active_and_needs_gc()) {
 541         if (g1_policy()->can_expand_young_list()) {
 542           // No need for an ergo verbose message here,
 543           // can_expand_young_list() does this when it returns true.
 544           result = _allocator->attempt_allocation_force(word_size, context);
 545           if (result != NULL) {
 546             return result;
 547           }
 548         }
 549         should_try_gc = false;
 550       } else {
 551         // The GCLocker may not be active but the GCLocker initiated
 552         // GC may not yet have been performed (GCLocker::needs_gc()
 553         // returns true). In this case we do not try this GC and
 554         // wait until the GCLocker initiated GC is performed, and
 555         // then retry the allocation.
 556         if (GCLocker::needs_gc()) {
 557           should_try_gc = false;
 558         } else {
 559           // Read the GC count while still holding the Heap_lock.
 560           gc_count_before = total_collections();
 561           should_try_gc = true;
 562         }
 563       }
 564     }
 565 
 566     if (should_try_gc) {
 567       bool succeeded;
 568       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 569                                    GCCause::_g1_inc_collection_pause);
 570       if (result != NULL) {
 571         assert(succeeded, "only way to get back a non-NULL result");
 572         return result;
 573       }
 574 
 575       if (succeeded) {
 576         // If we get here we successfully scheduled a collection which
 577         // failed to allocate. No point in trying to allocate
 578         // further. We'll just return NULL.
 579         MutexLockerEx x(Heap_lock);
 580         *gc_count_before_ret = total_collections();
 581         return NULL;
 582       }
 583     } else {
 584       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 585         MutexLockerEx x(Heap_lock);
 586         *gc_count_before_ret = total_collections();
 587         return NULL;
 588       }
 589       // The GCLocker is either active or the GCLocker initiated
 590       // GC has not yet been performed. Stall until it is and
 591       // then retry the allocation.
 592       GCLocker::stall_until_clear();
 593       (*gclocker_retry_count_ret) += 1;
 594     }
 595 
 596     // We can reach here if we were unsuccessful in scheduling a
 597     // collection (because another thread beat us to it) or if we were
 598     // stalled due to the GC locker. In either can we should retry the
 599     // allocation attempt in case another thread successfully
 600     // performed a collection and reclaimed enough space. We do the
 601     // first attempt (without holding the Heap_lock) here and the
 602     // follow-on attempt will be at the start of the next loop
 603     // iteration (after taking the Heap_lock).
 604     result = _allocator->attempt_allocation(word_size, context);
 605     if (result != NULL) {
 606       return result;
 607     }
 608 
 609     // Give a warning if we seem to be looping forever.
 610     if ((QueuedAllocationWarningCount > 0) &&
 611         (try_count % QueuedAllocationWarningCount == 0)) {
 612       log_warning(gc)("G1CollectedHeap::attempt_allocation_slow() "
 613                       "retries %d times", try_count);
 614     }
 615   }
 616 
 617   ShouldNotReachHere();
 618   return NULL;
 619 }
 620 
 621 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 622   assert_at_safepoint(true /* should_be_vm_thread */);
 623   if (_archive_allocator == NULL) {
 624     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 625   }
 626 }
 627 
 628 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 629   // Allocations in archive regions cannot be of a size that would be considered
 630   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 631   // may be different at archive-restore time.
 632   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 633 }
 634 
 635 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 636   assert_at_safepoint(true /* should_be_vm_thread */);
 637   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 638   if (is_archive_alloc_too_large(word_size)) {
 639     return NULL;
 640   }
 641   return _archive_allocator->archive_mem_allocate(word_size);
 642 }
 643 
 644 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 645                                               size_t end_alignment_in_bytes) {
 646   assert_at_safepoint(true /* should_be_vm_thread */);
 647   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 648 
 649   // Call complete_archive to do the real work, filling in the MemRegion
 650   // array with the archive regions.
 651   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 652   delete _archive_allocator;
 653   _archive_allocator = NULL;
 654 }
 655 
 656 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 657   assert(ranges != NULL, "MemRegion array NULL");
 658   assert(count != 0, "No MemRegions provided");
 659   MemRegion reserved = _hrm.reserved();
 660   for (size_t i = 0; i < count; i++) {
 661     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 662       return false;
 663     }
 664   }
 665   return true;
 666 }
 667 
 668 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 669                                             size_t count,
 670                                             bool open) {
 671   assert(!is_init_completed(), "Expect to be called at JVM init time");
 672   assert(ranges != NULL, "MemRegion array NULL");
 673   assert(count != 0, "No MemRegions provided");
 674   MutexLockerEx x(Heap_lock);
 675 
 676   MemRegion reserved = _hrm.reserved();
 677   HeapWord* prev_last_addr = NULL;
 678   HeapRegion* prev_last_region = NULL;
 679 
 680   // Temporarily disable pretouching of heap pages. This interface is used
 681   // when mmap'ing archived heap data in, so pre-touching is wasted.
 682   FlagSetting fs(AlwaysPreTouch, false);
 683 
 684   // Enable archive object checking used by G1MarkSweep. We have to let it know
 685   // about each archive range, so that objects in those ranges aren't marked.
 686   G1ArchiveAllocator::enable_archive_object_check();
 687 
 688   // For each specified MemRegion range, allocate the corresponding G1
 689   // regions and mark them as archive regions. We expect the ranges
 690   // in ascending starting address order, without overlap.
 691   for (size_t i = 0; i < count; i++) {
 692     MemRegion curr_range = ranges[i];
 693     HeapWord* start_address = curr_range.start();
 694     size_t word_size = curr_range.word_size();
 695     HeapWord* last_address = curr_range.last();
 696     size_t commits = 0;
 697 
 698     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 699               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 700               p2i(start_address), p2i(last_address));
 701     guarantee(start_address > prev_last_addr,
 702               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 703               p2i(start_address), p2i(prev_last_addr));
 704     prev_last_addr = last_address;
 705 
 706     // Check for ranges that start in the same G1 region in which the previous
 707     // range ended, and adjust the start address so we don't try to allocate
 708     // the same region again. If the current range is entirely within that
 709     // region, skip it, just adjusting the recorded top.
 710     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 711     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 712       start_address = start_region->end();
 713       if (start_address > last_address) {
 714         increase_used(word_size * HeapWordSize);
 715         start_region->set_top(last_address + 1);
 716         continue;
 717       }
 718       start_region->set_top(start_address);
 719       curr_range = MemRegion(start_address, last_address + 1);
 720       start_region = _hrm.addr_to_region(start_address);
 721     }
 722 
 723     // Perform the actual region allocation, exiting if it fails.
 724     // Then note how much new space we have allocated.
 725     if (!_hrm.allocate_containing_regions(curr_range, &commits, workers())) {
 726       return false;
 727     }
 728     increase_used(word_size * HeapWordSize);
 729     if (commits != 0) {
 730       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 731                                 HeapRegion::GrainWords * HeapWordSize * commits);
 732 
 733     }
 734 
 735     // Mark each G1 region touched by the range as archive, add it to
 736     // the old set, and set the allocation context and top.
 737     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
 738     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 739     prev_last_region = last_region;
 740 
 741     while (curr_region != NULL) {
 742       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 743              "Region already in use (index %u)", curr_region->hrm_index());
 744       curr_region->set_allocation_context(AllocationContext::system());
 745       if (open) {
 746         curr_region->set_open_archive();
 747       } else {
 748         curr_region->set_closed_archive();
 749       }
 750       _hr_printer.alloc(curr_region);
 751       _old_set.add(curr_region);
 752       HeapWord* top;
 753       HeapRegion* next_region;
 754       if (curr_region != last_region) {
 755         top = curr_region->end();
 756         next_region = _hrm.next_region_in_heap(curr_region);
 757       } else {
 758         top = last_address + 1;
 759         next_region = NULL;
 760       }
 761       curr_region->set_top(top);
 762       curr_region->set_first_dead(top);
 763       curr_region->set_end_of_live(top);
 764       curr_region = next_region;
 765     }
 766 
 767     // Notify mark-sweep of the archive
 768     G1ArchiveAllocator::set_range_archive(curr_range, open);
 769   }
 770   return true;
 771 }
 772 
 773 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 774   assert(!is_init_completed(), "Expect to be called at JVM init time");
 775   assert(ranges != NULL, "MemRegion array NULL");
 776   assert(count != 0, "No MemRegions provided");
 777   MemRegion reserved = _hrm.reserved();
 778   HeapWord *prev_last_addr = NULL;
 779   HeapRegion* prev_last_region = NULL;
 780 
 781   // For each MemRegion, create filler objects, if needed, in the G1 regions
 782   // that contain the address range. The address range actually within the
 783   // MemRegion will not be modified. That is assumed to have been initialized
 784   // elsewhere, probably via an mmap of archived heap data.
 785   MutexLockerEx x(Heap_lock);
 786   for (size_t i = 0; i < count; i++) {
 787     HeapWord* start_address = ranges[i].start();
 788     HeapWord* last_address = ranges[i].last();
 789 
 790     assert(reserved.contains(start_address) && reserved.contains(last_address),
 791            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 792            p2i(start_address), p2i(last_address));
 793     assert(start_address > prev_last_addr,
 794            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 795            p2i(start_address), p2i(prev_last_addr));
 796 
 797     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 798     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 799     HeapWord* bottom_address = start_region->bottom();
 800 
 801     // Check for a range beginning in the same region in which the
 802     // previous one ended.
 803     if (start_region == prev_last_region) {
 804       bottom_address = prev_last_addr + 1;
 805     }
 806 
 807     // Verify that the regions were all marked as archive regions by
 808     // alloc_archive_regions.
 809     HeapRegion* curr_region = start_region;
 810     while (curr_region != NULL) {
 811       guarantee(curr_region->is_archive(),
 812                 "Expected archive region at index %u", curr_region->hrm_index());
 813       if (curr_region != last_region) {
 814         curr_region = _hrm.next_region_in_heap(curr_region);
 815       } else {
 816         curr_region = NULL;
 817       }
 818     }
 819 
 820     prev_last_addr = last_address;
 821     prev_last_region = last_region;
 822 
 823     // Fill the memory below the allocated range with dummy object(s),
 824     // if the region bottom does not match the range start, or if the previous
 825     // range ended within the same G1 region, and there is a gap.
 826     if (start_address != bottom_address) {
 827       size_t fill_size = pointer_delta(start_address, bottom_address);
 828       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 829       increase_used(fill_size * HeapWordSize);
 830     }
 831   }
 832 }
 833 
 834 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t word_size,
 835                                                      uint* gc_count_before_ret,
 836                                                      uint* gclocker_retry_count_ret) {
 837   assert_heap_not_locked_and_not_at_safepoint();
 838   assert(!is_humongous(word_size), "attempt_allocation() should not "
 839          "be called for humongous allocation requests");
 840 
 841   AllocationContext_t context = AllocationContext::current();
 842   HeapWord* result = _allocator->attempt_allocation(word_size, context);
 843 
 844   if (result == NULL) {
 845     result = attempt_allocation_slow(word_size,
 846                                      context,
 847                                      gc_count_before_ret,
 848                                      gclocker_retry_count_ret);
 849   }
 850   assert_heap_not_locked();
 851   if (result != NULL) {
 852     dirty_young_block(result, word_size);
 853   }
 854   return result;
 855 }
 856 
 857 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 858   assert(!is_init_completed(), "Expect to be called at JVM init time");
 859   assert(ranges != NULL, "MemRegion array NULL");
 860   assert(count != 0, "No MemRegions provided");
 861   MemRegion reserved = _hrm.reserved();
 862   HeapWord* prev_last_addr = NULL;
 863   HeapRegion* prev_last_region = NULL;
 864   size_t size_used = 0;
 865   size_t uncommitted_regions = 0;
 866 
 867   // For each Memregion, free the G1 regions that constitute it, and
 868   // notify mark-sweep that the range is no longer to be considered 'archive.'
 869   MutexLockerEx x(Heap_lock);
 870   for (size_t i = 0; i < count; i++) {
 871     HeapWord* start_address = ranges[i].start();
 872     HeapWord* last_address = ranges[i].last();
 873 
 874     assert(reserved.contains(start_address) && reserved.contains(last_address),
 875            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 876            p2i(start_address), p2i(last_address));
 877     assert(start_address > prev_last_addr,
 878            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 879            p2i(start_address), p2i(prev_last_addr));
 880     size_used += ranges[i].byte_size();
 881     prev_last_addr = last_address;
 882 
 883     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 884     HeapRegion* last_region = _hrm.addr_to_region(last_address);
 885 
 886     // Check for ranges that start in the same G1 region in which the previous
 887     // range ended, and adjust the start address so we don't try to free
 888     // the same region again. If the current range is entirely within that
 889     // region, skip it.
 890     if (start_region == prev_last_region) {
 891       start_address = start_region->end();
 892       if (start_address > last_address) {
 893         continue;
 894       }
 895       start_region = _hrm.addr_to_region(start_address);
 896     }
 897     prev_last_region = last_region;
 898 
 899     // After verifying that each region was marked as an archive region by
 900     // alloc_archive_regions, set it free and empty and uncommit it.
 901     HeapRegion* curr_region = start_region;
 902     while (curr_region != NULL) {
 903       guarantee(curr_region->is_archive(),
 904                 "Expected archive region at index %u", curr_region->hrm_index());
 905       uint curr_index = curr_region->hrm_index();
 906       _old_set.remove(curr_region);
 907       curr_region->set_free();
 908       curr_region->set_top(curr_region->bottom());
 909       if (curr_region != last_region) {
 910         curr_region = _hrm.next_region_in_heap(curr_region);
 911       } else {
 912         curr_region = NULL;
 913       }
 914       _hrm.shrink_at(curr_index, 1);
 915       uncommitted_regions++;
 916     }
 917 
 918     // Notify mark-sweep that this is no longer an archive range.
 919     G1ArchiveAllocator::set_range_archive(ranges[i], false);
 920   }
 921 
 922   if (uncommitted_regions != 0) {
 923     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 924                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 925   }
 926   decrease_used(size_used);
 927 }
 928 
 929 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 930                                                         uint* gc_count_before_ret,
 931                                                         uint* gclocker_retry_count_ret) {
 932   // The structure of this method has a lot of similarities to
 933   // attempt_allocation_slow(). The reason these two were not merged
 934   // into a single one is that such a method would require several "if
 935   // allocation is not humongous do this, otherwise do that"
 936   // conditional paths which would obscure its flow. In fact, an early
 937   // version of this code did use a unified method which was harder to
 938   // follow and, as a result, it had subtle bugs that were hard to
 939   // track down. So keeping these two methods separate allows each to
 940   // be more readable. It will be good to keep these two in sync as
 941   // much as possible.
 942 
 943   assert_heap_not_locked_and_not_at_safepoint();
 944   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 945          "should only be called for humongous allocations");
 946 
 947   // Humongous objects can exhaust the heap quickly, so we should check if we
 948   // need to start a marking cycle at each humongous object allocation. We do
 949   // the check before we do the actual allocation. The reason for doing it
 950   // before the allocation is that we avoid having to keep track of the newly
 951   // allocated memory while we do a GC.
 952   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 953                                            word_size)) {
 954     collect(GCCause::_g1_humongous_allocation);
 955   }
 956 
 957   // We will loop until a) we manage to successfully perform the
 958   // allocation or b) we successfully schedule a collection which
 959   // fails to perform the allocation. b) is the only case when we'll
 960   // return NULL.
 961   HeapWord* result = NULL;
 962   for (int try_count = 1; /* we'll return */; try_count += 1) {
 963     bool should_try_gc;
 964     uint gc_count_before;
 965 
 966     {
 967       MutexLockerEx x(Heap_lock);
 968 
 969       // Given that humongous objects are not allocated in young
 970       // regions, we'll first try to do the allocation without doing a
 971       // collection hoping that there's enough space in the heap.
 972       result = humongous_obj_allocate(word_size, AllocationContext::current());
 973       if (result != NULL) {
 974         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 975         g1_policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 976         return result;
 977       }
 978 
 979       if (GCLocker::is_active_and_needs_gc()) {
 980         should_try_gc = false;
 981       } else {
 982          // The GCLocker may not be active but the GCLocker initiated
 983         // GC may not yet have been performed (GCLocker::needs_gc()
 984         // returns true). In this case we do not try this GC and
 985         // wait until the GCLocker initiated GC is performed, and
 986         // then retry the allocation.
 987         if (GCLocker::needs_gc()) {
 988           should_try_gc = false;
 989         } else {
 990           // Read the GC count while still holding the Heap_lock.
 991           gc_count_before = total_collections();
 992           should_try_gc = true;
 993         }
 994       }
 995     }
 996 
 997     if (should_try_gc) {
 998       // If we failed to allocate the humongous object, we should try to
 999       // do a collection pause (if we're allowed) in case it reclaims
1000       // enough space for the allocation to succeed after the pause.
1001 
1002       bool succeeded;
1003       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1004                                    GCCause::_g1_humongous_allocation);
1005       if (result != NULL) {
1006         assert(succeeded, "only way to get back a non-NULL result");
1007         return result;
1008       }
1009 
1010       if (succeeded) {
1011         // If we get here we successfully scheduled a collection which
1012         // failed to allocate. No point in trying to allocate
1013         // further. We'll just return NULL.
1014         MutexLockerEx x(Heap_lock);
1015         *gc_count_before_ret = total_collections();
1016         return NULL;
1017       }
1018     } else {
1019       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1020         MutexLockerEx x(Heap_lock);
1021         *gc_count_before_ret = total_collections();
1022         return NULL;
1023       }
1024       // The GCLocker is either active or the GCLocker initiated
1025       // GC has not yet been performed. Stall until it is and
1026       // then retry the allocation.
1027       GCLocker::stall_until_clear();
1028       (*gclocker_retry_count_ret) += 1;
1029     }
1030 
1031     // We can reach here if we were unsuccessful in scheduling a
1032     // collection (because another thread beat us to it) or if we were
1033     // stalled due to the GC locker. In either can we should retry the
1034     // allocation attempt in case another thread successfully
1035     // performed a collection and reclaimed enough space.  Give a
1036     // warning if we seem to be looping forever.
1037 
1038     if ((QueuedAllocationWarningCount > 0) &&
1039         (try_count % QueuedAllocationWarningCount == 0)) {
1040       log_warning(gc)("G1CollectedHeap::attempt_allocation_humongous() "
1041                       "retries %d times", try_count);
1042     }
1043   }
1044 
1045   ShouldNotReachHere();
1046   return NULL;
1047 }
1048 
1049 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1050                                                            AllocationContext_t context,
1051                                                            bool expect_null_mutator_alloc_region) {
1052   assert_at_safepoint(true /* should_be_vm_thread */);
1053   assert(!_allocator->has_mutator_alloc_region(context) || !expect_null_mutator_alloc_region,
1054          "the current alloc region was unexpectedly found to be non-NULL");
1055 
1056   if (!is_humongous(word_size)) {
1057     return _allocator->attempt_allocation_locked(word_size, context);
1058   } else {
1059     HeapWord* result = humongous_obj_allocate(word_size, context);
1060     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1061       collector_state()->set_initiate_conc_mark_if_possible(true);
1062     }
1063     return result;
1064   }
1065 
1066   ShouldNotReachHere();
1067 }
1068 
1069 class PostCompactionPrinterClosure: public HeapRegionClosure {
1070 private:
1071   G1HRPrinter* _hr_printer;
1072 public:
1073   bool doHeapRegion(HeapRegion* hr) {
1074     assert(!hr->is_young(), "not expecting to find young regions");
1075     _hr_printer->post_compaction(hr);
1076     return false;
1077   }
1078 
1079   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1080     : _hr_printer(hr_printer) { }
1081 };
1082 
1083 void G1CollectedHeap::print_hrm_post_compaction() {
1084   if (_hr_printer.is_active()) {
1085     PostCompactionPrinterClosure cl(hr_printer());
1086     heap_region_iterate(&cl);
1087   }
1088 
1089 }
1090 
1091 void G1CollectedHeap::abort_concurrent_cycle() {
1092   // Note: When we have a more flexible GC logging framework that
1093   // allows us to add optional attributes to a GC log record we
1094   // could consider timing and reporting how long we wait in the
1095   // following two methods.
1096   wait_while_free_regions_coming();
1097   // If we start the compaction before the CM threads finish
1098   // scanning the root regions we might trip them over as we'll
1099   // be moving objects / updating references. So let's wait until
1100   // they are done. By telling them to abort, they should complete
1101   // early.
1102   _cm->root_regions()->abort();
1103   _cm->root_regions()->wait_until_scan_finished();
1104   append_secondary_free_list_if_not_empty_with_lock();
1105 
1106   // Disable discovery and empty the discovered lists
1107   // for the CM ref processor.
1108   ref_processor_cm()->disable_discovery();
1109   ref_processor_cm()->abandon_partial_discovery();
1110   ref_processor_cm()->verify_no_references_recorded();
1111 
1112   // Abandon current iterations of concurrent marking and concurrent
1113   // refinement, if any are in progress.
1114   concurrent_mark()->abort();
1115 }
1116 
1117 void G1CollectedHeap::prepare_heap_for_full_collection() {
1118   // Make sure we'll choose a new allocation region afterwards.
1119   _allocator->release_mutator_alloc_region();
1120   _allocator->abandon_gc_alloc_regions();
1121   g1_rem_set()->cleanupHRRS();
1122 
1123   // We may have added regions to the current incremental collection
1124   // set between the last GC or pause and now. We need to clear the
1125   // incremental collection set and then start rebuilding it afresh
1126   // after this full GC.
1127   abandon_collection_set(collection_set());
1128 
1129   tear_down_region_sets(false /* free_list_only */);
1130   collector_state()->set_gcs_are_young(true);
1131 }
1132 
1133 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1134   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1135   assert(used() == recalculate_used(), "Should be equal");
1136   _verifier->verify_region_sets_optional();
1137   _verifier->verify_before_gc();
1138   _verifier->check_bitmaps("Full GC Start");
1139 }
1140 
1141 void G1CollectedHeap::prepare_heap_for_mutators() {
1142   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1143   ClassLoaderDataGraph::purge();
1144   MetaspaceAux::verify_metrics();
1145 
1146   // Prepare heap for normal collections.
1147   assert(num_free_regions() == 0, "we should not have added any free regions");
1148   rebuild_region_sets(false /* free_list_only */);
1149   abort_refinement();
1150   resize_if_necessary_after_full_collection();
1151 
1152   // Rebuild the strong code root lists for each region
1153   rebuild_strong_code_roots();
1154 
1155   // Start a new incremental collection set for the next pause
1156   start_new_collection_set();
1157 
1158   _allocator->init_mutator_alloc_region();
1159 
1160   // Post collection state updates.
1161   MetaspaceGC::compute_new_size();
1162 }
1163 
1164 void G1CollectedHeap::abort_refinement() {
1165   if (_hot_card_cache->use_cache()) {
1166     _hot_card_cache->reset_hot_cache();
1167   }
1168 
1169   // Discard all remembered set updates.
1170   JavaThread::dirty_card_queue_set().abandon_logs();
1171   assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1172 }
1173 
1174 void G1CollectedHeap::verify_after_full_collection() {
1175   check_gc_time_stamps();
1176   _hrm.verify_optional();
1177   _verifier->verify_region_sets_optional();
1178   _verifier->verify_after_gc();
1179   // Clear the previous marking bitmap, if needed for bitmap verification.
1180   // Note we cannot do this when we clear the next marking bitmap in
1181   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1182   // objects marked during a full GC against the previous bitmap.
1183   // But we need to clear it before calling check_bitmaps below since
1184   // the full GC has compacted objects and updated TAMS but not updated
1185   // the prev bitmap.
1186   if (G1VerifyBitmaps) {
1187     GCTraceTime(Debug, gc)("Clear Bitmap for Verification");
1188     _cm->clear_prev_bitmap(workers());
1189   }
1190   _verifier->check_bitmaps("Full GC End");
1191 
1192   // At this point there should be no regions in the
1193   // entire heap tagged as young.
1194   assert(check_young_list_empty(), "young list should be empty at this point");
1195 
1196   // Note: since we've just done a full GC, concurrent
1197   // marking is no longer active. Therefore we need not
1198   // re-enable reference discovery for the CM ref processor.
1199   // That will be done at the start of the next marking cycle.
1200   // We also know that the STW processor should no longer
1201   // discover any new references.
1202   assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1203   assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1204   ref_processor_stw()->verify_no_references_recorded();
1205   ref_processor_cm()->verify_no_references_recorded();
1206 }
1207 
1208 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1209   // Post collection logging.
1210   // We should do this after we potentially resize the heap so
1211   // that all the COMMIT / UNCOMMIT events are generated before
1212   // the compaction events.
1213   print_hrm_post_compaction();
1214   heap_transition->print();
1215   print_heap_after_gc();
1216   print_heap_regions();
1217 #ifdef TRACESPINNING
1218   ParallelTaskTerminator::print_termination_counts();
1219 #endif
1220 }
1221 
1222 void G1CollectedHeap::do_full_collection_inner(G1FullGCScope* scope) {
1223   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1224   g1_policy()->record_full_collection_start();
1225 
1226   print_heap_before_gc();
1227   print_heap_regions();
1228 
1229   abort_concurrent_cycle();
1230   verify_before_full_collection(scope->is_explicit_gc());
1231 
1232   gc_prologue(true);
1233   prepare_heap_for_full_collection();
1234 
1235   G1FullCollector collector(scope, ref_processor_stw(), concurrent_mark()->next_mark_bitmap(), workers()->active_workers());
1236   collector.prepare_collection();
1237   collector.collect();
1238   collector.complete_collection();
1239 
1240   prepare_heap_for_mutators();
1241 
1242   g1_policy()->record_full_collection_end();
1243   gc_epilogue(true);
1244 
1245   verify_after_full_collection();
1246 
1247   print_heap_after_full_collection(scope->heap_transition());
1248 }
1249 
1250 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1251                                          bool clear_all_soft_refs) {
1252   assert_at_safepoint(true /* should_be_vm_thread */);
1253 
1254   if (GCLocker::check_active_before_gc()) {
1255     // Full GC was not completed.
1256     return false;
1257   }
1258 
1259   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1260       collector_policy()->should_clear_all_soft_refs();
1261 
1262   G1FullGCScope scope(explicit_gc, do_clear_all_soft_refs);
1263   do_full_collection_inner(&scope);
1264 
1265   // Full collection was successfully completed.
1266   return true;
1267 }
1268 
1269 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1270   // Currently, there is no facility in the do_full_collection(bool) API to notify
1271   // the caller that the collection did not succeed (e.g., because it was locked
1272   // out by the GC locker). So, right now, we'll ignore the return value.
1273   bool dummy = do_full_collection(true,                /* explicit_gc */
1274                                   clear_all_soft_refs);
1275 }
1276 
1277 void G1CollectedHeap::resize_if_necessary_after_full_collection() {
1278   // Capacity, free and used after the GC counted as full regions to
1279   // include the waste in the following calculations.
1280   const size_t capacity_after_gc = capacity();
1281   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1282 
1283   // This is enforced in arguments.cpp.
1284   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1285          "otherwise the code below doesn't make sense");
1286 
1287   // We don't have floating point command-line arguments
1288   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1289   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1290   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1291   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1292 
1293   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1294   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1295 
1296   // We have to be careful here as these two calculations can overflow
1297   // 32-bit size_t's.
1298   double used_after_gc_d = (double) used_after_gc;
1299   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1300   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1301 
1302   // Let's make sure that they are both under the max heap size, which
1303   // by default will make them fit into a size_t.
1304   double desired_capacity_upper_bound = (double) max_heap_size;
1305   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1306                                     desired_capacity_upper_bound);
1307   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1308                                     desired_capacity_upper_bound);
1309 
1310   // We can now safely turn them into size_t's.
1311   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1312   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1313 
1314   // This assert only makes sense here, before we adjust them
1315   // with respect to the min and max heap size.
1316   assert(minimum_desired_capacity <= maximum_desired_capacity,
1317          "minimum_desired_capacity = " SIZE_FORMAT ", "
1318          "maximum_desired_capacity = " SIZE_FORMAT,
1319          minimum_desired_capacity, maximum_desired_capacity);
1320 
1321   // Should not be greater than the heap max size. No need to adjust
1322   // it with respect to the heap min size as it's a lower bound (i.e.,
1323   // we'll try to make the capacity larger than it, not smaller).
1324   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1325   // Should not be less than the heap min size. No need to adjust it
1326   // with respect to the heap max size as it's an upper bound (i.e.,
1327   // we'll try to make the capacity smaller than it, not greater).
1328   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1329 
1330   if (capacity_after_gc < minimum_desired_capacity) {
1331     // Don't expand unless it's significant
1332     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1333 
1334     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity after Full GC). "
1335                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1336                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1337                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1338 
1339     expand(expand_bytes, _workers);
1340 
1341     // No expansion, now see if we want to shrink
1342   } else if (capacity_after_gc > maximum_desired_capacity) {
1343     // Capacity too large, compute shrinking size
1344     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1345 
1346     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity after Full GC). "
1347                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1348                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1349                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1350 
1351     shrink(shrink_bytes);
1352   }
1353 }
1354 
1355 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1356                                                             AllocationContext_t context,
1357                                                             bool do_gc,
1358                                                             bool clear_all_soft_refs,
1359                                                             bool expect_null_mutator_alloc_region,
1360                                                             bool* gc_succeeded) {
1361   *gc_succeeded = true;
1362   // Let's attempt the allocation first.
1363   HeapWord* result =
1364     attempt_allocation_at_safepoint(word_size,
1365                                     context,
1366                                     expect_null_mutator_alloc_region);
1367   if (result != NULL) {
1368     assert(*gc_succeeded, "sanity");
1369     return result;
1370   }
1371 
1372   // In a G1 heap, we're supposed to keep allocation from failing by
1373   // incremental pauses.  Therefore, at least for now, we'll favor
1374   // expansion over collection.  (This might change in the future if we can
1375   // do something smarter than full collection to satisfy a failed alloc.)
1376   result = expand_and_allocate(word_size, context);
1377   if (result != NULL) {
1378     assert(*gc_succeeded, "sanity");
1379     return result;
1380   }
1381 
1382   if (do_gc) {
1383     // Expansion didn't work, we'll try to do a Full GC.
1384     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1385                                        clear_all_soft_refs);
1386   }
1387 
1388   return NULL;
1389 }
1390 
1391 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1392                                                      AllocationContext_t context,
1393                                                      bool* succeeded) {
1394   assert_at_safepoint(true /* should_be_vm_thread */);
1395 
1396   // Attempts to allocate followed by Full GC.
1397   HeapWord* result =
1398     satisfy_failed_allocation_helper(word_size,
1399                                      context,
1400                                      true,  /* do_gc */
1401                                      false, /* clear_all_soft_refs */
1402                                      false, /* expect_null_mutator_alloc_region */
1403                                      succeeded);
1404 
1405   if (result != NULL || !*succeeded) {
1406     return result;
1407   }
1408 
1409   // Attempts to allocate followed by Full GC that will collect all soft references.
1410   result = satisfy_failed_allocation_helper(word_size,
1411                                             context,
1412                                             true, /* do_gc */
1413                                             true, /* clear_all_soft_refs */
1414                                             true, /* expect_null_mutator_alloc_region */
1415                                             succeeded);
1416 
1417   if (result != NULL || !*succeeded) {
1418     return result;
1419   }
1420 
1421   // Attempts to allocate, no GC
1422   result = satisfy_failed_allocation_helper(word_size,
1423                                             context,
1424                                             false, /* do_gc */
1425                                             false, /* clear_all_soft_refs */
1426                                             true,  /* expect_null_mutator_alloc_region */
1427                                             succeeded);
1428 
1429   if (result != NULL) {
1430     assert(*succeeded, "sanity");
1431     return result;
1432   }
1433 
1434   assert(!collector_policy()->should_clear_all_soft_refs(),
1435          "Flag should have been handled and cleared prior to this point");
1436 
1437   // What else?  We might try synchronous finalization later.  If the total
1438   // space available is large enough for the allocation, then a more
1439   // complete compaction phase than we've tried so far might be
1440   // appropriate.
1441   assert(*succeeded, "sanity");
1442   return NULL;
1443 }
1444 
1445 // Attempting to expand the heap sufficiently
1446 // to support an allocation of the given "word_size".  If
1447 // successful, perform the allocation and return the address of the
1448 // allocated block, or else "NULL".
1449 
1450 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1451   assert_at_safepoint(true /* should_be_vm_thread */);
1452 
1453   _verifier->verify_region_sets_optional();
1454 
1455   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1456   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1457                             word_size * HeapWordSize);
1458 
1459 
1460   if (expand(expand_bytes, _workers)) {
1461     _hrm.verify_optional();
1462     _verifier->verify_region_sets_optional();
1463     return attempt_allocation_at_safepoint(word_size,
1464                                            context,
1465                                            false /* expect_null_mutator_alloc_region */);
1466   }
1467   return NULL;
1468 }
1469 
1470 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1471   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1472   aligned_expand_bytes = align_up(aligned_expand_bytes,
1473                                        HeapRegion::GrainBytes);
1474 
1475   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1476                             expand_bytes, aligned_expand_bytes);
1477 
1478   if (is_maximal_no_gc()) {
1479     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1480     return false;
1481   }
1482 
1483   double expand_heap_start_time_sec = os::elapsedTime();
1484   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1485   assert(regions_to_expand > 0, "Must expand by at least one region");
1486 
1487   uint expanded_by = _hrm.expand_by(regions_to_expand, pretouch_workers);
1488   if (expand_time_ms != NULL) {
1489     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1490   }
1491 
1492   if (expanded_by > 0) {
1493     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1494     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1495     g1_policy()->record_new_heap_size(num_regions());
1496   } else {
1497     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1498 
1499     // The expansion of the virtual storage space was unsuccessful.
1500     // Let's see if it was because we ran out of swap.
1501     if (G1ExitOnExpansionFailure &&
1502         _hrm.available() >= regions_to_expand) {
1503       // We had head room...
1504       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1505     }
1506   }
1507   return regions_to_expand > 0;
1508 }
1509 
1510 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1511   size_t aligned_shrink_bytes =
1512     ReservedSpace::page_align_size_down(shrink_bytes);
1513   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1514                                          HeapRegion::GrainBytes);
1515   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1516 
1517   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1518   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1519 
1520 
1521   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1522                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1523   if (num_regions_removed > 0) {
1524     g1_policy()->record_new_heap_size(num_regions());
1525   } else {
1526     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1527   }
1528 }
1529 
1530 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1531   _verifier->verify_region_sets_optional();
1532 
1533   // We should only reach here at the end of a Full GC which means we
1534   // should not not be holding to any GC alloc regions. The method
1535   // below will make sure of that and do any remaining clean up.
1536   _allocator->abandon_gc_alloc_regions();
1537 
1538   // Instead of tearing down / rebuilding the free lists here, we
1539   // could instead use the remove_all_pending() method on free_list to
1540   // remove only the ones that we need to remove.
1541   tear_down_region_sets(true /* free_list_only */);
1542   shrink_helper(shrink_bytes);
1543   rebuild_region_sets(true /* free_list_only */);
1544 
1545   _hrm.verify_optional();
1546   _verifier->verify_region_sets_optional();
1547 }
1548 
1549 // Public methods.
1550 
1551 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* collector_policy) :
1552   CollectedHeap(),
1553   _young_gen_sampling_thread(NULL),
1554   _collector_policy(collector_policy),
1555   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1556   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1557   _g1_policy(create_g1_policy(_gc_timer_stw)),
1558   _collection_set(this, _g1_policy),
1559   _dirty_card_queue_set(false),
1560   _is_alive_closure_cm(this),
1561   _is_alive_closure_stw(this),
1562   _ref_processor_cm(NULL),
1563   _ref_processor_stw(NULL),
1564   _bot(NULL),
1565   _hot_card_cache(NULL),
1566   _g1_rem_set(NULL),
1567   _cr(NULL),
1568   _g1mm(NULL),
1569   _preserved_marks_set(true /* in_c_heap */),
1570   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1571   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1572   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1573   _humongous_reclaim_candidates(),
1574   _has_humongous_reclaim_candidates(false),
1575   _archive_allocator(NULL),
1576   _free_regions_coming(false),
1577   _gc_time_stamp(0),
1578   _summary_bytes_used(0),
1579   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1580   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1581   _expand_heap_after_alloc_failure(true),
1582   _old_marking_cycles_started(0),
1583   _old_marking_cycles_completed(0),
1584   _in_cset_fast_test() {
1585 
1586   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1587                           /* are_GC_task_threads */true,
1588                           /* are_ConcurrentGC_threads */false);
1589   _workers->initialize_workers();
1590   _verifier = new G1HeapVerifier(this);
1591 
1592   _allocator = G1Allocator::create_allocator(this);
1593 
1594   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _g1_policy->analytics());
1595 
1596   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1597 
1598   // Override the default _filler_array_max_size so that no humongous filler
1599   // objects are created.
1600   _filler_array_max_size = _humongous_object_threshold_in_words;
1601 
1602   uint n_queues = ParallelGCThreads;
1603   _task_queues = new RefToScanQueueSet(n_queues);
1604 
1605   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1606 
1607   for (uint i = 0; i < n_queues; i++) {
1608     RefToScanQueue* q = new RefToScanQueue();
1609     q->initialize();
1610     _task_queues->register_queue(i, q);
1611     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1612   }
1613 
1614   // Initialize the G1EvacuationFailureALot counters and flags.
1615   NOT_PRODUCT(reset_evacuation_should_fail();)
1616 
1617   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1618 }
1619 
1620 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1621                                                                  size_t size,
1622                                                                  size_t translation_factor) {
1623   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1624   // Allocate a new reserved space, preferring to use large pages.
1625   ReservedSpace rs(size, preferred_page_size);
1626   G1RegionToSpaceMapper* result  =
1627     G1RegionToSpaceMapper::create_mapper(rs,
1628                                          size,
1629                                          rs.alignment(),
1630                                          HeapRegion::GrainBytes,
1631                                          translation_factor,
1632                                          mtGC);
1633 
1634   os::trace_page_sizes_for_requested_size(description,
1635                                           size,
1636                                           preferred_page_size,
1637                                           rs.alignment(),
1638                                           rs.base(),
1639                                           rs.size());
1640 
1641   return result;
1642 }
1643 
1644 jint G1CollectedHeap::initialize_concurrent_refinement() {
1645   jint ecode = JNI_OK;
1646   _cr = G1ConcurrentRefine::create(&ecode);
1647   return ecode;
1648 }
1649 
1650 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1651   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1652   if (_young_gen_sampling_thread->osthread() == NULL) {
1653     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1654     return JNI_ENOMEM;
1655   }
1656   return JNI_OK;
1657 }
1658 
1659 jint G1CollectedHeap::initialize() {
1660   CollectedHeap::pre_initialize();
1661   os::enable_vtime();
1662 
1663   // Necessary to satisfy locking discipline assertions.
1664 
1665   MutexLocker x(Heap_lock);
1666 
1667   // While there are no constraints in the GC code that HeapWordSize
1668   // be any particular value, there are multiple other areas in the
1669   // system which believe this to be true (e.g. oop->object_size in some
1670   // cases incorrectly returns the size in wordSize units rather than
1671   // HeapWordSize).
1672   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1673 
1674   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1675   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1676   size_t heap_alignment = collector_policy()->heap_alignment();
1677 
1678   // Ensure that the sizes are properly aligned.
1679   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1680   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1681   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1682 
1683   // Reserve the maximum.
1684 
1685   // When compressed oops are enabled, the preferred heap base
1686   // is calculated by subtracting the requested size from the
1687   // 32Gb boundary and using the result as the base address for
1688   // heap reservation. If the requested size is not aligned to
1689   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1690   // into the ReservedHeapSpace constructor) then the actual
1691   // base of the reserved heap may end up differing from the
1692   // address that was requested (i.e. the preferred heap base).
1693   // If this happens then we could end up using a non-optimal
1694   // compressed oops mode.
1695 
1696   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1697                                                  heap_alignment);
1698 
1699   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1700 
1701   // Create the barrier set for the entire reserved region.
1702   G1SATBCardTableLoggingModRefBS* bs
1703     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1704   bs->initialize();
1705   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1706   set_barrier_set(bs);
1707 
1708   // Create the hot card cache.
1709   _hot_card_cache = new G1HotCardCache(this);
1710 
1711   // Carve out the G1 part of the heap.
1712   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1713   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
1714   G1RegionToSpaceMapper* heap_storage =
1715     G1RegionToSpaceMapper::create_mapper(g1_rs,
1716                                          g1_rs.size(),
1717                                          page_size,
1718                                          HeapRegion::GrainBytes,
1719                                          1,
1720                                          mtJavaHeap);
1721   os::trace_page_sizes("Heap",
1722                        collector_policy()->min_heap_byte_size(),
1723                        max_byte_size,
1724                        page_size,
1725                        heap_rs.base(),
1726                        heap_rs.size());
1727   heap_storage->set_mapping_changed_listener(&_listener);
1728 
1729   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1730   G1RegionToSpaceMapper* bot_storage =
1731     create_aux_memory_mapper("Block Offset Table",
1732                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1733                              G1BlockOffsetTable::heap_map_factor());
1734 
1735   G1RegionToSpaceMapper* cardtable_storage =
1736     create_aux_memory_mapper("Card Table",
1737                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
1738                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
1739 
1740   G1RegionToSpaceMapper* card_counts_storage =
1741     create_aux_memory_mapper("Card Counts Table",
1742                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1743                              G1CardCounts::heap_map_factor());
1744 
1745   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1746   G1RegionToSpaceMapper* prev_bitmap_storage =
1747     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1748   G1RegionToSpaceMapper* next_bitmap_storage =
1749     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1750 
1751   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1752   g1_barrier_set()->initialize(cardtable_storage);
1753   // Do later initialization work for concurrent refinement.
1754   _hot_card_cache->initialize(card_counts_storage);
1755 
1756   // 6843694 - ensure that the maximum region index can fit
1757   // in the remembered set structures.
1758   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1759   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1760 
1761   // Also create a G1 rem set.
1762   _g1_rem_set = new G1RemSet(this, g1_barrier_set(), _hot_card_cache);
1763   _g1_rem_set->initialize(max_capacity(), max_regions());
1764 
1765   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1766   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1767   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1768             "too many cards per region");
1769 
1770   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1771 
1772   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1773 
1774   {
1775     HeapWord* start = _hrm.reserved().start();
1776     HeapWord* end = _hrm.reserved().end();
1777     size_t granularity = HeapRegion::GrainBytes;
1778 
1779     _in_cset_fast_test.initialize(start, end, granularity);
1780     _humongous_reclaim_candidates.initialize(start, end, granularity);
1781   }
1782 
1783   // Create the G1ConcurrentMark data structure and thread.
1784   // (Must do this late, so that "max_regions" is defined.)
1785   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1786   if (_cm == NULL || !_cm->completed_initialization()) {
1787     vm_shutdown_during_initialization("Could not create/initialize G1ConcurrentMark");
1788     return JNI_ENOMEM;
1789   }
1790   _cmThread = _cm->cm_thread();
1791 
1792   // Now expand into the initial heap size.
1793   if (!expand(init_byte_size, _workers)) {
1794     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1795     return JNI_ENOMEM;
1796   }
1797 
1798   // Perform any initialization actions delegated to the policy.
1799   g1_policy()->init(this, &_collection_set);
1800 
1801   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
1802                                                SATB_Q_FL_lock,
1803                                                G1SATBProcessCompletedThreshold,
1804                                                Shared_SATB_Q_lock);
1805 
1806   jint ecode = initialize_concurrent_refinement();
1807   if (ecode != JNI_OK) {
1808     return ecode;
1809   }
1810 
1811   ecode = initialize_young_gen_sampling_thread();
1812   if (ecode != JNI_OK) {
1813     return ecode;
1814   }
1815 
1816   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1817                                                 DirtyCardQ_FL_lock,
1818                                                 (int)concurrent_refine()->yellow_zone(),
1819                                                 (int)concurrent_refine()->red_zone(),
1820                                                 Shared_DirtyCardQ_lock,
1821                                                 NULL,  // fl_owner
1822                                                 true); // init_free_ids
1823 
1824   dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
1825                                     DirtyCardQ_FL_lock,
1826                                     -1, // never trigger processing
1827                                     -1, // no limit on length
1828                                     Shared_DirtyCardQ_lock,
1829                                     &JavaThread::dirty_card_queue_set());
1830 
1831   // Here we allocate the dummy HeapRegion that is required by the
1832   // G1AllocRegion class.
1833   HeapRegion* dummy_region = _hrm.get_dummy_region();
1834 
1835   // We'll re-use the same region whether the alloc region will
1836   // require BOT updates or not and, if it doesn't, then a non-young
1837   // region will complain that it cannot support allocations without
1838   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1839   dummy_region->set_eden();
1840   // Make sure it's full.
1841   dummy_region->set_top(dummy_region->end());
1842   G1AllocRegion::setup(this, dummy_region);
1843 
1844   _allocator->init_mutator_alloc_region();
1845 
1846   // Do create of the monitoring and management support so that
1847   // values in the heap have been properly initialized.
1848   _g1mm = new G1MonitoringSupport(this);
1849 
1850   G1StringDedup::initialize();
1851 
1852   _preserved_marks_set.init(ParallelGCThreads);
1853 
1854   _collection_set.initialize(max_regions());
1855 
1856   return JNI_OK;
1857 }
1858 
1859 void G1CollectedHeap::stop() {
1860   // Stop all concurrent threads. We do this to make sure these threads
1861   // do not continue to execute and access resources (e.g. logging)
1862   // that are destroyed during shutdown.
1863   _cr->stop();
1864   _young_gen_sampling_thread->stop();
1865   _cmThread->stop();
1866   if (G1StringDedup::is_enabled()) {
1867     G1StringDedup::stop();
1868   }
1869 }
1870 
1871 void G1CollectedHeap::safepoint_synchronize_begin() {
1872   SuspendibleThreadSet::synchronize();
1873 }
1874 
1875 void G1CollectedHeap::safepoint_synchronize_end() {
1876   SuspendibleThreadSet::desynchronize();
1877 }
1878 
1879 size_t G1CollectedHeap::conservative_max_heap_alignment() {
1880   return HeapRegion::max_region_size();
1881 }
1882 
1883 void G1CollectedHeap::post_initialize() {
1884   ref_processing_init();
1885 }
1886 
1887 void G1CollectedHeap::ref_processing_init() {
1888   // Reference processing in G1 currently works as follows:
1889   //
1890   // * There are two reference processor instances. One is
1891   //   used to record and process discovered references
1892   //   during concurrent marking; the other is used to
1893   //   record and process references during STW pauses
1894   //   (both full and incremental).
1895   // * Both ref processors need to 'span' the entire heap as
1896   //   the regions in the collection set may be dotted around.
1897   //
1898   // * For the concurrent marking ref processor:
1899   //   * Reference discovery is enabled at initial marking.
1900   //   * Reference discovery is disabled and the discovered
1901   //     references processed etc during remarking.
1902   //   * Reference discovery is MT (see below).
1903   //   * Reference discovery requires a barrier (see below).
1904   //   * Reference processing may or may not be MT
1905   //     (depending on the value of ParallelRefProcEnabled
1906   //     and ParallelGCThreads).
1907   //   * A full GC disables reference discovery by the CM
1908   //     ref processor and abandons any entries on it's
1909   //     discovered lists.
1910   //
1911   // * For the STW processor:
1912   //   * Non MT discovery is enabled at the start of a full GC.
1913   //   * Processing and enqueueing during a full GC is non-MT.
1914   //   * During a full GC, references are processed after marking.
1915   //
1916   //   * Discovery (may or may not be MT) is enabled at the start
1917   //     of an incremental evacuation pause.
1918   //   * References are processed near the end of a STW evacuation pause.
1919   //   * For both types of GC:
1920   //     * Discovery is atomic - i.e. not concurrent.
1921   //     * Reference discovery will not need a barrier.
1922 
1923   MemRegion mr = reserved_region();
1924 
1925   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1926 
1927   // Concurrent Mark ref processor
1928   _ref_processor_cm =
1929     new ReferenceProcessor(mr,    // span
1930                            mt_processing,
1931                                 // mt processing
1932                            ParallelGCThreads,
1933                                 // degree of mt processing
1934                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
1935                                 // mt discovery
1936                            MAX2(ParallelGCThreads, ConcGCThreads),
1937                                 // degree of mt discovery
1938                            false,
1939                                 // Reference discovery is not atomic
1940                            &_is_alive_closure_cm);
1941                                 // is alive closure
1942                                 // (for efficiency/performance)
1943 
1944   // STW ref processor
1945   _ref_processor_stw =
1946     new ReferenceProcessor(mr,    // span
1947                            mt_processing,
1948                                 // mt processing
1949                            ParallelGCThreads,
1950                                 // degree of mt processing
1951                            (ParallelGCThreads > 1),
1952                                 // mt discovery
1953                            ParallelGCThreads,
1954                                 // degree of mt discovery
1955                            true,
1956                                 // Reference discovery is atomic
1957                            &_is_alive_closure_stw);
1958                                 // is alive closure
1959                                 // (for efficiency/performance)
1960 }
1961 
1962 CollectorPolicy* G1CollectedHeap::collector_policy() const {
1963   return _collector_policy;
1964 }
1965 
1966 size_t G1CollectedHeap::capacity() const {
1967   return _hrm.length() * HeapRegion::GrainBytes;
1968 }
1969 
1970 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1971   return _hrm.total_free_bytes();
1972 }
1973 
1974 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
1975   hr->reset_gc_time_stamp();
1976 }
1977 
1978 #ifndef PRODUCT
1979 
1980 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
1981 private:
1982   unsigned _gc_time_stamp;
1983   bool _failures;
1984 
1985 public:
1986   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
1987     _gc_time_stamp(gc_time_stamp), _failures(false) { }
1988 
1989   virtual bool doHeapRegion(HeapRegion* hr) {
1990     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
1991     if (_gc_time_stamp != region_gc_time_stamp) {
1992       log_error(gc, verify)("Region " HR_FORMAT " has GC time stamp = %d, expected %d", HR_FORMAT_PARAMS(hr),
1993                             region_gc_time_stamp, _gc_time_stamp);
1994       _failures = true;
1995     }
1996     return false;
1997   }
1998 
1999   bool failures() { return _failures; }
2000 };
2001 
2002 void G1CollectedHeap::check_gc_time_stamps() {
2003   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2004   heap_region_iterate(&cl);
2005   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2006 }
2007 #endif // PRODUCT
2008 
2009 void G1CollectedHeap::iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i) {
2010   _hot_card_cache->drain(cl, worker_i);
2011 }
2012 
2013 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i) {
2014   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2015   size_t n_completed_buffers = 0;
2016   while (dcqs.apply_closure_during_gc(cl, worker_i)) {
2017     n_completed_buffers++;
2018   }
2019   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2020   dcqs.clear_n_completed_buffers();
2021   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2022 }
2023 
2024 // Computes the sum of the storage used by the various regions.
2025 size_t G1CollectedHeap::used() const {
2026   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
2027   if (_archive_allocator != NULL) {
2028     result += _archive_allocator->used();
2029   }
2030   return result;
2031 }
2032 
2033 size_t G1CollectedHeap::used_unlocked() const {
2034   return _summary_bytes_used;
2035 }
2036 
2037 class SumUsedClosure: public HeapRegionClosure {
2038   size_t _used;
2039 public:
2040   SumUsedClosure() : _used(0) {}
2041   bool doHeapRegion(HeapRegion* r) {
2042     _used += r->used();
2043     return false;
2044   }
2045   size_t result() { return _used; }
2046 };
2047 
2048 size_t G1CollectedHeap::recalculate_used() const {
2049   double recalculate_used_start = os::elapsedTime();
2050 
2051   SumUsedClosure blk;
2052   heap_region_iterate(&blk);
2053 
2054   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2055   return blk.result();
2056 }
2057 
2058 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
2059   switch (cause) {
2060     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
2061     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
2062     case GCCause::_update_allocation_context_stats_inc: return true;
2063     case GCCause::_wb_conc_mark:                        return true;
2064     default :                                           return false;
2065   }
2066 }
2067 
2068 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2069   switch (cause) {
2070     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2071     case GCCause::_g1_humongous_allocation: return true;
2072     default:                                return is_user_requested_concurrent_full_gc(cause);
2073   }
2074 }
2075 
2076 #ifndef PRODUCT
2077 void G1CollectedHeap::allocate_dummy_regions() {
2078   // Let's fill up most of the region
2079   size_t word_size = HeapRegion::GrainWords - 1024;
2080   // And as a result the region we'll allocate will be humongous.
2081   guarantee(is_humongous(word_size), "sanity");
2082 
2083   // _filler_array_max_size is set to humongous object threshold
2084   // but temporarily change it to use CollectedHeap::fill_with_object().
2085   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2086 
2087   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2088     // Let's use the existing mechanism for the allocation
2089     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2090                                                  AllocationContext::system());
2091     if (dummy_obj != NULL) {
2092       MemRegion mr(dummy_obj, word_size);
2093       CollectedHeap::fill_with_object(mr);
2094     } else {
2095       // If we can't allocate once, we probably cannot allocate
2096       // again. Let's get out of the loop.
2097       break;
2098     }
2099   }
2100 }
2101 #endif // !PRODUCT
2102 
2103 void G1CollectedHeap::increment_old_marking_cycles_started() {
2104   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2105          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2106          "Wrong marking cycle count (started: %d, completed: %d)",
2107          _old_marking_cycles_started, _old_marking_cycles_completed);
2108 
2109   _old_marking_cycles_started++;
2110 }
2111 
2112 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2113   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2114 
2115   // We assume that if concurrent == true, then the caller is a
2116   // concurrent thread that was joined the Suspendible Thread
2117   // Set. If there's ever a cheap way to check this, we should add an
2118   // assert here.
2119 
2120   // Given that this method is called at the end of a Full GC or of a
2121   // concurrent cycle, and those can be nested (i.e., a Full GC can
2122   // interrupt a concurrent cycle), the number of full collections
2123   // completed should be either one (in the case where there was no
2124   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2125   // behind the number of full collections started.
2126 
2127   // This is the case for the inner caller, i.e. a Full GC.
2128   assert(concurrent ||
2129          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2130          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2131          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2132          "is inconsistent with _old_marking_cycles_completed = %u",
2133          _old_marking_cycles_started, _old_marking_cycles_completed);
2134 
2135   // This is the case for the outer caller, i.e. the concurrent cycle.
2136   assert(!concurrent ||
2137          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2138          "for outer caller (concurrent cycle): "
2139          "_old_marking_cycles_started = %u "
2140          "is inconsistent with _old_marking_cycles_completed = %u",
2141          _old_marking_cycles_started, _old_marking_cycles_completed);
2142 
2143   _old_marking_cycles_completed += 1;
2144 
2145   // We need to clear the "in_progress" flag in the CM thread before
2146   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2147   // is set) so that if a waiter requests another System.gc() it doesn't
2148   // incorrectly see that a marking cycle is still in progress.
2149   if (concurrent) {
2150     _cmThread->set_idle();
2151   }
2152 
2153   // This notify_all() will ensure that a thread that called
2154   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2155   // and it's waiting for a full GC to finish will be woken up. It is
2156   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2157   FullGCCount_lock->notify_all();
2158 }
2159 
2160 void G1CollectedHeap::collect(GCCause::Cause cause) {
2161   assert_heap_not_locked();
2162 
2163   uint gc_count_before;
2164   uint old_marking_count_before;
2165   uint full_gc_count_before;
2166   bool retry_gc;
2167 
2168   do {
2169     retry_gc = false;
2170 
2171     {
2172       MutexLocker ml(Heap_lock);
2173 
2174       // Read the GC count while holding the Heap_lock
2175       gc_count_before = total_collections();
2176       full_gc_count_before = total_full_collections();
2177       old_marking_count_before = _old_marking_cycles_started;
2178     }
2179 
2180     if (should_do_concurrent_full_gc(cause)) {
2181       // Schedule an initial-mark evacuation pause that will start a
2182       // concurrent cycle. We're setting word_size to 0 which means that
2183       // we are not requesting a post-GC allocation.
2184       VM_G1IncCollectionPause op(gc_count_before,
2185                                  0,     /* word_size */
2186                                  true,  /* should_initiate_conc_mark */
2187                                  g1_policy()->max_pause_time_ms(),
2188                                  cause);
2189       op.set_allocation_context(AllocationContext::current());
2190 
2191       VMThread::execute(&op);
2192       if (!op.pause_succeeded()) {
2193         if (old_marking_count_before == _old_marking_cycles_started) {
2194           retry_gc = op.should_retry_gc();
2195         } else {
2196           // A Full GC happened while we were trying to schedule the
2197           // initial-mark GC. No point in starting a new cycle given
2198           // that the whole heap was collected anyway.
2199         }
2200 
2201         if (retry_gc) {
2202           if (GCLocker::is_active_and_needs_gc()) {
2203             GCLocker::stall_until_clear();
2204           }
2205         }
2206       }
2207     } else {
2208       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2209           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2210 
2211         // Schedule a standard evacuation pause. We're setting word_size
2212         // to 0 which means that we are not requesting a post-GC allocation.
2213         VM_G1IncCollectionPause op(gc_count_before,
2214                                    0,     /* word_size */
2215                                    false, /* should_initiate_conc_mark */
2216                                    g1_policy()->max_pause_time_ms(),
2217                                    cause);
2218         VMThread::execute(&op);
2219       } else {
2220         // Schedule a Full GC.
2221         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2222         VMThread::execute(&op);
2223       }
2224     }
2225   } while (retry_gc);
2226 }
2227 
2228 bool G1CollectedHeap::is_in(const void* p) const {
2229   if (_hrm.reserved().contains(p)) {
2230     // Given that we know that p is in the reserved space,
2231     // heap_region_containing() should successfully
2232     // return the containing region.
2233     HeapRegion* hr = heap_region_containing(p);
2234     return hr->is_in(p);
2235   } else {
2236     return false;
2237   }
2238 }
2239 
2240 #ifdef ASSERT
2241 bool G1CollectedHeap::is_in_exact(const void* p) const {
2242   bool contains = reserved_region().contains(p);
2243   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2244   if (contains && available) {
2245     return true;
2246   } else {
2247     return false;
2248   }
2249 }
2250 #endif
2251 
2252 // Iteration functions.
2253 
2254 // Iterates an ObjectClosure over all objects within a HeapRegion.
2255 
2256 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2257   ObjectClosure* _cl;
2258 public:
2259   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2260   bool doHeapRegion(HeapRegion* r) {
2261     if (!r->is_continues_humongous()) {
2262       r->object_iterate(_cl);
2263     }
2264     return false;
2265   }
2266 };
2267 
2268 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2269   IterateObjectClosureRegionClosure blk(cl);
2270   heap_region_iterate(&blk);
2271 }
2272 
2273 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2274   _hrm.iterate(cl);
2275 }
2276 
2277 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2278                                                                  HeapRegionClaimer *hrclaimer,
2279                                                                  uint worker_id) const {
2280   _hrm.par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2281 }
2282 
2283 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2284                                                          HeapRegionClaimer *hrclaimer) const {
2285   _hrm.par_iterate(cl, hrclaimer, 0);
2286 }
2287 
2288 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2289   _collection_set.iterate(cl);
2290 }
2291 
2292 void G1CollectedHeap::collection_set_iterate_from(HeapRegionClosure *cl, uint worker_id) {
2293   _collection_set.iterate_from(cl, worker_id, workers()->active_workers());
2294 }
2295 
2296 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2297   HeapRegion* hr = heap_region_containing(addr);
2298   return hr->block_start(addr);
2299 }
2300 
2301 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2302   HeapRegion* hr = heap_region_containing(addr);
2303   return hr->block_size(addr);
2304 }
2305 
2306 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2307   HeapRegion* hr = heap_region_containing(addr);
2308   return hr->block_is_obj(addr);
2309 }
2310 
2311 bool G1CollectedHeap::supports_tlab_allocation() const {
2312   return true;
2313 }
2314 
2315 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2316   return (_g1_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2317 }
2318 
2319 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2320   return _eden.length() * HeapRegion::GrainBytes;
2321 }
2322 
2323 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2324 // must be equal to the humongous object limit.
2325 size_t G1CollectedHeap::max_tlab_size() const {
2326   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2327 }
2328 
2329 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2330   AllocationContext_t context = AllocationContext::current();
2331   return _allocator->unsafe_max_tlab_alloc(context);
2332 }
2333 
2334 size_t G1CollectedHeap::max_capacity() const {
2335   return _hrm.reserved().byte_size();
2336 }
2337 
2338 jlong G1CollectedHeap::millis_since_last_gc() {
2339   // See the notes in GenCollectedHeap::millis_since_last_gc()
2340   // for more information about the implementation.
2341   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2342     _g1_policy->collection_pause_end_millis();
2343   if (ret_val < 0) {
2344     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2345       ". returning zero instead.", ret_val);
2346     return 0;
2347   }
2348   return ret_val;
2349 }
2350 
2351 void G1CollectedHeap::prepare_for_verify() {
2352   _verifier->prepare_for_verify();
2353 }
2354 
2355 void G1CollectedHeap::verify(VerifyOption vo) {
2356   _verifier->verify(vo);
2357 }
2358 
2359 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2360   return true;
2361 }
2362 
2363 const char* const* G1CollectedHeap::concurrent_phases() const {
2364   return _cmThread->concurrent_phases();
2365 }
2366 
2367 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2368   return _cmThread->request_concurrent_phase(phase);
2369 }
2370 
2371 class PrintRegionClosure: public HeapRegionClosure {
2372   outputStream* _st;
2373 public:
2374   PrintRegionClosure(outputStream* st) : _st(st) {}
2375   bool doHeapRegion(HeapRegion* r) {
2376     r->print_on(_st);
2377     return false;
2378   }
2379 };
2380 
2381 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2382                                        const HeapRegion* hr,
2383                                        const VerifyOption vo) const {
2384   switch (vo) {
2385   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2386   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2387   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2388   default:                            ShouldNotReachHere();
2389   }
2390   return false; // keep some compilers happy
2391 }
2392 
2393 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2394                                        const VerifyOption vo) const {
2395   switch (vo) {
2396   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2397   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2398   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2399   default:                            ShouldNotReachHere();
2400   }
2401   return false; // keep some compilers happy
2402 }
2403 
2404 void G1CollectedHeap::print_heap_regions() const {
2405   LogTarget(Trace, gc, heap, region) lt;
2406   if (lt.is_enabled()) {
2407     LogStream ls(lt);
2408     print_regions_on(&ls);
2409   }
2410 }
2411 
2412 void G1CollectedHeap::print_on(outputStream* st) const {
2413   st->print(" %-20s", "garbage-first heap");
2414   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2415             capacity()/K, used_unlocked()/K);
2416   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2417             p2i(_hrm.reserved().start()),
2418             p2i(_hrm.reserved().end()));
2419   st->cr();
2420   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2421   uint young_regions = young_regions_count();
2422   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2423             (size_t) young_regions * HeapRegion::GrainBytes / K);
2424   uint survivor_regions = survivor_regions_count();
2425   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2426             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2427   st->cr();
2428   MetaspaceAux::print_on(st);
2429 }
2430 
2431 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2432   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2433                "HS=humongous(starts), HC=humongous(continues), "
2434                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
2435                "AC=allocation context, "
2436                "TAMS=top-at-mark-start (previous, next)");
2437   PrintRegionClosure blk(st);
2438   heap_region_iterate(&blk);
2439 }
2440 
2441 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2442   print_on(st);
2443 
2444   // Print the per-region information.
2445   print_regions_on(st);
2446 }
2447 
2448 void G1CollectedHeap::print_on_error(outputStream* st) const {
2449   this->CollectedHeap::print_on_error(st);
2450 
2451   if (_cm != NULL) {
2452     st->cr();
2453     _cm->print_on_error(st);
2454   }
2455 }
2456 
2457 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2458   workers()->print_worker_threads_on(st);
2459   _cmThread->print_on(st);
2460   st->cr();
2461   _cm->print_worker_threads_on(st);
2462   _cr->print_threads_on(st);
2463   _young_gen_sampling_thread->print_on(st);
2464   if (G1StringDedup::is_enabled()) {
2465     G1StringDedup::print_worker_threads_on(st);
2466   }
2467 }
2468 
2469 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2470   workers()->threads_do(tc);
2471   tc->do_thread(_cmThread);
2472   _cm->threads_do(tc);
2473   _cr->threads_do(tc);
2474   tc->do_thread(_young_gen_sampling_thread);
2475   if (G1StringDedup::is_enabled()) {
2476     G1StringDedup::threads_do(tc);
2477   }
2478 }
2479 
2480 void G1CollectedHeap::print_tracing_info() const {
2481   g1_rem_set()->print_summary_info();
2482   concurrent_mark()->print_summary_info();
2483 }
2484 
2485 #ifndef PRODUCT
2486 // Helpful for debugging RSet issues.
2487 
2488 class PrintRSetsClosure : public HeapRegionClosure {
2489 private:
2490   const char* _msg;
2491   size_t _occupied_sum;
2492 
2493 public:
2494   bool doHeapRegion(HeapRegion* r) {
2495     HeapRegionRemSet* hrrs = r->rem_set();
2496     size_t occupied = hrrs->occupied();
2497     _occupied_sum += occupied;
2498 
2499     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2500     if (occupied == 0) {
2501       tty->print_cr("  RSet is empty");
2502     } else {
2503       hrrs->print();
2504     }
2505     tty->print_cr("----------");
2506     return false;
2507   }
2508 
2509   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2510     tty->cr();
2511     tty->print_cr("========================================");
2512     tty->print_cr("%s", msg);
2513     tty->cr();
2514   }
2515 
2516   ~PrintRSetsClosure() {
2517     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2518     tty->print_cr("========================================");
2519     tty->cr();
2520   }
2521 };
2522 
2523 void G1CollectedHeap::print_cset_rsets() {
2524   PrintRSetsClosure cl("Printing CSet RSets");
2525   collection_set_iterate(&cl);
2526 }
2527 
2528 void G1CollectedHeap::print_all_rsets() {
2529   PrintRSetsClosure cl("Printing All RSets");;
2530   heap_region_iterate(&cl);
2531 }
2532 #endif // PRODUCT
2533 
2534 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2535 
2536   size_t eden_used_bytes = heap()->eden_regions_count() * HeapRegion::GrainBytes;
2537   size_t survivor_used_bytes = heap()->survivor_regions_count() * HeapRegion::GrainBytes;
2538   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2539 
2540   size_t eden_capacity_bytes =
2541     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2542 
2543   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2544   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2545                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2546 }
2547 
2548 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2549   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2550                        stats->unused(), stats->used(), stats->region_end_waste(),
2551                        stats->regions_filled(), stats->direct_allocated(),
2552                        stats->failure_used(), stats->failure_waste());
2553 }
2554 
2555 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2556   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2557   gc_tracer->report_gc_heap_summary(when, heap_summary);
2558 
2559   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2560   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2561 }
2562 
2563 G1CollectedHeap* G1CollectedHeap::heap() {
2564   CollectedHeap* heap = Universe::heap();
2565   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2566   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
2567   return (G1CollectedHeap*)heap;
2568 }
2569 
2570 void G1CollectedHeap::gc_prologue(bool full) {
2571   // always_do_update_barrier = false;
2572   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2573 
2574   // This summary needs to be printed before incrementing total collections.
2575   g1_rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2576 
2577   // Update common counters.
2578   increment_total_collections(full /* full gc */);
2579   if (full) {
2580     increment_old_marking_cycles_started();
2581     reset_gc_time_stamp();
2582   } else {
2583     increment_gc_time_stamp();
2584   }
2585 
2586   // Fill TLAB's and such
2587   double start = os::elapsedTime();
2588   accumulate_statistics_all_tlabs();
2589   ensure_parsability(true);
2590   g1_policy()->phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2591 }
2592 
2593 void G1CollectedHeap::gc_epilogue(bool full) {
2594   // Update common counters.
2595   if (full) {
2596     // Update the number of full collections that have been completed.
2597     increment_old_marking_cycles_completed(false /* concurrent */);
2598   }
2599 
2600   // We are at the end of the GC. Total collections has already been increased.
2601   g1_rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2602 
2603   // FIXME: what is this about?
2604   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2605   // is set.
2606 #if COMPILER2_OR_JVMCI
2607   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2608 #endif
2609   // always_do_update_barrier = true;
2610 
2611   double start = os::elapsedTime();
2612   resize_all_tlabs();
2613   g1_policy()->phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2614 
2615   allocation_context_stats().update(full);
2616 
2617   MemoryService::track_memory_usage();
2618   // We have just completed a GC. Update the soft reference
2619   // policy with the new heap occupancy
2620   Universe::update_heap_info_at_gc();
2621 }
2622 
2623 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2624                                                uint gc_count_before,
2625                                                bool* succeeded,
2626                                                GCCause::Cause gc_cause) {
2627   assert_heap_not_locked_and_not_at_safepoint();
2628   VM_G1IncCollectionPause op(gc_count_before,
2629                              word_size,
2630                              false, /* should_initiate_conc_mark */
2631                              g1_policy()->max_pause_time_ms(),
2632                              gc_cause);
2633 
2634   op.set_allocation_context(AllocationContext::current());
2635   VMThread::execute(&op);
2636 
2637   HeapWord* result = op.result();
2638   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
2639   assert(result == NULL || ret_succeeded,
2640          "the result should be NULL if the VM did not succeed");
2641   *succeeded = ret_succeeded;
2642 
2643   assert_heap_not_locked();
2644   return result;
2645 }
2646 
2647 void
2648 G1CollectedHeap::doConcurrentMark() {
2649   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2650   if (!_cmThread->in_progress()) {
2651     _cmThread->set_started();
2652     CGC_lock->notify();
2653   }
2654 }
2655 
2656 size_t G1CollectedHeap::pending_card_num() {
2657   size_t extra_cards = 0;
2658   JavaThread *curr = Threads::first();
2659   while (curr != NULL) {
2660     DirtyCardQueue& dcq = curr->dirty_card_queue();
2661     extra_cards += dcq.size();
2662     curr = curr->next();
2663   }
2664   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2665   size_t buffer_size = dcqs.buffer_size();
2666   size_t buffer_num = dcqs.completed_buffers_num();
2667 
2668   return buffer_size * buffer_num + extra_cards;
2669 }
2670 
2671 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
2672  private:
2673   size_t _total_humongous;
2674   size_t _candidate_humongous;
2675 
2676   DirtyCardQueue _dcq;
2677 
2678   // We don't nominate objects with many remembered set entries, on
2679   // the assumption that such objects are likely still live.
2680   bool is_remset_small(HeapRegion* region) const {
2681     HeapRegionRemSet* const rset = region->rem_set();
2682     return G1EagerReclaimHumongousObjectsWithStaleRefs
2683       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
2684       : rset->is_empty();
2685   }
2686 
2687   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
2688     assert(region->is_starts_humongous(), "Must start a humongous object");
2689 
2690     oop obj = oop(region->bottom());
2691 
2692     // Dead objects cannot be eager reclaim candidates. Due to class
2693     // unloading it is unsafe to query their classes so we return early.
2694     if (heap->is_obj_dead(obj, region)) {
2695       return false;
2696     }
2697 
2698     // Candidate selection must satisfy the following constraints
2699     // while concurrent marking is in progress:
2700     //
2701     // * In order to maintain SATB invariants, an object must not be
2702     // reclaimed if it was allocated before the start of marking and
2703     // has not had its references scanned.  Such an object must have
2704     // its references (including type metadata) scanned to ensure no
2705     // live objects are missed by the marking process.  Objects
2706     // allocated after the start of concurrent marking don't need to
2707     // be scanned.
2708     //
2709     // * An object must not be reclaimed if it is on the concurrent
2710     // mark stack.  Objects allocated after the start of concurrent
2711     // marking are never pushed on the mark stack.
2712     //
2713     // Nominating only objects allocated after the start of concurrent
2714     // marking is sufficient to meet both constraints.  This may miss
2715     // some objects that satisfy the constraints, but the marking data
2716     // structures don't support efficiently performing the needed
2717     // additional tests or scrubbing of the mark stack.
2718     //
2719     // However, we presently only nominate is_typeArray() objects.
2720     // A humongous object containing references induces remembered
2721     // set entries on other regions.  In order to reclaim such an
2722     // object, those remembered sets would need to be cleaned up.
2723     //
2724     // We also treat is_typeArray() objects specially, allowing them
2725     // to be reclaimed even if allocated before the start of
2726     // concurrent mark.  For this we rely on mark stack insertion to
2727     // exclude is_typeArray() objects, preventing reclaiming an object
2728     // that is in the mark stack.  We also rely on the metadata for
2729     // such objects to be built-in and so ensured to be kept live.
2730     // Frequent allocation and drop of large binary blobs is an
2731     // important use case for eager reclaim, and this special handling
2732     // may reduce needed headroom.
2733 
2734     return obj->is_typeArray() && is_remset_small(region);
2735   }
2736 
2737  public:
2738   RegisterHumongousWithInCSetFastTestClosure()
2739   : _total_humongous(0),
2740     _candidate_humongous(0),
2741     _dcq(&JavaThread::dirty_card_queue_set()) {
2742   }
2743 
2744   virtual bool doHeapRegion(HeapRegion* r) {
2745     if (!r->is_starts_humongous()) {
2746       return false;
2747     }
2748     G1CollectedHeap* g1h = G1CollectedHeap::heap();
2749 
2750     bool is_candidate = humongous_region_is_candidate(g1h, r);
2751     uint rindex = r->hrm_index();
2752     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
2753     if (is_candidate) {
2754       _candidate_humongous++;
2755       g1h->register_humongous_region_with_cset(rindex);
2756       // Is_candidate already filters out humongous object with large remembered sets.
2757       // If we have a humongous object with a few remembered sets, we simply flush these
2758       // remembered set entries into the DCQS. That will result in automatic
2759       // re-evaluation of their remembered set entries during the following evacuation
2760       // phase.
2761       if (!r->rem_set()->is_empty()) {
2762         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
2763                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
2764         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
2765         HeapRegionRemSetIterator hrrs(r->rem_set());
2766         size_t card_index;
2767         while (hrrs.has_next(card_index)) {
2768           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
2769           // The remembered set might contain references to already freed
2770           // regions. Filter out such entries to avoid failing card table
2771           // verification.
2772           if (g1h->is_in_closed_subset(bs->addr_for(card_ptr))) {
2773             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
2774               *card_ptr = CardTableModRefBS::dirty_card_val();
2775               _dcq.enqueue(card_ptr);
2776             }
2777           }
2778         }
2779         assert(hrrs.n_yielded() == r->rem_set()->occupied(),
2780                "Remembered set hash maps out of sync, cur: " SIZE_FORMAT " entries, next: " SIZE_FORMAT " entries",
2781                hrrs.n_yielded(), r->rem_set()->occupied());
2782         r->rem_set()->clear_locked();
2783       }
2784       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
2785     }
2786     _total_humongous++;
2787 
2788     return false;
2789   }
2790 
2791   size_t total_humongous() const { return _total_humongous; }
2792   size_t candidate_humongous() const { return _candidate_humongous; }
2793 
2794   void flush_rem_set_entries() { _dcq.flush(); }
2795 };
2796 
2797 void G1CollectedHeap::register_humongous_regions_with_cset() {
2798   if (!G1EagerReclaimHumongousObjects) {
2799     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
2800     return;
2801   }
2802   double time = os::elapsed_counter();
2803 
2804   // Collect reclaim candidate information and register candidates with cset.
2805   RegisterHumongousWithInCSetFastTestClosure cl;
2806   heap_region_iterate(&cl);
2807 
2808   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
2809   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
2810                                                                   cl.total_humongous(),
2811                                                                   cl.candidate_humongous());
2812   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
2813 
2814   // Finally flush all remembered set entries to re-check into the global DCQS.
2815   cl.flush_rem_set_entries();
2816 }
2817 
2818 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2819   public:
2820     bool doHeapRegion(HeapRegion* hr) {
2821       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2822         hr->verify_rem_set();
2823       }
2824       return false;
2825     }
2826 };
2827 
2828 uint G1CollectedHeap::num_task_queues() const {
2829   return _task_queues->size();
2830 }
2831 
2832 #if TASKQUEUE_STATS
2833 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2834   st->print_raw_cr("GC Task Stats");
2835   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2836   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2837 }
2838 
2839 void G1CollectedHeap::print_taskqueue_stats() const {
2840   if (!log_is_enabled(Trace, gc, task, stats)) {
2841     return;
2842   }
2843   Log(gc, task, stats) log;
2844   ResourceMark rm;
2845   LogStream ls(log.trace());
2846   outputStream* st = &ls;
2847 
2848   print_taskqueue_stats_hdr(st);
2849 
2850   TaskQueueStats totals;
2851   const uint n = num_task_queues();
2852   for (uint i = 0; i < n; ++i) {
2853     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2854     totals += task_queue(i)->stats;
2855   }
2856   st->print_raw("tot "); totals.print(st); st->cr();
2857 
2858   DEBUG_ONLY(totals.verify());
2859 }
2860 
2861 void G1CollectedHeap::reset_taskqueue_stats() {
2862   const uint n = num_task_queues();
2863   for (uint i = 0; i < n; ++i) {
2864     task_queue(i)->stats.reset();
2865   }
2866 }
2867 #endif // TASKQUEUE_STATS
2868 
2869 void G1CollectedHeap::wait_for_root_region_scanning() {
2870   double scan_wait_start = os::elapsedTime();
2871   // We have to wait until the CM threads finish scanning the
2872   // root regions as it's the only way to ensure that all the
2873   // objects on them have been correctly scanned before we start
2874   // moving them during the GC.
2875   bool waited = _cm->root_regions()->wait_until_scan_finished();
2876   double wait_time_ms = 0.0;
2877   if (waited) {
2878     double scan_wait_end = os::elapsedTime();
2879     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2880   }
2881   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2882 }
2883 
2884 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2885 private:
2886   G1HRPrinter* _hr_printer;
2887 public:
2888   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2889 
2890   virtual bool doHeapRegion(HeapRegion* r) {
2891     _hr_printer->cset(r);
2892     return false;
2893   }
2894 };
2895 
2896 void G1CollectedHeap::start_new_collection_set() {
2897   collection_set()->start_incremental_building();
2898 
2899   clear_cset_fast_test();
2900 
2901   guarantee(_eden.length() == 0, "eden should have been cleared");
2902   g1_policy()->transfer_survivors_to_cset(survivor());
2903 }
2904 
2905 bool
2906 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2907   assert_at_safepoint(true /* should_be_vm_thread */);
2908   guarantee(!is_gc_active(), "collection is not reentrant");
2909 
2910   if (GCLocker::check_active_before_gc()) {
2911     return false;
2912   }
2913 
2914   _gc_timer_stw->register_gc_start();
2915 
2916   GCIdMark gc_id_mark;
2917   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
2918 
2919   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2920   ResourceMark rm;
2921 
2922   g1_policy()->note_gc_start();
2923 
2924   wait_for_root_region_scanning();
2925 
2926   print_heap_before_gc();
2927   print_heap_regions();
2928   trace_heap_before_gc(_gc_tracer_stw);
2929 
2930   _verifier->verify_region_sets_optional();
2931   _verifier->verify_dirty_young_regions();
2932 
2933   // We should not be doing initial mark unless the conc mark thread is running
2934   if (!_cmThread->should_terminate()) {
2935     // This call will decide whether this pause is an initial-mark
2936     // pause. If it is, during_initial_mark_pause() will return true
2937     // for the duration of this pause.
2938     g1_policy()->decide_on_conc_mark_initiation();
2939   }
2940 
2941   // We do not allow initial-mark to be piggy-backed on a mixed GC.
2942   assert(!collector_state()->during_initial_mark_pause() ||
2943           collector_state()->gcs_are_young(), "sanity");
2944 
2945   // We also do not allow mixed GCs during marking.
2946   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
2947 
2948   // Record whether this pause is an initial mark. When the current
2949   // thread has completed its logging output and it's safe to signal
2950   // the CM thread, the flag's value in the policy has been reset.
2951   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
2952 
2953   // Inner scope for scope based logging, timers, and stats collection
2954   {
2955     EvacuationInfo evacuation_info;
2956 
2957     if (collector_state()->during_initial_mark_pause()) {
2958       // We are about to start a marking cycle, so we increment the
2959       // full collection counter.
2960       increment_old_marking_cycles_started();
2961       _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
2962     }
2963 
2964     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
2965 
2966     GCTraceCPUTime tcpu;
2967 
2968     FormatBuffer<> gc_string("Pause ");
2969     if (collector_state()->during_initial_mark_pause()) {
2970       gc_string.append("Initial Mark");
2971     } else if (collector_state()->gcs_are_young()) {
2972       gc_string.append("Young");
2973     } else {
2974       gc_string.append("Mixed");
2975     }
2976     GCTraceTime(Info, gc) tm(gc_string, NULL, gc_cause(), true);
2977 
2978     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
2979                                                                   workers()->active_workers(),
2980                                                                   Threads::number_of_non_daemon_threads());
2981     workers()->update_active_workers(active_workers);
2982     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
2983 
2984     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
2985     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
2986 
2987     // If the secondary_free_list is not empty, append it to the
2988     // free_list. No need to wait for the cleanup operation to finish;
2989     // the region allocation code will check the secondary_free_list
2990     // and wait if necessary. If the G1StressConcRegionFreeing flag is
2991     // set, skip this step so that the region allocation code has to
2992     // get entries from the secondary_free_list.
2993     if (!G1StressConcRegionFreeing) {
2994       append_secondary_free_list_if_not_empty_with_lock();
2995     }
2996 
2997     G1HeapTransition heap_transition(this);
2998     size_t heap_used_bytes_before_gc = used();
2999 
3000     // Don't dynamically change the number of GC threads this early.  A value of
3001     // 0 is used to indicate serial work.  When parallel work is done,
3002     // it will be set.
3003 
3004     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3005       IsGCActiveMark x;
3006 
3007       gc_prologue(false);
3008 
3009       if (VerifyRememberedSets) {
3010         log_info(gc, verify)("[Verifying RemSets before GC]");
3011         VerifyRegionRemSetClosure v_cl;
3012         heap_region_iterate(&v_cl);
3013       }
3014 
3015       _verifier->verify_before_gc();
3016 
3017       _verifier->check_bitmaps("GC Start");
3018 
3019 #if COMPILER2_OR_JVMCI
3020       DerivedPointerTable::clear();
3021 #endif
3022 
3023       // Please see comment in g1CollectedHeap.hpp and
3024       // G1CollectedHeap::ref_processing_init() to see how
3025       // reference processing currently works in G1.
3026 
3027       // Enable discovery in the STW reference processor
3028       if (g1_policy()->should_process_references()) {
3029         ref_processor_stw()->enable_discovery();
3030       } else {
3031         ref_processor_stw()->disable_discovery();
3032       }
3033 
3034       {
3035         // We want to temporarily turn off discovery by the
3036         // CM ref processor, if necessary, and turn it back on
3037         // on again later if we do. Using a scoped
3038         // NoRefDiscovery object will do this.
3039         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3040 
3041         // Forget the current alloc region (we might even choose it to be part
3042         // of the collection set!).
3043         _allocator->release_mutator_alloc_region();
3044 
3045         // This timing is only used by the ergonomics to handle our pause target.
3046         // It is unclear why this should not include the full pause. We will
3047         // investigate this in CR 7178365.
3048         //
3049         // Preserving the old comment here if that helps the investigation:
3050         //
3051         // The elapsed time induced by the start time below deliberately elides
3052         // the possible verification above.
3053         double sample_start_time_sec = os::elapsedTime();
3054 
3055         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3056 
3057         if (collector_state()->during_initial_mark_pause()) {
3058           concurrent_mark()->checkpoint_roots_initial_pre();
3059         }
3060 
3061         g1_policy()->finalize_collection_set(target_pause_time_ms, &_survivor);
3062 
3063         evacuation_info.set_collectionset_regions(collection_set()->region_length());
3064 
3065         // Make sure the remembered sets are up to date. This needs to be
3066         // done before register_humongous_regions_with_cset(), because the
3067         // remembered sets are used there to choose eager reclaim candidates.
3068         // If the remembered sets are not up to date we might miss some
3069         // entries that need to be handled.
3070         g1_rem_set()->cleanupHRRS();
3071 
3072         register_humongous_regions_with_cset();
3073 
3074         assert(_verifier->check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3075 
3076         // We call this after finalize_cset() to
3077         // ensure that the CSet has been finalized.
3078         _cm->verify_no_cset_oops();
3079 
3080         if (_hr_printer.is_active()) {
3081           G1PrintCollectionSetClosure cl(&_hr_printer);
3082           _collection_set.iterate(&cl);
3083         }
3084 
3085         // Initialize the GC alloc regions.
3086         _allocator->init_gc_alloc_regions(evacuation_info);
3087 
3088         G1ParScanThreadStateSet per_thread_states(this, workers()->active_workers(), collection_set()->young_region_length());
3089         pre_evacuate_collection_set();
3090 
3091         // Actually do the work...
3092         evacuate_collection_set(evacuation_info, &per_thread_states);
3093 
3094         post_evacuate_collection_set(evacuation_info, &per_thread_states);
3095 
3096         const size_t* surviving_young_words = per_thread_states.surviving_young_words();
3097         free_collection_set(&_collection_set, evacuation_info, surviving_young_words);
3098 
3099         eagerly_reclaim_humongous_regions();
3100 
3101         record_obj_copy_mem_stats();
3102         _survivor_evac_stats.adjust_desired_plab_sz();
3103         _old_evac_stats.adjust_desired_plab_sz();
3104 
3105         double start = os::elapsedTime();
3106         start_new_collection_set();
3107         g1_policy()->phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
3108 
3109         if (evacuation_failed()) {
3110           set_used(recalculate_used());
3111           if (_archive_allocator != NULL) {
3112             _archive_allocator->clear_used();
3113           }
3114           for (uint i = 0; i < ParallelGCThreads; i++) {
3115             if (_evacuation_failed_info_array[i].has_failed()) {
3116               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3117             }
3118           }
3119         } else {
3120           // The "used" of the the collection set have already been subtracted
3121           // when they were freed.  Add in the bytes evacuated.
3122           increase_used(g1_policy()->bytes_copied_during_gc());
3123         }
3124 
3125         if (collector_state()->during_initial_mark_pause()) {
3126           // We have to do this before we notify the CM threads that
3127           // they can start working to make sure that all the
3128           // appropriate initialization is done on the CM object.
3129           concurrent_mark()->checkpoint_roots_initial_post();
3130           collector_state()->set_mark_in_progress(true);
3131           // Note that we don't actually trigger the CM thread at
3132           // this point. We do that later when we're sure that
3133           // the current thread has completed its logging output.
3134         }
3135 
3136         allocate_dummy_regions();
3137 
3138         _allocator->init_mutator_alloc_region();
3139 
3140         {
3141           size_t expand_bytes = _heap_sizing_policy->expansion_amount();
3142           if (expand_bytes > 0) {
3143             size_t bytes_before = capacity();
3144             // No need for an ergo logging here,
3145             // expansion_amount() does this when it returns a value > 0.
3146             double expand_ms;
3147             if (!expand(expand_bytes, _workers, &expand_ms)) {
3148               // We failed to expand the heap. Cannot do anything about it.
3149             }
3150             g1_policy()->phase_times()->record_expand_heap_time(expand_ms);
3151           }
3152         }
3153 
3154         // We redo the verification but now wrt to the new CSet which
3155         // has just got initialized after the previous CSet was freed.
3156         _cm->verify_no_cset_oops();
3157 
3158         // This timing is only used by the ergonomics to handle our pause target.
3159         // It is unclear why this should not include the full pause. We will
3160         // investigate this in CR 7178365.
3161         double sample_end_time_sec = os::elapsedTime();
3162         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3163         size_t total_cards_scanned = g1_policy()->phase_times()->sum_thread_work_items(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ScanRSScannedCards);
3164         g1_policy()->record_collection_pause_end(pause_time_ms, total_cards_scanned, heap_used_bytes_before_gc);
3165 
3166         evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
3167         evacuation_info.set_bytes_copied(g1_policy()->bytes_copied_during_gc());
3168 
3169         if (VerifyRememberedSets) {
3170           log_info(gc, verify)("[Verifying RemSets after GC]");
3171           VerifyRegionRemSetClosure v_cl;
3172           heap_region_iterate(&v_cl);
3173         }
3174 
3175         _verifier->verify_after_gc();
3176         _verifier->check_bitmaps("GC End");
3177 
3178         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
3179         ref_processor_stw()->verify_no_references_recorded();
3180 
3181         // CM reference discovery will be re-enabled if necessary.
3182       }
3183 
3184 #ifdef TRACESPINNING
3185       ParallelTaskTerminator::print_termination_counts();
3186 #endif
3187 
3188       gc_epilogue(false);
3189     }
3190 
3191     // Print the remainder of the GC log output.
3192     if (evacuation_failed()) {
3193       log_info(gc)("To-space exhausted");
3194     }
3195 
3196     g1_policy()->print_phases();
3197     heap_transition.print();
3198 
3199     // It is not yet to safe to tell the concurrent mark to
3200     // start as we have some optional output below. We don't want the
3201     // output from the concurrent mark thread interfering with this
3202     // logging output either.
3203 
3204     _hrm.verify_optional();
3205     _verifier->verify_region_sets_optional();
3206 
3207     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3208     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3209 
3210     print_heap_after_gc();
3211     print_heap_regions();
3212     trace_heap_after_gc(_gc_tracer_stw);
3213 
3214     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3215     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3216     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3217     // before any GC notifications are raised.
3218     g1mm()->update_sizes();
3219 
3220     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3221     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
3222     _gc_timer_stw->register_gc_end();
3223     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3224   }
3225   // It should now be safe to tell the concurrent mark thread to start
3226   // without its logging output interfering with the logging output
3227   // that came from the pause.
3228 
3229   if (should_start_conc_mark) {
3230     // CAUTION: after the doConcurrentMark() call below,
3231     // the concurrent marking thread(s) could be running
3232     // concurrently with us. Make sure that anything after
3233     // this point does not assume that we are the only GC thread
3234     // running. Note: of course, the actual marking work will
3235     // not start until the safepoint itself is released in
3236     // SuspendibleThreadSet::desynchronize().
3237     doConcurrentMark();
3238   }
3239 
3240   return true;
3241 }
3242 
3243 void G1CollectedHeap::remove_self_forwarding_pointers() {
3244   G1ParRemoveSelfForwardPtrsTask rsfp_task;
3245   workers()->run_task(&rsfp_task);
3246 }
3247 
3248 void G1CollectedHeap::restore_after_evac_failure() {
3249   double remove_self_forwards_start = os::elapsedTime();
3250 
3251   remove_self_forwarding_pointers();
3252   SharedRestorePreservedMarksTaskExecutor task_executor(workers());
3253   _preserved_marks_set.restore(&task_executor);
3254 
3255   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3256 }
3257 
3258 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m) {
3259   if (!_evacuation_failed) {
3260     _evacuation_failed = true;
3261   }
3262 
3263   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3264   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3265 }
3266 
3267 bool G1ParEvacuateFollowersClosure::offer_termination() {
3268   G1ParScanThreadState* const pss = par_scan_state();
3269   start_term_time();
3270   const bool res = terminator()->offer_termination();
3271   end_term_time();
3272   return res;
3273 }
3274 
3275 void G1ParEvacuateFollowersClosure::do_void() {
3276   G1ParScanThreadState* const pss = par_scan_state();
3277   pss->trim_queue();
3278   do {
3279     pss->steal_and_trim_queue(queues());
3280   } while (!offer_termination());
3281 }
3282 
3283 class G1ParTask : public AbstractGangTask {
3284 protected:
3285   G1CollectedHeap*         _g1h;
3286   G1ParScanThreadStateSet* _pss;
3287   RefToScanQueueSet*       _queues;
3288   G1RootProcessor*         _root_processor;
3289   ParallelTaskTerminator   _terminator;
3290   uint                     _n_workers;
3291 
3292 public:
3293   G1ParTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
3294     : AbstractGangTask("G1 collection"),
3295       _g1h(g1h),
3296       _pss(per_thread_states),
3297       _queues(task_queues),
3298       _root_processor(root_processor),
3299       _terminator(n_workers, _queues),
3300       _n_workers(n_workers)
3301   {}
3302 
3303   void work(uint worker_id) {
3304     if (worker_id >= _n_workers) return;  // no work needed this round
3305 
3306     double start_sec = os::elapsedTime();
3307     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, start_sec);
3308 
3309     {
3310       ResourceMark rm;
3311       HandleMark   hm;
3312 
3313       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
3314 
3315       G1ParScanThreadState*           pss = _pss->state_for_worker(worker_id);
3316       pss->set_ref_processor(rp);
3317 
3318       double start_strong_roots_sec = os::elapsedTime();
3319 
3320       _root_processor->evacuate_roots(pss->closures(), worker_id);
3321 
3322       // We pass a weak code blobs closure to the remembered set scanning because we want to avoid
3323       // treating the nmethods visited to act as roots for concurrent marking.
3324       // We only want to make sure that the oops in the nmethods are adjusted with regard to the
3325       // objects copied by the current evacuation.
3326       _g1h->g1_rem_set()->oops_into_collection_set_do(pss,
3327                                                       pss->closures()->weak_codeblobs(),
3328                                                       worker_id);
3329 
3330       double strong_roots_sec = os::elapsedTime() - start_strong_roots_sec;
3331 
3332       double term_sec = 0.0;
3333       size_t evac_term_attempts = 0;
3334       {
3335         double start = os::elapsedTime();
3336         G1ParEvacuateFollowersClosure evac(_g1h, pss, _queues, &_terminator);
3337         evac.do_void();
3338 
3339         evac_term_attempts = evac.term_attempts();
3340         term_sec = evac.term_time();
3341         double elapsed_sec = os::elapsedTime() - start;
3342         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
3343         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
3344         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, evac_term_attempts);
3345       }
3346 
3347       assert(pss->queue_is_empty(), "should be empty");
3348 
3349       if (log_is_enabled(Debug, gc, task, stats)) {
3350         MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3351         size_t lab_waste;
3352         size_t lab_undo_waste;
3353         pss->waste(lab_waste, lab_undo_waste);
3354         _g1h->print_termination_stats(worker_id,
3355                                       (os::elapsedTime() - start_sec) * 1000.0,   /* elapsed time */
3356                                       strong_roots_sec * 1000.0,                  /* strong roots time */
3357                                       term_sec * 1000.0,                          /* evac term time */
3358                                       evac_term_attempts,                         /* evac term attempts */
3359                                       lab_waste,                                  /* alloc buffer waste */
3360                                       lab_undo_waste                              /* undo waste */
3361                                       );
3362       }
3363 
3364       // Close the inner scope so that the ResourceMark and HandleMark
3365       // destructors are executed here and are included as part of the
3366       // "GC Worker Time".
3367     }
3368     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
3369   }
3370 };
3371 
3372 void G1CollectedHeap::print_termination_stats_hdr() {
3373   log_debug(gc, task, stats)("GC Termination Stats");
3374   log_debug(gc, task, stats)("     elapsed  --strong roots-- -------termination------- ------waste (KiB)------");
3375   log_debug(gc, task, stats)("thr     ms        ms      %%        ms      %%    attempts  total   alloc    undo");
3376   log_debug(gc, task, stats)("--- --------- --------- ------ --------- ------ -------- ------- ------- -------");
3377 }
3378 
3379 void G1CollectedHeap::print_termination_stats(uint worker_id,
3380                                               double elapsed_ms,
3381                                               double strong_roots_ms,
3382                                               double term_ms,
3383                                               size_t term_attempts,
3384                                               size_t alloc_buffer_waste,
3385                                               size_t undo_waste) const {
3386   log_debug(gc, task, stats)
3387               ("%3d %9.2f %9.2f %6.2f "
3388                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
3389                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
3390                worker_id, elapsed_ms, strong_roots_ms, strong_roots_ms * 100 / elapsed_ms,
3391                term_ms, term_ms * 100 / elapsed_ms, term_attempts,
3392                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
3393                alloc_buffer_waste * HeapWordSize / K,
3394                undo_waste * HeapWordSize / K);
3395 }
3396 
3397 class G1StringAndSymbolCleaningTask : public AbstractGangTask {
3398 private:
3399   BoolObjectClosure* _is_alive;
3400   G1StringDedupUnlinkOrOopsDoClosure _dedup_closure;
3401 
3402   int _initial_string_table_size;
3403   int _initial_symbol_table_size;
3404 
3405   bool  _process_strings;
3406   int _strings_processed;
3407   int _strings_removed;
3408 
3409   bool  _process_symbols;
3410   int _symbols_processed;
3411   int _symbols_removed;
3412 
3413   bool _process_string_dedup;
3414 
3415 public:
3416   G1StringAndSymbolCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool process_string_dedup) :
3417     AbstractGangTask("String/Symbol Unlinking"),
3418     _is_alive(is_alive),
3419     _dedup_closure(is_alive, NULL, false),
3420     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
3421     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0),
3422     _process_string_dedup(process_string_dedup) {
3423 
3424     _initial_string_table_size = StringTable::the_table()->table_size();
3425     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
3426     if (process_strings) {
3427       StringTable::clear_parallel_claimed_index();
3428     }
3429     if (process_symbols) {
3430       SymbolTable::clear_parallel_claimed_index();
3431     }
3432   }
3433 
3434   ~G1StringAndSymbolCleaningTask() {
3435     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
3436               "claim value %d after unlink less than initial string table size %d",
3437               StringTable::parallel_claimed_index(), _initial_string_table_size);
3438     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
3439               "claim value %d after unlink less than initial symbol table size %d",
3440               SymbolTable::parallel_claimed_index(), _initial_symbol_table_size);
3441 
3442     log_info(gc, stringtable)(
3443         "Cleaned string and symbol table, "
3444         "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
3445         "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
3446         strings_processed(), strings_removed(),
3447         symbols_processed(), symbols_removed());
3448   }
3449 
3450   void work(uint worker_id) {
3451     int strings_processed = 0;
3452     int strings_removed = 0;
3453     int symbols_processed = 0;
3454     int symbols_removed = 0;
3455     if (_process_strings) {
3456       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
3457       Atomic::add(strings_processed, &_strings_processed);
3458       Atomic::add(strings_removed, &_strings_removed);
3459     }
3460     if (_process_symbols) {
3461       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
3462       Atomic::add(symbols_processed, &_symbols_processed);
3463       Atomic::add(symbols_removed, &_symbols_removed);
3464     }
3465     if (_process_string_dedup) {
3466       G1StringDedup::parallel_unlink(&_dedup_closure, worker_id);
3467     }
3468   }
3469 
3470   size_t strings_processed() const { return (size_t)_strings_processed; }
3471   size_t strings_removed()   const { return (size_t)_strings_removed; }
3472 
3473   size_t symbols_processed() const { return (size_t)_symbols_processed; }
3474   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
3475 };
3476 
3477 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
3478 private:
3479   static Monitor* _lock;
3480 
3481   BoolObjectClosure* const _is_alive;
3482   const bool               _unloading_occurred;
3483   const uint               _num_workers;
3484 
3485   // Variables used to claim nmethods.
3486   CompiledMethod* _first_nmethod;
3487   CompiledMethod* volatile _claimed_nmethod;
3488 
3489   // The list of nmethods that need to be processed by the second pass.
3490   CompiledMethod* volatile _postponed_list;
3491   volatile uint            _num_entered_barrier;
3492 
3493  public:
3494   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
3495       _is_alive(is_alive),
3496       _unloading_occurred(unloading_occurred),
3497       _num_workers(num_workers),
3498       _first_nmethod(NULL),
3499       _claimed_nmethod(NULL),
3500       _postponed_list(NULL),
3501       _num_entered_barrier(0)
3502   {
3503     CompiledMethod::increase_unloading_clock();
3504     // Get first alive nmethod
3505     CompiledMethodIterator iter = CompiledMethodIterator();
3506     if(iter.next_alive()) {
3507       _first_nmethod = iter.method();
3508     }
3509     _claimed_nmethod = _first_nmethod;
3510   }
3511 
3512   ~G1CodeCacheUnloadingTask() {
3513     CodeCache::verify_clean_inline_caches();
3514 
3515     CodeCache::set_needs_cache_clean(false);
3516     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
3517 
3518     CodeCache::verify_icholder_relocations();
3519   }
3520 
3521  private:
3522   void add_to_postponed_list(CompiledMethod* nm) {
3523       CompiledMethod* old;
3524       do {
3525         old = _postponed_list;
3526         nm->set_unloading_next(old);
3527       } while (Atomic::cmpxchg(nm, &_postponed_list, old) != old);
3528   }
3529 
3530   void clean_nmethod(CompiledMethod* nm) {
3531     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
3532 
3533     if (postponed) {
3534       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
3535       add_to_postponed_list(nm);
3536     }
3537 
3538     // Mark that this thread has been cleaned/unloaded.
3539     // After this call, it will be safe to ask if this nmethod was unloaded or not.
3540     nm->set_unloading_clock(CompiledMethod::global_unloading_clock());
3541   }
3542 
3543   void clean_nmethod_postponed(CompiledMethod* nm) {
3544     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
3545   }
3546 
3547   static const int MaxClaimNmethods = 16;
3548 
3549   void claim_nmethods(CompiledMethod** claimed_nmethods, int *num_claimed_nmethods) {
3550     CompiledMethod* first;
3551     CompiledMethodIterator last;
3552 
3553     do {
3554       *num_claimed_nmethods = 0;
3555 
3556       first = _claimed_nmethod;
3557       last = CompiledMethodIterator(first);
3558 
3559       if (first != NULL) {
3560 
3561         for (int i = 0; i < MaxClaimNmethods; i++) {
3562           if (!last.next_alive()) {
3563             break;
3564           }
3565           claimed_nmethods[i] = last.method();
3566           (*num_claimed_nmethods)++;
3567         }
3568       }
3569 
3570     } while (Atomic::cmpxchg(last.method(), &_claimed_nmethod, first) != first);
3571   }
3572 
3573   CompiledMethod* claim_postponed_nmethod() {
3574     CompiledMethod* claim;
3575     CompiledMethod* next;
3576 
3577     do {
3578       claim = _postponed_list;
3579       if (claim == NULL) {
3580         return NULL;
3581       }
3582 
3583       next = claim->unloading_next();
3584 
3585     } while (Atomic::cmpxchg(next, &_postponed_list, claim) != claim);
3586 
3587     return claim;
3588   }
3589 
3590  public:
3591   // Mark that we're done with the first pass of nmethod cleaning.
3592   void barrier_mark(uint worker_id) {
3593     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3594     _num_entered_barrier++;
3595     if (_num_entered_barrier == _num_workers) {
3596       ml.notify_all();
3597     }
3598   }
3599 
3600   // See if we have to wait for the other workers to
3601   // finish their first-pass nmethod cleaning work.
3602   void barrier_wait(uint worker_id) {
3603     if (_num_entered_barrier < _num_workers) {
3604       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
3605       while (_num_entered_barrier < _num_workers) {
3606           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
3607       }
3608     }
3609   }
3610 
3611   // Cleaning and unloading of nmethods. Some work has to be postponed
3612   // to the second pass, when we know which nmethods survive.
3613   void work_first_pass(uint worker_id) {
3614     // The first nmethods is claimed by the first worker.
3615     if (worker_id == 0 && _first_nmethod != NULL) {
3616       clean_nmethod(_first_nmethod);
3617       _first_nmethod = NULL;
3618     }
3619 
3620     int num_claimed_nmethods;
3621     CompiledMethod* claimed_nmethods[MaxClaimNmethods];
3622 
3623     while (true) {
3624       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
3625 
3626       if (num_claimed_nmethods == 0) {
3627         break;
3628       }
3629 
3630       for (int i = 0; i < num_claimed_nmethods; i++) {
3631         clean_nmethod(claimed_nmethods[i]);
3632       }
3633     }
3634   }
3635 
3636   void work_second_pass(uint worker_id) {
3637     CompiledMethod* nm;
3638     // Take care of postponed nmethods.
3639     while ((nm = claim_postponed_nmethod()) != NULL) {
3640       clean_nmethod_postponed(nm);
3641     }
3642   }
3643 };
3644 
3645 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
3646 
3647 class G1KlassCleaningTask : public StackObj {
3648   BoolObjectClosure*                      _is_alive;
3649   volatile int                            _clean_klass_tree_claimed;
3650   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
3651 
3652  public:
3653   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
3654       _is_alive(is_alive),
3655       _clean_klass_tree_claimed(0),
3656       _klass_iterator() {
3657   }
3658 
3659  private:
3660   bool claim_clean_klass_tree_task() {
3661     if (_clean_klass_tree_claimed) {
3662       return false;
3663     }
3664 
3665     return Atomic::cmpxchg(1, &_clean_klass_tree_claimed, 0) == 0;
3666   }
3667 
3668   InstanceKlass* claim_next_klass() {
3669     Klass* klass;
3670     do {
3671       klass =_klass_iterator.next_klass();
3672     } while (klass != NULL && !klass->is_instance_klass());
3673 
3674     // this can be null so don't call InstanceKlass::cast
3675     return static_cast<InstanceKlass*>(klass);
3676   }
3677 
3678 public:
3679 
3680   void clean_klass(InstanceKlass* ik) {
3681     ik->clean_weak_instanceklass_links(_is_alive);
3682   }
3683 
3684   void work() {
3685     ResourceMark rm;
3686 
3687     // One worker will clean the subklass/sibling klass tree.
3688     if (claim_clean_klass_tree_task()) {
3689       Klass::clean_subklass_tree(_is_alive);
3690     }
3691 
3692     // All workers will help cleaning the classes,
3693     InstanceKlass* klass;
3694     while ((klass = claim_next_klass()) != NULL) {
3695       clean_klass(klass);
3696     }
3697   }
3698 };
3699 
3700 class G1ResolvedMethodCleaningTask : public StackObj {
3701   BoolObjectClosure* _is_alive;
3702   volatile int       _resolved_method_task_claimed;
3703 public:
3704   G1ResolvedMethodCleaningTask(BoolObjectClosure* is_alive) :
3705       _is_alive(is_alive), _resolved_method_task_claimed(0) {}
3706 
3707   bool claim_resolved_method_task() {
3708     if (_resolved_method_task_claimed) {
3709       return false;
3710     }
3711     return Atomic::cmpxchg(1, &_resolved_method_task_claimed, 0) == 0;
3712   }
3713 
3714   // These aren't big, one thread can do it all.
3715   void work() {
3716     if (claim_resolved_method_task()) {
3717       ResolvedMethodTable::unlink(_is_alive);
3718     }
3719   }
3720 };
3721 
3722 
3723 // To minimize the remark pause times, the tasks below are done in parallel.
3724 class G1ParallelCleaningTask : public AbstractGangTask {
3725 private:
3726   G1StringAndSymbolCleaningTask _string_symbol_task;
3727   G1CodeCacheUnloadingTask      _code_cache_task;
3728   G1KlassCleaningTask           _klass_cleaning_task;
3729   G1ResolvedMethodCleaningTask  _resolved_method_cleaning_task;
3730 
3731 public:
3732   // The constructor is run in the VMThread.
3733   G1ParallelCleaningTask(BoolObjectClosure* is_alive, uint num_workers, bool unloading_occurred) :
3734       AbstractGangTask("Parallel Cleaning"),
3735       _string_symbol_task(is_alive, true, true, G1StringDedup::is_enabled()),
3736       _code_cache_task(num_workers, is_alive, unloading_occurred),
3737       _klass_cleaning_task(is_alive),
3738       _resolved_method_cleaning_task(is_alive) {
3739   }
3740 
3741   // The parallel work done by all worker threads.
3742   void work(uint worker_id) {
3743     // Do first pass of code cache cleaning.
3744     _code_cache_task.work_first_pass(worker_id);
3745 
3746     // Let the threads mark that the first pass is done.
3747     _code_cache_task.barrier_mark(worker_id);
3748 
3749     // Clean the Strings and Symbols.
3750     _string_symbol_task.work(worker_id);
3751 
3752     // Clean unreferenced things in the ResolvedMethodTable
3753     _resolved_method_cleaning_task.work();
3754 
3755     // Wait for all workers to finish the first code cache cleaning pass.
3756     _code_cache_task.barrier_wait(worker_id);
3757 
3758     // Do the second code cache cleaning work, which realize on
3759     // the liveness information gathered during the first pass.
3760     _code_cache_task.work_second_pass(worker_id);
3761 
3762     // Clean all klasses that were not unloaded.
3763     _klass_cleaning_task.work();
3764   }
3765 };
3766 
3767 
3768 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3769                                         bool class_unloading_occurred) {
3770   uint n_workers = workers()->active_workers();
3771 
3772   G1ParallelCleaningTask g1_unlink_task(is_alive, n_workers, class_unloading_occurred);
3773   workers()->run_task(&g1_unlink_task);
3774 }
3775 
3776 void G1CollectedHeap::partial_cleaning(BoolObjectClosure* is_alive,
3777                                        bool process_strings,
3778                                        bool process_symbols,
3779                                        bool process_string_dedup) {
3780   if (!process_strings && !process_symbols && !process_string_dedup) {
3781     // Nothing to clean.
3782     return;
3783   }
3784 
3785   G1StringAndSymbolCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols, process_string_dedup);
3786   workers()->run_task(&g1_unlink_task);
3787 
3788 }
3789 
3790 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3791  private:
3792   DirtyCardQueueSet* _queue;
3793   G1CollectedHeap* _g1h;
3794  public:
3795   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue, G1CollectedHeap* g1h) : AbstractGangTask("Redirty Cards"),
3796     _queue(queue), _g1h(g1h) { }
3797 
3798   virtual void work(uint worker_id) {
3799     G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
3800     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
3801 
3802     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3803     _queue->par_apply_closure_to_all_completed_buffers(&cl);
3804 
3805     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3806   }
3807 };
3808 
3809 void G1CollectedHeap::redirty_logged_cards() {
3810   double redirty_logged_cards_start = os::elapsedTime();
3811 
3812   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set(), this);
3813   dirty_card_queue_set().reset_for_par_iteration();
3814   workers()->run_task(&redirty_task);
3815 
3816   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
3817   dcq.merge_bufferlists(&dirty_card_queue_set());
3818   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
3819 
3820   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3821 }
3822 
3823 // Weak Reference Processing support
3824 
3825 // An always "is_alive" closure that is used to preserve referents.
3826 // If the object is non-null then it's alive.  Used in the preservation
3827 // of referent objects that are pointed to by reference objects
3828 // discovered by the CM ref processor.
3829 class G1AlwaysAliveClosure: public BoolObjectClosure {
3830   G1CollectedHeap* _g1;
3831 public:
3832   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3833   bool do_object_b(oop p) {
3834     if (p != NULL) {
3835       return true;
3836     }
3837     return false;
3838   }
3839 };
3840 
3841 bool G1STWIsAliveClosure::do_object_b(oop p) {
3842   // An object is reachable if it is outside the collection set,
3843   // or is inside and copied.
3844   return !_g1->is_in_cset(p) || p->is_forwarded();
3845 }
3846 
3847 // Non Copying Keep Alive closure
3848 class G1KeepAliveClosure: public OopClosure {
3849   G1CollectedHeap* _g1;
3850 public:
3851   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
3852   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3853   void do_oop(oop* p) {
3854     oop obj = *p;
3855     assert(obj != NULL, "the caller should have filtered out NULL values");
3856 
3857     const InCSetState cset_state = _g1->in_cset_state(obj);
3858     if (!cset_state.is_in_cset_or_humongous()) {
3859       return;
3860     }
3861     if (cset_state.is_in_cset()) {
3862       assert( obj->is_forwarded(), "invariant" );
3863       *p = obj->forwardee();
3864     } else {
3865       assert(!obj->is_forwarded(), "invariant" );
3866       assert(cset_state.is_humongous(),
3867              "Only allowed InCSet state is IsHumongous, but is %d", cset_state.value());
3868       _g1->set_humongous_is_live(obj);
3869     }
3870   }
3871 };
3872 
3873 // Copying Keep Alive closure - can be called from both
3874 // serial and parallel code as long as different worker
3875 // threads utilize different G1ParScanThreadState instances
3876 // and different queues.
3877 
3878 class G1CopyingKeepAliveClosure: public OopClosure {
3879   G1CollectedHeap*         _g1h;
3880   OopClosure*              _copy_non_heap_obj_cl;
3881   G1ParScanThreadState*    _par_scan_state;
3882 
3883 public:
3884   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3885                             OopClosure* non_heap_obj_cl,
3886                             G1ParScanThreadState* pss):
3887     _g1h(g1h),
3888     _copy_non_heap_obj_cl(non_heap_obj_cl),
3889     _par_scan_state(pss)
3890   {}
3891 
3892   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3893   virtual void do_oop(      oop* p) { do_oop_work(p); }
3894 
3895   template <class T> void do_oop_work(T* p) {
3896     oop obj = oopDesc::load_decode_heap_oop(p);
3897 
3898     if (_g1h->is_in_cset_or_humongous(obj)) {
3899       // If the referent object has been forwarded (either copied
3900       // to a new location or to itself in the event of an
3901       // evacuation failure) then we need to update the reference
3902       // field and, if both reference and referent are in the G1
3903       // heap, update the RSet for the referent.
3904       //
3905       // If the referent has not been forwarded then we have to keep
3906       // it alive by policy. Therefore we have copy the referent.
3907       //
3908       // If the reference field is in the G1 heap then we can push
3909       // on the PSS queue. When the queue is drained (after each
3910       // phase of reference processing) the object and it's followers
3911       // will be copied, the reference field set to point to the
3912       // new location, and the RSet updated. Otherwise we need to
3913       // use the the non-heap or metadata closures directly to copy
3914       // the referent object and update the pointer, while avoiding
3915       // updating the RSet.
3916 
3917       if (_g1h->is_in_g1_reserved(p)) {
3918         _par_scan_state->push_on_queue(p);
3919       } else {
3920         assert(!Metaspace::contains((const void*)p),
3921                "Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p));
3922         _copy_non_heap_obj_cl->do_oop(p);
3923       }
3924     }
3925   }
3926 };
3927 
3928 // Serial drain queue closure. Called as the 'complete_gc'
3929 // closure for each discovered list in some of the
3930 // reference processing phases.
3931 
3932 class G1STWDrainQueueClosure: public VoidClosure {
3933 protected:
3934   G1CollectedHeap* _g1h;
3935   G1ParScanThreadState* _par_scan_state;
3936 
3937   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3938 
3939 public:
3940   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3941     _g1h(g1h),
3942     _par_scan_state(pss)
3943   { }
3944 
3945   void do_void() {
3946     G1ParScanThreadState* const pss = par_scan_state();
3947     pss->trim_queue();
3948   }
3949 };
3950 
3951 // Parallel Reference Processing closures
3952 
3953 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3954 // processing during G1 evacuation pauses.
3955 
3956 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3957 private:
3958   G1CollectedHeap*          _g1h;
3959   G1ParScanThreadStateSet*  _pss;
3960   RefToScanQueueSet*        _queues;
3961   WorkGang*                 _workers;
3962   uint                      _active_workers;
3963 
3964 public:
3965   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3966                            G1ParScanThreadStateSet* per_thread_states,
3967                            WorkGang* workers,
3968                            RefToScanQueueSet *task_queues,
3969                            uint n_workers) :
3970     _g1h(g1h),
3971     _pss(per_thread_states),
3972     _queues(task_queues),
3973     _workers(workers),
3974     _active_workers(n_workers)
3975   {
3976     g1h->ref_processor_stw()->set_active_mt_degree(n_workers);
3977   }
3978 
3979   // Executes the given task using concurrent marking worker threads.
3980   virtual void execute(ProcessTask& task);
3981   virtual void execute(EnqueueTask& task);
3982 };
3983 
3984 // Gang task for possibly parallel reference processing
3985 
3986 class G1STWRefProcTaskProxy: public AbstractGangTask {
3987   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3988   ProcessTask&     _proc_task;
3989   G1CollectedHeap* _g1h;
3990   G1ParScanThreadStateSet* _pss;
3991   RefToScanQueueSet* _task_queues;
3992   ParallelTaskTerminator* _terminator;
3993 
3994 public:
3995   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3996                         G1CollectedHeap* g1h,
3997                         G1ParScanThreadStateSet* per_thread_states,
3998                         RefToScanQueueSet *task_queues,
3999                         ParallelTaskTerminator* terminator) :
4000     AbstractGangTask("Process reference objects in parallel"),
4001     _proc_task(proc_task),
4002     _g1h(g1h),
4003     _pss(per_thread_states),
4004     _task_queues(task_queues),
4005     _terminator(terminator)
4006   {}
4007 
4008   virtual void work(uint worker_id) {
4009     // The reference processing task executed by a single worker.
4010     ResourceMark rm;
4011     HandleMark   hm;
4012 
4013     G1STWIsAliveClosure is_alive(_g1h);
4014 
4015     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4016     pss->set_ref_processor(NULL);
4017 
4018     // Keep alive closure.
4019     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4020 
4021     // Complete GC closure
4022     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator);
4023 
4024     // Call the reference processing task's work routine.
4025     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
4026 
4027     // Note we cannot assert that the refs array is empty here as not all
4028     // of the processing tasks (specifically phase2 - pp2_work) execute
4029     // the complete_gc closure (which ordinarily would drain the queue) so
4030     // the queue may not be empty.
4031   }
4032 };
4033 
4034 // Driver routine for parallel reference processing.
4035 // Creates an instance of the ref processing gang
4036 // task and has the worker threads execute it.
4037 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
4038   assert(_workers != NULL, "Need parallel worker threads.");
4039 
4040   ParallelTaskTerminator terminator(_active_workers, _queues);
4041   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
4042 
4043   _workers->run_task(&proc_task_proxy);
4044 }
4045 
4046 // Gang task for parallel reference enqueueing.
4047 
4048 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
4049   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
4050   EnqueueTask& _enq_task;
4051 
4052 public:
4053   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
4054     AbstractGangTask("Enqueue reference objects in parallel"),
4055     _enq_task(enq_task)
4056   { }
4057 
4058   virtual void work(uint worker_id) {
4059     _enq_task.work(worker_id);
4060   }
4061 };
4062 
4063 // Driver routine for parallel reference enqueueing.
4064 // Creates an instance of the ref enqueueing gang
4065 // task and has the worker threads execute it.
4066 
4067 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
4068   assert(_workers != NULL, "Need parallel worker threads.");
4069 
4070   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
4071 
4072   _workers->run_task(&enq_task_proxy);
4073 }
4074 
4075 // End of weak reference support closures
4076 
4077 // Abstract task used to preserve (i.e. copy) any referent objects
4078 // that are in the collection set and are pointed to by reference
4079 // objects discovered by the CM ref processor.
4080 
4081 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
4082 protected:
4083   G1CollectedHeap*         _g1h;
4084   G1ParScanThreadStateSet* _pss;
4085   RefToScanQueueSet*       _queues;
4086   ParallelTaskTerminator   _terminator;
4087   uint                     _n_workers;
4088 
4089 public:
4090   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, G1ParScanThreadStateSet* per_thread_states, int workers, RefToScanQueueSet *task_queues) :
4091     AbstractGangTask("ParPreserveCMReferents"),
4092     _g1h(g1h),
4093     _pss(per_thread_states),
4094     _queues(task_queues),
4095     _terminator(workers, _queues),
4096     _n_workers(workers)
4097   {
4098     g1h->ref_processor_cm()->set_active_mt_degree(workers);
4099   }
4100 
4101   void work(uint worker_id) {
4102     G1GCParPhaseTimesTracker x(_g1h->g1_policy()->phase_times(), G1GCPhaseTimes::PreserveCMReferents, worker_id);
4103 
4104     ResourceMark rm;
4105     HandleMark   hm;
4106 
4107     G1ParScanThreadState*          pss = _pss->state_for_worker(worker_id);
4108     pss->set_ref_processor(NULL);
4109     assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4110 
4111     // Is alive closure
4112     G1AlwaysAliveClosure always_alive(_g1h);
4113 
4114     // Copying keep alive closure. Applied to referent objects that need
4115     // to be copied.
4116     G1CopyingKeepAliveClosure keep_alive(_g1h, pss->closures()->raw_strong_oops(), pss);
4117 
4118     ReferenceProcessor* rp = _g1h->ref_processor_cm();
4119 
4120     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
4121     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
4122 
4123     // limit is set using max_num_q() - which was set using ParallelGCThreads.
4124     // So this must be true - but assert just in case someone decides to
4125     // change the worker ids.
4126     assert(worker_id < limit, "sanity");
4127     assert(!rp->discovery_is_atomic(), "check this code");
4128 
4129     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
4130     for (uint idx = worker_id; idx < limit; idx += stride) {
4131       DiscoveredList& ref_list = rp->discovered_refs()[idx];
4132 
4133       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
4134       while (iter.has_next()) {
4135         // Since discovery is not atomic for the CM ref processor, we
4136         // can see some null referent objects.
4137         iter.load_ptrs(DEBUG_ONLY(true));
4138         oop ref = iter.obj();
4139 
4140         // This will filter nulls.
4141         if (iter.is_referent_alive()) {
4142           iter.make_referent_alive();
4143         }
4144         iter.move_to_next();
4145       }
4146     }
4147 
4148     // Drain the queue - which may cause stealing
4149     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _queues, &_terminator);
4150     drain_queue.do_void();
4151     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
4152     assert(pss->queue_is_empty(), "should be");
4153   }
4154 };
4155 
4156 void G1CollectedHeap::preserve_cm_referents(G1ParScanThreadStateSet* per_thread_states) {
4157   // Any reference objects, in the collection set, that were 'discovered'
4158   // by the CM ref processor should have already been copied (either by
4159   // applying the external root copy closure to the discovered lists, or
4160   // by following an RSet entry).
4161   //
4162   // But some of the referents, that are in the collection set, that these
4163   // reference objects point to may not have been copied: the STW ref
4164   // processor would have seen that the reference object had already
4165   // been 'discovered' and would have skipped discovering the reference,
4166   // but would not have treated the reference object as a regular oop.
4167   // As a result the copy closure would not have been applied to the
4168   // referent object.
4169   //
4170   // We need to explicitly copy these referent objects - the references
4171   // will be processed at the end of remarking.
4172   //
4173   // We also need to do this copying before we process the reference
4174   // objects discovered by the STW ref processor in case one of these
4175   // referents points to another object which is also referenced by an
4176   // object discovered by the STW ref processor.
4177   double preserve_cm_referents_time = 0.0;
4178 
4179   // To avoid spawning task when there is no work to do, check that
4180   // a concurrent cycle is active and that some references have been
4181   // discovered.
4182   if (concurrent_mark()->cm_thread()->during_cycle() &&
4183       ref_processor_cm()->has_discovered_references()) {
4184     double preserve_cm_referents_start = os::elapsedTime();
4185     uint no_of_gc_workers = workers()->active_workers();
4186     G1ParPreserveCMReferentsTask keep_cm_referents(this,
4187                                                    per_thread_states,
4188                                                    no_of_gc_workers,
4189                                                    _task_queues);
4190     workers()->run_task(&keep_cm_referents);
4191     preserve_cm_referents_time = os::elapsedTime() - preserve_cm_referents_start;
4192   }
4193 
4194   g1_policy()->phase_times()->record_preserve_cm_referents_time_ms(preserve_cm_referents_time * 1000.0);
4195 }
4196 
4197 // Weak Reference processing during an evacuation pause (part 1).
4198 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4199   double ref_proc_start = os::elapsedTime();
4200 
4201   ReferenceProcessor* rp = _ref_processor_stw;
4202   assert(rp->discovery_enabled(), "should have been enabled");
4203 
4204   // Closure to test whether a referent is alive.
4205   G1STWIsAliveClosure is_alive(this);
4206 
4207   // Even when parallel reference processing is enabled, the processing
4208   // of JNI refs is serial and performed serially by the current thread
4209   // rather than by a worker. The following PSS will be used for processing
4210   // JNI refs.
4211 
4212   // Use only a single queue for this PSS.
4213   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
4214   pss->set_ref_processor(NULL);
4215   assert(pss->queue_is_empty(), "pre-condition");
4216 
4217   // Keep alive closure.
4218   G1CopyingKeepAliveClosure keep_alive(this, pss->closures()->raw_strong_oops(), pss);
4219 
4220   // Serial Complete GC closure
4221   G1STWDrainQueueClosure drain_queue(this, pss);
4222 
4223   // Setup the soft refs policy...
4224   rp->setup_policy(false);
4225 
4226   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4227 
4228   ReferenceProcessorStats stats;
4229   if (!rp->processing_is_mt()) {
4230     // Serial reference processing...
4231     stats = rp->process_discovered_references(&is_alive,
4232                                               &keep_alive,
4233                                               &drain_queue,
4234                                               NULL,
4235                                               pt);
4236   } else {
4237     uint no_of_gc_workers = workers()->active_workers();
4238 
4239     // Parallel reference processing
4240     assert(no_of_gc_workers <= rp->max_num_q(),
4241            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4242            no_of_gc_workers,  rp->max_num_q());
4243 
4244     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, no_of_gc_workers);
4245     stats = rp->process_discovered_references(&is_alive,
4246                                               &keep_alive,
4247                                               &drain_queue,
4248                                               &par_task_executor,
4249                                               pt);
4250   }
4251 
4252   _gc_tracer_stw->report_gc_reference_stats(stats);
4253 
4254   // We have completed copying any necessary live referent objects.
4255   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
4256 
4257   double ref_proc_time = os::elapsedTime() - ref_proc_start;
4258   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
4259 }
4260 
4261 // Weak Reference processing during an evacuation pause (part 2).
4262 void G1CollectedHeap::enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
4263   double ref_enq_start = os::elapsedTime();
4264 
4265   ReferenceProcessor* rp = _ref_processor_stw;
4266   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
4267 
4268   ReferenceProcessorPhaseTimes* pt = g1_policy()->phase_times()->ref_phase_times();
4269 
4270   // Now enqueue any remaining on the discovered lists on to
4271   // the pending list.
4272   if (!rp->processing_is_mt()) {
4273     // Serial reference processing...
4274     rp->enqueue_discovered_references(NULL, pt);
4275   } else {
4276     // Parallel reference enqueueing
4277 
4278     uint n_workers = workers()->active_workers();
4279 
4280     assert(n_workers <= rp->max_num_q(),
4281            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
4282            n_workers,  rp->max_num_q());
4283 
4284     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues, n_workers);
4285     rp->enqueue_discovered_references(&par_task_executor, pt);
4286   }
4287 
4288   rp->verify_no_references_recorded();
4289   assert(!rp->discovery_enabled(), "should have been disabled");
4290 
4291   // If during an initial mark pause we install a pending list head which is not otherwise reachable
4292   // ensure that it is marked in the bitmap for concurrent marking to discover.
4293   if (collector_state()->during_initial_mark_pause()) {
4294     oop pll_head = Universe::reference_pending_list();
4295     if (pll_head != NULL) {
4296       _cm->mark_in_next_bitmap(pll_head);
4297     }
4298   }
4299 
4300   // FIXME
4301   // CM's reference processing also cleans up the string and symbol tables.
4302   // Should we do that here also? We could, but it is a serial operation
4303   // and could significantly increase the pause time.
4304 
4305   double ref_enq_time = os::elapsedTime() - ref_enq_start;
4306   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
4307 }
4308 
4309 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
4310   double merge_pss_time_start = os::elapsedTime();
4311   per_thread_states->flush();
4312   g1_policy()->phase_times()->record_merge_pss_time_ms((os::elapsedTime() - merge_pss_time_start) * 1000.0);
4313 }
4314 
4315 void G1CollectedHeap::pre_evacuate_collection_set() {
4316   _expand_heap_after_alloc_failure = true;
4317   _evacuation_failed = false;
4318 
4319   // Disable the hot card cache.
4320   _hot_card_cache->reset_hot_cache_claimed_index();
4321   _hot_card_cache->set_use_cache(false);
4322 
4323   g1_rem_set()->prepare_for_oops_into_collection_set_do();
4324   _preserved_marks_set.assert_empty();
4325 
4326   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4327 
4328   // InitialMark needs claim bits to keep track of the marked-through CLDs.
4329   if (collector_state()->during_initial_mark_pause()) {
4330     double start_clear_claimed_marks = os::elapsedTime();
4331 
4332     ClassLoaderDataGraph::clear_claimed_marks();
4333 
4334     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
4335     phase_times->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
4336   }
4337 }
4338 
4339 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4340   // Should G1EvacuationFailureALot be in effect for this GC?
4341   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
4342 
4343   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
4344 
4345   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
4346 
4347   double start_par_time_sec = os::elapsedTime();
4348   double end_par_time_sec;
4349 
4350   {
4351     const uint n_workers = workers()->active_workers();
4352     G1RootProcessor root_processor(this, n_workers);
4353     G1ParTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, n_workers);
4354 
4355     print_termination_stats_hdr();
4356 
4357     workers()->run_task(&g1_par_task);
4358     end_par_time_sec = os::elapsedTime();
4359 
4360     // Closing the inner scope will execute the destructor
4361     // for the G1RootProcessor object. We record the current
4362     // elapsed time before closing the scope so that time
4363     // taken for the destructor is NOT included in the
4364     // reported parallel time.
4365   }
4366 
4367   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
4368   phase_times->record_par_time(par_time_ms);
4369 
4370   double code_root_fixup_time_ms =
4371         (os::elapsedTime() - end_par_time_sec) * 1000.0;
4372   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
4373 }
4374 
4375 void G1CollectedHeap::post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
4376   // Process any discovered reference objects - we have
4377   // to do this _before_ we retire the GC alloc regions
4378   // as we may have to copy some 'reachable' referent
4379   // objects (and their reachable sub-graphs) that were
4380   // not copied during the pause.
4381   if (g1_policy()->should_process_references()) {
4382     preserve_cm_referents(per_thread_states);
4383     process_discovered_references(per_thread_states);
4384   } else {
4385     ref_processor_stw()->verify_no_references_recorded();
4386   }
4387 
4388   G1STWIsAliveClosure is_alive(this);
4389   G1KeepAliveClosure keep_alive(this);
4390 
4391   {
4392     double start = os::elapsedTime();
4393 
4394     WeakProcessor::weak_oops_do(&is_alive, &keep_alive);
4395 
4396     double time_ms = (os::elapsedTime() - start) * 1000.0;
4397     g1_policy()->phase_times()->record_ref_proc_time(time_ms);
4398   }
4399 
4400   if (G1StringDedup::is_enabled()) {
4401     double fixup_start = os::elapsedTime();
4402 
4403     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, g1_policy()->phase_times());
4404 
4405     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
4406     g1_policy()->phase_times()->record_string_dedup_fixup_time(fixup_time_ms);
4407   }
4408 
4409   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
4410 
4411   if (evacuation_failed()) {
4412     restore_after_evac_failure();
4413 
4414     // Reset the G1EvacuationFailureALot counters and flags
4415     // Note: the values are reset only when an actual
4416     // evacuation failure occurs.
4417     NOT_PRODUCT(reset_evacuation_should_fail();)
4418   }
4419 
4420   _preserved_marks_set.assert_empty();
4421 
4422   // Enqueue any remaining references remaining on the STW
4423   // reference processor's discovered lists. We need to do
4424   // this after the card table is cleaned (and verified) as
4425   // the act of enqueueing entries on to the pending list
4426   // will log these updates (and dirty their associated
4427   // cards). We need these updates logged to update any
4428   // RSets.
4429   if (g1_policy()->should_process_references()) {
4430     enqueue_discovered_references(per_thread_states);
4431   } else {
4432     g1_policy()->phase_times()->record_ref_enq_time(0);
4433   }
4434 
4435   _allocator->release_gc_alloc_regions(evacuation_info);
4436 
4437   merge_per_thread_state_info(per_thread_states);
4438 
4439   // Reset and re-enable the hot card cache.
4440   // Note the counts for the cards in the regions in the
4441   // collection set are reset when the collection set is freed.
4442   _hot_card_cache->reset_hot_cache();
4443   _hot_card_cache->set_use_cache(true);
4444 
4445   purge_code_root_memory();
4446 
4447   redirty_logged_cards();
4448 #if COMPILER2_OR_JVMCI
4449   double start = os::elapsedTime();
4450   DerivedPointerTable::update_pointers();
4451   g1_policy()->phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4452 #endif
4453   g1_policy()->print_age_table();
4454 }
4455 
4456 void G1CollectedHeap::record_obj_copy_mem_stats() {
4457   g1_policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4458 
4459   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4460                                                create_g1_evac_summary(&_old_evac_stats));
4461 }
4462 
4463 void G1CollectedHeap::free_region(HeapRegion* hr,
4464                                   FreeRegionList* free_list,
4465                                   bool skip_remset,
4466                                   bool skip_hot_card_cache,
4467                                   bool locked) {
4468   assert(!hr->is_free(), "the region should not be free");
4469   assert(!hr->is_empty(), "the region should not be empty");
4470   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
4471   assert(free_list != NULL, "pre-condition");
4472 
4473   if (G1VerifyBitmaps) {
4474     MemRegion mr(hr->bottom(), hr->end());
4475     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4476   }
4477 
4478   // Clear the card counts for this region.
4479   // Note: we only need to do this if the region is not young
4480   // (since we don't refine cards in young regions).
4481   if (!skip_hot_card_cache && !hr->is_young()) {
4482     _hot_card_cache->reset_card_counts(hr);
4483   }
4484   hr->hr_clear(skip_remset, true /* clear_space */, locked /* locked */);
4485   free_list->add_ordered(hr);
4486 }
4487 
4488 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4489                                             FreeRegionList* free_list,
4490                                             bool skip_remset) {
4491   assert(hr->is_humongous(), "this is only for humongous regions");
4492   assert(free_list != NULL, "pre-condition");
4493   hr->clear_humongous();
4494   free_region(hr, free_list, skip_remset);
4495 }
4496 
4497 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4498                                            const uint humongous_regions_removed) {
4499   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4500     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4501     _old_set.bulk_remove(old_regions_removed);
4502     _humongous_set.bulk_remove(humongous_regions_removed);
4503   }
4504 
4505 }
4506 
4507 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4508   assert(list != NULL, "list can't be null");
4509   if (!list->is_empty()) {
4510     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4511     _hrm.insert_list_into_free_list(list);
4512   }
4513 }
4514 
4515 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4516   decrease_used(bytes);
4517 }
4518 
4519 class G1ParScrubRemSetTask: public AbstractGangTask {
4520 protected:
4521   G1RemSet* _g1rs;
4522   HeapRegionClaimer _hrclaimer;
4523 
4524 public:
4525   G1ParScrubRemSetTask(G1RemSet* g1_rs, uint num_workers) :
4526     AbstractGangTask("G1 ScrubRS"),
4527     _g1rs(g1_rs),
4528     _hrclaimer(num_workers) {
4529   }
4530 
4531   void work(uint worker_id) {
4532     _g1rs->scrub(worker_id, &_hrclaimer);
4533   }
4534 };
4535 
4536 void G1CollectedHeap::scrub_rem_set() {
4537   uint num_workers = workers()->active_workers();
4538   G1ParScrubRemSetTask g1_par_scrub_rs_task(g1_rem_set(), num_workers);
4539   workers()->run_task(&g1_par_scrub_rs_task);
4540 }
4541 
4542 class G1FreeCollectionSetTask : public AbstractGangTask {
4543 private:
4544 
4545   // Closure applied to all regions in the collection set to do work that needs to
4546   // be done serially in a single thread.
4547   class G1SerialFreeCollectionSetClosure : public HeapRegionClosure {
4548   private:
4549     EvacuationInfo* _evacuation_info;
4550     const size_t* _surviving_young_words;
4551 
4552     // Bytes used in successfully evacuated regions before the evacuation.
4553     size_t _before_used_bytes;
4554     // Bytes used in unsucessfully evacuated regions before the evacuation
4555     size_t _after_used_bytes;
4556 
4557     size_t _bytes_allocated_in_old_since_last_gc;
4558 
4559     size_t _failure_used_words;
4560     size_t _failure_waste_words;
4561 
4562     FreeRegionList _local_free_list;
4563   public:
4564     G1SerialFreeCollectionSetClosure(EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4565       HeapRegionClosure(),
4566       _evacuation_info(evacuation_info),
4567       _surviving_young_words(surviving_young_words),
4568       _before_used_bytes(0),
4569       _after_used_bytes(0),
4570       _bytes_allocated_in_old_since_last_gc(0),
4571       _failure_used_words(0),
4572       _failure_waste_words(0),
4573       _local_free_list("Local Region List for CSet Freeing") {
4574     }
4575 
4576     virtual bool doHeapRegion(HeapRegion* r) {
4577       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4578 
4579       assert(r->in_collection_set(), "Region %u should be in collection set.", r->hrm_index());
4580       g1h->clear_in_cset(r);
4581 
4582       if (r->is_young()) {
4583         assert(r->young_index_in_cset() != -1 && (uint)r->young_index_in_cset() < g1h->collection_set()->young_region_length(),
4584                "Young index %d is wrong for region %u of type %s with %u young regions",
4585                r->young_index_in_cset(),
4586                r->hrm_index(),
4587                r->get_type_str(),
4588                g1h->collection_set()->young_region_length());
4589         size_t words_survived = _surviving_young_words[r->young_index_in_cset()];
4590         r->record_surv_words_in_group(words_survived);
4591       }
4592 
4593       if (!r->evacuation_failed()) {
4594         assert(r->not_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4595         _before_used_bytes += r->used();
4596         g1h->free_region(r,
4597                          &_local_free_list,
4598                          true, /* skip_remset */
4599                          true, /* skip_hot_card_cache */
4600                          true  /* locked */);
4601       } else {
4602         r->uninstall_surv_rate_group();
4603         r->set_young_index_in_cset(-1);
4604         r->set_evacuation_failed(false);
4605         // When moving a young gen region to old gen, we "allocate" that whole region
4606         // there. This is in addition to any already evacuated objects. Notify the
4607         // policy about that.
4608         // Old gen regions do not cause an additional allocation: both the objects
4609         // still in the region and the ones already moved are accounted for elsewhere.
4610         if (r->is_young()) {
4611           _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4612         }
4613         // The region is now considered to be old.
4614         r->set_old();
4615         // Do some allocation statistics accounting. Regions that failed evacuation
4616         // are always made old, so there is no need to update anything in the young
4617         // gen statistics, but we need to update old gen statistics.
4618         size_t used_words = r->marked_bytes() / HeapWordSize;
4619 
4620         _failure_used_words += used_words;
4621         _failure_waste_words += HeapRegion::GrainWords - used_words;
4622 
4623         g1h->old_set_add(r);
4624         _after_used_bytes += r->used();
4625       }
4626       return false;
4627     }
4628 
4629     void complete_work() {
4630       G1CollectedHeap* g1h = G1CollectedHeap::heap();
4631 
4632       _evacuation_info->set_regions_freed(_local_free_list.length());
4633       _evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4634 
4635       g1h->prepend_to_freelist(&_local_free_list);
4636       g1h->decrement_summary_bytes(_before_used_bytes);
4637 
4638       G1Policy* policy = g1h->g1_policy();
4639       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4640 
4641       g1h->alloc_buffer_stats(InCSetState::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4642     }
4643   };
4644 
4645   G1CollectionSet* _collection_set;
4646   G1SerialFreeCollectionSetClosure _cl;
4647   const size_t* _surviving_young_words;
4648 
4649   size_t _rs_lengths;
4650 
4651   volatile jint _serial_work_claim;
4652 
4653   struct WorkItem {
4654     uint region_idx;
4655     bool is_young;
4656     bool evacuation_failed;
4657 
4658     WorkItem(HeapRegion* r) {
4659       region_idx = r->hrm_index();
4660       is_young = r->is_young();
4661       evacuation_failed = r->evacuation_failed();
4662     }
4663   };
4664 
4665   volatile size_t _parallel_work_claim;
4666   size_t _num_work_items;
4667   WorkItem* _work_items;
4668 
4669   void do_serial_work() {
4670     // Need to grab the lock to be allowed to modify the old region list.
4671     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4672     _collection_set->iterate(&_cl);
4673   }
4674 
4675   void do_parallel_work_for_region(uint region_idx, bool is_young, bool evacuation_failed) {
4676     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4677 
4678     HeapRegion* r = g1h->region_at(region_idx);
4679     assert(!g1h->is_on_master_free_list(r), "sanity");
4680 
4681     Atomic::add(r->rem_set()->occupied_locked(), &_rs_lengths);
4682 
4683     if (!is_young) {
4684       g1h->_hot_card_cache->reset_card_counts(r);
4685     }
4686 
4687     if (!evacuation_failed) {
4688       r->rem_set()->clear_locked();
4689     }
4690   }
4691 
4692   class G1PrepareFreeCollectionSetClosure : public HeapRegionClosure {
4693   private:
4694     size_t _cur_idx;
4695     WorkItem* _work_items;
4696   public:
4697     G1PrepareFreeCollectionSetClosure(WorkItem* work_items) : HeapRegionClosure(), _cur_idx(0), _work_items(work_items) { }
4698 
4699     virtual bool doHeapRegion(HeapRegion* r) {
4700       _work_items[_cur_idx++] = WorkItem(r);
4701       return false;
4702     }
4703   };
4704 
4705   void prepare_work() {
4706     G1PrepareFreeCollectionSetClosure cl(_work_items);
4707     _collection_set->iterate(&cl);
4708   }
4709 
4710   void complete_work() {
4711     _cl.complete_work();
4712 
4713     G1Policy* policy = G1CollectedHeap::heap()->g1_policy();
4714     policy->record_max_rs_lengths(_rs_lengths);
4715     policy->cset_regions_freed();
4716   }
4717 public:
4718   G1FreeCollectionSetTask(G1CollectionSet* collection_set, EvacuationInfo* evacuation_info, const size_t* surviving_young_words) :
4719     AbstractGangTask("G1 Free Collection Set"),
4720     _cl(evacuation_info, surviving_young_words),
4721     _collection_set(collection_set),
4722     _surviving_young_words(surviving_young_words),
4723     _serial_work_claim(0),
4724     _rs_lengths(0),
4725     _parallel_work_claim(0),
4726     _num_work_items(collection_set->region_length()),
4727     _work_items(NEW_C_HEAP_ARRAY(WorkItem, _num_work_items, mtGC)) {
4728     prepare_work();
4729   }
4730 
4731   ~G1FreeCollectionSetTask() {
4732     complete_work();
4733     FREE_C_HEAP_ARRAY(WorkItem, _work_items);
4734   }
4735 
4736   // Chunk size for work distribution. The chosen value has been determined experimentally
4737   // to be a good tradeoff between overhead and achievable parallelism.
4738   static uint chunk_size() { return 32; }
4739 
4740   virtual void work(uint worker_id) {
4741     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
4742 
4743     // Claim serial work.
4744     if (_serial_work_claim == 0) {
4745       jint value = Atomic::add(1, &_serial_work_claim) - 1;
4746       if (value == 0) {
4747         double serial_time = os::elapsedTime();
4748         do_serial_work();
4749         timer->record_serial_free_cset_time_ms((os::elapsedTime() - serial_time) * 1000.0);
4750       }
4751     }
4752 
4753     // Start parallel work.
4754     double young_time = 0.0;
4755     bool has_young_time = false;
4756     double non_young_time = 0.0;
4757     bool has_non_young_time = false;
4758 
4759     while (true) {
4760       size_t end = Atomic::add(chunk_size(), &_parallel_work_claim);
4761       size_t cur = end - chunk_size();
4762 
4763       if (cur >= _num_work_items) {
4764         break;
4765       }
4766 
4767       double start_time = os::elapsedTime();
4768 
4769       end = MIN2(end, _num_work_items);
4770 
4771       for (; cur < end; cur++) {
4772         bool is_young = _work_items[cur].is_young;
4773 
4774         do_parallel_work_for_region(_work_items[cur].region_idx, is_young, _work_items[cur].evacuation_failed);
4775 
4776         double end_time = os::elapsedTime();
4777         double time_taken = end_time - start_time;
4778         if (is_young) {
4779           young_time += time_taken;
4780           has_young_time = true;
4781         } else {
4782           non_young_time += time_taken;
4783           has_non_young_time = true;
4784         }
4785         start_time = end_time;
4786       }
4787     }
4788 
4789     if (has_young_time) {
4790       timer->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, worker_id, young_time);
4791     }
4792     if (has_non_young_time) {
4793       timer->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, worker_id, young_time);
4794     }
4795   }
4796 };
4797 
4798 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4799   _eden.clear();
4800 
4801   double free_cset_start_time = os::elapsedTime();
4802 
4803   {
4804     uint const num_chunks = MAX2(_collection_set.region_length() / G1FreeCollectionSetTask::chunk_size(), 1U);
4805     uint const num_workers = MIN2(workers()->active_workers(), num_chunks);
4806 
4807     G1FreeCollectionSetTask cl(collection_set, &evacuation_info, surviving_young_words);
4808 
4809     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u",
4810                         cl.name(),
4811                         num_workers,
4812                         _collection_set.region_length());
4813     workers()->run_task(&cl, num_workers);
4814   }
4815   g1_policy()->phase_times()->record_total_free_cset_time_ms((os::elapsedTime() - free_cset_start_time) * 1000.0);
4816 
4817   collection_set->clear();
4818 }
4819 
4820 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4821  private:
4822   FreeRegionList* _free_region_list;
4823   HeapRegionSet* _proxy_set;
4824   uint _humongous_objects_reclaimed;
4825   uint _humongous_regions_reclaimed;
4826   size_t _freed_bytes;
4827  public:
4828 
4829   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4830     _free_region_list(free_region_list), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4831   }
4832 
4833   virtual bool doHeapRegion(HeapRegion* r) {
4834     if (!r->is_starts_humongous()) {
4835       return false;
4836     }
4837 
4838     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4839 
4840     oop obj = (oop)r->bottom();
4841     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4842 
4843     // The following checks whether the humongous object is live are sufficient.
4844     // The main additional check (in addition to having a reference from the roots
4845     // or the young gen) is whether the humongous object has a remembered set entry.
4846     //
4847     // A humongous object cannot be live if there is no remembered set for it
4848     // because:
4849     // - there can be no references from within humongous starts regions referencing
4850     // the object because we never allocate other objects into them.
4851     // (I.e. there are no intra-region references that may be missed by the
4852     // remembered set)
4853     // - as soon there is a remembered set entry to the humongous starts region
4854     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4855     // until the end of a concurrent mark.
4856     //
4857     // It is not required to check whether the object has been found dead by marking
4858     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4859     // all objects allocated during that time are considered live.
4860     // SATB marking is even more conservative than the remembered set.
4861     // So if at this point in the collection there is no remembered set entry,
4862     // nobody has a reference to it.
4863     // At the start of collection we flush all refinement logs, and remembered sets
4864     // are completely up-to-date wrt to references to the humongous object.
4865     //
4866     // Other implementation considerations:
4867     // - never consider object arrays at this time because they would pose
4868     // considerable effort for cleaning up the the remembered sets. This is
4869     // required because stale remembered sets might reference locations that
4870     // are currently allocated into.
4871     uint region_idx = r->hrm_index();
4872     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4873         !r->rem_set()->is_empty()) {
4874       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4875                                region_idx,
4876                                (size_t)obj->size() * HeapWordSize,
4877                                p2i(r->bottom()),
4878                                r->rem_set()->occupied(),
4879                                r->rem_set()->strong_code_roots_list_length(),
4880                                next_bitmap->is_marked(r->bottom()),
4881                                g1h->is_humongous_reclaim_candidate(region_idx),
4882                                obj->is_typeArray()
4883                               );
4884       return false;
4885     }
4886 
4887     guarantee(obj->is_typeArray(),
4888               "Only eagerly reclaiming type arrays is supported, but the object "
4889               PTR_FORMAT " is not.", p2i(r->bottom()));
4890 
4891     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4892                              region_idx,
4893                              (size_t)obj->size() * HeapWordSize,
4894                              p2i(r->bottom()),
4895                              r->rem_set()->occupied(),
4896                              r->rem_set()->strong_code_roots_list_length(),
4897                              next_bitmap->is_marked(r->bottom()),
4898                              g1h->is_humongous_reclaim_candidate(region_idx),
4899                              obj->is_typeArray()
4900                             );
4901 
4902     // Need to clear mark bit of the humongous object if already set.
4903     if (next_bitmap->is_marked(r->bottom())) {
4904       next_bitmap->clear(r->bottom());
4905     }
4906     _humongous_objects_reclaimed++;
4907     do {
4908       HeapRegion* next = g1h->next_region_in_humongous(r);
4909       _freed_bytes += r->used();
4910       r->set_containing_set(NULL);
4911       _humongous_regions_reclaimed++;
4912       g1h->free_humongous_region(r, _free_region_list, false /* skip_remset */ );
4913       r = next;
4914     } while (r != NULL);
4915 
4916     return false;
4917   }
4918 
4919   uint humongous_objects_reclaimed() {
4920     return _humongous_objects_reclaimed;
4921   }
4922 
4923   uint humongous_regions_reclaimed() {
4924     return _humongous_regions_reclaimed;
4925   }
4926 
4927   size_t bytes_freed() const {
4928     return _freed_bytes;
4929   }
4930 };
4931 
4932 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4933   assert_at_safepoint(true);
4934 
4935   if (!G1EagerReclaimHumongousObjects ||
4936       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4937     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4938     return;
4939   }
4940 
4941   double start_time = os::elapsedTime();
4942 
4943   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4944 
4945   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4946   heap_region_iterate(&cl);
4947 
4948   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4949 
4950   G1HRPrinter* hrp = hr_printer();
4951   if (hrp->is_active()) {
4952     FreeRegionListIterator iter(&local_cleanup_list);
4953     while (iter.more_available()) {
4954       HeapRegion* hr = iter.get_next();
4955       hrp->cleanup(hr);
4956     }
4957   }
4958 
4959   prepend_to_freelist(&local_cleanup_list);
4960   decrement_summary_bytes(cl.bytes_freed());
4961 
4962   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4963                                                                     cl.humongous_objects_reclaimed());
4964 }
4965 
4966 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4967 public:
4968   virtual bool doHeapRegion(HeapRegion* r) {
4969     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4970     G1CollectedHeap::heap()->clear_in_cset(r);
4971     r->set_young_index_in_cset(-1);
4972     return false;
4973   }
4974 };
4975 
4976 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4977   G1AbandonCollectionSetClosure cl;
4978   collection_set->iterate(&cl);
4979 
4980   collection_set->clear();
4981   collection_set->stop_incremental_building();
4982 }
4983 
4984 void G1CollectedHeap::set_free_regions_coming() {
4985   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : setting free regions coming");
4986 
4987   assert(!free_regions_coming(), "pre-condition");
4988   _free_regions_coming = true;
4989 }
4990 
4991 void G1CollectedHeap::reset_free_regions_coming() {
4992   assert(free_regions_coming(), "pre-condition");
4993 
4994   {
4995     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
4996     _free_regions_coming = false;
4997     SecondaryFreeList_lock->notify_all();
4998   }
4999 
5000   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [cm thread] : reset free regions coming");
5001 }
5002 
5003 void G1CollectedHeap::wait_while_free_regions_coming() {
5004   // Most of the time we won't have to wait, so let's do a quick test
5005   // first before we take the lock.
5006   if (!free_regions_coming()) {
5007     return;
5008   }
5009 
5010   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : waiting for free regions");
5011 
5012   {
5013     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
5014     while (free_regions_coming()) {
5015       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
5016     }
5017   }
5018 
5019   log_develop_trace(gc, freelist)("G1ConcRegionFreeing [other] : done waiting for free regions");
5020 }
5021 
5022 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
5023   return _allocator->is_retained_old_region(hr);
5024 }
5025 
5026 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
5027   _eden.add(hr);
5028   _g1_policy->set_region_eden(hr);
5029 }
5030 
5031 #ifdef ASSERT
5032 
5033 class NoYoungRegionsClosure: public HeapRegionClosure {
5034 private:
5035   bool _success;
5036 public:
5037   NoYoungRegionsClosure() : _success(true) { }
5038   bool doHeapRegion(HeapRegion* r) {
5039     if (r->is_young()) {
5040       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
5041                             p2i(r->bottom()), p2i(r->end()));
5042       _success = false;
5043     }
5044     return false;
5045   }
5046   bool success() { return _success; }
5047 };
5048 
5049 bool G1CollectedHeap::check_young_list_empty() {
5050   bool ret = (young_regions_count() == 0);
5051 
5052   NoYoungRegionsClosure closure;
5053   heap_region_iterate(&closure);
5054   ret = ret && closure.success();
5055 
5056   return ret;
5057 }
5058 
5059 #endif // ASSERT
5060 
5061 class TearDownRegionSetsClosure : public HeapRegionClosure {
5062 private:
5063   HeapRegionSet *_old_set;
5064 
5065 public:
5066   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
5067 
5068   bool doHeapRegion(HeapRegion* r) {
5069     if (r->is_old()) {
5070       _old_set->remove(r);
5071     } else if(r->is_young()) {
5072       r->uninstall_surv_rate_group();
5073     } else {
5074       // We ignore free regions, we'll empty the free list afterwards.
5075       // We ignore humongous regions, we're not tearing down the
5076       // humongous regions set.
5077       assert(r->is_free() || r->is_humongous(),
5078              "it cannot be another type");
5079     }
5080     return false;
5081   }
5082 
5083   ~TearDownRegionSetsClosure() {
5084     assert(_old_set->is_empty(), "post-condition");
5085   }
5086 };
5087 
5088 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
5089   assert_at_safepoint(true /* should_be_vm_thread */);
5090 
5091   if (!free_list_only) {
5092     TearDownRegionSetsClosure cl(&_old_set);
5093     heap_region_iterate(&cl);
5094 
5095     // Note that emptying the _young_list is postponed and instead done as
5096     // the first step when rebuilding the regions sets again. The reason for
5097     // this is that during a full GC string deduplication needs to know if
5098     // a collected region was young or old when the full GC was initiated.
5099   }
5100   _hrm.remove_all_free_regions();
5101 }
5102 
5103 void G1CollectedHeap::increase_used(size_t bytes) {
5104   _summary_bytes_used += bytes;
5105 }
5106 
5107 void G1CollectedHeap::decrease_used(size_t bytes) {
5108   assert(_summary_bytes_used >= bytes,
5109          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
5110          _summary_bytes_used, bytes);
5111   _summary_bytes_used -= bytes;
5112 }
5113 
5114 void G1CollectedHeap::set_used(size_t bytes) {
5115   _summary_bytes_used = bytes;
5116 }
5117 
5118 class RebuildRegionSetsClosure : public HeapRegionClosure {
5119 private:
5120   bool            _free_list_only;
5121   HeapRegionSet*   _old_set;
5122   HeapRegionManager*   _hrm;
5123   size_t          _total_used;
5124 
5125 public:
5126   RebuildRegionSetsClosure(bool free_list_only,
5127                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
5128     _free_list_only(free_list_only),
5129     _old_set(old_set), _hrm(hrm), _total_used(0) {
5130     assert(_hrm->num_free_regions() == 0, "pre-condition");
5131     if (!free_list_only) {
5132       assert(_old_set->is_empty(), "pre-condition");
5133     }
5134   }
5135 
5136   bool doHeapRegion(HeapRegion* r) {
5137     if (r->is_empty()) {
5138       // Add free regions to the free list
5139       r->set_free();
5140       r->set_allocation_context(AllocationContext::system());
5141       _hrm->insert_into_free_list(r);
5142     } else if (!_free_list_only) {
5143 
5144       if (r->is_humongous()) {
5145         // We ignore humongous regions. We left the humongous set unchanged.
5146       } else {
5147         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
5148         // We now move all (non-humongous, non-old) regions to old gen, and register them as such.
5149         r->move_to_old();
5150         _old_set->add(r);
5151       }
5152       _total_used += r->used();
5153     }
5154 
5155     return false;
5156   }
5157 
5158   size_t total_used() {
5159     return _total_used;
5160   }
5161 };
5162 
5163 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
5164   assert_at_safepoint(true /* should_be_vm_thread */);
5165 
5166   if (!free_list_only) {
5167     _eden.clear();
5168     _survivor.clear();
5169   }
5170 
5171   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
5172   heap_region_iterate(&cl);
5173 
5174   if (!free_list_only) {
5175     set_used(cl.total_used());
5176     if (_archive_allocator != NULL) {
5177       _archive_allocator->clear_used();
5178     }
5179   }
5180   assert(used_unlocked() == recalculate_used(),
5181          "inconsistent used_unlocked(), "
5182          "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
5183          used_unlocked(), recalculate_used());
5184 }
5185 
5186 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
5187   HeapRegion* hr = heap_region_containing(p);
5188   return hr->is_in(p);
5189 }
5190 
5191 // Methods for the mutator alloc region
5192 
5193 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
5194                                                       bool force) {
5195   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5196   bool should_allocate = g1_policy()->should_allocate_mutator_region();
5197   if (force || should_allocate) {
5198     HeapRegion* new_alloc_region = new_region(word_size,
5199                                               false /* is_old */,
5200                                               false /* do_expand */);
5201     if (new_alloc_region != NULL) {
5202       set_region_short_lived_locked(new_alloc_region);
5203       _hr_printer.alloc(new_alloc_region, !should_allocate);
5204       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
5205       return new_alloc_region;
5206     }
5207   }
5208   return NULL;
5209 }
5210 
5211 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
5212                                                   size_t allocated_bytes) {
5213   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
5214   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
5215 
5216   collection_set()->add_eden_region(alloc_region);
5217   increase_used(allocated_bytes);
5218   _hr_printer.retire(alloc_region);
5219   // We update the eden sizes here, when the region is retired,
5220   // instead of when it's allocated, since this is the point that its
5221   // used space has been recored in _summary_bytes_used.
5222   g1mm()->update_eden_size();
5223 }
5224 
5225 // Methods for the GC alloc regions
5226 
5227 bool G1CollectedHeap::has_more_regions(InCSetState dest) {
5228   if (dest.is_old()) {
5229     return true;
5230   } else {
5231     return survivor_regions_count() < g1_policy()->max_survivor_regions();
5232   }
5233 }
5234 
5235 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, InCSetState dest) {
5236   assert(FreeList_lock->owned_by_self(), "pre-condition");
5237 
5238   if (!has_more_regions(dest)) {
5239     return NULL;
5240   }
5241 
5242   const bool is_survivor = dest.is_young();
5243 
5244   HeapRegion* new_alloc_region = new_region(word_size,
5245                                             !is_survivor,
5246                                             true /* do_expand */);
5247   if (new_alloc_region != NULL) {
5248     // We really only need to do this for old regions given that we
5249     // should never scan survivors. But it doesn't hurt to do it
5250     // for survivors too.
5251     new_alloc_region->record_timestamp();
5252     if (is_survivor) {
5253       new_alloc_region->set_survivor();
5254       _survivor.add(new_alloc_region);
5255       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
5256     } else {
5257       new_alloc_region->set_old();
5258       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
5259     }
5260     _hr_printer.alloc(new_alloc_region);
5261     bool during_im = collector_state()->during_initial_mark_pause();
5262     new_alloc_region->note_start_of_copying(during_im);
5263     return new_alloc_region;
5264   }
5265   return NULL;
5266 }
5267 
5268 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
5269                                              size_t allocated_bytes,
5270                                              InCSetState dest) {
5271   bool during_im = collector_state()->during_initial_mark_pause();
5272   alloc_region->note_end_of_copying(during_im);
5273   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
5274   if (dest.is_old()) {
5275     _old_set.add(alloc_region);
5276   }
5277   _hr_printer.retire(alloc_region);
5278 }
5279 
5280 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
5281   bool expanded = false;
5282   uint index = _hrm.find_highest_free(&expanded);
5283 
5284   if (index != G1_NO_HRM_INDEX) {
5285     if (expanded) {
5286       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
5287                                 HeapRegion::GrainWords * HeapWordSize);
5288     }
5289     _hrm.allocate_free_regions_starting_at(index, 1);
5290     return region_at(index);
5291   }
5292   return NULL;
5293 }
5294 
5295 // Optimized nmethod scanning
5296 
5297 class RegisterNMethodOopClosure: public OopClosure {
5298   G1CollectedHeap* _g1h;
5299   nmethod* _nm;
5300 
5301   template <class T> void do_oop_work(T* p) {
5302     T heap_oop = oopDesc::load_heap_oop(p);
5303     if (!oopDesc::is_null(heap_oop)) {
5304       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5305       HeapRegion* hr = _g1h->heap_region_containing(obj);
5306       assert(!hr->is_continues_humongous(),
5307              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5308              " starting at " HR_FORMAT,
5309              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5310 
5311       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
5312       hr->add_strong_code_root_locked(_nm);
5313     }
5314   }
5315 
5316 public:
5317   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5318     _g1h(g1h), _nm(nm) {}
5319 
5320   void do_oop(oop* p)       { do_oop_work(p); }
5321   void do_oop(narrowOop* p) { do_oop_work(p); }
5322 };
5323 
5324 class UnregisterNMethodOopClosure: public OopClosure {
5325   G1CollectedHeap* _g1h;
5326   nmethod* _nm;
5327 
5328   template <class T> void do_oop_work(T* p) {
5329     T heap_oop = oopDesc::load_heap_oop(p);
5330     if (!oopDesc::is_null(heap_oop)) {
5331       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
5332       HeapRegion* hr = _g1h->heap_region_containing(obj);
5333       assert(!hr->is_continues_humongous(),
5334              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
5335              " starting at " HR_FORMAT,
5336              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
5337 
5338       hr->remove_strong_code_root(_nm);
5339     }
5340   }
5341 
5342 public:
5343   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
5344     _g1h(g1h), _nm(nm) {}
5345 
5346   void do_oop(oop* p)       { do_oop_work(p); }
5347   void do_oop(narrowOop* p) { do_oop_work(p); }
5348 };
5349 
5350 // Returns true if the reference points to an object that
5351 // can move in an incremental collection.
5352 bool G1CollectedHeap::is_scavengable(oop obj) {
5353   HeapRegion* hr = heap_region_containing(obj);
5354   return !hr->is_pinned();
5355 }
5356 
5357 void G1CollectedHeap::register_nmethod(nmethod* nm) {
5358   guarantee(nm != NULL, "sanity");
5359   RegisterNMethodOopClosure reg_cl(this, nm);
5360   nm->oops_do(&reg_cl);
5361 }
5362 
5363 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
5364   guarantee(nm != NULL, "sanity");
5365   UnregisterNMethodOopClosure reg_cl(this, nm);
5366   nm->oops_do(&reg_cl, true);
5367 }
5368 
5369 void G1CollectedHeap::purge_code_root_memory() {
5370   double purge_start = os::elapsedTime();
5371   G1CodeRootSet::purge();
5372   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
5373   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
5374 }
5375 
5376 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
5377   G1CollectedHeap* _g1h;
5378 
5379 public:
5380   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
5381     _g1h(g1h) {}
5382 
5383   void do_code_blob(CodeBlob* cb) {
5384     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
5385     if (nm == NULL) {
5386       return;
5387     }
5388 
5389     if (ScavengeRootsInCode) {
5390       _g1h->register_nmethod(nm);
5391     }
5392   }
5393 };
5394 
5395 void G1CollectedHeap::rebuild_strong_code_roots() {
5396   RebuildStrongCodeRootClosure blob_cl(this);
5397   CodeCache::blobs_do(&blob_cl);
5398 }
5399 
5400 class G1YoungGenMemoryManager : public GCMemoryManager {
5401 private:
5402 public:
5403   G1YoungGenMemoryManager() : GCMemoryManager() {}
5404 
5405   const char* name() { return "G1 Young Generation"; }
5406 };
5407 
5408 class G1OldGenMemoryManager : public GCMemoryManager {
5409 private:
5410 public:
5411   G1OldGenMemoryManager() : GCMemoryManager() {}
5412 
5413   const char* name() { return "G1 Old Generation"; }
5414 };
5415 
5416 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
5417   _minor_mgr = new G1YoungGenMemoryManager();
5418   _major_mgr = new G1OldGenMemoryManager();
5419   GrowableArray<GCMemoryManager*> mem_mgrs;
5420   mem_mgrs.append(_minor_mgr);
5421   mem_mgrs.append(_major_mgr);
5422   return mem_mgrs;
5423 }
5424 
5425 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
5426   G1EdenPool* eden = new G1EdenPool(this);
5427   G1SurvivorPool* survivor = new G1SurvivorPool(this);
5428   G1OldGenPool* old_gen = new G1OldGenPool(this);
5429 
5430   _major_mgr->add_pool(eden);
5431   _major_mgr->add_pool(survivor);
5432   _major_mgr->add_pool(old_gen);
5433   _minor_mgr->add_pool(eden);
5434   _minor_mgr->add_pool(survivor);
5435 
5436   GrowableArray<MemoryPool*> mem_pools;
5437   mem_pools.append(eden);
5438   mem_pools.append(survivor);
5439   mem_pools.append(old_gen);
5440   return mem_pools;
5441 }